bcache: don't check seq numbers in register_cache_set()
[linux-2.6-microblaze.git] / drivers / md / bcache / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 #include "features.h"
17
18 #include <linux/blkdev.h>
19 #include <linux/debugfs.h>
20 #include <linux/genhd.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/workqueue.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/reboot.h>
27 #include <linux/sysfs.h>
28
29 unsigned int bch_cutoff_writeback;
30 unsigned int bch_cutoff_writeback_sync;
31
32 static const char bcache_magic[] = {
33         0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
34         0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
35 };
36
37 static const char invalid_uuid[] = {
38         0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
39         0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
40 };
41
42 static struct kobject *bcache_kobj;
43 struct mutex bch_register_lock;
44 bool bcache_is_reboot;
45 LIST_HEAD(bch_cache_sets);
46 static LIST_HEAD(uncached_devices);
47
48 static int bcache_major;
49 static DEFINE_IDA(bcache_device_idx);
50 static wait_queue_head_t unregister_wait;
51 struct workqueue_struct *bcache_wq;
52 struct workqueue_struct *bch_journal_wq;
53
54
55 #define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
56 /* limitation of partitions number on single bcache device */
57 #define BCACHE_MINORS           128
58 /* limitation of bcache devices number on single system */
59 #define BCACHE_DEVICE_IDX_MAX   ((1U << MINORBITS)/BCACHE_MINORS)
60
61 /* Superblock */
62
63 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
64 {
65         unsigned int bucket_size = le16_to_cpu(s->bucket_size);
66
67         if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES &&
68              bch_has_feature_large_bucket(sb))
69                 bucket_size |= le16_to_cpu(s->bucket_size_hi) << 16;
70
71         return bucket_size;
72 }
73
74 static const char *read_super_common(struct cache_sb *sb,  struct block_device *bdev,
75                                      struct cache_sb_disk *s)
76 {
77         const char *err;
78         unsigned int i;
79
80         sb->first_bucket= le16_to_cpu(s->first_bucket);
81         sb->nbuckets    = le64_to_cpu(s->nbuckets);
82         sb->bucket_size = get_bucket_size(sb, s);
83
84         sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
85         sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
86
87         err = "Too many journal buckets";
88         if (sb->keys > SB_JOURNAL_BUCKETS)
89                 goto err;
90
91         err = "Too many buckets";
92         if (sb->nbuckets > LONG_MAX)
93                 goto err;
94
95         err = "Not enough buckets";
96         if (sb->nbuckets < 1 << 7)
97                 goto err;
98
99         err = "Bad block size (not power of 2)";
100         if (!is_power_of_2(sb->block_size))
101                 goto err;
102
103         err = "Bad block size (larger than page size)";
104         if (sb->block_size > PAGE_SECTORS)
105                 goto err;
106
107         err = "Bad bucket size (not power of 2)";
108         if (!is_power_of_2(sb->bucket_size))
109                 goto err;
110
111         err = "Bad bucket size (smaller than page size)";
112         if (sb->bucket_size < PAGE_SECTORS)
113                 goto err;
114
115         err = "Invalid superblock: device too small";
116         if (get_capacity(bdev->bd_disk) <
117             sb->bucket_size * sb->nbuckets)
118                 goto err;
119
120         err = "Bad UUID";
121         if (bch_is_zero(sb->set_uuid, 16))
122                 goto err;
123
124         err = "Bad cache device number in set";
125         if (!sb->nr_in_set ||
126             sb->nr_in_set <= sb->nr_this_dev ||
127             sb->nr_in_set > MAX_CACHES_PER_SET)
128                 goto err;
129
130         err = "Journal buckets not sequential";
131         for (i = 0; i < sb->keys; i++)
132                 if (sb->d[i] != sb->first_bucket + i)
133                         goto err;
134
135         err = "Too many journal buckets";
136         if (sb->first_bucket + sb->keys > sb->nbuckets)
137                 goto err;
138
139         err = "Invalid superblock: first bucket comes before end of super";
140         if (sb->first_bucket * sb->bucket_size < 16)
141                 goto err;
142
143         err = NULL;
144 err:
145         return err;
146 }
147
148
149 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
150                               struct cache_sb_disk **res)
151 {
152         const char *err;
153         struct cache_sb_disk *s;
154         struct page *page;
155         unsigned int i;
156
157         page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
158                                    SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
159         if (IS_ERR(page))
160                 return "IO error";
161         s = page_address(page) + offset_in_page(SB_OFFSET);
162
163         sb->offset              = le64_to_cpu(s->offset);
164         sb->version             = le64_to_cpu(s->version);
165
166         memcpy(sb->magic,       s->magic, 16);
167         memcpy(sb->uuid,        s->uuid, 16);
168         memcpy(sb->set_uuid,    s->set_uuid, 16);
169         memcpy(sb->label,       s->label, SB_LABEL_SIZE);
170
171         sb->flags               = le64_to_cpu(s->flags);
172         sb->seq                 = le64_to_cpu(s->seq);
173         sb->last_mount          = le32_to_cpu(s->last_mount);
174         sb->keys                = le16_to_cpu(s->keys);
175
176         for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
177                 sb->d[i] = le64_to_cpu(s->d[i]);
178
179         pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
180                  sb->version, sb->flags, sb->seq, sb->keys);
181
182         err = "Not a bcache superblock (bad offset)";
183         if (sb->offset != SB_SECTOR)
184                 goto err;
185
186         err = "Not a bcache superblock (bad magic)";
187         if (memcmp(sb->magic, bcache_magic, 16))
188                 goto err;
189
190         err = "Bad checksum";
191         if (s->csum != csum_set(s))
192                 goto err;
193
194         err = "Bad UUID";
195         if (bch_is_zero(sb->uuid, 16))
196                 goto err;
197
198         sb->block_size  = le16_to_cpu(s->block_size);
199
200         err = "Superblock block size smaller than device block size";
201         if (sb->block_size << 9 < bdev_logical_block_size(bdev))
202                 goto err;
203
204         switch (sb->version) {
205         case BCACHE_SB_VERSION_BDEV:
206                 sb->data_offset = BDEV_DATA_START_DEFAULT;
207                 break;
208         case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
209         case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
210                 sb->data_offset = le64_to_cpu(s->data_offset);
211
212                 err = "Bad data offset";
213                 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
214                         goto err;
215
216                 break;
217         case BCACHE_SB_VERSION_CDEV:
218         case BCACHE_SB_VERSION_CDEV_WITH_UUID:
219                 err = read_super_common(sb, bdev, s);
220                 if (err)
221                         goto err;
222                 break;
223         case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
224                 /*
225                  * Feature bits are needed in read_super_common(),
226                  * convert them firstly.
227                  */
228                 sb->feature_compat = le64_to_cpu(s->feature_compat);
229                 sb->feature_incompat = le64_to_cpu(s->feature_incompat);
230                 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
231                 err = read_super_common(sb, bdev, s);
232                 if (err)
233                         goto err;
234                 break;
235         default:
236                 err = "Unsupported superblock version";
237                 goto err;
238         }
239
240         sb->last_mount = (u32)ktime_get_real_seconds();
241         *res = s;
242         return NULL;
243 err:
244         put_page(page);
245         return err;
246 }
247
248 static void write_bdev_super_endio(struct bio *bio)
249 {
250         struct cached_dev *dc = bio->bi_private;
251
252         if (bio->bi_status)
253                 bch_count_backing_io_errors(dc, bio);
254
255         closure_put(&dc->sb_write);
256 }
257
258 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
259                 struct bio *bio)
260 {
261         unsigned int i;
262
263         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
264         bio->bi_iter.bi_sector  = SB_SECTOR;
265         __bio_add_page(bio, virt_to_page(out), SB_SIZE,
266                         offset_in_page(out));
267
268         out->offset             = cpu_to_le64(sb->offset);
269
270         memcpy(out->uuid,       sb->uuid, 16);
271         memcpy(out->set_uuid,   sb->set_uuid, 16);
272         memcpy(out->label,      sb->label, SB_LABEL_SIZE);
273
274         out->flags              = cpu_to_le64(sb->flags);
275         out->seq                = cpu_to_le64(sb->seq);
276
277         out->last_mount         = cpu_to_le32(sb->last_mount);
278         out->first_bucket       = cpu_to_le16(sb->first_bucket);
279         out->keys               = cpu_to_le16(sb->keys);
280
281         for (i = 0; i < sb->keys; i++)
282                 out->d[i] = cpu_to_le64(sb->d[i]);
283
284         if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
285                 out->feature_compat    = cpu_to_le64(sb->feature_compat);
286                 out->feature_incompat  = cpu_to_le64(sb->feature_incompat);
287                 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
288         }
289
290         out->version            = cpu_to_le64(sb->version);
291         out->csum = csum_set(out);
292
293         pr_debug("ver %llu, flags %llu, seq %llu\n",
294                  sb->version, sb->flags, sb->seq);
295
296         submit_bio(bio);
297 }
298
299 static void bch_write_bdev_super_unlock(struct closure *cl)
300 {
301         struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
302
303         up(&dc->sb_write_mutex);
304 }
305
306 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
307 {
308         struct closure *cl = &dc->sb_write;
309         struct bio *bio = &dc->sb_bio;
310
311         down(&dc->sb_write_mutex);
312         closure_init(cl, parent);
313
314         bio_init(bio, dc->sb_bv, 1);
315         bio_set_dev(bio, dc->bdev);
316         bio->bi_end_io  = write_bdev_super_endio;
317         bio->bi_private = dc;
318
319         closure_get(cl);
320         /* I/O request sent to backing device */
321         __write_super(&dc->sb, dc->sb_disk, bio);
322
323         closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
324 }
325
326 static void write_super_endio(struct bio *bio)
327 {
328         struct cache *ca = bio->bi_private;
329
330         /* is_read = 0 */
331         bch_count_io_errors(ca, bio->bi_status, 0,
332                             "writing superblock");
333         closure_put(&ca->set->sb_write);
334 }
335
336 static void bcache_write_super_unlock(struct closure *cl)
337 {
338         struct cache_set *c = container_of(cl, struct cache_set, sb_write);
339
340         up(&c->sb_write_mutex);
341 }
342
343 void bcache_write_super(struct cache_set *c)
344 {
345         struct closure *cl = &c->sb_write;
346         struct cache *ca = c->cache;
347         struct bio *bio = &ca->sb_bio;
348         unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
349
350         down(&c->sb_write_mutex);
351         closure_init(cl, &c->cl);
352
353         c->sb.seq++;
354
355         if (c->sb.version > version)
356                 version = c->sb.version;
357
358         ca->sb.version          = version;
359         ca->sb.seq              = c->sb.seq;
360         ca->sb.last_mount       = c->sb.last_mount;
361
362         SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
363
364         bio_init(bio, ca->sb_bv, 1);
365         bio_set_dev(bio, ca->bdev);
366         bio->bi_end_io  = write_super_endio;
367         bio->bi_private = ca;
368
369         closure_get(cl);
370         __write_super(&ca->sb, ca->sb_disk, bio);
371
372         closure_return_with_destructor(cl, bcache_write_super_unlock);
373 }
374
375 /* UUID io */
376
377 static void uuid_endio(struct bio *bio)
378 {
379         struct closure *cl = bio->bi_private;
380         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
381
382         cache_set_err_on(bio->bi_status, c, "accessing uuids");
