Merge tag '5.15-rc-ksmbd-part2' of git://git.samba.org/ksmbd
[linux-2.6-microblaze.git] / drivers / irqchip / irq-gic-v3.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #define pr_fmt(fmt)     "GICv3: " fmt
8
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/of_irq.h>
18 #include <linux/percpu.h>
19 #include <linux/refcount.h>
20 #include <linux/slab.h>
21
22 #include <linux/irqchip.h>
23 #include <linux/irqchip/arm-gic-common.h>
24 #include <linux/irqchip/arm-gic-v3.h>
25 #include <linux/irqchip/irq-partition-percpu.h>
26
27 #include <asm/cputype.h>
28 #include <asm/exception.h>
29 #include <asm/smp_plat.h>
30 #include <asm/virt.h>
31
32 #include "irq-gic-common.h"
33
34 #define GICD_INT_NMI_PRI        (GICD_INT_DEF_PRI & ~0x80)
35
36 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996     (1ULL << 0)
37 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539   (1ULL << 1)
38
39 #define GIC_IRQ_TYPE_PARTITION  (GIC_IRQ_TYPE_LPI + 1)
40
41 struct redist_region {
42         void __iomem            *redist_base;
43         phys_addr_t             phys_base;
44         bool                    single_redist;
45 };
46
47 struct gic_chip_data {
48         struct fwnode_handle    *fwnode;
49         void __iomem            *dist_base;
50         struct redist_region    *redist_regions;
51         struct rdists           rdists;
52         struct irq_domain       *domain;
53         u64                     redist_stride;
54         u32                     nr_redist_regions;
55         u64                     flags;
56         bool                    has_rss;
57         unsigned int            ppi_nr;
58         struct partition_desc   **ppi_descs;
59 };
60
61 static struct gic_chip_data gic_data __read_mostly;
62 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
63
64 #define GIC_ID_NR       (1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
65 #define GIC_LINE_NR     min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
66 #define GIC_ESPI_NR     GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
67
68 /*
69  * The behaviours of RPR and PMR registers differ depending on the value of
70  * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
71  * distributor and redistributors depends on whether security is enabled in the
72  * GIC.
73  *
74  * When security is enabled, non-secure priority values from the (re)distributor
75  * are presented to the GIC CPUIF as follow:
76  *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
77  *
78  * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
79  * EL1 are subject to a similar operation thus matching the priorities presented
80  * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
81  * these values are unchanged by the GIC.
82  *
83  * see GICv3/GICv4 Architecture Specification (IHI0069D):
84  * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
85  *   priorities.
86  * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
87  *   interrupt.
88  */
89 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
90
91 /*
92  * Global static key controlling whether an update to PMR allowing more
93  * interrupts requires to be propagated to the redistributor (DSB SY).
94  * And this needs to be exported for modules to be able to enable
95  * interrupts...
96  */
97 DEFINE_STATIC_KEY_FALSE(gic_pmr_sync);
98 EXPORT_SYMBOL(gic_pmr_sync);
99
100 DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
101 EXPORT_SYMBOL(gic_nonsecure_priorities);
102
103 /*
104  * When the Non-secure world has access to group 0 interrupts (as a
105  * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
106  * return the Distributor's view of the interrupt priority.
107  *
108  * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
109  * written by software is moved to the Non-secure range by the Distributor.
110  *
111  * If both are true (which is when gic_nonsecure_priorities gets enabled),
112  * we need to shift down the priority programmed by software to match it
113  * against the value returned by ICC_RPR_EL1.
114  */
115 #define GICD_INT_RPR_PRI(priority)                                      \
116         ({                                                              \
117                 u32 __priority = (priority);                            \
118                 if (static_branch_unlikely(&gic_nonsecure_priorities))  \
119                         __priority = 0x80 | (__priority >> 1);          \
120                                                                         \
121                 __priority;                                             \
122         })
123
124 /* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
125 static refcount_t *ppi_nmi_refs;
126
127 static struct gic_kvm_info gic_v3_kvm_info __initdata;
128 static DEFINE_PER_CPU(bool, has_rss);
129
130 #define MPIDR_RS(mpidr)                 (((mpidr) & 0xF0UL) >> 4)
131 #define gic_data_rdist()                (this_cpu_ptr(gic_data.rdists.rdist))
132 #define gic_data_rdist_rd_base()        (gic_data_rdist()->rd_base)
133 #define gic_data_rdist_sgi_base()       (gic_data_rdist_rd_base() + SZ_64K)
134
135 /* Our default, arbitrary priority value. Linux only uses one anyway. */
136 #define DEFAULT_PMR_VALUE       0xf0
137
138 enum gic_intid_range {
139         SGI_RANGE,
140         PPI_RANGE,
141         SPI_RANGE,
142         EPPI_RANGE,
143         ESPI_RANGE,
144         LPI_RANGE,
145         __INVALID_RANGE__
146 };
147
148 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
149 {
150         switch (hwirq) {
151         case 0 ... 15:
152                 return SGI_RANGE;
153         case 16 ... 31:
154                 return PPI_RANGE;
155         case 32 ... 1019:
156                 return SPI_RANGE;
157         case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
158                 return EPPI_RANGE;
159         case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
160                 return ESPI_RANGE;
161         case 8192 ... GENMASK(23, 0):
162                 return LPI_RANGE;
163         default:
164                 return __INVALID_RANGE__;
165         }
166 }
167
168 static enum gic_intid_range get_intid_range(struct irq_data *d)
169 {
170         return __get_intid_range(d->hwirq);
171 }
172
173 static inline unsigned int gic_irq(struct irq_data *d)
174 {
175         return d->hwirq;
176 }
177
178 static inline bool gic_irq_in_rdist(struct irq_data *d)
179 {
180         switch (get_intid_range(d)) {
181         case SGI_RANGE:
182         case PPI_RANGE:
183         case EPPI_RANGE:
184                 return true;
185         default:
186                 return false;
187         }
188 }
189
190 static inline void __iomem *gic_dist_base(struct irq_data *d)
191 {
192         switch (get_intid_range(d)) {
193         case SGI_RANGE:
194         case PPI_RANGE:
195         case EPPI_RANGE:
196                 /* SGI+PPI -> SGI_base for this CPU */
197                 return gic_data_rdist_sgi_base();
198
199         case SPI_RANGE:
200         case ESPI_RANGE:
201                 /* SPI -> dist_base */
202                 return gic_data.dist_base;
203
204         default:
205                 return NULL;
206         }
207 }
208
209 static void gic_do_wait_for_rwp(void __iomem *base)
210 {
211         u32 count = 1000000;    /* 1s! */
212
213         while (readl_relaxed(base + GICD_CTLR) & GICD_CTLR_RWP) {
214                 count--;
215                 if (!count) {
216                         pr_err_ratelimited("RWP timeout, gone fishing\n");
217                         return;
218                 }
219                 cpu_relax();
220                 udelay(1);
221         }
222 }
223
224 /* Wait for completion of a distributor change */
225 static void gic_dist_wait_for_rwp(void)
226 {
227         gic_do_wait_for_rwp(gic_data.dist_base);
228 }
229
230 /* Wait for completion of a redistributor change */
231 static void gic_redist_wait_for_rwp(void)
232 {
233         gic_do_wait_for_rwp(gic_data_rdist_rd_base());
234 }
235
236 #ifdef CONFIG_ARM64
237
238 static u64 __maybe_unused gic_read_iar(void)
239 {
240         if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
241                 return gic_read_iar_cavium_thunderx();
242         else
243                 return gic_read_iar_common();
244 }
245 #endif
246
247 static void gic_enable_redist(bool enable)
248 {
249         void __iomem *rbase;
250         u32 count = 1000000;    /* 1s! */
251         u32 val;
252
253         if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
254                 return;
255
256         rbase = gic_data_rdist_rd_base();
257
258         val = readl_relaxed(rbase + GICR_WAKER);
259         if (enable)
260                 /* Wake up this CPU redistributor */
261                 val &= ~GICR_WAKER_ProcessorSleep;
262         else
263                 val |= GICR_WAKER_ProcessorSleep;
264         writel_relaxed(val, rbase + GICR_WAKER);
265
266         if (!enable) {          /* Check that GICR_WAKER is writeable */
267                 val = readl_relaxed(rbase + GICR_WAKER);
268                 if (!(val & GICR_WAKER_ProcessorSleep))
269                         return; /* No PM support in this redistributor */
270         }
271
272         while (--count) {
273                 val = readl_relaxed(rbase + GICR_WAKER);
274                 if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
275                         break;
276                 cpu_relax();
277                 udelay(1);
278         }
279         if (!count)
280                 pr_err_ratelimited("redistributor failed to %s...\n",
281                                    enable ? "wakeup" : "sleep");
282 }
283
284 /*
285  * Routines to disable, enable, EOI and route interrupts
286  */
287 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
288 {
289         switch (get_intid_range(d)) {
290         case SGI_RANGE:
291         case PPI_RANGE:
292         case SPI_RANGE:
293                 *index = d->hwirq;
294                 return offset;
295         case EPPI_RANGE:
296                 /*
297                  * Contrary to the ESPI range, the EPPI range is contiguous
298                  * to the PPI range in the registers, so let's adjust the
299                  * displacement accordingly. Consistency is overrated.
