dt-bindings: clock: drop useless consumer example
[linux-2.6-microblaze.git] / drivers / irqchip / irq-gic-v3-its.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/efi.h>
16 #include <linux/interrupt.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39
40 #include "irq-gic-common.h"
41
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING           (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375       (1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144       (1ULL << 2)
45
46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING     (1 << 0)
47 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED      (1 << 1)
48
49 #define RD_LOCAL_LPI_ENABLED                    BIT(0)
50 #define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
51 #define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
52
53 static u32 lpi_id_bits;
54
55 /*
56  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
57  * deal with (one configuration byte per interrupt). PENDBASE has to
58  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
59  */
60 #define LPI_NRBITS              lpi_id_bits
61 #define LPI_PROPBASE_SZ         ALIGN(BIT(LPI_NRBITS), SZ_64K)
62 #define LPI_PENDBASE_SZ         ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
63
64 #define LPI_PROP_DEFAULT_PRIO   GICD_INT_DEF_PRI
65
66 /*
67  * Collection structure - just an ID, and a redistributor address to
68  * ping. We use one per CPU as a bag of interrupts assigned to this
69  * CPU.
70  */
71 struct its_collection {
72         u64                     target_address;
73         u16                     col_id;
74 };
75
76 /*
77  * The ITS_BASER structure - contains memory information, cached
78  * value of BASER register configuration and ITS page size.
79  */
80 struct its_baser {
81         void            *base;
82         u64             val;
83         u32             order;
84         u32             psz;
85 };
86
87 struct its_device;
88
89 /*
90  * The ITS structure - contains most of the infrastructure, with the
91  * top-level MSI domain, the command queue, the collections, and the
92  * list of devices writing to it.
93  *
94  * dev_alloc_lock has to be taken for device allocations, while the
95  * spinlock must be taken to parse data structures such as the device
96  * list.
97  */
98 struct its_node {
99         raw_spinlock_t          lock;
100         struct mutex            dev_alloc_lock;
101         struct list_head        entry;
102         void __iomem            *base;
103         void __iomem            *sgir_base;
104         phys_addr_t             phys_base;
105         struct its_cmd_block    *cmd_base;
106         struct its_cmd_block    *cmd_write;
107         struct its_baser        tables[GITS_BASER_NR_REGS];
108         struct its_collection   *collections;
109         struct fwnode_handle    *fwnode_handle;
110         u64                     (*get_msi_base)(struct its_device *its_dev);
111         u64                     typer;
112         u64                     cbaser_save;
113         u32                     ctlr_save;
114         u32                     mpidr;
115         struct list_head        its_device_list;
116         u64                     flags;
117         unsigned long           list_nr;
118         int                     numa_node;
119         unsigned int            msi_domain_flags;
120         u32                     pre_its_base; /* for Socionext Synquacer */
121         int                     vlpi_redist_offset;
122 };
123
124 #define is_v4(its)              (!!((its)->typer & GITS_TYPER_VLPIS))
125 #define is_v4_1(its)            (!!((its)->typer & GITS_TYPER_VMAPP))
126 #define device_ids(its)         (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
127
128 #define ITS_ITT_ALIGN           SZ_256
129
130 /* The maximum number of VPEID bits supported by VLPI commands */
131 #define ITS_MAX_VPEID_BITS                                              \
132         ({                                                              \
133                 int nvpeid = 16;                                        \
134                 if (gic_rdists->has_rvpeid &&                           \
135                     gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)          \
136                         nvpeid = 1 + (gic_rdists->gicd_typer2 &         \
137                                       GICD_TYPER2_VID);                 \
138                                                                         \
139                 nvpeid;                                                 \
140         })
141 #define ITS_MAX_VPEID           (1 << (ITS_MAX_VPEID_BITS))
142
143 /* Convert page order to size in bytes */
144 #define PAGE_ORDER_TO_SIZE(o)   (PAGE_SIZE << (o))
145
146 struct event_lpi_map {
147         unsigned long           *lpi_map;
148         u16                     *col_map;
149         irq_hw_number_t         lpi_base;
150         int                     nr_lpis;
151         raw_spinlock_t          vlpi_lock;
152         struct its_vm           *vm;
153         struct its_vlpi_map     *vlpi_maps;
154         int                     nr_vlpis;
155 };
156
157 /*
158  * The ITS view of a device - belongs to an ITS, owns an interrupt
159  * translation table, and a list of interrupts.  If it some of its
160  * LPIs are injected into a guest (GICv4), the event_map.vm field
161  * indicates which one.
162  */
163 struct its_device {
164         struct list_head        entry;
165         struct its_node         *its;
166         struct event_lpi_map    event_map;
167         void                    *itt;
168         u32                     nr_ites;
169         u32                     device_id;
170         bool                    shared;
171 };
172
173 static struct {
174         raw_spinlock_t          lock;
175         struct its_device       *dev;
176         struct its_vpe          **vpes;
177         int                     next_victim;
178 } vpe_proxy;
179
180 struct cpu_lpi_count {
181         atomic_t        managed;
182         atomic_t        unmanaged;
183 };
184
185 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
186
187 static LIST_HEAD(its_nodes);
188 static DEFINE_RAW_SPINLOCK(its_lock);
189 static struct rdists *gic_rdists;
190 static struct irq_domain *its_parent;
191
192 static unsigned long its_list_map;
193 static u16 vmovp_seq_num;
194 static DEFINE_RAW_SPINLOCK(vmovp_lock);
195
196 static DEFINE_IDA(its_vpeid_ida);
197
198 #define gic_data_rdist()                (raw_cpu_ptr(gic_rdists->rdist))
199 #define gic_data_rdist_cpu(cpu)         (per_cpu_ptr(gic_rdists->rdist, cpu))
200 #define gic_data_rdist_rd_base()        (gic_data_rdist()->rd_base)
201 #define gic_data_rdist_vlpi_base()      (gic_data_rdist_rd_base() + SZ_128K)
202
203 /*
204  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
205  * always have vSGIs mapped.
206  */
207 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
208 {
209         return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
210 }
211
212 static u16 get_its_list(struct its_vm *vm)
213 {
214         struct its_node *its;
215         unsigned long its_list = 0;
216
217         list_for_each_entry(its, &its_nodes, entry) {
218                 if (!is_v4(its))
219                         continue;
220
221                 if (require_its_list_vmovp(vm, its))
222                         __set_bit(its->list_nr, &its_list);
223         }
224
225         return (u16)its_list;
226 }
227
228 static inline u32 its_get_event_id(struct irq_data *d)
229 {
230         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
231         return d->hwirq - its_dev->event_map.lpi_base;
232 }
233
234 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
235                                                u32 event)
236 {
237         struct its_node *its = its_dev->its;
238
239         return its->collections + its_dev->event_map.col_map[event];
240 }
241
242 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
243                                                u32 event)
244 {
245         if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
246                 return NULL;
247
248         return &its_dev->event_map.vlpi_maps[event];
249 }
250
251 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
252 {
253         if (irqd_is_forwarded_to_vcpu(d)) {
254                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
255                 u32 event = its_get_event_id(d);
256
257                 return dev_event_to_vlpi_map(its_dev, event);
258         }
259
260         return NULL;
261 }
262
263 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
264 {
265         raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
266         return vpe->col_idx;
267 }
268
269 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
270 {
271         raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
272 }
273
274 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
275 {
276         struct its_vlpi_map *map = get_vlpi_map(d);
277         int cpu;
278
279         if (map) {
280                 cpu = vpe_to_cpuid_lock(map->vpe, flags);
281         } else {
282                 /* Physical LPIs are already locked via the irq_desc lock */
283                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
284                 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
285                 /* Keep GCC quiet... */
286                 *flags = 0;
287         }
288
289         return cpu;
290 }
291
292 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
293 {
294         struct its_vlpi_map *map = get_vlpi_map(d);
295
296         if (map)
297                 vpe_to_cpuid_unlock(map->vpe, flags);
298 }
299
300 static struct its_collection *valid_col(struct its_collection *col)
301 {
302         if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
303                 return NULL;
304
305         return col;
306 }
307
308 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
309 {
310         if (valid_col(its->collections + vpe->col_idx))
311                 return vpe;
312
313         return NULL;
314 }
315
316 /*
317  * ITS command descriptors - parameters to be encoded in a command
318  * block.
319  */
320 struct its_cmd_desc {
321         union {
322                 struct {
323                         struct its_device *dev;
324                         u32 event_id;
325                 } its_inv_cmd;
326
327                 struct {
328                         struct its_device *dev;
329                         u32 event_id;
330                 } its_clear_cmd;
331
332                 struct {
333                         struct its_device *dev;
334                         u32 event_id;
335                 } its_int_cmd;
336
337                 struct {
338                         struct its_device *dev;
339                         int valid;
340                 } its_mapd_cmd;
341
342                 struct {
343                         struct its_collection *col;
344                         int valid;
345                 } its_mapc_cmd;
346
347                 struct {
348                         struct its_device *dev;
349                         u32 phys_id;
350                         u32 event_id;
351                 } its_mapti_cmd;
352
353                 struct {
354                         struct its_device *dev;
355                         struct its_collection *col;
356                         u32 event_id;
357                 } its_movi_cmd;
358
359                 struct {
360                         struct its_device *dev;
361                         u32 event_id;
362                 } its_discard_cmd;
363
364                 struct {
365                         struct its_collection *col;
366                 } its_invall_cmd;
367
368                 struct {
369                         struct its_vpe *vpe;
370                 } its_vinvall_cmd;
371
372                 struct {
373                         struct its_vpe *vpe;
374                         struct its_collection *col;
375                         bool valid;
376                 } its_vmapp_cmd;
377
378                 struct {
379                         struct its_vpe *vpe;
380                         struct its_device *dev;
381                         u32 virt_id;
382                         u32 event_id;
383                         bool db_enabled;
384                 } its_vmapti_cmd;
385
386                 struct {
387                         struct its_vpe *vpe;
388                         struct its_device *dev;
389                         u32 event_id;
390                         bool db_enabled;
391                 } its_vmovi_cmd;
392
393                 struct {
394                         struct its_vpe *vpe;
395                         struct its_collection *col;
396                         u16 seq_num;
397                         u16 its_list;
398                 } its_vmovp_cmd;
399
400                 struct {
401                         struct its_vpe *vpe;
402                 } its_invdb_cmd;
403
404                 struct {
405                         struct its_vpe *vpe;
406                         u8 sgi;
407                         u8 priority;
408                         bool enable;
409                         bool group;
410                         bool clear;
411                 } its_vsgi_cmd;
412         };
413 };
414
415 /*
416  * The ITS command block, which is what the ITS actually parses.
417  */
418 struct its_cmd_block {
419         union {
420                 u64     raw_cmd[4];
421                 __le64  raw_cmd_le[4];
422         };
423 };
424
425 #define ITS_CMD_QUEUE_SZ                SZ_64K
426 #define ITS_CMD_QUEUE_NR_ENTRIES        (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
427
428 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
429                                                     struct its_cmd_block *,
430                                                     struct its_cmd_desc *);
431
432 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
433                                               struct its_cmd_block *,
434                                               struct its_cmd_desc *);
435
436 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
437 {
438         u64 mask = GENMASK_ULL(h, l);
439         *raw_cmd &= ~mask;
440         *raw_cmd |= (val << l) & mask;
441 }
442
443 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
444 {
445         its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
446 }
447
448 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
449 {
450         its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
451 }
452
453 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
454 {
455         its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
456 }
457
458 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
459 {
460         its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
461 }
462
463 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
464 {
465         its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
466 }
467
468 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
469 {
470         its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
471 }
472
473 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
474 {
475         its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
476 }
477
478 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
479 {
480         its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
481 }
482
483 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
484 {
485         its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
486 }
487
488 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
489 {
490         its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
491 }
492
493 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
494 {
495         its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
496 }
497
498 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
499 {
500         its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
501 }
502
503 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
504 {
505         its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
506 }
507
508 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
509 {
510         its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
511 }
512
513 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
514 {
515         its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
516 }
517
518 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
519 {
520         its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
521 }
522
523 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
524 {
525         its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
526 }
527
528 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
529 {
530         its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
531 }
532
533 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
534 {
535         its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
536 }
537
538 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
539 {
540         its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
541 }
542
543 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
544                                         u32 vpe_db_lpi)
545 {
546         its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
547 }
548
549 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
550                                         u32 vpe_db_lpi)
551 {
552         its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
553 }
554
555 static void its_encode_db(struct its_cmd_block *cmd, bool db)
556 {
557         its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
558 }
559
560 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
561 {
562         its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
563 }
564
565 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
566 {
567         its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
568 }
569
570 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
571 {
572         its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
573 }
574
575 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
576 {
577         its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
578 }
579
580 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
581 {
582         its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
583 }
584
585 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
586 {
587         /* Let's fixup BE commands */
588         cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
589         cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
590         cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
591         cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
592 }
593
594 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
595                                                  struct its_cmd_block *cmd,
596                                                  struct its_cmd_desc *desc)
597 {
598         unsigned long itt_addr;
599         u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
600
601         itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
602         itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
603
604         its_encode_cmd(cmd, GITS_CMD_MAPD);
605         its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
606         its_encode_size(cmd, size - 1);
607         its_encode_itt(cmd, itt_addr);
608         its_encode_valid(cmd, desc->its_mapd_cmd.valid);
609
610         its_fixup_cmd(cmd);
611
612         return NULL;
613 }
614
615 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
616                                                  struct its_cmd_block *cmd,
617                                                  struct its_cmd_desc *desc)
618 {
619         its_encode_cmd(cmd, GITS_CMD_MAPC);
620         its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
621         its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
622         its_encode_valid(cmd, desc->its_mapc_cmd.valid);
623
624         its_fixup_cmd(cmd);
625
626         return desc->its_mapc_cmd.col;
627 }
628
629 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
630                                                   struct its_cmd_block *cmd,
631                                                   struct its_cmd_desc *desc)
632 {
633         struct its_collection *col;
634
635         col = dev_event_to_col(desc->its_mapti_cmd.dev,
636                                desc->its_mapti_cmd.event_id);
637
638         its_encode_cmd(cmd, GITS_CMD_MAPTI);
639         its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
640         its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
641         its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
642         its_encode_collection(cmd, col->col_id);
643
644         its_fixup_cmd(cmd);
645
646         return valid_col(col);
647 }
648
649 static struct its_collection *its_build_movi_cmd(struct its_node *its,
650                                                  struct its_cmd_block *cmd,
651                                                  struct its_cmd_desc *desc)
652 {
653         struct its_collection *col;
654
655         col = dev_event_to_col(desc->its_movi_cmd.dev,
656                                desc->its_movi_cmd.event_id);
657
658         its_encode_cmd(cmd, GITS_CMD_MOVI);
659         its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
660         its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
661         its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
662
663         its_fixup_cmd(cmd);
664
665         return valid_col(col);
666 }
667
668 static struct its_collection *its_build_discard_cmd(struct its_node *its,
669                                                     struct its_cmd_block *cmd,
670                                                     struct its_cmd_desc *desc)
671 {
672         struct its_collection *col;
673
674         col = dev_event_to_col(desc->its_discard_cmd.dev,
675                                desc->its_discard_cmd.event_id);
676
677         its_encode_cmd(cmd, GITS_CMD_DISCARD);
678         its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
679         its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
680
681         its_fixup_cmd(cmd);
682
683         return valid_col(col);
684 }
685
686 static struct its_collection *its_build_inv_cmd(struct its_node *its,
687                                                 struct its_cmd_block *cmd,
688                                                 struct its_cmd_desc *desc)
689 {
690         struct its_collection *col;
691
692         col = dev_event_to_col(desc->its_inv_cmd.dev,
693                                desc->its_inv_cmd.event_id);
694
695         its_encode_cmd(cmd, GITS_CMD_INV);
696         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
697         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
698
699         its_fixup_cmd(cmd);
700
701         return valid_col(col);
702 }
703
704 static struct its_collection *its_build_int_cmd(struct its_node *its,
705                                                 struct its_cmd_block *cmd,
706                                                 struct its_cmd_desc *desc)
707 {
708         struct its_collection *col;
709
710         col = dev_event_to_col(desc->its_int_cmd.dev,
711                                desc->its_int_cmd.event_id);
712
713         its_encode_cmd(cmd, GITS_CMD_INT);
714         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
715         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
716
717         its_fixup_cmd(cmd);
718
719         return valid_col(col);
720 }
721
722 static struct its_collection *its_build_clear_cmd(struct its_node *its,
723                                                   struct its_cmd_block *cmd,
724                                                   struct its_cmd_desc *desc)
725 {
726         struct its_collection *col;
727
728         col = dev_event_to_col(desc->its_clear_cmd.dev,
729                                desc->its_clear_cmd.event_id);
730
731         its_encode_cmd(cmd, GITS_CMD_CLEAR);
732         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
733         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
734
735         its_fixup_cmd(cmd);
736
737         return valid_col(col);
738 }
739
740 static struct its_collection *its_build_invall_cmd(struct its_node *its,
741                                                    struct its_cmd_block *cmd,
742                                                    struct its_cmd_desc *desc)
743 {
744         its_encode_cmd(cmd, GITS_CMD_INVALL);
745         its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
746
747         its_fixup_cmd(cmd);
748
749         return desc->its_invall_cmd.col;
750 }
751
752 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
753                                              struct its_cmd_block *cmd,
754                                              struct its_cmd_desc *desc)
755 {
756         its_encode_cmd(cmd, GITS_CMD_VINVALL);
757         its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
758
759         its_fixup_cmd(cmd);
760
761         return valid_vpe(its, desc->its_vinvall_cmd.vpe);
762 }
763
764 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
765                                            struct its_cmd_block *cmd,
766                                            struct its_cmd_desc *desc)
767 {
768         unsigned long vpt_addr, vconf_addr;
769         u64 target;
770         bool alloc;
771
772         its_encode_cmd(cmd, GITS_CMD_VMAPP);
773         its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
774         its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
775
776         if (!desc->its_vmapp_cmd.valid) {
777                 if (is_v4_1(its)) {
778                         alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
779                         its_encode_alloc(cmd, alloc);
780                 }
781
782                 goto out;
783         }
784
785         vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
786         target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
787
788         its_encode_target(cmd, target);
789         its_encode_vpt_addr(cmd, vpt_addr);
790         its_encode_vpt_size(cmd, LPI_NRBITS - 1);
791
792         if (!is_v4_1(its))
793                 goto out;
794
795         vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
796
797         alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
798
799         its_encode_alloc(cmd, alloc);
800
801         /*
802          * GICv4.1 provides a way to get the VLPI state, which needs the vPE
803          * to be unmapped first, and in this case, we may remap the vPE
804          * back while the VPT is not empty. So we can't assume that the
805          * VPT is empty on map. This is why we never advertise PTZ.