383         bch_bbio_free(bio, c);
384         closure_put(cl);
385 }
386
387 static void uuid_io_unlock(struct closure *cl)
388 {
389         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
390
391         up(&c->uuid_write_mutex);
392 }
393
394 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
395                     struct bkey *k, struct closure *parent)
396 {
397         struct closure *cl = &c->uuid_write;
398         struct uuid_entry *u;
399         unsigned int i;
400         char buf[80];
401
402         BUG_ON(!parent);
403         down(&c->uuid_write_mutex);
404         closure_init(cl, parent);
405
406         for (i = 0; i < KEY_PTRS(k); i++) {
407                 struct bio *bio = bch_bbio_alloc(c);
408
409                 bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
410                 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
411
412                 bio->bi_end_io  = uuid_endio;
413                 bio->bi_private = cl;
414                 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
415                 bch_bio_map(bio, c->uuids);
416
417                 bch_submit_bbio(bio, c, k, i);
418
419                 if (op != REQ_OP_WRITE)
420                         break;
421         }
422
423         bch_extent_to_text(buf, sizeof(buf), k);
424         pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf);
425
426         for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
427                 if (!bch_is_zero(u->uuid, 16))
428                         pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
429                                  u - c->uuids, u->uuid, u->label,
430                                  u->first_reg, u->last_reg, u->invalidated);
431
432         closure_return_with_destructor(cl, uuid_io_unlock);
433 }
434
435 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
436 {
437         struct bkey *k = &j->uuid_bucket;
438
439         if (__bch_btree_ptr_invalid(c, k))
440                 return "bad uuid pointer";
441
442         bkey_copy(&c->uuid_bucket, k);
443         uuid_io(c, REQ_OP_READ, 0, k, cl);
444
445         if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
446                 struct uuid_entry_v0    *u0 = (void *) c->uuids;
447                 struct uuid_entry       *u1 = (void *) c->uuids;
448                 int i;
449
450                 closure_sync(cl);
451
452                 /*
453                  * Since the new uuid entry is bigger than the old, we have to
454                  * convert starting at the highest memory address and work down
455                  * in order to do it in place
456                  */
457
458                 for (i = c->nr_uuids - 1;
459                      i >= 0;
460                      --i) {
461                         memcpy(u1[i].uuid,      u0[i].uuid, 16);
462                         memcpy(u1[i].label,     u0[i].label, 32);
463
464                         u1[i].first_reg         = u0[i].first_reg;
465                         u1[i].last_reg          = u0[i].last_reg;
466                         u1[i].invalidated       = u0[i].invalidated;
467
468                         u1[i].flags     = 0;
469                         u1[i].sectors   = 0;
470                 }
471         }
472
473         return NULL;
474 }
475
476 static int __uuid_write(struct cache_set *c)
477 {
478         BKEY_PADDED(key) k;
479         struct closure cl;
480         struct cache *ca;
481         unsigned int size;
482
483         closure_init_stack(&cl);
484         lockdep_assert_held(&bch_register_lock);
485
486         if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true))
487                 return 1;
488
489         size =  meta_bucket_pages(&c->sb) * PAGE_SECTORS;
490         SET_KEY_SIZE(&k.key, size);
491         uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
492         closure_sync(&cl);
493
494         /* Only one bucket used for uuid write */
495         ca = PTR_CACHE(c, &k.key, 0);
496         atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
497
498         bkey_copy(&c->uuid_bucket, &k.key);
499         bkey_put(c, &k.key);
500         return 0;
501 }
502
503 int bch_uuid_write(struct cache_set *c)
504 {
505         int ret = __uuid_write(c);
506
507         if (!ret)
508                 bch_journal_meta(c, NULL);
509
510         return ret;
511 }
512
513 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
514 {
515         struct uuid_entry *u;
516
517         for (u = c->uuids;
518              u < c->uuids + c->nr_uuids; u++)
519                 if (!memcmp(u->uuid, uuid, 16))
520                         return u;
521
522         return NULL;
523 }
524
525 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
526 {
527         static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
528
529         return uuid_find(c, zero_uuid);
530 }
531
532 /*
533  * Bucket priorities/gens:
534  *
535  * For each bucket, we store on disk its
536  *   8 bit gen
537  *  16 bit priority
538  *
539  * See alloc.c for an explanation of the gen. The priority is used to implement
540  * lru (and in the future other) cache replacement policies; for most purposes
541  * it's just an opaque integer.
542  *
543  * The gens and the priorities don't have a whole lot to do with each other, and
544  * it's actually the gens that must be written out at specific times - it's no
545  * big deal if the priorities don't get written, if we lose them we just reuse
546  * buckets in suboptimal order.
547  *
548  * On disk they're stored in a packed array, and in as many buckets are required
549  * to fit them all. The buckets we use to store them form a list; the journal
550  * header points to the first bucket, the first bucket points to the second
551  * bucket, et cetera.
552  *
553  * This code is used by the allocation code; periodically (whenever it runs out
554  * of buckets to allocate from) the allocation code will invalidate some
555  * buckets, but it can't use those buckets until their new gens are safely on
556  * disk.
557  */
558
559 static void prio_endio(struct bio *bio)
560 {
561         struct cache *ca = bio->bi_private;
562
563         cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
564         bch_bbio_free(bio, ca->set);
565         closure_put(&ca->prio);
566 }
567
568 static void prio_io(struct cache *ca, uint64_t bucket, int op,
569                     unsigned long op_flags)
570 {
571         struct closure *cl = &ca->prio;
572         struct bio *bio = bch_bbio_alloc(ca->set);
573
574         closure_init_stack(cl);
575
576         bio->bi_iter.bi_sector  = bucket * ca->sb.bucket_size;
577         bio_set_dev(bio, ca->bdev);
578         bio->bi_iter.bi_size    = meta_bucket_bytes(&ca->sb);
579
580         bio->bi_end_io  = prio_endio;
581         bio->bi_private = ca;
582         bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
583         bch_bio_map(bio, ca->disk_buckets);
584
585         closure_bio_submit(ca->set, bio, &ca->prio);
586         closure_sync(cl);
587 }
588
589 int bch_prio_write(struct cache *ca, bool wait)
590 {
591         int i;
592         struct bucket *b;
593         struct closure cl;
594
595         pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
596                  fifo_used(&ca->free[RESERVE_PRIO]),
597                  fifo_used(&ca->free[RESERVE_NONE]),
598                  fifo_used(&ca->free_inc));
599
600         /*
601          * Pre-check if there are enough free buckets. In the non-blocking
602          * scenario it's better to fail early rather than starting to allocate
603          * buckets and do a cleanup later in case of failure.
604          */
605         if (!wait) {
606                 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
607                                fifo_used(&ca->free[RESERVE_NONE]);
608                 if (prio_buckets(ca) > avail)
609                         return -ENOMEM;
610         }
611
612         closure_init_stack(&cl);
613
614         lockdep_assert_held(&ca->set->bucket_lock);
615
616         ca->disk_buckets->seq++;
617
618         atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
619                         &ca->meta_sectors_written);
620
621         for (i = prio_buckets(ca) - 1; i >= 0; --i) {
622                 long bucket;
623                 struct prio_set *p = ca->disk_buckets;
624                 struct bucket_disk *d = p->data;
625                 struct bucket_disk *end = d + prios_per_bucket(ca);
626
627                 for (b = ca->buckets + i * prios_per_bucket(ca);
628                      b < ca->buckets + ca->sb.nbuckets && d < end;
629                      b++, d++) {
630                         d->prio = cpu_to_le16(b->prio);
631                         d->gen = b->gen;
632                 }
633
634                 p->next_bucket  = ca->prio_buckets[i + 1];
635                 p->magic        = pset_magic(&ca->sb);
636                 p->csum         = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
637
638                 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
639                 BUG_ON(bucket == -1);
640
641                 mutex_unlock(&ca->set->bucket_lock);
642                 prio_io(ca, bucket, REQ_OP_WRITE, 0);
643                 mutex_lock(&ca->set->bucket_lock);
644
645                 ca->prio_buckets[i] = bucket;
646                 atomic_dec_bug(&ca->buckets[bucket].pin);
647         }
648
649         mutex_unlock(&ca->set->bucket_lock);
650
651         bch_journal_meta(ca->set, &cl);
652         closure_sync(&cl);
653
654         mutex_lock(&ca->set->bucket_lock);
655
656         /*
657          * Don't want the old priorities to get garbage collected until after we
658          * finish writing the new ones, and they're journalled
659          */
660         for (i = 0; i < prio_buckets(ca); i++) {
661                 if (ca->prio_last_buckets[i])
662                         __bch_bucket_free(ca,
663                                 &ca->buckets[ca->prio_last_buckets[i]]);
664
665                 ca->prio_last_buckets[i] = ca->prio_buckets[i];
666         }
667         return 0;
668 }
669
670 static int prio_read(struct cache *ca, uint64_t bucket)
671 {
672         struct prio_set *p = ca->disk_buckets;
673         struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
674         struct bucket *b;
675         unsigned int bucket_nr = 0;
676         int ret = -EIO;
677
678         for (b = ca->buckets;
679              b < ca->buckets + ca->sb.nbuckets;
680              b++, d++) {
681                 if (d == end) {
682                         ca->prio_buckets[bucket_nr] = bucket;
683                         ca->prio_last_buckets[bucket_nr] = bucket;
684                         bucket_nr++;
685
686                         prio_io(ca, bucket, REQ_OP_READ, 0);
687
688                         if (p->csum !=
689                             bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
690                                 pr_warn("bad csum reading priorities\n");
691                                 goto out;
692                         }
693
694                         if (p->magic != pset_magic(&ca->sb)) {
695                                 pr_warn("bad magic reading priorities\n");
696                                 goto out;
697                         }
698
699                         bucket = p->next_bucket;
700                         d = p->data;
701                 }
702
703                 b->prio = le16_to_cpu(d->prio);
704                 b->gen = b->last_gc = d->gen;
705         }
706
707         ret = 0;
708 out:
709         return ret;
710 }
711
712 /* Bcache device */
713
714 static int open_dev(struct block_device *b, fmode_t mode)
715 {
716         struct bcache_device *d = b->bd_disk->private_data;
717
718         if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
719                 return -ENXIO;
720
721         closure_get(&d->cl);
722         return 0;
723 }
724
725 static void release_dev(struct gendisk *b, fmode_t mode)
726 {
727         struct bcache_device *d = b->private_data;
728
729         closure_put(&d->cl);
730 }
731
732 static int ioctl_dev(struct block_device *b, fmode_t mode,
733                      unsigned int cmd, unsigned long arg)
734 {
735         struct bcache_device *d = b->bd_disk->private_data;
736
737         return d->ioctl(d, mode, cmd, arg);
738 }
739
740 static const struct block_device_operations bcache_cached_ops = {
741         .submit_bio     = cached_dev_submit_bio,
742         .open           = open_dev,
743         .release        = release_dev,
744         .ioctl          = ioctl_dev,
745         .owner          = THIS_MODULE,
746 };
747
748 static const struct block_device_operations bcache_flash_ops = {
