Merge tag 'devicetree-fixes-for-5.13-2' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / isdn / hardware / mISDN / hfcsusb.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* hfcsusb.c
3  * mISDN driver for Colognechip HFC-S USB chip
4  *
5  * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
6  * Copyright 2008 by Martin Bachem (info@bachem-it.com)
7  *
8  * module params
9  *   debug=<n>, default=0, with n=0xHHHHGGGG
10  *      H - l1 driver flags described in hfcsusb.h
11  *      G - common mISDN debug flags described at mISDNhw.h
12  *
13  *   poll=<n>, default 128
14  *     n : burst size of PH_DATA_IND at transparent rx data
15  *
16  * Revision: 0.3.3 (socket), 2008-11-05
17  */
18
19 #include <linux/module.h>
20 #include <linux/delay.h>
21 #include <linux/usb.h>
22 #include <linux/mISDNhw.h>
23 #include <linux/slab.h>
24 #include "hfcsusb.h"
25
26 static unsigned int debug;
27 static int poll = DEFAULT_TRANSP_BURST_SZ;
28
29 static LIST_HEAD(HFClist);
30 static DEFINE_RWLOCK(HFClock);
31
32
33 MODULE_AUTHOR("Martin Bachem");
34 MODULE_LICENSE("GPL");
35 module_param(debug, uint, S_IRUGO | S_IWUSR);
36 module_param(poll, int, 0);
37
38 static int hfcsusb_cnt;
39
40 /* some function prototypes */
41 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
42 static void release_hw(struct hfcsusb *hw);
43 static void reset_hfcsusb(struct hfcsusb *hw);
44 static void setPortMode(struct hfcsusb *hw);
45 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
46 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
47 static int  hfcsusb_setup_bch(struct bchannel *bch, int protocol);
48 static void deactivate_bchannel(struct bchannel *bch);
49 static int  hfcsusb_ph_info(struct hfcsusb *hw);
50
51 /* start next background transfer for control channel */
52 static void
53 ctrl_start_transfer(struct hfcsusb *hw)
54 {
55         if (debug & DBG_HFC_CALL_TRACE)
56                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
57
58         if (hw->ctrl_cnt) {
59                 hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
60                 hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
61                 hw->ctrl_urb->transfer_buffer = NULL;
62                 hw->ctrl_urb->transfer_buffer_length = 0;
63                 hw->ctrl_write.wIndex =
64                         cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
65                 hw->ctrl_write.wValue =
66                         cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
67
68                 usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
69         }
70 }
71
72 /*
73  * queue a control transfer request to write HFC-S USB
74  * chip register using CTRL resuest queue
75  */
76 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
77 {
78         struct ctrl_buf *buf;
79
80         if (debug & DBG_HFC_CALL_TRACE)
81                 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
82                        hw->name, __func__, reg, val);
83
84         spin_lock(&hw->ctrl_lock);
85         if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
86                 spin_unlock(&hw->ctrl_lock);
87                 return 1;
88         }
89         buf = &hw->ctrl_buff[hw->ctrl_in_idx];
90         buf->hfcs_reg = reg;
91         buf->reg_val = val;
92         if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
93                 hw->ctrl_in_idx = 0;
94         if (++hw->ctrl_cnt == 1)
95                 ctrl_start_transfer(hw);
96         spin_unlock(&hw->ctrl_lock);
97
98         return 0;
99 }
100
101 /* control completion routine handling background control cmds */
102 static void
103 ctrl_complete(struct urb *urb)
104 {
105         struct hfcsusb *hw = (struct hfcsusb *) urb->context;
106
107         if (debug & DBG_HFC_CALL_TRACE)
108                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
109
110         urb->dev = hw->dev;
111         if (hw->ctrl_cnt) {
112                 hw->ctrl_cnt--; /* decrement actual count */
113                 if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
114                         hw->ctrl_out_idx = 0;   /* pointer wrap */
115
116                 ctrl_start_transfer(hw); /* start next transfer */
117         }
118 }
119
120 /* handle LED bits   */
121 static void
122 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
123 {
124         if (set_on) {
125                 if (led_bits < 0)
126                         hw->led_state &= ~abs(led_bits);
127                 else
128                         hw->led_state |= led_bits;
129         } else {
130                 if (led_bits < 0)
131                         hw->led_state |= abs(led_bits);
132                 else
133                         hw->led_state &= ~led_bits;
134         }
135 }
136
137 /* handle LED requests  */
138 static void
139 handle_led(struct hfcsusb *hw, int event)
140 {
141         struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
142                 hfcsusb_idtab[hw->vend_idx].driver_info;
143         __u8 tmpled;
144
145         if (driver_info->led_scheme == LED_OFF)
146                 return;
147         tmpled = hw->led_state;
148
149         switch (event) {
150         case LED_POWER_ON:
151                 set_led_bit(hw, driver_info->led_bits[0], 1);
152                 set_led_bit(hw, driver_info->led_bits[1], 0);
153                 set_led_bit(hw, driver_info->led_bits[2], 0);
154                 set_led_bit(hw, driver_info->led_bits[3], 0);
155                 break;
156         case LED_POWER_OFF:
157                 set_led_bit(hw, driver_info->led_bits[0], 0);
158                 set_led_bit(hw, driver_info->led_bits[1], 0);
159                 set_led_bit(hw, driver_info->led_bits[2], 0);
160                 set_led_bit(hw, driver_info->led_bits[3], 0);
161                 break;
162         case LED_S0_ON:
163                 set_led_bit(hw, driver_info->led_bits[1], 1);
164                 break;
165         case LED_S0_OFF:
166                 set_led_bit(hw, driver_info->led_bits[1], 0);
167                 break;
168         case LED_B1_ON:
169                 set_led_bit(hw, driver_info->led_bits[2], 1);
170                 break;
171         case LED_B1_OFF:
172                 set_led_bit(hw, driver_info->led_bits[2], 0);
173                 break;
174         case LED_B2_ON:
175                 set_led_bit(hw, driver_info->led_bits[3], 1);
176                 break;
177         case LED_B2_OFF:
178                 set_led_bit(hw, driver_info->led_bits[3], 0);
179                 break;
180         }
181
182         if (hw->led_state != tmpled) {
183                 if (debug & DBG_HFC_CALL_TRACE)
184                         printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
185                                hw->name, __func__,
186                                HFCUSB_P_DATA, hw->led_state);
187
188                 write_reg(hw, HFCUSB_P_DATA, hw->led_state);
189         }
190 }
191
192 /*
193  * Layer2 -> Layer 1 Bchannel data
194  */
195 static int
196 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
197 {
198         struct bchannel         *bch = container_of(ch, struct bchannel, ch);
199         struct hfcsusb          *hw = bch->hw;
200         int                     ret = -EINVAL;
201         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
202         u_long                  flags;
203
204         if (debug & DBG_HFC_CALL_TRACE)
205                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
206
207         switch (hh->prim) {
208         case PH_DATA_REQ:
209                 spin_lock_irqsave(&hw->lock, flags);
210                 ret = bchannel_senddata(bch, skb);
211                 spin_unlock_irqrestore(&hw->lock, flags);
212                 if (debug & DBG_HFC_CALL_TRACE)
213                         printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
214                                hw->name, __func__, ret);
215                 if (ret > 0)
216                         ret = 0;
217                 return ret;
218         case PH_ACTIVATE_REQ:
219                 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
220                         hfcsusb_start_endpoint(hw, bch->nr - 1);
221                         ret = hfcsusb_setup_bch(bch, ch->protocol);
222                 } else
223                         ret = 0;
224                 if (!ret)
225                         _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
226                                     0, NULL, GFP_KERNEL);
227                 break;
228         case PH_DEACTIVATE_REQ:
229                 deactivate_bchannel(bch);
230                 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
231                             0, NULL, GFP_KERNEL);
232                 ret = 0;
233                 break;
234         }
235         if (!ret)
236                 dev_kfree_skb(skb);
237         return ret;
238 }
239
240 /*
241  * send full D/B channel status information
242  * as MPH_INFORMATION_IND
243  */
244 static int
245 hfcsusb_ph_info(struct hfcsusb *hw)
246 {
247         struct ph_info *phi;
248         struct dchannel *dch = &hw->dch;
249         int i;
250
251         phi = kzalloc(struct_size(phi, bch, dch->dev.nrbchan), GFP_ATOMIC);
252         if (!phi)
253                 return -ENOMEM;
254
255         phi->dch.ch.protocol = hw->protocol;
256         phi->dch.ch.Flags = dch->Flags;
257         phi->dch.state = dch->state;
258         phi->dch.num_bch = dch->dev.nrbchan;
259         for (i = 0; i < dch->dev.nrbchan; i++) {
260                 phi->bch[i].protocol = hw->bch[i].ch.protocol;
261                 phi->bch[i].Flags = hw->bch[i].Flags;
262         }
263         _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
264                     struct_size(phi, bch, dch->dev.nrbchan), phi, GFP_ATOMIC);
265         kfree(phi);
266
267         return 0;
268 }
269
270 /*
271  * Layer2 -> Layer 1 Dchannel data
272  */
273 static int
274 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
275 {
276         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
277         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
278         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
279         struct hfcsusb          *hw = dch->hw;
280         int                     ret = -EINVAL;
281         u_long                  flags;
282
283         switch (hh->prim) {
284         case PH_DATA_REQ:
285                 if (debug & DBG_HFC_CALL_TRACE)
286                         printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