806          */
807         its_encode_ptz(cmd, false);
808         its_encode_vconf_addr(cmd, vconf_addr);
809         its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
810
811 out:
812         its_fixup_cmd(cmd);
813
814         return valid_vpe(its, desc->its_vmapp_cmd.vpe);
815 }
816
817 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
818                                             struct its_cmd_block *cmd,
819                                             struct its_cmd_desc *desc)
820 {
821         u32 db;
822
823         if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
824                 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
825         else
826                 db = 1023;
827
828         its_encode_cmd(cmd, GITS_CMD_VMAPTI);
829         its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
830         its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
831         its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
832         its_encode_db_phys_id(cmd, db);
833         its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
834
835         its_fixup_cmd(cmd);
836
837         return valid_vpe(its, desc->its_vmapti_cmd.vpe);
838 }
839
840 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
841                                            struct its_cmd_block *cmd,
842                                            struct its_cmd_desc *desc)
843 {
844         u32 db;
845
846         if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
847                 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
848         else
849                 db = 1023;
850
851         its_encode_cmd(cmd, GITS_CMD_VMOVI);
852         its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
853         its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
854         its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
855         its_encode_db_phys_id(cmd, db);
856         its_encode_db_valid(cmd, true);
857
858         its_fixup_cmd(cmd);
859
860         return valid_vpe(its, desc->its_vmovi_cmd.vpe);
861 }
862
863 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
864                                            struct its_cmd_block *cmd,
865                                            struct its_cmd_desc *desc)
866 {
867         u64 target;
868
869         target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
870         its_encode_cmd(cmd, GITS_CMD_VMOVP);
871         its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
872         its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
873         its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
874         its_encode_target(cmd, target);
875
876         if (is_v4_1(its)) {
877                 its_encode_db(cmd, true);
878                 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
879         }
880
881         its_fixup_cmd(cmd);
882
883         return valid_vpe(its, desc->its_vmovp_cmd.vpe);
884 }
885
886 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
887                                           struct its_cmd_block *cmd,
888                                           struct its_cmd_desc *desc)
889 {
890         struct its_vlpi_map *map;
891
892         map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
893                                     desc->its_inv_cmd.event_id);
894
895         its_encode_cmd(cmd, GITS_CMD_INV);
896         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
897         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
898
899         its_fixup_cmd(cmd);
900
901         return valid_vpe(its, map->vpe);
902 }
903
904 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
905                                           struct its_cmd_block *cmd,
906                                           struct its_cmd_desc *desc)
907 {
908         struct its_vlpi_map *map;
909
910         map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
911                                     desc->its_int_cmd.event_id);
912
913         its_encode_cmd(cmd, GITS_CMD_INT);
914         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
915         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
916
917         its_fixup_cmd(cmd);
918
919         return valid_vpe(its, map->vpe);
920 }
921
922 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
923                                             struct its_cmd_block *cmd,
924                                             struct its_cmd_desc *desc)
925 {
926         struct its_vlpi_map *map;
927
928         map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
929                                     desc->its_clear_cmd.event_id);
930
931         its_encode_cmd(cmd, GITS_CMD_CLEAR);
932         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
933         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
934
935         its_fixup_cmd(cmd);
936
937         return valid_vpe(its, map->vpe);
938 }
939
940 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
941                                            struct its_cmd_block *cmd,
942                                            struct its_cmd_desc *desc)
943 {
944         if (WARN_ON(!is_v4_1(its)))
945                 return NULL;
946
947         its_encode_cmd(cmd, GITS_CMD_INVDB);
948         its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
949
950         its_fixup_cmd(cmd);
951
952         return valid_vpe(its, desc->its_invdb_cmd.vpe);
953 }
954
955 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
956                                           struct its_cmd_block *cmd,
957                                           struct its_cmd_desc *desc)
958 {
959         if (WARN_ON(!is_v4_1(its)))
960                 return NULL;
961
962         its_encode_cmd(cmd, GITS_CMD_VSGI);
963         its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
964         its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
965         its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
966         its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
967         its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
968         its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
969
970         its_fixup_cmd(cmd);
971
972         return valid_vpe(its, desc->its_vsgi_cmd.vpe);
973 }
974
975 static u64 its_cmd_ptr_to_offset(struct its_node *its,
976                                  struct its_cmd_block *ptr)
977 {
978         return (ptr - its->cmd_base) * sizeof(*ptr);
979 }
980
981 static int its_queue_full(struct its_node *its)
982 {
983         int widx;
984         int ridx;
985
986         widx = its->cmd_write - its->cmd_base;
987         ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
988
989         /* This is incredibly unlikely to happen, unless the ITS locks up. */
990         if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
991                 return 1;
992
993         return 0;
994 }
995
996 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
997 {
998         struct its_cmd_block *cmd;
999         u32 count = 1000000;    /* 1s! */
1000
1001         while (its_queue_full(its)) {
1002                 count--;
1003                 if (!count) {
1004                         pr_err_ratelimited("ITS queue not draining\n");
1005                         return NULL;
1006                 }
1007                 cpu_relax();
1008                 udelay(1);
1009         }
1010
1011         cmd = its->cmd_write++;
1012
1013         /* Handle queue wrapping */
1014         if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1015                 its->cmd_write = its->cmd_base;
1016
1017         /* Clear command  */
1018         cmd->raw_cmd[0] = 0;
1019         cmd->raw_cmd[1] = 0;
1020         cmd->raw_cmd[2] = 0;
1021         cmd->raw_cmd[3] = 0;
1022
1023         return cmd;
1024 }
1025
1026 static struct its_cmd_block *its_post_commands(struct its_node *its)
1027 {
1028         u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1029
1030         writel_relaxed(wr, its->base + GITS_CWRITER);
1031
1032         return its->cmd_write;
1033 }
1034
1035 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1036 {
1037         /*
1038          * Make sure the commands written to memory are observable by
1039          * the ITS.
1040          */
1041         if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1042                 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1043         else
1044                 dsb(ishst);
1045 }
1046
1047 static int its_wait_for_range_completion(struct its_node *its,
1048                                          u64    prev_idx,
1049                                          struct its_cmd_block *to)
1050 {
1051         u64 rd_idx, to_idx, linear_idx;
1052         u32 count = 1000000;    /* 1s! */
1053
1054         /* Linearize to_idx if the command set has wrapped around */
1055         to_idx = its_cmd_ptr_to_offset(its, to);
1056         if (to_idx < prev_idx)
1057                 to_idx += ITS_CMD_QUEUE_SZ;
1058
1059         linear_idx = prev_idx;
1060
1061         while (1) {
1062                 s64 delta;
1063
1064                 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1065
1066                 /*
1067                  * Compute the read pointer progress, taking the
1068                  * potential wrap-around into account.
1069                  */
1070                 delta = rd_idx - prev_idx;
1071                 if (rd_idx < prev_idx)
1072                         delta += ITS_CMD_QUEUE_SZ;
1073
1074                 linear_idx += delta;
1075                 if (linear_idx >= to_idx)
1076                         break;
1077
1078                 count--;
1079                 if (!count) {
1080                         pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1081                                            to_idx, linear_idx);
1082                         return -1;
1083                 }
1084                 prev_idx = rd_idx;
1085                 cpu_relax();
1086                 udelay(1);
1087         }
1088
1089         return 0;
1090 }
1091
1092 /* Warning, macro hell follows */
1093 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)       \
1094 void name(struct its_node *its,                                         \
1095           buildtype builder,                                            \
1096           struct its_cmd_desc *desc)                                    \
1097 {                                                                       \
1098         struct its_cmd_block *cmd, *sync_cmd, *next_cmd;                \
1099         synctype *sync_obj;                                             \
1100         unsigned long flags;                                            \
1101         u64 rd_idx;                                                     \
1102                                                                         \
1103         raw_spin_lock_irqsave(&its->lock, flags);                       \
1104                                                                         \
1105         cmd = its_allocate_entry(its);                                  \
1106         if (!cmd) {             /* We're soooooo screewed... */         \
1107                 raw_spin_unlock_irqrestore(&its->lock, flags);          \
1108                 return;                                                 \
1109         }                                                               \
1110         sync_obj = builder(its, cmd, desc);                             \
1111         its_flush_cmd(its, cmd);                                        \
1112                                                                         \
1113         if (sync_obj) {                                                 \
1114                 sync_cmd = its_allocate_entry(its);                     \
1115                 if (!sync_cmd)                                          \
1116                         goto post;                                      \
1117                                                                         \
1118                 buildfn(its, sync_cmd, sync_obj);                       \
1119                 its_flush_cmd(its, sync_cmd);                           \
1120         }                                                               \
1121                                                                         \
1122 post:                                                                   \
1123         rd_idx = readl_relaxed(its->base + GITS_CREADR);                \
1124         next_cmd = its_post_commands(its);                              \
1125         raw_spin_unlock_irqrestore(&its->lock, flags);                  \
1126                                                                         \
1127         if (its_wait_for_range_completion(its, rd_idx, next_cmd))       \
1128                 pr_err_ratelimited("ITS cmd %ps failed\n", builder);    \
1129 }
1130
1131 static void its_build_sync_cmd(struct its_node *its,
1132                                struct its_cmd_block *sync_cmd,
1133                                struct its_collection *sync_col)
1134 {
1135         its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1136         its_encode_target(sync_cmd, sync_col->target_address);
1137
1138         its_fixup_cmd(sync_cmd);
1139 }
1140
1141 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1142                              struct its_collection, its_build_sync_cmd)
1143
1144 static void its_build_vsync_cmd(struct its_node *its,
1145                                 struct its_cmd_block *sync_cmd,
1146                                 struct its_vpe *sync_vpe)
1147 {
1148         its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1149         its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1150
1151         its_fixup_cmd(sync_cmd);
1152 }
1153
1154 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1155                              struct its_vpe, its_build_vsync_cmd)
1156
1157 static void its_send_int(struct its_device *dev, u32 event_id)
1158 {
1159         struct its_cmd_desc desc;
1160
1161         desc.its_int_cmd.dev = dev;
1162         desc.its_int_cmd.event_id = event_id;
1163
1164         its_send_single_command(dev->its, its_build_int_cmd, &desc);
1165 }
1166
1167 static void its_send_clear(struct its_device *dev, u32 event_id)
1168 {
1169         struct its_cmd_desc desc;
1170
1171         desc.its_clear_cmd.dev = dev;
1172         desc.its_clear_cmd.event_id = event_id;
1173
1174         its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1175 }
1176
1177 static void its_send_inv(struct its_device *dev, u32 event_id)
1178 {
1179         struct its_cmd_desc desc;
1180
1181         desc.its_inv_cmd.dev = dev;
1182         desc.its_inv_cmd.event_id = event_id;
1183
1184         its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1185 }
1186
1187 static void its_send_mapd(struct its_device *dev, int valid)
1188 {
1189         struct its_cmd_desc desc;
1190
1191         desc.its_mapd_cmd.dev = dev;
1192         desc.its_mapd_cmd.valid = !!valid;
1193
1194         its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1195 }
1196
1197 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1198                           int valid)
1199 {
1200         struct its_cmd_desc desc;
1201
1202         desc.its_mapc_cmd.col = col;
1203         desc.its_mapc_cmd.valid = !!valid;
1204
1205         its_send_single_command(its, its_build_mapc_cmd, &desc);
1206 }
1207
1208 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1209 {
1210         struct its_cmd_desc desc;
1211
1212         desc.its_mapti_cmd.dev = dev;
1213         desc.its_mapti_cmd.phys_id = irq_id;
1214         desc.its_mapti_cmd.event_id = id;
1215
1216         its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1217 }
1218
1219 static void its_send_movi(struct its_device *dev,
1220                           struct its_collection *col, u32 id)
1221 {
1222         struct its_cmd_desc desc;
1223
1224         desc.its_movi_cmd.dev = dev;
1225         desc.its_movi_cmd.col = col;
1226         desc.its_movi_cmd.event_id = id;
1227
1228         its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1229 }
1230
1231 static void its_send_discard(struct its_device *dev, u32 id)
1232 {
1233         struct its_cmd_desc desc;
1234
1235         desc.its_discard_cmd.dev = dev;
1236         desc.its_discard_cmd.event_id = id;
1237
1238         its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1239 }
1240
1241 static void its_send_invall(struct its_node *its, struct its_collection *col)
1242 {
1243         struct its_cmd_desc desc;
1244
1245         desc.its_invall_cmd.col = col;
1246
1247         its_send_single_command(its, its_build_invall_cmd, &desc);
1248 }
1249
1250 static void its_send_vmapti(struct its_device *dev, u32 id)
1251 {
1252         struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1253         struct its_cmd_desc desc;
1254
1255         desc.its_vmapti_cmd.vpe = map->vpe;
1256         desc.its_vmapti_cmd.dev = dev;
1257         desc.its_vmapti_cmd.virt_id = map->vintid;
1258         desc.its_vmapti_cmd.event_id = id;
1259         desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1260
1261         its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1262 }
1263
1264 static void its_send_vmovi(struct its_device *dev, u32 id)
1265 {
1266         struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1267         struct its_cmd_desc desc;
1268
1269         desc.its_vmovi_cmd.vpe = map->vpe;
1270         desc.its_vmovi_cmd.dev = dev;
1271         desc.its_vmovi_cmd.event_id = id;
1272         desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1273
1274         its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1275 }
1276
1277 static void its_send_vmapp(struct its_node *its,
1278                            struct its_vpe *vpe, bool valid)
1279 {
1280         struct its_cmd_desc desc;
1281
1282         desc.its_vmapp_cmd.vpe = vpe;
1283         desc.its_vmapp_cmd.valid = valid;
1284         desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1285
1286         its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1287 }
1288
1289 static void its_send_vmovp(struct its_vpe *vpe)
1290 {
1291         struct its_cmd_desc desc = {};
1292         struct its_node *its;
1293         unsigned long flags;
1294         int col_id = vpe->col_idx;
1295
1296         desc.its_vmovp_cmd.vpe = vpe;
1297
1298         if (!its_list_map) {
1299                 its = list_first_entry(&its_nodes, struct its_node, entry);
1300                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1301                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1302                 return;
1303         }
1304
1305         /*
1306          * Yet another marvel of the architecture. If using the
1307          * its_list "feature", we need to make sure that all ITSs
1308          * receive all VMOVP commands in the same order. The only way
1309          * to guarantee this is to make vmovp a serialization point.
1310          *
1311          * Wall <-- Head.
1312          */
1313         raw_spin_lock_irqsave(&vmovp_lock, flags);
1314
1315         desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1316         desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1317
1318         /* Emit VMOVPs */
1319         list_for_each_entry(its, &its_nodes, entry) {
1320                 if (!is_v4(its))
1321                         continue;
1322
1323                 if (!require_its_list_vmovp(vpe->its_vm, its))
1324                         continue;
1325
1326                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1327                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1328         }
1329
1330         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1331 }
1332
1333 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1334 {
1335         struct its_cmd_desc desc;
1336
1337         desc.its_vinvall_cmd.vpe = vpe;
1338         its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1339 }
1340
1341 static void its_send_vinv(struct its_device *dev, u32 event_id)
1342 {
1343         struct its_cmd_desc desc;
1344
1345         /*
1346          * There is no real VINV command. This is just a normal INV,
1347          * with a VSYNC instead of a SYNC.
1348          */
1349         desc.its_inv_cmd.dev = dev;
1350         desc.its_inv_cmd.event_id = event_id;
1351
1352         its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1353 }
1354
1355 static void its_send_vint(struct its_device *dev, u32 event_id)
1356 {
1357         struct its_cmd_desc desc;
1358
1359         /*
1360          * There is no real VINT command. This is just a normal INT,
1361          * with a VSYNC instead of a SYNC.
1362          */
1363         desc.its_int_cmd.dev = dev;
1364         desc.its_int_cmd.event_id = event_id;
1365
1366         its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1367 }
1368
1369 static void its_send_vclear(struct its_device *dev, u32 event_id)
1370 {
1371         struct its_cmd_desc desc;
1372
1373         /*
1374          * There is no real VCLEAR command. This is just a normal CLEAR,
1375          * with a VSYNC instead of a SYNC.
1376          */
1377         desc.its_clear_cmd.dev = dev;
1378         desc.its_clear_cmd.event_id = event_id;
1379
1380         its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1381 }
1382
1383 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1384 {
1385         struct its_cmd_desc desc;
1386
1387         desc.its_invdb_cmd.vpe = vpe;
1388         its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1389 }
1390
1391 /*
1392  * irqchip functions - assumes MSI, mostly.
1393  */
1394 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1395 {
1396         struct its_vlpi_map *map = get_vlpi_map(d);
1397         irq_hw_number_t hwirq;
1398         void *va;
1399         u8 *cfg;
1400
1401         if (map) {
1402                 va = page_address(map->vm->vprop_page);
1403                 hwirq = map->vintid;
1404
1405                 /* Remember the updated property */
1406                 map->properties &= ~clr;
1407                 map->properties |= set | LPI_PROP_GROUP1;
1408         } else {
1409                 va = gic_rdists->prop_table_va;
1410                 hwirq = d->hwirq;
1411         }
1412
1413         cfg = va + hwirq - 8192;
1414         *cfg &= ~clr;
1415         *cfg |= set | LPI_PROP_GROUP1;
1416
1417         /*
1418          * Make the above write visible to the redistributors.
1419          * And yes, we're flushing exactly: One. Single. Byte.
1420          * Humpf...
1421          */
1422         if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1423                 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1424         else
1425                 dsb(ishst);
1426 }
1427
1428 static void wait_for_syncr(void __iomem *rdbase)
1429 {
1430         while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1431                 cpu_relax();
1432 }
1433
1434 static void direct_lpi_inv(struct irq_data *d)
1435 {
1436         struct its_vlpi_map *map = get_vlpi_map(d);
1437         void __iomem *rdbase;
1438         unsigned long flags;
1439         u64 val;
1440         int cpu;
1441
1442         if (map) {
1443                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1444
1445                 WARN_ON(!is_v4_1(its_dev->its));
1446
1447                 val  = GICR_INVLPIR_V;
1448                 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1449                 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1450         } else {
1451                 val = d->hwirq;
1452         }
1453
1454         /* Target the redistributor this LPI is currently routed to */
1455         cpu = irq_to_cpuid_lock(d, &flags);
1456         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1457         rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1458         gic_write_lpir(val, rdbase + GICR_INVLPIR);
1459
1460         wait_for_syncr(rdbase);
1461         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1462         irq_to_cpuid_unlock(d, flags);
1463 }
1464
1465 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1466 {
1467         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1468
1469         lpi_write_config(d, clr, set);
1470         if (gic_rdists->has_direct_lpi &&
1471             (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1472                 direct_lpi_inv(d);
1473         else if (!irqd_is_forwarded_to_vcpu(d))
1474                 its_send_inv(its_dev, its_get_event_id(d));
1475         else
1476                 its_send_vinv(its_dev, its_get_event_id(d));
1477 }
1478
1479 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1480 {
1481         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1482         u32 event = its_get_event_id(d);
1483         struct its_vlpi_map *map;
1484
1485         /*
1486          * GICv4.1 does away with the per-LPI nonsense, nothing to do
1487          * here.
