Merge tag '5.15-rc-ksmbd-part2' of git://git.samba.org/ksmbd
[linux-2.6-microblaze.git] / drivers / irqchip / irq-gic.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
4  *
5  * Interrupt architecture for the GIC:
6  *
7  * o There is one Interrupt Distributor, which receives interrupts
8  *   from system devices and sends them to the Interrupt Controllers.
9  *
10  * o There is one CPU Interface per CPU, which sends interrupts sent
11  *   by the Distributor, and interrupts generated locally, to the
12  *   associated CPU. The base address of the CPU interface is usually
13  *   aliased so that the same address points to different chips depending
14  *   on the CPU it is accessed from.
15  *
16  * Note that IRQs 0-31 are special - they are local to each CPU.
17  * As such, the enable set/clear, pending set/clear and active bit
18  * registers are banked per-cpu for these sources.
19  */
20 #include <linux/init.h>
21 #include <linux/kernel.h>
22 #include <linux/err.h>
23 #include <linux/module.h>
24 #include <linux/list.h>
25 #include <linux/smp.h>
26 #include <linux/cpu.h>
27 #include <linux/cpu_pm.h>
28 #include <linux/cpumask.h>
29 #include <linux/io.h>
30 #include <linux/of.h>
31 #include <linux/of_address.h>
32 #include <linux/of_irq.h>
33 #include <linux/acpi.h>
34 #include <linux/irqdomain.h>
35 #include <linux/interrupt.h>
36 #include <linux/percpu.h>
37 #include <linux/slab.h>
38 #include <linux/irqchip.h>
39 #include <linux/irqchip/chained_irq.h>
40 #include <linux/irqchip/arm-gic.h>
41
42 #include <asm/cputype.h>
43 #include <asm/irq.h>
44 #include <asm/exception.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47
48 #include "irq-gic-common.h"
49
50 #ifdef CONFIG_ARM64
51 #include <asm/cpufeature.h>
52
53 static void gic_check_cpu_features(void)
54 {
55         WARN_TAINT_ONCE(this_cpu_has_cap(ARM64_HAS_SYSREG_GIC_CPUIF),
56                         TAINT_CPU_OUT_OF_SPEC,
57                         "GICv3 system registers enabled, broken firmware!\n");
58 }
59 #else
60 #define gic_check_cpu_features()        do { } while(0)
61 #endif
62
63 union gic_base {
64         void __iomem *common_base;
65         void __percpu * __iomem *percpu_base;
66 };
67
68 struct gic_chip_data {
69         struct irq_chip chip;
70         union gic_base dist_base;
71         union gic_base cpu_base;
72         void __iomem *raw_dist_base;
73         void __iomem *raw_cpu_base;
74         u32 percpu_offset;
75 #if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM)
76         u32 saved_spi_enable[DIV_ROUND_UP(1020, 32)];
77         u32 saved_spi_active[DIV_ROUND_UP(1020, 32)];
78         u32 saved_spi_conf[DIV_ROUND_UP(1020, 16)];
79         u32 saved_spi_target[DIV_ROUND_UP(1020, 4)];
80         u32 __percpu *saved_ppi_enable;
81         u32 __percpu *saved_ppi_active;
82         u32 __percpu *saved_ppi_conf;
83 #endif
84         struct irq_domain *domain;
85         unsigned int gic_irqs;
86 };
87
88 #ifdef CONFIG_BL_SWITCHER
89
90 static DEFINE_RAW_SPINLOCK(cpu_map_lock);
91
92 #define gic_lock_irqsave(f)             \
93         raw_spin_lock_irqsave(&cpu_map_lock, (f))
94 #define gic_unlock_irqrestore(f)        \
95         raw_spin_unlock_irqrestore(&cpu_map_lock, (f))
96
97 #define gic_lock()                      raw_spin_lock(&cpu_map_lock)
98 #define gic_unlock()                    raw_spin_unlock(&cpu_map_lock)
99
100 #else
101
102 #define gic_lock_irqsave(f)             do { (void)(f); } while(0)
103 #define gic_unlock_irqrestore(f)        do { (void)(f); } while(0)
104
105 #define gic_lock()                      do { } while(0)
106 #define gic_unlock()                    do { } while(0)
107
108 #endif
109
110 /*
111  * The GIC mapping of CPU interfaces does not necessarily match
112  * the logical CPU numbering.  Let's use a mapping as returned
113  * by the GIC itself.
114  */
115 #define NR_GIC_CPU_IF 8
116 static u8 gic_cpu_map[NR_GIC_CPU_IF] __read_mostly;
117
118 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
119
120 static struct gic_chip_data gic_data[CONFIG_ARM_GIC_MAX_NR] __read_mostly;
121
122 static struct gic_kvm_info gic_v2_kvm_info __initdata;
123
124 static DEFINE_PER_CPU(u32, sgi_intid);
125
126 #ifdef CONFIG_GIC_NON_BANKED
127 static DEFINE_STATIC_KEY_FALSE(frankengic_key);
128
129 static void enable_frankengic(void)
130 {
131         static_branch_enable(&frankengic_key);
132 }
133
134 static inline void __iomem *__get_base(union gic_base *base)
135 {
136         if (static_branch_unlikely(&frankengic_key))
137                 return raw_cpu_read(*base->percpu_base);
138
139         return base->common_base;
140 }
141
142 #define gic_data_dist_base(d)   __get_base(&(d)->dist_base)
143 #define gic_data_cpu_base(d)    __get_base(&(d)->cpu_base)
144 #else
145 #define gic_data_dist_base(d)   ((d)->dist_base.common_base)
146 #define gic_data_cpu_base(d)    ((d)->cpu_base.common_base)
147 #define enable_frankengic()     do { } while(0)
148 #endif
149
150 static inline void __iomem *gic_dist_base(struct irq_data *d)
151 {
152         struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
153         return gic_data_dist_base(gic_data);
154 }
155
156 static inline void __iomem *gic_cpu_base(struct irq_data *d)
157 {
158         struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
159         return gic_data_cpu_base(gic_data);
160 }
161
162 static inline unsigned int gic_irq(struct irq_data *d)
163 {
164         return d->hwirq;
165 }
166
167 static inline bool cascading_gic_irq(struct irq_data *d)
168 {
169         void *data = irq_data_get_irq_handler_data(d);
170
171         /*
172          * If handler_data is set, this is a cascading interrupt, and
173          * it cannot possibly be forwarded.
174          */
175         return data != NULL;
176 }
177
178 /*
179  * Routines to acknowledge, disable and enable interrupts
180  */
181 static void gic_poke_irq(struct irq_data *d, u32 offset)
182 {
183         u32 mask = 1 << (gic_irq(d) % 32);
184         writel_relaxed(mask, gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4);
185 }
186
187 static int gic_peek_irq(struct irq_data *d, u32 offset)
188 {
189         u32 mask = 1 << (gic_irq(d) % 32);
190         return !!(readl_relaxed(gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4) & mask);
191 }
192
193 static void gic_mask_irq(struct irq_data *d)
194 {
195         gic_poke_irq(d, GIC_DIST_ENABLE_CLEAR);
196 }
197
198 static void gic_eoimode1_mask_irq(struct irq_data *d)
199 {
200         gic_mask_irq(d);
201         /*
202          * When masking a forwarded interrupt, make sure it is
203          * deactivated as well.
204          *
205          * This ensures that an interrupt that is getting
206          * disabled/masked will not get "stuck", because there is
207          * noone to deactivate it (guest is being terminated).