287                                hw->name, __func__);
288
289                 spin_lock_irqsave(&hw->lock, flags);
290                 ret = dchannel_senddata(dch, skb);
291                 spin_unlock_irqrestore(&hw->lock, flags);
292                 if (ret > 0) {
293                         ret = 0;
294                         queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
295                 }
296                 break;
297
298         case PH_ACTIVATE_REQ:
299                 if (debug & DBG_HFC_CALL_TRACE)
300                         printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
301                                hw->name, __func__,
302                                (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
303
304                 if (hw->protocol == ISDN_P_NT_S0) {
305                         ret = 0;
306                         if (test_bit(FLG_ACTIVE, &dch->Flags)) {
307                                 _queue_data(&dch->dev.D,
308                                             PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
309                                             NULL, GFP_ATOMIC);
310                         } else {
311                                 hfcsusb_ph_command(hw,
312                                                    HFC_L1_ACTIVATE_NT);
313                                 test_and_set_bit(FLG_L2_ACTIVATED,
314                                                  &dch->Flags);
315                         }
316                 } else {
317                         hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
318                         ret = l1_event(dch->l1, hh->prim);
319                 }
320                 break;
321
322         case PH_DEACTIVATE_REQ:
323                 if (debug & DBG_HFC_CALL_TRACE)
324                         printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
325                                hw->name, __func__);
326                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
327
328                 if (hw->protocol == ISDN_P_NT_S0) {
329                         hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
330                         spin_lock_irqsave(&hw->lock, flags);
331                         skb_queue_purge(&dch->squeue);
332                         if (dch->tx_skb) {
333                                 dev_kfree_skb(dch->tx_skb);
334                                 dch->tx_skb = NULL;
335                         }
336                         dch->tx_idx = 0;
337                         if (dch->rx_skb) {
338                                 dev_kfree_skb(dch->rx_skb);
339                                 dch->rx_skb = NULL;
340                         }
341                         test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
342                         spin_unlock_irqrestore(&hw->lock, flags);
343 #ifdef FIXME
344                         if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
345                                 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
346 #endif
347                         ret = 0;
348                 } else
349                         ret = l1_event(dch->l1, hh->prim);
350                 break;
351         case MPH_INFORMATION_REQ:
352                 ret = hfcsusb_ph_info(hw);
353                 break;
354         }
355
356         return ret;
357 }
358
359 /*
360  * Layer 1 callback function
361  */
362 static int
363 hfc_l1callback(struct dchannel *dch, u_int cmd)
364 {
365         struct hfcsusb *hw = dch->hw;
366
367         if (debug & DBG_HFC_CALL_TRACE)
368                 printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
369                        hw->name, __func__, cmd);
370
371         switch (cmd) {
372         case INFO3_P8:
373         case INFO3_P10:
374         case HW_RESET_REQ:
375         case HW_POWERUP_REQ:
376                 break;
377
378         case HW_DEACT_REQ:
379                 skb_queue_purge(&dch->squeue);
380                 if (dch->tx_skb) {
381                         dev_kfree_skb(dch->tx_skb);
382                         dch->tx_skb = NULL;
383                 }
384                 dch->tx_idx = 0;
385                 if (dch->rx_skb) {
386                         dev_kfree_skb(dch->rx_skb);
387                         dch->rx_skb = NULL;
388                 }
389                 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
390                 break;
391         case PH_ACTIVATE_IND:
392                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
393                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
394                             GFP_ATOMIC);
395                 break;
396         case PH_DEACTIVATE_IND:
397                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
398                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
399                             GFP_ATOMIC);
400                 break;
401         default:
402                 if (dch->debug & DEBUG_HW)
403                         printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
404                                hw->name, __func__, cmd);
405                 return -1;
406         }
407         return hfcsusb_ph_info(hw);
408 }
409
410 static int
411 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
412               struct channel_req *rq)
413 {
414         int err = 0;
415
416         if (debug & DEBUG_HW_OPEN)
417                 printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
418                        hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
419                        __builtin_return_address(0));
420         if (rq->protocol == ISDN_P_NONE)
421                 return -EINVAL;
422
423         test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
424         test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
425         hfcsusb_start_endpoint(hw, HFC_CHAN_D);
426
427         /* E-Channel logging */
428         if (rq->adr.channel == 1) {
429                 if (hw->fifos[HFCUSB_PCM_RX].pipe) {
430                         hfcsusb_start_endpoint(hw, HFC_CHAN_E);
431                         set_bit(FLG_ACTIVE, &hw->ech.Flags);
432                         _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
433                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
434                 } else
435                         return -EINVAL;
436         }
437
438         if (!hw->initdone) {
439                 hw->protocol = rq->protocol;
440                 if (rq->protocol == ISDN_P_TE_S0) {
441                         err = create_l1(&hw->dch, hfc_l1callback);
442                         if (err)
443                                 return err;
444                 }
445                 setPortMode(hw);
446                 ch->protocol = rq->protocol;
447                 hw->initdone = 1;
448         } else {
449                 if (rq->protocol != ch->protocol)
450                         return -EPROTONOSUPPORT;
451         }
452
453         if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
454             ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
455                 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
456                             0, NULL, GFP_KERNEL);
457         rq->ch = ch;
458         if (!try_module_get(THIS_MODULE))
459                 printk(KERN_WARNING "%s: %s: cannot get module\n",
460                        hw->name, __func__);
461         return 0;
462 }
463
464 static int
465 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
466 {
467         struct bchannel         *bch;
468
469         if (rq->adr.channel == 0 || rq->adr.channel > 2)
470                 return -EINVAL;
471         if (rq->protocol == ISDN_P_NONE)
472                 return -EINVAL;
473
474         if (debug & DBG_HFC_CALL_TRACE)
475                 printk(KERN_DEBUG "%s: %s B%i\n",
476                        hw->name, __func__, rq->adr.channel);
477
478         bch = &hw->bch[rq->adr.channel - 1];
479         if (test_and_set_bit(FLG_OPEN, &bch->Flags))
480                 return -EBUSY; /* b-channel can be only open once */
481         bch->ch.protocol = rq->protocol;
482         rq->ch = &bch->ch;
483
484         if (!try_module_get(THIS_MODULE))
485                 printk(KERN_WARNING "%s: %s:cannot get module\n",
486                        hw->name, __func__);
487         return 0;
488 }
489
490 static int
491 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
492 {
493         int ret = 0;
494
495         if (debug & DBG_HFC_CALL_TRACE)
496                 printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
497                        hw->name, __func__, (cq->op), (cq->channel));
498
499         switch (cq->op) {
500         case MISDN_CTRL_GETOP:
501                 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
502                         MISDN_CTRL_DISCONNECT;
503                 break;
504         default:
505                 printk(KERN_WARNING "%s: %s: unknown Op %x\n",
506                        hw->name, __func__, cq->op);
507                 ret = -EINVAL;
508                 break;
509         }
510         return ret;
511 }
512
513 /*
514  * device control function
515  */
516 static int
517 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
518 {
519         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
520         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
521         struct hfcsusb          *hw = dch->hw;
522         struct channel_req      *rq;
523         int                     err = 0;
524
525         if (dch->debug & DEBUG_HW)
526                 printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
527                        hw->name, __func__, cmd, arg);
528         switch (cmd) {
529         case OPEN_CHANNEL:
530                 rq = arg;
531                 if ((rq->protocol == ISDN_P_TE_S0) ||
532                     (rq->protocol == ISDN_P_NT_S0))
533                         err = open_dchannel(hw, ch, rq);
534                 else
535                         err = open_bchannel(hw, rq);
536                 if (!err)
537                         hw->open++;
538                 break;
539         case CLOSE_CHANNEL:
540                 hw->open--;
541                 if (debug & DEBUG_HW_OPEN)
542                         printk(KERN_DEBUG
543                                "%s: %s: dev(%d) close from %p (open %d)\n",
544                                hw->name, __func__, hw->dch.dev.id,