300                  */
301                 *index = d->hwirq - EPPI_BASE_INTID + 32;
302                 return offset;
303         case ESPI_RANGE:
304                 *index = d->hwirq - ESPI_BASE_INTID;
305                 switch (offset) {
306                 case GICD_ISENABLER:
307                         return GICD_ISENABLERnE;
308                 case GICD_ICENABLER:
309                         return GICD_ICENABLERnE;
310                 case GICD_ISPENDR:
311                         return GICD_ISPENDRnE;
312                 case GICD_ICPENDR:
313                         return GICD_ICPENDRnE;
314                 case GICD_ISACTIVER:
315                         return GICD_ISACTIVERnE;
316                 case GICD_ICACTIVER:
317                         return GICD_ICACTIVERnE;
318                 case GICD_IPRIORITYR:
319                         return GICD_IPRIORITYRnE;
320                 case GICD_ICFGR:
321                         return GICD_ICFGRnE;
322                 case GICD_IROUTER:
323                         return GICD_IROUTERnE;
324                 default:
325                         break;
326                 }
327                 break;
328         default:
329                 break;
330         }
331
332         WARN_ON(1);
333         *index = d->hwirq;
334         return offset;
335 }
336
337 static int gic_peek_irq(struct irq_data *d, u32 offset)
338 {
339         void __iomem *base;
340         u32 index, mask;
341
342         offset = convert_offset_index(d, offset, &index);
343         mask = 1 << (index % 32);
344
345         if (gic_irq_in_rdist(d))
346                 base = gic_data_rdist_sgi_base();
347         else
348                 base = gic_data.dist_base;
349
350         return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
351 }
352
353 static void gic_poke_irq(struct irq_data *d, u32 offset)
354 {
355         void (*rwp_wait)(void);
356         void __iomem *base;
357         u32 index, mask;
358
359         offset = convert_offset_index(d, offset, &index);
360         mask = 1 << (index % 32);
361
362         if (gic_irq_in_rdist(d)) {
363                 base = gic_data_rdist_sgi_base();
364                 rwp_wait = gic_redist_wait_for_rwp;
365         } else {
366                 base = gic_data.dist_base;
367                 rwp_wait = gic_dist_wait_for_rwp;
368         }
369
370         writel_relaxed(mask, base + offset + (index / 32) * 4);
371         rwp_wait();
372 }
373
374 static void gic_mask_irq(struct irq_data *d)
375 {
376         gic_poke_irq(d, GICD_ICENABLER);
377 }
378
379 static void gic_eoimode1_mask_irq(struct irq_data *d)
380 {
381         gic_mask_irq(d);
382         /*
383          * When masking a forwarded interrupt, make sure it is
384          * deactivated as well.
385          *
386          * This ensures that an interrupt that is getting
387          * disabled/masked will not get "stuck", because there is
388          * noone to deactivate it (guest is being terminated).
389          */
390         if (irqd_is_forwarded_to_vcpu(d))
391                 gic_poke_irq(d, GICD_ICACTIVER);
392 }
393
394 static void gic_unmask_irq(struct irq_data *d)
395 {
396         gic_poke_irq(d, GICD_ISENABLER);
397 }
398
399 static inline bool gic_supports_nmi(void)
400 {
401         return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
402                static_branch_likely(&supports_pseudo_nmis);
403 }
404
405 static int gic_irq_set_irqchip_state(struct irq_data *d,
406                                      enum irqchip_irq_state which, bool val)
407 {
408         u32 reg;
409
410         if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
411                 return -EINVAL;
412
413         switch (which) {
414         case IRQCHIP_STATE_PENDING:
415                 reg = val ? GICD_ISPENDR : GICD_ICPENDR;
416                 break;
417
418         case IRQCHIP_STATE_ACTIVE:
419                 reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
420                 break;
421
422         case IRQCHIP_STATE_MASKED:
423                 reg = val ? GICD_ICENABLER : GICD_ISENABLER;
424                 break;
425
426         default:
427                 return -EINVAL;
428         }
429
430         gic_poke_irq(d, reg);
431         return 0;
432 }
433
434 static int gic_irq_get_irqchip_state(struct irq_data *d,
435                                      enum irqchip_irq_state which, bool *val)
436 {
437         if (d->hwirq >= 8192) /* PPI/SPI only */
438                 return -EINVAL;
439
440         switch (which) {
441         case IRQCHIP_STATE_PENDING:
442                 *val = gic_peek_irq(d, GICD_ISPENDR);
443                 break;
444
445         case IRQCHIP_STATE_ACTIVE:
446                 *val = gic_peek_irq(d, GICD_ISACTIVER);
447                 break;
448
449         case IRQCHIP_STATE_MASKED:
450                 *val = !gic_peek_irq(d, GICD_ISENABLER);
451                 break;
452
453         default:
454                 return -EINVAL;
455         }
456
457         return 0;
458 }
459
460 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
461 {
462         void __iomem *base = gic_dist_base(d);
463         u32 offset, index;
464
465         offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
466
467         writeb_relaxed(prio, base + offset + index);
468 }
469
470 static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
471 {
472         switch (__get_intid_range(hwirq)) {
473         case PPI_RANGE:
474                 return hwirq - 16;
475         case EPPI_RANGE:
476                 return hwirq - EPPI_BASE_INTID + 16;
477         default:
478                 unreachable();
479         }
480 }
481
482 static u32 gic_get_ppi_index(struct irq_data *d)
483 {
484         return __gic_get_ppi_index(d->hwirq);
485 }
486
487 static int gic_irq_nmi_setup(struct irq_data *d)
488 {
489         struct irq_desc *desc = irq_to_desc(d->irq);
490
491         if (!gic_supports_nmi())
492                 return -EINVAL;
493
494         if (gic_peek_irq(d, GICD_ISENABLER)) {
495                 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
496                 return -EINVAL;
497         }
498
499         /*
500          * A secondary irq_chip should be in charge of LPI request,
501          * it should not be possible to get there
502          */
503         if (WARN_ON(gic_irq(d) >= 8192))
504                 return -EINVAL;
505
506         /* desc lock should already be held */
507         if (gic_irq_in_rdist(d)) {
508                 u32 idx = gic_get_ppi_index(d);
509
510                 /* Setting up PPI as NMI, only switch handler for first NMI */
511                 if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
512                         refcount_set(&ppi_nmi_refs[idx], 1);
513                         desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
514                 }
515         } else {
516                 desc->handle_irq = handle_fasteoi_nmi;
517         }
518
519         gic_irq_set_prio(d, GICD_INT_NMI_PRI);
520
521         return 0;
522 }
523
524 static void gic_irq_nmi_teardown(struct irq_data *d)
525 {
526         struct irq_desc *desc = irq_to_desc(d->irq);
527
528         if (WARN_ON(!gic_supports_nmi()))
529                 return;
530
531         if (gic_peek_irq(d, GICD_ISENABLER)) {
532                 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
533                 return;
534         }
535
536         /*
537          * A secondary irq_chip should be in charge of LPI request,
538          * it should not be possible to get there
539          */
540         if (WARN_ON(gic_irq(d) >= 8192))
541                 return;
542
543         /* desc lock should already be held */
544         if (gic_irq_in_rdist(d)) {
545                 u32 idx = gic_get_ppi_index(d);
546
547                 /* Tearing down NMI, only switch handler for last NMI */
548                 if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
549                         desc->handle_irq = handle_percpu_devid_irq;
550         } else {
551                 desc->handle_irq = handle_fasteoi_irq;
552         }
553
554         gic_irq_set_prio(d, GICD_INT_DEF_PRI);
555 }
556
557 static void gic_eoi_irq(struct irq_data *d)
558 {
559         gic_write_eoir(gic_irq(d));
560 }
561
562 static void gic_eoimode1_eoi_irq(struct irq_data *d)
563 {
564         /*
565          * No need to deactivate an LPI, or an interrupt that
566          * is is getting forwarded to a vcpu.