208          */
209         if (irqd_is_forwarded_to_vcpu(d))
210                 gic_poke_irq(d, GIC_DIST_ACTIVE_CLEAR);
211 }
212
213 static void gic_unmask_irq(struct irq_data *d)
214 {
215         gic_poke_irq(d, GIC_DIST_ENABLE_SET);
216 }
217
218 static void gic_eoi_irq(struct irq_data *d)
219 {
220         u32 hwirq = gic_irq(d);
221
222         if (hwirq < 16)
223                 hwirq = this_cpu_read(sgi_intid);
224
225         writel_relaxed(hwirq, gic_cpu_base(d) + GIC_CPU_EOI);
226 }
227
228 static void gic_eoimode1_eoi_irq(struct irq_data *d)
229 {
230         u32 hwirq = gic_irq(d);
231
232         /* Do not deactivate an IRQ forwarded to a vcpu. */
233         if (irqd_is_forwarded_to_vcpu(d))
234                 return;
235
236         if (hwirq < 16)
237                 hwirq = this_cpu_read(sgi_intid);
238
239         writel_relaxed(hwirq, gic_cpu_base(d) + GIC_CPU_DEACTIVATE);
240 }
241
242 static int gic_irq_set_irqchip_state(struct irq_data *d,
243                                      enum irqchip_irq_state which, bool val)
244 {
245         u32 reg;
246
247         switch (which) {
248         case IRQCHIP_STATE_PENDING:
249                 reg = val ? GIC_DIST_PENDING_SET : GIC_DIST_PENDING_CLEAR;
250                 break;
251
252         case IRQCHIP_STATE_ACTIVE:
253                 reg = val ? GIC_DIST_ACTIVE_SET : GIC_DIST_ACTIVE_CLEAR;
254                 break;
255
256         case IRQCHIP_STATE_MASKED:
257                 reg = val ? GIC_DIST_ENABLE_CLEAR : GIC_DIST_ENABLE_SET;
258                 break;
259
260         default:
261                 return -EINVAL;
262         }
263
264         gic_poke_irq(d, reg);
265         return 0;
266 }
267
268 static int gic_irq_get_irqchip_state(struct irq_data *d,
269                                       enum irqchip_irq_state which, bool *val)
270 {
271         switch (which) {
272         case IRQCHIP_STATE_PENDING:
273                 *val = gic_peek_irq(d, GIC_DIST_PENDING_SET);
274                 break;
275
276         case IRQCHIP_STATE_ACTIVE:
277                 *val = gic_peek_irq(d, GIC_DIST_ACTIVE_SET);
278                 break;
279
280         case IRQCHIP_STATE_MASKED:
281                 *val = !gic_peek_irq(d, GIC_DIST_ENABLE_SET);
282                 break;
283
284         default:
285                 return -EINVAL;
286         }
287
288         return 0;
289 }
290
291 static int gic_set_type(struct irq_data *d, unsigned int type)
292 {
293         void __iomem *base = gic_dist_base(d);
294         unsigned int gicirq = gic_irq(d);
295         int ret;
296
297         /* Interrupt configuration for SGIs can't be changed */
298         if (gicirq < 16)
299                 return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
300
301         /* SPIs have restrictions on the supported types */
302         if (gicirq >= 32 && type != IRQ_TYPE_LEVEL_HIGH &&
303                             type != IRQ_TYPE_EDGE_RISING)
304                 return -EINVAL;
305
306         ret = gic_configure_irq(gicirq, type, base + GIC_DIST_CONFIG, NULL);
307         if (ret && gicirq < 32) {
308                 /* Misconfigured PPIs are usually not fatal */
309                 pr_warn("GIC: PPI%d is secure or misconfigured\n", gicirq - 16);
310                 ret = 0;
311         }
312
313         return ret;
314 }
315
316 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
317 {
318         /* Only interrupts on the primary GIC can be forwarded to a vcpu. */
319         if (cascading_gic_irq(d) || gic_irq(d) < 16)
320                 return -EINVAL;
321
322         if (vcpu)
323                 irqd_set_forwarded_to_vcpu(d);
324         else
325                 irqd_clr_forwarded_to_vcpu(d);
326         return 0;
327 }
328
329 static int gic_retrigger(struct irq_data *data)
330 {
331         return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
332 }
333
334 static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
335 {
336         u32 irqstat, irqnr;
337         struct gic_chip_data *gic = &gic_data[0];
338         void __iomem *cpu_base = gic_data_cpu_base(gic);
339
340         do {
341                 irqstat = readl_relaxed(cpu_base + GIC_CPU_INTACK);
342                 irqnr = irqstat & GICC_IAR_INT_ID_MASK;
343
344                 if (unlikely(irqnr >= 1020))
345                         break;
346
347                 if (static_branch_likely(&supports_deactivate_key))
348                         writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI);
349                 isb();
350
351                 /*
352                  * Ensure any shared data written by the CPU sending the IPI
353                  * is read after we've read the ACK register on the GIC.
354                  *
355                  * Pairs with the write barrier in gic_ipi_send_mask
356                  */
357                 if (irqnr <= 15) {
358                         smp_rmb();
359
360                         /*
361                          * The GIC encodes the source CPU in GICC_IAR,
362                          * leading to the deactivation to fail if not
363                          * written back as is to GICC_EOI.  Stash the INTID
364                          * away for gic_eoi_irq() to write back.  This only
365                          * works because we don't nest SGIs...
366                          */
367                         this_cpu_write(sgi_intid, irqstat);
368                 }
369
370                 handle_domain_irq(gic->domain, irqnr, regs);
371         } while (1);
372 }
373
374 static void gic_handle_cascade_irq(struct irq_desc *desc)
375 {
376         struct gic_chip_data *chip_data = irq_desc_get_handler_data(desc);
377         struct irq_chip *chip = irq_desc_get_chip(desc);
378         unsigned int gic_irq;
379         unsigned long status;
380         int ret;
381
382         chained_irq_enter(chip, desc);
383
384         status = readl_relaxed(gic_data_cpu_base(chip_data) + GIC_CPU_INTACK);
385
386         gic_irq = (status & GICC_IAR_INT_ID_MASK);
387         if (gic_irq == GICC_INT_SPURIOUS)
388                 goto out;
389
390         isb();
391         ret = generic_handle_domain_irq(chip_data->domain, gic_irq);
392         if (unlikely(ret))
393                 handle_bad_irq(desc);
394  out:
395         chained_irq_exit(chip, desc);
396 }
397
398 static const struct irq_chip gic_chip = {
399         .irq_mask               = gic_mask_irq,
400         .irq_unmask             = gic_unmask_irq,
401         .irq_eoi                = gic_eoi_irq,
402         .irq_set_type           = gic_set_type,
403         .irq_retrigger          = gic_retrigger,
404         .irq_get_irqchip_state  = gic_irq_get_irqchip_state,
405         .irq_set_irqchip_state  = gic_irq_set_irqchip_state,
406         .flags                  = IRQCHIP_SET_TYPE_MASKED |
407                                   IRQCHIP_SKIP_SET_WAKE |
408                                   IRQCHIP_MASK_ON_SUSPEND,
409 };
410
411 void __init gic_cascade_irq(unsigned int gic_nr, unsigned int irq)
412 {
413         BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR);
414         irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq,
415                                          &gic_data[gic_nr]);
416 }
417
418 static u8 gic_get_cpumask(struct gic_chip_data *gic)
419 {
420         void __iomem *base = gic_data_dist_base(gic);
421         u32 mask, i;
422
423         for (i = mask = 0; i < 32; i += 4) {
424                 mask = readl_relaxed(base + GIC_DIST_TARGET + i);
425                 mask |= mask >> 16;
426                 mask |= mask >> 8;
427                 if (mask)
428                         break;
429         }
430
431         if (!mask && num_possible_cpus() > 1)
432                 pr_crit("GIC CPU mask not found - kernel will fail to boot.\n");
433
434         return mask;
435 }
436
437 static bool gic_check_gicv2(void __iomem *base)
438 {
439         u32 val = readl_relaxed(base + GIC_CPU_IDENT);
440         return (val & 0xff0fff) == 0x02043B;
441 }
442
443 static void gic_cpu_if_up(struct gic_chip_data *gic)
444 {
445         void __iomem *cpu_base = gic_data_cpu_base(gic);
446         u32 bypass = 0;
447         u32 mode = 0;
448         int i;
449
450         if (gic == &gic_data[0] && static_branch_likely(&supports_deactivate_key))
451                 mode = GIC_CPU_CTRL_EOImodeNS;
452
453         if (gic_check_gicv2(cpu_base))
454                 for (i = 0; i < 4; i++)
455                         writel_relaxed(0, cpu_base + GIC_CPU_ACTIVEPRIO + i * 4);
456
457         /*
458         * Preserve bypass disable bits to be written back later
459         */
460         bypass = readl(cpu_base + GIC_CPU_CTRL);
461         bypass &= GICC_DIS_BYPASS_MASK;
462
463         writel_relaxed(bypass | mode | GICC_ENABLE, cpu_base + GIC_CPU_CTRL);
464 }
465
466
467 static void gic_dist_init(struct gic_chip_data *gic)
468 {
469         unsigned int i;
470         u32 cpumask;
471         unsigned int gic_irqs = gic->gic_irqs;
472         void __iomem *base = gic_data_dist_base(gic);
473
474         writel_relaxed(GICD_DISABLE, base + GIC_DIST_CTRL);
475
476         /*
477          * Set all global interrupts to this CPU only.