1488          */
1489         if (is_v4_1(its_dev->its))
1490                 return;
1491
1492         map = dev_event_to_vlpi_map(its_dev, event);
1493
1494         if (map->db_enabled == enable)
1495                 return;
1496
1497         map->db_enabled = enable;
1498
1499         /*
1500          * More fun with the architecture:
1501          *
1502          * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1503          * value or to 1023, depending on the enable bit. But that
1504          * would be issuing a mapping for an /existing/ DevID+EventID
1505          * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1506          * to the /same/ vPE, using this opportunity to adjust the
1507          * doorbell. Mouahahahaha. We loves it, Precious.
1508          */
1509         its_send_vmovi(its_dev, event);
1510 }
1511
1512 static void its_mask_irq(struct irq_data *d)
1513 {
1514         if (irqd_is_forwarded_to_vcpu(d))
1515                 its_vlpi_set_doorbell(d, false);
1516
1517         lpi_update_config(d, LPI_PROP_ENABLED, 0);
1518 }
1519
1520 static void its_unmask_irq(struct irq_data *d)
1521 {
1522         if (irqd_is_forwarded_to_vcpu(d))
1523                 its_vlpi_set_doorbell(d, true);
1524
1525         lpi_update_config(d, 0, LPI_PROP_ENABLED);
1526 }
1527
1528 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1529 {
1530         if (irqd_affinity_is_managed(d))
1531                 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1532
1533         return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1534 }
1535
1536 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1537 {
1538         if (irqd_affinity_is_managed(d))
1539                 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1540         else
1541                 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1542 }
1543
1544 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1545 {
1546         if (irqd_affinity_is_managed(d))
1547                 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1548         else
1549                 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1550 }
1551
1552 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1553                                               const struct cpumask *cpu_mask)
1554 {
1555         unsigned int cpu = nr_cpu_ids, tmp;
1556         int count = S32_MAX;
1557
1558         for_each_cpu(tmp, cpu_mask) {
1559                 int this_count = its_read_lpi_count(d, tmp);
1560                 if (this_count < count) {
1561                         cpu = tmp;
1562                         count = this_count;
1563                 }
1564         }
1565
1566         return cpu;
1567 }
1568
1569 /*
1570  * As suggested by Thomas Gleixner in:
1571  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1572  */
1573 static int its_select_cpu(struct irq_data *d,
1574                           const struct cpumask *aff_mask)
1575 {
1576         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1577         cpumask_var_t tmpmask;
1578         int cpu, node;
1579
1580         if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
1581                 return -ENOMEM;
1582
1583         node = its_dev->its->numa_node;
1584
1585         if (!irqd_affinity_is_managed(d)) {
1586                 /* First try the NUMA node */
1587                 if (node != NUMA_NO_NODE) {
1588                         /*
1589                          * Try the intersection of the affinity mask and the
1590                          * node mask (and the online mask, just to be safe).
1591                          */
1592                         cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1593                         cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1594
1595                         /*
1596                          * Ideally, we would check if the mask is empty, and
1597                          * try again on the full node here.
1598                          *
1599                          * But it turns out that the way ACPI describes the
1600                          * affinity for ITSs only deals about memory, and
1601                          * not target CPUs, so it cannot describe a single
1602                          * ITS placed next to two NUMA nodes.
1603                          *
1604                          * Instead, just fallback on the online mask. This
1605                          * diverges from Thomas' suggestion above.
1606                          */
1607                         cpu = cpumask_pick_least_loaded(d, tmpmask);
1608                         if (cpu < nr_cpu_ids)
1609                                 goto out;
1610
1611                         /* If we can't cross sockets, give up */
1612                         if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1613                                 goto out;
1614
1615                         /* If the above failed, expand the search */
1616                 }
1617
1618                 /* Try the intersection of the affinity and online masks */
1619                 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1620
1621                 /* If that doesn't fly, the online mask is the last resort */
1622                 if (cpumask_empty(tmpmask))
1623                         cpumask_copy(tmpmask, cpu_online_mask);
1624
1625                 cpu = cpumask_pick_least_loaded(d, tmpmask);
1626         } else {
1627                 cpumask_and(tmpmask, irq_data_get_affinity_mask(d), cpu_online_mask);
1628
1629                 /* If we cannot cross sockets, limit the search to that node */
1630                 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1631                     node != NUMA_NO_NODE)
1632                         cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1633
1634                 cpu = cpumask_pick_least_loaded(d, tmpmask);
1635         }
1636 out:
1637         free_cpumask_var(tmpmask);
1638
1639         pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1640         return cpu;
1641 }
1642
1643 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1644                             bool force)
1645 {
1646         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1647         struct its_collection *target_col;
1648         u32 id = its_get_event_id(d);
1649         int cpu, prev_cpu;
1650
1651         /* A forwarded interrupt should use irq_set_vcpu_affinity */
1652         if (irqd_is_forwarded_to_vcpu(d))
1653                 return -EINVAL;
1654
1655         prev_cpu = its_dev->event_map.col_map[id];
1656         its_dec_lpi_count(d, prev_cpu);
1657
1658         if (!force)
1659                 cpu = its_select_cpu(d, mask_val);
1660         else
1661                 cpu = cpumask_pick_least_loaded(d, mask_val);
1662
1663         if (cpu < 0 || cpu >= nr_cpu_ids)
1664                 goto err;
1665
1666         /* don't set the affinity when the target cpu is same as current one */
1667         if (cpu != prev_cpu) {
1668                 target_col = &its_dev->its->collections[cpu];
1669                 its_send_movi(its_dev, target_col, id);
1670                 its_dev->event_map.col_map[id] = cpu;
1671                 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1672         }
1673
1674         its_inc_lpi_count(d, cpu);
1675
1676         return IRQ_SET_MASK_OK_DONE;
1677
1678 err:
1679         its_inc_lpi_count(d, prev_cpu);
1680         return -EINVAL;
1681 }
1682
1683 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1684 {
1685         struct its_node *its = its_dev->its;
1686
1687         return its->phys_base + GITS_TRANSLATER;
1688 }
1689
1690 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1691 {
1692         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1693         struct its_node *its;
1694         u64 addr;
1695
1696         its = its_dev->its;
1697         addr = its->get_msi_base(its_dev);
1698
1699         msg->address_lo         = lower_32_bits(addr);
1700         msg->address_hi         = upper_32_bits(addr);
1701         msg->data               = its_get_event_id(d);
1702
1703         iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1704 }
1705
1706 static int its_irq_set_irqchip_state(struct irq_data *d,
1707                                      enum irqchip_irq_state which,
1708                                      bool state)
1709 {
1710         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1711         u32 event = its_get_event_id(d);
1712
1713         if (which != IRQCHIP_STATE_PENDING)
1714                 return -EINVAL;
1715
1716         if (irqd_is_forwarded_to_vcpu(d)) {
1717                 if (state)
1718                         its_send_vint(its_dev, event);
1719                 else
1720                         its_send_vclear(its_dev, event);
1721         } else {
1722                 if (state)
1723                         its_send_int(its_dev, event);
1724                 else
1725                         its_send_clear(its_dev, event);
1726         }
1727
1728         return 0;
1729 }
1730
1731 static int its_irq_retrigger(struct irq_data *d)
1732 {
1733         return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1734 }
1735
1736 /*
1737  * Two favourable cases:
1738  *
1739  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1740  *     for vSGI delivery
1741  *
1742  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1743  *     and we're better off mapping all VPEs always
1744  *
1745  * If neither (a) nor (b) is true, then we map vPEs on demand.
1746  *
1747  */
1748 static bool gic_requires_eager_mapping(void)
1749 {
1750         if (!its_list_map || gic_rdists->has_rvpeid)
1751                 return true;
1752
1753         return false;
1754 }
1755
1756 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1757 {
1758         unsigned long flags;
1759
1760         if (gic_requires_eager_mapping())
1761                 return;
1762
1763         raw_spin_lock_irqsave(&vmovp_lock, flags);
1764
1765         /*
1766          * If the VM wasn't mapped yet, iterate over the vpes and get
1767          * them mapped now.
1768          */
1769         vm->vlpi_count[its->list_nr]++;
1770
1771         if (vm->vlpi_count[its->list_nr] == 1) {
1772                 int i;
1773
1774                 for (i = 0; i < vm->nr_vpes; i++) {
1775                         struct its_vpe *vpe = vm->vpes[i];
1776                         struct irq_data *d = irq_get_irq_data(vpe->irq);
1777
1778                         /* Map the VPE to the first possible CPU */
1779                         vpe->col_idx = cpumask_first(cpu_online_mask);
1780                         its_send_vmapp(its, vpe, true);
1781                         its_send_vinvall(its, vpe);
1782                         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1783                 }
1784         }
1785
1786         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1787 }
1788
1789 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1790 {
1791         unsigned long flags;
1792
1793         /* Not using the ITS list? Everything is always mapped. */
1794         if (gic_requires_eager_mapping())
1795                 return;
1796
1797         raw_spin_lock_irqsave(&vmovp_lock, flags);
1798
1799         if (!--vm->vlpi_count[its->list_nr]) {
1800                 int i;
1801
1802                 for (i = 0; i < vm->nr_vpes; i++)
1803                         its_send_vmapp(its, vm->vpes[i], false);
1804         }
1805
1806         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1807 }
1808
1809 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1810 {
1811         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1812         u32 event = its_get_event_id(d);
1813         int ret = 0;
1814
1815         if (!info->map)
1816                 return -EINVAL;
1817
1818         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1819
1820         if (!its_dev->event_map.vm) {
1821                 struct its_vlpi_map *maps;
1822
1823                 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1824                                GFP_ATOMIC);
1825                 if (!maps) {
1826                         ret = -ENOMEM;
1827                         goto out;
1828                 }
1829
1830                 its_dev->event_map.vm = info->map->vm;
1831                 its_dev->event_map.vlpi_maps = maps;
1832         } else if (its_dev->event_map.vm != info->map->vm) {
1833                 ret = -EINVAL;
1834                 goto out;
1835         }
1836
1837         /* Get our private copy of the mapping information */
1838         its_dev->event_map.vlpi_maps[event] = *info->map;
1839
1840         if (irqd_is_forwarded_to_vcpu(d)) {
1841                 /* Already mapped, move it around */
1842                 its_send_vmovi(its_dev, event);
1843         } else {
1844                 /* Ensure all the VPEs are mapped on this ITS */
1845                 its_map_vm(its_dev->its, info->map->vm);
1846
1847                 /*
1848                  * Flag the interrupt as forwarded so that we can
1849                  * start poking the virtual property table.
1850                  */
1851                 irqd_set_forwarded_to_vcpu(d);
1852
1853                 /* Write out the property to the prop table */
1854                 lpi_write_config(d, 0xff, info->map->properties);
1855
1856                 /* Drop the physical mapping */
1857                 its_send_discard(its_dev, event);
1858
1859                 /* and install the virtual one */
1860                 its_send_vmapti(its_dev, event);
1861
1862                 /* Increment the number of VLPIs */
1863                 its_dev->event_map.nr_vlpis++;
1864         }
1865
1866 out:
1867         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1868         return ret;
1869 }
1870
1871 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1872 {
1873         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1874         struct its_vlpi_map *map;
1875         int ret = 0;
1876
1877         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1878
1879         map = get_vlpi_map(d);
1880
1881         if (!its_dev->event_map.vm || !map) {
1882                 ret = -EINVAL;
1883                 goto out;
1884         }
1885
1886         /* Copy our mapping information to the incoming request */
1887         *info->map = *map;
1888
1889 out:
1890         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1891         return ret;
1892 }
1893
1894 static int its_vlpi_unmap(struct irq_data *d)
1895 {
1896         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1897         u32 event = its_get_event_id(d);
1898         int ret = 0;
1899
1900         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1901
1902         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1903                 ret = -EINVAL;
1904                 goto out;
1905         }
1906
1907         /* Drop the virtual mapping */
1908         its_send_discard(its_dev, event);
1909
1910         /* and restore the physical one */
1911         irqd_clr_forwarded_to_vcpu(d);
1912         its_send_mapti(its_dev, d->hwirq, event);
1913         lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1914                                     LPI_PROP_ENABLED |
1915                                     LPI_PROP_GROUP1));
1916
1917         /* Potentially unmap the VM from this ITS */
1918         its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1919
1920         /*
1921          * Drop the refcount and make the device available again if
1922          * this was the last VLPI.
1923          */
1924         if (!--its_dev->event_map.nr_vlpis) {
1925                 its_dev->event_map.vm = NULL;
1926                 kfree(its_dev->event_map.vlpi_maps);
1927         }
1928
1929 out:
1930         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1931         return ret;
1932 }
1933
1934 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1935 {
1936         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1937
1938         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1939                 return -EINVAL;
1940
1941         if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1942                 lpi_update_config(d, 0xff, info->config);
1943         else
1944                 lpi_write_config(d, 0xff, info->config);
1945         its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1946
1947         return 0;
1948 }
1949
1950 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1951 {
1952         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1953         struct its_cmd_info *info = vcpu_info;
1954
1955         /* Need a v4 ITS */
1956         if (!is_v4(its_dev->its))
1957                 return -EINVAL;
1958
1959         /* Unmap request? */
1960         if (!info)
1961                 return its_vlpi_unmap(d);
1962
1963         switch (info->cmd_type) {
1964         case MAP_VLPI:
1965                 return its_vlpi_map(d, info);
1966
1967         case GET_VLPI:
1968                 return its_vlpi_get(d, info);
1969
1970         case PROP_UPDATE_VLPI:
1971         case PROP_UPDATE_AND_INV_VLPI:
1972                 return its_vlpi_prop_update(d, info);
1973
1974         default:
1975                 return -EINVAL;
1976         }
1977 }
1978
1979 static struct irq_chip its_irq_chip = {
1980         .name                   = "ITS",
1981         .irq_mask               = its_mask_irq,
1982         .irq_unmask             = its_unmask_irq,
1983         .irq_eoi                = irq_chip_eoi_parent,
1984         .irq_set_affinity       = its_set_affinity,
1985         .irq_compose_msi_msg    = its_irq_compose_msi_msg,
1986         .irq_set_irqchip_state  = its_irq_set_irqchip_state,
1987         .irq_retrigger          = its_irq_retrigger,
1988         .irq_set_vcpu_affinity  = its_irq_set_vcpu_affinity,
1989 };
1990
1991
1992 /*
1993  * How we allocate LPIs:
1994  *
1995  * lpi_range_list contains ranges of LPIs that are to available to
1996  * allocate from. To allocate LPIs, just pick the first range that
1997  * fits the required allocation, and reduce it by the required
1998  * amount. Once empty, remove the range from the list.
1999  *
2000  * To free a range of LPIs, add a free range to the list, sort it and
2001  * merge the result if the new range happens to be adjacent to an
2002  * already free block.
2003  *
2004  * The consequence of the above is that allocation is cost is low, but
2005  * freeing is expensive. We assumes that freeing rarely occurs.
2006  */
2007 #define ITS_MAX_LPI_NRBITS      16 /* 64K LPIs */
2008
2009 static DEFINE_MUTEX(lpi_range_lock);
2010 static LIST_HEAD(lpi_range_list);
2011
2012 struct lpi_range {
2013         struct list_head        entry;
2014         u32                     base_id;
2015         u32                     span;
2016 };
2017
2018 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2019 {
2020         struct lpi_range *range;
2021
2022         range = kmalloc(sizeof(*range), GFP_KERNEL);
2023         if (range) {
2024                 range->base_id = base;
2025                 range->span = span;
2026         }
2027
2028         return range;
2029 }
2030
2031 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2032 {
2033         struct lpi_range *range, *tmp;
2034         int err = -ENOSPC;
2035
2036         mutex_lock(&lpi_range_lock);
2037
2038         list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2039                 if (range->span >= nr_lpis) {
2040                         *base = range->base_id;
2041                         range->base_id += nr_lpis;
2042                         range->span -= nr_lpis;
2043
2044                         if (range->span == 0) {
2045                                 list_del(&range->entry);
2046                                 kfree(range);
2047                         }
2048
2049                         err = 0;
2050                         break;
2051                 }
2052         }
2053
2054         mutex_unlock(&lpi_range_lock);
2055
2056         pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2057         return err;
2058 }
2059
2060 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2061 {
2062         if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2063                 return;
2064         if (a->base_id + a->span != b->base_id)
2065                 return;
2066         b->base_id = a->base_id;
2067         b->span += a->span;
2068         list_del(&a->entry);
2069         kfree(a);
2070 }
2071
2072 static int free_lpi_range(u32 base, u32 nr_lpis)
2073 {
2074         struct lpi_range *new, *old;
2075
2076         new = mk_lpi_range(base, nr_lpis);
2077         if (!new)
2078                 return -ENOMEM;
2079
2080         mutex_lock(&lpi_range_lock);
2081
2082         list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2083                 if (old->base_id < base)
2084                         break;
2085         }
2086         /*
2087          * old is the last element with ->base_id smaller than base,
2088          * so new goes right after it. If there are no elements with
2089          * ->base_id smaller than base, &old->entry ends up pointing
2090          * at the head of the list, and inserting new it the start of
2091          * the list is the right thing to do in that case as well.
2092          */
2093         list_add(&new->entry, &old->entry);
2094         /*
2095          * Now check if we can merge with the preceding and/or
2096          * following ranges.
2097          */
2098         merge_lpi_ranges(old, new);
2099         merge_lpi_ranges(new, list_next_entry(new, entry));
2100
2101         mutex_unlock(&lpi_range_lock);
2102         return 0;
2103 }
2104
2105 static int __init its_lpi_init(u32 id_bits)
2106 {
2107         u32 lpis = (1UL << id_bits) - 8192;
2108         u32 numlpis;
2109         int err;
2110
2111         numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2112
2113         if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2114                 lpis = numlpis;
2115                 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2116                         lpis);
2117         }
2118
2119         /*
2120          * Initializing the allocator is just the same as freeing the
2121          * full range of LPIs.
2122          */
2123         err = free_lpi_range(8192, lpis);
2124         pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2125         return err;
2126 }
2127
2128 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2129 {
2130         unsigned long *bitmap = NULL;
2131         int err = 0;
2132
2133         do {
2134                 err = alloc_lpi_range(nr_irqs, base);
2135                 if (!err)
2136                         break;
2137
2138                 nr_irqs /= 2;
2139         } while (nr_irqs > 0);
2140
2141         if (!nr_irqs)
2142                 err = -ENOSPC;
2143
2144         if (err)
2145                 goto out;
2146
2147         bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2148         if (!bitmap)
2149                 goto out;
2150
2151         *nr_ids = nr_irqs;
2152
2153 out:
2154         if (!bitmap)
2155                 *base = *nr_ids = 0;
2156
2157         return bitmap;
2158 }
2159
2160 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2161 {
2162         WARN_ON(free_lpi_range(base, nr_ids));
2163         bitmap_free(bitmap);
2164 }
2165
2166 static void gic_reset_prop_table(void *va)
2167 {
2168         /* Priority 0xa0, Group-1, disabled */
2169         memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2170
2171         /* Make sure the GIC will observe the written configuration */
2172         gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2173 }
2174
2175 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2176 {
2177         struct page *prop_page;
2178
2179         prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2180         if (!prop_page)
2181                 return NULL;
2182
2183         gic_reset_prop_table(page_address(prop_page));
2184
2185         return prop_page;
2186 }
2187
2188 static void its_free_prop_table(struct page *prop_page)
2189 {
2190         free_pages((unsigned long)page_address(prop_page),
2191                    get_order(LPI_PROPBASE_SZ));
2192 }
2193
2194 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2195 {
2196         phys_addr_t start, end, addr_end;
2197         u64 i;
2198
2199         /*
2200          * We don't bother checking for a kdump kernel as by
2201          * construction, the LPI tables are out of this kernel's
2202          * memory map.