567          */
568         if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
569                 return;
570         gic_write_dir(gic_irq(d));
571 }
572
573 static int gic_set_type(struct irq_data *d, unsigned int type)
574 {
575         enum gic_intid_range range;
576         unsigned int irq = gic_irq(d);
577         void (*rwp_wait)(void);
578         void __iomem *base;
579         u32 offset, index;
580         int ret;
581
582         range = get_intid_range(d);
583
584         /* Interrupt configuration for SGIs can't be changed */
585         if (range == SGI_RANGE)
586                 return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
587
588         /* SPIs have restrictions on the supported types */
589         if ((range == SPI_RANGE || range == ESPI_RANGE) &&
590             type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
591                 return -EINVAL;
592
593         if (gic_irq_in_rdist(d)) {
594                 base = gic_data_rdist_sgi_base();
595                 rwp_wait = gic_redist_wait_for_rwp;
596         } else {
597                 base = gic_data.dist_base;
598                 rwp_wait = gic_dist_wait_for_rwp;
599         }
600
601         offset = convert_offset_index(d, GICD_ICFGR, &index);
602
603         ret = gic_configure_irq(index, type, base + offset, rwp_wait);
604         if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
605                 /* Misconfigured PPIs are usually not fatal */
606                 pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
607                 ret = 0;
608         }
609
610         return ret;
611 }
612
613 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
614 {
615         if (get_intid_range(d) == SGI_RANGE)
616                 return -EINVAL;
617
618         if (vcpu)
619                 irqd_set_forwarded_to_vcpu(d);
620         else
621                 irqd_clr_forwarded_to_vcpu(d);
622         return 0;
623 }
624
625 static u64 gic_mpidr_to_affinity(unsigned long mpidr)
626 {
627         u64 aff;
628
629         aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
630                MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
631                MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
632                MPIDR_AFFINITY_LEVEL(mpidr, 0));
633
634         return aff;
635 }
636
637 static void gic_deactivate_unhandled(u32 irqnr)
638 {
639         if (static_branch_likely(&supports_deactivate_key)) {
640                 if (irqnr < 8192)
641                         gic_write_dir(irqnr);
642         } else {
643                 gic_write_eoir(irqnr);
644         }
645 }
646
647 static inline void gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
648 {
649         bool irqs_enabled = interrupts_enabled(regs);
650         int err;
651
652         if (irqs_enabled)
653                 nmi_enter();
654
655         if (static_branch_likely(&supports_deactivate_key))
656                 gic_write_eoir(irqnr);
657         /*
658          * Leave the PSR.I bit set to prevent other NMIs to be
659          * received while handling this one.
660          * PSR.I will be restored when we ERET to the
661          * interrupted context.
662          */
663         err = handle_domain_nmi(gic_data.domain, irqnr, regs);
664         if (err)
665                 gic_deactivate_unhandled(irqnr);
666
667         if (irqs_enabled)
668                 nmi_exit();
669 }
670
671 static u32 do_read_iar(struct pt_regs *regs)
672 {
673         u32 iar;
674
675         if (gic_supports_nmi() && unlikely(!interrupts_enabled(regs))) {
676                 u64 pmr;
677
678                 /*
679                  * We were in a context with IRQs disabled. However, the
680                  * entry code has set PMR to a value that allows any
681                  * interrupt to be acknowledged, and not just NMIs. This can
682                  * lead to surprising effects if the NMI has been retired in
683                  * the meantime, and that there is an IRQ pending. The IRQ
684                  * would then be taken in NMI context, something that nobody
685                  * wants to debug twice.
686                  *
687                  * Until we sort this, drop PMR again to a level that will
688                  * actually only allow NMIs before reading IAR, and then
689                  * restore it to what it was.
690                  */
691                 pmr = gic_read_pmr();
692                 gic_pmr_mask_irqs();
693                 isb();
694
695                 iar = gic_read_iar();
696
697                 gic_write_pmr(pmr);
698         } else {
699                 iar = gic_read_iar();
700         }
701
702         return iar;
703 }
704
705 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
706 {
707         u32 irqnr;
708
709         irqnr = do_read_iar(regs);
710
711         /* Check for special IDs first */
712         if ((irqnr >= 1020 && irqnr <= 1023))
713                 return;
714
715         if (gic_supports_nmi() &&
716             unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI))) {
717                 gic_handle_nmi(irqnr, regs);
718                 return;
719         }
720
721         if (gic_prio_masking_enabled()) {
722                 gic_pmr_mask_irqs();
723                 gic_arch_enable_irqs();
724         }
725
726         if (static_branch_likely(&supports_deactivate_key))
727                 gic_write_eoir(irqnr);
728         else
729                 isb();
730
731         if (handle_domain_irq(gic_data.domain, irqnr, regs)) {
732                 WARN_ONCE(true, "Unexpected interrupt received!\n");
733                 gic_deactivate_unhandled(irqnr);
734         }
735 }
736
737 static u32 gic_get_pribits(void)
738 {
739         u32 pribits;
740
741         pribits = gic_read_ctlr();
742         pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
743         pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
744         pribits++;
745
746         return pribits;
747 }
748
749 static bool gic_has_group0(void)
750 {
751         u32 val;
752         u32 old_pmr;
753
754         old_pmr = gic_read_pmr();
755
756         /*
757          * Let's find out if Group0 is under control of EL3 or not by
758          * setting the highest possible, non-zero priority in PMR.
759          *
760          * If SCR_EL3.FIQ is set, the priority gets shifted down in
761          * order for the CPU interface to set bit 7, and keep the
762          * actual priority in the non-secure range. In the process, it
763          * looses the least significant bit and the actual priority
764          * becomes 0x80. Reading it back returns 0, indicating that
765          * we're don't have access to Group0.
766          */
767         gic_write_pmr(BIT(8 - gic_get_pribits()));
768         val = gic_read_pmr();
769
770         gic_write_pmr(old_pmr);
771
772         return val != 0;
773 }
774
775 static void __init gic_dist_init(void)
776 {
777         unsigned int i;
778         u64 affinity;
779         void __iomem *base = gic_data.dist_base;
780         u32 val;
781
782         /* Disable the distributor */
783         writel_relaxed(0, base + GICD_CTLR);
784         gic_dist_wait_for_rwp();
785
786         /*
787          * Configure SPIs as non-secure Group-1. This will only matter
788          * if the GIC only has a single security state. This will not
789          * do the right thing if the kernel is running in secure mode,
790          * but that's not the intended use case anyway.
791          */
792         for (i = 32; i < GIC_LINE_NR; i += 32)
793                 writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
794
795         /* Extended SPI range, not handled by the GICv2/GICv3 common code */
796         for (i = 0; i < GIC_ESPI_NR; i += 32) {
797                 writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
798                 writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
799         }
800
801         for (i = 0; i < GIC_ESPI_NR; i += 32)
802                 writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
803
804         for (i = 0; i < GIC_ESPI_NR; i += 16)
805                 writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
806
807         for (i = 0; i < GIC_ESPI_NR; i += 4)
808                 writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
809
810         /* Now do the common stuff, and wait for the distributor to drain */
811         gic_dist_config(base, GIC_LINE_NR, gic_dist_wait_for_rwp);
812
813         val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
814         if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
815                 pr_info("Enabling SGIs without active state\n");
816                 val |= GICD_CTLR_nASSGIreq;
817         }
818
819         /* Enable distributor with ARE, Group1 */
820         writel_relaxed(val, base + GICD_CTLR);
821
822         /*
823          * Set all global interrupts to the boot CPU only. ARE must be
824          * enabled.
825          */
826         affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
827         for (i = 32; i < GIC_LINE_NR; i++)
828                 gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
829
830         for (i = 0; i < GIC_ESPI_NR; i++)
831                 gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
832 }
833
834 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
835 {
836         int ret = -ENODEV;
837         int i;
838
839         for (i = 0; i < gic_data.nr_redist_regions; i++) {
840                 void __iomem *ptr = gic_data.redist_regions[i].redist_base;
841                 u64 typer;
842                 u32 reg;
843
844                 reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
845                 if (reg != GIC_PIDR2_ARCH_GICv3 &&
846                     reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
847                         pr_warn("No redistributor present @%p\n", ptr);
848                         break;
849                 }
850
851                 do {
852                         typer = gic_read_typer(ptr + GICR_TYPER);
853                         ret = fn(gic_data.redist_regions + i, ptr);
854                         if (!ret)
855                                 return 0;
856
857                         if (gic_data.redist_regions[i].single_redist)
858                                 break;
859
860                         if (gic_data.redist_stride) {
861                                 ptr += gic_data.redist_stride;
862                         } else {
863                                 ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
864                                 if (typer & GICR_TYPER_VLPIS)
865                                         ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
866                         }
867                 } while (!(typer & GICR_TYPER_LAST));
868         }
869
870         return ret ? -ENODEV : 0;
871 }
872
873 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
874 {
875         unsigned long mpidr = cpu_logical_map(smp_processor_id());
876         u64 typer;
877         u32 aff;
878
879         /*
880          * Convert affinity to a 32bit value that can be matched to
881          * GICR_TYPER bits [63:32].