478          */
479         cpumask = gic_get_cpumask(gic);
480         cpumask |= cpumask << 8;
481         cpumask |= cpumask << 16;
482         for (i = 32; i < gic_irqs; i += 4)
483                 writel_relaxed(cpumask, base + GIC_DIST_TARGET + i * 4 / 4);
484
485         gic_dist_config(base, gic_irqs, NULL);
486
487         writel_relaxed(GICD_ENABLE, base + GIC_DIST_CTRL);
488 }
489
490 static int gic_cpu_init(struct gic_chip_data *gic)
491 {
492         void __iomem *dist_base = gic_data_dist_base(gic);
493         void __iomem *base = gic_data_cpu_base(gic);
494         unsigned int cpu_mask, cpu = smp_processor_id();
495         int i;
496
497         /*
498          * Setting up the CPU map is only relevant for the primary GIC
499          * because any nested/secondary GICs do not directly interface
500          * with the CPU(s).
501          */
502         if (gic == &gic_data[0]) {
503                 /*
504                  * Get what the GIC says our CPU mask is.
505                  */
506                 if (WARN_ON(cpu >= NR_GIC_CPU_IF))
507                         return -EINVAL;
508
509                 gic_check_cpu_features();
510                 cpu_mask = gic_get_cpumask(gic);
511                 gic_cpu_map[cpu] = cpu_mask;
512
513                 /*
514                  * Clear our mask from the other map entries in case they're
515                  * still undefined.
516                  */
517                 for (i = 0; i < NR_GIC_CPU_IF; i++)
518                         if (i != cpu)
519                                 gic_cpu_map[i] &= ~cpu_mask;
520         }
521
522         gic_cpu_config(dist_base, 32, NULL);
523
524         writel_relaxed(GICC_INT_PRI_THRESHOLD, base + GIC_CPU_PRIMASK);
525         gic_cpu_if_up(gic);
526
527         return 0;
528 }
529
530 int gic_cpu_if_down(unsigned int gic_nr)
531 {
532         void __iomem *cpu_base;
533         u32 val = 0;
534
535         if (gic_nr >= CONFIG_ARM_GIC_MAX_NR)
536                 return -EINVAL;
537
538         cpu_base = gic_data_cpu_base(&gic_data[gic_nr]);
539         val = readl(cpu_base + GIC_CPU_CTRL);
540         val &= ~GICC_ENABLE;
541         writel_relaxed(val, cpu_base + GIC_CPU_CTRL);
542
543         return 0;
544 }
545
546 #if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM)
547 /*
548  * Saves the GIC distributor registers during suspend or idle.  Must be called
549  * with interrupts disabled but before powering down the GIC.  After calling
550  * this function, no interrupts will be delivered by the GIC, and another
551  * platform-specific wakeup source must be enabled.
552  */
553 void gic_dist_save(struct gic_chip_data *gic)
554 {
555         unsigned int gic_irqs;
556         void __iomem *dist_base;
557         int i;
558
559         if (WARN_ON(!gic))
560                 return;
561
562         gic_irqs = gic->gic_irqs;
563         dist_base = gic_data_dist_base(gic);
564
565         if (!dist_base)
566                 return;
567
568         for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
569                 gic->saved_spi_conf[i] =
570                         readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
571
572         for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
573                 gic->saved_spi_target[i] =
574                         readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
575
576         for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
577                 gic->saved_spi_enable[i] =
578                         readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
579
580         for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
581                 gic->saved_spi_active[i] =
582                         readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4);
583 }
584
585 /*
586  * Restores the GIC distributor registers during resume or when coming out of
587  * idle.  Must be called before enabling interrupts.  If a level interrupt
588  * that occurred while the GIC was suspended is still present, it will be
589  * handled normally, but any edge interrupts that occurred will not be seen by
590  * the GIC and need to be handled by the platform-specific wakeup source.
