Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-2.6-microblaze.git] / drivers / macintosh / windfarm_pm112.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Windfarm PowerMac thermal control.
4  * Control loops for machines with SMU and PPC970MP processors.
5  *
6  * Copyright (C) 2005 Paul Mackerras, IBM Corp. <paulus@samba.org>
7  * Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corp.
8  */
9 #include <linux/types.h>
10 #include <linux/errno.h>
11 #include <linux/kernel.h>
12 #include <linux/device.h>
13 #include <linux/platform_device.h>
14 #include <linux/reboot.h>
15 #include <asm/prom.h>
16 #include <asm/smu.h>
17
18 #include "windfarm.h"
19 #include "windfarm_pid.h"
20
21 #define VERSION "0.2"
22
23 #define DEBUG
24 #undef LOTSA_DEBUG
25
26 #ifdef DEBUG
27 #define DBG(args...)    printk(args)
28 #else
29 #define DBG(args...)    do { } while(0)
30 #endif
31
32 #ifdef LOTSA_DEBUG
33 #define DBG_LOTS(args...)       printk(args)
34 #else
35 #define DBG_LOTS(args...)       do { } while(0)
36 #endif
37
38 /* define this to force CPU overtemp to 60 degree, useful for testing
39  * the overtemp code
40  */
41 #undef HACKED_OVERTEMP
42
43 /* We currently only handle 2 chips, 4 cores... */
44 #define NR_CHIPS        2
45 #define NR_CORES        4
46 #define NR_CPU_FANS     3 * NR_CHIPS
47
48 /* Controls and sensors */
49 static struct wf_sensor *sens_cpu_temp[NR_CORES];
50 static struct wf_sensor *sens_cpu_power[NR_CORES];
51 static struct wf_sensor *hd_temp;
52 static struct wf_sensor *slots_power;
53 static struct wf_sensor *u4_temp;
54
55 static struct wf_control *cpu_fans[NR_CPU_FANS];
56 static char *cpu_fan_names[NR_CPU_FANS] = {
57         "cpu-rear-fan-0",
58         "cpu-rear-fan-1",
59         "cpu-front-fan-0",
60         "cpu-front-fan-1",
61         "cpu-pump-0",
62         "cpu-pump-1",
63 };
64 static struct wf_control *cpufreq_clamp;
65
66 /* Second pump isn't required (and isn't actually present) */
67 #define CPU_FANS_REQD           (NR_CPU_FANS - 2)
68 #define FIRST_PUMP              4
69 #define LAST_PUMP               5
70
71 /* We keep a temperature history for average calculation of 180s */
72 #define CPU_TEMP_HIST_SIZE      180
73
74 /* Scale factor for fan speed, *100 */
75 static int cpu_fan_scale[NR_CPU_FANS] = {
76         100,
77         100,
78         97,             /* inlet fans run at 97% of exhaust fan */
79         97,
80         100,            /* updated later */
81         100,            /* updated later */
82 };
83
84 static struct wf_control *backside_fan;
85 static struct wf_control *slots_fan;
86 static struct wf_control *drive_bay_fan;
87
88 /* PID loop state */
89 static struct wf_cpu_pid_state cpu_pid[NR_CORES];
90 static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
91 static int cpu_thist_pt;
92 static s64 cpu_thist_total;
93 static s32 cpu_all_tmax = 100 << 16;
94 static int cpu_last_target;
95 static struct wf_pid_state backside_pid;
96 static int backside_tick;
97 static struct wf_pid_state slots_pid;
98 static bool slots_started;
99 static struct wf_pid_state drive_bay_pid;
100 static int drive_bay_tick;
101
102 static int nr_cores;
103 static int have_all_controls;
104 static int have_all_sensors;
105 static bool started;
106
107 static int failure_state;
108 #define FAILURE_SENSOR          1
109 #define FAILURE_FAN             2
110 #define FAILURE_PERM            4
111 #define FAILURE_LOW_OVERTEMP    8
112 #define FAILURE_HIGH_OVERTEMP   16
113
114 /* Overtemp values */
115 #define LOW_OVER_AVERAGE        0
116 #define LOW_OVER_IMMEDIATE      (10 << 16)
117 #define LOW_OVER_CLEAR          ((-10) << 16)
118 #define HIGH_OVER_IMMEDIATE     (14 << 16)
119 #define HIGH_OVER_AVERAGE       (10 << 16)
120 #define HIGH_OVER_IMMEDIATE     (14 << 16)
121
122
123 /* Implementation... */
124 static int create_cpu_loop(int cpu)
125 {
126         int chip = cpu / 2;
127         int core = cpu & 1;
128         struct smu_sdbp_header *hdr;
129         struct smu_sdbp_cpupiddata *piddata;
130         struct wf_cpu_pid_param pid;
131         struct wf_control *main_fan = cpu_fans[0];
132         s32 tmax;
133         int fmin;
134
135         /* Get FVT params to get Tmax; if not found, assume default */
136         hdr = smu_sat_get_sdb_partition(chip, 0xC4 + core, NULL);
137         if (hdr) {
138                 struct smu_sdbp_fvt *fvt = (struct smu_sdbp_fvt *)&hdr[1];
139                 tmax = fvt->maxtemp << 16;
140         } else
141                 tmax = 95 << 16;        /* default to 95 degrees C */
142