545                                __builtin_return_address(0), hw->open);
546                 if (!hw->open) {
547                         hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
548                         if (hw->fifos[HFCUSB_PCM_RX].pipe)
549                                 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
550                         handle_led(hw, LED_POWER_ON);
551                 }
552                 module_put(THIS_MODULE);
553                 break;
554         case CONTROL_CHANNEL:
555                 err = channel_ctrl(hw, arg);
556                 break;
557         default:
558                 if (dch->debug & DEBUG_HW)
559                         printk(KERN_DEBUG "%s: %s: unknown command %x\n",
560                                hw->name, __func__, cmd);
561                 return -EINVAL;
562         }
563         return err;
564 }
565
566 /*
567  * S0 TE state change event handler
568  */
569 static void
570 ph_state_te(struct dchannel *dch)
571 {
572         struct hfcsusb *hw = dch->hw;
573
574         if (debug & DEBUG_HW) {
575                 if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
576                         printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
577                                HFC_TE_LAYER1_STATES[dch->state]);
578                 else
579                         printk(KERN_DEBUG "%s: %s: TE F%d\n",
580                                hw->name, __func__, dch->state);
581         }
582
583         switch (dch->state) {
584         case 0:
585                 l1_event(dch->l1, HW_RESET_IND);
586                 break;
587         case 3:
588                 l1_event(dch->l1, HW_DEACT_IND);
589                 break;
590         case 5:
591         case 8:
592                 l1_event(dch->l1, ANYSIGNAL);
593                 break;
594         case 6:
595                 l1_event(dch->l1, INFO2);
596                 break;
597         case 7:
598                 l1_event(dch->l1, INFO4_P8);
599                 break;
600         }
601         if (dch->state == 7)
602                 handle_led(hw, LED_S0_ON);
603         else
604                 handle_led(hw, LED_S0_OFF);
605 }
606
607 /*
608  * S0 NT state change event handler
609  */
610 static void
611 ph_state_nt(struct dchannel *dch)
612 {
613         struct hfcsusb *hw = dch->hw;
614
615         if (debug & DEBUG_HW) {
616                 if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
617                         printk(KERN_DEBUG "%s: %s: %s\n",
618                                hw->name, __func__,
619                                HFC_NT_LAYER1_STATES[dch->state]);
620
621                 else
622                         printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
623                                hw->name, __func__, dch->state);
624         }
625
626         switch (dch->state) {
627         case (1):
628                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
629                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
630                 hw->nt_timer = 0;
631                 hw->timers &= ~NT_ACTIVATION_TIMER;
632                 handle_led(hw, LED_S0_OFF);
633                 break;
634
635         case (2):
636                 if (hw->nt_timer < 0) {
637                         hw->nt_timer = 0;
638                         hw->timers &= ~NT_ACTIVATION_TIMER;
639                         hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
640                 } else {
641                         hw->timers |= NT_ACTIVATION_TIMER;
642                         hw->nt_timer = NT_T1_COUNT;
643                         /* allow G2 -> G3 transition */
644                         write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
645                 }
646                 break;
647         case (3):
648                 hw->nt_timer = 0;
649                 hw->timers &= ~NT_ACTIVATION_TIMER;
650                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
651                 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
652                             MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
653                 handle_led(hw, LED_S0_ON);
654                 break;
655         case (4):
656                 hw->nt_timer = 0;
657                 hw->timers &= ~NT_ACTIVATION_TIMER;
658                 break;
659         default:
660                 break;
661         }
662         hfcsusb_ph_info(hw);
663 }
664
665 static void
666 ph_state(struct dchannel *dch)
667 {
668         struct hfcsusb *hw = dch->hw;
669
670         if (hw->protocol == ISDN_P_NT_S0)
671                 ph_state_nt(dch);
672         else if (hw->protocol == ISDN_P_TE_S0)
673                 ph_state_te(dch);
674 }
675
676 /*
677  * disable/enable BChannel for desired protocoll
678  */
679 static int
680 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
681 {
682         struct hfcsusb *hw = bch->hw;
683         __u8 conhdlc, sctrl, sctrl_r;
684
685         if (debug & DEBUG_HW)
686                 printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
687                        hw->name, __func__, bch->state, protocol,
688                        bch->nr);
689
690         /* setup val for CON_HDLC */
691         conhdlc = 0;
692         if (protocol > ISDN_P_NONE)
693                 conhdlc = 8;    /* enable FIFO */
694
695         switch (protocol) {
696         case (-1):      /* used for init */
697                 bch->state = -1;
698                 fallthrough;
699         case (ISDN_P_NONE):
700                 if (bch->state == ISDN_P_NONE)
701                         return 0; /* already in idle state */
702                 bch->state = ISDN_P_NONE;
703                 clear_bit(FLG_HDLC, &bch->Flags);
704                 clear_bit(FLG_TRANSPARENT, &bch->Flags);
705                 break;
706         case (ISDN_P_B_RAW):
707                 conhdlc |= 2;
708                 bch->state = protocol;
709                 set_bit(FLG_TRANSPARENT, &bch->Flags);
710                 break;
711         case (ISDN_P_B_HDLC):
712                 bch->state = protocol;
713                 set_bit(FLG_HDLC, &bch->Flags);
714                 break;
715         default:
716                 if (debug & DEBUG_HW)
717                         printk(KERN_DEBUG "%s: %s: prot not known %x\n",
718                                hw->name, __func__, protocol);
719                 return -ENOPROTOOPT;
720         }
721
722         if (protocol >= ISDN_P_NONE) {
723                 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
724                 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
725                 write_reg(hw, HFCUSB_INC_RES_F, 2);
726                 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
727                 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
728                 write_reg(hw, HFCUSB_INC_RES_F, 2);
729
730                 sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
731                 sctrl_r = 0x0;
732                 if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
733                         sctrl |= 1;
734                         sctrl_r |= 1;
735                 }
736                 if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
737                         sctrl |= 2;
738                         sctrl_r |= 2;
739                 }
740                 write_reg(hw, HFCUSB_SCTRL, sctrl);
741                 write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
742
743                 if (protocol > ISDN_P_NONE)
744                         handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
745                 else
746                         handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
747                                    LED_B2_OFF);
748         }
749         return hfcsusb_ph_info(hw);
750 }
751
752 static void
753 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
754 {
755         if (debug & DEBUG_HW)
756                 printk(KERN_DEBUG "%s: %s: %x\n",
757                        hw->name, __func__, command);
758
759         switch (command) {
760         case HFC_L1_ACTIVATE_TE:
761                 /* force sending sending INFO1 */
762                 write_reg(hw, HFCUSB_STATES, 0x14);
763                 /* start l1 activation */
764                 write_reg(hw, HFCUSB_STATES, 0x04);
765                 break;
766
767         case HFC_L1_FORCE_DEACTIVATE_TE:
768                 write_reg(hw, HFCUSB_STATES, 0x10);
769                 write_reg(hw, HFCUSB_STATES, 0x03);
770                 break;
771
772         case HFC_L1_ACTIVATE_NT:
773                 if (hw->dch.state == 3)
774                         _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
775                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
776                 else
777                         write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
778                                   HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
779                 break;
780
781         case HFC_L1_DEACTIVATE_NT:
782                 write_reg(hw, HFCUSB_STATES,
783                           HFCUSB_DO_ACTION);
784                 break;
785         }
786 }
787
788 /*
789  * Layer 1 B-channel hardware access
790  */
791 static int
792 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
793 {
794         return mISDN_ctrl_bchannel(bch, cq);
795 }
796
797 /* collect data from incoming interrupt or isochron USB data */
798 static void
799 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
800                  int finish)
801 {
802         struct hfcsusb  *hw = fifo->hw;
803         struct sk_buff  *rx_skb = NULL;
804         int             maxlen = 0;
805         int             fifon = fifo->fifonum;
806         int             i;
807         int             hdlc = 0;
808         unsigned long   flags;
809
810         if (debug & DBG_HFC_CALL_TRACE)
811                 printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
812                        "dch(%p) bch(%p) ech(%p)\n",
813                        hw->name, __func__, fifon, len,
814                        fifo->dch, fifo->bch, fifo->ech);
815
816         if (!len)
817                 return;
818
819         if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
820                 printk(KERN_DEBUG "%s: %s: undefined channel\n",
821                        hw->name, __func__);
822                 return;
823         }
824
825         spin_lock_irqsave(&hw->lock, flags);
826         if (fifo->dch) {
