doc: give a more thorough id handling explanation
[linux-2.6-microblaze.git] / drivers / md / bcache / btree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4  *
5  * Uses a block device as cache for other block devices; optimized for SSDs.
6  * All allocation is done in buckets, which should match the erase block size
7  * of the device.
8  *
9  * Buckets containing cached data are kept on a heap sorted by priority;
10  * bucket priority is increased on cache hit, and periodically all the buckets
11  * on the heap have their priority scaled down. This currently is just used as
12  * an LRU but in the future should allow for more intelligent heuristics.
13  *
14  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15  * counter. Garbage collection is used to remove stale pointers.
16  *
17  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18  * as keys are inserted we only sort the pages that have not yet been written.
19  * When garbage collection is run, we resort the entire node.
20  *
21  * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22  */
23
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 #include <linux/delay.h>
39 #include <trace/events/bcache.h>
40
41 /*
42  * Todo:
43  * register_bcache: Return errors out to userspace correctly
44  *
45  * Writeback: don't undirty key until after a cache flush
46  *
47  * Create an iterator for key pointers
48  *
49  * On btree write error, mark bucket such that it won't be freed from the cache
50  *
51  * Journalling:
52  *   Check for bad keys in replay
53  *   Propagate barriers
54  *   Refcount journal entries in journal_replay
55  *
56  * Garbage collection:
57  *   Finish incremental gc
58  *   Gc should free old UUIDs, data for invalid UUIDs
59  *
60  * Provide a way to list backing device UUIDs we have data cached for, and
61  * probably how long it's been since we've seen them, and a way to invalidate
62  * dirty data for devices that will never be attached again
63  *
64  * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65  * that based on that and how much dirty data we have we can keep writeback
66  * from being starved
67  *
68  * Add a tracepoint or somesuch to watch for writeback starvation
69  *
70  * When btree depth > 1 and splitting an interior node, we have to make sure
71  * alloc_bucket() cannot fail. This should be true but is not completely
72  * obvious.
73  *
74  * Plugging?
75  *
76  * If data write is less than hard sector size of ssd, round up offset in open
77  * bucket to the next whole sector
78  *
79  * Superblock needs to be fleshed out for multiple cache devices
80  *
81  * Add a sysfs tunable for the number of writeback IOs in flight
82  *
83  * Add a sysfs tunable for the number of open data buckets
84  *
85  * IO tracking: Can we track when one process is doing io on behalf of another?
86  * IO tracking: Don't use just an average, weigh more recent stuff higher
87  *
88  * Test module load/unload
89  */
90
91 #define MAX_NEED_GC             64
92 #define MAX_SAVE_PRIO           72
93 #define MAX_GC_TIMES            100
94 #define MIN_GC_NODES            100
95 #define GC_SLEEP_MS             100
96
97 #define PTR_DIRTY_BIT           (((uint64_t) 1 << 36))
98
99 #define PTR_HASH(c, k)                                                  \
100         (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101
102 static struct workqueue_struct *btree_io_wq;
103
104 #define insert_lock(s, b)       ((b)->level <= (s)->lock)
105
106
107 static inline struct bset *write_block(struct btree *b)
108 {
109         return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache);
110 }
111
112 static void bch_btree_init_next(struct btree *b)
113 {
114         /* If not a leaf node, always sort */
115         if (b->level && b->keys.nsets)
116                 bch_btree_sort(&b->keys, &b->c->sort);
117         else
118                 bch_btree_sort_lazy(&b->keys, &b->c->sort);
119
120         if (b->written < btree_blocks(b))
121                 bch_bset_init_next(&b->keys, write_block(b),
122                                    bset_magic(&b->c->cache->sb));
123
124 }
125
126 /* Btree key manipulation */
127
128 void bkey_put(struct cache_set *c, struct bkey *k)
129 {
130         unsigned int i;
131
132         for (i = 0; i < KEY_PTRS(k); i++)
133                 if (ptr_available(c, k, i))
134                         atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
135 }
136
137 /* Btree IO */
138
139 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
140 {
141         uint64_t crc = b->key.ptr[0];
142         void *data = (void *) i + 8, *end = bset_bkey_last(i);
143
144         crc = bch_crc64_update(crc, data, end - data);
145         return crc ^ 0xffffffffffffffffULL;
146 }
147
148 void bch_btree_node_read_done(struct btree *b)
149 {
150         const char *err = "bad btree header";
151         struct bset *i = btree_bset_first(b);
152         struct btree_iter *iter;
153
154         /*
155          * c->fill_iter can allocate an iterator with more memory space
156          * than static MAX_BSETS.
157          * See the comment arount cache_set->fill_iter.
158          */
159         iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
160         iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size;
161         iter->used = 0;
162
163 #ifdef CONFIG_BCACHE_DEBUG
164         iter->b = &b->keys;
165 #endif
166
167         if (!i->seq)
168                 goto err;
169
170         for (;
171              b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
172              i = write_block(b)) {
173                 err = "unsupported bset version";
174                 if (i->version > BCACHE_BSET_VERSION)
175                         goto err;
176
177                 err = "bad btree header";
178                 if (b->written + set_blocks(i, block_bytes(b->c->cache)) >
179                     btree_blocks(b))
180                         goto err;
181
182                 err = "bad magic";
183                 if (i->magic != bset_magic(&b->c->cache->sb))
184                         goto err;
185
186                 err = "bad checksum";
187                 switch (i->version) {
188                 case 0:
189                         if (i->csum != csum_set(i))
190                                 goto err;
191                         break;
192                 case BCACHE_BSET_VERSION:
193                         if (i->csum != btree_csum_set(b, i))
194                                 goto err;
195                         break;
196                 }
197
198                 err = "empty set";
199                 if (i != b->keys.set[0].data && !i->keys)
200                         goto err;
201
202                 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
203
204                 b->written += set_blocks(i, block_bytes(b->c->cache));
205         }
206
207         err = "corrupted btree";
208         for (i = write_block(b);
209              bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
210              i = ((void *) i) + block_bytes(b->c->cache))
211                 if (i->seq == b->keys.set[0].data->seq)
212                         goto err;
213
214         bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
215
216         i = b->keys.set[0].data;
217         err = "short btree key";
218         if (b->keys.set[0].size &&
219             bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
220                 goto err;
221
222         if (b->written < btree_blocks(b))
223                 bch_bset_init_next(&b->keys, write_block(b),
224                                    bset_magic(&b->c->cache->sb));
225 out:
226         mempool_free(iter, &b->c->fill_iter);
227         return;
228 err:
229         set_btree_node_io_error(b);
230         bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
231                             err, PTR_BUCKET_NR(b->c, &b->key, 0),
232                             bset_block_offset(b, i), i->keys);
233         goto out;
234 }
235
236 static void btree_node_read_endio(struct bio *bio)
237 {
238         struct closure *cl = bio->bi_private;
239
240         closure_put(cl);
241 }
242
243 static void bch_btree_node_read(struct btree *b)
244 {
245         uint64_t start_time = local_clock();
246         struct closure cl;
247         struct bio *bio;
248
249         trace_bcache_btree_read(b);
250
251         closure_init_stack(&cl);
252
253         bio = bch_bbio_alloc(b->c);
254         bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
255         bio->bi_end_io  = btree_node_read_endio;
256         bio->bi_private = &cl;
257         bio->bi_opf = REQ_OP_READ | REQ_META;
258
259         bch_bio_map(bio, b->keys.set[0].data);
260
261         bch_submit_bbio(bio, b->c, &b->key, 0);
262         closure_sync(&cl);
263
264         if (bio->bi_status)
265                 set_btree_node_io_error(b);
266
267         bch_bbio_free(bio, b->c);
268
269         if (btree_node_io_error(b))
270                 goto err;
271
272         bch_btree_node_read_done(b);
273         bch_time_stats_update(&b->c->btree_read_time, start_time);
274
275         return;
276 err:
277         bch_cache_set_error(b->c, "io error reading bucket %zu",
278                             PTR_BUCKET_NR(b->c, &b->key, 0));
279 }
280
281 static void btree_complete_write(struct btree *b, struct btree_write *w)
282 {
283         if (w->prio_blocked &&
284             !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
285                 wake_up_allocators(b->c);
286
287         if (w->journal) {
288                 atomic_dec_bug(w->journal);
289                 __closure_wake_up(&b->c->journal.wait);
290         }
291
292         w->prio_blocked = 0;
293         w->journal      = NULL;
294 }
295
296 static void btree_node_write_unlock(struct closure *cl)
297 {
298         struct btree *b = container_of(cl, struct btree, io);
299
300         up(&b->io_mutex);
301 }
302
303 static void __btree_node_write_done(struct closure *cl)
304 {
305         struct btree *b = container_of(cl, struct btree, io);
306         struct btree_write *w = btree_prev_write(b);
307
308         bch_bbio_free(b->bio, b->c);
309         b->bio = NULL;
310         btree_complete_write(b, w);
311
312         if (btree_node_dirty(b))
313                 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
314
315         closure_return_with_destructor(cl, btree_node_write_unlock);
316 }
317
318 static void btree_node_write_done(struct closure *cl)
319 {
320         struct btree *b = container_of(cl, struct btree, io);
321
322         bio_free_pages(b->bio);
323         __btree_node_write_done(cl);
324 }
325
326 static void btree_node_write_endio(struct bio *bio)
327 {
328         struct closure *cl = bio->bi_private;
329         struct btree *b = container_of(cl, struct btree, io);
330
331         if (bio->bi_status)
332                 set_btree_node_io_error(b);
333
334         bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
335         closure_put(cl);
336 }
337
338 static void do_btree_node_write(struct btree *b)
339 {
340         struct closure *cl = &b->io;
341         struct bset *i = btree_bset_last(b);
342         BKEY_PADDED(key) k;
343
344         i->version      = BCACHE_BSET_VERSION;
345         i->csum         = btree_csum_set(b, i);
346
347         BUG_ON(b->bio);
348         b->bio = bch_bbio_alloc(b->c);
349
350         b->bio->bi_end_io       = btree_node_write_endio;
351         b->bio->bi_private      = cl;
352         b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c->cache));
353         b->bio->bi_opf          = REQ_OP_WRITE | REQ_META | REQ_FUA;
354         bch_bio_map(b->bio, i);
355
356         /*
357          * If we're appending to a leaf node, we don't technically need FUA -
358          * this write just needs to be persisted before the next journal write,
359          * which will be marked FLUSH|FUA.
360          *
361          * Similarly if we're writing a new btree root - the pointer is going to
362          * be in the next journal entry.