749         .submit_bio     = flash_dev_submit_bio,
750         .open           = open_dev,
751         .release        = release_dev,
752         .ioctl          = ioctl_dev,
753         .owner          = THIS_MODULE,
754 };
755
756 void bcache_device_stop(struct bcache_device *d)
757 {
758         if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
759                 /*
760                  * closure_fn set to
761                  * - cached device: cached_dev_flush()
762                  * - flash dev: flash_dev_flush()
763                  */
764                 closure_queue(&d->cl);
765 }
766
767 static void bcache_device_unlink(struct bcache_device *d)
768 {
769         lockdep_assert_held(&bch_register_lock);
770
771         if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
772                 struct cache *ca = d->c->cache;
773
774                 sysfs_remove_link(&d->c->kobj, d->name);
775                 sysfs_remove_link(&d->kobj, "cache");
776
777                 bd_unlink_disk_holder(ca->bdev, d->disk);
778         }
779 }
780
781 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
782                                const char *name)
783 {
784         struct cache *ca = c->cache;
785         int ret;
786
787         bd_link_disk_holder(ca->bdev, d->disk);
788
789         snprintf(d->name, BCACHEDEVNAME_SIZE,
790                  "%s%u", name, d->id);
791
792         ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
793         if (ret < 0)
794                 pr_err("Couldn't create device -> cache set symlink\n");
795
796         ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
797         if (ret < 0)
798                 pr_err("Couldn't create cache set -> device symlink\n");
799
800         clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
801 }
802
803 static void bcache_device_detach(struct bcache_device *d)
804 {
805         lockdep_assert_held(&bch_register_lock);
806
807         atomic_dec(&d->c->attached_dev_nr);
808
809         if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
810                 struct uuid_entry *u = d->c->uuids + d->id;
811
812                 SET_UUID_FLASH_ONLY(u, 0);
813                 memcpy(u->uuid, invalid_uuid, 16);
814                 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
815                 bch_uuid_write(d->c);
816         }
817
818         bcache_device_unlink(d);
819
820         d->c->devices[d->id] = NULL;
821         closure_put(&d->c->caching);
822         d->c = NULL;
823 }
824
825 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
826                                  unsigned int id)
827 {
828         d->id = id;
829         d->c = c;
830         c->devices[id] = d;
831
832         if (id >= c->devices_max_used)
833                 c->devices_max_used = id + 1;
834
835         closure_get(&c->caching);
836 }
837
838 static inline int first_minor_to_idx(int first_minor)
839 {
840         return (first_minor/BCACHE_MINORS);
841 }
842
843 static inline int idx_to_first_minor(int idx)
844 {
845         return (idx * BCACHE_MINORS);
846 }
847
848 static void bcache_device_free(struct bcache_device *d)
849 {
850         struct gendisk *disk = d->disk;
851
852         lockdep_assert_held(&bch_register_lock);
853
854         if (disk)
855                 pr_info("%s stopped\n", disk->disk_name);
856         else
857                 pr_err("bcache device (NULL gendisk) stopped\n");
858
859         if (d->c)
860                 bcache_device_detach(d);
861
862         if (disk) {
863                 bool disk_added = (disk->flags & GENHD_FL_UP) != 0;
864
865                 if (disk_added)
866                         del_gendisk(disk);
867
868                 if (disk->queue)
869                         blk_cleanup_queue(disk->queue);
870
871                 ida_simple_remove(&bcache_device_idx,
872                                   first_minor_to_idx(disk->first_minor));
873                 if (disk_added)
874                         put_disk(disk);
875         }
876
877         bioset_exit(&d->bio_split);
878         kvfree(d->full_dirty_stripes);
879         kvfree(d->stripe_sectors_dirty);
880
881         closure_debug_destroy(&d->cl);
882 }
883
884 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
885                 sector_t sectors, struct block_device *cached_bdev,
886                 const struct block_device_operations *ops)
887 {
888         struct request_queue *q;
889         const size_t max_stripes = min_t(size_t, INT_MAX,
890                                          SIZE_MAX / sizeof(atomic_t));
891         uint64_t n;
892         int idx;
893
894         if (!d->stripe_size)
895                 d->stripe_size = 1 << 31;
896
897         n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
898         if (!n || n > max_stripes) {
899                 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
900                         n);
901                 return -ENOMEM;
902         }
903         d->nr_stripes = n;
904
905         n = d->nr_stripes * sizeof(atomic_t);
906         d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
907         if (!d->stripe_sectors_dirty)
908                 return -ENOMEM;
909
910         n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
911         d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
912         if (!d->full_dirty_stripes)
913                 return -ENOMEM;
914
915         idx = ida_simple_get(&bcache_device_idx, 0,
916                                 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
917         if (idx < 0)
918                 return idx;
919
920         if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
921                         BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
922                 goto err;
923
924         d->disk = alloc_disk(BCACHE_MINORS);
925         if (!d->disk)
926                 goto err;
927
928         set_capacity(d->disk, sectors);
929         snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
930
931         d->disk->major          = bcache_major;
932         d->disk->first_minor    = idx_to_first_minor(idx);
933         d->disk->fops           = ops;
934         d->disk->private_data   = d;
935
936         q = blk_alloc_queue(NUMA_NO_NODE);
937         if (!q)
938                 return -ENOMEM;
939
940         d->disk->queue                  = q;
941         q->limits.max_hw_sectors        = UINT_MAX;
942         q->limits.max_sectors           = UINT_MAX;
943         q->limits.max_segment_size      = UINT_MAX;
944         q->limits.max_segments          = BIO_MAX_PAGES;
945         blk_queue_max_discard_sectors(q, UINT_MAX);
946         q->limits.discard_granularity   = 512;
947         q->limits.io_min                = block_size;
948         q->limits.logical_block_size    = block_size;
949         q->limits.physical_block_size   = block_size;
950
951         if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) {
952                 /*
953                  * This should only happen with BCACHE_SB_VERSION_BDEV.
954                  * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
955                  */
956                 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
957                         d->disk->disk_name, q->limits.logical_block_size,
958                         PAGE_SIZE, bdev_logical_block_size(cached_bdev));
959
960                 /* This also adjusts physical block size/min io size if needed */
961                 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev));
962         }
963
964         blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
965         blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
966         blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
967
968         blk_queue_write_cache(q, true, true);
969
970         return 0;
971
972 err:
973         ida_simple_remove(&bcache_device_idx, idx);
974         return -ENOMEM;
975
976 }
977
978 /* Cached device */
979
980 static void calc_cached_dev_sectors(struct cache_set *c)
981 {
982         uint64_t sectors = 0;
983         struct cached_dev *dc;
984
985         list_for_each_entry(dc, &c->cached_devs, list)
986                 sectors += bdev_sectors(dc->bdev);
987
988         c->cached_dev_sectors = sectors;
989 }
990
991 #define BACKING_DEV_OFFLINE_TIMEOUT 5
992 static int cached_dev_status_update(void *arg)
993 {
994         struct cached_dev *dc = arg;
995         struct request_queue *q;
996
997         /*
998          * If this delayed worker is stopping outside, directly quit here.
999          * dc->io_disable might be set via sysfs interface, so check it
1000          * here too.
1001          */
1002         while (!kthread_should_stop() && !dc->io_disable) {
1003                 q = bdev_get_queue(dc->bdev);
1004                 if (blk_queue_dying(q))
1005                         dc->offline_seconds++;
1006                 else
1007                         dc->offline_seconds = 0;
1008
1009                 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1010                         pr_err("%s: device offline for %d seconds\n",
1011                                dc->backing_dev_name,
1012                                BACKING_DEV_OFFLINE_TIMEOUT);
1013                         pr_err("%s: disable I/O request due to backing device offline\n",
1014                                dc->disk.name);
1015                         dc->io_disable = true;
1016                         /* let others know earlier that io_disable is true */
1017                         smp_mb();
1018                         bcache_device_stop(&dc->disk);
1019                         break;
1020                 }
1021                 schedule_timeout_interruptible(HZ);
1022         }
1023
1024         wait_for_kthread_stop();
1025         return 0;
1026 }
1027
1028
1029 int bch_cached_dev_run(struct cached_dev *dc)
1030 {
1031         struct bcache_device *d = &dc->disk;
1032         char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1033         char *env[] = {
1034                 "DRIVER=bcache",
1035                 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
1036                 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
1037                 NULL,
1038         };
1039
1040         if (dc->io_disable) {
1041                 pr_err("I/O disabled on cached dev %s\n",
1042                        dc->backing_dev_name);
1043                 kfree(env[1]);
1044                 kfree(env[2]);
1045                 kfree(buf);
1046                 return -EIO;
1047         }
1048
1049         if (atomic_xchg(&dc->running, 1)) {
1050                 kfree(env[1]);
1051                 kfree(env[2]);
1052                 kfree(buf);
1053                 pr_info("cached dev %s is running already\n",
1054                        dc->backing_dev_name);
1055                 return -EBUSY;
1056         }
1057
1058         if (!d->c &&
1059             BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1060                 struct closure cl;
1061
1062                 closure_init_stack(&cl);
1063
1064                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1065                 bch_write_bdev_super(dc, &cl);
1066                 closure_sync(&cl);
1067         }
1068
1069         add_disk(d->disk);
1070         bd_link_disk_holder(dc->bdev, dc->disk.disk);
1071         /*
1072          * won't show up in the uevent file, use udevadm monitor -e instead
1073          * only class / kset properties are persistent
1074          */
1075         kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1076         kfree(env[1]);
1077         kfree(env[2]);
1078         kfree(buf);
1079
1080         if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1081             sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1082                               &d->kobj, "bcache")) {
1083                 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1084                 return -ENOMEM;
1085         }
1086
1087         dc->status_update_thread = kthread_run(cached_dev_status_update,
1088                                                dc, "bcache_status_update");
1089         if (IS_ERR(dc->status_update_thread)) {
1090                 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1091         }
1092
1093         return 0;
1094 }
1095
1096 /*
1097  * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1098  * work dc->writeback_rate_update is running. Wait until the routine
1099  * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1100  * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1101  * seconds, give up waiting here and continue to cancel it too.