143         /* We keep a global tmax for overtemp calculations */
144         if (tmax < cpu_all_tmax)
145                 cpu_all_tmax = tmax;
146
147         kfree(hdr);
148
149         /* Get PID params from the appropriate SAT */
150         hdr = smu_sat_get_sdb_partition(chip, 0xC8 + core, NULL);
151         if (hdr == NULL) {
152                 printk(KERN_WARNING"windfarm: can't get CPU PID fan config\n");
153                 return -EINVAL;
154         }
155         piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
156
157         /*
158          * Darwin has a minimum fan speed of 1000 rpm for the 4-way and
159          * 515 for the 2-way.  That appears to be overkill, so for now,
160          * impose a minimum of 750 or 515.
161          */
162         fmin = (nr_cores > 2) ? 750 : 515;
163
164         /* Initialize PID loop */
165         pid.interval = 1;       /* seconds */
166         pid.history_len = piddata->history_len;
167         pid.gd = piddata->gd;
168         pid.gp = piddata->gp;
169         pid.gr = piddata->gr / piddata->history_len;
170         pid.pmaxadj = (piddata->max_power << 16) - (piddata->power_adj << 8);
171         pid.ttarget = tmax - (piddata->target_temp_delta << 16);
172         pid.tmax = tmax;
173         pid.min = main_fan->ops->get_min(main_fan);
174         pid.max = main_fan->ops->get_max(main_fan);
175         if (pid.min < fmin)
176                 pid.min = fmin;
177
178         wf_cpu_pid_init(&cpu_pid[cpu], &pid);
179
180         kfree(hdr);
181
182         return 0;
183 }
184
185 static void cpu_max_all_fans(void)
186 {
187         int i;
188
189         /* We max all CPU fans in case of a sensor error. We also do the
190          * cpufreq clamping now, even if it's supposedly done later by the
191          * generic code anyway, we do it earlier here to react faster
192          */
193         if (cpufreq_clamp)
194                 wf_control_set_max(cpufreq_clamp);
195         for (i = 0; i < NR_CPU_FANS; ++i)
196                 if (cpu_fans[i])
197                         wf_control_set_max(cpu_fans[i]);
198 }
199
200 static int cpu_check_overtemp(s32 temp)
201 {
202         int new_state = 0;
203         s32 t_avg, t_old;
204
205         /* First check for immediate overtemps */
206         if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
207                 new_state |= FAILURE_LOW_OVERTEMP;
208                 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
209                         printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
210                                " temperature !\n");
211         }
212         if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
213                 new_state |= FAILURE_HIGH_OVERTEMP;
214                 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
215                         printk(KERN_ERR "windfarm: Critical overtemp due to"
216                                " immediate CPU temperature !\n");
217         }
218
219         /* We calculate a history of max temperatures and use that for the
220          * overtemp management
221          */
222         t_old = cpu_thist[cpu_thist_pt];
223         cpu_thist[cpu_thist_pt] = temp;
224         cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
225         cpu_thist_total -= t_old;
226         cpu_thist_total += temp;
227         t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
228
229         DBG_LOTS("t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
230                  FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
231
232         /* Now check for average overtemps */
233         if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
234                 new_state |= FAILURE_LOW_OVERTEMP;
235                 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
236                         printk(KERN_ERR "windfarm: Overtemp due to average CPU"
237                                " temperature !\n");
238         }
239         if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
240                 new_state |= FAILURE_HIGH_OVERTEMP;
241                 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
242                         printk(KERN_ERR "windfarm: Critical overtemp due to"
243                                " average CPU temperature !\n");
244         }
245
246         /* Now handle overtemp conditions. We don't currently use the windfarm
247          * overtemp handling core as it's not fully suited to the needs of those
248          * new machine. This will be fixed later.