363          *
364          * But if we're writing a new btree node (that isn't a root) or
365          * appending to a non leaf btree node, we need either FUA or a flush
366          * when we write the parent with the new pointer. FUA is cheaper than a
367          * flush, and writes appending to leaf nodes aren't blocking anything so
368          * just make all btree node writes FUA to keep things sane.
369          */
370
371         bkey_copy(&k.key, &b->key);
372         SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
373                        bset_sector_offset(&b->keys, i));
374
375         if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
376                 struct bio_vec *bv;
377                 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
378                 struct bvec_iter_all iter_all;
379
380                 bio_for_each_segment_all(bv, b->bio, iter_all) {
381                         memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
382                         addr += PAGE_SIZE;
383                 }
384
385                 bch_submit_bbio(b->bio, b->c, &k.key, 0);
386
387                 continue_at(cl, btree_node_write_done, NULL);
388         } else {
389                 /*
390                  * No problem for multipage bvec since the bio is
391                  * just allocated
392                  */
393                 b->bio->bi_vcnt = 0;
394                 bch_bio_map(b->bio, i);
395
396                 bch_submit_bbio(b->bio, b->c, &k.key, 0);
397
398                 closure_sync(cl);
399                 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
400         }
401 }
402
403 void __bch_btree_node_write(struct btree *b, struct closure *parent)
404 {
405         struct bset *i = btree_bset_last(b);
406
407         lockdep_assert_held(&b->write_lock);
408
409         trace_bcache_btree_write(b);
410
411         BUG_ON(current->bio_list);
412         BUG_ON(b->written >= btree_blocks(b));
413         BUG_ON(b->written && !i->keys);
414         BUG_ON(btree_bset_first(b)->seq != i->seq);
415         bch_check_keys(&b->keys, "writing");
416
417         cancel_delayed_work(&b->work);
418
419         /* If caller isn't waiting for write, parent refcount is cache set */
420         down(&b->io_mutex);
421         closure_init(&b->io, parent ?: &b->c->cl);
422
423         clear_bit(BTREE_NODE_dirty,      &b->flags);
424         change_bit(BTREE_NODE_write_idx, &b->flags);
425
426         do_btree_node_write(b);
427
428         atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size,
429                         &b->c->cache->btree_sectors_written);
430
431         b->written += set_blocks(i, block_bytes(b->c->cache));
432 }
433
434 void bch_btree_node_write(struct btree *b, struct closure *parent)
435 {
436         unsigned int nsets = b->keys.nsets;
437
438         lockdep_assert_held(&b->lock);
439
440         __bch_btree_node_write(b, parent);
441
442         /*
443          * do verify if there was more than one set initially (i.e. we did a
444          * sort) and we sorted down to a single set:
445          */
446         if (nsets && !b->keys.nsets)
447                 bch_btree_verify(b);
448
449         bch_btree_init_next(b);
450 }
451
452 static void bch_btree_node_write_sync(struct btree *b)
453 {
454         struct closure cl;
455
456         closure_init_stack(&cl);
457
458         mutex_lock(&b->write_lock);
459         bch_btree_node_write(b, &cl);
460         mutex_unlock(&b->write_lock);
461
462         closure_sync(&cl);
463 }
464
465 static void btree_node_write_work(struct work_struct *w)
466 {
467         struct btree *b = container_of(to_delayed_work(w), struct btree, work);
468
469         mutex_lock(&b->write_lock);
470         if (btree_node_dirty(b))
471                 __bch_btree_node_write(b, NULL);
472         mutex_unlock(&b->write_lock);
473 }
474
475 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
476 {
477         struct bset *i = btree_bset_last(b);
478         struct btree_write *w = btree_current_write(b);
479
480         lockdep_assert_held(&b->write_lock);
481
482         BUG_ON(!b->written);
483         BUG_ON(!i->keys);
484
485         if (!btree_node_dirty(b))
486                 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
487
488         set_btree_node_dirty(b);
489
490         /*
491          * w->journal is always the oldest journal pin of all bkeys
492          * in the leaf node, to make sure the oldest jset seq won't
493          * be increased before this btree node is flushed.
494          */
495         if (journal_ref) {
496                 if (w->journal &&
497                     journal_pin_cmp(b->c, w->journal, journal_ref)) {
498                         atomic_dec_bug(w->journal);
499                         w->journal = NULL;
500                 }
501
502                 if (!w->journal) {
503                         w->journal = journal_ref;
504                         atomic_inc(w->journal);
505                 }
506         }
507
508         /* Force write if set is too big */
509         if (set_bytes(i) > PAGE_SIZE - 48 &&
510             !current->bio_list)
511                 bch_btree_node_write(b, NULL);
512 }
513
514 /*
515  * Btree in memory cache - allocation/freeing
516  * mca -> memory cache
517  */
518
519 #define mca_reserve(c)  (((!IS_ERR_OR_NULL(c->root) && c->root->level) \
520                           ? c->root->level : 1) * 8 + 16)
521 #define mca_can_free(c)                                         \
522         max_t(int, 0, c->btree_cache_used - mca_reserve(c))
523
524 static void mca_data_free(struct btree *b)
525 {
526         BUG_ON(b->io_mutex.count != 1);
527
528         bch_btree_keys_free(&b->keys);
529
530         b->c->btree_cache_used--;
531         list_move(&b->list, &b->c->btree_cache_freed);
532 }
533
534 static void mca_bucket_free(struct btree *b)
535 {
536         BUG_ON(btree_node_dirty(b));
537
538         b->key.ptr[0] = 0;
539         hlist_del_init_rcu(&b->hash);
540         list_move(&b->list, &b->c->btree_cache_freeable);
541 }
542
543 static unsigned int btree_order(struct bkey *k)
544 {
545         return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
546 }
547
548 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
549 {
550         if (!bch_btree_keys_alloc(&b->keys,
551                                   max_t(unsigned int,
552                                         ilog2(b->c->btree_pages),
553                                         btree_order(k)),
554                                   gfp)) {
555                 b->c->btree_cache_used++;
556                 list_move(&b->list, &b->c->btree_cache);
557         } else {
558                 list_move(&b->list, &b->c->btree_cache_freed);
559         }
560 }
561
562 static struct btree *mca_bucket_alloc(struct cache_set *c,
563                                       struct bkey *k, gfp_t gfp)
564 {
565         /*
566          * kzalloc() is necessary here for initialization,
567          * see code comments in bch_btree_keys_init().
568          */
569         struct btree *b = kzalloc(sizeof(struct btree), gfp);
570
571         if (!b)
572                 return NULL;
573
574         init_rwsem(&b->lock);
575         lockdep_set_novalidate_class(&b->lock);
576         mutex_init(&b->write_lock);
577         lockdep_set_novalidate_class(&b->write_lock);
578         INIT_LIST_HEAD(&b->list);
579         INIT_DELAYED_WORK(&b->work, btree_node_write_work);
580         b->c = c;
581         sema_init(&b->io_mutex, 1);
582
583         mca_data_alloc(b, k, gfp);
584         return b;
585 }
586
587 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
588 {
589         struct closure cl;
590
591         closure_init_stack(&cl);
592         lockdep_assert_held(&b->c->bucket_lock);
593
594         if (!down_write_trylock(&b->lock))
595                 return -ENOMEM;
596
597         BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
598
599         if (b->keys.page_order < min_order)
600                 goto out_unlock;
601
602         if (!flush) {
603                 if (btree_node_dirty(b))
604                         goto out_unlock;
605
606                 if (down_trylock(&b->io_mutex))
607                         goto out_unlock;
608                 up(&b->io_mutex);
609         }
610
611 retry:
612         /*
613          * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
614          * __bch_btree_node_write(). To avoid an extra flush, acquire
615          * b->write_lock before checking BTREE_NODE_dirty bit.
616          */
617         mutex_lock(&b->write_lock);
618         /*
619          * If this btree node is selected in btree_flush_write() by journal
620          * code, delay and retry until the node is flushed by journal code
621          * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
622          */
623         if (btree_node_journal_flush(b)) {
624                 pr_debug("bnode %p is flushing by journal, retry\n", b);
625                 mutex_unlock(&b->write_lock);
626                 udelay(1);
627                 goto retry;
628         }
629
630         if (btree_node_dirty(b))
631                 __bch_btree_node_write(b, &cl);
632         mutex_unlock(&b->write_lock);
633
634         closure_sync(&cl);
635
636         /* wait for any in flight btree write */
637         down(&b->io_mutex);
638         up(&b->io_mutex);
639
640         return 0;
641 out_unlock:
642         rw_unlock(true, b);
643         return -ENOMEM;
644 }
645
646 static unsigned long bch_mca_scan(struct shrinker *shrink,
647                                   struct shrink_control *sc)
648 {
649         struct cache_set *c = container_of(shrink, struct cache_set, shrink);
650         struct btree *b, *t;
651         unsigned long i, nr = sc->nr_to_scan;
652         unsigned long freed = 0;
653         unsigned int btree_cache_used;
654
655         if (c->shrinker_disabled)
656                 return SHRINK_STOP;
657
658         if (c->btree_cache_alloc_lock)
659                 return SHRINK_STOP;
660
661         /* Return -1 if we can't do anything right now */
662         if (sc->gfp_mask & __GFP_IO)
663                 mutex_lock(&c->bucket_lock);
664         else if (!mutex_trylock(&c->bucket_lock))
665                 return -1;
666
667         /*
668          * It's _really_ critical that we don't free too many btree nodes - we
669          * have to always leave ourselves a reserve. The reserve is how we
670          * guarantee that allocating memory for a new btree node can always
671          * succeed, so that inserting keys into the btree can always succeed and
672          * IO can always make forward progress:
673          */
674         nr /= c->btree_pages;
675         if (nr == 0)
676                 nr = 1;
677         nr = min_t(unsigned long, nr, mca_can_free(c));
678
679         i = 0;
680         btree_cache_used = c->btree_cache_used;
681         list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
682                 if (nr <= 0)
683                         goto out;
684
685                 if (!mca_reap(b, 0, false)) {
686                         mca_data_free(b);
687                         rw_unlock(true, b);
688                         freed++;
689                 }
690                 nr--;
691                 i++;
692         }
693
694         list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
695                 if (nr <= 0 || i >= btree_cache_used)
696                         goto out;
697
698                 if (!mca_reap(b, 0, false)) {
699                         mca_bucket_free(b);
700                         mca_data_free(b);
701                         rw_unlock(true, b);
702                         freed++;
703                 }
704
705                 nr--;
706                 i++;
707         }
708 out:
709         mutex_unlock(&c->bucket_lock);
710         return freed * c->btree_pages;
711 }
712
713 static unsigned long bch_mca_count(struct shrinker *shrink,
714                                    struct shrink_control *sc)
715 {
716         struct cache_set *c = container_of(shrink, struct cache_set, shrink);
717
718         if (c->shrinker_disabled)
719                 return 0;
720
721         if (c->btree_cache_alloc_lock)
722                 return 0;
723
724         return mca_can_free(c) * c->btree_pages;
725 }
726
727 void bch_btree_cache_free(struct cache_set *c)
728 {
729         struct btree *b;
730         struct closure cl;
731
732         closure_init_stack(&cl);
733
734         if (c->shrink.list.next)
735                 unregister_shrinker(&c->shrink);
736
737         mutex_lock(&c->bucket_lock);
738
739 #ifdef CONFIG_BCACHE_DEBUG
740         if (c->verify_data)
741                 list_move(&c->verify_data->list, &c->btree_cache);
742
743         free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb)));
744 #endif
745
746         list_splice(&c->btree_cache_freeable,
747                     &c->btree_cache);
748
749         while (!list_empty(&c->btree_cache)) {
750                 b = list_first_entry(&c->btree_cache, struct btree, list);
751
752                 /*
753                  * This function is called by cache_set_free(), no I/O
754                  * request on cache now, it is unnecessary to acquire
755                  * b->write_lock before clearing BTREE_NODE_dirty anymore.