827                 rx_skb = fifo->dch->rx_skb;
828                 maxlen = fifo->dch->maxlen;
829                 hdlc = 1;
830         }
831         if (fifo->bch) {
832                 if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
833                         fifo->bch->dropcnt += len;
834                         spin_unlock_irqrestore(&hw->lock, flags);
835                         return;
836                 }
837                 maxlen = bchannel_get_rxbuf(fifo->bch, len);
838                 rx_skb = fifo->bch->rx_skb;
839                 if (maxlen < 0) {
840                         if (rx_skb)
841                                 skb_trim(rx_skb, 0);
842                         pr_warn("%s.B%d: No bufferspace for %d bytes\n",
843                                 hw->name, fifo->bch->nr, len);
844                         spin_unlock_irqrestore(&hw->lock, flags);
845                         return;
846                 }
847                 maxlen = fifo->bch->maxlen;
848                 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
849         }
850         if (fifo->ech) {
851                 rx_skb = fifo->ech->rx_skb;
852                 maxlen = fifo->ech->maxlen;
853                 hdlc = 1;
854         }
855
856         if (fifo->dch || fifo->ech) {
857                 if (!rx_skb) {
858                         rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
859                         if (rx_skb) {
860                                 if (fifo->dch)
861                                         fifo->dch->rx_skb = rx_skb;
862                                 if (fifo->ech)
863                                         fifo->ech->rx_skb = rx_skb;
864                                 skb_trim(rx_skb, 0);
865                         } else {
866                                 printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
867                                        hw->name, __func__);
868                                 spin_unlock_irqrestore(&hw->lock, flags);
869                                 return;
870                         }
871                 }
872                 /* D/E-Channel SKB range check */
873                 if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
874                         printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
875                                "for fifo(%d) HFCUSB_D_RX\n",
876                                hw->name, __func__, fifon);
877                         skb_trim(rx_skb, 0);
878                         spin_unlock_irqrestore(&hw->lock, flags);
879                         return;
880                 }
881         }
882
883         skb_put_data(rx_skb, data, len);
884
885         if (hdlc) {
886                 /* we have a complete hdlc packet */
887                 if (finish) {
888                         if ((rx_skb->len > 3) &&
889                             (!(rx_skb->data[rx_skb->len - 1]))) {
890                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
891                                         printk(KERN_DEBUG "%s: %s: fifon(%i)"
892                                                " new RX len(%i): ",
893                                                hw->name, __func__, fifon,
894                                                rx_skb->len);
895                                         i = 0;
896                                         while (i < rx_skb->len)
897                                                 printk("%02x ",
898                                                        rx_skb->data[i++]);
899                                         printk("\n");
900                                 }
901
902                                 /* remove CRC & status */
903                                 skb_trim(rx_skb, rx_skb->len - 3);
904
905                                 if (fifo->dch)
906                                         recv_Dchannel(fifo->dch);
907                                 if (fifo->bch)
908                                         recv_Bchannel(fifo->bch, MISDN_ID_ANY,
909                                                       0);
910                                 if (fifo->ech)
911                                         recv_Echannel(fifo->ech,
912                                                       &hw->dch);
913                         } else {
914                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
915                                         printk(KERN_DEBUG
916                                                "%s: CRC or minlen ERROR fifon(%i) "
917                                                "RX len(%i): ",
918                                                hw->name, fifon, rx_skb->len);
919                                         i = 0;
920                                         while (i < rx_skb->len)
921                                                 printk("%02x ",
922                                                        rx_skb->data[i++]);
923                                         printk("\n");
924                                 }
925                                 skb_trim(rx_skb, 0);
926                         }
927                 }
928         } else {
929                 /* deliver transparent data to layer2 */
930                 recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
931         }
932         spin_unlock_irqrestore(&hw->lock, flags);
933 }
934
935 static void
936 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
937               void *buf, int num_packets, int packet_size, int interval,
938               usb_complete_t complete, void *context)
939 {
940         int k;
941
942         usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
943                           complete, context);
944
945         urb->number_of_packets = num_packets;
946         urb->transfer_flags = URB_ISO_ASAP;
947         urb->actual_length = 0;
948         urb->interval = interval;
949
950         for (k = 0; k < num_packets; k++) {
951                 urb->iso_frame_desc[k].offset = packet_size * k;
952                 urb->iso_frame_desc[k].length = packet_size;
953                 urb->iso_frame_desc[k].actual_length = 0;
954         }
955 }
956
957 /* receive completion routine for all ISO tx fifos   */
958 static void
959 rx_iso_complete(struct urb *urb)
960 {
961         struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
962         struct usb_fifo *fifo = context_iso_urb->owner_fifo;
963         struct hfcsusb *hw = fifo->hw;
964         int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
965                 status, iso_status, i;
966         __u8 *buf;
967         static __u8 eof[8];
968         __u8 s0_state;
969         unsigned long flags;
970
971         fifon = fifo->fifonum;
972         status = urb->status;
973
974         spin_lock_irqsave(&hw->lock, flags);
975         if (fifo->stop_gracefull) {
976                 fifo->stop_gracefull = 0;
977                 fifo->active = 0;
978                 spin_unlock_irqrestore(&hw->lock, flags);
979                 return;
980         }
981         spin_unlock_irqrestore(&hw->lock, flags);
982
983         /*
984          * ISO transfer only partially completed,
985          * look at individual frame status for details
986          */
987         if (status == -EXDEV) {
988                 if (debug & DEBUG_HW)
989                         printk(KERN_DEBUG "%s: %s: with -EXDEV "
990                                "urb->status %d, fifonum %d\n",
991                                hw->name, __func__,  status, fifon);
992
993                 /* clear status, so go on with ISO transfers */
994                 status = 0;
995         }
996
997         s0_state = 0;
998         if (fifo->active && !status) {
999                 num_isoc_packets = iso_packets[fifon];
1000                 maxlen = fifo->usb_packet_maxlen;
1001
1002                 for (k = 0; k < num_isoc_packets; ++k) {
1003                         len = urb->iso_frame_desc[k].actual_length;
1004                         offset = urb->iso_frame_desc[k].offset;
1005                         buf = context_iso_urb->buffer + offset;
1006                         iso_status = urb->iso_frame_desc[k].status;
1007
1008                         if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1009                                 printk(KERN_DEBUG "%s: %s: "
1010                                        "ISO packet %i, status: %i\n",
1011                                        hw->name, __func__, k, iso_status);
1012                         }
1013
1014                         /* USB data log for every D ISO in */
1015                         if ((fifon == HFCUSB_D_RX) &&
1016                             (debug & DBG_HFC_USB_VERBOSE)) {
1017                                 printk(KERN_DEBUG
1018                                        "%s: %s: %d (%d/%d) len(%d) ",
1019                                        hw->name, __func__, urb->start_frame,
1020                                        k, num_isoc_packets - 1,
1021                                        len);
1022                                 for (i = 0; i < len; i++)
1023                                         printk("%x ", buf[i]);
1024                                 printk("\n");
1025                         }
1026
1027                         if (!iso_status) {
1028                                 if (fifo->last_urblen != maxlen) {
1029                                         /*
1030                                          * save fifo fill-level threshold bits
1031                                          * to use them later in TX ISO URB
1032                                          * completions
1033                                          */
1034                                         hw->threshold_mask = buf[1];
1035
1036                                         if (fifon == HFCUSB_D_RX)
1037                                                 s0_state = (buf[0] >> 4);
1038
1039                                         eof[fifon] = buf[0] & 1;
1040                                         if (len > 2)
1041                                                 hfcsusb_rx_frame(fifo, buf + 2,
1042                                                                  len - 2, (len < maxlen)
1043                                                                  ? eof[fifon] : 0);
1044                                 } else
1045                                         hfcsusb_rx_frame(fifo, buf, len,
1046                                                          (len < maxlen) ?