882          */
883         aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
884                MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
885                MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
886                MPIDR_AFFINITY_LEVEL(mpidr, 0));
887
888         typer = gic_read_typer(ptr + GICR_TYPER);
889         if ((typer >> 32) == aff) {
890                 u64 offset = ptr - region->redist_base;
891                 raw_spin_lock_init(&gic_data_rdist()->rd_lock);
892                 gic_data_rdist_rd_base() = ptr;
893                 gic_data_rdist()->phys_base = region->phys_base + offset;
894
895                 pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
896                         smp_processor_id(), mpidr,
897                         (int)(region - gic_data.redist_regions),
898                         &gic_data_rdist()->phys_base);
899                 return 0;
900         }
901
902         /* Try next one */
903         return 1;
904 }
905
906 static int gic_populate_rdist(void)
907 {
908         if (gic_iterate_rdists(__gic_populate_rdist) == 0)
909                 return 0;
910
911         /* We couldn't even deal with ourselves... */
912         WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
913              smp_processor_id(),
914              (unsigned long)cpu_logical_map(smp_processor_id()));
915         return -ENODEV;
916 }
917
918 static int __gic_update_rdist_properties(struct redist_region *region,
919                                          void __iomem *ptr)
920 {
921         u64 typer = gic_read_typer(ptr + GICR_TYPER);
922
923         gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
924
925         /* RVPEID implies some form of DirectLPI, no matter what the doc says... :-/ */
926         gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
927         gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
928                                            gic_data.rdists.has_rvpeid);
929         gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
930
931         /* Detect non-sensical configurations */
932         if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
933                 gic_data.rdists.has_direct_lpi = false;
934                 gic_data.rdists.has_vlpis = false;
935                 gic_data.rdists.has_rvpeid = false;
936         }
937
938         gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
939
940         return 1;
941 }
942
943 static void gic_update_rdist_properties(void)
944 {
945         gic_data.ppi_nr = UINT_MAX;
946         gic_iterate_rdists(__gic_update_rdist_properties);
947         if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
948                 gic_data.ppi_nr = 0;
949         pr_info("%d PPIs implemented\n", gic_data.ppi_nr);
950         if (gic_data.rdists.has_vlpis)
951                 pr_info("GICv4 features: %s%s%s\n",
952                         gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
953                         gic_data.rdists.has_rvpeid ? "RVPEID " : "",
954                         gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
955 }
956
957 /* Check whether it's single security state view */
958 static inline bool gic_dist_security_disabled(void)
959 {
960         return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
961 }
962
963 static void gic_cpu_sys_reg_init(void)
964 {
965         int i, cpu = smp_processor_id();
966         u64 mpidr = cpu_logical_map(cpu);
967         u64 need_rss = MPIDR_RS(mpidr);
968         bool group0;
969         u32 pribits;
970
971         /*
972          * Need to check that the SRE bit has actually been set. If
973          * not, it means that SRE is disabled at EL2. We're going to
974          * die painfully, and there is nothing we can do about it.
975          *
976          * Kindly inform the luser.
977          */
978         if (!gic_enable_sre())
979                 pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
980
981         pribits = gic_get_pribits();
982
983         group0 = gic_has_group0();
984
985         /* Set priority mask register */
986         if (!gic_prio_masking_enabled()) {
987                 write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
988         } else if (gic_supports_nmi()) {
989                 /*
990                  * Mismatch configuration with boot CPU, the system is likely
991                  * to die as interrupt masking will not work properly on all
992                  * CPUs
993                  *
994                  * The boot CPU calls this function before enabling NMI support,
995                  * and as a result we'll never see this warning in the boot path
996                  * for that CPU.
997                  */
998                 if (static_branch_unlikely(&gic_nonsecure_priorities))
999                         WARN_ON(!group0 || gic_dist_security_disabled());
1000                 else
1001                         WARN_ON(group0 && !gic_dist_security_disabled());
1002         }
1003
1004         /*
1005          * Some firmwares hand over to the kernel with the BPR changed from
1006          * its reset value (and with a value large enough to prevent
1007          * any pre-emptive interrupts from working at all). Writing a zero
1008          * to BPR restores is reset value.
1009          */
1010         gic_write_bpr1(0);
1011
1012         if (static_branch_likely(&supports_deactivate_key)) {
1013                 /* EOI drops priority only (mode 1) */
1014                 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1015         } else {
1016                 /* EOI deactivates interrupt too (mode 0) */
1017                 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1018         }
1019
1020         /* Always whack Group0 before Group1 */
1021         if (group0) {
1022                 switch(pribits) {
1023                 case 8:
1024                 case 7:
1025                         write_gicreg(0, ICC_AP0R3_EL1);
1026                         write_gicreg(0, ICC_AP0R2_EL1);
1027                         fallthrough;
1028                 case 6:
1029                         write_gicreg(0, ICC_AP0R1_EL1);
1030                         fallthrough;
1031                 case 5:
1032                 case 4:
1033                         write_gicreg(0, ICC_AP0R0_EL1);
1034                 }
1035
1036                 isb();
1037         }
1038
1039         switch(pribits) {
1040         case 8:
1041         case 7:
1042                 write_gicreg(0, ICC_AP1R3_EL1);
1043                 write_gicreg(0, ICC_AP1R2_EL1);
1044                 fallthrough;
1045         case 6:
1046                 write_gicreg(0, ICC_AP1R1_EL1);
1047                 fallthrough;
1048         case 5:
1049         case 4:
1050                 write_gicreg(0, ICC_AP1R0_EL1);
1051         }
1052
1053         isb();
1054
1055         /* ... and let's hit the road... */
1056         gic_write_grpen1(1);
1057
1058         /* Keep the RSS capability status in per_cpu variable */
1059         per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1060
1061         /* Check all the CPUs have capable of sending SGIs to other CPUs */
1062         for_each_online_cpu(i) {
1063                 bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1064
1065                 need_rss |= MPIDR_RS(cpu_logical_map(i));
1066                 if (need_rss && (!have_rss))
1067                         pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1068                                 cpu, (unsigned long)mpidr,
1069                                 i, (unsigned long)cpu_logical_map(i));
1070         }
1071
1072         /**
1073          * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1074          * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1075          * UNPREDICTABLE choice of :
1076          *   - The write is ignored.
1077          *   - The RS field is treated as 0.
1078          */
1079         if (need_rss && (!gic_data.has_rss))
1080                 pr_crit_once("RSS is required but GICD doesn't support it\n");
1081 }
1082
1083 static bool gicv3_nolpi;
1084
1085 static int __init gicv3_nolpi_cfg(char *buf)
1086 {
1087         return strtobool(buf, &gicv3_nolpi);
1088 }
1089 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1090
1091 static int gic_dist_supports_lpis(void)
1092 {
1093         return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1094                 !!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1095                 !gicv3_nolpi);
1096 }
1097
1098 static void gic_cpu_init(void)
1099 {
1100         void __iomem *rbase;
1101         int i;
1102
1103         /* Register ourselves with the rest of the world */
1104         if (gic_populate_rdist())
1105                 return;
1106
1107         gic_enable_redist(true);
1108
1109         WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1110              !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1111              "Distributor has extended ranges, but CPU%d doesn't\n",
1112              smp_processor_id());
1113
1114         rbase = gic_data_rdist_sgi_base();
1115
1116         /* Configure SGIs/PPIs as non-secure Group-1 */
1117         for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
1118                 writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1119
1120         gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
1121
1122         /* initialise system registers */
1123         gic_cpu_sys_reg_init();
1124 }
1125
1126 #ifdef CONFIG_SMP
1127
1128 #define MPIDR_TO_SGI_RS(mpidr)  (MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1129 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr)  ((mpidr) & ~0xFUL)
1130
1131 static int gic_starting_cpu(unsigned int cpu)
1132 {
1133         gic_cpu_init();
1134
1135         if (gic_dist_supports_lpis())
1136                 its_cpu_init();
1137
1138         return 0;
1139 }
1140
1141 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1142                                    unsigned long cluster_id)
1143 {
1144         int next_cpu, cpu = *base_cpu;
1145         unsigned long mpidr = cpu_logical_map(cpu);
1146         u16 tlist = 0;
1147
1148         while (cpu < nr_cpu_ids) {
1149                 tlist |= 1 << (mpidr & 0xf);
1150
1151                 next_cpu = cpumask_next(cpu, mask);
1152                 if (next_cpu >= nr_cpu_ids)
1153                         goto out;
1154                 cpu = next_cpu;
1155
1156                 mpidr = cpu_logical_map(cpu);
1157
1158                 if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1159                         cpu--;
1160                         goto out;
1161                 }
1162         }
1163 out:
1164         *base_cpu = cpu;
1165         return tlist;
1166 }
1167
1168 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1169         (MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1170                 << ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1171
1172 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1173 {
1174         u64 val;
1175
1176         val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)     |
1177                MPIDR_TO_SGI_AFFINITY(cluster_id, 2)     |
1178                irq << ICC_SGI1R_SGI_ID_SHIFT            |
1179                MPIDR_TO_SGI_AFFINITY(cluster_id, 1)     |
1180                MPIDR_TO_SGI_RS(cluster_id)              |
1181                tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1182
1183         pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1184         gic_write_sgi1r(val);
1185 }
1186
1187 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1188 {
1189         int cpu;
1190
1191         if (WARN_ON(d->hwirq >= 16))
1192                 return;
1193
1194         /*
1195          * Ensure that stores to Normal memory are visible to the
1196          * other CPUs before issuing the IPI.