756                  */
757                 if (btree_node_dirty(b)) {
758                         btree_complete_write(b, btree_current_write(b));
759                         clear_bit(BTREE_NODE_dirty, &b->flags);
760                 }
761                 mca_data_free(b);
762         }
763
764         while (!list_empty(&c->btree_cache_freed)) {
765                 b = list_first_entry(&c->btree_cache_freed,
766                                      struct btree, list);
767                 list_del(&b->list);
768                 cancel_delayed_work_sync(&b->work);
769                 kfree(b);
770         }
771
772         mutex_unlock(&c->bucket_lock);
773 }
774
775 int bch_btree_cache_alloc(struct cache_set *c)
776 {
777         unsigned int i;
778
779         for (i = 0; i < mca_reserve(c); i++)
780                 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
781                         return -ENOMEM;
782
783         list_splice_init(&c->btree_cache,
784                          &c->btree_cache_freeable);
785
786 #ifdef CONFIG_BCACHE_DEBUG
787         mutex_init(&c->verify_lock);
788
789         c->verify_ondisk = (void *)
790                 __get_free_pages(GFP_KERNEL|__GFP_COMP,
791                                  ilog2(meta_bucket_pages(&c->cache->sb)));
792         if (!c->verify_ondisk) {
793                 /*
794                  * Don't worry about the mca_rereserve buckets
795                  * allocated in previous for-loop, they will be
796                  * handled properly in bch_cache_set_unregister().
797                  */
798                 return -ENOMEM;
799         }
800
801         c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
802
803         if (c->verify_data &&
804             c->verify_data->keys.set->data)
805                 list_del_init(&c->verify_data->list);
806         else
807                 c->verify_data = NULL;
808 #endif
809
810         c->shrink.count_objects = bch_mca_count;
811         c->shrink.scan_objects = bch_mca_scan;
812         c->shrink.seeks = 4;
813         c->shrink.batch = c->btree_pages * 2;
814
815         if (register_shrinker(&c->shrink))
816                 pr_warn("bcache: %s: could not register shrinker\n",
817                                 __func__);
818
819         return 0;
820 }
821
822 /* Btree in memory cache - hash table */
823
824 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
825 {
826         return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
827 }
828
829 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
830 {
831         struct btree *b;
832
833         rcu_read_lock();
834         hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
835                 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
836                         goto out;
837         b = NULL;
838 out:
839         rcu_read_unlock();
840         return b;
841 }
842
843 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
844 {
845         spin_lock(&c->btree_cannibalize_lock);
846         if (likely(c->btree_cache_alloc_lock == NULL)) {
847                 c->btree_cache_alloc_lock = current;
848         } else if (c->btree_cache_alloc_lock != current) {
849                 if (op)
850                         prepare_to_wait(&c->btree_cache_wait, &op->wait,
851                                         TASK_UNINTERRUPTIBLE);
852                 spin_unlock(&c->btree_cannibalize_lock);
853                 return -EINTR;
854         }
855         spin_unlock(&c->btree_cannibalize_lock);
856
857         return 0;
858 }
859
860 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
861                                      struct bkey *k)
862 {
863         struct btree *b;
864
865         trace_bcache_btree_cache_cannibalize(c);
866
867         if (mca_cannibalize_lock(c, op))
868                 return ERR_PTR(-EINTR);
869
870         list_for_each_entry_reverse(b, &c->btree_cache, list)
871                 if (!mca_reap(b, btree_order(k), false))
872                         return b;
873
874         list_for_each_entry_reverse(b, &c->btree_cache, list)
875                 if (!mca_reap(b, btree_order(k), true))
876                         return b;
877
878         WARN(1, "btree cache cannibalize failed\n");
879         return ERR_PTR(-ENOMEM);
880 }
881
882 /*
883  * We can only have one thread cannibalizing other cached btree nodes at a time,
884  * or we'll deadlock. We use an open coded mutex to ensure that, which a
885  * cannibalize_bucket() will take. This means every time we unlock the root of
886  * the btree, we need to release this lock if we have it held.
887  */
888 static void bch_cannibalize_unlock(struct cache_set *c)
889 {
890         spin_lock(&c->btree_cannibalize_lock);
891         if (c->btree_cache_alloc_lock == current) {
892                 c->btree_cache_alloc_lock = NULL;
893                 wake_up(&c->btree_cache_wait);
894         }
895         spin_unlock(&c->btree_cannibalize_lock);
896 }
897
898 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
899                                struct bkey *k, int level)
900 {
901         struct btree *b;
902
903         BUG_ON(current->bio_list);
904
905         lockdep_assert_held(&c->bucket_lock);
906
907         if (mca_find(c, k))
908                 return NULL;
909
910         /* btree_free() doesn't free memory; it sticks the node on the end of
911          * the list. Check if there's any freed nodes there:
912          */
913         list_for_each_entry(b, &c->btree_cache_freeable, list)
914                 if (!mca_reap(b, btree_order(k), false))
915                         goto out;
916
917         /* We never free struct btree itself, just the memory that holds the on
918          * disk node. Check the freed list before allocating a new one:
919          */
920         list_for_each_entry(b, &c->btree_cache_freed, list)
921                 if (!mca_reap(b, 0, false)) {
922                         mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
923                         if (!b->keys.set[0].data)
924                                 goto err;
925                         else
926                                 goto out;
927                 }
928
929         b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
930         if (!b)
931                 goto err;
932
933         BUG_ON(!down_write_trylock(&b->lock));
934         if (!b->keys.set->data)
935                 goto err;
936 out:
937         BUG_ON(b->io_mutex.count != 1);
938
939         bkey_copy(&b->key, k);
940         list_move(&b->list, &c->btree_cache);
941         hlist_del_init_rcu(&b->hash);
942         hlist_add_head_rcu(&b->hash, mca_hash(c, k));
943
944         lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
945         b->parent       = (void *) ~0UL;
946         b->flags        = 0;
947         b->written      = 0;
948         b->level        = level;
949
950         if (!b->level)
951                 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
952                                     &b->c->expensive_debug_checks);
953         else
954                 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
955                                     &b->c->expensive_debug_checks);
956
957         return b;
958 err:
959         if (b)
960                 rw_unlock(true, b);
961
962         b = mca_cannibalize(c, op, k);
963         if (!IS_ERR(b))
964                 goto out;
965
966         return b;
967 }
968
969 /*
970  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
971  * in from disk if necessary.
972  *
973  * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN.
974  *
975  * The btree node will have either a read or a write lock held, depending on
976  * level and op->lock.
977  */
978 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
979                                  struct bkey *k, int level, bool write,
980                                  struct btree *parent)
981 {
982         int i = 0;
983         struct btree *b;
984
985         BUG_ON(level < 0);
986 retry:
987         b = mca_find(c, k);
988
989         if (!b) {
990                 if (current->bio_list)
991                         return ERR_PTR(-EAGAIN);
992
993                 mutex_lock(&c->bucket_lock);
994                 b = mca_alloc(c, op, k, level);
995                 mutex_unlock(&c->bucket_lock);
996
997                 if (!b)
998                         goto retry;
999                 if (IS_ERR(b))
1000                         return b;
1001
1002                 bch_btree_node_read(b);
1003
1004                 if (!write)
1005                         downgrade_write(&b->lock);
1006         } else {
1007                 rw_lock(write, b, level);
1008                 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1009                         rw_unlock(write, b);
1010                         goto retry;
1011                 }
1012                 BUG_ON(b->level != level);
1013         }
1014
1015         if (btree_node_io_error(b)) {
1016                 rw_unlock(write, b);
1017                 return ERR_PTR(-EIO);
1018         }
1019
1020         BUG_ON(!b->written);
1021
1022         b->parent = parent;
1023
1024         for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1025                 prefetch(b->keys.set[i].tree);
1026                 prefetch(b->keys.set[i].data);
1027         }
1028
1029         for (; i <= b->keys.nsets; i++)
1030                 prefetch(b->keys.set[i].data);
1031
1032         return b;
1033 }
1034
1035 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1036 {
1037         struct btree *b;
1038
1039         mutex_lock(&parent->c->bucket_lock);
1040         b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1041         mutex_unlock(&parent->c->bucket_lock);
1042
1043         if (!IS_ERR_OR_NULL(b)) {
1044                 b->parent = parent;
1045                 bch_btree_node_read(b);
1046                 rw_unlock(true, b);
1047         }
1048 }
1049
1050 /* Btree alloc */
1051
1052 static void btree_node_free(struct btree *b)
1053 {
1054         trace_bcache_btree_node_free(b);
1055
1056         BUG_ON(b == b->c->root);
1057
1058 retry:
1059         mutex_lock(&b->write_lock);
1060         /*
1061          * If the btree node is selected and flushing in btree_flush_write(),
1062          * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1063          * then it is safe to free the btree node here. Otherwise this btree
1064          * node will be in race condition.
