Merge tag '5.15-rc-ksmbd-part2' of git://git.samba.org/ksmbd
[linux-2.6-microblaze.git] / drivers / irqchip / irq-gic-v3-its.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/efi.h>
16 #include <linux/interrupt.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39
40 #include "irq-gic-common.h"
41
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING           (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375       (1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144       (1ULL << 2)
45
46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING     (1 << 0)
47 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED      (1 << 1)
48
49 static u32 lpi_id_bits;
50
51 /*
52  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
53  * deal with (one configuration byte per interrupt). PENDBASE has to
54  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
55  */
56 #define LPI_NRBITS              lpi_id_bits
57 #define LPI_PROPBASE_SZ         ALIGN(BIT(LPI_NRBITS), SZ_64K)
58 #define LPI_PENDBASE_SZ         ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
59
60 #define LPI_PROP_DEFAULT_PRIO   GICD_INT_DEF_PRI
61
62 /*
63  * Collection structure - just an ID, and a redistributor address to
64  * ping. We use one per CPU as a bag of interrupts assigned to this
65  * CPU.
66  */
67 struct its_collection {
68         u64                     target_address;
69         u16                     col_id;
70 };
71
72 /*
73  * The ITS_BASER structure - contains memory information, cached
74  * value of BASER register configuration and ITS page size.
75  */
76 struct its_baser {
77         void            *base;
78         u64             val;
79         u32             order;
80         u32             psz;
81 };
82
83 struct its_device;
84
85 /*
86  * The ITS structure - contains most of the infrastructure, with the
87  * top-level MSI domain, the command queue, the collections, and the
88  * list of devices writing to it.
89  *
90  * dev_alloc_lock has to be taken for device allocations, while the
91  * spinlock must be taken to parse data structures such as the device
92  * list.
93  */
94 struct its_node {
95         raw_spinlock_t          lock;
96         struct mutex            dev_alloc_lock;
97         struct list_head        entry;
98         void __iomem            *base;
99         void __iomem            *sgir_base;
100         phys_addr_t             phys_base;
101         struct its_cmd_block    *cmd_base;
102         struct its_cmd_block    *cmd_write;
103         struct its_baser        tables[GITS_BASER_NR_REGS];
104         struct its_collection   *collections;
105         struct fwnode_handle    *fwnode_handle;
106         u64                     (*get_msi_base)(struct its_device *its_dev);
107         u64                     typer;
108         u64                     cbaser_save;
109         u32                     ctlr_save;
110         u32                     mpidr;
111         struct list_head        its_device_list;
112         u64                     flags;
113         unsigned long           list_nr;
114         int                     numa_node;
115         unsigned int            msi_domain_flags;
116         u32                     pre_its_base; /* for Socionext Synquacer */
117         int                     vlpi_redist_offset;
118 };
119
120 #define is_v4(its)              (!!((its)->typer & GITS_TYPER_VLPIS))
121 #define is_v4_1(its)            (!!((its)->typer & GITS_TYPER_VMAPP))
122 #define device_ids(its)         (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
123
124 #define ITS_ITT_ALIGN           SZ_256
125
126 /* The maximum number of VPEID bits supported by VLPI commands */
127 #define ITS_MAX_VPEID_BITS                                              \
128         ({                                                              \
129                 int nvpeid = 16;                                        \
130                 if (gic_rdists->has_rvpeid &&                           \
131                     gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)          \
132                         nvpeid = 1 + (gic_rdists->gicd_typer2 &         \
133                                       GICD_TYPER2_VID);                 \
134                                                                         \
135                 nvpeid;                                                 \
136         })
137 #define ITS_MAX_VPEID           (1 << (ITS_MAX_VPEID_BITS))
138
139 /* Convert page order to size in bytes */
140 #define PAGE_ORDER_TO_SIZE(o)   (PAGE_SIZE << (o))
141
142 struct event_lpi_map {
143         unsigned long           *lpi_map;
144         u16                     *col_map;
145         irq_hw_number_t         lpi_base;
146         int                     nr_lpis;
147         raw_spinlock_t          vlpi_lock;
148         struct its_vm           *vm;
149         struct its_vlpi_map     *vlpi_maps;
150         int                     nr_vlpis;
151 };
152
153 /*
154  * The ITS view of a device - belongs to an ITS, owns an interrupt
155  * translation table, and a list of interrupts.  If it some of its
156  * LPIs are injected into a guest (GICv4), the event_map.vm field
157  * indicates which one.
