perf tools: Update powerpc's syscall.tbl copy from the kernel sources
[linux-2.6-microblaze.git] / drivers / macintosh / windfarm_pm72.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Windfarm PowerMac thermal control.
4  * Control loops for PowerMac7,2 and 7,3
5  *
6  * Copyright (C) 2012 Benjamin Herrenschmidt, IBM Corp.
7  */
8 #include <linux/types.h>
9 #include <linux/errno.h>
10 #include <linux/kernel.h>
11 #include <linux/device.h>
12 #include <linux/platform_device.h>
13 #include <linux/reboot.h>
14 #include <asm/prom.h>
15 #include <asm/smu.h>
16
17 #include "windfarm.h"
18 #include "windfarm_pid.h"
19 #include "windfarm_mpu.h"
20
21 #define VERSION "1.0"
22
23 #undef DEBUG
24 #undef LOTSA_DEBUG
25
26 #ifdef DEBUG
27 #define DBG(args...)    printk(args)
28 #else
29 #define DBG(args...)    do { } while(0)
30 #endif
31
32 #ifdef LOTSA_DEBUG
33 #define DBG_LOTS(args...)       printk(args)
34 #else
35 #define DBG_LOTS(args...)       do { } while(0)
36 #endif
37
38 /* define this to force CPU overtemp to 60 degree, useful for testing
39  * the overtemp code
40  */
41 #undef HACKED_OVERTEMP
42
43 /* We currently only handle 2 chips */
44 #define NR_CHIPS        2
45 #define NR_CPU_FANS     3 * NR_CHIPS
46
47 /* Controls and sensors */
48 static struct wf_sensor *sens_cpu_temp[NR_CHIPS];
49 static struct wf_sensor *sens_cpu_volts[NR_CHIPS];
50 static struct wf_sensor *sens_cpu_amps[NR_CHIPS];
51 static struct wf_sensor *backside_temp;
52 static struct wf_sensor *drives_temp;
53
54 static struct wf_control *cpu_front_fans[NR_CHIPS];
55 static struct wf_control *cpu_rear_fans[NR_CHIPS];
56 static struct wf_control *cpu_pumps[NR_CHIPS];
57 static struct wf_control *backside_fan;
58 static struct wf_control *drives_fan;
59 static struct wf_control *slots_fan;
60 static struct wf_control *cpufreq_clamp;
61
62 /* We keep a temperature history for average calculation of 180s */
63 #define CPU_TEMP_HIST_SIZE      180
64
65 /* Fixed speed for slot fan */
66 #define SLOTS_FAN_DEFAULT_PWM   40
67
68 /* Scale value for CPU intake fans */
69 #define CPU_INTAKE_SCALE        0x0000f852
70
71 /* PID loop state */
72 static const struct mpu_data *cpu_mpu_data[NR_CHIPS];
73 static struct wf_cpu_pid_state cpu_pid[NR_CHIPS];
74 static bool cpu_pid_combined;
75 static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
76 static int cpu_thist_pt;
77 static s64 cpu_thist_total;
78 static s32 cpu_all_tmax = 100 << 16;
79 static struct wf_pid_state backside_pid;
80 static int backside_tick;
81 static struct wf_pid_state drives_pid;
82 static int drives_tick;
83
84 static int nr_chips;
85 static bool have_all_controls;
86 static bool have_all_sensors;
87 static bool started;
88
89 static int failure_state;
90 #define FAILURE_SENSOR          1
91 #define FAILURE_FAN             2
92 #define FAILURE_PERM            4
93 #define FAILURE_LOW_OVERTEMP    8
94 #define FAILURE_HIGH_OVERTEMP   16
95
96 /* Overtemp values */
97 #define LOW_OVER_AVERAGE        0
98 #define LOW_OVER_IMMEDIATE      (10 << 16)
99 #define LOW_OVER_CLEAR          ((-10) << 16)
100 #define HIGH_OVER_IMMEDIATE     (14 << 16)
101 #define HIGH_OVER_AVERAGE       (10 << 16)
102 #define HIGH_OVER_IMMEDIATE     (14 << 16)
103
104
105 static void cpu_max_all_fans(void)
106 {
107         int i;
108
109         /* We max all CPU fans in case of a sensor error. We also do the
110          * cpufreq clamping now, even if it's supposedly done later by the
111          * generic code anyway, we do it earlier here to react faster
112          */
113         if (cpufreq_clamp)
114                 wf_control_set_max(cpufreq_clamp);
115         for (i = 0; i < nr_chips; i++) {
116                 if (cpu_front_fans[i])
117                         wf_control_set_max(cpu_front_fans[i]);
118                 if (cpu_rear_fans[i])
119                         wf_control_set_max(cpu_rear_fans[i]);
120                 if (cpu_pumps[i])
121                         wf_control_set_max(cpu_pumps[i]);
122         }
123 }
124
125 static int cpu_check_overtemp(s32 temp)
126 {
127         int new_state = 0;
128         s32 t_avg, t_old;
129         static bool first = true;
130
131         /* First check for immediate overtemps */
132         if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
133                 new_state |= FAILURE_LOW_OVERTEMP;