1065          */
1066         if (btree_node_journal_flush(b)) {
1067                 mutex_unlock(&b->write_lock);
1068                 pr_debug("bnode %p journal_flush set, retry\n", b);
1069                 udelay(1);
1070                 goto retry;
1071         }
1072
1073         if (btree_node_dirty(b)) {
1074                 btree_complete_write(b, btree_current_write(b));
1075                 clear_bit(BTREE_NODE_dirty, &b->flags);
1076         }
1077
1078         mutex_unlock(&b->write_lock);
1079
1080         cancel_delayed_work(&b->work);
1081
1082         mutex_lock(&b->c->bucket_lock);
1083         bch_bucket_free(b->c, &b->key);
1084         mca_bucket_free(b);
1085         mutex_unlock(&b->c->bucket_lock);
1086 }
1087
1088 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1089                                      int level, bool wait,
1090                                      struct btree *parent)
1091 {
1092         BKEY_PADDED(key) k;
1093         struct btree *b = ERR_PTR(-EAGAIN);
1094
1095         mutex_lock(&c->bucket_lock);
1096 retry:
1097         if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait))
1098                 goto err;
1099
1100         bkey_put(c, &k.key);
1101         SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1102
1103         b = mca_alloc(c, op, &k.key, level);
1104         if (IS_ERR(b))
1105                 goto err_free;
1106
1107         if (!b) {
1108                 cache_bug(c,
1109                         "Tried to allocate bucket that was in btree cache");
1110                 goto retry;
1111         }
1112
1113         b->parent = parent;
1114         bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb));
1115
1116         mutex_unlock(&c->bucket_lock);
1117
1118         trace_bcache_btree_node_alloc(b);
1119         return b;
1120 err_free:
1121         bch_bucket_free(c, &k.key);
1122 err:
1123         mutex_unlock(&c->bucket_lock);
1124
1125         trace_bcache_btree_node_alloc_fail(c);
1126         return b;
1127 }
1128
1129 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1130                                           struct btree_op *op, int level,
1131                                           struct btree *parent)
1132 {
1133         return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1134 }
1135
1136 static struct btree *btree_node_alloc_replacement(struct btree *b,
1137                                                   struct btree_op *op)
1138 {
1139         struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1140
1141         if (!IS_ERR_OR_NULL(n)) {
1142                 mutex_lock(&n->write_lock);
1143                 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1144                 bkey_copy_key(&n->key, &b->key);
1145                 mutex_unlock(&n->write_lock);
1146         }
1147
1148         return n;
1149 }
1150
1151 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1152 {
1153         unsigned int i;
1154
1155         mutex_lock(&b->c->bucket_lock);
1156
1157         atomic_inc(&b->c->prio_blocked);
1158
1159         bkey_copy(k, &b->key);
1160         bkey_copy_key(k, &ZERO_KEY);
1161
1162         for (i = 0; i < KEY_PTRS(k); i++)
1163                 SET_PTR_GEN(k, i,
1164                             bch_inc_gen(b->c->cache,
1165                                         PTR_BUCKET(b->c, &b->key, i)));
1166
1167         mutex_unlock(&b->c->bucket_lock);
1168 }
1169
1170 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1171 {
1172         struct cache_set *c = b->c;
1173         struct cache *ca = c->cache;
1174         unsigned int reserve = (c->root->level - b->level) * 2 + 1;
1175
1176         mutex_lock(&c->bucket_lock);
1177
1178         if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1179                 if (op)
1180                         prepare_to_wait(&c->btree_cache_wait, &op->wait,
1181                                         TASK_UNINTERRUPTIBLE);
1182                 mutex_unlock(&c->bucket_lock);
1183                 return -EINTR;
1184         }
1185
1186         mutex_unlock(&c->bucket_lock);
1187
1188         return mca_cannibalize_lock(b->c, op);
1189 }
1190
1191 /* Garbage collection */
1192
1193 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1194                                     struct bkey *k)
1195 {
1196         uint8_t stale = 0;
1197         unsigned int i;
1198         struct bucket *g;
1199
1200         /*
1201          * ptr_invalid() can't return true for the keys that mark btree nodes as
1202          * freed, but since ptr_bad() returns true we'll never actually use them
1203          * for anything and thus we don't want mark their pointers here
1204          */
1205         if (!bkey_cmp(k, &ZERO_KEY))
1206                 return stale;
1207
1208         for (i = 0; i < KEY_PTRS(k); i++) {
1209                 if (!ptr_available(c, k, i))
1210                         continue;
1211
1212                 g = PTR_BUCKET(c, k, i);
1213
1214                 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1215                         g->last_gc = PTR_GEN(k, i);
1216
1217                 if (ptr_stale(c, k, i)) {
1218                         stale = max(stale, ptr_stale(c, k, i));
1219                         continue;
1220                 }
1221
1222                 cache_bug_on(GC_MARK(g) &&
1223                              (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1224                              c, "inconsistent ptrs: mark = %llu, level = %i",
1225                              GC_MARK(g), level);
1226
1227                 if (level)
1228                         SET_GC_MARK(g, GC_MARK_METADATA);
1229                 else if (KEY_DIRTY(k))
1230                         SET_GC_MARK(g, GC_MARK_DIRTY);
1231                 else if (!GC_MARK(g))
1232                         SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1233
1234                 /* guard against overflow */
1235                 SET_GC_SECTORS_USED(g, min_t(unsigned int,
1236                                              GC_SECTORS_USED(g) + KEY_SIZE(k),
1237                                              MAX_GC_SECTORS_USED));
1238
1239                 BUG_ON(!GC_SECTORS_USED(g));
1240         }
1241
1242         return stale;
1243 }
1244
1245 #define btree_mark_key(b, k)    __bch_btree_mark_key(b->c, b->level, k)
1246
1247 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1248 {
1249         unsigned int i;
1250
1251         for (i = 0; i < KEY_PTRS(k); i++)
1252                 if (ptr_available(c, k, i) &&
1253                     !ptr_stale(c, k, i)) {
1254                         struct bucket *b = PTR_BUCKET(c, k, i);
1255
1256                         b->gen = PTR_GEN(k, i);
1257
1258                         if (level && bkey_cmp(k, &ZERO_KEY))
1259                                 b->prio = BTREE_PRIO;
1260                         else if (!level && b->prio == BTREE_PRIO)
1261                                 b->prio = INITIAL_PRIO;
1262                 }
1263
1264         __bch_btree_mark_key(c, level, k);
1265 }
1266
1267 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1268 {
1269         stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1270 }
1271
1272 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1273 {
1274         uint8_t stale = 0;
1275         unsigned int keys = 0, good_keys = 0;
1276         struct bkey *k;
1277         struct btree_iter iter;
1278         struct bset_tree *t;
1279
1280         gc->nodes++;
1281
1282         for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1283                 stale = max(stale, btree_mark_key(b, k));
1284                 keys++;
1285
1286                 if (bch_ptr_bad(&b->keys, k))
1287                         continue;
1288
1289                 gc->key_bytes += bkey_u64s(k);
1290                 gc->nkeys++;
1291                 good_keys++;
1292
1293                 gc->data += KEY_SIZE(k);
1294         }
1295
1296         for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1297                 btree_bug_on(t->size &&
1298                              bset_written(&b->keys, t) &&
1299                              bkey_cmp(&b->key, &t->end) < 0,
1300                              b, "found short btree key in gc");
1301
1302         if (b->c->gc_always_rewrite)
1303                 return true;
1304
1305         if (stale > 10)
1306                 return true;
1307
1308         if ((keys - good_keys) * 2 > keys)
1309                 return true;
1310
1311         return false;
1312 }
1313
1314 #define GC_MERGE_NODES  4U
1315
1316 struct gc_merge_info {
1317         struct btree    *b;
1318         unsigned int    keys;
1319 };
1320
1321 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1322                                  struct keylist *insert_keys,
1323                                  atomic_t *journal_ref,
1324                                  struct bkey *replace_key);
1325
1326 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1327                              struct gc_stat *gc, struct gc_merge_info *r)
1328 {
1329         unsigned int i, nodes = 0, keys = 0, blocks;
1330         struct btree *new_nodes[GC_MERGE_NODES];
1331         struct keylist keylist;
1332         struct closure cl;
1333         struct bkey *k;
1334
1335         bch_keylist_init(&keylist);
1336
1337         if (btree_check_reserve(b, NULL))
1338                 return 0;
1339
1340         memset(new_nodes, 0, sizeof(new_nodes));
1341         closure_init_stack(&cl);
1342
1343         while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1344                 keys += r[nodes++].keys;
1345
1346         blocks = btree_default_blocks(b->c) * 2 / 3;
1347
1348         if (nodes < 2 ||
1349             __set_blocks(b->keys.set[0].data, keys,
1350                          block_bytes(b->c->cache)) > blocks * (nodes - 1))
1351                 return 0;
1352
1353         for (i = 0; i < nodes; i++) {
1354                 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1355                 if (IS_ERR_OR_NULL(new_nodes[i]))
1356                         goto out_nocoalesce;
1357         }
1358
1359         /*
1360          * We have to check the reserve here, after we've allocated our new
1361          * nodes, to make sure the insert below will succeed - we also check
1362          * before as an optimization to potentially avoid a bunch of expensive
1363          * allocs/sorts
1364          */
1365         if (btree_check_reserve(b, NULL))
1366                 goto out_nocoalesce;
1367
1368         for (i = 0; i < nodes; i++)
1369                 mutex_lock(&new_nodes[i]->write_lock);
1370
1371         for (i = nodes - 1; i > 0; --i) {
1372                 struct bset *n1 = btree_bset_first(new_nodes[i]);
1373                 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1374                 struct bkey *k, *last = NULL;
1375
1376                 keys = 0;
1377
1378                 if (i > 1) {
1379                         for (k = n2->start;
1380                              k < bset_bkey_last(n2);
1381                              k = bkey_next(k)) {
1382                                 if (__set_blocks(n1, n1->keys + keys +
1383                                                  bkey_u64s(k),
1384                                                  block_bytes(b->c->cache)) > blocks)
1385                                         break;
1386
1387                                 last = k;
1388                                 keys += bkey_u64s(k);
1389                         }
1390                 } else {
1391                         /*
1392                          * Last node we're not getting rid of - we're getting
1393                          * rid of the node at r[0]. Have to try and fit all of
1394                          * the remaining keys into this node; we can't ensure
1395                          * they will always fit due to rounding and variable
1396                          * length keys (shouldn't be possible in practice,
1397                          * though)
1398                          */
1399                         if (__set_blocks(n1, n1->keys + n2->keys,
1400                                          block_bytes(b->c->cache)) >
1401                             btree_blocks(new_nodes[i]))
1402                                 goto out_unlock_nocoalesce;
1403
1404                         keys = n2->keys;
1405                         /* Take the key of the node we're getting rid of */