2203          */
2204         if (is_kdump_kernel())
2205                 return true;
2206
2207         addr_end = addr + size - 1;
2208
2209         for_each_reserved_mem_range(i, &start, &end) {
2210                 if (addr >= start && addr_end <= end)
2211                         return true;
2212         }
2213
2214         /* Not found, not a good sign... */
2215         pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2216                 &addr, &addr_end);
2217         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2218         return false;
2219 }
2220
2221 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2222 {
2223         if (efi_enabled(EFI_CONFIG_TABLES))
2224                 return efi_mem_reserve_persistent(addr, size);
2225
2226         return 0;
2227 }
2228
2229 static int __init its_setup_lpi_prop_table(void)
2230 {
2231         if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2232                 u64 val;
2233
2234                 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2235                 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2236
2237                 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2238                 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2239                                                      LPI_PROPBASE_SZ,
2240                                                      MEMREMAP_WB);
2241                 gic_reset_prop_table(gic_rdists->prop_table_va);
2242         } else {
2243                 struct page *page;
2244
2245                 lpi_id_bits = min_t(u32,
2246                                     GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2247                                     ITS_MAX_LPI_NRBITS);
2248                 page = its_allocate_prop_table(GFP_NOWAIT);
2249                 if (!page) {
2250                         pr_err("Failed to allocate PROPBASE\n");
2251                         return -ENOMEM;
2252                 }
2253
2254                 gic_rdists->prop_table_pa = page_to_phys(page);
2255                 gic_rdists->prop_table_va = page_address(page);
2256                 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2257                                           LPI_PROPBASE_SZ));
2258         }
2259
2260         pr_info("GICv3: using LPI property table @%pa\n",
2261                 &gic_rdists->prop_table_pa);
2262
2263         return its_lpi_init(lpi_id_bits);
2264 }
2265
2266 static const char *its_base_type_string[] = {
2267         [GITS_BASER_TYPE_DEVICE]        = "Devices",
2268         [GITS_BASER_TYPE_VCPU]          = "Virtual CPUs",
2269         [GITS_BASER_TYPE_RESERVED3]     = "Reserved (3)",
2270         [GITS_BASER_TYPE_COLLECTION]    = "Interrupt Collections",
2271         [GITS_BASER_TYPE_RESERVED5]     = "Reserved (5)",
2272         [GITS_BASER_TYPE_RESERVED6]     = "Reserved (6)",
2273         [GITS_BASER_TYPE_RESERVED7]     = "Reserved (7)",
2274 };
2275
2276 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2277 {
2278         u32 idx = baser - its->tables;
2279
2280         return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2281 }
2282
2283 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2284                             u64 val)
2285 {
2286         u32 idx = baser - its->tables;
2287
2288         gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2289         baser->val = its_read_baser(its, baser);
2290 }
2291
2292 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2293                            u64 cache, u64 shr, u32 order, bool indirect)
2294 {
2295         u64 val = its_read_baser(its, baser);
2296         u64 esz = GITS_BASER_ENTRY_SIZE(val);
2297         u64 type = GITS_BASER_TYPE(val);
2298         u64 baser_phys, tmp;
2299         u32 alloc_pages, psz;
2300         struct page *page;
2301         void *base;
2302
2303         psz = baser->psz;
2304         alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2305         if (alloc_pages > GITS_BASER_PAGES_MAX) {
2306                 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2307                         &its->phys_base, its_base_type_string[type],
2308                         alloc_pages, GITS_BASER_PAGES_MAX);
2309                 alloc_pages = GITS_BASER_PAGES_MAX;
2310                 order = get_order(GITS_BASER_PAGES_MAX * psz);
2311         }
2312
2313         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2314         if (!page)
2315                 return -ENOMEM;
2316
2317         base = (void *)page_address(page);
2318         baser_phys = virt_to_phys(base);
2319
2320         /* Check if the physical address of the memory is above 48bits */
2321         if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2322
2323                 /* 52bit PA is supported only when PageSize=64K */
2324                 if (psz != SZ_64K) {
2325                         pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2326                         free_pages((unsigned long)base, order);
2327                         return -ENXIO;
2328                 }
2329
2330                 /* Convert 52bit PA to 48bit field */
2331                 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2332         }
2333
2334 retry_baser:
2335         val = (baser_phys                                        |
2336                 (type << GITS_BASER_TYPE_SHIFT)                  |
2337                 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)       |
2338                 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)    |
2339                 cache                                            |
2340                 shr                                              |
2341                 GITS_BASER_VALID);
2342
2343         val |=  indirect ? GITS_BASER_INDIRECT : 0x0;
2344
2345         switch (psz) {
2346         case SZ_4K:
2347                 val |= GITS_BASER_PAGE_SIZE_4K;
2348                 break;
2349         case SZ_16K:
2350                 val |= GITS_BASER_PAGE_SIZE_16K;
2351                 break;
2352         case SZ_64K:
2353                 val |= GITS_BASER_PAGE_SIZE_64K;
2354                 break;
2355         }
2356
2357         its_write_baser(its, baser, val);
2358         tmp = baser->val;
2359
2360         if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2361                 /*
2362                  * Shareability didn't stick. Just use
2363                  * whatever the read reported, which is likely
2364                  * to be the only thing this redistributor
2365                  * supports. If that's zero, make it
2366                  * non-cacheable as well.
2367                  */
2368                 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2369                 if (!shr) {
2370                         cache = GITS_BASER_nC;
2371                         gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2372                 }
2373                 goto retry_baser;
2374         }
2375
2376         if (val != tmp) {
2377                 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2378                        &its->phys_base, its_base_type_string[type],
2379                        val, tmp);
2380                 free_pages((unsigned long)base, order);
2381                 return -ENXIO;
2382         }
2383
2384         baser->order = order;
2385         baser->base = base;
2386         baser->psz = psz;
2387         tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2388
2389         pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2390                 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2391                 its_base_type_string[type],
2392                 (unsigned long)virt_to_phys(base),
2393                 indirect ? "indirect" : "flat", (int)esz,
2394                 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2395
2396         return 0;
2397 }
2398
2399 static bool its_parse_indirect_baser(struct its_node *its,
2400                                      struct its_baser *baser,
2401                                      u32 *order, u32 ids)
2402 {
2403         u64 tmp = its_read_baser(its, baser);
2404         u64 type = GITS_BASER_TYPE(tmp);
2405         u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2406         u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2407         u32 new_order = *order;
2408         u32 psz = baser->psz;
2409         bool indirect = false;
2410
2411         /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2412         if ((esz << ids) > (psz * 2)) {
2413                 /*
2414                  * Find out whether hw supports a single or two-level table by
2415                  * table by reading bit at offset '62' after writing '1' to it.
2416                  */
2417                 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2418                 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2419
2420                 if (indirect) {
2421                         /*
2422                          * The size of the lvl2 table is equal to ITS page size
2423                          * which is 'psz'. For computing lvl1 table size,
2424                          * subtract ID bits that sparse lvl2 table from 'ids'
2425                          * which is reported by ITS hardware times lvl1 table
2426                          * entry size.
2427                          */
2428                         ids -= ilog2(psz / (int)esz);
2429                         esz = GITS_LVL1_ENTRY_SIZE;
2430                 }
2431         }
2432
2433         /*
2434          * Allocate as many entries as required to fit the
2435          * range of device IDs that the ITS can grok... The ID
2436          * space being incredibly sparse, this results in a
2437          * massive waste of memory if two-level device table
2438          * feature is not supported by hardware.
2439          */
2440         new_order = max_t(u32, get_order(esz << ids), new_order);
2441         if (new_order >= MAX_ORDER) {
2442                 new_order = MAX_ORDER - 1;
2443                 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2444                 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2445                         &its->phys_base, its_base_type_string[type],
2446                         device_ids(its), ids);
2447         }
2448
2449         *order = new_order;
2450
2451         return indirect;
2452 }
2453
2454 static u32 compute_common_aff(u64 val)
2455 {
2456         u32 aff, clpiaff;
2457
2458         aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2459         clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2460
2461         return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2462 }
2463
2464 static u32 compute_its_aff(struct its_node *its)
2465 {
2466         u64 val;
2467         u32 svpet;
2468
2469         /*
2470          * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2471          * the resulting affinity. We then use that to see if this match
2472          * our own affinity.
2473          */
2474         svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2475         val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2476         val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2477         return compute_common_aff(val);
2478 }
2479
2480 static struct its_node *find_sibling_its(struct its_node *cur_its)
2481 {
2482         struct its_node *its;
2483         u32 aff;
2484
2485         if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2486                 return NULL;
2487
2488         aff = compute_its_aff(cur_its);
2489
2490         list_for_each_entry(its, &its_nodes, entry) {
2491                 u64 baser;
2492
2493                 if (!is_v4_1(its) || its == cur_its)
2494                         continue;
2495
2496                 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2497                         continue;
2498
2499                 if (aff != compute_its_aff(its))
2500                         continue;
2501
2502                 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2503                 baser = its->tables[2].val;
2504                 if (!(baser & GITS_BASER_VALID))
2505                         continue;
2506
2507                 return its;
2508         }
2509
2510         return NULL;
2511 }
2512
2513 static void its_free_tables(struct its_node *its)
2514 {
2515         int i;
2516
2517         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2518                 if (its->tables[i].base) {
2519                         free_pages((unsigned long)its->tables[i].base,
2520                                    its->tables[i].order);
2521                         its->tables[i].base = NULL;
2522                 }
2523         }
2524 }
2525
2526 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2527 {
2528         u64 psz = SZ_64K;
2529
2530         while (psz) {
2531                 u64 val, gpsz;
2532
2533                 val = its_read_baser(its, baser);
2534                 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2535
2536                 switch (psz) {
2537                 case SZ_64K:
2538                         gpsz = GITS_BASER_PAGE_SIZE_64K;
2539                         break;
2540                 case SZ_16K:
2541                         gpsz = GITS_BASER_PAGE_SIZE_16K;
2542                         break;
2543                 case SZ_4K:
2544                 default:
2545                         gpsz = GITS_BASER_PAGE_SIZE_4K;
2546                         break;
2547                 }
2548
2549                 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2550
2551                 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2552                 its_write_baser(its, baser, val);
2553
2554                 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2555                         break;
2556
2557                 switch (psz) {
2558                 case SZ_64K:
2559                         psz = SZ_16K;
2560                         break;
2561                 case SZ_16K:
2562                         psz = SZ_4K;
2563                         break;
2564                 case SZ_4K:
2565                 default:
2566                         return -1;
2567                 }
2568         }
2569
2570         baser->psz = psz;
2571         return 0;
2572 }
2573
2574 static int its_alloc_tables(struct its_node *its)
2575 {
2576         u64 shr = GITS_BASER_InnerShareable;
2577         u64 cache = GITS_BASER_RaWaWb;
2578         int err, i;
2579
2580         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2581                 /* erratum 24313: ignore memory access type */
2582                 cache = GITS_BASER_nCnB;
2583
2584         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2585                 struct its_baser *baser = its->tables + i;
2586                 u64 val = its_read_baser(its, baser);
2587                 u64 type = GITS_BASER_TYPE(val);
2588                 bool indirect = false;
2589                 u32 order;
2590
2591                 if (type == GITS_BASER_TYPE_NONE)
2592                         continue;
2593
2594                 if (its_probe_baser_psz(its, baser)) {
2595                         its_free_tables(its);
2596                         return -ENXIO;
2597                 }
2598
2599                 order = get_order(baser->psz);
2600
2601                 switch (type) {
2602                 case GITS_BASER_TYPE_DEVICE:
2603                         indirect = its_parse_indirect_baser(its, baser, &order,
2604                                                             device_ids(its));
2605                         break;
2606
2607                 case GITS_BASER_TYPE_VCPU:
2608                         if (is_v4_1(its)) {
2609                                 struct its_node *sibling;
2610
2611                                 WARN_ON(i != 2);
2612                                 if ((sibling = find_sibling_its(its))) {
2613                                         *baser = sibling->tables[2];
2614                                         its_write_baser(its, baser, baser->val);
2615                                         continue;
2616                                 }
2617                         }
2618
2619                         indirect = its_parse_indirect_baser(its, baser, &order,
2620                                                             ITS_MAX_VPEID_BITS);
2621                         break;
2622                 }
2623
2624                 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2625                 if (err < 0) {
2626                         its_free_tables(its);
2627                         return err;
2628                 }
2629
2630                 /* Update settings which will be used for next BASERn */
2631                 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2632                 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2633         }
2634
2635         return 0;
2636 }
2637
2638 static u64 inherit_vpe_l1_table_from_its(void)
2639 {
2640         struct its_node *its;
2641         u64 val;
2642         u32 aff;
2643
2644         val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2645         aff = compute_common_aff(val);
2646
2647         list_for_each_entry(its, &its_nodes, entry) {
2648                 u64 baser, addr;
2649
2650                 if (!is_v4_1(its))
2651                         continue;
2652
2653                 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2654                         continue;
2655
2656                 if (aff != compute_its_aff(its))
2657                         continue;
2658
2659                 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2660                 baser = its->tables[2].val;
2661                 if (!(baser & GITS_BASER_VALID))
2662                         continue;
2663
2664                 /* We have a winner! */
2665                 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2666
2667                 val  = GICR_VPROPBASER_4_1_VALID;
2668                 if (baser & GITS_BASER_INDIRECT)
2669                         val |= GICR_VPROPBASER_4_1_INDIRECT;
2670                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2671                                   FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2672                 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2673                 case GIC_PAGE_SIZE_64K:
2674                         addr = GITS_BASER_ADDR_48_to_52(baser);
2675                         break;
2676                 default:
2677                         addr = baser & GENMASK_ULL(47, 12);
2678                         break;
2679                 }
2680                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2681                 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2682                                   FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2683                 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2684                                   FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2685                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2686
2687                 return val;
2688         }
2689
2690         return 0;
2691 }
2692
2693 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2694 {
2695         u32 aff;
2696         u64 val;
2697         int cpu;
2698
2699         val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2700         aff = compute_common_aff(val);
2701
2702         for_each_possible_cpu(cpu) {
2703                 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2704
2705                 if (!base || cpu == smp_processor_id())
2706                         continue;
2707
2708                 val = gic_read_typer(base + GICR_TYPER);
2709                 if (aff != compute_common_aff(val))
2710                         continue;
2711
2712                 /*
2713                  * At this point, we have a victim. This particular CPU
2714                  * has already booted, and has an affinity that matches
2715                  * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2716                  * Make sure we don't write the Z bit in that case.
2717                  */
2718                 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2719                 val &= ~GICR_VPROPBASER_4_1_Z;
2720
2721                 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2722                 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2723
2724                 return val;
2725         }
2726
2727         return 0;
2728 }
2729
2730 static bool allocate_vpe_l2_table(int cpu, u32 id)
2731 {
2732         void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2733         unsigned int psz, esz, idx, npg, gpsz;
2734         u64 val;
2735         struct page *page;
2736         __le64 *table;
2737
2738         if (!gic_rdists->has_rvpeid)
2739                 return true;
2740
2741         /* Skip non-present CPUs */
2742         if (!base)
2743                 return true;
2744
2745         val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2746
2747         esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2748         gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2749         npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2750
2751         switch (gpsz) {
2752         default:
2753                 WARN_ON(1);
2754                 fallthrough;
2755         case GIC_PAGE_SIZE_4K:
2756                 psz = SZ_4K;
2757                 break;
2758         case GIC_PAGE_SIZE_16K:
2759                 psz = SZ_16K;
2760                 break;
2761         case GIC_PAGE_SIZE_64K:
2762                 psz = SZ_64K;
2763                 break;
2764         }
2765
2766         /* Don't allow vpe_id that exceeds single, flat table limit */
2767         if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2768                 return (id < (npg * psz / (esz * SZ_8)));
2769
2770         /* Compute 1st level table index & check if that exceeds table limit */
2771         idx = id >> ilog2(psz / (esz * SZ_8));
2772         if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2773                 return false;
2774
2775         table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2776
2777         /* Allocate memory for 2nd level table */
2778         if (!table[idx]) {
2779                 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2780                 if (!page)
2781                         return false;
2782
2783                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2784                 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2785                         gic_flush_dcache_to_poc(page_address(page), psz);
2786
2787                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2788
2789                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2790                 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2791                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2792
2793                 /* Ensure updated table contents are visible to RD hardware */
2794                 dsb(sy);
2795         }
2796
2797         return true;
2798 }
2799
2800 static int allocate_vpe_l1_table(void)
2801 {
2802         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2803         u64 val, gpsz, npg, pa;
2804         unsigned int psz = SZ_64K;
2805         unsigned int np, epp, esz;
2806         struct page *page;
2807
2808         if (!gic_rdists->has_rvpeid)
2809                 return 0;
2810
2811         /*
2812          * if VPENDBASER.Valid is set, disable any previously programmed
2813          * VPE by setting PendingLast while clearing Valid. This has the
2814          * effect of making sure no doorbell will be generated and we can
2815          * then safely clear VPROPBASER.Valid.
2816          */
2817         if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2818                 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2819                                       vlpi_base + GICR_VPENDBASER);
2820
2821         /*
2822          * If we can inherit the configuration from another RD, let's do
2823          * so. Otherwise, we have to go through the allocation process. We
2824          * assume that all RDs have the exact same requirements, as
2825          * nothing will work otherwise.
2826          */
2827         val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2828         if (val & GICR_VPROPBASER_4_1_VALID)
2829                 goto out;
2830
2831         gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2832         if (!gic_data_rdist()->vpe_table_mask)
2833                 return -ENOMEM;
2834
2835         val = inherit_vpe_l1_table_from_its();
2836         if (val & GICR_VPROPBASER_4_1_VALID)
2837                 goto out;
2838
2839         /* First probe the page size */
2840         val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2841         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2842         val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2843         gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2844         esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2845
2846         switch (gpsz) {
2847         default:
2848                 gpsz = GIC_PAGE_SIZE_4K;
2849                 fallthrough;
2850         case GIC_PAGE_SIZE_4K:
2851                 psz = SZ_4K;
2852                 break;
2853         case GIC_PAGE_SIZE_16K:
2854                 psz = SZ_16K;
2855                 break;
2856         case GIC_PAGE_SIZE_64K:
2857                 psz = SZ_64K;
2858                 break;
2859         }
2860
2861         /*
2862          * Start populating the register from scratch, including RO fields
2863          * (which we want to print in debug cases...)
2864          */
2865         val = 0;
2866         val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2867         val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2868
2869         /* How many entries per GIC page? */
2870         esz++;
2871         epp = psz / (esz * SZ_8);
2872
2873         /*
2874          * If we need more than just a single L1 page, flag the table
2875          * as indirect and compute the number of required L1 pages.