1102  */
1103 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1104 {
1105         int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1106
1107         do {
1108                 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1109                               &dc->disk.flags))
1110                         break;
1111                 time_out--;
1112                 schedule_timeout_interruptible(1);
1113         } while (time_out > 0);
1114
1115         if (time_out == 0)
1116                 pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1117
1118         cancel_delayed_work_sync(&dc->writeback_rate_update);
1119 }
1120
1121 static void cached_dev_detach_finish(struct work_struct *w)
1122 {
1123         struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1124         struct closure cl;
1125
1126         closure_init_stack(&cl);
1127
1128         BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1129         BUG_ON(refcount_read(&dc->count));
1130
1131
1132         if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1133                 cancel_writeback_rate_update_dwork(dc);
1134
1135         if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1136                 kthread_stop(dc->writeback_thread);
1137                 dc->writeback_thread = NULL;
1138         }
1139
1140         memset(&dc->sb.set_uuid, 0, 16);
1141         SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
1142
1143         bch_write_bdev_super(dc, &cl);
1144         closure_sync(&cl);
1145
1146         mutex_lock(&bch_register_lock);
1147
1148         calc_cached_dev_sectors(dc->disk.c);
1149         bcache_device_detach(&dc->disk);
1150         list_move(&dc->list, &uncached_devices);
1151
1152         clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1153         clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1154
1155         mutex_unlock(&bch_register_lock);
1156
1157         pr_info("Caching disabled for %s\n", dc->backing_dev_name);
1158
1159         /* Drop ref we took in cached_dev_detach() */
1160         closure_put(&dc->disk.cl);
1161 }
1162
1163 void bch_cached_dev_detach(struct cached_dev *dc)
1164 {
1165         lockdep_assert_held(&bch_register_lock);
1166
1167         if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1168                 return;
1169
1170         if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1171                 return;
1172
1173         /*
1174          * Block the device from being closed and freed until we're finished
1175          * detaching
1176          */
1177         closure_get(&dc->disk.cl);
1178
1179         bch_writeback_queue(dc);
1180
1181         cached_dev_put(dc);
1182 }
1183
1184 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1185                           uint8_t *set_uuid)
1186 {
1187         uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1188         struct uuid_entry *u;
1189         struct cached_dev *exist_dc, *t;
1190         int ret = 0;
1191
1192         if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) ||
1193             (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16)))
1194                 return -ENOENT;
1195
1196         if (dc->disk.c) {
1197                 pr_err("Can't attach %s: already attached\n",
1198                        dc->backing_dev_name);
1199                 return -EINVAL;
1200         }
1201
1202         if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1203                 pr_err("Can't attach %s: shutting down\n",
1204                        dc->backing_dev_name);
1205                 return -EINVAL;
1206         }
1207
1208         if (dc->sb.block_size < c->sb.block_size) {
1209                 /* Will die */
1210                 pr_err("Couldn't attach %s: block size less than set's block size\n",
1211                        dc->backing_dev_name);
1212                 return -EINVAL;
1213         }
1214
1215         /* Check whether already attached */
1216         list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1217                 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1218                         pr_err("Tried to attach %s but duplicate UUID already attached\n",
1219                                 dc->backing_dev_name);
1220
1221                         return -EINVAL;
1222                 }
1223         }
1224
1225         u = uuid_find(c, dc->sb.uuid);
1226
1227         if (u &&
1228             (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1229              BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1230                 memcpy(u->uuid, invalid_uuid, 16);
1231                 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1232                 u = NULL;
1233         }
1234
1235         if (!u) {
1236                 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1237                         pr_err("Couldn't find uuid for %s in set\n",
1238                                dc->backing_dev_name);
1239                         return -ENOENT;
1240                 }
1241
1242                 u = uuid_find_empty(c);
1243                 if (!u) {
1244                         pr_err("Not caching %s, no room for UUID\n",
1245                                dc->backing_dev_name);
1246                         return -EINVAL;
1247                 }
1248         }
1249
1250         /*
1251          * Deadlocks since we're called via sysfs...
1252          * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1253          */
1254
1255         if (bch_is_zero(u->uuid, 16)) {
1256                 struct closure cl;
1257
1258                 closure_init_stack(&cl);
1259
1260                 memcpy(u->uuid, dc->sb.uuid, 16);
1261                 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1262                 u->first_reg = u->last_reg = rtime;
1263                 bch_uuid_write(c);
1264
1265                 memcpy(dc->sb.set_uuid, c->set_uuid, 16);
1266                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1267
1268                 bch_write_bdev_super(dc, &cl);
1269                 closure_sync(&cl);
1270         } else {
1271                 u->last_reg = rtime;
1272                 bch_uuid_write(c);
1273         }
1274
1275         bcache_device_attach(&dc->disk, c, u - c->uuids);
1276         list_move(&dc->list, &c->cached_devs);
1277         calc_cached_dev_sectors(c);
1278
1279         /*
1280          * dc->c must be set before dc->count != 0 - paired with the mb in
1281          * cached_dev_get()
1282          */
1283         smp_wmb();
1284         refcount_set(&dc->count, 1);
1285
1286         /* Block writeback thread, but spawn it */
1287         down_write(&dc->writeback_lock);
1288         if (bch_cached_dev_writeback_start(dc)) {
1289                 up_write(&dc->writeback_lock);
1290                 pr_err("Couldn't start writeback facilities for %s\n",
1291                        dc->disk.disk->disk_name);
1292                 return -ENOMEM;
1293         }
1294
1295         if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1296                 atomic_set(&dc->has_dirty, 1);
1297                 bch_writeback_queue(dc);
1298         }
1299
1300         bch_sectors_dirty_init(&dc->disk);
1301
1302         ret = bch_cached_dev_run(dc);
1303         if (ret && (ret != -EBUSY)) {
1304                 up_write(&dc->writeback_lock);
1305                 /*
1306                  * bch_register_lock is held, bcache_device_stop() is not
1307                  * able to be directly called. The kthread and kworker
1308                  * created previously in bch_cached_dev_writeback_start()
1309                  * have to be stopped manually here.
1310                  */
1311                 kthread_stop(dc->writeback_thread);
1312                 cancel_writeback_rate_update_dwork(dc);
1313                 pr_err("Couldn't run cached device %s\n",
1314                        dc->backing_dev_name);
1315                 return ret;
1316         }
1317
1318         bcache_device_link(&dc->disk, c, "bdev");
1319         atomic_inc(&c->attached_dev_nr);
1320
1321         /* Allow the writeback thread to proceed */
1322         up_write(&dc->writeback_lock);
1323
1324         pr_info("Caching %s as %s on set %pU\n",
1325                 dc->backing_dev_name,
1326                 dc->disk.disk->disk_name,
1327                 dc->disk.c->set_uuid);
1328         return 0;
1329 }
1330
1331 /* when dc->disk.kobj released */
1332 void bch_cached_dev_release(struct kobject *kobj)
1333 {
1334         struct cached_dev *dc = container_of(kobj, struct cached_dev,
1335                                              disk.kobj);
1336         kfree(dc);
1337         module_put(THIS_MODULE);
1338 }
1339
1340 static void cached_dev_free(struct closure *cl)
1341 {
1342         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1343
1344         if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1345                 cancel_writeback_rate_update_dwork(dc);
1346
1347         if (!IS_ERR_OR_NULL(dc->writeback_thread))
1348                 kthread_stop(dc->writeback_thread);
1349         if (!IS_ERR_OR_NULL(dc->status_update_thread))
1350                 kthread_stop(dc->status_update_thread);
1351
1352         mutex_lock(&bch_register_lock);
1353
1354         if (atomic_read(&dc->running))
1355                 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1356         bcache_device_free(&dc->disk);
1357         list_del(&dc->list);
1358
1359         mutex_unlock(&bch_register_lock);
1360
1361         if (dc->sb_disk)
1362                 put_page(virt_to_page(dc->sb_disk));
1363
1364         if (!IS_ERR_OR_NULL(dc->bdev))
1365                 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1366
1367         wake_up(&unregister_wait);
1368
1369         kobject_put(&dc->disk.kobj);
1370 }
1371
1372 static void cached_dev_flush(struct closure *cl)
1373 {
1374         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1375         struct bcache_device *d = &dc->disk;
1376
1377         mutex_lock(&bch_register_lock);
1378         bcache_device_unlink(d);
1379         mutex_unlock(&bch_register_lock);
1380
1381         bch_cache_accounting_destroy(&dc->accounting);
1382         kobject_del(&d->kobj);
1383
1384         continue_at(cl, cached_dev_free, system_wq);
1385 }
1386
1387 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1388 {
1389         int ret;
1390         struct io *io;
1391         struct request_queue *q = bdev_get_queue(dc->bdev);
1392
1393         __module_get(THIS_MODULE);
1394         INIT_LIST_HEAD(&dc->list);
1395         closure_init(&dc->disk.cl, NULL);
1396         set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1397         kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1398         INIT_WORK(&dc->detach, cached_dev_detach_finish);
1399         sema_init(&dc->sb_write_mutex, 1);
1400         INIT_LIST_HEAD(&dc->io_lru);
1401         spin_lock_init(&dc->io_lock);
1402         bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1403
1404         dc->sequential_cutoff           = 4 << 20;
1405
1406         for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1407                 list_add(&io->lru, &dc->io_lru);
1408                 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1409         }
1410
1411         dc->disk.stripe_size = q->limits.io_opt >> 9;
1412
1413         if (dc->disk.stripe_size)
1414                 dc->partial_stripes_expensive =
1415                         q->limits.raid_partial_stripes_expensive;
1416
1417         ret = bcache_device_init(&dc->disk, block_size,
1418                          dc->bdev->bd_part->nr_sects - dc->sb.data_offset,
1419                          dc->bdev, &bcache_cached_ops);
1420         if (ret)
1421                 return ret;
1422
1423         blk_queue_io_opt(dc->disk.disk->queue,
1424                 max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q)));
1425
1426         atomic_set(&dc->io_errors, 0);
1427         dc->io_disable = false;
1428         dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1429         /* default to auto */