1406                         last = &r->b->key;
1407                 }
1408
1409                 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) >
1410                        btree_blocks(new_nodes[i]));
1411
1412                 if (last)
1413                         bkey_copy_key(&new_nodes[i]->key, last);
1414
1415                 memcpy(bset_bkey_last(n1),
1416                        n2->start,
1417                        (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1418
1419                 n1->keys += keys;
1420                 r[i].keys = n1->keys;
1421
1422                 memmove(n2->start,
1423                         bset_bkey_idx(n2, keys),
1424                         (void *) bset_bkey_last(n2) -
1425                         (void *) bset_bkey_idx(n2, keys));
1426
1427                 n2->keys -= keys;
1428
1429                 if (__bch_keylist_realloc(&keylist,
1430                                           bkey_u64s(&new_nodes[i]->key)))
1431                         goto out_unlock_nocoalesce;
1432
1433                 bch_btree_node_write(new_nodes[i], &cl);
1434                 bch_keylist_add(&keylist, &new_nodes[i]->key);
1435         }
1436
1437         for (i = 0; i < nodes; i++)
1438                 mutex_unlock(&new_nodes[i]->write_lock);
1439
1440         closure_sync(&cl);
1441
1442         /* We emptied out this node */
1443         BUG_ON(btree_bset_first(new_nodes[0])->keys);
1444         btree_node_free(new_nodes[0]);
1445         rw_unlock(true, new_nodes[0]);
1446         new_nodes[0] = NULL;
1447
1448         for (i = 0; i < nodes; i++) {
1449                 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1450                         goto out_nocoalesce;
1451
1452                 make_btree_freeing_key(r[i].b, keylist.top);
1453                 bch_keylist_push(&keylist);
1454         }
1455
1456         bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1457         BUG_ON(!bch_keylist_empty(&keylist));
1458
1459         for (i = 0; i < nodes; i++) {
1460                 btree_node_free(r[i].b);
1461                 rw_unlock(true, r[i].b);
1462
1463                 r[i].b = new_nodes[i];
1464         }
1465
1466         memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1467         r[nodes - 1].b = ERR_PTR(-EINTR);
1468
1469         trace_bcache_btree_gc_coalesce(nodes);
1470         gc->nodes--;
1471
1472         bch_keylist_free(&keylist);
1473
1474         /* Invalidated our iterator */
1475         return -EINTR;
1476
1477 out_unlock_nocoalesce:
1478         for (i = 0; i < nodes; i++)
1479                 mutex_unlock(&new_nodes[i]->write_lock);
1480
1481 out_nocoalesce:
1482         closure_sync(&cl);
1483
1484         while ((k = bch_keylist_pop(&keylist)))
1485                 if (!bkey_cmp(k, &ZERO_KEY))
1486                         atomic_dec(&b->c->prio_blocked);
1487         bch_keylist_free(&keylist);
1488
1489         for (i = 0; i < nodes; i++)
1490                 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1491                         btree_node_free(new_nodes[i]);
1492                         rw_unlock(true, new_nodes[i]);
1493                 }
1494         return 0;
1495 }
1496
1497 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1498                                  struct btree *replace)
1499 {
1500         struct keylist keys;
1501         struct btree *n;
1502
1503         if (btree_check_reserve(b, NULL))
1504                 return 0;
1505
1506         n = btree_node_alloc_replacement(replace, NULL);
1507
1508         /* recheck reserve after allocating replacement node */
1509         if (btree_check_reserve(b, NULL)) {
1510                 btree_node_free(n);
1511                 rw_unlock(true, n);
1512                 return 0;
1513         }
1514
1515         bch_btree_node_write_sync(n);
1516
1517         bch_keylist_init(&keys);
1518         bch_keylist_add(&keys, &n->key);
1519
1520         make_btree_freeing_key(replace, keys.top);
1521         bch_keylist_push(&keys);
1522
1523         bch_btree_insert_node(b, op, &keys, NULL, NULL);
1524         BUG_ON(!bch_keylist_empty(&keys));
1525
1526         btree_node_free(replace);
1527         rw_unlock(true, n);
1528
1529         /* Invalidated our iterator */
1530         return -EINTR;
1531 }
1532
1533 static unsigned int btree_gc_count_keys(struct btree *b)
1534 {
1535         struct bkey *k;
1536         struct btree_iter iter;
1537         unsigned int ret = 0;
1538
1539         for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1540                 ret += bkey_u64s(k);
1541
1542         return ret;
1543 }
1544
1545 static size_t btree_gc_min_nodes(struct cache_set *c)
1546 {
1547         size_t min_nodes;
1548
1549         /*
1550          * Since incremental GC would stop 100ms when front
1551          * side I/O comes, so when there are many btree nodes,
1552          * if GC only processes constant (100) nodes each time,
1553          * GC would last a long time, and the front side I/Os
1554          * would run out of the buckets (since no new bucket
1555          * can be allocated during GC), and be blocked again.
1556          * So GC should not process constant nodes, but varied
1557          * nodes according to the number of btree nodes, which
1558          * realized by dividing GC into constant(100) times,
1559          * so when there are many btree nodes, GC can process
1560          * more nodes each time, otherwise, GC will process less
1561          * nodes each time (but no less than MIN_GC_NODES)
1562          */
1563         min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1564         if (min_nodes < MIN_GC_NODES)
1565                 min_nodes = MIN_GC_NODES;
1566
1567         return min_nodes;
1568 }
1569
1570
1571 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1572                             struct closure *writes, struct gc_stat *gc)
1573 {
1574         int ret = 0;
1575         bool should_rewrite;
1576         struct bkey *k;
1577         struct btree_iter iter;
1578         struct gc_merge_info r[GC_MERGE_NODES];
1579         struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1580
1581         bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1582
1583         for (i = r; i < r + ARRAY_SIZE(r); i++)
1584                 i->b = ERR_PTR(-EINTR);
1585
1586         while (1) {
1587                 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1588                 if (k) {
1589                         r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1590                                                   true, b);
1591                         if (IS_ERR(r->b)) {
1592                                 ret = PTR_ERR(r->b);
1593                                 break;
1594                         }
1595
1596                         r->keys = btree_gc_count_keys(r->b);
1597
1598                         ret = btree_gc_coalesce(b, op, gc, r);
1599                         if (ret)
1600                                 break;
1601                 }
1602
1603                 if (!last->b)
1604                         break;
1605
1606                 if (!IS_ERR(last->b)) {
1607                         should_rewrite = btree_gc_mark_node(last->b, gc);
1608                         if (should_rewrite) {
1609                                 ret = btree_gc_rewrite_node(b, op, last->b);
1610                                 if (ret)
1611                                         break;
1612                         }
1613
1614                         if (last->b->level) {
1615                                 ret = btree_gc_recurse(last->b, op, writes, gc);
1616                                 if (ret)
1617                                         break;
1618                         }
1619
1620                         bkey_copy_key(&b->c->gc_done, &last->b->key);
1621
1622                         /*
1623                          * Must flush leaf nodes before gc ends, since replace
1624                          * operations aren't journalled
1625                          */
1626                         mutex_lock(&last->b->write_lock);
1627                         if (btree_node_dirty(last->b))
1628                                 bch_btree_node_write(last->b, writes);
1629                         mutex_unlock(&last->b->write_lock);
1630                         rw_unlock(true, last->b);
1631                 }
1632
1633                 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1634                 r->b = NULL;
1635
1636                 if (atomic_read(&b->c->search_inflight) &&
1637                     gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1638                         gc->nodes_pre =  gc->nodes;
1639                         ret = -EAGAIN;
1640                         break;
1641                 }
1642
1643                 if (need_resched()) {
1644                         ret = -EAGAIN;
1645                         break;
1646                 }
1647         }
1648
1649         for (i = r; i < r + ARRAY_SIZE(r); i++)
1650                 if (!IS_ERR_OR_NULL(i->b)) {
1651                         mutex_lock(&i->b->write_lock);
1652                         if (btree_node_dirty(i->b))
1653                                 bch_btree_node_write(i->b, writes);
1654                         mutex_unlock(&i->b->write_lock);
1655                         rw_unlock(true, i->b);
1656                 }
1657
1658         return ret;
1659 }
1660
1661 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1662                              struct closure *writes, struct gc_stat *gc)
1663 {
1664         struct btree *n = NULL;
1665         int ret = 0;
1666         bool should_rewrite;
1667
1668         should_rewrite = btree_gc_mark_node(b, gc);
1669         if (should_rewrite) {
1670                 n = btree_node_alloc_replacement(b, NULL);
1671
1672                 if (!IS_ERR_OR_NULL(n)) {
1673                         bch_btree_node_write_sync(n);
1674
1675                         bch_btree_set_root(n);
1676                         btree_node_free(b);
1677                         rw_unlock(true, n);
1678
1679                         return -EINTR;
1680                 }
1681         }
1682
1683         __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1684
1685         if (b->level) {
1686                 ret = btree_gc_recurse(b, op, writes, gc);
1687                 if (ret)
1688                         return ret;
1689         }
1690
1691         bkey_copy_key(&b->c->gc_done, &b->key);
1692
1693         return ret;
1694 }
1695
1696 static void btree_gc_start(struct cache_set *c)
1697 {
1698         struct cache *ca;
1699         struct bucket *b;
1700
1701         if (!c->gc_mark_valid)
1702                 return;
1703
1704         mutex_lock(&c->bucket_lock);
1705
1706         c->gc_mark_valid = 0;
1707         c->gc_done = ZERO_KEY;
1708
1709         ca = c->cache;
1710         for_each_bucket(b, ca) {
1711                 b->last_gc = b->gen;
1712                 if (!atomic_read(&b->pin)) {
1713                         SET_GC_MARK(b, 0);
1714                         SET_GC_SECTORS_USED(b, 0);
1715                 }
1716         }
1717
1718         mutex_unlock(&c->bucket_lock);
1719 }
1720
1721 static void bch_btree_gc_finish(struct cache_set *c)
1722 {
1723         struct bucket *b;
1724         struct cache *ca;
1725         unsigned int i, j;
1726         uint64_t *k;
1727
1728         mutex_lock(&c->bucket_lock);
1729
1730         set_gc_sectors(c);
1731         c->gc_mark_valid = 1;
1732         c->need_gc      = 0;
1733
1734         for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1735                 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1736                             GC_MARK_METADATA);
1737
1738         /* don't reclaim buckets to which writeback keys point */
1739         rcu_read_lock();
1740         for (i = 0; i < c->devices_max_used; i++) {
1741                 struct bcache_device *d = c->devices[i];
1742                 struct cached_dev *dc;
1743                 struct keybuf_key *w, *n;
1744
1745                 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1746                         continue;
1747                 dc = container_of(d, struct cached_dev, disk);
1748
1749                 spin_lock(&dc->writeback_keys.lock);
1750                 rbtree_postorder_for_each_entry_safe(w, n,
1751                                         &dc->writeback_keys.keys, node)