249          */
250         if (new_state) {
251                 /* High overtemp -> immediate shutdown */
252                 if (new_state & FAILURE_HIGH_OVERTEMP)
253                         machine_power_off();
254                 if ((failure_state & new_state) != new_state)
255                         cpu_max_all_fans();
256                 failure_state |= new_state;
257         } else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
258                    (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
259                 printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
260                 failure_state &= ~FAILURE_LOW_OVERTEMP;
261         }
262
263         return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
264 }
265
266 static void cpu_fans_tick(void)
267 {
268         int err, cpu;
269         s32 greatest_delta = 0;
270         s32 temp, power, t_max = 0;
271         int i, t, target = 0;
272         struct wf_sensor *sr;
273         struct wf_control *ct;
274         struct wf_cpu_pid_state *sp;
275
276         DBG_LOTS(KERN_DEBUG);
277         for (cpu = 0; cpu < nr_cores; ++cpu) {
278                 /* Get CPU core temperature */
279                 sr = sens_cpu_temp[cpu];
280                 err = sr->ops->get_value(sr, &temp);
281                 if (err) {
282                         DBG("\n");
283                         printk(KERN_WARNING "windfarm: CPU %d temperature "
284                                "sensor error %d\n", cpu, err);
285                         failure_state |= FAILURE_SENSOR;
286                         cpu_max_all_fans();
287                         return;
288                 }
289
290                 /* Keep track of highest temp */
291                 t_max = max(t_max, temp);
292
293                 /* Get CPU power */
294                 sr = sens_cpu_power[cpu];
295                 err = sr->ops->get_value(sr, &power);
296                 if (err) {
297                         DBG("\n");
298                         printk(KERN_WARNING "windfarm: CPU %d power "
299                                "sensor error %d\n", cpu, err);
300                         failure_state |= FAILURE_SENSOR;
301                         cpu_max_all_fans();
302                         return;
303                 }
304
305                 /* Run PID */
306                 sp = &cpu_pid[cpu];
307                 t = wf_cpu_pid_run(sp, power, temp);
308
309                 if (cpu == 0 || sp->last_delta > greatest_delta) {
310                         greatest_delta = sp->last_delta;
311                         target = t;
312                 }
313                 DBG_LOTS("[%d] P=%d.%.3d T=%d.%.3d ",
314                     cpu, FIX32TOPRINT(power), FIX32TOPRINT(temp));
315         }
316         DBG_LOTS("fans = %d, t_max = %d.%03d\n", target, FIX32TOPRINT(t_max));
317
318         /* Darwin limits decrease to 20 per iteration */
319         if (target < (cpu_last_target - 20))
320                 target = cpu_last_target - 20;
321         cpu_last_target = target;
322         for (cpu = 0; cpu < nr_cores; ++cpu)
323                 cpu_pid[cpu].target = target;
324
325         /* Handle possible overtemps */
326         if (cpu_check_overtemp(t_max))
327                 return;
328
329         /* Set fans */
330         for (i = 0; i < NR_CPU_FANS; ++i) {
331                 ct = cpu_fans[i];
332                 if (ct == NULL)
333                         continue;
334                 err = ct->ops->set_value(ct, target * cpu_fan_scale[i] / 100);
335                 if (err) {
336                         printk(KERN_WARNING "windfarm: fan %s reports "
337                                "error %d\n", ct->name, err);
338                         failure_state |= FAILURE_FAN;
339                         break;
340                 }
341         }
342 }
343
344 /* Backside/U4 fan */
345 static struct wf_pid_param backside_param = {
346         .interval       = 5,
347         .history_len    = 2,
348         .gd             = 48 << 20,
349         .gp             = 5 << 20,
350         .gr             = 0,
351         .itarget        = 64 << 16,
352         .additive       = 1,
353 };
354
355 static void backside_fan_tick(void)
356 {
357         s32 temp;
358         int speed;
359         int err;
360
361         if (!backside_fan || !u4_temp)
362                 return;