2876          */
2877         if (epp < ITS_MAX_VPEID) {
2878                 int nl2;
2879
2880                 val |= GICR_VPROPBASER_4_1_INDIRECT;
2881
2882                 /* Number of L2 pages required to cover the VPEID space */
2883                 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2884
2885                 /* Number of L1 pages to point to the L2 pages */
2886                 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2887         } else {
2888                 npg = 1;
2889         }
2890
2891         val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2892
2893         /* Right, that's the number of CPU pages we need for L1 */
2894         np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2895
2896         pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2897                  np, npg, psz, epp, esz);
2898         page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2899         if (!page)
2900                 return -ENOMEM;
2901
2902         gic_data_rdist()->vpe_l1_base = page_address(page);
2903         pa = virt_to_phys(page_address(page));
2904         WARN_ON(!IS_ALIGNED(pa, psz));
2905
2906         val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2907         val |= GICR_VPROPBASER_RaWb;
2908         val |= GICR_VPROPBASER_InnerShareable;
2909         val |= GICR_VPROPBASER_4_1_Z;
2910         val |= GICR_VPROPBASER_4_1_VALID;
2911
2912 out:
2913         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2914         cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2915
2916         pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2917                  smp_processor_id(), val,
2918                  cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2919
2920         return 0;
2921 }
2922
2923 static int its_alloc_collections(struct its_node *its)
2924 {
2925         int i;
2926
2927         its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2928                                    GFP_KERNEL);
2929         if (!its->collections)
2930                 return -ENOMEM;
2931
2932         for (i = 0; i < nr_cpu_ids; i++)
2933                 its->collections[i].target_address = ~0ULL;
2934
2935         return 0;
2936 }
2937
2938 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2939 {
2940         struct page *pend_page;
2941
2942         pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2943                                 get_order(LPI_PENDBASE_SZ));
2944         if (!pend_page)
2945                 return NULL;
2946
2947         /* Make sure the GIC will observe the zero-ed page */
2948         gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2949
2950         return pend_page;
2951 }
2952
2953 static void its_free_pending_table(struct page *pt)
2954 {
2955         free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2956 }
2957
2958 /*
2959  * Booting with kdump and LPIs enabled is generally fine. Any other
2960  * case is wrong in the absence of firmware/EFI support.
2961  */
2962 static bool enabled_lpis_allowed(void)
2963 {
2964         phys_addr_t addr;
2965         u64 val;
2966
2967         /* Check whether the property table is in a reserved region */
2968         val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2969         addr = val & GENMASK_ULL(51, 12);
2970
2971         return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2972 }
2973
2974 static int __init allocate_lpi_tables(void)
2975 {
2976         u64 val;
2977         int err, cpu;
2978
2979         /*
2980          * If LPIs are enabled while we run this from the boot CPU,
2981          * flag the RD tables as pre-allocated if the stars do align.
2982          */
2983         val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2984         if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2985                 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2986                                       RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2987                 pr_info("GICv3: Using preallocated redistributor tables\n");
2988         }
2989
2990         err = its_setup_lpi_prop_table();
2991         if (err)
2992                 return err;
2993
2994         /*
2995          * We allocate all the pending tables anyway, as we may have a
2996          * mix of RDs that have had LPIs enabled, and some that
2997          * don't. We'll free the unused ones as each CPU comes online.
2998          */
2999         for_each_possible_cpu(cpu) {
3000                 struct page *pend_page;
3001
3002                 pend_page = its_allocate_pending_table(GFP_NOWAIT);
3003                 if (!pend_page) {
3004                         pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3005                         return -ENOMEM;
3006                 }
3007
3008                 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3009         }
3010
3011         return 0;
3012 }
3013
3014 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3015 {
3016         u32 count = 1000000;    /* 1s! */
3017         bool clean;
3018         u64 val;
3019
3020         val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3021         val &= ~GICR_VPENDBASER_Valid;
3022         val &= ~clr;
3023         val |= set;
3024         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3025
3026         do {
3027                 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3028                 clean = !(val & GICR_VPENDBASER_Dirty);
3029                 if (!clean) {
3030                         count--;
3031                         cpu_relax();
3032                         udelay(1);
3033                 }
3034         } while (!clean && count);
3035
3036         if (unlikely(val & GICR_VPENDBASER_Dirty)) {
3037                 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3038                 val |= GICR_VPENDBASER_PendingLast;
3039         }
3040
3041         return val;
3042 }
3043
3044 static void its_cpu_init_lpis(void)
3045 {
3046         void __iomem *rbase = gic_data_rdist_rd_base();
3047         struct page *pend_page;
3048         phys_addr_t paddr;
3049         u64 val, tmp;
3050
3051         if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3052                 return;
3053
3054         val = readl_relaxed(rbase + GICR_CTLR);
3055         if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3056             (val & GICR_CTLR_ENABLE_LPIS)) {
3057                 /*
3058                  * Check that we get the same property table on all
3059                  * RDs. If we don't, this is hopeless.
3060                  */
3061                 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3062                 paddr &= GENMASK_ULL(51, 12);
3063                 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3064                         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3065
3066                 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3067                 paddr &= GENMASK_ULL(51, 16);
3068
3069                 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3070                 gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3071
3072                 goto out;
3073         }
3074
3075         pend_page = gic_data_rdist()->pend_page;
3076         paddr = page_to_phys(pend_page);
3077
3078         /* set PROPBASE */
3079         val = (gic_rdists->prop_table_pa |
3080                GICR_PROPBASER_InnerShareable |
3081                GICR_PROPBASER_RaWaWb |
3082                ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3083
3084         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3085         tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3086
3087         if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3088                 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3089                         /*
3090                          * The HW reports non-shareable, we must
3091                          * remove the cacheability attributes as
3092                          * well.
3093                          */
3094                         val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3095                                  GICR_PROPBASER_CACHEABILITY_MASK);
3096                         val |= GICR_PROPBASER_nC;
3097                         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3098                 }
3099                 pr_info_once("GIC: using cache flushing for LPI property table\n");
3100                 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3101         }
3102
3103         /* set PENDBASE */
3104         val = (page_to_phys(pend_page) |
3105                GICR_PENDBASER_InnerShareable |
3106                GICR_PENDBASER_RaWaWb);
3107
3108         gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3109         tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3110
3111         if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3112                 /*
3113                  * The HW reports non-shareable, we must remove the
3114                  * cacheability attributes as well.
3115                  */
3116                 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3117                          GICR_PENDBASER_CACHEABILITY_MASK);
3118                 val |= GICR_PENDBASER_nC;
3119                 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3120         }
3121
3122         /* Enable LPIs */
3123         val = readl_relaxed(rbase + GICR_CTLR);
3124         val |= GICR_CTLR_ENABLE_LPIS;
3125         writel_relaxed(val, rbase + GICR_CTLR);
3126
3127         if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3128                 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3129
3130                 /*
3131                  * It's possible for CPU to receive VLPIs before it is
3132                  * scheduled as a vPE, especially for the first CPU, and the
3133                  * VLPI with INTID larger than 2^(IDbits+1) will be considered
3134                  * as out of range and dropped by GIC.
3135                  * So we initialize IDbits to known value to avoid VLPI drop.
3136                  */
3137                 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3138                 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3139                         smp_processor_id(), val);
3140                 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3141
3142                 /*
3143                  * Also clear Valid bit of GICR_VPENDBASER, in case some
3144                  * ancient programming gets left in and has possibility of
3145                  * corrupting memory.
3146                  */
3147                 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3148         }
3149
3150         if (allocate_vpe_l1_table()) {
3151                 /*
3152                  * If the allocation has failed, we're in massive trouble.
3153                  * Disable direct injection, and pray that no VM was
3154                  * already running...
3155                  */
3156                 gic_rdists->has_rvpeid = false;
3157                 gic_rdists->has_vlpis = false;
3158         }
3159
3160         /* Make sure the GIC has seen the above */
3161         dsb(sy);
3162 out:
3163         gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3164         pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3165                 smp_processor_id(),
3166                 gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3167                 "reserved" : "allocated",
3168                 &paddr);
3169 }
3170
3171 static void its_cpu_init_collection(struct its_node *its)
3172 {
3173         int cpu = smp_processor_id();
3174         u64 target;
3175
3176         /* avoid cross node collections and its mapping */
3177         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3178                 struct device_node *cpu_node;
3179
3180                 cpu_node = of_get_cpu_node(cpu, NULL);
3181                 if (its->numa_node != NUMA_NO_NODE &&
3182                         its->numa_node != of_node_to_nid(cpu_node))
3183                         return;
3184         }
3185
3186         /*
3187          * We now have to bind each collection to its target
3188          * redistributor.
3189          */
3190         if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3191                 /*
3192                  * This ITS wants the physical address of the
3193                  * redistributor.
3194                  */
3195                 target = gic_data_rdist()->phys_base;
3196         } else {
3197                 /* This ITS wants a linear CPU number. */
3198                 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3199                 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3200         }
3201
3202         /* Perform collection mapping */
3203         its->collections[cpu].target_address = target;
3204         its->collections[cpu].col_id = cpu;
3205
3206         its_send_mapc(its, &its->collections[cpu], 1);
3207         its_send_invall(its, &its->collections[cpu]);
3208 }
3209
3210 static void its_cpu_init_collections(void)
3211 {
3212         struct its_node *its;
3213
3214         raw_spin_lock(&its_lock);
3215
3216         list_for_each_entry(its, &its_nodes, entry)
3217                 its_cpu_init_collection(its);
3218
3219         raw_spin_unlock(&its_lock);
3220 }
3221
3222 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3223 {
3224         struct its_device *its_dev = NULL, *tmp;
3225         unsigned long flags;
3226
3227         raw_spin_lock_irqsave(&its->lock, flags);
3228
3229         list_for_each_entry(tmp, &its->its_device_list, entry) {
3230                 if (tmp->device_id == dev_id) {
3231                         its_dev = tmp;
3232                         break;
3233                 }
3234         }
3235
3236         raw_spin_unlock_irqrestore(&its->lock, flags);
3237
3238         return its_dev;
3239 }
3240
3241 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3242 {
3243         int i;
3244
3245         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3246                 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3247                         return &its->tables[i];
3248         }
3249
3250         return NULL;
3251 }
3252
3253 static bool its_alloc_table_entry(struct its_node *its,
3254                                   struct its_baser *baser, u32 id)
3255 {
3256         struct page *page;
3257         u32 esz, idx;
3258         __le64 *table;
3259
3260         /* Don't allow device id that exceeds single, flat table limit */
3261         esz = GITS_BASER_ENTRY_SIZE(baser->val);
3262         if (!(baser->val & GITS_BASER_INDIRECT))
3263                 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3264
3265         /* Compute 1st level table index & check if that exceeds table limit */
3266         idx = id >> ilog2(baser->psz / esz);
3267         if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3268                 return false;
3269
3270         table = baser->base;
3271
3272         /* Allocate memory for 2nd level table */
3273         if (!table[idx]) {
3274                 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3275                                         get_order(baser->psz));
3276                 if (!page)
3277                         return false;
3278
3279                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3280                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3281                         gic_flush_dcache_to_poc(page_address(page), baser->psz);
3282
3283                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3284
3285                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3286                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3287                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3288
3289                 /* Ensure updated table contents are visible to ITS hardware */
3290                 dsb(sy);
3291         }
3292
3293         return true;
3294 }
3295
3296 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3297 {
3298         struct its_baser *baser;
3299
3300         baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3301
3302         /* Don't allow device id that exceeds ITS hardware limit */
3303         if (!baser)
3304                 return (ilog2(dev_id) < device_ids(its));
3305
3306         return its_alloc_table_entry(its, baser, dev_id);
3307 }
3308
3309 static bool its_alloc_vpe_table(u32 vpe_id)
3310 {
3311         struct its_node *its;
3312         int cpu;
3313
3314         /*
3315          * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3316          * could try and only do it on ITSs corresponding to devices
3317          * that have interrupts targeted at this VPE, but the
3318          * complexity becomes crazy (and you have tons of memory
3319          * anyway, right?).
3320          */
3321         list_for_each_entry(its, &its_nodes, entry) {
3322                 struct its_baser *baser;
3323
3324                 if (!is_v4(its))
3325                         continue;
3326
3327                 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3328                 if (!baser)
3329                         return false;
3330
3331                 if (!its_alloc_table_entry(its, baser, vpe_id))
3332                         return false;
3333         }
3334
3335         /* Non v4.1? No need to iterate RDs and go back early. */
3336         if (!gic_rdists->has_rvpeid)
3337                 return true;
3338
3339         /*
3340          * Make sure the L2 tables are allocated for all copies of
3341          * the L1 table on *all* v4.1 RDs.
3342          */
3343         for_each_possible_cpu(cpu) {
3344                 if (!allocate_vpe_l2_table(cpu, vpe_id))
3345                         return false;
3346         }
3347
3348         return true;
3349 }
3350
3351 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3352                                             int nvecs, bool alloc_lpis)
3353 {
3354         struct its_device *dev;
3355         unsigned long *lpi_map = NULL;
3356         unsigned long flags;
3357         u16 *col_map = NULL;
3358         void *itt;
3359         int lpi_base;
3360         int nr_lpis;
3361         int nr_ites;
3362         int sz;
3363
3364         if (!its_alloc_device_table(its, dev_id))
3365                 return NULL;
3366
3367         if (WARN_ON(!is_power_of_2(nvecs)))
3368                 nvecs = roundup_pow_of_two(nvecs);
3369
3370         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3371         /*
3372          * Even if the device wants a single LPI, the ITT must be
3373          * sized as a power of two (and you need at least one bit...).
3374          */
3375         nr_ites = max(2, nvecs);
3376         sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3377         sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3378         itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3379         if (alloc_lpis) {
3380                 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3381                 if (lpi_map)
3382                         col_map = kcalloc(nr_lpis, sizeof(*col_map),
3383                                           GFP_KERNEL);
3384         } else {
3385                 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3386                 nr_lpis = 0;
3387                 lpi_base = 0;
3388         }
3389
3390         if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3391                 kfree(dev);
3392                 kfree(itt);
3393                 bitmap_free(lpi_map);
3394                 kfree(col_map);
3395                 return NULL;
3396         }
3397
3398         gic_flush_dcache_to_poc(itt, sz);
3399
3400         dev->its = its;
3401         dev->itt = itt;
3402         dev->nr_ites = nr_ites;
3403         dev->event_map.lpi_map = lpi_map;
3404         dev->event_map.col_map = col_map;
3405         dev->event_map.lpi_base = lpi_base;
3406         dev->event_map.nr_lpis = nr_lpis;
3407         raw_spin_lock_init(&dev->event_map.vlpi_lock);
3408         dev->device_id = dev_id;
3409         INIT_LIST_HEAD(&dev->entry);
3410
3411         raw_spin_lock_irqsave(&its->lock, flags);
3412         list_add(&dev->entry, &its->its_device_list);
3413         raw_spin_unlock_irqrestore(&its->lock, flags);
3414
3415         /* Map device to its ITT */
3416         its_send_mapd(dev, 1);
3417
3418         return dev;
3419 }
3420
3421 static void its_free_device(struct its_device *its_dev)
3422 {
3423         unsigned long flags;
3424
3425         raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3426         list_del(&its_dev->entry);
3427         raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3428         kfree(its_dev->event_map.col_map);
3429         kfree(its_dev->itt);
3430         kfree(its_dev);
3431 }
3432
3433 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3434 {
3435         int idx;
3436
3437         /* Find a free LPI region in lpi_map and allocate them. */
3438         idx = bitmap_find_free_region(dev->event_map.lpi_map,
3439                                       dev->event_map.nr_lpis,
3440                                       get_count_order(nvecs));
3441         if (idx < 0)
3442                 return -ENOSPC;
3443
3444         *hwirq = dev->event_map.lpi_base + idx;
3445
3446         return 0;
3447 }
3448
3449 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3450                            int nvec, msi_alloc_info_t *info)
3451 {
3452         struct its_node *its;
3453         struct its_device *its_dev;
3454         struct msi_domain_info *msi_info;
3455         u32 dev_id;
3456         int err = 0;
3457
3458         /*
3459          * We ignore "dev" entirely, and rely on the dev_id that has
3460          * been passed via the scratchpad. This limits this domain's
3461          * usefulness to upper layers that definitely know that they
3462          * are built on top of the ITS.
3463          */
3464         dev_id = info->scratchpad[0].ul;
3465
3466         msi_info = msi_get_domain_info(domain);
3467         its = msi_info->data;
3468
3469         if (!gic_rdists->has_direct_lpi &&
3470             vpe_proxy.dev &&
3471             vpe_proxy.dev->its == its &&
3472             dev_id == vpe_proxy.dev->device_id) {
3473                 /* Bad luck. Get yourself a better implementation */
3474                 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3475                           dev_id);
3476                 return -EINVAL;
3477         }
3478
3479         mutex_lock(&its->dev_alloc_lock);
3480         its_dev = its_find_device(its, dev_id);
3481         if (its_dev) {
3482                 /*
3483                  * We already have seen this ID, probably through
3484                  * another alias (PCI bridge of some sort). No need to
3485                  * create the device.