1197          */
1198         wmb();
1199
1200         for_each_cpu(cpu, mask) {
1201                 u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
1202                 u16 tlist;
1203
1204                 tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1205                 gic_send_sgi(cluster_id, tlist, d->hwirq);
1206         }
1207
1208         /* Force the above writes to ICC_SGI1R_EL1 to be executed */
1209         isb();
1210 }
1211
1212 static void __init gic_smp_init(void)
1213 {
1214         struct irq_fwspec sgi_fwspec = {
1215                 .fwnode         = gic_data.fwnode,
1216                 .param_count    = 1,
1217         };
1218         int base_sgi;
1219
1220         cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1221                                   "irqchip/arm/gicv3:starting",
1222                                   gic_starting_cpu, NULL);
1223
1224         /* Register all 8 non-secure SGIs */
1225         base_sgi = __irq_domain_alloc_irqs(gic_data.domain, -1, 8,
1226                                            NUMA_NO_NODE, &sgi_fwspec,
1227                                            false, NULL);
1228         if (WARN_ON(base_sgi <= 0))
1229                 return;
1230
1231         set_smp_ipi_range(base_sgi, 8);
1232 }
1233
1234 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1235                             bool force)
1236 {
1237         unsigned int cpu;
1238         u32 offset, index;
1239         void __iomem *reg;
1240         int enabled;
1241         u64 val;
1242
1243         if (force)
1244                 cpu = cpumask_first(mask_val);
1245         else
1246                 cpu = cpumask_any_and(mask_val, cpu_online_mask);
1247
1248         if (cpu >= nr_cpu_ids)
1249                 return -EINVAL;
1250
1251         if (gic_irq_in_rdist(d))
1252                 return -EINVAL;
1253
1254         /* If interrupt was enabled, disable it first */
1255         enabled = gic_peek_irq(d, GICD_ISENABLER);
1256         if (enabled)
1257                 gic_mask_irq(d);
1258
1259         offset = convert_offset_index(d, GICD_IROUTER, &index);
1260         reg = gic_dist_base(d) + offset + (index * 8);
1261         val = gic_mpidr_to_affinity(cpu_logical_map(cpu));
1262
1263         gic_write_irouter(val, reg);
1264
1265         /*
1266          * If the interrupt was enabled, enabled it again. Otherwise,
1267          * just wait for the distributor to have digested our changes.
1268          */
1269         if (enabled)
1270                 gic_unmask_irq(d);
1271         else
1272                 gic_dist_wait_for_rwp();
1273
1274         irq_data_update_effective_affinity(d, cpumask_of(cpu));
1275
1276         return IRQ_SET_MASK_OK_DONE;
1277 }
1278 #else
1279 #define gic_set_affinity        NULL
1280 #define gic_ipi_send_mask       NULL
1281 #define gic_smp_init()          do { } while(0)
1282 #endif
1283
1284 static int gic_retrigger(struct irq_data *data)
1285 {
1286         return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1287 }
1288
1289 #ifdef CONFIG_CPU_PM
1290 static int gic_cpu_pm_notifier(struct notifier_block *self,
1291                                unsigned long cmd, void *v)
1292 {
1293         if (cmd == CPU_PM_EXIT) {
1294                 if (gic_dist_security_disabled())
1295                         gic_enable_redist(true);
1296                 gic_cpu_sys_reg_init();
1297         } else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1298                 gic_write_grpen1(0);
1299                 gic_enable_redist(false);
1300         }
1301         return NOTIFY_OK;
1302 }
1303
1304 static struct notifier_block gic_cpu_pm_notifier_block = {
1305         .notifier_call = gic_cpu_pm_notifier,
1306 };
1307
1308 static void gic_cpu_pm_init(void)
1309 {
1310         cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1311 }
1312
1313 #else
1314 static inline void gic_cpu_pm_init(void) { }
1315 #endif /* CONFIG_CPU_PM */
1316
1317 static struct irq_chip gic_chip = {
1318         .name                   = "GICv3",
1319         .irq_mask               = gic_mask_irq,
1320         .irq_unmask             = gic_unmask_irq,
1321         .irq_eoi                = gic_eoi_irq,
1322         .irq_set_type           = gic_set_type,
1323         .irq_set_affinity       = gic_set_affinity,
1324         .irq_retrigger          = gic_retrigger,
1325         .irq_get_irqchip_state  = gic_irq_get_irqchip_state,
1326         .irq_set_irqchip_state  = gic_irq_set_irqchip_state,
1327         .irq_nmi_setup          = gic_irq_nmi_setup,
1328         .irq_nmi_teardown       = gic_irq_nmi_teardown,
1329         .ipi_send_mask          = gic_ipi_send_mask,
1330         .flags                  = IRQCHIP_SET_TYPE_MASKED |
1331                                   IRQCHIP_SKIP_SET_WAKE |
1332                                   IRQCHIP_MASK_ON_SUSPEND,
1333 };
1334
1335 static struct irq_chip gic_eoimode1_chip = {
1336         .name                   = "GICv3",
1337         .irq_mask               = gic_eoimode1_mask_irq,
1338         .irq_unmask             = gic_unmask_irq,
1339         .irq_eoi                = gic_eoimode1_eoi_irq,
1340         .irq_set_type           = gic_set_type,
1341         .irq_set_affinity       = gic_set_affinity,
1342         .irq_retrigger          = gic_retrigger,
1343         .irq_get_irqchip_state  = gic_irq_get_irqchip_state,
1344         .irq_set_irqchip_state  = gic_irq_set_irqchip_state,
1345         .irq_set_vcpu_affinity  = gic_irq_set_vcpu_affinity,
1346         .irq_nmi_setup          = gic_irq_nmi_setup,
1347         .irq_nmi_teardown       = gic_irq_nmi_teardown,
1348         .ipi_send_mask          = gic_ipi_send_mask,
1349         .flags                  = IRQCHIP_SET_TYPE_MASKED |
1350                                   IRQCHIP_SKIP_SET_WAKE |
1351                                   IRQCHIP_MASK_ON_SUSPEND,
1352 };
1353
1354 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1355                               irq_hw_number_t hw)
1356 {
1357         struct irq_chip *chip = &gic_chip;
1358         struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1359
1360         if (static_branch_likely(&supports_deactivate_key))
1361                 chip = &gic_eoimode1_chip;
1362
1363         switch (__get_intid_range(hw)) {
1364         case SGI_RANGE:
1365         case PPI_RANGE:
1366         case EPPI_RANGE:
1367                 irq_set_percpu_devid(irq);
1368                 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1369                                     handle_percpu_devid_irq, NULL, NULL);
1370                 break;
1371
1372         case SPI_RANGE:
1373         case ESPI_RANGE:
1374                 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1375                                     handle_fasteoi_irq, NULL, NULL);
1376                 irq_set_probe(irq);
1377                 irqd_set_single_target(irqd);
1378                 break;
1379
1380         case LPI_RANGE:
1381                 if (!gic_dist_supports_lpis())
1382                         return -EPERM;
1383                 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1384                                     handle_fasteoi_irq, NULL, NULL);
1385                 break;
1386
1387         default:
1388                 return -EPERM;
1389         }
1390
1391         /* Prevents SW retriggers which mess up the ACK/EOI ordering */
1392         irqd_set_handle_enforce_irqctx(irqd);
1393         return 0;
1394 }
1395
1396 static int gic_irq_domain_translate(struct irq_domain *d,
1397                                     struct irq_fwspec *fwspec,
1398                                     unsigned long *hwirq,
1399                                     unsigned int *type)
1400 {
1401         if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1402                 *hwirq = fwspec->param[0];
1403                 *type = IRQ_TYPE_EDGE_RISING;
1404                 return 0;
1405         }
1406
1407         if (is_of_node(fwspec->fwnode)) {
1408                 if (fwspec->param_count < 3)
1409                         return -EINVAL;
1410
1411                 switch (fwspec->param[0]) {
1412                 case 0:                 /* SPI */
1413                         *hwirq = fwspec->param[1] + 32;
1414                         break;
1415                 case 1:                 /* PPI */
1416                         *hwirq = fwspec->param[1] + 16;
1417                         break;
1418                 case 2:                 /* ESPI */
1419                         *hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1420                         break;
1421                 case 3:                 /* EPPI */
1422                         *hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1423                         break;
1424                 case GIC_IRQ_TYPE_LPI:  /* LPI */
1425                         *hwirq = fwspec->param[1];
1426                         break;
1427                 case GIC_IRQ_TYPE_PARTITION:
1428                         *hwirq = fwspec->param[1];
1429                         if (fwspec->param[1] >= 16)
1430                                 *hwirq += EPPI_BASE_INTID - 16;
1431                         else
1432                                 *hwirq += 16;
1433                         break;
1434                 default:
1435                         return -EINVAL;
1436                 }
1437
1438                 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1439
1440                 /*
1441                  * Make it clear that broken DTs are... broken.
1442                  * Partitioned PPIs are an unfortunate exception.