134                 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
135                         printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
136                                " temperature !\n");
137         }
138         if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
139                 new_state |= FAILURE_HIGH_OVERTEMP;
140                 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
141                         printk(KERN_ERR "windfarm: Critical overtemp due to"
142                                " immediate CPU temperature !\n");
143         }
144
145         /*
146          * The first time around, initialize the array with the first
147          * temperature reading
148          */
149         if (first) {
150                 int i;
151
152                 cpu_thist_total = 0;
153                 for (i = 0; i < CPU_TEMP_HIST_SIZE; i++) {
154                         cpu_thist[i] = temp;
155                         cpu_thist_total += temp;
156                 }
157                 first = false;
158         }
159
160         /*
161          * We calculate a history of max temperatures and use that for the
162          * overtemp management
163          */
164         t_old = cpu_thist[cpu_thist_pt];
165         cpu_thist[cpu_thist_pt] = temp;
166         cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
167         cpu_thist_total -= t_old;
168         cpu_thist_total += temp;
169         t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
170
171         DBG_LOTS("  t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
172                  FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
173
174         /* Now check for average overtemps */
175         if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
176                 new_state |= FAILURE_LOW_OVERTEMP;
177                 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
178                         printk(KERN_ERR "windfarm: Overtemp due to average CPU"
179                                " temperature !\n");
180         }
181         if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
182                 new_state |= FAILURE_HIGH_OVERTEMP;
183                 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
184                         printk(KERN_ERR "windfarm: Critical overtemp due to"
185                                " average CPU temperature !\n");
186         }
187
188         /* Now handle overtemp conditions. We don't currently use the windfarm
189          * overtemp handling core as it's not fully suited to the needs of those
190          * new machine. This will be fixed later.
191          */
192         if (new_state) {
193                 /* High overtemp -> immediate shutdown */
194                 if (new_state & FAILURE_HIGH_OVERTEMP)
195                         machine_power_off();
196                 if ((failure_state & new_state) != new_state)
197                         cpu_max_all_fans();
198                 failure_state |= new_state;
199         } else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
200                    (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
201                 printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
202                 failure_state &= ~FAILURE_LOW_OVERTEMP;
203         }
204
205         return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
206 }
207
208 static int read_one_cpu_vals(int cpu, s32 *temp, s32 *power)
209 {
210         s32 dtemp, volts, amps;
211         int rc;
212
213         /* Get diode temperature */
214         rc = wf_sensor_get(sens_cpu_temp[cpu], &dtemp);
215         if (rc) {
216                 DBG("  CPU%d: temp reading error !\n", cpu);
217                 return -EIO;
218         }
219         DBG_LOTS("  CPU%d: temp   = %d.%03d\n", cpu, FIX32TOPRINT((dtemp)));
220         *temp = dtemp;
221
222         /* Get voltage */
223         rc = wf_sensor_get(sens_cpu_volts[cpu], &volts);
224         if (rc) {
225                 DBG("  CPU%d, volts reading error !\n", cpu);
226                 return -EIO;
227         }
228         DBG_LOTS("  CPU%d: volts  = %d.%03d\n", cpu, FIX32TOPRINT((volts)));
229
230         /* Get current */
231         rc = wf_sensor_get(sens_cpu_amps[cpu], &amps);
232         if (rc) {