3486                  */
3487                 its_dev->shared = true;
3488                 pr_debug("Reusing ITT for devID %x\n", dev_id);
3489                 goto out;
3490         }
3491
3492         its_dev = its_create_device(its, dev_id, nvec, true);
3493         if (!its_dev) {
3494                 err = -ENOMEM;
3495                 goto out;
3496         }
3497
3498         if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3499                 its_dev->shared = true;
3500
3501         pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3502 out:
3503         mutex_unlock(&its->dev_alloc_lock);
3504         info->scratchpad[0].ptr = its_dev;
3505         return err;
3506 }
3507
3508 static struct msi_domain_ops its_msi_domain_ops = {
3509         .msi_prepare    = its_msi_prepare,
3510 };
3511
3512 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3513                                     unsigned int virq,
3514                                     irq_hw_number_t hwirq)
3515 {
3516         struct irq_fwspec fwspec;
3517
3518         if (irq_domain_get_of_node(domain->parent)) {
3519                 fwspec.fwnode = domain->parent->fwnode;
3520                 fwspec.param_count = 3;
3521                 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3522                 fwspec.param[1] = hwirq;
3523                 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3524         } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3525                 fwspec.fwnode = domain->parent->fwnode;
3526                 fwspec.param_count = 2;
3527                 fwspec.param[0] = hwirq;
3528                 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3529         } else {
3530                 return -EINVAL;
3531         }
3532
3533         return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3534 }
3535
3536 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3537                                 unsigned int nr_irqs, void *args)
3538 {
3539         msi_alloc_info_t *info = args;
3540         struct its_device *its_dev = info->scratchpad[0].ptr;
3541         struct its_node *its = its_dev->its;
3542         struct irq_data *irqd;
3543         irq_hw_number_t hwirq;
3544         int err;
3545         int i;
3546
3547         err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3548         if (err)
3549                 return err;
3550
3551         err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3552         if (err)
3553                 return err;
3554
3555         for (i = 0; i < nr_irqs; i++) {
3556                 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3557                 if (err)
3558                         return err;
3559
3560                 irq_domain_set_hwirq_and_chip(domain, virq + i,
3561                                               hwirq + i, &its_irq_chip, its_dev);
3562                 irqd = irq_get_irq_data(virq + i);
3563                 irqd_set_single_target(irqd);
3564                 irqd_set_affinity_on_activate(irqd);
3565                 pr_debug("ID:%d pID:%d vID:%d\n",
3566                          (int)(hwirq + i - its_dev->event_map.lpi_base),
3567                          (int)(hwirq + i), virq + i);
3568         }
3569
3570         return 0;
3571 }
3572
3573 static int its_irq_domain_activate(struct irq_domain *domain,
3574                                    struct irq_data *d, bool reserve)
3575 {
3576         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3577         u32 event = its_get_event_id(d);
3578         int cpu;
3579
3580         cpu = its_select_cpu(d, cpu_online_mask);
3581         if (cpu < 0 || cpu >= nr_cpu_ids)
3582                 return -EINVAL;
3583
3584         its_inc_lpi_count(d, cpu);
3585         its_dev->event_map.col_map[event] = cpu;
3586         irq_data_update_effective_affinity(d, cpumask_of(cpu));
3587
3588         /* Map the GIC IRQ and event to the device */
3589         its_send_mapti(its_dev, d->hwirq, event);
3590         return 0;
3591 }
3592
3593 static void its_irq_domain_deactivate(struct irq_domain *domain,
3594                                       struct irq_data *d)
3595 {
3596         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3597         u32 event = its_get_event_id(d);
3598
3599         its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3600         /* Stop the delivery of interrupts */
3601         its_send_discard(its_dev, event);
3602 }
3603
3604 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3605                                 unsigned int nr_irqs)
3606 {
3607         struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3608         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3609         struct its_node *its = its_dev->its;
3610         int i;
3611
3612         bitmap_release_region(its_dev->event_map.lpi_map,
3613                               its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3614                               get_count_order(nr_irqs));
3615
3616         for (i = 0; i < nr_irqs; i++) {
3617                 struct irq_data *data = irq_domain_get_irq_data(domain,
3618                                                                 virq + i);
3619                 /* Nuke the entry in the domain */
3620                 irq_domain_reset_irq_data(data);
3621         }
3622
3623         mutex_lock(&its->dev_alloc_lock);
3624
3625         /*
3626          * If all interrupts have been freed, start mopping the
3627          * floor. This is conditioned on the device not being shared.
3628          */
3629         if (!its_dev->shared &&
3630             bitmap_empty(its_dev->event_map.lpi_map,
3631                          its_dev->event_map.nr_lpis)) {
3632                 its_lpi_free(its_dev->event_map.lpi_map,
3633                              its_dev->event_map.lpi_base,
3634                              its_dev->event_map.nr_lpis);
3635
3636                 /* Unmap device/itt */
3637                 its_send_mapd(its_dev, 0);
3638                 its_free_device(its_dev);
3639         }
3640
3641         mutex_unlock(&its->dev_alloc_lock);
3642
3643         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3644 }
3645
3646 static const struct irq_domain_ops its_domain_ops = {
3647         .alloc                  = its_irq_domain_alloc,
3648         .free                   = its_irq_domain_free,
3649         .activate               = its_irq_domain_activate,
3650         .deactivate             = its_irq_domain_deactivate,
3651 };
3652
3653 /*
3654  * This is insane.
3655  *
3656  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3657  * likely), the only way to perform an invalidate is to use a fake
3658  * device to issue an INV command, implying that the LPI has first
3659  * been mapped to some event on that device. Since this is not exactly
3660  * cheap, we try to keep that mapping around as long as possible, and
3661  * only issue an UNMAP if we're short on available slots.
3662  *
3663  * Broken by design(tm).
3664  *
3665  * GICv4.1, on the other hand, mandates that we're able to invalidate
3666  * by writing to a MMIO register. It doesn't implement the whole of
3667  * DirectLPI, but that's good enough. And most of the time, we don't
3668  * even have to invalidate anything, as the redistributor can be told
3669  * whether to generate a doorbell or not (we thus leave it enabled,
3670  * always).
3671  */
3672 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3673 {
3674         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3675         if (gic_rdists->has_rvpeid)
3676                 return;
3677
3678         /* Already unmapped? */
3679         if (vpe->vpe_proxy_event == -1)
3680                 return;
3681
3682         its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3683         vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3684
3685         /*
3686          * We don't track empty slots at all, so let's move the
3687          * next_victim pointer if we can quickly reuse that slot
3688          * instead of nuking an existing entry. Not clear that this is
3689          * always a win though, and this might just generate a ripple
3690          * effect... Let's just hope VPEs don't migrate too often.
3691          */
3692         if (vpe_proxy.vpes[vpe_proxy.next_victim])
3693                 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3694
3695         vpe->vpe_proxy_event = -1;
3696 }
3697
3698 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3699 {
3700         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3701         if (gic_rdists->has_rvpeid)
3702                 return;
3703
3704         if (!gic_rdists->has_direct_lpi) {
3705                 unsigned long flags;
3706
3707                 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3708                 its_vpe_db_proxy_unmap_locked(vpe);
3709                 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3710         }
3711 }
3712
3713 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3714 {
3715         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3716         if (gic_rdists->has_rvpeid)
3717                 return;
3718
3719         /* Already mapped? */
3720         if (vpe->vpe_proxy_event != -1)
3721                 return;
3722
3723         /* This slot was already allocated. Kick the other VPE out. */
3724         if (vpe_proxy.vpes[vpe_proxy.next_victim])
3725                 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3726
3727         /* Map the new VPE instead */
3728         vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3729         vpe->vpe_proxy_event = vpe_proxy.next_victim;
3730         vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3731
3732         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3733         its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3734 }
3735
3736 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3737 {
3738         unsigned long flags;
3739         struct its_collection *target_col;
3740
3741         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3742         if (gic_rdists->has_rvpeid)
3743                 return;
3744
3745         if (gic_rdists->has_direct_lpi) {
3746                 void __iomem *rdbase;
3747
3748                 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3749                 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3750                 wait_for_syncr(rdbase);
3751
3752                 return;
3753         }
3754
3755         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3756
3757         its_vpe_db_proxy_map_locked(vpe);
3758
3759         target_col = &vpe_proxy.dev->its->collections[to];
3760         its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3761         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3762
3763         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3764 }
3765
3766 static int its_vpe_set_affinity(struct irq_data *d,
3767                                 const struct cpumask *mask_val,
3768                                 bool force)
3769 {
3770         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3771         int from, cpu = cpumask_first(mask_val);
3772         unsigned long flags;
3773
3774         /*
3775          * Changing affinity is mega expensive, so let's be as lazy as
3776          * we can and only do it if we really have to. Also, if mapped
3777          * into the proxy device, we need to move the doorbell
3778          * interrupt to its new location.
3779          *
3780          * Another thing is that changing the affinity of a vPE affects
3781          * *other interrupts* such as all the vLPIs that are routed to
3782          * this vPE. This means that the irq_desc lock is not enough to
3783          * protect us, and that we must ensure nobody samples vpe->col_idx
3784          * during the update, hence the lock below which must also be
3785          * taken on any vLPI handling path that evaluates vpe->col_idx.
3786          */
3787         from = vpe_to_cpuid_lock(vpe, &flags);
3788         if (from == cpu)
3789                 goto out;
3790
3791         vpe->col_idx = cpu;
3792
3793         /*
3794          * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3795          * is sharing its VPE table with the current one.
3796          */
3797         if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3798             cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3799                 goto out;
3800
3801         its_send_vmovp(vpe);
3802         its_vpe_db_proxy_move(vpe, from, cpu);
3803
3804 out:
3805         irq_data_update_effective_affinity(d, cpumask_of(cpu));
3806         vpe_to_cpuid_unlock(vpe, flags);
3807
3808         return IRQ_SET_MASK_OK_DONE;
3809 }
3810
3811 static void its_wait_vpt_parse_complete(void)
3812 {
3813         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3814         u64 val;
3815
3816         if (!gic_rdists->has_vpend_valid_dirty)
3817                 return;
3818
3819         WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3820                                                        val,
3821                                                        !(val & GICR_VPENDBASER_Dirty),
3822                                                        1, 500));
3823 }
3824
3825 static void its_vpe_schedule(struct its_vpe *vpe)
3826 {
3827         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3828         u64 val;
3829
3830         /* Schedule the VPE */
3831         val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3832                 GENMASK_ULL(51, 12);
3833         val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3834         val |= GICR_VPROPBASER_RaWb;
3835         val |= GICR_VPROPBASER_InnerShareable;
3836         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3837
3838         val  = virt_to_phys(page_address(vpe->vpt_page)) &
3839                 GENMASK_ULL(51, 16);
3840         val |= GICR_VPENDBASER_RaWaWb;
3841         val |= GICR_VPENDBASER_InnerShareable;
3842         /*
3843          * There is no good way of finding out if the pending table is
3844          * empty as we can race against the doorbell interrupt very
3845          * easily. So in the end, vpe->pending_last is only an
3846          * indication that the vcpu has something pending, not one
3847          * that the pending table is empty. A good implementation
3848          * would be able to read its coarse map pretty quickly anyway,
3849          * making this a tolerable issue.
3850          */
3851         val |= GICR_VPENDBASER_PendingLast;
3852         val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3853         val |= GICR_VPENDBASER_Valid;
3854         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3855 }
3856
3857 static void its_vpe_deschedule(struct its_vpe *vpe)
3858 {
3859         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3860         u64 val;
3861
3862         val = its_clear_vpend_valid(vlpi_base, 0, 0);
3863
3864         vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3865         vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3866 }
3867
3868 static void its_vpe_invall(struct its_vpe *vpe)
3869 {
3870         struct its_node *its;
3871
3872         list_for_each_entry(its, &its_nodes, entry) {
3873                 if (!is_v4(its))
3874                         continue;
3875
3876                 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3877                         continue;
3878
3879                 /*
3880                  * Sending a VINVALL to a single ITS is enough, as all
3881                  * we need is to reach the redistributors.
3882                  */
3883                 its_send_vinvall(its, vpe);
3884                 return;
3885         }
3886 }
3887
3888 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3889 {
3890         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3891         struct its_cmd_info *info = vcpu_info;
3892
3893         switch (info->cmd_type) {
3894         case SCHEDULE_VPE:
3895                 its_vpe_schedule(vpe);
3896                 return 0;
3897
3898         case DESCHEDULE_VPE:
3899                 its_vpe_deschedule(vpe);
3900                 return 0;
3901
3902         case COMMIT_VPE:
3903                 its_wait_vpt_parse_complete();
3904                 return 0;
3905
3906         case INVALL_VPE:
3907                 its_vpe_invall(vpe);
3908                 return 0;
3909
3910         default:
3911                 return -EINVAL;
3912         }
3913 }
3914
3915 static void its_vpe_send_cmd(struct its_vpe *vpe,
3916                              void (*cmd)(struct its_device *, u32))
3917 {
3918         unsigned long flags;
3919
3920         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3921
3922         its_vpe_db_proxy_map_locked(vpe);
3923         cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3924
3925         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3926 }
3927
3928 static void its_vpe_send_inv(struct irq_data *d)
3929 {
3930         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3931
3932         if (gic_rdists->has_direct_lpi) {
3933                 void __iomem *rdbase;
3934
3935                 /* Target the redistributor this VPE is currently known on */
3936                 raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3937                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3938                 gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3939                 wait_for_syncr(rdbase);
3940                 raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3941         } else {
3942                 its_vpe_send_cmd(vpe, its_send_inv);
3943         }
3944 }
3945
3946 static void its_vpe_mask_irq(struct irq_data *d)
3947 {
3948         /*
3949          * We need to unmask the LPI, which is described by the parent
3950          * irq_data. Instead of calling into the parent (which won't
3951          * exactly do the right thing, let's simply use the
3952          * parent_data pointer. Yes, I'm naughty.
3953          */
3954         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3955         its_vpe_send_inv(d);
3956 }
3957
3958 static void its_vpe_unmask_irq(struct irq_data *d)
3959 {
3960         /* Same hack as above... */
3961         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3962         its_vpe_send_inv(d);
3963 }
3964
3965 static int its_vpe_set_irqchip_state(struct irq_data *d,
3966                                      enum irqchip_irq_state which,
3967                                      bool state)
3968 {
3969         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3970
3971         if (which != IRQCHIP_STATE_PENDING)
3972                 return -EINVAL;
3973
3974         if (gic_rdists->has_direct_lpi) {
3975                 void __iomem *rdbase;
3976
3977                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3978                 if (state) {
3979                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
3980                 } else {
3981                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3982                         wait_for_syncr(rdbase);
3983                 }
3984         } else {
3985                 if (state)
3986                         its_vpe_send_cmd(vpe, its_send_int);
3987                 else
3988                         its_vpe_send_cmd(vpe, its_send_clear);
3989         }
3990
3991         return 0;
3992 }
3993
3994 static int its_vpe_retrigger(struct irq_data *d)
3995 {
3996         return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
3997 }
3998
3999 static struct irq_chip its_vpe_irq_chip = {
4000         .name                   = "GICv4-vpe",
4001         .irq_mask               = its_vpe_mask_irq,
4002         .irq_unmask             = its_vpe_unmask_irq,
4003         .irq_eoi                = irq_chip_eoi_parent,
4004         .irq_set_affinity       = its_vpe_set_affinity,
4005         .irq_retrigger          = its_vpe_retrigger,
4006         .irq_set_irqchip_state  = its_vpe_set_irqchip_state,
4007         .irq_set_vcpu_affinity  = its_vpe_set_vcpu_affinity,
4008 };
4009
4010 static struct its_node *find_4_1_its(void)
4011 {
4012         static struct its_node *its = NULL;
4013
4014         if (!its) {
4015                 list_for_each_entry(its, &its_nodes, entry) {
4016                         if (is_v4_1(its))
4017                                 return its;
4018                 }
4019
4020                 /* Oops? */
4021                 its = NULL;
4022         }
4023
4024         return its;
4025 }
4026
4027 static void its_vpe_4_1_send_inv(struct irq_data *d)
4028 {
4029         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4030         struct its_node *its;
4031
4032         /*
4033          * GICv4.1 wants doorbells to be invalidated using the
4034          * INVDB command in order to be broadcast to all RDs. Send
4035          * it to the first valid ITS, and let the HW do its magic.
4036          */
4037         its = find_4_1_its();
4038         if (its)
4039                 its_send_invdb(its, vpe);
4040 }
4041
4042 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4043 {
4044         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4045         its_vpe_4_1_send_inv(d);
4046 }
4047
4048 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4049 {
4050         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4051         its_vpe_4_1_send_inv(d);
4052 }
4053
4054 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4055                                  struct its_cmd_info *info)
4056 {
4057         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4058         u64 val = 0;
4059
4060         /* Schedule the VPE */
4061         val |= GICR_VPENDBASER_Valid;
4062         val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4063         val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4064         val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4065
4066         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4067 }
4068
4069 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4070                                    struct its_cmd_info *info)
4071 {
4072         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4073         u64 val;
4074
4075         if (info->req_db) {
4076                 unsigned long flags;
4077
4078                 /*
4079                  * vPE is going to block: make the vPE non-resident with
4080                  * PendingLast clear and DB set. The GIC guarantees that if
4081                  * we read-back PendingLast clear, then a doorbell will be
4082                  * delivered when an interrupt comes.
4083                  *
4084                  * Note the locking to deal with the concurrent update of
4085                  * pending_last from the doorbell interrupt handler that can
4086                  * run concurrently.
4087                  */
4088                 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4089                 val = its_clear_vpend_valid(vlpi_base,
4090                                             GICR_VPENDBASER_PendingLast,
4091                                             GICR_VPENDBASER_4_1_DB);
4092                 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4093                 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4094         } else {
4095                 /*
4096                  * We're not blocking, so just make the vPE non-resident
4097                  * with PendingLast set, indicating that we'll be back.
4098                  */
4099                 val = its_clear_vpend_valid(vlpi_base,
4100                                             0,
4101                                             GICR_VPENDBASER_PendingLast);
4102                 vpe->pending_last = true;
4103         }
4104 }
4105
4106 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4107 {
4108         void __iomem *rdbase;
4109         unsigned long flags;
4110         u64 val;
4111         int cpu;
4112
4113         val  = GICR_INVALLR_V;
4114         val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4115
4116         /* Target the redistributor this vPE is currently known on */
4117         cpu = vpe_to_cpuid_lock(vpe, &flags);
4118         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4119         rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4120         gic_write_lpir(val, rdbase + GICR_INVALLR);
4121
4122         wait_for_syncr(rdbase);
4123         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4124         vpe_to_cpuid_unlock(vpe, flags);
4125 }
4126
4127 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4128 {
4129         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4130         struct its_cmd_info *info = vcpu_info;
4131
4132         switch (info->cmd_type) {
4133         case SCHEDULE_VPE:
4134                 its_vpe_4_1_schedule(vpe, info);
4135                 return 0;
4136
4137         case DESCHEDULE_VPE:
4138                 its_vpe_4_1_deschedule(vpe, info);
4139                 return 0;
4140
4141         case COMMIT_VPE:
4142                 its_wait_vpt_parse_complete();
4143                 return 0;
4144
4145         case INVALL_VPE:
4146                 its_vpe_4_1_invall(vpe);
4147                 return 0;
4148
4149         default:
4150                 return -EINVAL;
4151         }
4152 }
4153
4154 static struct irq_chip its_vpe_4_1_irq_chip = {
4155         .name                   = "GICv4.1-vpe",
4156         .irq_mask               = its_vpe_4_1_mask_irq,
4157         .irq_unmask             = its_vpe_4_1_unmask_irq,
4158         .irq_eoi                = irq_chip_eoi_parent,
4159         .irq_set_affinity       = its_vpe_set_affinity,
4160         .irq_set_vcpu_affinity  = its_vpe_4_1_set_vcpu_affinity,
4161 };
4162
4163 static void its_configure_sgi(struct irq_data *d, bool clear)
4164 {
4165         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4166         struct its_cmd_desc desc;
4167
4168         desc.its_vsgi_cmd.vpe = vpe;
4169         desc.its_vsgi_cmd.sgi = d->hwirq;
4170         desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4171         desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4172         desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4173         desc.its_vsgi_cmd.clear = clear;
4174
4175         /*
4176          * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4177          * destination VPE is mapped there. Since we map them eagerly at
4178          * activation time, we're pretty sure the first GICv4.1 ITS will do.
4179          */
4180         its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4181 }
4182
4183 static void its_sgi_mask_irq(struct irq_data *d)
4184 {
4185         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4186
4187         vpe->sgi_config[d->hwirq].enabled = false;
4188         its_configure_sgi(d, false);
4189 }
4190
4191 static void its_sgi_unmask_irq(struct irq_data *d)
4192 {
4193         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4194
4195         vpe->sgi_config[d->hwirq].enabled = true;
4196         its_configure_sgi(d, false);
4197 }
4198
4199 static int its_sgi_set_affinity(struct irq_data *d,
4200                                 const struct cpumask *mask_val,
4201                                 bool force)
4202 {
4203         /*
4204          * There is no notion of affinity for virtual SGIs, at least
4205          * not on the host (since they can only be targeting a vPE).