1047                                                          eof[fifon] : 0);
1048                                 fifo->last_urblen = len;
1049                         }
1050                 }
1051
1052                 /* signal S0 layer1 state change */
1053                 if ((s0_state) && (hw->initdone) &&
1054                     (s0_state != hw->dch.state)) {
1055                         hw->dch.state = s0_state;
1056                         schedule_event(&hw->dch, FLG_PHCHANGE);
1057                 }
1058
1059                 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1060                               context_iso_urb->buffer, num_isoc_packets,
1061                               fifo->usb_packet_maxlen, fifo->intervall,
1062                               (usb_complete_t)rx_iso_complete, urb->context);
1063                 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1064                 if (errcode < 0) {
1065                         if (debug & DEBUG_HW)
1066                                 printk(KERN_DEBUG "%s: %s: error submitting "
1067                                        "ISO URB: %d\n",
1068                                        hw->name, __func__, errcode);
1069                 }
1070         } else {
1071                 if (status && (debug & DBG_HFC_URB_INFO))
1072                         printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1073                                "urb->status %d, fifonum %d\n",
1074                                hw->name, __func__, status, fifon);
1075         }
1076 }
1077
1078 /* receive completion routine for all interrupt rx fifos */
1079 static void
1080 rx_int_complete(struct urb *urb)
1081 {
1082         int len, status, i;
1083         __u8 *buf, maxlen, fifon;
1084         struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1085         struct hfcsusb *hw = fifo->hw;
1086         static __u8 eof[8];
1087         unsigned long flags;
1088
1089         spin_lock_irqsave(&hw->lock, flags);
1090         if (fifo->stop_gracefull) {
1091                 fifo->stop_gracefull = 0;
1092                 fifo->active = 0;
1093                 spin_unlock_irqrestore(&hw->lock, flags);
1094                 return;
1095         }
1096         spin_unlock_irqrestore(&hw->lock, flags);
1097
1098         fifon = fifo->fifonum;
1099         if ((!fifo->active) || (urb->status)) {
1100                 if (debug & DBG_HFC_URB_ERROR)
1101                         printk(KERN_DEBUG
1102                                "%s: %s: RX-Fifo %i is going down (%i)\n",
1103                                hw->name, __func__, fifon, urb->status);
1104
1105                 fifo->urb->interval = 0; /* cancel automatic rescheduling */
1106                 return;
1107         }
1108         len = urb->actual_length;
1109         buf = fifo->buffer;
1110         maxlen = fifo->usb_packet_maxlen;
1111
1112         /* USB data log for every D INT in */
1113         if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1114                 printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1115                        hw->name, __func__, len);
1116                 for (i = 0; i < len; i++)
1117                         printk("%02x ", buf[i]);
1118                 printk("\n");
1119         }
1120
1121         if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1122                 /* the threshold mask is in the 2nd status byte */
1123                 hw->threshold_mask = buf[1];
1124
1125                 /* signal S0 layer1 state change */
1126                 if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1127                         hw->dch.state = (buf[0] >> 4);
1128                         schedule_event(&hw->dch, FLG_PHCHANGE);
1129                 }
1130
1131                 eof[fifon] = buf[0] & 1;
1132                 /* if we have more than the 2 status bytes -> collect data */
1133                 if (len > 2)
1134                         hfcsusb_rx_frame(fifo, buf + 2,
1135                                          urb->actual_length - 2,
1136                                          (len < maxlen) ? eof[fifon] : 0);
1137         } else {
1138                 hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1139                                  (len < maxlen) ? eof[fifon] : 0);
1140         }
1141         fifo->last_urblen = urb->actual_length;
1142
1143         status = usb_submit_urb(urb, GFP_ATOMIC);
1144         if (status) {
1145                 if (debug & DEBUG_HW)
1146                         printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1147                                hw->name, __func__);
1148         }
1149 }
1150
1151 /* transmit completion routine for all ISO tx fifos */
1152 static void
1153 tx_iso_complete(struct urb *urb)
1154 {
1155         struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1156         struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1157         struct hfcsusb *hw = fifo->hw;
1158         struct sk_buff *tx_skb;
1159         int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1160                 errcode, hdlc, i;
1161         int *tx_idx;
1162         int frame_complete, fifon, status, fillempty = 0;
1163         __u8 threshbit, *p;
1164         unsigned long flags;
1165
1166         spin_lock_irqsave(&hw->lock, flags);
1167         if (fifo->stop_gracefull) {
1168                 fifo->stop_gracefull = 0;
1169                 fifo->active = 0;
1170                 spin_unlock_irqrestore(&hw->lock, flags);
1171                 return;
1172         }
1173
1174         if (fifo->dch) {
1175                 tx_skb = fifo->dch->tx_skb;
1176                 tx_idx = &fifo->dch->tx_idx;
1177                 hdlc = 1;
1178         } else if (fifo->bch) {
1179                 tx_skb = fifo->bch->tx_skb;
1180                 tx_idx = &fifo->bch->tx_idx;
1181                 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1182                 if (!tx_skb && !hdlc &&
1183                     test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1184                         fillempty = 1;
1185         } else {
1186                 printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1187                        hw->name, __func__);
1188                 spin_unlock_irqrestore(&hw->lock, flags);
1189                 return;
1190         }
1191
1192         fifon = fifo->fifonum;
1193         status = urb->status;
1194
1195         tx_offset = 0;
1196
1197         /*
1198          * ISO transfer only partially completed,
1199          * look at individual frame status for details
1200          */
1201         if (status == -EXDEV) {
1202                 if (debug & DBG_HFC_URB_ERROR)
1203                         printk(KERN_DEBUG "%s: %s: "
1204                                "-EXDEV (%i) fifon (%d)\n",
1205                                hw->name, __func__, status, fifon);
1206
1207                 /* clear status, so go on with ISO transfers */
1208                 status = 0;
1209         }
1210
1211         if (fifo->active && !status) {
1212                 /* is FifoFull-threshold set for our channel? */
1213                 threshbit = (hw->threshold_mask & (1 << fifon));
1214                 num_isoc_packets = iso_packets[fifon];
1215
1216                 /* predict dataflow to avoid fifo overflow */
1217                 if (fifon >= HFCUSB_D_TX)
1218                         sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1219                 else
1220                         sink = (threshbit) ? SINK_MIN : SINK_MAX;
1221                 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1222                               context_iso_urb->buffer, num_isoc_packets,
1223                               fifo->usb_packet_maxlen, fifo->intervall,
1224                               (usb_complete_t)tx_iso_complete, urb->context);
1225                 memset(context_iso_urb->buffer, 0,
1226                        sizeof(context_iso_urb->buffer));
1227                 frame_complete = 0;
1228
1229                 for (k = 0; k < num_isoc_packets; ++k) {
1230                         /* analyze tx success of previous ISO packets */
1231                         if (debug & DBG_HFC_URB_ERROR) {
1232                                 errcode = urb->iso_frame_desc[k].status;
1233                                 if (errcode) {
1234                                         printk(KERN_DEBUG "%s: %s: "
1235                                                "ISO packet %i, status: %i\n",
1236                                                hw->name, __func__, k, errcode);
1237                                 }
1238                         }
1239
1240                         /* Generate next ISO Packets */
1241                         if (tx_skb)
1242                                 remain = tx_skb->len - *tx_idx;
1243                         else if (fillempty)
1244                                 remain = 15; /* > not complete */
1245                         else
1246                                 remain = 0;
1247
1248                         if (remain > 0) {
1249                                 fifo->bit_line -= sink;
1250                                 current_len = (0 - fifo->bit_line) / 8;
1251                                 if (current_len > 14)
1252                                         current_len = 14;
1253                                 if (current_len < 0)
1254                                         current_len = 0;
1255                                 if (remain < current_len)
1256                                         current_len = remain;
1257
1258                                 /* how much bit do we put on the line? */
1259                                 fifo->bit_line += current_len * 8;
1260
1261                                 context_iso_urb->buffer[tx_offset] = 0;
1262                                 if (current_len == remain) {
1263                                         if (hdlc) {
1264                                                 /* signal frame completion */
1265                                                 context_iso_urb->
1266                                                         buffer[tx_offset] = 1;
1267                                                 /* add 2 byte flags and 16bit
1268                                                  * CRC at end of ISDN frame */
1269                                                 fifo->bit_line += 32;
1270                                         }
1271                                         frame_complete = 1;
1272                                 }
1273
1274                                 /* copy tx data to iso-urb buffer */
1275                                 p = context_iso_urb->buffer + tx_offset + 1;
1276                                 if (fillempty) {
1277                                         memset(p, fifo->bch->fill[0],
1278                                                current_len);
1279                                 } else {
1280                                         memcpy(p, (tx_skb->data + *tx_idx),
1281                                                current_len);
1282                                         *tx_idx += current_len;
1283                                 }
1284                                 urb->iso_frame_desc[k].offset = tx_offset;
1285                                 urb->iso_frame_desc[k].length = current_len + 1;
1286
1287                                 /* USB data log for every D ISO out */
1288                                 if ((fifon == HFCUSB_D_RX) && !fillempty &&
1289                                     (debug & DBG_HFC_USB_VERBOSE)) {
1290                                         printk(KERN_DEBUG
1291                                                "%s: %s (%d/%d) offs(%d) len(%d) ",
1292                                                hw->name, __func__,
1293                                                k, num_isoc_packets - 1,
1294                                                urb->iso_frame_desc[k].offset,
1295                                                urb->iso_frame_desc[k].length);
1296
1297                                         for (i = urb->iso_frame_desc[k].offset;
1298                                              i < (urb->iso_frame_desc[k].offset