363         if (!backside_tick) {
364                 /* first time; initialize things */
365                 printk(KERN_INFO "windfarm: Backside control loop started.\n");
366                 backside_param.min = backside_fan->ops->get_min(backside_fan);
367                 backside_param.max = backside_fan->ops->get_max(backside_fan);
368                 wf_pid_init(&backside_pid, &backside_param);
369                 backside_tick = 1;
370         }
371         if (--backside_tick > 0)
372                 return;
373         backside_tick = backside_pid.param.interval;
374
375         err = u4_temp->ops->get_value(u4_temp, &temp);
376         if (err) {
377                 printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n",
378                        err);
379                 failure_state |= FAILURE_SENSOR;
380                 wf_control_set_max(backside_fan);
381                 return;
382         }
383         speed = wf_pid_run(&backside_pid, temp);
384         DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
385                  FIX32TOPRINT(temp), speed);
386
387         err = backside_fan->ops->set_value(backside_fan, speed);
388         if (err) {
389                 printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
390                 failure_state |= FAILURE_FAN;
391         }
392 }
393
394 /* Drive bay fan */
395 static struct wf_pid_param drive_bay_prm = {
396         .interval       = 5,
397         .history_len    = 2,
398         .gd             = 30 << 20,
399         .gp             = 5 << 20,
400         .gr             = 0,
401         .itarget        = 40 << 16,
402         .additive       = 1,
403 };
404
405 static void drive_bay_fan_tick(void)
406 {
407         s32 temp;
408         int speed;
409         int err;
410
411         if (!drive_bay_fan || !hd_temp)
412                 return;
413         if (!drive_bay_tick) {
414                 /* first time; initialize things */
415                 printk(KERN_INFO "windfarm: Drive bay control loop started.\n");
416                 drive_bay_prm.min = drive_bay_fan->ops->get_min(drive_bay_fan);
417                 drive_bay_prm.max = drive_bay_fan->ops->get_max(drive_bay_fan);
418                 wf_pid_init(&drive_bay_pid, &drive_bay_prm);
419                 drive_bay_tick = 1;
420         }
421         if (--drive_bay_tick > 0)
422                 return;
423         drive_bay_tick = drive_bay_pid.param.interval;
424
425         err = hd_temp->ops->get_value(hd_temp, &temp);
426         if (err) {
427                 printk(KERN_WARNING "windfarm: drive bay temp sensor "
428                        "error %d\n", err);
429                 failure_state |= FAILURE_SENSOR;
430                 wf_control_set_max(drive_bay_fan);
431                 return;
432         }
433         speed = wf_pid_run(&drive_bay_pid, temp);
434         DBG_LOTS("drive_bay PID temp=%d.%.3d speed=%d\n",
435                  FIX32TOPRINT(temp), speed);
436
437         err = drive_bay_fan->ops->set_value(drive_bay_fan, speed);
438         if (err) {
439                 printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err);
440                 failure_state |= FAILURE_FAN;
441         }
442 }
443
444 /* PCI slots area fan */
445 /* This makes the fan speed proportional to the power consumed */
446 static struct wf_pid_param slots_param = {
447         .interval       = 1,
448         .history_len    = 2,
449         .gd             = 0,
450         .gp             = 0,
451         .gr             = 0x1277952,
452         .itarget        = 0,
453         .min            = 1560,
454         .max            = 3510,
455 };
456
457 static void slots_fan_tick(void)
458 {
459         s32 power;
460         int speed;
461         int err;
462
463         if (!slots_fan || !slots_power)
464                 return;
465         if (!slots_started) {
466                 /* first time; initialize things */
467                 printk(KERN_INFO "windfarm: Slots control loop started.\n");
468                 wf_pid_init(&slots_pid, &slots_param);
469                 slots_started = true;
470         }
471
472         err = slots_power->ops->get_value(slots_power, &power);
473         if (err) {
474                 printk(KERN_WARNING "windfarm: slots power sensor error %d\n",
475                        err);