4206          * Tell the kernel we've done whatever it asked for.
4207          */
4208         irq_data_update_effective_affinity(d, mask_val);
4209         return IRQ_SET_MASK_OK;
4210 }
4211
4212 static int its_sgi_set_irqchip_state(struct irq_data *d,
4213                                      enum irqchip_irq_state which,
4214                                      bool state)
4215 {
4216         if (which != IRQCHIP_STATE_PENDING)
4217                 return -EINVAL;
4218
4219         if (state) {
4220                 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4221                 struct its_node *its = find_4_1_its();
4222                 u64 val;
4223
4224                 val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4225                 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4226                 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4227         } else {
4228                 its_configure_sgi(d, true);
4229         }
4230
4231         return 0;
4232 }
4233
4234 static int its_sgi_get_irqchip_state(struct irq_data *d,
4235                                      enum irqchip_irq_state which, bool *val)
4236 {
4237         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4238         void __iomem *base;
4239         unsigned long flags;
4240         u32 count = 1000000;    /* 1s! */
4241         u32 status;
4242         int cpu;
4243
4244         if (which != IRQCHIP_STATE_PENDING)
4245                 return -EINVAL;
4246
4247         /*
4248          * Locking galore! We can race against two different events:
4249          *
4250          * - Concurrent vPE affinity change: we must make sure it cannot
4251          *   happen, or we'll talk to the wrong redistributor. This is
4252          *   identical to what happens with vLPIs.
4253          *
4254          * - Concurrent VSGIPENDR access: As it involves accessing two
4255          *   MMIO registers, this must be made atomic one way or another.
4256          */
4257         cpu = vpe_to_cpuid_lock(vpe, &flags);
4258         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4259         base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4260         writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4261         do {
4262                 status = readl_relaxed(base + GICR_VSGIPENDR);
4263                 if (!(status & GICR_VSGIPENDR_BUSY))
4264                         goto out;
4265
4266                 count--;
4267                 if (!count) {
4268                         pr_err_ratelimited("Unable to get SGI status\n");
4269                         goto out;
4270                 }
4271                 cpu_relax();
4272                 udelay(1);
4273         } while (count);
4274
4275 out:
4276         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4277         vpe_to_cpuid_unlock(vpe, flags);
4278
4279         if (!count)
4280                 return -ENXIO;
4281
4282         *val = !!(status & (1 << d->hwirq));
4283
4284         return 0;
4285 }
4286
4287 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4288 {
4289         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4290         struct its_cmd_info *info = vcpu_info;
4291
4292         switch (info->cmd_type) {
4293         case PROP_UPDATE_VSGI:
4294                 vpe->sgi_config[d->hwirq].priority = info->priority;
4295                 vpe->sgi_config[d->hwirq].group = info->group;
4296                 its_configure_sgi(d, false);
4297                 return 0;
4298
4299         default:
4300                 return -EINVAL;
4301         }
4302 }
4303
4304 static struct irq_chip its_sgi_irq_chip = {
4305         .name                   = "GICv4.1-sgi",
4306         .irq_mask               = its_sgi_mask_irq,
4307         .irq_unmask             = its_sgi_unmask_irq,
4308         .irq_set_affinity       = its_sgi_set_affinity,
4309         .irq_set_irqchip_state  = its_sgi_set_irqchip_state,
4310         .irq_get_irqchip_state  = its_sgi_get_irqchip_state,
4311         .irq_set_vcpu_affinity  = its_sgi_set_vcpu_affinity,
4312 };
4313
4314 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4315                                     unsigned int virq, unsigned int nr_irqs,
4316                                     void *args)
4317 {
4318         struct its_vpe *vpe = args;
4319         int i;
4320
4321         /* Yes, we do want 16 SGIs */
4322         WARN_ON(nr_irqs != 16);
4323
4324         for (i = 0; i < 16; i++) {
4325                 vpe->sgi_config[i].priority = 0;
4326                 vpe->sgi_config[i].enabled = false;
4327                 vpe->sgi_config[i].group = false;
4328
4329                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4330                                               &its_sgi_irq_chip, vpe);
4331                 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4332         }
4333
4334         return 0;
4335 }
4336
4337 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4338                                     unsigned int virq,
4339                                     unsigned int nr_irqs)
4340 {
4341         /* Nothing to do */
4342 }
4343
4344 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4345                                        struct irq_data *d, bool reserve)
4346 {
4347         /* Write out the initial SGI configuration */
4348         its_configure_sgi(d, false);
4349         return 0;
4350 }
4351
4352 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4353                                           struct irq_data *d)
4354 {
4355         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4356
4357         /*
4358          * The VSGI command is awkward:
4359          *
4360          * - To change the configuration, CLEAR must be set to false,
4361          *   leaving the pending bit unchanged.
4362          * - To clear the pending bit, CLEAR must be set to true, leaving
4363          *   the configuration unchanged.
4364          *
4365          * You just can't do both at once, hence the two commands below.
4366          */
4367         vpe->sgi_config[d->hwirq].enabled = false;
4368         its_configure_sgi(d, false);
4369         its_configure_sgi(d, true);
4370 }
4371
4372 static const struct irq_domain_ops its_sgi_domain_ops = {
4373         .alloc          = its_sgi_irq_domain_alloc,
4374         .free           = its_sgi_irq_domain_free,
4375         .activate       = its_sgi_irq_domain_activate,
4376         .deactivate     = its_sgi_irq_domain_deactivate,
4377 };
4378
4379 static int its_vpe_id_alloc(void)
4380 {
4381         return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4382 }
4383
4384 static void its_vpe_id_free(u16 id)
4385 {
4386         ida_simple_remove(&its_vpeid_ida, id);
4387 }
4388
4389 static int its_vpe_init(struct its_vpe *vpe)
4390 {
4391         struct page *vpt_page;
4392         int vpe_id;
4393
4394         /* Allocate vpe_id */
4395         vpe_id = its_vpe_id_alloc();
4396         if (vpe_id < 0)
4397                 return vpe_id;
4398
4399         /* Allocate VPT */
4400         vpt_page = its_allocate_pending_table(GFP_KERNEL);
4401         if (!vpt_page) {
4402                 its_vpe_id_free(vpe_id);
4403                 return -ENOMEM;
4404         }
4405
4406         if (!its_alloc_vpe_table(vpe_id)) {
4407                 its_vpe_id_free(vpe_id);
4408                 its_free_pending_table(vpt_page);
4409                 return -ENOMEM;
4410         }
4411
4412         raw_spin_lock_init(&vpe->vpe_lock);
4413         vpe->vpe_id = vpe_id;
4414         vpe->vpt_page = vpt_page;
4415         if (gic_rdists->has_rvpeid)
4416                 atomic_set(&vpe->vmapp_count, 0);
4417         else
4418                 vpe->vpe_proxy_event = -1;
4419
4420         return 0;
4421 }
4422
4423 static void its_vpe_teardown(struct its_vpe *vpe)
4424 {
4425         its_vpe_db_proxy_unmap(vpe);
4426         its_vpe_id_free(vpe->vpe_id);
4427         its_free_pending_table(vpe->vpt_page);
4428 }
4429
4430 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4431                                     unsigned int virq,
4432                                     unsigned int nr_irqs)
4433 {
4434         struct its_vm *vm = domain->host_data;
4435         int i;
4436
4437         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4438
4439         for (i = 0; i < nr_irqs; i++) {
4440                 struct irq_data *data = irq_domain_get_irq_data(domain,
4441                                                                 virq + i);
4442                 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4443
4444                 BUG_ON(vm != vpe->its_vm);
4445
4446                 clear_bit(data->hwirq, vm->db_bitmap);
4447                 its_vpe_teardown(vpe);
4448                 irq_domain_reset_irq_data(data);
4449         }
4450
4451         if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4452                 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4453                 its_free_prop_table(vm->vprop_page);
4454         }
4455 }
4456
4457 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4458                                     unsigned int nr_irqs, void *args)
4459 {
4460         struct irq_chip *irqchip = &its_vpe_irq_chip;
4461         struct its_vm *vm = args;
4462         unsigned long *bitmap;
4463         struct page *vprop_page;
4464         int base, nr_ids, i, err = 0;
4465
4466         BUG_ON(!vm);
4467
4468         bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4469         if (!bitmap)
4470                 return -ENOMEM;
4471
4472         if (nr_ids < nr_irqs) {
4473                 its_lpi_free(bitmap, base, nr_ids);
4474                 return -ENOMEM;
4475         }
4476
4477         vprop_page = its_allocate_prop_table(GFP_KERNEL);
4478         if (!vprop_page) {
4479                 its_lpi_free(bitmap, base, nr_ids);
4480                 return -ENOMEM;
4481         }
4482
4483         vm->db_bitmap = bitmap;
4484         vm->db_lpi_base = base;
4485         vm->nr_db_lpis = nr_ids;
4486         vm->vprop_page = vprop_page;
4487
4488         if (gic_rdists->has_rvpeid)
4489                 irqchip = &its_vpe_4_1_irq_chip;
4490
4491         for (i = 0; i < nr_irqs; i++) {
4492                 vm->vpes[i]->vpe_db_lpi = base + i;
4493                 err = its_vpe_init(vm->vpes[i]);
4494                 if (err)
4495                         break;
4496                 err = its_irq_gic_domain_alloc(domain, virq + i,
4497                                                vm->vpes[i]->vpe_db_lpi);
4498                 if (err)
4499                         break;
4500                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4501                                               irqchip, vm->vpes[i]);
4502                 set_bit(i, bitmap);
4503         }
4504
4505         if (err) {
4506                 if (i > 0)
4507                         its_vpe_irq_domain_free(domain, virq, i);
4508
4509                 its_lpi_free(bitmap, base, nr_ids);
4510                 its_free_prop_table(vprop_page);
4511         }
4512
4513         return err;
4514 }
4515
4516 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4517                                        struct irq_data *d, bool reserve)
4518 {
4519         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4520         struct its_node *its;
4521
4522         /*
4523          * If we use the list map, we issue VMAPP on demand... Unless
4524          * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4525          * so that VSGIs can work.
4526          */
4527         if (!gic_requires_eager_mapping())
4528                 return 0;
4529
4530         /* Map the VPE to the first possible CPU */
4531         vpe->col_idx = cpumask_first(cpu_online_mask);
4532
4533         list_for_each_entry(its, &its_nodes, entry) {
4534                 if (!is_v4(its))
4535                         continue;
4536
4537                 its_send_vmapp(its, vpe, true);
4538                 its_send_vinvall(its, vpe);
4539         }
4540
4541         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4542
4543         return 0;
4544 }
4545
4546 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4547                                           struct irq_data *d)
4548 {
4549         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4550         struct its_node *its;
4551
4552         /*
4553          * If we use the list map on GICv4.0, we unmap the VPE once no
4554          * VLPIs are associated with the VM.
4555          */
4556         if (!gic_requires_eager_mapping())
4557                 return;
4558
4559         list_for_each_entry(its, &its_nodes, entry) {
4560                 if (!is_v4(its))
4561                         continue;
4562
4563                 its_send_vmapp(its, vpe, false);
4564         }
4565
4566         /*
4567          * There may be a direct read to the VPT after unmapping the
4568          * vPE, to guarantee the validity of this, we make the VPT
4569          * memory coherent with the CPU caches here.
4570          */
4571         if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4572                 gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4573                                         LPI_PENDBASE_SZ);
4574 }
4575
4576 static const struct irq_domain_ops its_vpe_domain_ops = {
4577         .alloc                  = its_vpe_irq_domain_alloc,
4578         .free                   = its_vpe_irq_domain_free,
4579         .activate               = its_vpe_irq_domain_activate,
4580         .deactivate             = its_vpe_irq_domain_deactivate,
4581 };
4582
4583 static int its_force_quiescent(void __iomem *base)
4584 {
4585         u32 count = 1000000;    /* 1s */
4586         u32 val;
4587
4588         val = readl_relaxed(base + GITS_CTLR);
4589         /*
4590          * GIC architecture specification requires the ITS to be both
4591          * disabled and quiescent for writes to GITS_BASER<n> or
4592          * GITS_CBASER to not have UNPREDICTABLE results.
4593          */
4594         if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4595                 return 0;
4596
4597         /* Disable the generation of all interrupts to this ITS */
4598         val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4599         writel_relaxed(val, base + GITS_CTLR);
4600
4601         /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4602         while (1) {
4603                 val = readl_relaxed(base + GITS_CTLR);
4604                 if (val & GITS_CTLR_QUIESCENT)
4605                         return 0;
4606
4607                 count--;
4608                 if (!count)
4609                         return -EBUSY;
4610
4611                 cpu_relax();
4612                 udelay(1);
4613         }
4614 }
4615
4616 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4617 {
4618         struct its_node *its = data;
4619
4620         /* erratum 22375: only alloc 8MB table size (20 bits) */
4621         its->typer &= ~GITS_TYPER_DEVBITS;
4622         its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4623         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4624
4625         return true;
4626 }
4627
4628 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4629 {
4630         struct its_node *its = data;
4631
4632         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4633
4634         return true;
4635 }
4636
4637 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4638 {
4639         struct its_node *its = data;
4640
4641         /* On QDF2400, the size of the ITE is 16Bytes */
4642         its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4643         its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4644
4645         return true;
4646 }
4647
4648 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4649 {
4650         struct its_node *its = its_dev->its;
4651
4652         /*
4653          * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4654          * which maps 32-bit writes targeted at a separate window of
4655          * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4656          * with device ID taken from bits [device_id_bits + 1:2] of
4657          * the window offset.
4658          */
4659         return its->pre_its_base + (its_dev->device_id << 2);
4660 }
4661
4662 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4663 {
4664         struct its_node *its = data;
4665         u32 pre_its_window[2];
4666         u32 ids;
4667
4668         if (!fwnode_property_read_u32_array(its->fwnode_handle,
4669                                            "socionext,synquacer-pre-its",
4670                                            pre_its_window,
4671                                            ARRAY_SIZE(pre_its_window))) {
4672
4673                 its->pre_its_base = pre_its_window[0];
4674                 its->get_msi_base = its_irq_get_msi_base_pre_its;
4675
4676                 ids = ilog2(pre_its_window[1]) - 2;
4677                 if (device_ids(its) > ids) {
4678                         its->typer &= ~GITS_TYPER_DEVBITS;
4679                         its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4680                 }
4681
4682                 /* the pre-ITS breaks isolation, so disable MSI remapping */
4683                 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4684                 return true;
4685         }
4686         return false;
4687 }
4688
4689 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4690 {
4691         struct its_node *its = data;
4692
4693         /*
4694          * Hip07 insists on using the wrong address for the VLPI
4695          * page. Trick it into doing the right thing...
4696          */
4697         its->vlpi_redist_offset = SZ_128K;
4698         return true;
4699 }
4700
4701 static const struct gic_quirk its_quirks[] = {
4702 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4703         {
4704                 .desc   = "ITS: Cavium errata 22375, 24313",
4705                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
4706                 .mask   = 0xffff0fff,
4707                 .init   = its_enable_quirk_cavium_22375,
4708         },
4709 #endif
4710 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4711         {
4712                 .desc   = "ITS: Cavium erratum 23144",
4713                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
4714                 .mask   = 0xffff0fff,
4715                 .init   = its_enable_quirk_cavium_23144,
4716         },
4717 #endif
4718 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4719         {
4720                 .desc   = "ITS: QDF2400 erratum 0065",
4721                 .iidr   = 0x00001070, /* QDF2400 ITS rev 1.x */
4722                 .mask   = 0xffffffff,
4723                 .init   = its_enable_quirk_qdf2400_e0065,
4724         },
4725 #endif
4726 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4727         {
4728                 /*
4729                  * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4730                  * implementation, but with a 'pre-ITS' added that requires
4731                  * special handling in software.
4732                  */
4733                 .desc   = "ITS: Socionext Synquacer pre-ITS",
4734                 .iidr   = 0x0001143b,
4735                 .mask   = 0xffffffff,
4736                 .init   = its_enable_quirk_socionext_synquacer,
4737         },
4738 #endif
4739 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4740         {
4741                 .desc   = "ITS: Hip07 erratum 161600802",
4742                 .iidr   = 0x00000004,
4743                 .mask   = 0xffffffff,
4744                 .init   = its_enable_quirk_hip07_161600802,
4745         },
4746 #endif
4747         {
4748         }
4749 };
4750
4751 static void its_enable_quirks(struct its_node *its)
4752 {
4753         u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4754
4755         gic_enable_quirks(iidr, its_quirks, its);
4756 }
4757
4758 static int its_save_disable(void)
4759 {
4760         struct its_node *its;
4761         int err = 0;
4762
4763         raw_spin_lock(&its_lock);
4764         list_for_each_entry(its, &its_nodes, entry) {
4765                 void __iomem *base;
4766
4767                 base = its->base;
4768                 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4769                 err = its_force_quiescent(base);
4770                 if (err) {
4771                         pr_err("ITS@%pa: failed to quiesce: %d\n",
4772                                &its->phys_base, err);
4773                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4774                         goto err;
4775                 }
4776
4777                 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4778         }
4779
4780 err:
4781         if (err) {
4782                 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4783                         void __iomem *base;
4784
4785                         base = its->base;
4786                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4787                 }
4788         }
4789         raw_spin_unlock(&its_lock);
4790
4791         return err;
4792 }
4793
4794 static void its_restore_enable(void)
4795 {
4796         struct its_node *its;
4797         int ret;
4798
4799         raw_spin_lock(&its_lock);
4800         list_for_each_entry(its, &its_nodes, entry) {
4801                 void __iomem *base;
4802                 int i;
4803
4804                 base = its->base;
4805
4806                 /*
4807                  * Make sure that the ITS is disabled. If it fails to quiesce,
4808                  * don't restore it since writing to CBASER or BASER<n>
4809                  * registers is undefined according to the GIC v3 ITS
4810                  * Specification.
4811                  *
4812                  * Firmware resuming with the ITS enabled is terminally broken.
4813                  */
4814                 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4815                 ret = its_force_quiescent(base);
4816                 if (ret) {
4817                         pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4818                                &its->phys_base, ret);
4819                         continue;
4820                 }
4821
4822                 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4823
4824                 /*
4825                  * Writing CBASER resets CREADR to 0, so make CWRITER and
4826                  * cmd_write line up with it.
4827                  */
4828                 its->cmd_write = its->cmd_base;
4829                 gits_write_cwriter(0, base + GITS_CWRITER);
4830
4831                 /* Restore GITS_BASER from the value cache. */
4832                 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4833                         struct its_baser *baser = &its->tables[i];
4834
4835                         if (!(baser->val & GITS_BASER_VALID))
4836                                 continue;
4837
4838                         its_write_baser(its, baser, baser->val);
4839                 }
4840                 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4841
4842                 /*
4843                  * Reinit the collection if it's stored in the ITS. This is
4844                  * indicated by the col_id being less than the HCC field.