1430         dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1431
1432         bch_cached_dev_request_init(dc);
1433         bch_cached_dev_writeback_init(dc);
1434         return 0;
1435 }
1436
1437 /* Cached device - bcache superblock */
1438
1439 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1440                                  struct block_device *bdev,
1441                                  struct cached_dev *dc)
1442 {
1443         const char *err = "cannot allocate memory";
1444         struct cache_set *c;
1445         int ret = -ENOMEM;
1446
1447         bdevname(bdev, dc->backing_dev_name);
1448         memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1449         dc->bdev = bdev;
1450         dc->bdev->bd_holder = dc;
1451         dc->sb_disk = sb_disk;
1452
1453         if (cached_dev_init(dc, sb->block_size << 9))
1454                 goto err;
1455
1456         err = "error creating kobject";
1457         if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1458                         "bcache"))
1459                 goto err;
1460         if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1461                 goto err;
1462
1463         pr_info("registered backing device %s\n", dc->backing_dev_name);
1464
1465         list_add(&dc->list, &uncached_devices);
1466         /* attach to a matched cache set if it exists */
1467         list_for_each_entry(c, &bch_cache_sets, list)
1468                 bch_cached_dev_attach(dc, c, NULL);
1469
1470         if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1471             BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1472                 err = "failed to run cached device";
1473                 ret = bch_cached_dev_run(dc);
1474                 if (ret)
1475                         goto err;
1476         }
1477
1478         return 0;
1479 err:
1480         pr_notice("error %s: %s\n", dc->backing_dev_name, err);
1481         bcache_device_stop(&dc->disk);
1482         return ret;
1483 }
1484
1485 /* Flash only volumes */
1486
1487 /* When d->kobj released */
1488 void bch_flash_dev_release(struct kobject *kobj)
1489 {
1490         struct bcache_device *d = container_of(kobj, struct bcache_device,
1491                                                kobj);
1492         kfree(d);
1493 }
1494
1495 static void flash_dev_free(struct closure *cl)
1496 {
1497         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1498
1499         mutex_lock(&bch_register_lock);
1500         atomic_long_sub(bcache_dev_sectors_dirty(d),
1501                         &d->c->flash_dev_dirty_sectors);
1502         bcache_device_free(d);
1503         mutex_unlock(&bch_register_lock);
1504         kobject_put(&d->kobj);
1505 }
1506
1507 static void flash_dev_flush(struct closure *cl)
1508 {
1509         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1510
1511         mutex_lock(&bch_register_lock);
1512         bcache_device_unlink(d);
1513         mutex_unlock(&bch_register_lock);
1514         kobject_del(&d->kobj);
1515         continue_at(cl, flash_dev_free, system_wq);
1516 }
1517
1518 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1519 {
1520         struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1521                                           GFP_KERNEL);
1522         if (!d)
1523                 return -ENOMEM;
1524
1525         closure_init(&d->cl, NULL);
1526         set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1527
1528         kobject_init(&d->kobj, &bch_flash_dev_ktype);
1529
1530         if (bcache_device_init(d, block_bytes(c->cache), u->sectors,
1531                         NULL, &bcache_flash_ops))
1532                 goto err;
1533
1534         bcache_device_attach(d, c, u - c->uuids);
1535         bch_sectors_dirty_init(d);
1536         bch_flash_dev_request_init(d);
1537         add_disk(d->disk);
1538
1539         if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1540                 goto err;
1541
1542         bcache_device_link(d, c, "volume");
1543
1544         return 0;
1545 err:
1546         kobject_put(&d->kobj);
1547         return -ENOMEM;
1548 }
1549
1550 static int flash_devs_run(struct cache_set *c)
1551 {
1552         int ret = 0;
1553         struct uuid_entry *u;
1554
1555         for (u = c->uuids;
1556              u < c->uuids + c->nr_uuids && !ret;
1557              u++)
1558                 if (UUID_FLASH_ONLY(u))
1559                         ret = flash_dev_run(c, u);
1560
1561         return ret;
1562 }
1563
1564 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1565 {
1566         struct uuid_entry *u;
1567
1568         if (test_bit(CACHE_SET_STOPPING, &c->flags))
1569                 return -EINTR;
1570
1571         if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1572                 return -EPERM;
1573
1574         u = uuid_find_empty(c);
1575         if (!u) {
1576                 pr_err("Can't create volume, no room for UUID\n");
1577                 return -EINVAL;
1578         }
1579
1580         get_random_bytes(u->uuid, 16);
1581         memset(u->label, 0, 32);
1582         u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1583
1584         SET_UUID_FLASH_ONLY(u, 1);
1585         u->sectors = size >> 9;
1586
1587         bch_uuid_write(c);
1588
1589         return flash_dev_run(c, u);
1590 }
1591
1592 bool bch_cached_dev_error(struct cached_dev *dc)
1593 {
1594         if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1595                 return false;
1596
1597         dc->io_disable = true;
1598         /* make others know io_disable is true earlier */
1599         smp_mb();
1600
1601         pr_err("stop %s: too many IO errors on backing device %s\n",
1602                dc->disk.disk->disk_name, dc->backing_dev_name);
1603
1604         bcache_device_stop(&dc->disk);
1605         return true;
1606 }
1607
1608 /* Cache set */
1609
1610 __printf(2, 3)
1611 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1612 {
1613         struct va_format vaf;
1614         va_list args;
1615
1616         if (c->on_error != ON_ERROR_PANIC &&
1617             test_bit(CACHE_SET_STOPPING, &c->flags))
1618                 return false;
1619
1620         if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1621                 pr_info("CACHE_SET_IO_DISABLE already set\n");
1622
1623         /*
1624          * XXX: we can be called from atomic context
1625          * acquire_console_sem();
1626          */
1627
1628         va_start(args, fmt);
1629
1630         vaf.fmt = fmt;
1631         vaf.va = &args;
1632
1633         pr_err("error on %pU: %pV, disabling caching\n",
1634                c->set_uuid, &vaf);
1635
1636         va_end(args);
1637
1638         if (c->on_error == ON_ERROR_PANIC)
1639                 panic("panic forced after error\n");
1640
1641         bch_cache_set_unregister(c);
1642         return true;
1643 }
1644
1645 /* When c->kobj released */
1646 void bch_cache_set_release(struct kobject *kobj)
1647 {
1648         struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1649
1650         kfree(c);
1651         module_put(THIS_MODULE);
1652 }
1653
1654 static void cache_set_free(struct closure *cl)
1655 {
1656         struct cache_set *c = container_of(cl, struct cache_set, cl);
1657         struct cache *ca;
1658
1659         debugfs_remove(c->debug);
1660
1661         bch_open_buckets_free(c);
1662         bch_btree_cache_free(c);
1663         bch_journal_free(c);
1664
1665         mutex_lock(&bch_register_lock);
1666         ca = c->cache;
1667         if (ca) {
1668                 ca->set = NULL;
1669                 c->cache = NULL;
1670                 kobject_put(&ca->kobj);
1671         }
1672
1673         bch_bset_sort_state_free(&c->sort);
1674         free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->sb)));
1675
1676         if (c->moving_gc_wq)
1677                 destroy_workqueue(c->moving_gc_wq);
1678         bioset_exit(&c->bio_split);
1679         mempool_exit(&c->fill_iter);
1680         mempool_exit(&c->bio_meta);
1681         mempool_exit(&c->search);
1682         kfree(c->devices);
1683
1684         list_del(&c->list);
1685         mutex_unlock(&bch_register_lock);
1686
1687         pr_info("Cache set %pU unregistered\n", c->set_uuid);
1688         wake_up(&unregister_wait);
1689
1690         closure_debug_destroy(&c->cl);
1691         kobject_put(&c->kobj);
1692 }
1693
1694 static void cache_set_flush(struct closure *cl)
1695 {
1696         struct cache_set *c = container_of(cl, struct cache_set, caching);
1697         struct cache *ca = c->cache;
1698         struct btree *b;
1699
1700         bch_cache_accounting_destroy(&c->accounting);
1701
1702         kobject_put(&c->internal);
1703         kobject_del(&c->kobj);
1704
1705         if (!IS_ERR_OR_NULL(c->gc_thread))
1706                 kthread_stop(c->gc_thread);
1707
1708         if (!IS_ERR_OR_NULL(c->root))
1709                 list_add(&c->root->list, &c->btree_cache);
1710
1711         /*
1712          * Avoid flushing cached nodes if cache set is retiring
1713          * due to too many I/O errors detected.
1714          */
1715         if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1716                 list_for_each_entry(b, &c->btree_cache, list) {
1717                         mutex_lock(&b->write_lock);
1718                         if (btree_node_dirty(b))
1719                                 __bch_btree_node_write(b, NULL);
1720                         mutex_unlock(&b->write_lock);
1721                 }
1722
1723         if (ca->alloc_thread)
1724                 kthread_stop(ca->alloc_thread);
1725
1726         if (c->journal.cur) {
1727                 cancel_delayed_work_sync(&c->journal.work);
1728                 /* flush last journal entry if needed */
1729                 c->journal.work.work.func(&c->journal.work.work);
1730         }
1731
1732         closure_return(cl);
1733 }
1734
1735 /*
1736  * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1737  * cache set is unregistering due to too many I/O errors. In this condition,
1738  * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1739  * value and whether the broken cache has dirty data:
1740  *
1741  * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1742  *  BCH_CACHED_STOP_AUTO               0               NO
1743  *  BCH_CACHED_STOP_AUTO               1               YES
1744  *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1745  *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1746  *
1747  * The expected behavior is, if stop_when_cache_set_failed is configured to
1748  * "auto" via sysfs interface, the bcache device will not be stopped if the
1749  * backing device is clean on the broken cache device.
1750  */
1751 static void conditional_stop_bcache_device(struct cache_set *c,
1752                                            struct bcache_device *d,
1753                                            struct cached_dev *dc)
1754 {
1755         if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1756                 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1757                         d->disk->disk_name, c->set_uuid);
1758                 bcache_device_stop(d);
1759         } else if (atomic_read(&dc->has_dirty)) {
1760                 /*
1761                  * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1762                  * and dc->has_dirty == 1
1763                  */
1764                 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1765                         d->disk->disk_name);
1766                 /*
1767                  * There might be a small time gap that cache set is
1768                  * released but bcache device is not. Inside this time
1769                  * gap, regular I/O requests will directly go into
1770                  * backing device as no cache set attached to. This
1771                  * behavior may also introduce potential inconsistence
1772                  * data in writeback mode while cache is dirty.
1773                  * Therefore before calling bcache_device_stop() due
1774                  * to a broken cache device, dc->io_disable should be
1775                  * explicitly set to true.