591  */
592 void gic_dist_restore(struct gic_chip_data *gic)
593 {
594         unsigned int gic_irqs;
595         unsigned int i;
596         void __iomem *dist_base;
597
598         if (WARN_ON(!gic))
599                 return;
600
601         gic_irqs = gic->gic_irqs;
602         dist_base = gic_data_dist_base(gic);
603
604         if (!dist_base)
605                 return;
606
607         writel_relaxed(GICD_DISABLE, dist_base + GIC_DIST_CTRL);
608
609         for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
610                 writel_relaxed(gic->saved_spi_conf[i],
611                         dist_base + GIC_DIST_CONFIG + i * 4);
612
613         for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
614                 writel_relaxed(GICD_INT_DEF_PRI_X4,
615                         dist_base + GIC_DIST_PRI + i * 4);
616
617         for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
618                 writel_relaxed(gic->saved_spi_target[i],
619                         dist_base + GIC_DIST_TARGET + i * 4);
620
621         for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) {
622                 writel_relaxed(GICD_INT_EN_CLR_X32,
623                         dist_base + GIC_DIST_ENABLE_CLEAR + i * 4);
624                 writel_relaxed(gic->saved_spi_enable[i],
625                         dist_base + GIC_DIST_ENABLE_SET + i * 4);
626         }
627
628         for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) {
629                 writel_relaxed(GICD_INT_EN_CLR_X32,
630                         dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4);
631                 writel_relaxed(gic->saved_spi_active[i],
632                         dist_base + GIC_DIST_ACTIVE_SET + i * 4);
633         }
634
635         writel_relaxed(GICD_ENABLE, dist_base + GIC_DIST_CTRL);
636 }
637
638 void gic_cpu_save(struct gic_chip_data *gic)
639 {
640         int i;
641         u32 *ptr;
642         void __iomem *dist_base;
643         void __iomem *cpu_base;
644
645         if (WARN_ON(!gic))
646                 return;
647
648         dist_base = gic_data_dist_base(gic);
649         cpu_base = gic_data_cpu_base(gic);
650
651         if (!dist_base || !cpu_base)
652                 return;
653
654         ptr = raw_cpu_ptr(gic->saved_ppi_enable);
655         for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
656                 ptr[i] = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
657
658         ptr = raw_cpu_ptr(gic->saved_ppi_active);
659         for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
660                 ptr[i] = readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4);
661
662         ptr = raw_cpu_ptr(gic->saved_ppi_conf);
663         for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
664                 ptr[i] = readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
665
666 }
667
668 void gic_cpu_restore(struct gic_chip_data *gic)
669 {
670         int i;
671         u32 *ptr;
672         void __iomem *dist_base;
673         void __iomem *cpu_base;
674
675         if (WARN_ON(!gic))
676                 return;
677
678         dist_base = gic_data_dist_base(gic);
679         cpu_base = gic_data_cpu_base(gic);
680
681         if (!dist_base || !cpu_base)
682                 return;
683
684         ptr = raw_cpu_ptr(gic->saved_ppi_enable);
685         for (i = 0; i < DIV_ROUND_UP(32, 32); i++) {
686                 writel_relaxed(GICD_INT_EN_CLR_X32,
687                                dist_base + GIC_DIST_ENABLE_CLEAR + i * 4);
688                 writel_relaxed(ptr[i], dist_base + GIC_DIST_ENABLE_SET + i * 4);
689         }
690
691         ptr = raw_cpu_ptr(gic->saved_ppi_active);
692         for (i = 0; i < DIV_ROUND_UP(32, 32); i++) {
693                 writel_relaxed(GICD_INT_EN_CLR_X32,
694                                dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4);
695                 writel_relaxed(ptr[i], dist_base + GIC_DIST_ACTIVE_SET + i * 4);
696         }
697
698         ptr = raw_cpu_ptr(gic->saved_ppi_conf);
699         for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
700                 writel_relaxed(ptr[i], dist_base + GIC_DIST_CONFIG + i * 4);
701
702         for (i = 0; i < DIV_ROUND_UP(32, 4); i++)
703                 writel_relaxed(GICD_INT_DEF_PRI_X4,
704                                         dist_base + GIC_DIST_PRI + i * 4);
705
706         writel_relaxed(GICC_INT_PRI_THRESHOLD, cpu_base + GIC_CPU_PRIMASK);
707         gic_cpu_if_up(gic);
708 }
709
710 static int gic_notifier(struct notifier_block *self, unsigned long cmd, void *v)
711 {
712         int i;
713
714         for (i = 0; i < CONFIG_ARM_GIC_MAX_NR; i++) {
715                 switch (cmd) {
716                 case CPU_PM_ENTER:
717                         gic_cpu_save(&gic_data[i]);
718                         break;
719                 case CPU_PM_ENTER_FAILED:
720                 case CPU_PM_EXIT:
721                         gic_cpu_restore(&gic_data[i]);
722                         break;
723                 case CPU_CLUSTER_PM_ENTER:
724                         gic_dist_save(&gic_data[i]);
725                         break;
726                 case CPU_CLUSTER_PM_ENTER_FAILED:
727                 case CPU_CLUSTER_PM_EXIT:
728                         gic_dist_restore(&gic_data[i]);
729                         break;
730                 }
731         }
732
733         return NOTIFY_OK;
734 }
735
736 static struct notifier_block gic_notifier_block = {
737         .notifier_call = gic_notifier,
738 };
739
740 static int gic_pm_init(struct gic_chip_data *gic)
741 {
742         gic->saved_ppi_enable = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
743                 sizeof(u32));
744         if (WARN_ON(!gic->saved_ppi_enable))
745                 return -ENOMEM;
746
747         gic->saved_ppi_active = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
748                 sizeof(u32));
749         if (WARN_ON(!gic->saved_ppi_active))
750                 goto free_ppi_enable;
751
752         gic->saved_ppi_conf = __alloc_percpu(DIV_ROUND_UP(32, 16) * 4,
753                 sizeof(u32));
754         if (WARN_ON(!gic->saved_ppi_conf))
755                 goto free_ppi_active;
756
757         if (gic == &gic_data[0])
758                 cpu_pm_register_notifier(&gic_notifier_block);
759
760         return 0;
761
762 free_ppi_active:
763         free_percpu(gic->saved_ppi_active);
764 free_ppi_enable:
765         free_percpu(gic->saved_ppi_enable);
766
767         return -ENOMEM;
768 }
769 #else
770 static int gic_pm_init(struct gic_chip_data *gic)
771 {
772         return 0;
773 }
774 #endif
775
776 #ifdef CONFIG_SMP
777 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
778                             bool force)
779 {
780         void __iomem *reg = gic_dist_base(d) + GIC_DIST_TARGET + gic_irq(d);
781         unsigned int cpu;
782
783         if (!force)
784                 cpu = cpumask_any_and(mask_val, cpu_online_mask);
785         else
786                 cpu = cpumask_first(mask_val);
787
788         if (cpu >= NR_GIC_CPU_IF || cpu >= nr_cpu_ids)
789                 return -EINVAL;
790
791         writeb_relaxed(gic_cpu_map[cpu], reg);
792         irq_data_update_effective_affinity(d, cpumask_of(cpu));
793
794         return IRQ_SET_MASK_OK_DONE;
795 }
796
797 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
798 {
799         int cpu;
800         unsigned long flags, map = 0;
801
802         if (unlikely(nr_cpu_ids == 1)) {
803                 /* Only one CPU? let's do a self-IPI... */
804                 writel_relaxed(2 << 24 | d->hwirq,
805                                gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
806                 return;
807         }
808
809         gic_lock_irqsave(flags);
810
811         /* Convert our logical CPU mask into a physical one. */
812         for_each_cpu(cpu, mask)
813                 map |= gic_cpu_map[cpu];
814
815         /*
816          * Ensure that stores to Normal memory are visible to the
817          * other CPUs before they observe us issuing the IPI.
818          */
819         dmb(ishst);
820
821         /* this always happens on GIC0 */
822         writel_relaxed(map << 16 | d->hwirq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
823
824         gic_unlock_irqrestore(flags);
825 }
826
827 static int gic_starting_cpu(unsigned int cpu)
828 {
829         gic_cpu_init(&gic_data[0]);
830         return 0;
831 }
832
833 static __init void gic_smp_init(void)
834 {
835         struct irq_fwspec sgi_fwspec = {
836                 .fwnode         = gic_data[0].domain->fwnode,
837                 .param_count    = 1,
838         };
839         int base_sgi;
840
841         cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
842                                   "irqchip/arm/gic:starting",
843                                   gic_starting_cpu, NULL);
844
845         base_sgi = __irq_domain_alloc_irqs(gic_data[0].domain, -1, 8,
846                                            NUMA_NO_NODE, &sgi_fwspec,
847                                            false, NULL);
848         if (WARN_ON(base_sgi <= 0))
849                 return;
850
851         set_smp_ipi_range(base_sgi, 8);
852 }
853 #else
854 #define gic_smp_init()          do { } while(0)
855 #define gic_set_affinity        NULL
856 #define gic_ipi_send_mask       NULL
857 #endif
858
859 #ifdef CONFIG_BL_SWITCHER
860 /*
861  * gic_send_sgi - send a SGI directly to given CPU interface number
862  *
863  * cpu_id: the ID for the destination CPU interface
864  * irq: the IPI number to send a SGI for
865  */
866 void gic_send_sgi(unsigned int cpu_id, unsigned int irq)
867 {
868         BUG_ON(cpu_id >= NR_GIC_CPU_IF);
869         cpu_id = 1 << cpu_id;
870         /* this always happens on GIC0 */
871         writel_relaxed((cpu_id << 16) | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
872 }
873
874 /*
875  * gic_get_cpu_id - get the CPU interface ID for the specified CPU
876  *
877  * @cpu: the logical CPU number to get the GIC ID for.