233                 DBG("  CPU%d, current reading error !\n", cpu);
234                 return -EIO;
235         }
236         DBG_LOTS("  CPU%d: amps   = %d.%03d\n", cpu, FIX32TOPRINT((amps)));
237
238         /* Calculate power */
239
240         /* Scale voltage and current raw sensor values according to fixed scales
241          * obtained in Darwin and calculate power from I and V
242          */
243         *power = (((u64)volts) * ((u64)amps)) >> 16;
244
245         DBG_LOTS("  CPU%d: power  = %d.%03d\n", cpu, FIX32TOPRINT((*power)));
246
247         return 0;
248
249 }
250
251 static void cpu_fans_tick_split(void)
252 {
253         int err, cpu;
254         s32 intake, temp, power, t_max = 0;
255
256         DBG_LOTS("* cpu fans_tick_split()\n");
257
258         for (cpu = 0; cpu < nr_chips; ++cpu) {
259                 struct wf_cpu_pid_state *sp = &cpu_pid[cpu];
260
261                 /* Read current speed */
262                 wf_control_get(cpu_rear_fans[cpu], &sp->target);
263
264                 DBG_LOTS("  CPU%d: cur_target = %d RPM\n", cpu, sp->target);
265
266                 err = read_one_cpu_vals(cpu, &temp, &power);
267                 if (err) {
268                         failure_state |= FAILURE_SENSOR;
269                         cpu_max_all_fans();
270                         return;
271                 }
272
273                 /* Keep track of highest temp */
274                 t_max = max(t_max, temp);
275
276                 /* Handle possible overtemps */
277                 if (cpu_check_overtemp(t_max))
278                         return;
279
280                 /* Run PID */
281                 wf_cpu_pid_run(sp, power, temp);
282
283                 DBG_LOTS("  CPU%d: target = %d RPM\n", cpu, sp->target);
284
285                 /* Apply result directly to exhaust fan */
286                 err = wf_control_set(cpu_rear_fans[cpu], sp->target);
287                 if (err) {
288                         pr_warn("wf_pm72: Fan %s reports error %d\n",
289                                 cpu_rear_fans[cpu]->name, err);
290                         failure_state |= FAILURE_FAN;
291                         break;
292                 }
293
294                 /* Scale result for intake fan */
295                 intake = (sp->target * CPU_INTAKE_SCALE) >> 16;
296                 DBG_LOTS("  CPU%d: intake = %d RPM\n", cpu, intake);
297                 err = wf_control_set(cpu_front_fans[cpu], intake);
298                 if (err) {
299                         pr_warn("wf_pm72: Fan %s reports error %d\n",
300                                 cpu_front_fans[cpu]->name, err);
301                         failure_state |= FAILURE_FAN;
302                         break;
303                 }
304         }
305 }
306
307 static void cpu_fans_tick_combined(void)
308 {
309         s32 temp0, power0, temp1, power1, t_max = 0;
310         s32 temp, power, intake, pump;
311         struct wf_control *pump0, *pump1;
312         struct wf_cpu_pid_state *sp = &cpu_pid[0];
313         int err, cpu;
314
315         DBG_LOTS("* cpu fans_tick_combined()\n");
316
317         /* Read current speed from cpu 0 */
318         wf_control_get(cpu_rear_fans[0], &sp->target);
319
320         DBG_LOTS("  CPUs: cur_target = %d RPM\n", sp->target);
321
322         /* Read values for both CPUs */
323         err = read_one_cpu_vals(0, &temp0, &power0);
324         if (err) {
325                 failure_state |= FAILURE_SENSOR;
326                 cpu_max_all_fans();
327                 return;
328         }
329         err = read_one_cpu_vals(1, &temp1, &power1);
330         if (err) {
331                 failure_state |= FAILURE_SENSOR;
332                 cpu_max_all_fans();
333                 return;
334         }
335
336         /* Keep track of highest temp */
337         t_max = max(t_max, max(temp0, temp1));
338
339         /* Handle possible overtemps */
340         if (cpu_check_overtemp(t_max))
341                 return;
342
343         /* Use the max temp & power of both */
344         temp = max(temp0, temp1);
345         power = max(power0, power1);
346
347         /* Run PID */
348         wf_cpu_pid_run(sp, power, temp);
349
350         /* Scale result for intake fan */
351         intake = (sp->target * CPU_INTAKE_SCALE) >> 16;
352
353         /* Same deal with pump speed */