1299                                                   + urb->iso_frame_desc[k].length);
1300                                              i++)
1301                                                 printk("%x ",
1302                                                        context_iso_urb->buffer[i]);
1303
1304                                         printk(" skb->len(%i) tx-idx(%d)\n",
1305                                                tx_skb->len, *tx_idx);
1306                                 }
1307
1308                                 tx_offset += (current_len + 1);
1309                         } else {
1310                                 urb->iso_frame_desc[k].offset = tx_offset++;
1311                                 urb->iso_frame_desc[k].length = 1;
1312                                 /* we lower data margin every msec */
1313                                 fifo->bit_line -= sink;
1314                                 if (fifo->bit_line < BITLINE_INF)
1315                                         fifo->bit_line = BITLINE_INF;
1316                         }
1317
1318                         if (frame_complete) {
1319                                 frame_complete = 0;
1320
1321                                 if (debug & DBG_HFC_FIFO_VERBOSE) {
1322                                         printk(KERN_DEBUG  "%s: %s: "
1323                                                "fifon(%i) new TX len(%i): ",
1324                                                hw->name, __func__,
1325                                                fifon, tx_skb->len);
1326                                         i = 0;
1327                                         while (i < tx_skb->len)
1328                                                 printk("%02x ",
1329                                                        tx_skb->data[i++]);
1330                                         printk("\n");
1331                                 }
1332
1333                                 dev_kfree_skb(tx_skb);
1334                                 tx_skb = NULL;
1335                                 if (fifo->dch && get_next_dframe(fifo->dch))
1336                                         tx_skb = fifo->dch->tx_skb;
1337                                 else if (fifo->bch &&
1338                                          get_next_bframe(fifo->bch))
1339                                         tx_skb = fifo->bch->tx_skb;
1340                         }
1341                 }
1342                 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1343                 if (errcode < 0) {
1344                         if (debug & DEBUG_HW)
1345                                 printk(KERN_DEBUG
1346                                        "%s: %s: error submitting ISO URB: %d \n",
1347                                        hw->name, __func__, errcode);
1348                 }
1349
1350                 /*
1351                  * abuse DChannel tx iso completion to trigger NT mode state
1352                  * changes tx_iso_complete is assumed to be called every
1353                  * fifo->intervall (ms)
1354                  */
1355                 if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1356                     && (hw->timers & NT_ACTIVATION_TIMER)) {
1357                         if ((--hw->nt_timer) < 0)
1358                                 schedule_event(&hw->dch, FLG_PHCHANGE);
1359                 }
1360
1361         } else {
1362                 if (status && (debug & DBG_HFC_URB_ERROR))
1363                         printk(KERN_DEBUG  "%s: %s: urb->status %s (%i)"
1364                                "fifonum=%d\n",
1365                                hw->name, __func__,
1366                                symbolic(urb_errlist, status), status, fifon);
1367         }
1368         spin_unlock_irqrestore(&hw->lock, flags);
1369 }
1370
1371 /*
1372  * allocs urbs and start isoc transfer with two pending urbs to avoid
1373  * gaps in the transfer chain
1374  */
1375 static int
1376 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1377                  usb_complete_t complete, int packet_size)
1378 {
1379         struct hfcsusb *hw = fifo->hw;
1380         int i, k, errcode;
1381
1382         if (debug)
1383                 printk(KERN_DEBUG "%s: %s: fifo %i\n",
1384                        hw->name, __func__, fifo->fifonum);
1385
1386         /* allocate Memory for Iso out Urbs */
1387         for (i = 0; i < 2; i++) {
1388                 if (!(fifo->iso[i].urb)) {
1389                         fifo->iso[i].urb =
1390                                 usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1391                         if (!(fifo->iso[i].urb)) {
1392                                 printk(KERN_DEBUG
1393                                        "%s: %s: alloc urb for fifo %i failed",
1394                                        hw->name, __func__, fifo->fifonum);
1395                                 continue;
1396                         }
1397                         fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1398                         fifo->iso[i].indx = i;
1399
1400                         /* Init the first iso */
1401                         if (ISO_BUFFER_SIZE >=
1402                             (fifo->usb_packet_maxlen *
1403                              num_packets_per_urb)) {
1404                                 fill_isoc_urb(fifo->iso[i].urb,
1405                                               fifo->hw->dev, fifo->pipe,
1406                                               fifo->iso[i].buffer,
1407                                               num_packets_per_urb,
1408                                               fifo->usb_packet_maxlen,
1409                                               fifo->intervall, complete,
1410                                               &fifo->iso[i]);
1411                                 memset(fifo->iso[i].buffer, 0,
1412                                        sizeof(fifo->iso[i].buffer));
1413
1414                                 for (k = 0; k < num_packets_per_urb; k++) {
1415                                         fifo->iso[i].urb->
1416                                                 iso_frame_desc[k].offset =
1417                                                 k * packet_size;
1418                                         fifo->iso[i].urb->
1419                                                 iso_frame_desc[k].length =
1420                                                 packet_size;
1421                                 }
1422                         } else {
1423                                 printk(KERN_DEBUG
1424                                        "%s: %s: ISO Buffer size to small!\n",
1425                                        hw->name, __func__);
1426                         }
1427                 }
1428                 fifo->bit_line = BITLINE_INF;
1429
1430                 errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1431                 fifo->active = (errcode >= 0) ? 1 : 0;
1432                 fifo->stop_gracefull = 0;
1433                 if (errcode < 0) {
1434                         printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1435                                hw->name, __func__,
1436                                symbolic(urb_errlist, errcode), i);
1437                 }
1438         }
1439         return fifo->active;
1440 }
1441
1442 static void
1443 stop_iso_gracefull(struct usb_fifo *fifo)
1444 {
1445         struct hfcsusb *hw = fifo->hw;
1446         int i, timeout;
1447         u_long flags;
1448
1449         for (i = 0; i < 2; i++) {
1450                 spin_lock_irqsave(&hw->lock, flags);
1451                 if (debug)
1452                         printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1453                                hw->name, __func__, fifo->fifonum, i);
1454                 fifo->stop_gracefull = 1;
1455                 spin_unlock_irqrestore(&hw->lock, flags);
1456         }
1457
1458         for (i = 0; i < 2; i++) {
1459                 timeout = 3;
1460                 while (fifo->stop_gracefull && timeout--)
1461                         schedule_timeout_interruptible((HZ / 1000) * 16);
1462                 if (debug && fifo->stop_gracefull)
1463                         printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1464                                hw->name, __func__, fifo->fifonum, i);
1465         }
1466 }
1467
1468 static void
1469 stop_int_gracefull(struct usb_fifo *fifo)
1470 {
1471         struct hfcsusb *hw = fifo->hw;
1472         int timeout;
1473         u_long flags;
1474
1475         spin_lock_irqsave(&hw->lock, flags);
1476         if (debug)
1477                 printk(KERN_DEBUG "%s: %s for fifo %i\n",
1478                        hw->name, __func__, fifo->fifonum);
1479         fifo->stop_gracefull = 1;
1480         spin_unlock_irqrestore(&hw->lock, flags);
1481
1482         timeout = 3;
1483         while (fifo->stop_gracefull && timeout--)
1484                 schedule_timeout_interruptible((HZ / 1000) * 3);
1485         if (debug && fifo->stop_gracefull)
1486                 printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1487                        hw->name, __func__, fifo->fifonum);
1488 }
1489
1490 /* start the interrupt transfer for the given fifo */
1491 static void
1492 start_int_fifo(struct usb_fifo *fifo)
1493 {
1494         struct hfcsusb *hw = fifo->hw;
1495         int errcode;
1496
1497         if (debug)
1498                 printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1499                        hw->name, __func__, fifo->fifonum);
1500
1501         if (!fifo->urb) {
1502                 fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1503                 if (!fifo->urb)
1504                         return;
1505         }
1506         usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1507                          fifo->buffer, fifo->usb_packet_maxlen,
1508                          (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1509         fifo->active = 1;
1510         fifo->stop_gracefull = 0;
1511         errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1512         if (errcode) {
1513                 printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1514                        hw->name, __func__, errcode);
1515                 fifo->active = 0;
1516         }
1517 }
1518
1519 static void
1520 setPortMode(struct hfcsusb *hw)
1521 {
1522         if (debug & DEBUG_HW)
1523                 printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1524                        (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1525
1526         if (hw->protocol == ISDN_P_TE_S0) {
1527                 write_reg(hw, HFCUSB_SCTRL, 0x40);
1528                 write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1529                 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1530                 write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1531                 write_reg(hw, HFCUSB_STATES, 3);
1532         } else {
1533                 write_reg(hw, HFCUSB_SCTRL, 0x44);
1534                 write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1535                 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1536                 write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1537                 write_reg(hw, HFCUSB_STATES, 1);
1538         }
1539 }
1540
1541 static void
1542 reset_hfcsusb(struct hfcsusb *hw)
1543 {
1544         struct usb_fifo *fifo;
1545         int i;
1546
1547         if (debug & DEBUG_HW)
1548                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1549
1550         /* do Chip reset */
1551         write_reg(hw, HFCUSB_CIRM, 8);
1552
1553         /* aux = output, reset off */
1554         write_reg(hw, HFCUSB_CIRM, 0x10);
1555
1556         /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1557         write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1558                   ((hw->packet_size / 8) << 4));
1559
1560         /* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1561         write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1562
1563         /* enable PCM/GCI master mode */