878  *
879  * Return the CPU interface ID for the given logical CPU number,
880  * or -1 if the CPU number is too large or the interface ID is
881  * unknown (more than one bit set).
882  */
883 int gic_get_cpu_id(unsigned int cpu)
884 {
885         unsigned int cpu_bit;
886
887         if (cpu >= NR_GIC_CPU_IF)
888                 return -1;
889         cpu_bit = gic_cpu_map[cpu];
890         if (cpu_bit & (cpu_bit - 1))
891                 return -1;
892         return __ffs(cpu_bit);
893 }
894
895 /*
896  * gic_migrate_target - migrate IRQs to another CPU interface
897  *
898  * @new_cpu_id: the CPU target ID to migrate IRQs to
899  *
900  * Migrate all peripheral interrupts with a target matching the current CPU
901  * to the interface corresponding to @new_cpu_id.  The CPU interface mapping
902  * is also updated.  Targets to other CPU interfaces are unchanged.
903  * This must be called with IRQs locally disabled.
904  */
905 void gic_migrate_target(unsigned int new_cpu_id)
906 {
907         unsigned int cur_cpu_id, gic_irqs, gic_nr = 0;
908         void __iomem *dist_base;
909         int i, ror_val, cpu = smp_processor_id();
910         u32 val, cur_target_mask, active_mask;
911
912         BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR);
913
914         dist_base = gic_data_dist_base(&gic_data[gic_nr]);
915         if (!dist_base)
916                 return;
917         gic_irqs = gic_data[gic_nr].gic_irqs;
918
919         cur_cpu_id = __ffs(gic_cpu_map[cpu]);
920         cur_target_mask = 0x01010101 << cur_cpu_id;
921         ror_val = (cur_cpu_id - new_cpu_id) & 31;
922
923         gic_lock();
924
925         /* Update the target interface for this logical CPU */
926         gic_cpu_map[cpu] = 1 << new_cpu_id;
927
928         /*
929          * Find all the peripheral interrupts targeting the current
930          * CPU interface and migrate them to the new CPU interface.
931          * We skip DIST_TARGET 0 to 7 as they are read-only.
932          */
933         for (i = 8; i < DIV_ROUND_UP(gic_irqs, 4); i++) {
934                 val = readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
935                 active_mask = val & cur_target_mask;
936                 if (active_mask) {
937                         val &= ~active_mask;
938                         val |= ror32(active_mask, ror_val);
939                         writel_relaxed(val, dist_base + GIC_DIST_TARGET + i*4);
940                 }
941         }
942
943         gic_unlock();
944
945         /*
946          * Now let's migrate and clear any potential SGIs that might be
947          * pending for us (cur_cpu_id).  Since GIC_DIST_SGI_PENDING_SET
948          * is a banked register, we can only forward the SGI using
949          * GIC_DIST_SOFTINT.  The original SGI source is lost but Linux
950          * doesn't use that information anyway.
951          *
952          * For the same reason we do not adjust SGI source information
953          * for previously sent SGIs by us to other CPUs either.
954          */
955         for (i = 0; i < 16; i += 4) {
956                 int j;
957                 val = readl_relaxed(dist_base + GIC_DIST_SGI_PENDING_SET + i);
958                 if (!val)
959                         continue;
960                 writel_relaxed(val, dist_base + GIC_DIST_SGI_PENDING_CLEAR + i);
961                 for (j = i; j < i + 4; j++) {
962                         if (val & 0xff)
963                                 writel_relaxed((1 << (new_cpu_id + 16)) | j,
964                                                 dist_base + GIC_DIST_SOFTINT);
965                         val >>= 8;
966                 }
967         }
968 }
969
970 /*
971  * gic_get_sgir_physaddr - get the physical address for the SGI register
972  *
973  * Return the physical address of the SGI register to be used
974  * by some early assembly code when the kernel is not yet available.
975  */
976 static unsigned long gic_dist_physaddr;
977
978 unsigned long gic_get_sgir_physaddr(void)
979 {
980         if (!gic_dist_physaddr)
981                 return 0;
982         return gic_dist_physaddr + GIC_DIST_SOFTINT;
983 }
984
985 static void __init gic_init_physaddr(struct device_node *node)
986 {
987         struct resource res;
988         if (of_address_to_resource(node, 0, &res) == 0) {
989                 gic_dist_physaddr = res.start;
990                 pr_info("GIC physical location is %#lx\n", gic_dist_physaddr);
991         }
992 }
993
994 #else
995 #define gic_init_physaddr(node)  do { } while (0)
996 #endif
997
998 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
999                                 irq_hw_number_t hw)
1000 {
1001         struct gic_chip_data *gic = d->host_data;
1002         struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1003
1004         switch (hw) {
1005         case 0 ... 31:
1006                 irq_set_percpu_devid(irq);
1007                 irq_domain_set_info(d, irq, hw, &gic->chip, d->host_data,
1008                                     handle_percpu_devid_irq, NULL, NULL);
1009                 break;
1010         default:
1011                 irq_domain_set_info(d, irq, hw, &gic->chip, d->host_data,
1012                                     handle_fasteoi_irq, NULL, NULL);
1013                 irq_set_probe(irq);
1014                 irqd_set_single_target(irqd);
1015                 break;
1016         }
1017
1018         /* Prevents SW retriggers which mess up the ACK/EOI ordering */
1019         irqd_set_handle_enforce_irqctx(irqd);
1020         return 0;
1021 }
1022
1023 static void gic_irq_domain_unmap(struct irq_domain *d, unsigned int irq)
1024 {
1025 }
1026
1027 static int gic_irq_domain_translate(struct irq_domain *d,
1028                                     struct irq_fwspec *fwspec,
1029                                     unsigned long *hwirq,
1030                                     unsigned int *type)
1031 {
1032         if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1033                 *hwirq = fwspec->param[0];
1034                 *type = IRQ_TYPE_EDGE_RISING;
1035                 return 0;
1036         }
1037
1038         if (is_of_node(fwspec->fwnode)) {
1039                 if (fwspec->param_count < 3)
1040                         return -EINVAL;
1041
1042                 switch (fwspec->param[0]) {
1043                 case 0:                 /* SPI */
1044                         *hwirq = fwspec->param[1] + 32;
1045                         break;
1046                 case 1:                 /* PPI */
1047                         *hwirq = fwspec->param[1] + 16;
1048                         break;
1049                 default:
1050                         return -EINVAL;
1051                 }
1052
1053                 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1054
1055                 /* Make it clear that broken DTs are... broken */
1056                 WARN_ON(*type == IRQ_TYPE_NONE);
1057                 return 0;
1058         }
1059
1060         if (is_fwnode_irqchip(fwspec->fwnode)) {
1061                 if(fwspec->param_count != 2)
1062                         return -EINVAL;
1063
1064                 *hwirq = fwspec->param[0];
1065                 *type = fwspec->param[1];
1066
1067                 WARN_ON(*type == IRQ_TYPE_NONE);
1068                 return 0;
1069         }
1070
1071         return -EINVAL;
1072 }
1073
1074 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1075                                 unsigned int nr_irqs, void *arg)
1076 {
1077         int i, ret;
1078         irq_hw_number_t hwirq;
1079         unsigned int type = IRQ_TYPE_NONE;
1080         struct irq_fwspec *fwspec = arg;
1081
1082         ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1083         if (ret)
1084                 return ret;
1085
1086         for (i = 0; i < nr_irqs; i++) {
1087                 ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1088                 if (ret)
1089                         return ret;
1090         }
1091
1092         return 0;
1093 }
1094
1095 static const struct irq_domain_ops gic_irq_domain_hierarchy_ops = {
1096         .translate = gic_irq_domain_translate,