354         pump0 = cpu_pumps[0];
355         pump1 = cpu_pumps[1];
356         if (!pump0) {
357                 pump0 = pump1;
358                 pump1 = NULL;
359         }
360         pump = (sp->target * wf_control_get_max(pump0)) /
361                 cpu_mpu_data[0]->rmaxn_exhaust_fan;
362
363         DBG_LOTS("  CPUs: target = %d RPM\n", sp->target);
364         DBG_LOTS("  CPUs: intake = %d RPM\n", intake);
365         DBG_LOTS("  CPUs: pump   = %d RPM\n", pump);
366
367         for (cpu = 0; cpu < nr_chips; cpu++) {
368                 err = wf_control_set(cpu_rear_fans[cpu], sp->target);
369                 if (err) {
370                         pr_warn("wf_pm72: Fan %s reports error %d\n",
371                                 cpu_rear_fans[cpu]->name, err);
372                         failure_state |= FAILURE_FAN;
373                 }
374                 err = wf_control_set(cpu_front_fans[cpu], intake);
375                 if (err) {
376                         pr_warn("wf_pm72: Fan %s reports error %d\n",
377                                 cpu_front_fans[cpu]->name, err);
378                         failure_state |= FAILURE_FAN;
379                 }
380                 err = 0;
381                 if (cpu_pumps[cpu])
382                         err = wf_control_set(cpu_pumps[cpu], pump);
383                 if (err) {
384                         pr_warn("wf_pm72: Pump %s reports error %d\n",
385                                 cpu_pumps[cpu]->name, err);
386                         failure_state |= FAILURE_FAN;
387                 }
388         }
389 }
390
391 /* Implementation... */
392 static int cpu_setup_pid(int cpu)
393 {
394         struct wf_cpu_pid_param pid;
395         const struct mpu_data *mpu = cpu_mpu_data[cpu];
396         s32 tmax, ttarget, ptarget;
397         int fmin, fmax, hsize;
398
399         /* Get PID params from the appropriate MPU EEPROM */
400         tmax = mpu->tmax << 16;
401         ttarget = mpu->ttarget << 16;
402         ptarget = ((s32)(mpu->pmaxh - mpu->padjmax)) << 16;
403
404         DBG("wf_72: CPU%d ttarget = %d.%03d, tmax = %d.%03d\n",
405             cpu, FIX32TOPRINT(ttarget), FIX32TOPRINT(tmax));
406
407         /* We keep a global tmax for overtemp calculations */
408         if (tmax < cpu_all_tmax)
409                 cpu_all_tmax = tmax;
410
411         /* Set PID min/max by using the rear fan min/max */
412         fmin = wf_control_get_min(cpu_rear_fans[cpu]);
413         fmax = wf_control_get_max(cpu_rear_fans[cpu]);
414         DBG("wf_72: CPU%d max RPM range = [%d..%d]\n", cpu, fmin, fmax);
415
416         /* History size */
417         hsize = min_t(int, mpu->tguardband, WF_PID_MAX_HISTORY);
418         DBG("wf_72: CPU%d history size = %d\n", cpu, hsize);
419
420         /* Initialize PID loop */
421         pid.interval    = 1;    /* seconds */
422         pid.history_len = hsize;
423         pid.gd          = mpu->pid_gd;
424         pid.gp          = mpu->pid_gp;
425         pid.gr          = mpu->pid_gr;
426         pid.tmax        = tmax;
427         pid.ttarget     = ttarget;
428         pid.pmaxadj     = ptarget;
429         pid.min         = fmin;
430         pid.max         = fmax;
431
432         wf_cpu_pid_init(&cpu_pid[cpu], &pid);
433         cpu_pid[cpu].target = 1000;
434
435         return 0;
436 }
437
438 /* Backside/U3 fan */
439 static struct wf_pid_param backside_u3_param = {
440         .interval       = 5,
441         .history_len    = 2,
442         .gd             = 40 << 20,
443         .gp             = 5 << 20,
444         .gr             = 0,
445         .itarget        = 65 << 16,
446         .additive       = 1,
447         .min            = 20,
448         .max            = 100,
449 };
450
451 static struct wf_pid_param backside_u3h_param = {
452         .interval       = 5,
453         .history_len    = 2,
454         .gd             = 20 << 20,
455         .gp             = 5 << 20,
456         .gr             = 0,
457         .itarget        = 75 << 16,
458         .additive       = 1,
459         .min            = 20,
460         .max            = 100,
461 };
462
463 static void backside_fan_tick(void)
464 {
465         s32 temp;
466         int speed;
467         int err;
468
469         if (!backside_fan || !backside_temp || !backside_tick)