1752                         for (j = 0; j < KEY_PTRS(&w->key); j++)
1753                                 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1754                                             GC_MARK_DIRTY);
1755                 spin_unlock(&dc->writeback_keys.lock);
1756         }
1757         rcu_read_unlock();
1758
1759         c->avail_nbuckets = 0;
1760
1761         ca = c->cache;
1762         ca->invalidate_needs_gc = 0;
1763
1764         for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++)
1765                 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1766
1767         for (k = ca->prio_buckets;
1768              k < ca->prio_buckets + prio_buckets(ca) * 2; k++)
1769                 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1770
1771         for_each_bucket(b, ca) {
1772                 c->need_gc      = max(c->need_gc, bucket_gc_gen(b));
1773
1774                 if (atomic_read(&b->pin))
1775                         continue;
1776
1777                 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1778
1779                 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1780                         c->avail_nbuckets++;
1781         }
1782
1783         mutex_unlock(&c->bucket_lock);
1784 }
1785
1786 static void bch_btree_gc(struct cache_set *c)
1787 {
1788         int ret;
1789         struct gc_stat stats;
1790         struct closure writes;
1791         struct btree_op op;
1792         uint64_t start_time = local_clock();
1793
1794         trace_bcache_gc_start(c);
1795
1796         memset(&stats, 0, sizeof(struct gc_stat));
1797         closure_init_stack(&writes);
1798         bch_btree_op_init(&op, SHRT_MAX);
1799
1800         btree_gc_start(c);
1801
1802         /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1803         do {
1804                 ret = bcache_btree_root(gc_root, c, &op, &writes, &stats);
1805                 closure_sync(&writes);
1806                 cond_resched();
1807
1808                 if (ret == -EAGAIN)
1809                         schedule_timeout_interruptible(msecs_to_jiffies
1810                                                        (GC_SLEEP_MS));
1811                 else if (ret)
1812                         pr_warn("gc failed!\n");
1813         } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1814
1815         bch_btree_gc_finish(c);
1816         wake_up_allocators(c);
1817
1818         bch_time_stats_update(&c->btree_gc_time, start_time);
1819
1820         stats.key_bytes *= sizeof(uint64_t);
1821         stats.data      <<= 9;
1822         bch_update_bucket_in_use(c, &stats);
1823         memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1824
1825         trace_bcache_gc_end(c);
1826
1827         bch_moving_gc(c);
1828 }
1829
1830 static bool gc_should_run(struct cache_set *c)
1831 {
1832         struct cache *ca = c->cache;
1833
1834         if (ca->invalidate_needs_gc)
1835                 return true;
1836
1837         if (atomic_read(&c->sectors_to_gc) < 0)
1838                 return true;
1839
1840         return false;
1841 }
1842
1843 static int bch_gc_thread(void *arg)
1844 {
1845         struct cache_set *c = arg;
1846
1847         while (1) {
1848                 wait_event_interruptible(c->gc_wait,
1849                            kthread_should_stop() ||
1850                            test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1851                            gc_should_run(c));
1852
1853                 if (kthread_should_stop() ||
1854                     test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1855                         break;
1856
1857                 set_gc_sectors(c);
1858                 bch_btree_gc(c);
1859         }
1860
1861         wait_for_kthread_stop();
1862         return 0;
1863 }
1864
1865 int bch_gc_thread_start(struct cache_set *c)
1866 {
1867         c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1868         return PTR_ERR_OR_ZERO(c->gc_thread);
1869 }
1870
1871 /* Initial partial gc */
1872
1873 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1874 {
1875         int ret = 0;
1876         struct bkey *k, *p = NULL;
1877         struct btree_iter iter;
1878
1879         for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1880                 bch_initial_mark_key(b->c, b->level, k);
1881
1882         bch_initial_mark_key(b->c, b->level + 1, &b->key);
1883
1884         if (b->level) {
1885                 bch_btree_iter_init(&b->keys, &iter, NULL);
1886
1887                 do {
1888                         k = bch_btree_iter_next_filter(&iter, &b->keys,
1889                                                        bch_ptr_bad);
1890                         if (k) {
1891                                 btree_node_prefetch(b, k);
1892                                 /*
1893                                  * initiallize c->gc_stats.nodes
1894                                  * for incremental GC
1895                                  */
1896                                 b->c->gc_stats.nodes++;
1897                         }
1898
1899                         if (p)
1900                                 ret = bcache_btree(check_recurse, p, b, op);
1901
1902                         p = k;
1903                 } while (p && !ret);
1904         }
1905
1906         return ret;
1907 }
1908
1909
1910 static int bch_btree_check_thread(void *arg)
1911 {
1912         int ret;
1913         struct btree_check_info *info = arg;
1914         struct btree_check_state *check_state = info->state;
1915         struct cache_set *c = check_state->c;
1916         struct btree_iter iter;
1917         struct bkey *k, *p;
1918         int cur_idx, prev_idx, skip_nr;
1919
1920         k = p = NULL;
1921         cur_idx = prev_idx = 0;
1922         ret = 0;
1923
1924         /* root node keys are checked before thread created */
1925         bch_btree_iter_init(&c->root->keys, &iter, NULL);
1926         k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
1927         BUG_ON(!k);
1928
1929         p = k;
1930         while (k) {
1931                 /*
1932                  * Fetch a root node key index, skip the keys which
1933                  * should be fetched by other threads, then check the
1934                  * sub-tree indexed by the fetched key.
1935                  */
1936                 spin_lock(&check_state->idx_lock);
1937                 cur_idx = check_state->key_idx;
1938                 check_state->key_idx++;
1939                 spin_unlock(&check_state->idx_lock);
1940
1941                 skip_nr = cur_idx - prev_idx;
1942
1943                 while (skip_nr) {
1944                         k = bch_btree_iter_next_filter(&iter,
1945                                                        &c->root->keys,
1946                                                        bch_ptr_bad);
1947                         if (k)
1948                                 p = k;
1949                         else {
1950                                 /*
1951                                  * No more keys to check in root node,
1952                                  * current checking threads are enough,
1953                                  * stop creating more.
1954                                  */
1955                                 atomic_set(&check_state->enough, 1);
1956                                 /* Update check_state->enough earlier */
1957                                 smp_mb__after_atomic();
1958                                 goto out;
1959                         }
1960                         skip_nr--;
1961                         cond_resched();
1962                 }
1963
1964                 if (p) {
1965                         struct btree_op op;
1966
1967                         btree_node_prefetch(c->root, p);
1968                         c->gc_stats.nodes++;
1969                         bch_btree_op_init(&op, 0);
1970                         ret = bcache_btree(check_recurse, p, c->root, &op);
1971                         if (ret)
1972                                 goto out;
1973                 }
1974                 p = NULL;
1975                 prev_idx = cur_idx;
1976                 cond_resched();
1977         }
1978
1979 out:
1980         info->result = ret;
1981         /* update check_state->started among all CPUs */
1982         smp_mb__before_atomic();
1983         if (atomic_dec_and_test(&check_state->started))
1984                 wake_up(&check_state->wait);
1985
1986         return ret;
1987 }
1988
1989
1990
1991 static int bch_btree_chkthread_nr(void)
1992 {
1993         int n = num_online_cpus()/2;
1994
1995         if (n == 0)
1996                 n = 1;
1997         else if (n > BCH_BTR_CHKTHREAD_MAX)
1998                 n = BCH_BTR_CHKTHREAD_MAX;
1999
2000         return n;
2001 }
2002
2003 int bch_btree_check(struct cache_set *c)
2004 {
2005         int ret = 0;
2006         int i;
2007         struct bkey *k = NULL;
2008         struct btree_iter iter;
2009         struct btree_check_state *check_state;
2010         char name[32];
2011
2012         /* check and mark root node keys */
2013         for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid)
2014                 bch_initial_mark_key(c, c->root->level, k);
2015
2016         bch_initial_mark_key(c, c->root->level + 1, &c->root->key);
2017
2018         if (c->root->level == 0)
2019                 return 0;
2020
2021         check_state = kzalloc(sizeof(struct btree_check_state), GFP_KERNEL);
2022         if (!check_state)
2023                 return -ENOMEM;
2024
2025         check_state->c = c;
2026         check_state->total_threads = bch_btree_chkthread_nr();
2027         check_state->key_idx = 0;
2028         spin_lock_init(&check_state->idx_lock);
2029         atomic_set(&check_state->started, 0);
2030         atomic_set(&check_state->enough, 0);
2031         init_waitqueue_head(&check_state->wait);
2032
2033         /*
2034          * Run multiple threads to check btree nodes in parallel,
2035          * if check_state->enough is non-zero, it means current
2036          * running check threads are enough, unncessary to create
2037          * more.
2038          */
2039         for (i = 0; i < check_state->total_threads; i++) {
2040                 /* fetch latest check_state->enough earlier */
2041                 smp_mb__before_atomic();
2042                 if (atomic_read(&check_state->enough))
2043                         break;
2044
2045                 check_state->infos[i].result = 0;
2046                 check_state->infos[i].state = check_state;
2047                 snprintf(name, sizeof(name), "bch_btrchk[%u]", i);
2048                 atomic_inc(&check_state->started);
2049
2050                 check_state->infos[i].thread =
2051                         kthread_run(bch_btree_check_thread,
2052                                     &check_state->infos[i],
2053                                     name);
2054                 if (IS_ERR(check_state->infos[i].thread)) {
2055                         pr_err("fails to run thread bch_btrchk[%d]\n", i);
2056                         for (--i; i >= 0; i--)
2057                                 kthread_stop(check_state->infos[i].thread);
2058                         ret = -ENOMEM;
2059                         goto out;
2060                 }
2061         }
2062
2063         wait_event_interruptible(check_state->wait,
2064                                  atomic_read(&check_state->started) == 0 ||
2065                                   test_bit(CACHE_SET_IO_DISABLE, &c->flags));
2066
2067         for (i = 0; i < check_state->total_threads; i++) {
2068                 if (check_state->infos[i].result) {
2069                         ret = check_state->infos[i].result;
2070                         goto out;
2071                 }
2072         }
2073
2074 out:
2075         kfree(check_state);
2076         return ret;
2077 }
2078
2079 void bch_initial_gc_finish(struct cache_set *c)
2080 {
2081         struct cache *ca = c->cache;
2082         struct bucket *b;
2083
2084         bch_btree_gc_finish(c);
2085
2086         mutex_lock(&c->bucket_lock);
2087
2088         /*
2089          * We need to put some unused buckets directly on the prio freelist in
2090          * order to get the allocator thread started - it needs freed buckets in
2091          * order to rewrite the prios and gens, and it needs to rewrite prios
2092          * and gens in order to free buckets.