1443                  */
1444                 WARN_ON(*type == IRQ_TYPE_NONE &&
1445                         fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1446                 return 0;
1447         }
1448
1449         if (is_fwnode_irqchip(fwspec->fwnode)) {
1450                 if(fwspec->param_count != 2)
1451                         return -EINVAL;
1452
1453                 *hwirq = fwspec->param[0];
1454                 *type = fwspec->param[1];
1455
1456                 WARN_ON(*type == IRQ_TYPE_NONE);
1457                 return 0;
1458         }
1459
1460         return -EINVAL;
1461 }
1462
1463 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1464                                 unsigned int nr_irqs, void *arg)
1465 {
1466         int i, ret;
1467         irq_hw_number_t hwirq;
1468         unsigned int type = IRQ_TYPE_NONE;
1469         struct irq_fwspec *fwspec = arg;
1470
1471         ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1472         if (ret)
1473                 return ret;
1474
1475         for (i = 0; i < nr_irqs; i++) {
1476                 ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1477                 if (ret)
1478                         return ret;
1479         }
1480
1481         return 0;
1482 }
1483
1484 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1485                                 unsigned int nr_irqs)
1486 {
1487         int i;
1488
1489         for (i = 0; i < nr_irqs; i++) {
1490                 struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1491                 irq_set_handler(virq + i, NULL);
1492                 irq_domain_reset_irq_data(d);
1493         }
1494 }
1495
1496 static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
1497                                       irq_hw_number_t hwirq)
1498 {
1499         enum gic_intid_range range;
1500
1501         if (!gic_data.ppi_descs)
1502                 return false;
1503
1504         if (!is_of_node(fwspec->fwnode))
1505                 return false;
1506
1507         if (fwspec->param_count < 4 || !fwspec->param[3])
1508                 return false;
1509
1510         range = __get_intid_range(hwirq);
1511         if (range != PPI_RANGE && range != EPPI_RANGE)
1512                 return false;
1513
1514         return true;
1515 }
1516
1517 static int gic_irq_domain_select(struct irq_domain *d,
1518                                  struct irq_fwspec *fwspec,
1519                                  enum irq_domain_bus_token bus_token)
1520 {
1521         unsigned int type, ret, ppi_idx;
1522         irq_hw_number_t hwirq;
1523
1524         /* Not for us */
1525         if (fwspec->fwnode != d->fwnode)
1526                 return 0;
1527
1528         /* If this is not DT, then we have a single domain */
1529         if (!is_of_node(fwspec->fwnode))
1530                 return 1;
1531
1532         ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
1533         if (WARN_ON_ONCE(ret))
1534                 return 0;
1535
1536         if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
1537                 return d == gic_data.domain;
1538
1539         /*
1540          * If this is a PPI and we have a 4th (non-null) parameter,
1541          * then we need to match the partition domain.
1542          */
1543         ppi_idx = __gic_get_ppi_index(hwirq);
1544         return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
1545 }
1546
1547 static const struct irq_domain_ops gic_irq_domain_ops = {
1548         .translate = gic_irq_domain_translate,
1549         .alloc = gic_irq_domain_alloc,
1550         .free = gic_irq_domain_free,
1551         .select = gic_irq_domain_select,
1552 };
1553
1554 static int partition_domain_translate(struct irq_domain *d,
1555                                       struct irq_fwspec *fwspec,
1556                                       unsigned long *hwirq,
1557                                       unsigned int *type)
1558 {
1559         unsigned long ppi_intid;
1560         struct device_node *np;
1561         unsigned int ppi_idx;
1562         int ret;
1563
1564         if (!gic_data.ppi_descs)
1565                 return -ENOMEM;
1566
1567         np = of_find_node_by_phandle(fwspec->param[3]);
1568         if (WARN_ON(!np))
1569                 return -EINVAL;
1570
1571         ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
1572         if (WARN_ON_ONCE(ret))
1573                 return 0;
1574
1575         ppi_idx = __gic_get_ppi_index(ppi_intid);
1576         ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
1577                                      of_node_to_fwnode(np));
1578         if (ret < 0)
1579                 return ret;
1580
1581         *hwirq = ret;
1582         *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1583
1584         return 0;
1585 }
1586
1587 static const struct irq_domain_ops partition_domain_ops = {
1588         .translate = partition_domain_translate,
1589         .select = gic_irq_domain_select,
1590 };
1591
1592 static bool gic_enable_quirk_msm8996(void *data)
1593 {
1594         struct gic_chip_data *d = data;
1595
1596         d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1597
1598         return true;
1599 }
1600
1601 static bool gic_enable_quirk_cavium_38539(void *data)
1602 {
1603         struct gic_chip_data *d = data;
1604
1605         d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1606
1607         return true;
1608 }
1609
1610 static bool gic_enable_quirk_hip06_07(void *data)
1611 {
1612         struct gic_chip_data *d = data;
1613
1614         /*
1615          * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1616          * not being an actual ARM implementation). The saving grace is
1617          * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1618          * HIP07 doesn't even have a proper IIDR, and still pretends to
1619          * have ESPI. In both cases, put them right.
1620          */
1621         if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1622                 /* Zero both ESPI and the RES0 field next to it... */
1623                 d->rdists.gicd_typer &= ~GENMASK(9, 8);
1624                 return true;
1625         }
1626
1627         return false;
1628 }
1629
1630 static const struct gic_quirk gic_quirks[] = {
1631         {
1632                 .desc   = "GICv3: Qualcomm MSM8996 broken firmware",
1633                 .compatible = "qcom,msm8996-gic-v3",
1634                 .init   = gic_enable_quirk_msm8996,
1635         },
1636         {
1637                 .desc   = "GICv3: HIP06 erratum 161010803",
1638                 .iidr   = 0x0204043b,
1639                 .mask   = 0xffffffff,
1640                 .init   = gic_enable_quirk_hip06_07,
1641         },
1642         {
1643                 .desc   = "GICv3: HIP07 erratum 161010803",
1644                 .iidr   = 0x00000000,
1645                 .mask   = 0xffffffff,
1646                 .init   = gic_enable_quirk_hip06_07,
1647         },
1648         {
1649                 /*
1650                  * Reserved register accesses generate a Synchronous
1651                  * External Abort. This erratum applies to:
1652                  * - ThunderX: CN88xx
1653                  * - OCTEON TX: CN83xx, CN81xx
1654                  * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1655                  */
1656                 .desc   = "GICv3: Cavium erratum 38539",
1657                 .iidr   = 0xa000034c,
1658                 .mask   = 0xe8f00fff,
1659                 .init   = gic_enable_quirk_cavium_38539,
1660         },
1661         {
1662         }
1663 };
1664
1665 static void gic_enable_nmi_support(void)
1666 {
1667         int i;
1668
1669         if (!gic_prio_masking_enabled())
1670                 return;
1671
1672         ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
1673         if (!ppi_nmi_refs)
1674                 return;
1675
1676         for (i = 0; i < gic_data.ppi_nr; i++)
1677                 refcount_set(&ppi_nmi_refs[i], 0);
1678
1679         /*
1680          * Linux itself doesn't use 1:N distribution, so has no need to
1681          * set PMHE. The only reason to have it set is if EL3 requires it
1682          * (and we can't change it).
1683          */
1684         if (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK)
1685                 static_branch_enable(&gic_pmr_sync);
1686
1687         pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1688                 static_branch_unlikely(&gic_pmr_sync) ? "forced" : "relaxed");
1689
1690         /*
1691          * How priority values are used by the GIC depends on two things:
1692          * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1693          * and if Group 0 interrupts can be delivered to Linux in the non-secure
1694          * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1695          * the ICC_PMR_EL1 register and the priority that software assigns to
1696          * interrupts:
1697          *
1698          * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1699          * -----------------------------------------------------------
1700          *      1       |      -      |  unchanged  |    unchanged
1701          * -----------------------------------------------------------
1702          *      0       |      1      |  non-secure |    non-secure
1703          * -----------------------------------------------------------
1704          *      0       |      0      |  unchanged  |    non-secure
1705          *
1706          * where non-secure means that the value is right-shifted by one and the
1707          * MSB bit set, to make it fit in the non-secure priority range.
1708          *
1709          * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1710          * are both either modified or unchanged, we can use the same set of
1711          * priorities.
1712          *
1713          * In the last case, where only the interrupt priorities are modified to
1714          * be in the non-secure range, we use a different PMR value to mask IRQs
1715          * and the rest of the values that we use remain unchanged.
1716          */
1717         if (gic_has_group0() && !gic_dist_security_disabled())
1718                 static_branch_enable(&gic_nonsecure_priorities);
1719
1720         static_branch_enable(&supports_pseudo_nmis);
1721
1722         if (static_branch_likely(&supports_deactivate_key))
1723                 gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1724         else
1725                 gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1726 }
1727
1728 static int __init gic_init_bases(void __iomem *dist_base,
1729                                  struct redist_region *rdist_regs,
1730                                  u32 nr_redist_regions,
1731                                  u64 redist_stride,
1732                                  struct fwnode_handle *handle)
1733 {
1734         u32 typer;
1735         int err;
1736
1737         if (!is_hyp_mode_available())
1738                 static_branch_disable(&supports_deactivate_key);
1739
1740         if (static_branch_likely(&supports_deactivate_key))
1741                 pr_info("GIC: Using split EOI/Deactivate mode\n");
1742
1743         gic_data.fwnode = handle;
1744         gic_data.dist_base = dist_base;
1745         gic_data.redist_regions = rdist_regs;
1746         gic_data.nr_redist_regions = nr_redist_regions;
1747         gic_data.redist_stride = redist_stride;
1748
1749         /*
1750          * Find out how many interrupts are supported.