1564         write_reg(hw, HFCUSB_MST_MODE1, 0);     /* set default values */
1565         write_reg(hw, HFCUSB_MST_MODE0, 1);     /* enable master mode */
1566
1567         /* init the fifos */
1568         write_reg(hw, HFCUSB_F_THRES,
1569                   (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1570
1571         fifo = hw->fifos;
1572         for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1573                 write_reg(hw, HFCUSB_FIFO, i);  /* select the desired fifo */
1574                 fifo[i].max_size =
1575                         (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1576                 fifo[i].last_urblen = 0;
1577
1578                 /* set 2 bit for D- & E-channel */
1579                 write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1580
1581                 /* enable all fifos */
1582                 if (i == HFCUSB_D_TX)
1583                         write_reg(hw, HFCUSB_CON_HDLC,
1584                                   (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1585                 else
1586                         write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1587                 write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1588         }
1589
1590         write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1591         handle_led(hw, LED_POWER_ON);
1592 }
1593
1594 /* start USB data pipes dependand on device's endpoint configuration */
1595 static void
1596 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1597 {
1598         /* quick check if endpoint already running */
1599         if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1600                 return;
1601         if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1602                 return;
1603         if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1604                 return;
1605         if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1606                 return;
1607
1608         /* start rx endpoints using USB INT IN method */
1609         if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1610                 start_int_fifo(hw->fifos + channel * 2 + 1);
1611
1612         /* start rx endpoints using USB ISO IN method */
1613         if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1614                 switch (channel) {
1615                 case HFC_CHAN_D:
1616                         start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1617                                          ISOC_PACKETS_D,
1618                                          (usb_complete_t)rx_iso_complete,
1619                                          16);
1620                         break;
1621                 case HFC_CHAN_E:
1622                         start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1623                                          ISOC_PACKETS_D,
1624                                          (usb_complete_t)rx_iso_complete,
1625                                          16);
1626                         break;
1627                 case HFC_CHAN_B1:
1628                         start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1629                                          ISOC_PACKETS_B,
1630                                          (usb_complete_t)rx_iso_complete,
1631                                          16);
1632                         break;
1633                 case HFC_CHAN_B2:
1634                         start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1635                                          ISOC_PACKETS_B,
1636                                          (usb_complete_t)rx_iso_complete,
1637                                          16);
1638                         break;
1639                 }
1640         }
1641
1642         /* start tx endpoints using USB ISO OUT method */
1643         switch (channel) {
1644         case HFC_CHAN_D:
1645                 start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1646                                  ISOC_PACKETS_B,
1647                                  (usb_complete_t)tx_iso_complete, 1);
1648                 break;
1649         case HFC_CHAN_B1:
1650                 start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1651                                  ISOC_PACKETS_D,
1652                                  (usb_complete_t)tx_iso_complete, 1);
1653                 break;
1654         case HFC_CHAN_B2:
1655                 start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1656                                  ISOC_PACKETS_B,
1657                                  (usb_complete_t)tx_iso_complete, 1);
1658                 break;
1659         }
1660 }
1661
1662 /* stop USB data pipes dependand on device's endpoint configuration */
1663 static void
1664 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1665 {
1666         /* quick check if endpoint currently running */
1667         if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1668                 return;
1669         if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1670                 return;
1671         if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1672                 return;
1673         if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1674                 return;
1675
1676         /* rx endpoints using USB INT IN method */
1677         if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1678                 stop_int_gracefull(hw->fifos + channel * 2 + 1);
1679
1680         /* rx endpoints using USB ISO IN method */
1681         if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1682                 stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1683
1684         /* tx endpoints using USB ISO OUT method */
1685         if (channel != HFC_CHAN_E)
1686                 stop_iso_gracefull(hw->fifos + channel * 2);
1687 }
1688
1689
1690 /* Hardware Initialization */
1691 static int
1692 setup_hfcsusb(struct hfcsusb *hw)
1693 {
1694         void *dmabuf = kmalloc(sizeof(u_char), GFP_KERNEL);
1695         u_char b;
1696         int ret;
1697
1698         if (debug & DBG_HFC_CALL_TRACE)
1699                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1700
1701         if (!dmabuf)
1702                 return -ENOMEM;
1703
1704         ret = read_reg_atomic(hw, HFCUSB_CHIP_ID, dmabuf);
1705
1706         memcpy(&b, dmabuf, sizeof(u_char));
1707         kfree(dmabuf);
1708
1709         /* check the chip id */
1710         if (ret != 1) {
1711                 printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1712                        hw->name, __func__);
1713                 return 1;
1714         }
1715         if (b != HFCUSB_CHIPID) {
1716                 printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1717                        hw->name, __func__, b);
1718                 return 1;
1719         }
1720
1721         /* first set the needed config, interface and alternate */
1722         (void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1723
1724         hw->led_state = 0;
1725
1726         /* init the background machinery for control requests */
1727         hw->ctrl_read.bRequestType = 0xc0;
1728         hw->ctrl_read.bRequest = 1;
1729         hw->ctrl_read.wLength = cpu_to_le16(1);
1730         hw->ctrl_write.bRequestType = 0x40;
1731         hw->ctrl_write.bRequest = 0;
1732         hw->ctrl_write.wLength = 0;
1733         usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1734                              (u_char *)&hw->ctrl_write, NULL, 0,
1735                              (usb_complete_t)ctrl_complete, hw);
1736
1737         reset_hfcsusb(hw);
1738         return 0;
1739 }
1740
1741 static void
1742 release_hw(struct hfcsusb *hw)
1743 {
1744         if (debug & DBG_HFC_CALL_TRACE)
1745                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1746
1747         /*
1748          * stop all endpoints gracefully
1749          * TODO: mISDN_core should generate CLOSE_CHANNEL
1750          *       signals after calling mISDN_unregister_device()
1751          */
1752         hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1753         hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1754         hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1755         if (hw->fifos[HFCUSB_PCM_RX].pipe)
1756                 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1757         if (hw->protocol == ISDN_P_TE_S0)
1758                 l1_event(hw->dch.l1, CLOSE_CHANNEL);
1759
1760         mISDN_unregister_device(&hw->dch.dev);
1761         mISDN_freebchannel(&hw->bch[1]);
1762         mISDN_freebchannel(&hw->bch[0]);
1763         mISDN_freedchannel(&hw->dch);
1764
1765         if (hw->ctrl_urb) {
1766                 usb_kill_urb(hw->ctrl_urb);
1767                 usb_free_urb(hw->ctrl_urb);
1768                 hw->ctrl_urb = NULL;
1769         }
1770
1771         if (hw->intf)
1772                 usb_set_intfdata(hw->intf, NULL);
1773         list_del(&hw->list);
1774         kfree(hw);
1775         hw = NULL;
1776 }
1777
1778 static void
1779 deactivate_bchannel(struct bchannel *bch)
1780 {
1781         struct hfcsusb *hw = bch->hw;
1782         u_long flags;
1783
1784         if (bch->debug & DEBUG_HW)
1785                 printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1786                        hw->name, __func__, bch->nr);
1787
1788         spin_lock_irqsave(&hw->lock, flags);
1789         mISDN_clear_bchannel(bch);
1790         spin_unlock_irqrestore(&hw->lock, flags);
1791         hfcsusb_setup_bch(bch, ISDN_P_NONE);
1792         hfcsusb_stop_endpoint(hw, bch->nr - 1);
1793 }
1794
1795 /*
1796  * Layer 1 B-channel hardware access
1797  */
1798 static int
1799 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1800 {
1801         struct bchannel *bch = container_of(ch, struct bchannel, ch);
1802         int             ret = -EINVAL;
1803
1804         if (bch->debug & DEBUG_HW)
1805                 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1806
1807         switch (cmd) {
1808         case HW_TESTRX_RAW:
1809         case HW_TESTRX_HDLC:
1810         case HW_TESTRX_OFF:
1811                 ret = -EINVAL;
1812                 break;
1813
1814         case CLOSE_CHANNEL:
1815                 test_and_clear_bit(FLG_OPEN, &bch->Flags);
1816                 deactivate_bchannel(bch);
1817                 ch->protocol = ISDN_P_NONE;
1818                 ch->peer = NULL;
1819                 module_put(THIS_MODULE);
1820                 ret = 0;
1821                 break;
1822         case CONTROL_CHANNEL:
1823                 ret = channel_bctrl(bch, arg);
1824                 break;
1825         default:
1826                 printk(KERN_WARNING "%s: unknown prim(%x)\n",
1827                        __func__, cmd);
1828         }
1829         return ret;
1830 }
1831
1832 static int
1833 setup_instance(struct hfcsusb *hw, struct device *parent)
1834 {
1835         u_long  flags;
1836         int     err, i;
1837
1838         if (debug & DBG_HFC_CALL_TRACE)
1839                 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1840
1841         spin_lock_init(&hw->ctrl_lock);
1842         spin_lock_init(&hw->lock);
1843
1844         mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1845         hw->dch.debug = debug & 0xFFFF;
1846         hw->dch.hw = hw;
1847         hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1848         hw->dch.dev.D.send = hfcusb_l2l1D;
1849         hw->dch.dev.D.ctrl = hfc_dctrl;
1850
1851         /* enable E-Channel logging */
1852         if (hw->fifos[HFCUSB_PCM_RX].pipe)
1853                 mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1854
1855         hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1856                 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1857         hw->dch.dev.nrbchan = 2;
1858         for (i = 0; i < 2; i++) {
1859                 hw->bch[i].nr = i + 1;
1860                 set_channelmap(i + 1, hw->dch.dev.channelmap);
1861                 hw->bch[i].debug = debug;
1862                 mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1863                 hw->bch[i].hw = hw;
1864                 hw->bch[i].ch.send = hfcusb_l2l1B;
1865                 hw->bch[i].ch.ctrl = hfc_bctrl;