470                 return;
471         if (--backside_tick > 0)
472                 return;
473         backside_tick = backside_pid.param.interval;
474
475         DBG_LOTS("* backside fans tick\n");
476
477         /* Update fan speed from actual fans */
478         err = wf_control_get(backside_fan, &speed);
479         if (!err)
480                 backside_pid.target = speed;
481
482         err = wf_sensor_get(backside_temp, &temp);
483         if (err) {
484                 printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n",
485                        err);
486                 failure_state |= FAILURE_SENSOR;
487                 wf_control_set_max(backside_fan);
488                 return;
489         }
490         speed = wf_pid_run(&backside_pid, temp);
491
492         DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
493                  FIX32TOPRINT(temp), speed);
494
495         err = wf_control_set(backside_fan, speed);
496         if (err) {
497                 printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
498                 failure_state |= FAILURE_FAN;
499         }
500 }
501
502 static void backside_setup_pid(void)
503 {
504         /* first time initialize things */
505         s32 fmin = wf_control_get_min(backside_fan);
506         s32 fmax = wf_control_get_max(backside_fan);
507         struct wf_pid_param param;
508         struct device_node *u3;
509         int u3h = 1; /* conservative by default */
510
511         u3 = of_find_node_by_path("/u3@0,f8000000");
512         if (u3 != NULL) {
513                 const u32 *vers = of_get_property(u3, "device-rev", NULL);
514                 if (vers)
515                         if (((*vers) & 0x3f) < 0x34)
516                                 u3h = 0;
517                 of_node_put(u3);
518         }
519
520         param = u3h ? backside_u3h_param : backside_u3_param;
521
522         param.min = max(param.min, fmin);
523         param.max = min(param.max, fmax);
524         wf_pid_init(&backside_pid, &param);
525         backside_tick = 1;
526
527         pr_info("wf_pm72: Backside control loop started.\n");
528 }
529
530 /* Drive bay fan */
531 static const struct wf_pid_param drives_param = {
532         .interval       = 5,
533         .history_len    = 2,
534         .gd             = 30 << 20,
535         .gp             = 5 << 20,
536         .gr             = 0,
537         .itarget        = 40 << 16,
538         .additive       = 1,
539         .min            = 300,
540         .max            = 4000,
541 };
542
543 static void drives_fan_tick(void)
544 {
545         s32 temp;
546         int speed;
547         int err;
548
549         if (!drives_fan || !drives_temp || !drives_tick)
550                 return;
551         if (--drives_tick > 0)
552                 return;
553         drives_tick = drives_pid.param.interval;
554
555         DBG_LOTS("* drives fans tick\n");
556
557         /* Update fan speed from actual fans */
558         err = wf_control_get(drives_fan, &speed);
559         if (!err)
560                 drives_pid.target = speed;
561
562         err = wf_sensor_get(drives_temp, &temp);
563         if (err) {
564                 pr_warn("wf_pm72: drive bay temp sensor error %d\n", err);
565                 failure_state |= FAILURE_SENSOR;
566                 wf_control_set_max(drives_fan);
567                 return;
568         }
569         speed = wf_pid_run(&drives_pid, temp);
570
571         DBG_LOTS("drives PID temp=%d.%.3d speed=%d\n",
572                  FIX32TOPRINT(temp), speed);
573
574         err = wf_control_set(drives_fan, speed);
575         if (err) {
576                 printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err);
577                 failure_state |= FAILURE_FAN;
578         }
579 }
580
581 static void drives_setup_pid(void)
582 {
583         /* first time initialize things */
584         s32 fmin = wf_control_get_min(drives_fan);
585         s32 fmax = wf_control_get_max(drives_fan);
586         struct wf_pid_param param = drives_param;
587
588         param.min = max(param.min, fmin);
589         param.max = min(param.max, fmax);
590         wf_pid_init(&drives_pid, &param);
591         drives_tick = 1;
592
593         pr_info("wf_pm72: Drive bay control loop started.\n");
594 }
595
596 static void set_fail_state(void)