1776                  */
1777                 dc->io_disable = true;
1778                 /* make others know io_disable is true earlier */
1779                 smp_mb();
1780                 bcache_device_stop(d);
1781         } else {
1782                 /*
1783                  * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1784                  * and dc->has_dirty == 0
1785                  */
1786                 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1787                         d->disk->disk_name);
1788         }
1789 }
1790
1791 static void __cache_set_unregister(struct closure *cl)
1792 {
1793         struct cache_set *c = container_of(cl, struct cache_set, caching);
1794         struct cached_dev *dc;
1795         struct bcache_device *d;
1796         size_t i;
1797
1798         mutex_lock(&bch_register_lock);
1799
1800         for (i = 0; i < c->devices_max_used; i++) {
1801                 d = c->devices[i];
1802                 if (!d)
1803                         continue;
1804
1805                 if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1806                     test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1807                         dc = container_of(d, struct cached_dev, disk);
1808                         bch_cached_dev_detach(dc);
1809                         if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1810                                 conditional_stop_bcache_device(c, d, dc);
1811                 } else {
1812                         bcache_device_stop(d);
1813                 }
1814         }
1815
1816         mutex_unlock(&bch_register_lock);
1817
1818         continue_at(cl, cache_set_flush, system_wq);
1819 }
1820
1821 void bch_cache_set_stop(struct cache_set *c)
1822 {
1823         if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1824                 /* closure_fn set to __cache_set_unregister() */
1825                 closure_queue(&c->caching);
1826 }
1827
1828 void bch_cache_set_unregister(struct cache_set *c)
1829 {
1830         set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1831         bch_cache_set_stop(c);
1832 }
1833
1834 #define alloc_meta_bucket_pages(gfp, sb)                \
1835         ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1836
1837 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1838 {
1839         int iter_size;
1840         struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1841
1842         if (!c)
1843                 return NULL;
1844
1845         __module_get(THIS_MODULE);
1846         closure_init(&c->cl, NULL);
1847         set_closure_fn(&c->cl, cache_set_free, system_wq);
1848
1849         closure_init(&c->caching, &c->cl);
1850         set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1851
1852         /* Maybe create continue_at_noreturn() and use it here? */
1853         closure_set_stopped(&c->cl);
1854         closure_put(&c->cl);
1855
1856         kobject_init(&c->kobj, &bch_cache_set_ktype);
1857         kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1858
1859         bch_cache_accounting_init(&c->accounting, &c->cl);
1860
1861         memcpy(c->set_uuid, sb->set_uuid, 16);
1862         c->sb.block_size        = sb->block_size;
1863         c->sb.bucket_size       = sb->bucket_size;
1864         c->sb.nr_in_set         = sb->nr_in_set;
1865         c->sb.last_mount        = sb->last_mount;
1866         c->sb.version           = sb->version;
1867         if (c->sb.version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
1868                 c->sb.feature_compat = sb->feature_compat;
1869                 c->sb.feature_ro_compat = sb->feature_ro_compat;
1870                 c->sb.feature_incompat = sb->feature_incompat;
1871         }
1872
1873         c->bucket_bits          = ilog2(sb->bucket_size);
1874         c->block_bits           = ilog2(sb->block_size);
1875         c->nr_uuids             = meta_bucket_bytes(&c->sb) / sizeof(struct uuid_entry);
1876         c->devices_max_used     = 0;
1877         atomic_set(&c->attached_dev_nr, 0);
1878         c->btree_pages          = meta_bucket_pages(&c->sb);
1879         if (c->btree_pages > BTREE_MAX_PAGES)
1880                 c->btree_pages = max_t(int, c->btree_pages / 4,
1881                                        BTREE_MAX_PAGES);
1882
1883         sema_init(&c->sb_write_mutex, 1);
1884         mutex_init(&c->bucket_lock);
1885         init_waitqueue_head(&c->btree_cache_wait);
1886         spin_lock_init(&c->btree_cannibalize_lock);
1887         init_waitqueue_head(&c->bucket_wait);
1888         init_waitqueue_head(&c->gc_wait);
1889         sema_init(&c->uuid_write_mutex, 1);
1890
1891         spin_lock_init(&c->btree_gc_time.lock);
1892         spin_lock_init(&c->btree_split_time.lock);
1893         spin_lock_init(&c->btree_read_time.lock);
1894
1895         bch_moving_init_cache_set(c);
1896
1897         INIT_LIST_HEAD(&c->list);
1898         INIT_LIST_HEAD(&c->cached_devs);
1899         INIT_LIST_HEAD(&c->btree_cache);
1900         INIT_LIST_HEAD(&c->btree_cache_freeable);
1901         INIT_LIST_HEAD(&c->btree_cache_freed);
1902         INIT_LIST_HEAD(&c->data_buckets);
1903
1904         iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) *
1905                 sizeof(struct btree_iter_set);
1906
1907         c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
1908         if (!c->devices)
1909                 goto err;
1910
1911         if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
1912                 goto err;
1913
1914         if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
1915                         sizeof(struct bbio) +
1916                         sizeof(struct bio_vec) * meta_bucket_pages(&c->sb)))
1917                 goto err;
1918
1919         if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
1920                 goto err;
1921
1922         if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1923                         BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
1924                 goto err;
1925
1926         c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, &c->sb);
1927         if (!c->uuids)
1928                 goto err;
1929
1930         c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0);
1931         if (!c->moving_gc_wq)
1932                 goto err;
1933
1934         if (bch_journal_alloc(c))
1935                 goto err;
1936
1937         if (bch_btree_cache_alloc(c))
1938                 goto err;
1939
1940         if (bch_open_buckets_alloc(c))
1941                 goto err;
1942
1943         if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1944                 goto err;
1945
1946         c->congested_read_threshold_us  = 2000;
1947         c->congested_write_threshold_us = 20000;
1948         c->error_limit  = DEFAULT_IO_ERROR_LIMIT;
1949         c->idle_max_writeback_rate_enabled = 1;
1950         WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1951
1952         return c;
1953 err:
1954         bch_cache_set_unregister(c);
1955         return NULL;
1956 }
1957
1958 static int run_cache_set(struct cache_set *c)
1959 {
1960         const char *err = "cannot allocate memory";
1961         struct cached_dev *dc, *t;
1962         struct cache *ca = c->cache;
1963         struct closure cl;
1964         LIST_HEAD(journal);
1965         struct journal_replay *l;
1966
1967         closure_init_stack(&cl);
1968
1969         c->nbuckets = ca->sb.nbuckets;
1970         set_gc_sectors(c);
1971
1972         if (CACHE_SYNC(&c->sb)) {
1973                 struct bkey *k;
1974                 struct jset *j;
1975
1976                 err = "cannot allocate memory for journal";
1977                 if (bch_journal_read(c, &journal))
1978                         goto err;
1979
1980                 pr_debug("btree_journal_read() done\n");
1981
1982                 err = "no journal entries found";
1983                 if (list_empty(&journal))
1984                         goto err;
1985
1986                 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1987
1988                 err = "IO error reading priorities";
1989                 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
1990                         goto err;
1991
1992                 /*
1993                  * If prio_read() fails it'll call cache_set_error and we'll
1994                  * tear everything down right away, but if we perhaps checked
1995                  * sooner we could avoid journal replay.
1996                  */
1997
1998                 k = &j->btree_root;
1999
2000                 err = "bad btree root";
2001                 if (__bch_btree_ptr_invalid(c, k))
2002                         goto err;
2003
2004                 err = "error reading btree root";
2005                 c->root = bch_btree_node_get(c, NULL, k,
2006                                              j->btree_level,
2007                                              true, NULL);
2008                 if (IS_ERR_OR_NULL(c->root))
2009                         goto err;
2010
2011                 list_del_init(&c->root->list);
2012                 rw_unlock(true, c->root);
2013
2014                 err = uuid_read(c, j, &cl);
2015                 if (err)
2016                         goto err;
2017
2018                 err = "error in recovery";
2019                 if (bch_btree_check(c))
2020                         goto err;
2021
2022                 bch_journal_mark(c, &journal);
2023                 bch_initial_gc_finish(c);
2024                 pr_debug("btree_check() done\n");
2025
2026                 /*
2027                  * bcache_journal_next() can't happen sooner, or
2028                  * btree_gc_finish() will give spurious errors about last_gc >
2029                  * gc_gen - this is a hack but oh well.
2030                  */
2031                 bch_journal_next(&c->journal);
2032
2033                 err = "error starting allocator thread";
2034                 if (bch_cache_allocator_start(ca))
2035                         goto err;
2036
2037                 /*
2038                  * First place it's safe to allocate: btree_check() and
2039                  * btree_gc_finish() have to run before we have buckets to
2040                  * allocate, and bch_bucket_alloc_set() might cause a journal
2041                  * entry to be written so bcache_journal_next() has to be called
2042                  * first.
2043                  *
2044                  * If the uuids were in the old format we have to rewrite them
2045                  * before the next journal entry is written:
2046                  */
2047                 if (j->version < BCACHE_JSET_VERSION_UUID)
2048                         __uuid_write(c);
2049
2050                 err = "bcache: replay journal failed";
2051                 if (bch_journal_replay(c, &journal))
2052                         goto err;
2053         } else {
2054                 unsigned int j;
2055
2056                 pr_notice("invalidating existing data\n");
2057                 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2058                                         2, SB_JOURNAL_BUCKETS);
2059
2060                 for (j = 0; j < ca->sb.keys; j++)
2061                         ca->sb.d[j] = ca->sb.first_bucket + j;
2062
2063                 bch_initial_gc_finish(c);
2064
2065                 err = "error starting allocator thread";
2066                 if (bch_cache_allocator_start(ca))
2067                         goto err;
2068
2069                 mutex_lock(&c->bucket_lock);
2070                 bch_prio_write(ca, true);
2071                 mutex_unlock(&c->bucket_lock);
2072
2073                 err = "cannot allocate new UUID bucket";
2074                 if (__uuid_write(c))
2075                         goto err;
2076
2077                 err = "cannot allocate new btree root";
2078                 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2079                 if (IS_ERR_OR_NULL(c->root))
2080                         goto err;
2081
2082                 mutex_lock(&c->root->write_lock);
2083                 bkey_copy_key(&c->root->key, &MAX_KEY);
2084                 bch_btree_node_write(c->root, &cl);
2085                 mutex_unlock(&c->root->write_lock);
2086
2087                 bch_btree_set_root(c->root);
2088                 rw_unlock(true, c->root);
2089
2090                 /*
2091                  * We don't want to write the first journal entry until
2092                  * everything is set up - fortunately journal entries won't be
2093                  * written until the SET_CACHE_SYNC() here:
2094                  */
2095                 SET_CACHE_SYNC(&c->sb, true);
2096
2097                 bch_journal_next(&c->journal);
2098                 bch_journal_meta(c, &cl);
2099         }
2100
2101         err = "error starting gc thread";
2102         if (bch_gc_thread_start(c))
2103                 goto err;
2104
2105         closure_sync(&cl);
2106         c->sb.last_mount = (u32)ktime_get_real_seconds();
2107         bcache_write_super(c);
2108
2109         list_for_each_entry_safe(dc, t, &uncached_devices, list)
2110                 bch_cached_dev_attach(dc, c, NULL);
2111
2112         flash_devs_run(c);
2113
2114         set_bit(CACHE_SET_RUNNING, &c->flags);
2115         return 0;
2116 err:
2117         while (!list_empty(&journal)) {
2118                 l = list_first_entry(&journal, struct journal_replay, list);
2119                 list_del(&l->list);
2120                 kfree(l);
2121         }
2122
2123         closure_sync(&cl);
2124
2125         bch_cache_set_error(c, "%s", err);
2126
2127         return -EIO;
2128 }
2129
2130 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
2131 {
2132         return ca->sb.block_size        == c->sb.block_size &&
2133                 ca->sb.bucket_size      == c->sb.bucket_size &&
2134                 ca->sb.nr_in_set        == c->sb.nr_in_set;
2135 }
2136
2137 static const char *register_cache_set(struct cache *ca)
2138 {
2139         char buf[12];
2140         const char *err = "cannot allocate memory";