476                 failure_state |= FAILURE_SENSOR;
477                 wf_control_set_max(slots_fan);
478                 return;
479         }
480         speed = wf_pid_run(&slots_pid, power);
481         DBG_LOTS("slots PID power=%d.%.3d speed=%d\n",
482                  FIX32TOPRINT(power), speed);
483
484         err = slots_fan->ops->set_value(slots_fan, speed);
485         if (err) {
486                 printk(KERN_WARNING "windfarm: slots fan error %d\n", err);
487                 failure_state |= FAILURE_FAN;
488         }
489 }
490
491 static void set_fail_state(void)
492 {
493         int i;
494
495         if (cpufreq_clamp)
496                 wf_control_set_max(cpufreq_clamp);
497         for (i = 0; i < NR_CPU_FANS; ++i)
498                 if (cpu_fans[i])
499                         wf_control_set_max(cpu_fans[i]);
500         if (backside_fan)
501                 wf_control_set_max(backside_fan);
502         if (slots_fan)
503                 wf_control_set_max(slots_fan);
504         if (drive_bay_fan)
505                 wf_control_set_max(drive_bay_fan);
506 }
507
508 static void pm112_tick(void)
509 {
510         int i, last_failure;
511
512         if (!started) {
513                 started = true;
514                 printk(KERN_INFO "windfarm: CPUs control loops started.\n");
515                 for (i = 0; i < nr_cores; ++i) {
516                         if (create_cpu_loop(i) < 0) {
517                                 failure_state = FAILURE_PERM;
518                                 set_fail_state();
519                                 break;
520                         }
521                 }
522                 DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
523
524 #ifdef HACKED_OVERTEMP
525                 cpu_all_tmax = 60 << 16;
526 #endif
527         }
528
529         /* Permanent failure, bail out */
530         if (failure_state & FAILURE_PERM)
531                 return;
532         /* Clear all failure bits except low overtemp which will be eventually
533          * cleared by the control loop itself
534          */
535         last_failure = failure_state;
536         failure_state &= FAILURE_LOW_OVERTEMP;
537         cpu_fans_tick();
538         backside_fan_tick();
539         slots_fan_tick();
540         drive_bay_fan_tick();
541
542         DBG_LOTS("last_failure: 0x%x, failure_state: %x\n",
543                  last_failure, failure_state);
544
545         /* Check for failures. Any failure causes cpufreq clamping */
546         if (failure_state && last_failure == 0 && cpufreq_clamp)
547                 wf_control_set_max(cpufreq_clamp);
548         if (failure_state == 0 && last_failure && cpufreq_clamp)
549                 wf_control_set_min(cpufreq_clamp);
550
551         /* That's it for now, we might want to deal with other failures
552          * differently in the future though
553          */
554 }
555
556 static void pm112_new_control(struct wf_control *ct)
557 {
558         int i, max_exhaust;
559
560         if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
561                 if (wf_get_control(ct) == 0)
562                         cpufreq_clamp = ct;
563         }
564
565         for (i = 0; i < NR_CPU_FANS; ++i) {
566                 if (!strcmp(ct->name, cpu_fan_names[i])) {
567                         if (cpu_fans[i] == NULL && wf_get_control(ct) == 0)
568                                 cpu_fans[i] = ct;
569                         break;
570                 }
571         }
572         if (i >= NR_CPU_FANS) {
573                 /* not a CPU fan, try the others */
574                 if (!strcmp(ct->name, "backside-fan")) {
575                         if (backside_fan == NULL && wf_get_control(ct) == 0)
576                                 backside_fan = ct;
577                 } else if (!strcmp(ct->name, "slots-fan")) {
578                         if (slots_fan == NULL && wf_get_control(ct) == 0)
579                                 slots_fan = ct;
580                 } else if (!strcmp(ct->name, "drive-bay-fan")) {
581                         if (drive_bay_fan == NULL && wf_get_control(ct) == 0)
582                                 drive_bay_fan = ct;
583                 }
584                 return;
585         }
586
587         for (i = 0; i < CPU_FANS_REQD; ++i)
588                 if (cpu_fans[i] == NULL)
589                         return;
590