1866                 hw->bch[i].ch.nr = i + 1;
1867                 list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1868         }
1869
1870         hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1871         hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1872         hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1873         hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1874         hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1875         hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1876         hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1877         hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1878
1879         err = setup_hfcsusb(hw);
1880         if (err)
1881                 goto out;
1882
1883         snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1884                  hfcsusb_cnt + 1);
1885         printk(KERN_INFO "%s: registered as '%s'\n",
1886                DRIVER_NAME, hw->name);
1887
1888         err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1889         if (err)
1890                 goto out;
1891
1892         hfcsusb_cnt++;
1893         write_lock_irqsave(&HFClock, flags);
1894         list_add_tail(&hw->list, &HFClist);
1895         write_unlock_irqrestore(&HFClock, flags);
1896         return 0;
1897
1898 out:
1899         mISDN_freebchannel(&hw->bch[1]);
1900         mISDN_freebchannel(&hw->bch[0]);
1901         mISDN_freedchannel(&hw->dch);
1902         kfree(hw);
1903         return err;
1904 }
1905
1906 static int
1907 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1908 {
1909         struct hfcsusb                  *hw;
1910         struct usb_device               *dev = interface_to_usbdev(intf);
1911         struct usb_host_interface       *iface = intf->cur_altsetting;
1912         struct usb_host_interface       *iface_used = NULL;
1913         struct usb_host_endpoint        *ep;
1914         struct hfcsusb_vdata            *driver_info;
1915         int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1916                 probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1917                 ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1918                 alt_used = 0;
1919
1920         vend_idx = 0xffff;
1921         for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1922                 if ((le16_to_cpu(dev->descriptor.idVendor)
1923                      == hfcsusb_idtab[i].idVendor) &&
1924                     (le16_to_cpu(dev->descriptor.idProduct)
1925                      == hfcsusb_idtab[i].idProduct)) {
1926                         vend_idx = i;
1927                         continue;
1928                 }
1929         }
1930
1931         printk(KERN_DEBUG
1932                "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1933                __func__, ifnum, iface->desc.bAlternateSetting,
1934                intf->minor, vend_idx);
1935
1936         if (vend_idx == 0xffff) {
1937                 printk(KERN_WARNING
1938                        "%s: no valid vendor found in USB descriptor\n",
1939                        __func__);
1940                 return -EIO;
1941         }
1942         /* if vendor and product ID is OK, start probing alternate settings */
1943         alt_idx = 0;
1944         small_match = -1;
1945
1946         /* default settings */
1947         iso_packet_size = 16;
1948         packet_size = 64;
1949
1950         while (alt_idx < intf->num_altsetting) {
1951                 iface = intf->altsetting + alt_idx;
1952                 probe_alt_setting = iface->desc.bAlternateSetting;
1953                 cfg_used = 0;
1954
1955                 while (validconf[cfg_used][0]) {
1956                         cfg_found = 1;
1957                         vcf = validconf[cfg_used];
1958                         ep = iface->endpoint;
1959                         memcpy(cmptbl, vcf, 16 * sizeof(int));
1960
1961                         /* check for all endpoints in this alternate setting */
1962                         for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1963                                 ep_addr = ep->desc.bEndpointAddress;
1964
1965                                 /* get endpoint base */
1966                                 idx = ((ep_addr & 0x7f) - 1) * 2;
1967                                 if (idx > 15)
1968                                         return -EIO;
1969
1970                                 if (ep_addr & 0x80)
1971                                         idx++;
1972                                 attr = ep->desc.bmAttributes;
1973
1974                                 if (cmptbl[idx] != EP_NOP) {
1975                                         if (cmptbl[idx] == EP_NUL)
1976                                                 cfg_found = 0;
1977                                         if (attr == USB_ENDPOINT_XFER_INT
1978                                             && cmptbl[idx] == EP_INT)
1979                                                 cmptbl[idx] = EP_NUL;
1980                                         if (attr == USB_ENDPOINT_XFER_BULK
1981                                             && cmptbl[idx] == EP_BLK)
1982                                                 cmptbl[idx] = EP_NUL;
1983                                         if (attr == USB_ENDPOINT_XFER_ISOC
1984                                             && cmptbl[idx] == EP_ISO)
1985                                                 cmptbl[idx] = EP_NUL;
1986
1987                                         if (attr == USB_ENDPOINT_XFER_INT &&
1988                                             ep->desc.bInterval < vcf[17]) {
1989                                                 cfg_found = 0;
1990                                         }
1991                                 }
1992                                 ep++;
1993                         }
1994
1995                         for (i = 0; i < 16; i++)
1996                                 if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
1997                                         cfg_found = 0;
1998
1999                         if (cfg_found) {
2000                                 if (small_match < cfg_used) {
2001                                         small_match = cfg_used;
2002                                         alt_used = probe_alt_setting;
2003                                         iface_used = iface;
2004                                 }
2005                         }
2006                         cfg_used++;
2007                 }
2008                 alt_idx++;
2009         }       /* (alt_idx < intf->num_altsetting) */
2010
2011         /* not found a valid USB Ta Endpoint config */
2012         if (small_match == -1)
2013                 return -EIO;
2014
2015         iface = iface_used;
2016         hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2017         if (!hw)
2018                 return -ENOMEM; /* got no mem */
2019         snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2020
2021         ep = iface->endpoint;
2022         vcf = validconf[small_match];
2023
2024         for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2025                 struct usb_fifo *f;
2026
2027                 ep_addr = ep->desc.bEndpointAddress;
2028                 /* get endpoint base */
2029                 idx = ((ep_addr & 0x7f) - 1) * 2;
2030                 if (ep_addr & 0x80)
2031                         idx++;
2032                 f = &hw->fifos[idx & 7];
2033
2034                 /* init Endpoints */
2035                 if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2036                         ep++;
2037                         continue;
2038                 }
2039                 switch (ep->desc.bmAttributes) {
2040                 case USB_ENDPOINT_XFER_INT:
2041                         f->pipe = usb_rcvintpipe(dev,
2042                                                  ep->desc.bEndpointAddress);
2043                         f->usb_transfer_mode = USB_INT;
2044                         packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2045                         break;
2046                 case USB_ENDPOINT_XFER_BULK:
2047                         if (ep_addr & 0x80)
2048                                 f->pipe = usb_rcvbulkpipe(dev,
2049                                                           ep->desc.bEndpointAddress);
2050                         else
2051                                 f->pipe = usb_sndbulkpipe(dev,
2052                                                           ep->desc.bEndpointAddress);
2053                         f->usb_transfer_mode = USB_BULK;
2054                         packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2055                         break;
2056                 case USB_ENDPOINT_XFER_ISOC:
2057                         if (ep_addr & 0x80)
2058                                 f->pipe = usb_rcvisocpipe(dev,
2059                                                           ep->desc.bEndpointAddress);
2060                         else
2061                                 f->pipe = usb_sndisocpipe(dev,
2062                                                           ep->desc.bEndpointAddress);
2063                         f->usb_transfer_mode = USB_ISOC;
2064                         iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2065                         break;
2066                 default:
2067                         f->pipe = 0;
2068                 }
2069
2070                 if (f->pipe) {
2071                         f->fifonum = idx & 7;
2072                         f->hw = hw;
2073                         f->usb_packet_maxlen =
2074                                 le16_to_cpu(ep->desc.wMaxPacketSize);
2075                         f->intervall = ep->desc.bInterval;
2076                 }
2077                 ep++;
2078         }
2079         hw->dev = dev; /* save device */
2080         hw->if_used = ifnum; /* save used interface */
2081         hw->alt_used = alt_used; /* and alternate config */
2082         hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2083         hw->cfg_used = vcf[16]; /* store used config */
2084         hw->vend_idx = vend_idx; /* store found vendor */
2085         hw->packet_size = packet_size;
2086         hw->iso_packet_size = iso_packet_size;
2087
2088         /* create the control pipes needed for register access */
2089         hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2090         hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2091
2092         driver_info = (struct hfcsusb_vdata *)
2093                       hfcsusb_idtab[vend_idx].driver_info;
2094
2095         hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2096         if (!hw->ctrl_urb) {
2097                 pr_warn("%s: No memory for control urb\n",
2098                         driver_info->vend_name);
2099                 kfree(hw);
2100                 return -ENOMEM;
2101         }
2102
2103         pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2104                 hw->name, __func__, driver_info->vend_name,
2105                 conf_str[small_match], ifnum, alt_used);
2106
2107         if (setup_instance(hw, dev->dev.parent))
2108                 return -EIO;
2109
2110         hw->intf = intf;
2111         usb_set_intfdata(hw->intf, hw);
2112         return 0;
2113 }
2114
2115 /* function called when an active device is removed */
2116 static void
2117 hfcsusb_disconnect(struct usb_interface *intf)
2118 {
2119         struct hfcsusb *hw = usb_get_intfdata(intf);
2120         struct hfcsusb *next;
2121         int cnt = 0;
2122
2123         printk(KERN_INFO "%s: device disconnected\n", hw->name);
2124
2125         handle_led(hw, LED_POWER_OFF);
2126         release_hw(hw);
2127
2128         list_for_each_entry_safe(hw, next, &HFClist, list)
2129                 cnt++;
2130         if (!cnt)
2131                 hfcsusb_cnt = 0;
2132
2133         usb_set_intfdata(intf, NULL);
2134 }
2135
2136 static struct usb_driver hfcsusb_drv = {
2137         .name = DRIVER_NAME,
2138         .id_table = hfcsusb_idtab,
2139         .probe = hfcsusb_probe,
2140         .disconnect = hfcsusb_disconnect,
2141         .disable_hub_initiated_lpm = 1,
2142 };
2143
2144 module_usb_driver(hfcsusb_drv);