2141         struct cache_set *c;
2142
2143         list_for_each_entry(c, &bch_cache_sets, list)
2144                 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) {
2145                         if (c->cache)
2146                                 return "duplicate cache set member";
2147
2148                         if (!can_attach_cache(ca, c))
2149                                 return "cache sb does not match set";
2150
2151                         if (!CACHE_SYNC(&ca->sb))
2152                                 SET_CACHE_SYNC(&c->sb, false);
2153
2154                         goto found;
2155                 }
2156
2157         c = bch_cache_set_alloc(&ca->sb);
2158         if (!c)
2159                 return err;
2160
2161         err = "error creating kobject";
2162         if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) ||
2163             kobject_add(&c->internal, &c->kobj, "internal"))
2164                 goto err;
2165
2166         if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2167                 goto err;
2168
2169         bch_debug_init_cache_set(c);
2170
2171         list_add(&c->list, &bch_cache_sets);
2172 found:
2173         sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2174         if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2175             sysfs_create_link(&c->kobj, &ca->kobj, buf))
2176                 goto err;
2177
2178         kobject_get(&ca->kobj);
2179         ca->set = c;
2180         ca->set->cache = ca;
2181
2182         err = "failed to run cache set";
2183         if (run_cache_set(c) < 0)
2184                 goto err;
2185
2186         return NULL;
2187 err:
2188         bch_cache_set_unregister(c);
2189         return err;
2190 }
2191
2192 /* Cache device */
2193
2194 /* When ca->kobj released */
2195 void bch_cache_release(struct kobject *kobj)
2196 {
2197         struct cache *ca = container_of(kobj, struct cache, kobj);
2198         unsigned int i;
2199
2200         if (ca->set) {
2201                 BUG_ON(ca->set->cache != ca);
2202                 ca->set->cache = NULL;
2203         }
2204
2205         free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2206         kfree(ca->prio_buckets);
2207         vfree(ca->buckets);
2208
2209         free_heap(&ca->heap);
2210         free_fifo(&ca->free_inc);
2211
2212         for (i = 0; i < RESERVE_NR; i++)
2213                 free_fifo(&ca->free[i]);
2214
2215         if (ca->sb_disk)
2216                 put_page(virt_to_page(ca->sb_disk));
2217
2218         if (!IS_ERR_OR_NULL(ca->bdev))
2219                 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2220
2221         kfree(ca);
2222         module_put(THIS_MODULE);
2223 }
2224
2225 static int cache_alloc(struct cache *ca)
2226 {
2227         size_t free;
2228         size_t btree_buckets;
2229         struct bucket *b;
2230         int ret = -ENOMEM;
2231         const char *err = NULL;
2232
2233         __module_get(THIS_MODULE);
2234         kobject_init(&ca->kobj, &bch_cache_ktype);
2235
2236         bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2237
2238         /*
2239          * when ca->sb.njournal_buckets is not zero, journal exists,
2240          * and in bch_journal_replay(), tree node may split,
2241          * so bucket of RESERVE_BTREE type is needed,
2242          * the worst situation is all journal buckets are valid journal,
2243          * and all the keys need to replay,
2244          * so the number of  RESERVE_BTREE type buckets should be as much
2245          * as journal buckets
2246          */
2247         btree_buckets = ca->sb.njournal_buckets ?: 8;
2248         free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2249         if (!free) {
2250                 ret = -EPERM;
2251                 err = "ca->sb.nbuckets is too small";
2252                 goto err_free;
2253         }
2254
2255         if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2256                                                 GFP_KERNEL)) {
2257                 err = "ca->free[RESERVE_BTREE] alloc failed";
2258                 goto err_btree_alloc;
2259         }
2260
2261         if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2262                                                         GFP_KERNEL)) {
2263                 err = "ca->free[RESERVE_PRIO] alloc failed";
2264                 goto err_prio_alloc;
2265         }
2266
2267         if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2268                 err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2269                 goto err_movinggc_alloc;
2270         }
2271
2272         if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2273                 err = "ca->free[RESERVE_NONE] alloc failed";
2274                 goto err_none_alloc;
2275         }
2276
2277         if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2278                 err = "ca->free_inc alloc failed";
2279                 goto err_free_inc_alloc;
2280         }
2281
2282         if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2283                 err = "ca->heap alloc failed";
2284                 goto err_heap_alloc;
2285         }
2286
2287         ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2288                               ca->sb.nbuckets));
2289         if (!ca->buckets) {
2290                 err = "ca->buckets alloc failed";
2291                 goto err_buckets_alloc;
2292         }
2293
2294         ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2295                                    prio_buckets(ca), 2),
2296                                    GFP_KERNEL);
2297         if (!ca->prio_buckets) {
2298                 err = "ca->prio_buckets alloc failed";
2299                 goto err_prio_buckets_alloc;
2300         }
2301
2302         ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2303         if (!ca->disk_buckets) {
2304                 err = "ca->disk_buckets alloc failed";
2305                 goto err_disk_buckets_alloc;
2306         }
2307
2308         ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2309
2310         for_each_bucket(b, ca)
2311                 atomic_set(&b->pin, 0);
2312         return 0;
2313
2314 err_disk_buckets_alloc:
2315         kfree(ca->prio_buckets);
2316 err_prio_buckets_alloc:
2317         vfree(ca->buckets);
2318 err_buckets_alloc:
2319         free_heap(&ca->heap);
2320 err_heap_alloc:
2321         free_fifo(&ca->free_inc);
2322 err_free_inc_alloc:
2323         free_fifo(&ca->free[RESERVE_NONE]);
2324 err_none_alloc:
2325         free_fifo(&ca->free[RESERVE_MOVINGGC]);
2326 err_movinggc_alloc:
2327         free_fifo(&ca->free[RESERVE_PRIO]);
2328 err_prio_alloc:
2329         free_fifo(&ca->free[RESERVE_BTREE]);
2330 err_btree_alloc:
2331 err_free:
2332         module_put(THIS_MODULE);
2333         if (err)
2334                 pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2335         return ret;
2336 }
2337
2338 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2339                                 struct block_device *bdev, struct cache *ca)
2340 {
2341         const char *err = NULL; /* must be set for any error case */
2342         int ret = 0;
2343
2344         bdevname(bdev, ca->cache_dev_name);
2345         memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2346         ca->bdev = bdev;
2347         ca->bdev->bd_holder = ca;
2348         ca->sb_disk = sb_disk;
2349
2350         if (blk_queue_discard(bdev_get_queue(bdev)))
2351                 ca->discard = CACHE_DISCARD(&ca->sb);
2352
2353         ret = cache_alloc(ca);
2354         if (ret != 0) {
2355                 /*
2356                  * If we failed here, it means ca->kobj is not initialized yet,
2357                  * kobject_put() won't be called and there is no chance to
2358                  * call blkdev_put() to bdev in bch_cache_release(). So we
2359                  * explicitly call blkdev_put() here.
2360                  */
2361                 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2362                 if (ret == -ENOMEM)
2363                         err = "cache_alloc(): -ENOMEM";
2364                 else if (ret == -EPERM)
2365                         err = "cache_alloc(): cache device is too small";
2366                 else
2367                         err = "cache_alloc(): unknown error";
2368                 goto err;
2369         }
2370
2371         if (kobject_add(&ca->kobj,
2372                         &part_to_dev(bdev->bd_part)->kobj,
2373                         "bcache")) {
2374                 err = "error calling kobject_add";
2375                 ret = -ENOMEM;
2376                 goto out;
2377         }
2378
2379         mutex_lock(&bch_register_lock);
2380         err = register_cache_set(ca);
2381         mutex_unlock(&bch_register_lock);
2382
2383         if (err) {
2384                 ret = -ENODEV;
2385                 goto out;
2386         }
2387
2388         pr_info("registered cache device %s\n", ca->cache_dev_name);
2389
2390 out:
2391         kobject_put(&ca->kobj);
2392
2393 err:
2394         if (err)
2395                 pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2396
2397         return ret;
2398 }
2399
2400 /* Global interfaces/init */
2401
2402 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2403                                const char *buffer, size_t size);
2404 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2405                                          struct kobj_attribute *attr,
2406                                          const char *buffer, size_t size);
2407
2408 kobj_attribute_write(register,          register_bcache);
2409 kobj_attribute_write(register_quiet,    register_bcache);
2410 kobj_attribute_write(pendings_cleanup,  bch_pending_bdevs_cleanup);
2411
2412 static bool bch_is_open_backing(struct block_device *bdev)
2413 {
2414         struct cache_set *c, *tc;
2415         struct cached_dev *dc, *t;
2416
2417         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2418                 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2419                         if (dc->bdev == bdev)
2420                                 return true;
2421         list_for_each_entry_safe(dc, t, &uncached_devices, list)
2422                 if (dc->bdev == bdev)
2423                         return true;
2424         return false;
2425 }
2426
2427 static bool bch_is_open_cache(struct block_device *bdev)
2428 {
2429         struct cache_set *c, *tc;
2430
2431         list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2432                 struct cache *ca = c->cache;
2433
2434                 if (ca->bdev == bdev)
2435                         return true;
2436         }
2437
2438         return false;
2439 }
2440
2441 static bool bch_is_open(struct block_device *bdev)
2442 {
2443         return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
2444 }
2445
2446 struct async_reg_args {
2447         struct delayed_work reg_work;
2448         char *path;
2449         struct cache_sb *sb;
2450         struct cache_sb_disk *sb_disk;
2451         struct block_device *bdev;
2452 };
2453
2454 static void register_bdev_worker(struct work_struct *work)
2455 {
2456         int fail = false;
2457         struct async_reg_args *args =
2458                 container_of(work, struct async_reg_args, reg_work.work);
2459         struct cached_dev *dc;
2460
2461         dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2462         if (!dc) {
2463                 fail = true;
2464                 put_page(virt_to_page(args->sb_disk));
2465                 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2466                 goto out;
2467         }
2468
2469         mutex_lock(&bch_register_lock);
2470         if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0)
2471                 fail = true;
2472         mutex_unlock(&bch_register_lock);
2473
2474 out:
2475         if (fail)
2476                 pr_info("error %s: fail to register backing device\n",
2477                         args->path);
2478         kfree(args->sb);
2479         kfree(args->path);
2480         kfree(args);
2481         module_put(THIS_MODULE);
2482 }
2483
2484 static void register_cache_worker(struct work_struct *work)
2485 {
2486         int fail = false;
2487         struct async_reg_args *args =
2488                 container_of(work, struct async_reg_args, reg_work.work);
2489         struct cache *ca;
2490
2491         ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2492         if (!ca) {
2493                 fail = true;
2494                 put_page(virt_to_page(args->sb_disk));
2495                 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2496                 goto out;
2497         }
2498
2499         /* blkdev_put() will be called in bch_cache_release() */
2500         if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0)
2501                 fail = true;
2502
2503 out:
2504         if (fail)
2505                 pr_info("error %s: fail to register cache device\n",
2506                         args->path);
2507         kfree(args->sb);
2508         kfree(args->path);
2509         kfree(args);
2510         module_put(THIS_MODULE);
2511 }
2512
2513 static void register_device_aync(struct async_reg_args *args)
2514 {
2515         if (SB_IS_BDEV(args->sb))
2516                 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2517         else
2518                 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2519
2520         /* 10 jiffies is enough for a delay */
2521         queue_delayed_work(system_wq, &args->reg_work, 10);
2522 }
2523
2524 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2525                                const char *buffer, size_t size)
2526 {
2527         const char *err;
2528         char *path = NULL;
2529         struct cache_sb *sb;
2530         struct cache_sb_disk *sb_disk;
2531         struct block_device *bdev;
2532         ssize_t ret;
2533         bool async_registration = false;
2534