597 {
598         cpu_max_all_fans();
599
600         if (backside_fan)
601                 wf_control_set_max(backside_fan);
602         if (slots_fan)
603                 wf_control_set_max(slots_fan);
604         if (drives_fan)
605                 wf_control_set_max(drives_fan);
606 }
607
608 static void pm72_tick(void)
609 {
610         int i, last_failure;
611
612         if (!started) {
613                 started = true;
614                 printk(KERN_INFO "windfarm: CPUs control loops started.\n");
615                 for (i = 0; i < nr_chips; ++i) {
616                         if (cpu_setup_pid(i) < 0) {
617                                 failure_state = FAILURE_PERM;
618                                 set_fail_state();
619                                 break;
620                         }
621                 }
622                 DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
623
624                 backside_setup_pid();
625                 drives_setup_pid();
626
627                 /*
628                  * We don't have the right stuff to drive the PCI fan
629                  * so we fix it to a default value
630                  */
631                 wf_control_set(slots_fan, SLOTS_FAN_DEFAULT_PWM);
632
633 #ifdef HACKED_OVERTEMP
634                 cpu_all_tmax = 60 << 16;
635 #endif
636         }
637
638         /* Permanent failure, bail out */
639         if (failure_state & FAILURE_PERM)
640                 return;
641
642         /*
643          * Clear all failure bits except low overtemp which will be eventually
644          * cleared by the control loop itself
645          */
646         last_failure = failure_state;
647         failure_state &= FAILURE_LOW_OVERTEMP;
648         if (cpu_pid_combined)
649                 cpu_fans_tick_combined();
650         else
651                 cpu_fans_tick_split();
652         backside_fan_tick();
653         drives_fan_tick();
654
655         DBG_LOTS("  last_failure: 0x%x, failure_state: %x\n",
656                  last_failure, failure_state);
657
658         /* Check for failures. Any failure causes cpufreq clamping */
659         if (failure_state && last_failure == 0 && cpufreq_clamp)
660                 wf_control_set_max(cpufreq_clamp);
661         if (failure_state == 0 && last_failure && cpufreq_clamp)
662                 wf_control_set_min(cpufreq_clamp);
663
664         /* That's it for now, we might want to deal with other failures
665          * differently in the future though
666          */
667 }
668
669 static void pm72_new_control(struct wf_control *ct)
670 {
671         bool all_controls;
672         bool had_pump = cpu_pumps[0] || cpu_pumps[1];
673
674         if (!strcmp(ct->name, "cpu-front-fan-0"))
675                 cpu_front_fans[0] = ct;
676         else if (!strcmp(ct->name, "cpu-front-fan-1"))
677                 cpu_front_fans[1] = ct;
678         else if (!strcmp(ct->name, "cpu-rear-fan-0"))
679                 cpu_rear_fans[0] = ct;
680         else if (!strcmp(ct->name, "cpu-rear-fan-1"))
681                 cpu_rear_fans[1] = ct;
682         else if (!strcmp(ct->name, "cpu-pump-0"))
683                 cpu_pumps[0] = ct;
684         else if (!strcmp(ct->name, "cpu-pump-1"))
685                 cpu_pumps[1] = ct;
686         else if (!strcmp(ct->name, "backside-fan"))
687                 backside_fan = ct;
688         else if (!strcmp(ct->name, "slots-fan"))
689                 slots_fan = ct;
690         else if (!strcmp(ct->name, "drive-bay-fan"))
691                 drives_fan = ct;
692         else if (!strcmp(ct->name, "cpufreq-clamp"))
693                 cpufreq_clamp = ct;
694
695         all_controls =
696                 cpu_front_fans[0] &&
697                 cpu_rear_fans[0] &&
698                 backside_fan &&
699                 slots_fan &&
700                 drives_fan;
701         if (nr_chips > 1)
702                 all_controls &=
703                         cpu_front_fans[1] &&
704                         cpu_rear_fans[1];
705         have_all_controls = all_controls;
706
707         if ((cpu_pumps[0] || cpu_pumps[1]) && !had_pump) {
708                 pr_info("wf_pm72: Liquid cooling pump(s) detected,"
709                         " using new algorithm !\n");
710                 cpu_pid_combined = true;
711         }