2093          *
2094          * This is only safe for buckets that have no live data in them, which
2095          * there should always be some of.
2096          */
2097         for_each_bucket(b, ca) {
2098                 if (fifo_full(&ca->free[RESERVE_PRIO]) &&
2099                     fifo_full(&ca->free[RESERVE_BTREE]))
2100                         break;
2101
2102                 if (bch_can_invalidate_bucket(ca, b) &&
2103                     !GC_MARK(b)) {
2104                         __bch_invalidate_one_bucket(ca, b);
2105                         if (!fifo_push(&ca->free[RESERVE_PRIO],
2106                            b - ca->buckets))
2107                                 fifo_push(&ca->free[RESERVE_BTREE],
2108                                           b - ca->buckets);
2109                 }
2110         }
2111
2112         mutex_unlock(&c->bucket_lock);
2113 }
2114
2115 /* Btree insertion */
2116
2117 static bool btree_insert_key(struct btree *b, struct bkey *k,
2118                              struct bkey *replace_key)
2119 {
2120         unsigned int status;
2121
2122         BUG_ON(bkey_cmp(k, &b->key) > 0);
2123
2124         status = bch_btree_insert_key(&b->keys, k, replace_key);
2125         if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2126                 bch_check_keys(&b->keys, "%u for %s", status,
2127                                replace_key ? "replace" : "insert");
2128
2129                 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2130                                               status);
2131                 return true;
2132         } else
2133                 return false;
2134 }
2135
2136 static size_t insert_u64s_remaining(struct btree *b)
2137 {
2138         long ret = bch_btree_keys_u64s_remaining(&b->keys);
2139
2140         /*
2141          * Might land in the middle of an existing extent and have to split it
2142          */
2143         if (b->keys.ops->is_extents)
2144                 ret -= KEY_MAX_U64S;
2145
2146         return max(ret, 0L);
2147 }
2148
2149 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2150                                   struct keylist *insert_keys,
2151                                   struct bkey *replace_key)
2152 {
2153         bool ret = false;
2154         int oldsize = bch_count_data(&b->keys);
2155
2156         while (!bch_keylist_empty(insert_keys)) {
2157                 struct bkey *k = insert_keys->keys;
2158
2159                 if (bkey_u64s(k) > insert_u64s_remaining(b))
2160                         break;
2161
2162                 if (bkey_cmp(k, &b->key) <= 0) {
2163                         if (!b->level)
2164                                 bkey_put(b->c, k);
2165
2166                         ret |= btree_insert_key(b, k, replace_key);
2167                         bch_keylist_pop_front(insert_keys);
2168                 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2169                         BKEY_PADDED(key) temp;
2170                         bkey_copy(&temp.key, insert_keys->keys);
2171
2172                         bch_cut_back(&b->key, &temp.key);
2173                         bch_cut_front(&b->key, insert_keys->keys);
2174
2175                         ret |= btree_insert_key(b, &temp.key, replace_key);
2176                         break;
2177                 } else {
2178                         break;
2179                 }
2180         }
2181
2182         if (!ret)
2183                 op->insert_collision = true;
2184
2185         BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2186
2187         BUG_ON(bch_count_data(&b->keys) < oldsize);
2188         return ret;
2189 }
2190
2191 static int btree_split(struct btree *b, struct btree_op *op,
2192                        struct keylist *insert_keys,
2193                        struct bkey *replace_key)
2194 {
2195         bool split;
2196         struct btree *n1, *n2 = NULL, *n3 = NULL;
2197         uint64_t start_time = local_clock();
2198         struct closure cl;
2199         struct keylist parent_keys;
2200
2201         closure_init_stack(&cl);
2202         bch_keylist_init(&parent_keys);
2203
2204         if (btree_check_reserve(b, op)) {
2205                 if (!b->level)
2206                         return -EINTR;
2207                 else
2208                         WARN(1, "insufficient reserve for split\n");
2209         }
2210
2211         n1 = btree_node_alloc_replacement(b, op);
2212         if (IS_ERR(n1))
2213                 goto err;
2214
2215         split = set_blocks(btree_bset_first(n1),
2216                            block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5;
2217
2218         if (split) {
2219                 unsigned int keys = 0;
2220
2221                 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2222
2223                 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2224                 if (IS_ERR(n2))
2225                         goto err_free1;
2226
2227                 if (!b->parent) {
2228                         n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2229                         if (IS_ERR(n3))
2230                                 goto err_free2;
2231                 }
2232
2233                 mutex_lock(&n1->write_lock);
2234                 mutex_lock(&n2->write_lock);
2235
2236                 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2237
2238                 /*
2239                  * Has to be a linear search because we don't have an auxiliary
2240                  * search tree yet
2241                  */
2242
2243                 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2244                         keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2245                                                         keys));
2246
2247                 bkey_copy_key(&n1->key,
2248                               bset_bkey_idx(btree_bset_first(n1), keys));
2249                 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2250
2251                 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2252                 btree_bset_first(n1)->keys = keys;
2253
2254                 memcpy(btree_bset_first(n2)->start,
2255                        bset_bkey_last(btree_bset_first(n1)),
2256                        btree_bset_first(n2)->keys * sizeof(uint64_t));
2257
2258                 bkey_copy_key(&n2->key, &b->key);
2259
2260                 bch_keylist_add(&parent_keys, &n2->key);
2261                 bch_btree_node_write(n2, &cl);
2262                 mutex_unlock(&n2->write_lock);
2263                 rw_unlock(true, n2);
2264         } else {
2265                 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2266
2267                 mutex_lock(&n1->write_lock);
2268                 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2269         }
2270
2271         bch_keylist_add(&parent_keys, &n1->key);
2272         bch_btree_node_write(n1, &cl);
2273         mutex_unlock(&n1->write_lock);
2274
2275         if (n3) {
2276                 /* Depth increases, make a new root */
2277                 mutex_lock(&n3->write_lock);
2278                 bkey_copy_key(&n3->key, &MAX_KEY);
2279                 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2280                 bch_btree_node_write(n3, &cl);
2281                 mutex_unlock(&n3->write_lock);
2282
2283                 closure_sync(&cl);
2284                 bch_btree_set_root(n3);
2285                 rw_unlock(true, n3);
2286         } else if (!b->parent) {
2287                 /* Root filled up but didn't need to be split */
2288                 closure_sync(&cl);
2289                 bch_btree_set_root(n1);
2290         } else {
2291                 /* Split a non root node */
2292                 closure_sync(&cl);
2293                 make_btree_freeing_key(b, parent_keys.top);
2294                 bch_keylist_push(&parent_keys);
2295
2296                 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2297                 BUG_ON(!bch_keylist_empty(&parent_keys));
2298         }
2299
2300         btree_node_free(b);
2301         rw_unlock(true, n1);
2302
2303         bch_time_stats_update(&b->c->btree_split_time, start_time);
2304
2305         return 0;
2306 err_free2:
2307         bkey_put(b->c, &n2->key);
2308         btree_node_free(n2);
2309         rw_unlock(true, n2);
2310 err_free1:
2311         bkey_put(b->c, &n1->key);
2312         btree_node_free(n1);
2313         rw_unlock(true, n1);
2314 err:
2315         WARN(1, "bcache: btree split failed (level %u)", b->level);
2316
2317         if (n3 == ERR_PTR(-EAGAIN) ||
2318             n2 == ERR_PTR(-EAGAIN) ||
2319             n1 == ERR_PTR(-EAGAIN))
2320                 return -EAGAIN;
2321
2322         return -ENOMEM;
2323 }
2324
2325 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2326                                  struct keylist *insert_keys,
2327                                  atomic_t *journal_ref,
2328                                  struct bkey *replace_key)
2329 {
2330         struct closure cl;
2331
2332         BUG_ON(b->level && replace_key);
2333
2334         closure_init_stack(&cl);
2335
2336         mutex_lock(&b->write_lock);
2337
2338         if (write_block(b) != btree_bset_last(b) &&
2339             b->keys.last_set_unwritten)
2340                 bch_btree_init_next(b); /* just wrote a set */
2341
2342         if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2343                 mutex_unlock(&b->write_lock);
2344                 goto split;
2345         }
2346
2347         BUG_ON(write_block(b) != btree_bset_last(b));
2348
2349         if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2350                 if (!b->level)
2351                         bch_btree_leaf_dirty(b, journal_ref);
2352                 else
2353                         bch_btree_node_write(b, &cl);
2354         }
2355
2356         mutex_unlock(&b->write_lock);
2357
2358         /* wait for btree node write if necessary, after unlock */
2359         closure_sync(&cl);
2360
2361         return 0;
2362 split:
2363         if (current->bio_list) {
2364                 op->lock = b->c->root->level + 1;
2365                 return -EAGAIN;
2366         } else if (op->lock <= b->c->root->level) {
2367                 op->lock = b->c->root->level + 1;
2368                 return -EINTR;
2369         } else {
2370                 /* Invalidated all iterators */
2371                 int ret = btree_split(b, op, insert_keys, replace_key);
2372
2373                 if (bch_keylist_empty(insert_keys))
2374                         return 0;
2375                 else if (!ret)
2376                         return -EINTR;
2377                 return ret;
2378         }
2379 }
2380
2381 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2382                                struct bkey *check_key)
2383 {
2384         int ret = -EINTR;
2385         uint64_t btree_ptr = b->key.ptr[0];
2386         unsigned long seq = b->seq;
2387         struct keylist insert;
2388         bool upgrade = op->lock == -1;
2389
2390         bch_keylist_init(&insert);
2391
2392         if (upgrade) {
2393                 rw_unlock(false, b);
2394                 rw_lock(true, b, b->level);
2395
2396                 if (b->key.ptr[0] != btree_ptr ||
2397                     b->seq != seq + 1) {
2398                         op->lock = b->level;
2399                         goto out;
2400                 }
2401         }
2402
2403         SET_KEY_PTRS(check_key, 1);
2404         get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2405
2406         SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2407
2408         bch_keylist_add(&insert, check_key);
2409
2410         ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2411
2412         BUG_ON(!ret && !bch_keylist_empty(&insert));
2413 out:
2414         if (upgrade)
2415                 downgrade_write(&b->lock);
2416         return ret;
2417 }
2418
2419 struct btree_insert_op {
2420         struct btree_op op;
2421         struct keylist  *keys;
2422         atomic_t        *journal_ref;
2423         struct bkey     *replace_key;
2424 };
2425
2426 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2427 {
2428         struct btree_insert_op *op = container_of(b_op,
2429                                         struct btree_insert_op, op);
2430
2431         int ret = bch_btree_insert_node(b, &op->op, op->keys,
2432                                         op->journal_ref, op->replace_key);
2433         if (ret && !bch_keylist_empty(op->keys))
2434                 return ret;
2435         else
2436                 return MAP_DONE;
2437 }
2438
2439 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2440                      atomic_t *journal_ref, struct bkey *replace_key)
2441 {
2442         struct btree_insert_op op;
2443         int ret = 0;
2444
2445         BUG_ON(current->bio_list);
2446         BUG_ON(bch_keylist_empty(keys));
2447
2448         bch_btree_op_init(&op.op, 0);
2449         op.keys         = keys;
2450         op.journal_ref  = journal_ref;
2451         op.replace_key  = replace_key;
2452
2453         while (!ret && !bch_keylist_empty(keys)) {
2454                 op.op.lock = 0;
2455                 ret = bch_btree_map_leaf_nodes(&op.op, c,
2456                                                &START_KEY(keys->keys),
2457                                                btree_insert_fn);
2458         }
2459
2460         if (ret) {
2461                 struct bkey *k;
2462
2463                 pr_err("error %i\n", ret);
2464
2465                 while ((k = bch_keylist_pop(keys)))
2466                         bkey_put(c, k);
2467         } else if (op.op.insert_collision)
2468                 ret = -ESRCH;
2469
2470         return ret;
2471 }
2472
2473 void bch_btree_set_root(struct btree *b)
2474 {
2475         unsigned int i;
2476         struct closure cl;
2477
2478         closure_init_stack(&cl);
2479
2480         trace_bcache_btree_set_root(b);
2481
2482         BUG_ON(!b->written);
2483
2484         for (i = 0; i < KEY_PTRS(&b->key); i++)
2485                 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2486
2487         mutex_lock(&b->c->bucket_lock);
2488         list_del_init(&b->list);
2489         mutex_unlock(&b->c->bucket_lock);
2490
2491         b->c->root = b;
2492
2493         bch_journal_meta(b->c, &cl);
2494         closure_sync(&cl);
2495 }
2496
2497 /* Map across nodes or keys */
2498
2499 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2500                                        struct bkey *from,
2501                                        btree_map_nodes_fn *fn, int flags)
2502 {
2503         int ret = MAP_CONTINUE;
2504
2505         if (b->level) {
2506                 struct bkey *k;
2507                 struct btree_iter iter;
2508
2509                 bch_btree_iter_init(&b->keys, &iter, from);
2510
2511                 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2512                                                        bch_ptr_bad))) {
2513                         ret = bcache_btree(map_nodes_recurse, k, b,
2514                                     op, from, fn, flags);
2515                         from = NULL;
2516
2517                         if (ret != MAP_CONTINUE)
2518                                 return ret;
2519                 }
2520         }
2521
2522         if (!b->level || flags == MAP_ALL_NODES)
2523                 ret = fn(op, b);
2524
2525         return ret;
2526 }
2527
2528 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2529                           struct bkey *from, btree_map_nodes_fn *fn, int flags)
2530 {
2531         return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags);
2532 }
2533
2534 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2535                                       struct bkey *from, btree_map_keys_fn *fn,
2536                                       int flags)
2537 {
2538         int ret = MAP_CONTINUE;
2539         struct bkey *k;
2540         struct btree_iter iter;
2541
2542         bch_btree_iter_init(&b->keys, &iter, from);
2543
2544         while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2545                 ret = !b->level
2546                         ? fn(op, b, k)
2547                         : bcache_btree(map_keys_recurse, k,
2548                                        b, op, from, fn, flags);
2549                 from = NULL;
2550
2551                 if (ret != MAP_CONTINUE)
2552                         return ret;
2553         }
2554
2555         if (!b->level && (flags & MAP_END_KEY))
2556                 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2557                                      KEY_OFFSET(&b->key), 0));
2558
2559         return ret;
2560 }
2561
2562 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2563                        struct bkey *from, btree_map_keys_fn *fn, int flags)
2564 {
2565         return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags);
2566 }
2567
2568 /* Keybuf code */
2569
2570 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2571 {
2572         /* Overlapping keys compare equal */
2573         if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2574                 return -1;
2575         if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2576                 return 1;
2577         return 0;
2578 }
2579
2580 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2581                                             struct keybuf_key *r)
2582 {
2583         return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2584 }
2585
2586 struct refill {
2587         struct btree_op op;
2588         unsigned int    nr_found;
2589         struct keybuf   *buf;
2590         struct bkey     *end;
2591         keybuf_pred_fn  *pred;
2592 };
2593
2594 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2595                             struct bkey *k)
2596 {
2597         struct refill *refill = container_of(op, struct refill, op);
2598         struct keybuf *buf = refill->buf;
2599         int ret = MAP_CONTINUE;
2600
2601         if (bkey_cmp(k, refill->end) > 0) {
2602                 ret = MAP_DONE;
2603                 goto out;
2604         }
2605
2606         if (!KEY_SIZE(k)) /* end key */
2607                 goto out;
2608
2609         if (refill->pred(buf, k)) {
2610                 struct keybuf_key *w;
2611
2612                 spin_lock(&buf->lock);
2613
2614                 w = array_alloc(&buf->freelist);
2615                 if (!w) {
2616                         spin_unlock(&buf->lock);
2617                         return MAP_DONE;
2618                 }
2619
2620                 w->private = NULL;
2621                 bkey_copy(&w->key, k);
2622
2623                 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2624                         array_free(&buf->freelist, w);
2625                 else
2626                         refill->nr_found++;
2627
2628                 if (array_freelist_empty(&buf->freelist))
2629                         ret = MAP_DONE;
2630
2631                 spin_unlock(&buf->lock);
2632         }
2633 out:
2634         buf->last_scanned = *k;
2635         return ret;
2636 }
2637
2638 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2639                        struct bkey *end, keybuf_pred_fn *pred)
2640 {
2641         struct bkey start = buf->last_scanned;
2642         struct refill refill;
2643
2644         cond_resched();
2645
2646         bch_btree_op_init(&refill.op, -1);
2647         refill.nr_found = 0;
2648         refill.buf      = buf;
2649         refill.end      = end;
2650         refill.pred     = pred;
2651
2652         bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2653                            refill_keybuf_fn, MAP_END_KEY);
2654
2655         trace_bcache_keyscan(refill.nr_found,
2656                              KEY_INODE(&start), KEY_OFFSET(&start),
2657                              KEY_INODE(&buf->last_scanned),
2658                              KEY_OFFSET(&buf->last_scanned));
2659
2660         spin_lock(&buf->lock);
2661
2662         if (!RB_EMPTY_ROOT(&buf->keys)) {
2663                 struct keybuf_key *w;
2664
2665                 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2666                 buf->start      = START_KEY(&w->key);
2667
2668                 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2669                 buf->end        = w->key;
2670         } else {
2671                 buf->start      = MAX_KEY;
2672                 buf->end        = MAX_KEY;
2673         }
2674
2675         spin_unlock(&buf->lock);
2676 }
2677
2678 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2679 {
2680         rb_erase(&w->node, &buf->keys);
2681         array_free(&buf->freelist, w);
2682 }
2683
2684 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2685 {
2686         spin_lock(&buf->lock);
2687         __bch_keybuf_del(buf, w);
2688         spin_unlock(&buf->lock);
2689 }
2690
2691 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2692                                   struct bkey *end)
2693 {
2694         bool ret = false;
2695         struct keybuf_key *p, *w, s;
2696
2697         s.key = *start;
2698
2699         if (bkey_cmp(end, &buf->start) <= 0 ||
2700             bkey_cmp(start, &buf->end) >= 0)
2701                 return false;
2702
2703         spin_lock(&buf->lock);
2704         w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2705
2706         while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2707                 p = w;
2708                 w = RB_NEXT(w, node);
2709
2710                 if (p->private)
2711                         ret = true;
2712                 else
2713                         __bch_keybuf_del(buf, p);
2714         }
2715
2716         spin_unlock(&buf->lock);
2717         return ret;
2718 }
2719
2720 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2721 {
2722         struct keybuf_key *w;
2723
2724         spin_lock(&buf->lock);
2725
2726         w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2727
2728         while (w && w->private)
2729                 w = RB_NEXT(w, node);
2730
2731         if (w)
2732                 w->private = ERR_PTR(-EINTR);
2733
2734         spin_unlock(&buf->lock);
2735         return w;
2736 }
2737
2738 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2739                                           struct keybuf *buf,
2740                                           struct bkey *end,
2741                                           keybuf_pred_fn *pred)
2742 {
2743         struct keybuf_key *ret;
2744
2745         while (1) {
2746                 ret = bch_keybuf_next(buf);
2747                 if (ret)
2748                         break;
2749
2750                 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2751                         pr_debug("scan finished\n");
2752                         break;
2753                 }
2754
2755                 bch_refill_keybuf(c, buf, end, pred);
2756         }
2757
2758         return ret;
2759 }
2760
2761 void bch_keybuf_init(struct keybuf *buf)
2762 {
2763         buf->last_scanned       = MAX_KEY;
2764         buf->keys               = RB_ROOT;
2765
2766         spin_lock_init(&buf->lock);
2767         array_allocator_init(&buf->freelist);
2768 }
2769
2770 void bch_btree_exit(void)
2771 {
2772         if (btree_io_wq)
2773                 destroy_workqueue(btree_io_wq);
2774 }
2775
2776 int __init bch_btree_init(void)
2777 {
2778         btree_io_wq = alloc_workqueue("bch_btree_io", WQ_MEM_RECLAIM, 0);
2779         if (!btree_io_wq)
2780                 return -ENOMEM;
2781
2782         return 0;
2783 }