2535 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2536         async_registration = true;
2537 #endif
2538
2539         ret = -EBUSY;
2540         err = "failed to reference bcache module";
2541         if (!try_module_get(THIS_MODULE))
2542                 goto out;
2543
2544         /* For latest state of bcache_is_reboot */
2545         smp_mb();
2546         err = "bcache is in reboot";
2547         if (bcache_is_reboot)
2548                 goto out_module_put;
2549
2550         ret = -ENOMEM;
2551         err = "cannot allocate memory";
2552         path = kstrndup(buffer, size, GFP_KERNEL);
2553         if (!path)
2554                 goto out_module_put;
2555
2556         sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2557         if (!sb)
2558                 goto out_free_path;
2559
2560         ret = -EINVAL;
2561         err = "failed to open device";
2562         bdev = blkdev_get_by_path(strim(path),
2563                                   FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2564                                   sb);
2565         if (IS_ERR(bdev)) {
2566                 if (bdev == ERR_PTR(-EBUSY)) {
2567                         bdev = lookup_bdev(strim(path));
2568                         mutex_lock(&bch_register_lock);
2569                         if (!IS_ERR(bdev) && bch_is_open(bdev))
2570                                 err = "device already registered";
2571                         else
2572                                 err = "device busy";
2573                         mutex_unlock(&bch_register_lock);
2574                         if (!IS_ERR(bdev))
2575                                 bdput(bdev);
2576                         if (attr == &ksysfs_register_quiet)
2577                                 goto done;
2578                 }
2579                 goto out_free_sb;
2580         }
2581
2582         err = "failed to set blocksize";
2583         if (set_blocksize(bdev, 4096))
2584                 goto out_blkdev_put;
2585
2586         err = read_super(sb, bdev, &sb_disk);
2587         if (err)
2588                 goto out_blkdev_put;
2589
2590         err = "failed to register device";
2591
2592         if (async_registration) {
2593                 /* register in asynchronous way */
2594                 struct async_reg_args *args =
2595                         kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2596
2597                 if (!args) {
2598                         ret = -ENOMEM;
2599                         err = "cannot allocate memory";
2600                         goto out_put_sb_page;
2601                 }
2602
2603                 args->path      = path;
2604                 args->sb        = sb;
2605                 args->sb_disk   = sb_disk;
2606                 args->bdev      = bdev;
2607                 register_device_aync(args);
2608                 /* No wait and returns to user space */
2609                 goto async_done;
2610         }
2611
2612         if (SB_IS_BDEV(sb)) {
2613                 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2614
2615                 if (!dc)
2616                         goto out_put_sb_page;
2617
2618                 mutex_lock(&bch_register_lock);
2619                 ret = register_bdev(sb, sb_disk, bdev, dc);
2620                 mutex_unlock(&bch_register_lock);
2621                 /* blkdev_put() will be called in cached_dev_free() */
2622                 if (ret < 0)
2623                         goto out_free_sb;
2624         } else {
2625                 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2626
2627                 if (!ca)
2628                         goto out_put_sb_page;
2629
2630                 /* blkdev_put() will be called in bch_cache_release() */
2631                 if (register_cache(sb, sb_disk, bdev, ca) != 0)
2632                         goto out_free_sb;
2633         }
2634
2635 done:
2636         kfree(sb);
2637         kfree(path);
2638         module_put(THIS_MODULE);
2639 async_done:
2640         return size;
2641
2642 out_put_sb_page:
2643         put_page(virt_to_page(sb_disk));
2644 out_blkdev_put:
2645         blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2646 out_free_sb:
2647         kfree(sb);
2648 out_free_path:
2649         kfree(path);
2650         path = NULL;
2651 out_module_put:
2652         module_put(THIS_MODULE);
2653 out:
2654         pr_info("error %s: %s\n", path?path:"", err);
2655         return ret;
2656 }
2657
2658
2659 struct pdev {
2660         struct list_head list;
2661         struct cached_dev *dc;
2662 };
2663
2664 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2665                                          struct kobj_attribute *attr,
2666                                          const char *buffer,
2667                                          size_t size)
2668 {
2669         LIST_HEAD(pending_devs);
2670         ssize_t ret = size;
2671         struct cached_dev *dc, *tdc;
2672         struct pdev *pdev, *tpdev;
2673         struct cache_set *c, *tc;
2674
2675         mutex_lock(&bch_register_lock);
2676         list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2677                 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2678                 if (!pdev)
2679                         break;
2680                 pdev->dc = dc;
2681                 list_add(&pdev->list, &pending_devs);
2682         }
2683
2684         list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2685                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2686                         char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2687                         char *set_uuid = c->set_uuid;
2688
2689                         if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2690                                 list_del(&pdev->list);
2691                                 kfree(pdev);
2692                                 break;
2693                         }
2694                 }
2695         }
2696         mutex_unlock(&bch_register_lock);
2697
2698         list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2699                 pr_info("delete pdev %p\n", pdev);
2700                 list_del(&pdev->list);
2701                 bcache_device_stop(&pdev->dc->disk);
2702                 kfree(pdev);
2703         }
2704
2705         return ret;
2706 }
2707
2708 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2709 {
2710         if (bcache_is_reboot)
2711                 return NOTIFY_DONE;
2712
2713         if (code == SYS_DOWN ||
2714             code == SYS_HALT ||
2715             code == SYS_POWER_OFF) {
2716                 DEFINE_WAIT(wait);
2717                 unsigned long start = jiffies;
2718                 bool stopped = false;
2719
2720                 struct cache_set *c, *tc;
2721                 struct cached_dev *dc, *tdc;
2722
2723                 mutex_lock(&bch_register_lock);
2724
2725                 if (bcache_is_reboot)
2726                         goto out;
2727
2728                 /* New registration is rejected since now */
2729                 bcache_is_reboot = true;
2730                 /*
2731                  * Make registering caller (if there is) on other CPU
2732                  * core know bcache_is_reboot set to true earlier
2733                  */
2734                 smp_mb();
2735
2736                 if (list_empty(&bch_cache_sets) &&
2737                     list_empty(&uncached_devices))
2738                         goto out;
2739
2740                 mutex_unlock(&bch_register_lock);
2741
2742                 pr_info("Stopping all devices:\n");
2743
2744                 /*
2745                  * The reason bch_register_lock is not held to call
2746                  * bch_cache_set_stop() and bcache_device_stop() is to
2747                  * avoid potential deadlock during reboot, because cache
2748                  * set or bcache device stopping process will acqurie
2749                  * bch_register_lock too.
2750                  *
2751                  * We are safe here because bcache_is_reboot sets to
2752                  * true already, register_bcache() will reject new
2753                  * registration now. bcache_is_reboot also makes sure
2754                  * bcache_reboot() won't be re-entered on by other thread,
2755                  * so there is no race in following list iteration by
2756                  * list_for_each_entry_safe().
2757                  */
2758                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2759                         bch_cache_set_stop(c);
2760
2761                 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2762                         bcache_device_stop(&dc->disk);
2763
2764
2765                 /*
2766                  * Give an early chance for other kthreads and
2767                  * kworkers to stop themselves
2768                  */
2769                 schedule();
2770
2771                 /* What's a condition variable? */
2772                 while (1) {
2773                         long timeout = start + 10 * HZ - jiffies;
2774
2775                         mutex_lock(&bch_register_lock);
2776                         stopped = list_empty(&bch_cache_sets) &&
2777                                 list_empty(&uncached_devices);
2778
2779                         if (timeout < 0 || stopped)
2780                                 break;
2781
2782                         prepare_to_wait(&unregister_wait, &wait,
2783                                         TASK_UNINTERRUPTIBLE);
2784
2785                         mutex_unlock(&bch_register_lock);
2786                         schedule_timeout(timeout);
2787                 }
2788
2789                 finish_wait(&unregister_wait, &wait);
2790
2791                 if (stopped)
2792                         pr_info("All devices stopped\n");
2793                 else
2794                         pr_notice("Timeout waiting for devices to be closed\n");
2795 out:
2796                 mutex_unlock(&bch_register_lock);
2797         }
2798
2799         return NOTIFY_DONE;
2800 }
2801
2802 static struct notifier_block reboot = {
2803         .notifier_call  = bcache_reboot,
2804         .priority       = INT_MAX, /* before any real devices */
2805 };
2806
2807 static void bcache_exit(void)
2808 {
2809         bch_debug_exit();
2810         bch_request_exit();
2811         if (bcache_kobj)
2812                 kobject_put(bcache_kobj);
2813         if (bcache_wq)
2814                 destroy_workqueue(bcache_wq);
2815         if (bch_journal_wq)
2816                 destroy_workqueue(bch_journal_wq);
2817
2818         if (bcache_major)
2819                 unregister_blkdev(bcache_major, "bcache");
2820         unregister_reboot_notifier(&reboot);
2821         mutex_destroy(&bch_register_lock);
2822 }
2823
2824 /* Check and fixup module parameters */
2825 static void check_module_parameters(void)
2826 {
2827         if (bch_cutoff_writeback_sync == 0)
2828                 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2829         else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2830                 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2831                         bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2832                 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2833         }
2834
2835         if (bch_cutoff_writeback == 0)
2836                 bch_cutoff_writeback = CUTOFF_WRITEBACK;
2837         else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2838                 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2839                         bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2840                 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2841         }
2842
2843         if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2844                 pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2845                         bch_cutoff_writeback, bch_cutoff_writeback_sync);
2846                 bch_cutoff_writeback = bch_cutoff_writeback_sync;
2847         }
2848 }
2849
2850 static int __init bcache_init(void)
2851 {
2852         static const struct attribute *files[] = {
2853                 &ksysfs_register.attr,
2854                 &ksysfs_register_quiet.attr,
2855                 &ksysfs_pendings_cleanup.attr,
2856                 NULL
2857         };
2858
2859         check_module_parameters();
2860
2861         mutex_init(&bch_register_lock);
2862         init_waitqueue_head(&unregister_wait);
2863         register_reboot_notifier(&reboot);
2864
2865         bcache_major = register_blkdev(0, "bcache");
2866         if (bcache_major < 0) {
2867                 unregister_reboot_notifier(&reboot);
2868                 mutex_destroy(&bch_register_lock);
2869                 return bcache_major;
2870         }
2871
2872         bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2873         if (!bcache_wq)
2874                 goto err;
2875
2876         bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2877         if (!bch_journal_wq)
2878                 goto err;
2879
2880         bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2881         if (!bcache_kobj)
2882                 goto err;
2883
2884         if (bch_request_init() ||
2885             sysfs_create_files(bcache_kobj, files))
2886                 goto err;
2887
2888         bch_debug_init();
2889         closure_debug_init();
2890
2891         bcache_is_reboot = false;
2892
2893         return 0;
2894 err:
2895         bcache_exit();
2896         return -ENOMEM;
2897 }
2898
2899 /*
2900  * Module hooks
2901  */
2902 module_exit(bcache_exit);
2903 module_init(bcache_init);
2904
2905 module_param(bch_cutoff_writeback, uint, 0);
2906 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2907
2908 module_param(bch_cutoff_writeback_sync, uint, 0);
2909 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2910
2911 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2912 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2913 MODULE_LICENSE("GPL");