712 }
713
714
715 static void pm72_new_sensor(struct wf_sensor *sr)
716 {
717         bool all_sensors;
718
719         if (!strcmp(sr->name, "cpu-diode-temp-0"))
720                 sens_cpu_temp[0] = sr;
721         else if (!strcmp(sr->name, "cpu-diode-temp-1"))
722                 sens_cpu_temp[1] = sr;
723         else if (!strcmp(sr->name, "cpu-voltage-0"))
724                 sens_cpu_volts[0] = sr;
725         else if (!strcmp(sr->name, "cpu-voltage-1"))
726                 sens_cpu_volts[1] = sr;
727         else if (!strcmp(sr->name, "cpu-current-0"))
728                 sens_cpu_amps[0] = sr;
729         else if (!strcmp(sr->name, "cpu-current-1"))
730                 sens_cpu_amps[1] = sr;
731         else if (!strcmp(sr->name, "backside-temp"))
732                 backside_temp = sr;
733         else if (!strcmp(sr->name, "hd-temp"))
734                 drives_temp = sr;
735
736         all_sensors =
737                 sens_cpu_temp[0] &&
738                 sens_cpu_volts[0] &&
739                 sens_cpu_amps[0] &&
740                 backside_temp &&
741                 drives_temp;
742         if (nr_chips > 1)
743                 all_sensors &=
744                         sens_cpu_temp[1] &&
745                         sens_cpu_volts[1] &&
746                         sens_cpu_amps[1];
747
748         have_all_sensors = all_sensors;
749 }
750
751 static int pm72_wf_notify(struct notifier_block *self,
752                           unsigned long event, void *data)
753 {
754         switch (event) {
755         case WF_EVENT_NEW_SENSOR:
756                 pm72_new_sensor(data);
757                 break;
758         case WF_EVENT_NEW_CONTROL:
759                 pm72_new_control(data);
760                 break;
761         case WF_EVENT_TICK:
762                 if (have_all_controls && have_all_sensors)
763                         pm72_tick();
764         }
765         return 0;
766 }
767
768 static struct notifier_block pm72_events = {
769         .notifier_call = pm72_wf_notify,
770 };
771
772 static int wf_pm72_probe(struct platform_device *dev)
773 {
774         wf_register_client(&pm72_events);
775         return 0;
776 }
777
778 static int wf_pm72_remove(struct platform_device *dev)
779 {
780         wf_unregister_client(&pm72_events);
781
782         /* should release all sensors and controls */
783         return 0;
784 }
785
786 static struct platform_driver wf_pm72_driver = {
787         .probe  = wf_pm72_probe,
788         .remove = wf_pm72_remove,
789         .driver = {
790                 .name = "windfarm",
791         },
792 };
793
794 static int __init wf_pm72_init(void)
795 {
796         struct device_node *cpu;
797         int i;
798
799         if (!of_machine_is_compatible("PowerMac7,2") &&
800             !of_machine_is_compatible("PowerMac7,3"))
801                 return -ENODEV;
802
803         /* Count the number of CPU cores */
804         nr_chips = 0;
805         for_each_node_by_type(cpu, "cpu")
806                 ++nr_chips;
807         if (nr_chips > NR_CHIPS)
808                 nr_chips = NR_CHIPS;
809
810         pr_info("windfarm: Initializing for desktop G5 with %d chips\n",
811                 nr_chips);
812
813         /* Get MPU data for each CPU */
814         for (i = 0; i < nr_chips; i++) {
815                 cpu_mpu_data[i] = wf_get_mpu(i);
816                 if (!cpu_mpu_data[i]) {
817                         pr_err("wf_pm72: Failed to find MPU data for CPU %d\n", i);
818                         return -ENXIO;
819                 }
820         }
821
822 #ifdef MODULE
823         request_module("windfarm_fcu_controls");
824         request_module("windfarm_lm75_sensor");
825         request_module("windfarm_ad7417_sensor");
826         request_module("windfarm_max6690_sensor");
827         request_module("windfarm_cpufreq_clamp");
828 #endif /* MODULE */
829
830         platform_driver_register(&wf_pm72_driver);
831         return 0;
832 }
833
834 static void __exit wf_pm72_exit(void)
835 {
836         platform_driver_unregister(&wf_pm72_driver);
837 }
838
839 module_init(wf_pm72_init);
840 module_exit(wf_pm72_exit);
841
842 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
843 MODULE_DESCRIPTION("Thermal control for AGP PowerMac G5s");
844 MODULE_LICENSE("GPL");
845 MODULE_ALIAS("platform:windfarm");