1097         .alloc = gic_irq_domain_alloc,
1098         .free = irq_domain_free_irqs_top,
1099 };
1100
1101 static const struct irq_domain_ops gic_irq_domain_ops = {
1102         .map = gic_irq_domain_map,
1103         .unmap = gic_irq_domain_unmap,
1104 };
1105
1106 static void gic_init_chip(struct gic_chip_data *gic, struct device *dev,
1107                           const char *name, bool use_eoimode1)
1108 {
1109         /* Initialize irq_chip */
1110         gic->chip = gic_chip;
1111         gic->chip.name = name;
1112         gic->chip.parent_device = dev;
1113
1114         if (use_eoimode1) {
1115                 gic->chip.irq_mask = gic_eoimode1_mask_irq;
1116                 gic->chip.irq_eoi = gic_eoimode1_eoi_irq;
1117                 gic->chip.irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity;
1118         }
1119
1120         if (gic == &gic_data[0]) {
1121                 gic->chip.irq_set_affinity = gic_set_affinity;
1122                 gic->chip.ipi_send_mask = gic_ipi_send_mask;
1123         }
1124 }
1125
1126 static int gic_init_bases(struct gic_chip_data *gic,
1127                           struct fwnode_handle *handle)
1128 {
1129         int gic_irqs, ret;
1130
1131         if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) {
1132                 /* Frankein-GIC without banked registers... */
1133                 unsigned int cpu;
1134
1135                 gic->dist_base.percpu_base = alloc_percpu(void __iomem *);
1136                 gic->cpu_base.percpu_base = alloc_percpu(void __iomem *);
1137                 if (WARN_ON(!gic->dist_base.percpu_base ||
1138                             !gic->cpu_base.percpu_base)) {
1139                         ret = -ENOMEM;
1140                         goto error;
1141                 }
1142
1143                 for_each_possible_cpu(cpu) {
1144                         u32 mpidr = cpu_logical_map(cpu);
1145                         u32 core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
1146                         unsigned long offset = gic->percpu_offset * core_id;
1147                         *per_cpu_ptr(gic->dist_base.percpu_base, cpu) =
1148                                 gic->raw_dist_base + offset;
1149                         *per_cpu_ptr(gic->cpu_base.percpu_base, cpu) =
1150                                 gic->raw_cpu_base + offset;
1151                 }
1152
1153                 enable_frankengic();
1154         } else {
1155                 /* Normal, sane GIC... */
1156                 WARN(gic->percpu_offset,
1157                      "GIC_NON_BANKED not enabled, ignoring %08x offset!",
1158                      gic->percpu_offset);
1159                 gic->dist_base.common_base = gic->raw_dist_base;
1160                 gic->cpu_base.common_base = gic->raw_cpu_base;
1161         }
1162
1163         /*
1164          * Find out how many interrupts are supported.
1165          * The GIC only supports up to 1020 interrupt sources.
1166          */
1167         gic_irqs = readl_relaxed(gic_data_dist_base(gic) + GIC_DIST_CTR) & 0x1f;
1168         gic_irqs = (gic_irqs + 1) * 32;
1169         if (gic_irqs > 1020)
1170                 gic_irqs = 1020;
1171         gic->gic_irqs = gic_irqs;
1172
1173         if (handle) {           /* DT/ACPI */
1174                 gic->domain = irq_domain_create_linear(handle, gic_irqs,
1175                                                        &gic_irq_domain_hierarchy_ops,
1176                                                        gic);
1177         } else {                /* Legacy support */
1178                 /*
1179                  * For primary GICs, skip over SGIs.
1180                  * No secondary GIC support whatsoever.
1181                  */
1182                 int irq_base;
1183
1184                 gic_irqs -= 16; /* calculate # of irqs to allocate */
1185
1186                 irq_base = irq_alloc_descs(16, 16, gic_irqs,
1187                                            numa_node_id());
1188                 if (irq_base < 0) {
1189                         WARN(1, "Cannot allocate irq_descs @ IRQ16, assuming pre-allocated\n");
1190                         irq_base = 16;
1191                 }
1192
1193                 gic->domain = irq_domain_add_legacy(NULL, gic_irqs, irq_base,
1194                                                     16, &gic_irq_domain_ops, gic);
1195         }
1196
1197         if (WARN_ON(!gic->domain)) {
1198                 ret = -ENODEV;
1199                 goto error;
1200         }
1201
1202         gic_dist_init(gic);
1203         ret = gic_cpu_init(gic);
1204         if (ret)
1205                 goto error;
1206
1207         ret = gic_pm_init(gic);
1208         if (ret)
1209                 goto error;
1210
1211         return 0;
1212
1213 error:
1214         if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) {
1215                 free_percpu(gic->dist_base.percpu_base);
1216                 free_percpu(gic->cpu_base.percpu_base);
1217         }
1218
1219         return ret;
1220 }
1221
1222 static int __init __gic_init_bases(struct gic_chip_data *gic,
1223                                    struct fwnode_handle *handle)
1224 {
1225         char *name;
1226         int i, ret;
1227
1228         if (WARN_ON(!gic || gic->domain))
1229                 return -EINVAL;
1230
1231         if (gic == &gic_data[0]) {
1232                 /*
1233                  * Initialize the CPU interface map to all CPUs.
1234                  * It will be refined as each CPU probes its ID.
1235                  * This is only necessary for the primary GIC.
1236                  */
1237                 for (i = 0; i < NR_GIC_CPU_IF; i++)
1238                         gic_cpu_map[i] = 0xff;
1239
1240                 set_handle_irq(gic_handle_irq);
1241                 if (static_branch_likely(&supports_deactivate_key))
1242                         pr_info("GIC: Using split EOI/Deactivate mode\n");
1243         }
1244
1245         if (static_branch_likely(&supports_deactivate_key) && gic == &gic_data[0]) {
1246                 name = kasprintf(GFP_KERNEL, "GICv2");
1247                 gic_init_chip(gic, NULL, name, true);
1248         } else {
1249                 name = kasprintf(GFP_KERNEL, "GIC-%d", (int)(gic-&gic_data[0]));
1250                 gic_init_chip(gic, NULL, name, false);
1251         }
1252
1253         ret = gic_init_bases(gic, handle);
1254         if (ret)
1255                 kfree(name);
1256         else if (gic == &gic_data[0])
1257                 gic_smp_init();
1258
1259         return ret;
1260 }
1261
1262 void __init gic_init(void __iomem *dist_base, void __iomem *cpu_base)
1263 {
1264         struct gic_chip_data *gic;
1265
1266         /*
1267          * Non-DT/ACPI systems won't run a hypervisor, so let's not
1268          * bother with these...
1269          */
1270         static_branch_disable(&supports_deactivate_key);
1271
1272         gic = &gic_data[0];
1273         gic->raw_dist_base = dist_base;
1274         gic->raw_cpu_base = cpu_base;
1275
1276         __gic_init_bases(gic, NULL);
1277 }
1278
1279 static void gic_teardown(struct gic_chip_data *gic)
1280 {
1281         if (WARN_ON(!gic))
1282                 return;
1283
1284         if (gic->raw_dist_base)
1285                 iounmap(gic->raw_dist_base);
1286         if (gic->raw_cpu_base)
1287                 iounmap(gic->raw_cpu_base);
1288 }
1289
1290 #ifdef CONFIG_OF
1291 static int gic_cnt __initdata;
1292 static bool gicv2_force_probe;
1293
1294 static int __init gicv2_force_probe_cfg(char *buf)
1295 {
1296         return strtobool(buf, &gicv2_force_probe);
1297 }
1298 early_param("irqchip.gicv2_force_probe", gicv2_force_probe_cfg);
1299
1300 static bool gic_check_eoimode(struct device_node *node, void __iomem **base)
1301 {
1302         struct resource cpuif_res;
1303
1304         of_address_to_resource(node, 1, &cpuif_res);
1305
1306         if (!is_hyp_mode_available())
1307                 return false;
1308         if (resource_size(&cpuif_res) < SZ_8K) {
1309                 void __iomem *alt;
1310                 /*
1311                  * Check for a stupid firmware that only exposes the
1312                  * first page of a GICv2.