1751          */
1752         typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
1753         gic_data.rdists.gicd_typer = typer;
1754
1755         gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
1756                           gic_quirks, &gic_data);
1757
1758         pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
1759         pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
1760
1761         /*
1762          * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
1763          * architecture spec (which says that reserved registers are RES0).
1764          */
1765         if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
1766                 gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
1767
1768         gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
1769                                                  &gic_data);
1770         gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
1771         gic_data.rdists.has_rvpeid = true;
1772         gic_data.rdists.has_vlpis = true;
1773         gic_data.rdists.has_direct_lpi = true;
1774         gic_data.rdists.has_vpend_valid_dirty = true;
1775
1776         if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
1777                 err = -ENOMEM;
1778                 goto out_free;
1779         }
1780
1781         irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
1782
1783         gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
1784         pr_info("Distributor has %sRange Selector support\n",
1785                 gic_data.has_rss ? "" : "no ");
1786
1787         if (typer & GICD_TYPER_MBIS) {
1788                 err = mbi_init(handle, gic_data.domain);
1789                 if (err)
1790                         pr_err("Failed to initialize MBIs\n");
1791         }
1792
1793         set_handle_irq(gic_handle_irq);
1794
1795         gic_update_rdist_properties();
1796
1797         gic_dist_init();
1798         gic_cpu_init();
1799         gic_smp_init();
1800         gic_cpu_pm_init();
1801
1802         if (gic_dist_supports_lpis()) {
1803                 its_init(handle, &gic_data.rdists, gic_data.domain);
1804                 its_cpu_init();
1805         } else {
1806                 if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1807                         gicv2m_init(handle, gic_data.domain);
1808         }
1809
1810         gic_enable_nmi_support();
1811
1812         return 0;
1813
1814 out_free:
1815         if (gic_data.domain)
1816                 irq_domain_remove(gic_data.domain);
1817         free_percpu(gic_data.rdists.rdist);
1818         return err;
1819 }
1820
1821 static int __init gic_validate_dist_version(void __iomem *dist_base)
1822 {
1823         u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
1824
1825         if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
1826                 return -ENODEV;
1827
1828         return 0;
1829 }
1830
1831 /* Create all possible partitions at boot time */
1832 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
1833 {
1834         struct device_node *parts_node, *child_part;
1835         int part_idx = 0, i;
1836         int nr_parts;
1837         struct partition_affinity *parts;
1838
1839         parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
1840         if (!parts_node)
1841                 return;
1842
1843         gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
1844         if (!gic_data.ppi_descs)
1845                 return;
1846
1847         nr_parts = of_get_child_count(parts_node);
1848
1849         if (!nr_parts)
1850                 goto out_put_node;
1851
1852         parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
1853         if (WARN_ON(!parts))
1854                 goto out_put_node;
1855
1856         for_each_child_of_node(parts_node, child_part) {
1857                 struct partition_affinity *part;
1858                 int n;
1859
1860                 part = &parts[part_idx];
1861
1862                 part->partition_id = of_node_to_fwnode(child_part);
1863
1864                 pr_info("GIC: PPI partition %pOFn[%d] { ",
1865                         child_part, part_idx);
1866
1867                 n = of_property_count_elems_of_size(child_part, "affinity",
1868                                                     sizeof(u32));
1869                 WARN_ON(n <= 0);
1870
1871                 for (i = 0; i < n; i++) {
1872                         int err, cpu;
1873                         u32 cpu_phandle;
1874                         struct device_node *cpu_node;
1875
1876                         err = of_property_read_u32_index(child_part, "affinity",
1877                                                          i, &cpu_phandle);
1878                         if (WARN_ON(err))
1879                                 continue;
1880
1881                         cpu_node = of_find_node_by_phandle(cpu_phandle);
1882                         if (WARN_ON(!cpu_node))
1883                                 continue;
1884
1885                         cpu = of_cpu_node_to_id(cpu_node);
1886                         if (WARN_ON(cpu < 0))
1887                                 continue;
1888
1889                         pr_cont("%pOF[%d] ", cpu_node, cpu);
1890
1891                         cpumask_set_cpu(cpu, &part->mask);
1892                 }
1893
1894                 pr_cont("}\n");
1895                 part_idx++;
1896         }
1897
1898         for (i = 0; i < gic_data.ppi_nr; i++) {
1899                 unsigned int irq;
1900                 struct partition_desc *desc;
1901                 struct irq_fwspec ppi_fwspec = {
1902                         .fwnode         = gic_data.fwnode,
1903                         .param_count    = 3,
1904                         .param          = {
1905                                 [0]     = GIC_IRQ_TYPE_PARTITION,
1906                                 [1]     = i,
1907                                 [2]     = IRQ_TYPE_NONE,
1908                         },
1909                 };
1910
1911                 irq = irq_create_fwspec_mapping(&ppi_fwspec);
1912                 if (WARN_ON(!irq))
1913                         continue;
1914                 desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
1915                                              irq, &partition_domain_ops);
1916                 if (WARN_ON(!desc))
1917                         continue;
1918
1919                 gic_data.ppi_descs[i] = desc;
1920         }
1921
1922 out_put_node:
1923         of_node_put(parts_node);
1924 }
1925
1926 static void __init gic_of_setup_kvm_info(struct device_node *node)
1927 {
1928         int ret;
1929         struct resource r;
1930         u32 gicv_idx;
1931
1932         gic_v3_kvm_info.type = GIC_V3;
1933
1934         gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
1935         if (!gic_v3_kvm_info.maint_irq)
1936                 return;
1937
1938         if (of_property_read_u32(node, "#redistributor-regions",
1939                                  &gicv_idx))
1940                 gicv_idx = 1;
1941
1942         gicv_idx += 3;  /* Also skip GICD, GICC, GICH */
1943         ret = of_address_to_resource(node, gicv_idx, &r);
1944         if (!ret)
1945                 gic_v3_kvm_info.vcpu = r;
1946
1947         gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
1948         gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
1949         vgic_set_kvm_info(&gic_v3_kvm_info);
1950 }
1951
1952 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
1953 {
1954         void __iomem *dist_base;
1955         struct redist_region *rdist_regs;
1956         u64 redist_stride;
1957         u32 nr_redist_regions;
1958         int err, i;
1959
1960         dist_base = of_iomap(node, 0);
1961         if (!dist_base) {
1962                 pr_err("%pOF: unable to map gic dist registers\n", node);
1963                 return -ENXIO;
1964         }
1965
1966         err = gic_validate_dist_version(dist_base);
1967         if (err) {
1968                 pr_err("%pOF: no distributor detected, giving up\n", node);
1969                 goto out_unmap_dist;
1970         }
1971
1972         if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
1973                 nr_redist_regions = 1;
1974
1975         rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
1976                              GFP_KERNEL);
1977         if (!rdist_regs) {
1978                 err = -ENOMEM;
1979                 goto out_unmap_dist;
1980         }
1981
1982         for (i = 0; i < nr_redist_regions; i++) {
1983                 struct resource res;
1984                 int ret;
1985
1986                 ret = of_address_to_resource(node, 1 + i, &res);
1987                 rdist_regs[i].redist_base = of_iomap(node, 1 + i);
1988                 if (ret || !rdist_regs[i].redist_base) {
1989                         pr_err("%pOF: couldn't map region %d\n", node, i);
1990                         err = -ENODEV;
1991                         goto out_unmap_rdist;
1992                 }
1993                 rdist_regs[i].phys_base = res.start;
1994         }
1995
1996         if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
1997                 redist_stride = 0;
1998
1999         gic_enable_of_quirks(node, gic_quirks, &gic_data);
2000
2001         err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions,
2002                              redist_stride, &node->fwnode);
2003         if (err)
2004                 goto out_unmap_rdist;
2005
2006         gic_populate_ppi_partitions(node);
2007
2008         if (static_branch_likely(&supports_deactivate_key))
2009                 gic_of_setup_kvm_info(node);
2010         return 0;
2011
2012 out_unmap_rdist:
2013         for (i = 0; i < nr_redist_regions; i++)
2014                 if (rdist_regs[i].redist_base)
2015                         iounmap(rdist_regs[i].redist_base);
2016         kfree(rdist_regs);
2017 out_unmap_dist:
2018         iounmap(dist_base);
2019         return err;
2020 }
2021
2022 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2023
2024 #ifdef CONFIG_ACPI
2025 static struct
2026 {
2027         void __iomem *dist_base;
2028         struct redist_region *redist_regs;
2029         u32 nr_redist_regions;
2030         bool single_redist;
2031         int enabled_rdists;
2032         u32 maint_irq;
2033         int maint_irq_mode;
2034         phys_addr_t vcpu_base;
2035 } acpi_data __initdata;
2036
2037 static void __init
2038 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2039 {
2040         static int count = 0;
2041
2042         acpi_data.redist_regs[count].phys_base = phys_base;
2043         acpi_data.redist_regs[count].redist_base = redist_base;
2044         acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2045         count++;
2046 }
2047
2048 static int __init
2049 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2050                            const unsigned long end)
2051 {
2052         struct acpi_madt_generic_redistributor *redist =
2053                         (struct acpi_madt_generic_redistributor *)header;
2054         void __iomem *redist_base;
2055
2056         redist_base = ioremap(redist->base_address, redist->length);
2057         if (!redist_base) {
2058                 pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2059                 return -ENOMEM;
2060         }
2061
2062         gic_acpi_register_redist(redist->base_address, redist_base);
2063         return 0;
2064 }
2065
2066 static int __init
2067 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2068                          const unsigned long end)
2069 {
2070         struct acpi_madt_generic_interrupt *gicc =
2071                                 (struct acpi_madt_generic_interrupt *)header;
2072         u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2073         u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2074         void __iomem *redist_base;
2075
2076         /* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
2077         if (!(gicc->flags & ACPI_MADT_ENABLED))
2078                 return 0;
2079
2080         redist_base = ioremap(gicc->gicr_base_address, size);
2081         if (!redist_base)
2082                 return -ENOMEM;
2083
2084         gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2085         return 0;
2086 }
2087
2088 static int __init gic_acpi_collect_gicr_base(void)
2089 {
2090         acpi_tbl_entry_handler redist_parser;
2091         enum acpi_madt_type type;
2092
2093         if (acpi_data.single_redist) {
2094                 type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2095                 redist_parser = gic_acpi_parse_madt_gicc;
2096         } else {
2097                 type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2098                 redist_parser = gic_acpi_parse_madt_redist;
2099         }
2100
2101         /* Collect redistributor base addresses in GICR entries */
2102         if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2103                 return 0;
2104
2105         pr_info("No valid GICR entries exist\n");
2106         return -ENODEV;
2107 }
2108
2109 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2110                                   const unsigned long end)
2111 {
2112         /* Subtable presence means that redist exists, that's it */
2113         return 0;
2114 }
2115
2116 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2117                                       const unsigned long end)
2118 {
2119         struct acpi_madt_generic_interrupt *gicc =
2120                                 (struct acpi_madt_generic_interrupt *)header;
2121
2122         /*
2123          * If GICC is enabled and has valid gicr base address, then it means
2124          * GICR base is presented via GICC
2125          */
2126         if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
2127                 acpi_data.enabled_rdists++;
2128                 return 0;
2129         }
2130
2131         /*
2132          * It's perfectly valid firmware can pass disabled GICC entry, driver
2133          * should not treat as errors, skip the entry instead of probe fail.