591         /* work out pump scaling factors */
592         max_exhaust = cpu_fans[0]->ops->get_max(cpu_fans[0]);
593         for (i = FIRST_PUMP; i <= LAST_PUMP; ++i)
594                 if ((ct = cpu_fans[i]) != NULL)
595                         cpu_fan_scale[i] =
596                                 ct->ops->get_max(ct) * 100 / max_exhaust;
597
598         have_all_controls = 1;
599 }
600
601 static void pm112_new_sensor(struct wf_sensor *sr)
602 {
603         unsigned int i;
604
605         if (!strncmp(sr->name, "cpu-temp-", 9)) {
606                 i = sr->name[9] - '0';
607                 if (sr->name[10] == 0 && i < NR_CORES &&
608                     sens_cpu_temp[i] == NULL && wf_get_sensor(sr) == 0)
609                         sens_cpu_temp[i] = sr;
610
611         } else if (!strncmp(sr->name, "cpu-power-", 10)) {
612                 i = sr->name[10] - '0';
613                 if (sr->name[11] == 0 && i < NR_CORES &&
614                     sens_cpu_power[i] == NULL && wf_get_sensor(sr) == 0)
615                         sens_cpu_power[i] = sr;
616         } else if (!strcmp(sr->name, "hd-temp")) {
617                 if (hd_temp == NULL && wf_get_sensor(sr) == 0)
618                         hd_temp = sr;
619         } else if (!strcmp(sr->name, "slots-power")) {
620                 if (slots_power == NULL && wf_get_sensor(sr) == 0)
621                         slots_power = sr;
622         } else if (!strcmp(sr->name, "backside-temp")) {
623                 if (u4_temp == NULL && wf_get_sensor(sr) == 0)
624                         u4_temp = sr;
625         } else
626                 return;
627
628         /* check if we have all the sensors we need */
629         for (i = 0; i < nr_cores; ++i)
630                 if (sens_cpu_temp[i] == NULL || sens_cpu_power[i] == NULL)
631                         return;
632
633         have_all_sensors = 1;
634 }
635
636 static int pm112_wf_notify(struct notifier_block *self,
637                            unsigned long event, void *data)
638 {
639         switch (event) {
640         case WF_EVENT_NEW_SENSOR:
641                 pm112_new_sensor(data);
642                 break;
643         case WF_EVENT_NEW_CONTROL:
644                 pm112_new_control(data);
645                 break;
646         case WF_EVENT_TICK:
647                 if (have_all_controls && have_all_sensors)
648                         pm112_tick();
649         }
650         return 0;
651 }
652
653 static struct notifier_block pm112_events = {
654         .notifier_call = pm112_wf_notify,
655 };
656
657 static int wf_pm112_probe(struct platform_device *dev)
658 {
659         wf_register_client(&pm112_events);
660         return 0;
661 }
662
663 static int wf_pm112_remove(struct platform_device *dev)
664 {
665         wf_unregister_client(&pm112_events);
666         /* should release all sensors and controls */
667         return 0;
668 }
669
670 static struct platform_driver wf_pm112_driver = {
671         .probe = wf_pm112_probe,
672         .remove = wf_pm112_remove,
673         .driver = {
674                 .name = "windfarm",
675         },
676 };
677
678 static int __init wf_pm112_init(void)
679 {
680         struct device_node *cpu;
681
682         if (!of_machine_is_compatible("PowerMac11,2"))
683                 return -ENODEV;
684
685         /* Count the number of CPU cores */
686         nr_cores = 0;
687         for_each_node_by_type(cpu, "cpu")
688                 ++nr_cores;
689
690         printk(KERN_INFO "windfarm: initializing for dual-core desktop G5\n");
691
692 #ifdef MODULE
693         request_module("windfarm_smu_controls");
694         request_module("windfarm_smu_sensors");
695         request_module("windfarm_smu_sat");
696         request_module("windfarm_lm75_sensor");
697         request_module("windfarm_max6690_sensor");
698         request_module("windfarm_cpufreq_clamp");
699
700 #endif /* MODULE */
701
702         platform_driver_register(&wf_pm112_driver);
703         return 0;
704 }
705
706 static void __exit wf_pm112_exit(void)
707 {
708         platform_driver_unregister(&wf_pm112_driver);
709 }
710
711 module_init(wf_pm112_init);
712 module_exit(wf_pm112_exit);
713
714 MODULE_AUTHOR("Paul Mackerras <paulus@samba.org>");
715 MODULE_DESCRIPTION("Thermal control for PowerMac11,2");
716 MODULE_LICENSE("GPL");
717 MODULE_ALIAS("platform:windfarm");