1313                  */
1314                 if (!gic_check_gicv2(*base))
1315                         return false;
1316
1317                 if (!gicv2_force_probe) {
1318                         pr_warn("GIC: GICv2 detected, but range too small and irqchip.gicv2_force_probe not set\n");
1319                         return false;
1320                 }
1321
1322                 alt = ioremap(cpuif_res.start, SZ_8K);
1323                 if (!alt)
1324                         return false;
1325                 if (!gic_check_gicv2(alt + SZ_4K)) {
1326                         /*
1327                          * The first page was that of a GICv2, and
1328                          * the second was *something*. Let's trust it
1329                          * to be a GICv2, and update the mapping.
1330                          */
1331                         pr_warn("GIC: GICv2 at %pa, but range is too small (broken DT?), assuming 8kB\n",
1332                                 &cpuif_res.start);
1333                         iounmap(*base);
1334                         *base = alt;
1335                         return true;
1336                 }
1337
1338                 /*
1339                  * We detected *two* initial GICv2 pages in a
1340                  * row. Could be a GICv2 aliased over two 64kB
1341                  * pages. Update the resource, map the iospace, and
1342                  * pray.
1343                  */
1344                 iounmap(alt);
1345                 alt = ioremap(cpuif_res.start, SZ_128K);
1346                 if (!alt)
1347                         return false;
1348                 pr_warn("GIC: Aliased GICv2 at %pa, trying to find the canonical range over 128kB\n",
1349                         &cpuif_res.start);
1350                 cpuif_res.end = cpuif_res.start + SZ_128K -1;
1351                 iounmap(*base);
1352                 *base = alt;
1353         }
1354         if (resource_size(&cpuif_res) == SZ_128K) {
1355                 /*
1356                  * Verify that we have the first 4kB of a GICv2
1357                  * aliased over the first 64kB by checking the
1358                  * GICC_IIDR register on both ends.
1359                  */
1360                 if (!gic_check_gicv2(*base) ||
1361                     !gic_check_gicv2(*base + 0xf000))
1362                         return false;
1363
1364                 /*
1365                  * Move the base up by 60kB, so that we have a 8kB
1366                  * contiguous region, which allows us to use GICC_DIR
1367                  * at its normal offset. Please pass me that bucket.
1368                  */
1369                 *base += 0xf000;
1370                 cpuif_res.start += 0xf000;
1371                 pr_warn("GIC: Adjusting CPU interface base to %pa\n",
1372                         &cpuif_res.start);
1373         }
1374
1375         return true;
1376 }
1377
1378 static int gic_of_setup(struct gic_chip_data *gic, struct device_node *node)
1379 {
1380         if (!gic || !node)
1381                 return -EINVAL;
1382
1383         gic->raw_dist_base = of_iomap(node, 0);
1384         if (WARN(!gic->raw_dist_base, "unable to map gic dist registers\n"))
1385                 goto error;
1386
1387         gic->raw_cpu_base = of_iomap(node, 1);
1388         if (WARN(!gic->raw_cpu_base, "unable to map gic cpu registers\n"))
1389                 goto error;
1390
1391         if (of_property_read_u32(node, "cpu-offset", &gic->percpu_offset))
1392                 gic->percpu_offset = 0;
1393
1394         return 0;
1395
1396 error:
1397         gic_teardown(gic);
1398
1399         return -ENOMEM;
1400 }
1401
1402 int gic_of_init_child(struct device *dev, struct gic_chip_data **gic, int irq)
1403 {
1404         int ret;
1405
1406         if (!dev || !dev->of_node || !gic || !irq)
1407                 return -EINVAL;
1408
1409         *gic = devm_kzalloc(dev, sizeof(**gic), GFP_KERNEL);
1410         if (!*gic)
1411                 return -ENOMEM;
1412
1413         gic_init_chip(*gic, dev, dev->of_node->name, false);
1414
1415         ret = gic_of_setup(*gic, dev->of_node);
1416         if (ret)
1417                 return ret;
1418
1419         ret = gic_init_bases(*gic, &dev->of_node->fwnode);
1420         if (ret) {
1421                 gic_teardown(*gic);
1422                 return ret;
1423         }
1424
1425         irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq, *gic);
1426
1427         return 0;
1428 }
1429
1430 static void __init gic_of_setup_kvm_info(struct device_node *node)
1431 {
1432         int ret;
1433         struct resource *vctrl_res = &gic_v2_kvm_info.vctrl;
1434         struct resource *vcpu_res = &gic_v2_kvm_info.vcpu;
1435
1436         gic_v2_kvm_info.type = GIC_V2;
1437
1438         gic_v2_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
1439         if (!gic_v2_kvm_info.maint_irq)
1440                 return;
1441
1442         ret = of_address_to_resource(node, 2, vctrl_res);
1443         if (ret)
1444                 return;
1445
1446         ret = of_address_to_resource(node, 3, vcpu_res);
1447         if (ret)
1448                 return;
1449
1450         if (static_branch_likely(&supports_deactivate_key))
1451                 vgic_set_kvm_info(&gic_v2_kvm_info);
1452 }
1453
1454 int __init
1455 gic_of_init(struct device_node *node, struct device_node *parent)
1456 {
1457         struct gic_chip_data *gic;
1458         int irq, ret;
1459
1460         if (WARN_ON(!node))
1461                 return -ENODEV;
1462
1463         if (WARN_ON(gic_cnt >= CONFIG_ARM_GIC_MAX_NR))
1464                 return -EINVAL;
1465
1466         gic = &gic_data[gic_cnt];
1467
1468         ret = gic_of_setup(gic, node);
1469         if (ret)
1470                 return ret;
1471
1472         /*
1473          * Disable split EOI/Deactivate if either HYP is not available
1474          * or the CPU interface is too small.