4845                  * CID < HCC as specified in the GIC v3 Documentation.
4846                  */
4847                 if (its->collections[smp_processor_id()].col_id <
4848                     GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4849                         its_cpu_init_collection(its);
4850         }
4851         raw_spin_unlock(&its_lock);
4852 }
4853
4854 static struct syscore_ops its_syscore_ops = {
4855         .suspend = its_save_disable,
4856         .resume = its_restore_enable,
4857 };
4858
4859 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4860 {
4861         struct irq_domain *inner_domain;
4862         struct msi_domain_info *info;
4863
4864         info = kzalloc(sizeof(*info), GFP_KERNEL);
4865         if (!info)
4866                 return -ENOMEM;
4867
4868         inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
4869         if (!inner_domain) {
4870                 kfree(info);
4871                 return -ENOMEM;
4872         }
4873
4874         inner_domain->parent = its_parent;
4875         irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4876         inner_domain->flags |= its->msi_domain_flags;
4877         info->ops = &its_msi_domain_ops;
4878         info->data = its;
4879         inner_domain->host_data = info;
4880
4881         return 0;
4882 }
4883
4884 static int its_init_vpe_domain(void)
4885 {
4886         struct its_node *its;
4887         u32 devid;
4888         int entries;
4889
4890         if (gic_rdists->has_direct_lpi) {
4891                 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4892                 return 0;
4893         }
4894
4895         /* Any ITS will do, even if not v4 */
4896         its = list_first_entry(&its_nodes, struct its_node, entry);
4897
4898         entries = roundup_pow_of_two(nr_cpu_ids);
4899         vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4900                                  GFP_KERNEL);
4901         if (!vpe_proxy.vpes)
4902                 return -ENOMEM;
4903
4904         /* Use the last possible DevID */
4905         devid = GENMASK(device_ids(its) - 1, 0);
4906         vpe_proxy.dev = its_create_device(its, devid, entries, false);
4907         if (!vpe_proxy.dev) {
4908                 kfree(vpe_proxy.vpes);
4909                 pr_err("ITS: Can't allocate GICv4 proxy device\n");
4910                 return -ENOMEM;
4911         }
4912
4913         BUG_ON(entries > vpe_proxy.dev->nr_ites);
4914
4915         raw_spin_lock_init(&vpe_proxy.lock);
4916         vpe_proxy.next_victim = 0;
4917         pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4918                 devid, vpe_proxy.dev->nr_ites);
4919
4920         return 0;
4921 }
4922
4923 static int __init its_compute_its_list_map(struct resource *res,
4924                                            void __iomem *its_base)
4925 {
4926         int its_number;
4927         u32 ctlr;
4928
4929         /*
4930          * This is assumed to be done early enough that we're
4931          * guaranteed to be single-threaded, hence no
4932          * locking. Should this change, we should address
4933          * this.
4934          */
4935         its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4936         if (its_number >= GICv4_ITS_LIST_MAX) {
4937                 pr_err("ITS@%pa: No ITSList entry available!\n",
4938                        &res->start);
4939                 return -EINVAL;
4940         }
4941
4942         ctlr = readl_relaxed(its_base + GITS_CTLR);
4943         ctlr &= ~GITS_CTLR_ITS_NUMBER;
4944         ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4945         writel_relaxed(ctlr, its_base + GITS_CTLR);
4946         ctlr = readl_relaxed(its_base + GITS_CTLR);
4947         if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4948                 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4949                 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4950         }
4951
4952         if (test_and_set_bit(its_number, &its_list_map)) {
4953                 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4954                        &res->start, its_number);
4955                 return -EINVAL;
4956         }
4957
4958         return its_number;
4959 }
4960
4961 static int __init its_probe_one(struct resource *res,
4962                                 struct fwnode_handle *handle, int numa_node)
4963 {
4964         struct its_node *its;
4965         void __iomem *its_base;
4966         u32 val, ctlr;
4967         u64 baser, tmp, typer;
4968         struct page *page;
4969         int err;
4970
4971         its_base = ioremap(res->start, SZ_64K);
4972         if (!its_base) {
4973                 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4974                 return -ENOMEM;
4975         }
4976
4977         val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4978         if (val != 0x30 && val != 0x40) {
4979                 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4980                 err = -ENODEV;
4981                 goto out_unmap;
4982         }
4983
4984         err = its_force_quiescent(its_base);
4985         if (err) {
4986                 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4987                 goto out_unmap;
4988         }
4989
4990         pr_info("ITS %pR\n", res);
4991
4992         its = kzalloc(sizeof(*its), GFP_KERNEL);
4993         if (!its) {
4994                 err = -ENOMEM;
4995                 goto out_unmap;
4996         }
4997
4998         raw_spin_lock_init(&its->lock);
4999         mutex_init(&its->dev_alloc_lock);
5000         INIT_LIST_HEAD(&its->entry);
5001         INIT_LIST_HEAD(&its->its_device_list);
5002         typer = gic_read_typer(its_base + GITS_TYPER);
5003         its->typer = typer;
5004         its->base = its_base;
5005         its->phys_base = res->start;
5006         if (is_v4(its)) {
5007                 if (!(typer & GITS_TYPER_VMOVP)) {
5008                         err = its_compute_its_list_map(res, its_base);
5009                         if (err < 0)
5010                                 goto out_free_its;
5011
5012                         its->list_nr = err;
5013
5014                         pr_info("ITS@%pa: Using ITS number %d\n",
5015                                 &res->start, err);
5016                 } else {
5017                         pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5018                 }
5019
5020                 if (is_v4_1(its)) {
5021                         u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5022
5023                         its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5024                         if (!its->sgir_base) {
5025                                 err = -ENOMEM;
5026                                 goto out_free_its;
5027                         }
5028
5029                         its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5030
5031                         pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5032                                 &res->start, its->mpidr, svpet);
5033                 }
5034         }
5035
5036         its->numa_node = numa_node;
5037
5038         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5039                                 get_order(ITS_CMD_QUEUE_SZ));
5040         if (!page) {
5041                 err = -ENOMEM;
5042                 goto out_unmap_sgir;
5043         }
5044         its->cmd_base = (void *)page_address(page);
5045         its->cmd_write = its->cmd_base;
5046         its->fwnode_handle = handle;
5047         its->get_msi_base = its_irq_get_msi_base;
5048         its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
5049
5050         its_enable_quirks(its);
5051
5052         err = its_alloc_tables(its);
5053         if (err)
5054                 goto out_free_cmd;
5055
5056         err = its_alloc_collections(its);
5057         if (err)
5058                 goto out_free_tables;
5059
5060         baser = (virt_to_phys(its->cmd_base)    |
5061                  GITS_CBASER_RaWaWb             |
5062                  GITS_CBASER_InnerShareable     |
5063                  (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5064                  GITS_CBASER_VALID);
5065
5066         gits_write_cbaser(baser, its->base + GITS_CBASER);
5067         tmp = gits_read_cbaser(its->base + GITS_CBASER);
5068
5069         if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5070                 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5071                         /*
5072                          * The HW reports non-shareable, we must
5073                          * remove the cacheability attributes as
5074                          * well.
5075                          */
5076                         baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5077                                    GITS_CBASER_CACHEABILITY_MASK);
5078                         baser |= GITS_CBASER_nC;
5079                         gits_write_cbaser(baser, its->base + GITS_CBASER);
5080                 }
5081                 pr_info("ITS: using cache flushing for cmd queue\n");
5082                 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5083         }
5084
5085         gits_write_cwriter(0, its->base + GITS_CWRITER);
5086         ctlr = readl_relaxed(its->base + GITS_CTLR);
5087         ctlr |= GITS_CTLR_ENABLE;
5088         if (is_v4(its))
5089                 ctlr |= GITS_CTLR_ImDe;
5090         writel_relaxed(ctlr, its->base + GITS_CTLR);
5091
5092         err = its_init_domain(handle, its);
5093         if (err)
5094                 goto out_free_tables;
5095
5096         raw_spin_lock(&its_lock);
5097         list_add(&its->entry, &its_nodes);
5098         raw_spin_unlock(&its_lock);
5099
5100         return 0;
5101
5102 out_free_tables:
5103         its_free_tables(its);
5104 out_free_cmd:
5105         free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5106 out_unmap_sgir:
5107         if (its->sgir_base)
5108                 iounmap(its->sgir_base);
5109 out_free_its:
5110         kfree(its);
5111 out_unmap:
5112         iounmap(its_base);
5113         pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5114         return err;
5115 }
5116
5117 static bool gic_rdists_supports_plpis(void)
5118 {
5119         return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5120 }
5121
5122 static int redist_disable_lpis(void)
5123 {
5124         void __iomem *rbase = gic_data_rdist_rd_base();
5125         u64 timeout = USEC_PER_SEC;
5126         u64 val;
5127
5128         if (!gic_rdists_supports_plpis()) {
5129                 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5130                 return -ENXIO;
5131         }
5132
5133         val = readl_relaxed(rbase + GICR_CTLR);
5134         if (!(val & GICR_CTLR_ENABLE_LPIS))
5135                 return 0;
5136
5137         /*
5138          * If coming via a CPU hotplug event, we don't need to disable
5139          * LPIs before trying to re-enable them. They are already
5140          * configured and all is well in the world.
5141          *
5142          * If running with preallocated tables, there is nothing to do.
5143          */
5144         if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5145             (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5146                 return 0;
5147
5148         /*
5149          * From that point on, we only try to do some damage control.
5150          */
5151         pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5152                 smp_processor_id());
5153         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5154
5155         /* Disable LPIs */
5156         val &= ~GICR_CTLR_ENABLE_LPIS;
5157         writel_relaxed(val, rbase + GICR_CTLR);
5158
5159         /* Make sure any change to GICR_CTLR is observable by the GIC */
5160         dsb(sy);
5161
5162         /*
5163          * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5164          * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5165          * Error out if we time out waiting for RWP to clear.
5166          */
5167         while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5168                 if (!timeout) {
5169                         pr_err("CPU%d: Timeout while disabling LPIs\n",
5170                                smp_processor_id());
5171                         return -ETIMEDOUT;
5172                 }
5173                 udelay(1);
5174                 timeout--;
5175         }
5176
5177         /*
5178          * After it has been written to 1, it is IMPLEMENTATION
5179          * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5180          * cleared to 0. Error out if clearing the bit failed.
5181          */
5182         if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5183                 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5184                 return -EBUSY;
5185         }
5186
5187         return 0;
5188 }
5189
5190 int its_cpu_init(void)
5191 {
5192         if (!list_empty(&its_nodes)) {
5193                 int ret;
5194
5195                 ret = redist_disable_lpis();
5196                 if (ret)
5197                         return ret;
5198
5199                 its_cpu_init_lpis();
5200                 its_cpu_init_collections();
5201         }
5202
5203         return 0;
5204 }
5205
5206 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5207 {
5208         cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5209         gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5210 }
5211
5212 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5213                     rdist_memreserve_cpuhp_cleanup_workfn);
5214
5215 static int its_cpu_memreserve_lpi(unsigned int cpu)
5216 {
5217         struct page *pend_page;
5218         int ret = 0;
5219
5220         /* This gets to run exactly once per CPU */
5221         if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5222                 return 0;
5223
5224         pend_page = gic_data_rdist()->pend_page;
5225         if (WARN_ON(!pend_page)) {
5226                 ret = -ENOMEM;
5227                 goto out;
5228         }
5229         /*
5230          * If the pending table was pre-programmed, free the memory we
5231          * preemptively allocated. Otherwise, reserve that memory for
5232          * later kexecs.
5233          */
5234         if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5235                 its_free_pending_table(pend_page);
5236                 gic_data_rdist()->pend_page = NULL;
5237         } else {
5238                 phys_addr_t paddr = page_to_phys(pend_page);
5239                 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5240         }
5241
5242 out:
5243         /* Last CPU being brought up gets to issue the cleanup */
5244         if (cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5245                 schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5246
5247         gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5248         return ret;
5249 }
5250
5251 static const struct of_device_id its_device_id[] = {
5252         {       .compatible     = "arm,gic-v3-its",     },
5253         {},
5254 };
5255
5256 static int __init its_of_probe(struct device_node *node)
5257 {
5258         struct device_node *np;
5259         struct resource res;
5260
5261         for (np = of_find_matching_node(node, its_device_id); np;
5262              np = of_find_matching_node(np, its_device_id)) {
5263                 if (!of_device_is_available(np))
5264                         continue;
5265                 if (!of_property_read_bool(np, "msi-controller")) {
5266                         pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5267                                 np);
5268                         continue;
5269                 }
5270
5271                 if (of_address_to_resource(np, 0, &res)) {
5272                         pr_warn("%pOF: no regs?\n", np);
5273                         continue;
5274                 }
5275
5276                 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5277         }
5278         return 0;
5279 }
5280
5281 #ifdef CONFIG_ACPI
5282
5283 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5284
5285 #ifdef CONFIG_ACPI_NUMA
5286 struct its_srat_map {
5287         /* numa node id */
5288         u32     numa_node;
5289         /* GIC ITS ID */
5290         u32     its_id;
5291 };
5292
5293 static struct its_srat_map *its_srat_maps __initdata;
5294 static int its_in_srat __initdata;
5295
5296 static int __init acpi_get_its_numa_node(u32 its_id)
5297 {
5298         int i;
5299
5300         for (i = 0; i < its_in_srat; i++) {
5301                 if (its_id == its_srat_maps[i].its_id)
5302                         return its_srat_maps[i].numa_node;
5303         }
5304         return NUMA_NO_NODE;
5305 }
5306
5307 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5308                                           const unsigned long end)
5309 {
5310         return 0;
5311 }
5312
5313 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5314                          const unsigned long end)
5315 {
5316         int node;
5317         struct acpi_srat_gic_its_affinity *its_affinity;
5318
5319         its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5320         if (!its_affinity)
5321                 return -EINVAL;
5322
5323         if (its_affinity->header.length < sizeof(*its_affinity)) {
5324                 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5325                         its_affinity->header.length);
5326                 return -EINVAL;
5327         }
5328
5329         /*
5330          * Note that in theory a new proximity node could be created by this
5331          * entry as it is an SRAT resource allocation structure.
5332          * We do not currently support doing so.
5333          */
5334         node = pxm_to_node(its_affinity->proximity_domain);
5335
5336         if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5337                 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5338                 return 0;
5339         }
5340
5341         its_srat_maps[its_in_srat].numa_node = node;
5342         its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5343         its_in_srat++;
5344         pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5345                 its_affinity->proximity_domain, its_affinity->its_id, node);
5346
5347         return 0;
5348 }
5349
5350 static void __init acpi_table_parse_srat_its(void)
5351 {
5352         int count;
5353
5354         count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5355                         sizeof(struct acpi_table_srat),
5356                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5357                         gic_acpi_match_srat_its, 0);
5358         if (count <= 0)
5359                 return;
5360
5361         its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5362                                       GFP_KERNEL);
5363         if (!its_srat_maps)
5364                 return;
5365
5366         acpi_table_parse_entries(ACPI_SIG_SRAT,
5367                         sizeof(struct acpi_table_srat),
5368                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5369                         gic_acpi_parse_srat_its, 0);
5370 }
5371
5372 /* free the its_srat_maps after ITS probing */
5373 static void __init acpi_its_srat_maps_free(void)
5374 {
5375         kfree(its_srat_maps);
5376 }
5377 #else
5378 static void __init acpi_table_parse_srat_its(void)      { }
5379 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5380 static void __init acpi_its_srat_maps_free(void) { }
5381 #endif
5382
5383 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5384                                           const unsigned long end)
5385 {
5386         struct acpi_madt_generic_translator *its_entry;
5387         struct fwnode_handle *dom_handle;
5388         struct resource res;
5389         int err;
5390
5391         its_entry = (struct acpi_madt_generic_translator *)header;
5392         memset(&res, 0, sizeof(res));
5393         res.start = its_entry->base_address;
5394         res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5395         res.flags = IORESOURCE_MEM;
5396
5397         dom_handle = irq_domain_alloc_fwnode(&res.start);
5398         if (!dom_handle) {
5399                 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5400                        &res.start);
5401                 return -ENOMEM;
5402         }
5403
5404         err = iort_register_domain_token(its_entry->translation_id, res.start,
5405                                          dom_handle);
5406         if (err) {
5407                 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5408                        &res.start, its_entry->translation_id);
5409                 goto dom_err;
5410         }
5411
5412         err = its_probe_one(&res, dom_handle,
5413                         acpi_get_its_numa_node(its_entry->translation_id));
5414         if (!err)
5415                 return 0;
5416
5417         iort_deregister_domain_token(its_entry->translation_id);
5418 dom_err:
5419         irq_domain_free_fwnode(dom_handle);
5420         return err;
5421 }
5422
5423 static void __init its_acpi_probe(void)
5424 {
5425         acpi_table_parse_srat_its();
5426         acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5427                               gic_acpi_parse_madt_its, 0);
5428         acpi_its_srat_maps_free();
5429 }
5430 #else
5431 static void __init its_acpi_probe(void) { }
5432 #endif
5433
5434 int __init its_lpi_memreserve_init(void)
5435 {
5436         int state;
5437
5438         if (!efi_enabled(EFI_CONFIG_TABLES))
5439                 return 0;
5440
5441         gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5442         state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5443                                   "irqchip/arm/gicv3/memreserve:online",
5444                                   its_cpu_memreserve_lpi,
5445                                   NULL);
5446         if (state < 0)
5447                 return state;
5448
5449         gic_rdists->cpuhp_memreserve_state = state;
5450
5451         return 0;
5452 }
5453
5454 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5455                     struct irq_domain *parent_domain)
5456 {
5457         struct device_node *of_node;
5458         struct its_node *its;
5459         bool has_v4 = false;
5460         bool has_v4_1 = false;
5461         int err;
5462
5463         gic_rdists = rdists;
5464
5465         its_parent = parent_domain;
5466         of_node = to_of_node(handle);
5467         if (of_node)
5468                 its_of_probe(of_node);
5469         else
5470                 its_acpi_probe();
5471
5472         if (list_empty(&its_nodes)) {
5473                 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5474                 return -ENXIO;
5475         }
5476
5477         err = allocate_lpi_tables();
5478         if (err)
5479                 return err;
5480
5481         list_for_each_entry(its, &its_nodes, entry) {
5482                 has_v4 |= is_v4(its);
5483                 has_v4_1 |= is_v4_1(its);
5484         }
5485
5486         /* Don't bother with inconsistent systems */
5487         if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5488                 rdists->has_rvpeid = false;
5489
5490         if (has_v4 & rdists->has_vlpis) {
5491                 const struct irq_domain_ops *sgi_ops;
5492
5493                 if (has_v4_1)
5494                         sgi_ops = &its_sgi_domain_ops;
5495                 else
5496                         sgi_ops = NULL;
5497
5498                 if (its_init_vpe_domain() ||
5499                     its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5500                         rdists->has_vlpis = false;
5501                         pr_err("ITS: Disabling GICv4 support\n");
5502                 }
5503         }
5504
5505         register_syscore_ops(&its_syscore_ops);
5506
5507         return 0;
5508 }