2134          */
2135         if (!(gicc->flags & ACPI_MADT_ENABLED))
2136                 return 0;
2137
2138         return -ENODEV;
2139 }
2140
2141 static int __init gic_acpi_count_gicr_regions(void)
2142 {
2143         int count;
2144
2145         /*
2146          * Count how many redistributor regions we have. It is not allowed
2147          * to mix redistributor description, GICR and GICC subtables have to be
2148          * mutually exclusive.
2149          */
2150         count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2151                                       gic_acpi_match_gicr, 0);
2152         if (count > 0) {
2153                 acpi_data.single_redist = false;
2154                 return count;
2155         }
2156
2157         count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2158                                       gic_acpi_match_gicc, 0);
2159         if (count > 0) {
2160                 acpi_data.single_redist = true;
2161                 count = acpi_data.enabled_rdists;
2162         }
2163
2164         return count;
2165 }
2166
2167 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2168                                            struct acpi_probe_entry *ape)
2169 {
2170         struct acpi_madt_generic_distributor *dist;
2171         int count;
2172
2173         dist = (struct acpi_madt_generic_distributor *)header;
2174         if (dist->version != ape->driver_data)
2175                 return false;
2176
2177         /* We need to do that exercise anyway, the sooner the better */
2178         count = gic_acpi_count_gicr_regions();
2179         if (count <= 0)
2180                 return false;
2181
2182         acpi_data.nr_redist_regions = count;
2183         return true;
2184 }
2185
2186 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2187                                                 const unsigned long end)
2188 {
2189         struct acpi_madt_generic_interrupt *gicc =
2190                 (struct acpi_madt_generic_interrupt *)header;
2191         int maint_irq_mode;
2192         static int first_madt = true;
2193
2194         /* Skip unusable CPUs */
2195         if (!(gicc->flags & ACPI_MADT_ENABLED))
2196                 return 0;
2197
2198         maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2199                 ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2200
2201         if (first_madt) {
2202                 first_madt = false;
2203
2204                 acpi_data.maint_irq = gicc->vgic_interrupt;
2205                 acpi_data.maint_irq_mode = maint_irq_mode;
2206                 acpi_data.vcpu_base = gicc->gicv_base_address;
2207
2208                 return 0;
2209         }
2210
2211         /*
2212          * The maintenance interrupt and GICV should be the same for every CPU
2213          */
2214         if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2215             (acpi_data.maint_irq_mode != maint_irq_mode) ||
2216             (acpi_data.vcpu_base != gicc->gicv_base_address))
2217                 return -EINVAL;
2218
2219         return 0;
2220 }
2221
2222 static bool __init gic_acpi_collect_virt_info(void)
2223 {
2224         int count;
2225
2226         count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2227                                       gic_acpi_parse_virt_madt_gicc, 0);
2228
2229         return (count > 0);
2230 }
2231
2232 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2233 #define ACPI_GICV2_VCTRL_MEM_SIZE       (SZ_4K)
2234 #define ACPI_GICV2_VCPU_MEM_SIZE        (SZ_8K)
2235
2236 static void __init gic_acpi_setup_kvm_info(void)
2237 {
2238         int irq;
2239
2240         if (!gic_acpi_collect_virt_info()) {
2241                 pr_warn("Unable to get hardware information used for virtualization\n");
2242                 return;
2243         }
2244
2245         gic_v3_kvm_info.type = GIC_V3;
2246
2247         irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2248                                 acpi_data.maint_irq_mode,
2249                                 ACPI_ACTIVE_HIGH);
2250         if (irq <= 0)
2251                 return;
2252
2253         gic_v3_kvm_info.maint_irq = irq;
2254
2255         if (acpi_data.vcpu_base) {
2256                 struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2257
2258                 vcpu->flags = IORESOURCE_MEM;
2259                 vcpu->start = acpi_data.vcpu_base;
2260                 vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2261         }
2262
2263         gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2264         gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2265         vgic_set_kvm_info(&gic_v3_kvm_info);
2266 }
2267
2268 static int __init
2269 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2270 {
2271         struct acpi_madt_generic_distributor *dist;
2272         struct fwnode_handle *domain_handle;
2273         size_t size;
2274         int i, err;
2275
2276         /* Get distributor base address */
2277         dist = (struct acpi_madt_generic_distributor *)header;
2278         acpi_data.dist_base = ioremap(dist->base_address,
2279                                       ACPI_GICV3_DIST_MEM_SIZE);
2280         if (!acpi_data.dist_base) {
2281                 pr_err("Unable to map GICD registers\n");
2282                 return -ENOMEM;
2283         }
2284
2285         err = gic_validate_dist_version(acpi_data.dist_base);
2286         if (err) {
2287                 pr_err("No distributor detected at @%p, giving up\n",
2288                        acpi_data.dist_base);
2289                 goto out_dist_unmap;
2290         }
2291
2292         size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2293         acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2294         if (!acpi_data.redist_regs) {
2295                 err = -ENOMEM;
2296                 goto out_dist_unmap;
2297         }
2298
2299         err = gic_acpi_collect_gicr_base();
2300         if (err)
2301                 goto out_redist_unmap;
2302
2303         domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2304         if (!domain_handle) {
2305                 err = -ENOMEM;
2306                 goto out_redist_unmap;
2307         }
2308
2309         err = gic_init_bases(acpi_data.dist_base, acpi_data.redist_regs,
2310                              acpi_data.nr_redist_regions, 0, domain_handle);
2311         if (err)
2312                 goto out_fwhandle_free;
2313
2314         acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
2315
2316         if (static_branch_likely(&supports_deactivate_key))
2317                 gic_acpi_setup_kvm_info();
2318
2319         return 0;
2320
2321 out_fwhandle_free:
2322         irq_domain_free_fwnode(domain_handle);
2323 out_redist_unmap:
2324         for (i = 0; i < acpi_data.nr_redist_regions; i++)
2325                 if (acpi_data.redist_regs[i].redist_base)
2326                         iounmap(acpi_data.redist_regs[i].redist_base);
2327         kfree(acpi_data.redist_regs);
2328 out_dist_unmap:
2329         iounmap(acpi_data.dist_base);
2330         return err;
2331 }
2332 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2333                      acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2334                      gic_acpi_init);
2335 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2336                      acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2337                      gic_acpi_init);
2338 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2339                      acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2340                      gic_acpi_init);
2341 #endif