1475          */
1476         if (gic_cnt == 0 && !gic_check_eoimode(node, &gic->raw_cpu_base))
1477                 static_branch_disable(&supports_deactivate_key);
1478
1479         ret = __gic_init_bases(gic, &node->fwnode);
1480         if (ret) {
1481                 gic_teardown(gic);
1482                 return ret;
1483         }
1484
1485         if (!gic_cnt) {
1486                 gic_init_physaddr(node);
1487                 gic_of_setup_kvm_info(node);
1488         }
1489
1490         if (parent) {
1491                 irq = irq_of_parse_and_map(node, 0);
1492                 gic_cascade_irq(gic_cnt, irq);
1493         }
1494
1495         if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1496                 gicv2m_init(&node->fwnode, gic_data[gic_cnt].domain);
1497
1498         gic_cnt++;
1499         return 0;
1500 }
1501 IRQCHIP_DECLARE(gic_400, "arm,gic-400", gic_of_init);
1502 IRQCHIP_DECLARE(arm11mp_gic, "arm,arm11mp-gic", gic_of_init);
1503 IRQCHIP_DECLARE(arm1176jzf_dc_gic, "arm,arm1176jzf-devchip-gic", gic_of_init);
1504 IRQCHIP_DECLARE(cortex_a15_gic, "arm,cortex-a15-gic", gic_of_init);
1505 IRQCHIP_DECLARE(cortex_a9_gic, "arm,cortex-a9-gic", gic_of_init);
1506 IRQCHIP_DECLARE(cortex_a7_gic, "arm,cortex-a7-gic", gic_of_init);
1507 IRQCHIP_DECLARE(msm_8660_qgic, "qcom,msm-8660-qgic", gic_of_init);
1508 IRQCHIP_DECLARE(msm_qgic2, "qcom,msm-qgic2", gic_of_init);
1509 IRQCHIP_DECLARE(pl390, "arm,pl390", gic_of_init);
1510 #else
1511 int gic_of_init_child(struct device *dev, struct gic_chip_data **gic, int irq)
1512 {
1513         return -ENOTSUPP;
1514 }
1515 #endif
1516
1517 #ifdef CONFIG_ACPI
1518 static struct
1519 {
1520         phys_addr_t cpu_phys_base;
1521         u32 maint_irq;
1522         int maint_irq_mode;
1523         phys_addr_t vctrl_base;
1524         phys_addr_t vcpu_base;
1525 } acpi_data __initdata;
1526
1527 static int __init
1528 gic_acpi_parse_madt_cpu(union acpi_subtable_headers *header,
1529                         const unsigned long end)
1530 {
1531         struct acpi_madt_generic_interrupt *processor;
1532         phys_addr_t gic_cpu_base;
1533         static int cpu_base_assigned;
1534
1535         processor = (struct acpi_madt_generic_interrupt *)header;
1536
1537         if (BAD_MADT_GICC_ENTRY(processor, end))
1538                 return -EINVAL;
1539
1540         /*
1541          * There is no support for non-banked GICv1/2 register in ACPI spec.
1542          * All CPU interface addresses have to be the same.
1543          */
1544         gic_cpu_base = processor->base_address;
1545         if (cpu_base_assigned && gic_cpu_base != acpi_data.cpu_phys_base)
1546                 return -EINVAL;
1547
1548         acpi_data.cpu_phys_base = gic_cpu_base;
1549         acpi_data.maint_irq = processor->vgic_interrupt;
1550         acpi_data.maint_irq_mode = (processor->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
1551                                     ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
1552         acpi_data.vctrl_base = processor->gich_base_address;
1553         acpi_data.vcpu_base = processor->gicv_base_address;
1554
1555         cpu_base_assigned = 1;
1556         return 0;
1557 }
1558
1559 /* The things you have to do to just *count* something... */
1560 static int __init acpi_dummy_func(union acpi_subtable_headers *header,
1561                                   const unsigned long end)
1562 {
1563         return 0;
1564 }
1565
1566 static bool __init acpi_gic_redist_is_present(void)
1567 {
1568         return acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
1569                                      acpi_dummy_func, 0) > 0;
1570 }
1571
1572 static bool __init gic_validate_dist(struct acpi_subtable_header *header,
1573                                      struct acpi_probe_entry *ape)
1574 {
1575         struct acpi_madt_generic_distributor *dist;
1576         dist = (struct acpi_madt_generic_distributor *)header;
1577
1578         return (dist->version == ape->driver_data &&
1579                 (dist->version != ACPI_MADT_GIC_VERSION_NONE ||
1580                  !acpi_gic_redist_is_present()));
1581 }
1582
1583 #define ACPI_GICV2_DIST_MEM_SIZE        (SZ_4K)
1584 #define ACPI_GIC_CPU_IF_MEM_SIZE        (SZ_8K)
1585 #define ACPI_GICV2_VCTRL_MEM_SIZE       (SZ_4K)
1586 #define ACPI_GICV2_VCPU_MEM_SIZE        (SZ_8K)
1587
1588 static void __init gic_acpi_setup_kvm_info(void)
1589 {
1590         int irq;
1591         struct resource *vctrl_res = &gic_v2_kvm_info.vctrl;
1592         struct resource *vcpu_res = &gic_v2_kvm_info.vcpu;
1593
1594         gic_v2_kvm_info.type = GIC_V2;
1595
1596         if (!acpi_data.vctrl_base)
1597                 return;
1598
1599         vctrl_res->flags = IORESOURCE_MEM;
1600         vctrl_res->start = acpi_data.vctrl_base;
1601         vctrl_res->end = vctrl_res->start + ACPI_GICV2_VCTRL_MEM_SIZE - 1;
1602
1603         if (!acpi_data.vcpu_base)
1604                 return;
1605
1606         vcpu_res->flags = IORESOURCE_MEM;
1607         vcpu_res->start = acpi_data.vcpu_base;
1608         vcpu_res->end = vcpu_res->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
1609
1610         irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
1611                                 acpi_data.maint_irq_mode,
1612                                 ACPI_ACTIVE_HIGH);
1613         if (irq <= 0)
1614                 return;
1615
1616         gic_v2_kvm_info.maint_irq = irq;
1617
1618         vgic_set_kvm_info(&gic_v2_kvm_info);
1619 }
1620
1621 static int __init gic_v2_acpi_init(union acpi_subtable_headers *header,
1622                                    const unsigned long end)
1623 {
1624         struct acpi_madt_generic_distributor *dist;
1625         struct fwnode_handle *domain_handle;
1626         struct gic_chip_data *gic = &gic_data[0];
1627         int count, ret;
1628
1629         /* Collect CPU base addresses */
1630         count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
1631                                       gic_acpi_parse_madt_cpu, 0);
1632         if (count <= 0) {
1633                 pr_err("No valid GICC entries exist\n");
1634                 return -EINVAL;
1635         }
1636
1637         gic->raw_cpu_base = ioremap(acpi_data.cpu_phys_base, ACPI_GIC_CPU_IF_MEM_SIZE);
1638         if (!gic->raw_cpu_base) {
1639                 pr_err("Unable to map GICC registers\n");
1640                 return -ENOMEM;
1641         }
1642
1643         dist = (struct acpi_madt_generic_distributor *)header;
1644         gic->raw_dist_base = ioremap(dist->base_address,
1645                                      ACPI_GICV2_DIST_MEM_SIZE);
1646         if (!gic->raw_dist_base) {
1647                 pr_err("Unable to map GICD registers\n");
1648                 gic_teardown(gic);
1649                 return -ENOMEM;
1650         }
1651
1652         /*
1653          * Disable split EOI/Deactivate if HYP is not available. ACPI
1654          * guarantees that we'll always have a GICv2, so the CPU
1655          * interface will always be the right size.
1656          */
1657         if (!is_hyp_mode_available())
1658                 static_branch_disable(&supports_deactivate_key);
1659
1660         /*
1661          * Initialize GIC instance zero (no multi-GIC support).
1662          */
1663         domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
1664         if (!domain_handle) {
1665                 pr_err("Unable to allocate domain handle\n");
1666                 gic_teardown(gic);
1667                 return -ENOMEM;
1668         }
1669
1670         ret = __gic_init_bases(gic, domain_handle);
1671         if (ret) {
1672                 pr_err("Failed to initialise GIC\n");
1673                 irq_domain_free_fwnode(domain_handle);
1674                 gic_teardown(gic);
1675                 return ret;
1676         }
1677
1678         acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
1679
1680         if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1681                 gicv2m_init(NULL, gic_data[0].domain);
1682
1683         if (static_branch_likely(&supports_deactivate_key))
1684                 gic_acpi_setup_kvm_info();
1685
1686         return 0;
1687 }
1688 IRQCHIP_ACPI_DECLARE(gic_v2, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
1689                      gic_validate_dist, ACPI_MADT_GIC_VERSION_V2,
1690                      gic_v2_acpi_init);
1691 IRQCHIP_ACPI_DECLARE(gic_v2_maybe, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
1692                      gic_validate_dist, ACPI_MADT_GIC_VERSION_NONE,
1693                      gic_v2_acpi_init);
1694 #endif