158  */
159 struct its_device {
160         struct list_head        entry;
161         struct its_node         *its;
162         struct event_lpi_map    event_map;
163         void                    *itt;
164         u32                     nr_ites;
165         u32                     device_id;
166         bool                    shared;
167 };
168
169 static struct {
170         raw_spinlock_t          lock;
171         struct its_device       *dev;
172         struct its_vpe          **vpes;
173         int                     next_victim;
174 } vpe_proxy;
175
176 struct cpu_lpi_count {
177         atomic_t        managed;
178         atomic_t        unmanaged;
179 };
180
181 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
182
183 static LIST_HEAD(its_nodes);
184 static DEFINE_RAW_SPINLOCK(its_lock);
185 static struct rdists *gic_rdists;
186 static struct irq_domain *its_parent;
187
188 static unsigned long its_list_map;
189 static u16 vmovp_seq_num;
190 static DEFINE_RAW_SPINLOCK(vmovp_lock);
191
192 static DEFINE_IDA(its_vpeid_ida);
193
194 #define gic_data_rdist()                (raw_cpu_ptr(gic_rdists->rdist))
195 #define gic_data_rdist_cpu(cpu)         (per_cpu_ptr(gic_rdists->rdist, cpu))
196 #define gic_data_rdist_rd_base()        (gic_data_rdist()->rd_base)
197 #define gic_data_rdist_vlpi_base()      (gic_data_rdist_rd_base() + SZ_128K)
198
199 /*
200  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
201  * always have vSGIs mapped.
202  */
203 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
204 {
205         return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
206 }
207
208 static u16 get_its_list(struct its_vm *vm)
209 {
210         struct its_node *its;
211         unsigned long its_list = 0;
212
213         list_for_each_entry(its, &its_nodes, entry) {
214                 if (!is_v4(its))
215                         continue;
216
217                 if (require_its_list_vmovp(vm, its))
218                         __set_bit(its->list_nr, &its_list);
219         }
220
221         return (u16)its_list;
222 }
223
224 static inline u32 its_get_event_id(struct irq_data *d)
225 {
226         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
227         return d->hwirq - its_dev->event_map.lpi_base;
228 }
229
230 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
231                                                u32 event)
232 {
233         struct its_node *its = its_dev->its;
234
235         return its->collections + its_dev->event_map.col_map[event];
236 }
237
238 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
239                                                u32 event)
240 {
241         if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
242                 return NULL;
243
244         return &its_dev->event_map.vlpi_maps[event];
245 }
246
247 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
248 {
249         if (irqd_is_forwarded_to_vcpu(d)) {
250                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
251                 u32 event = its_get_event_id(d);
252
253                 return dev_event_to_vlpi_map(its_dev, event);
254         }
255
256         return NULL;
257 }
258
259 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
260 {
261         raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
262         return vpe->col_idx;
263 }
264
265 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
266 {
267         raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
268 }
269
270 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
271 {
272         struct its_vlpi_map *map = get_vlpi_map(d);
273         int cpu;
274
275         if (map) {
276                 cpu = vpe_to_cpuid_lock(map->vpe, flags);
277         } else {
278                 /* Physical LPIs are already locked via the irq_desc lock */
279                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
280                 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
281                 /* Keep GCC quiet... */
282                 *flags = 0;
283         }
284
285         return cpu;
286 }
287
288 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
289 {
290         struct its_vlpi_map *map = get_vlpi_map(d);
291
292         if (map)
293                 vpe_to_cpuid_unlock(map->vpe, flags);
294 }
295
296 static struct its_collection *valid_col(struct its_collection *col)
297 {
298         if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
299                 return NULL;
300
301         return col;
302 }
303
304 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
305 {
306         if (valid_col(its->collections + vpe->col_idx))
307                 return vpe;
308
309         return NULL;
310 }
311
312 /*
313  * ITS command descriptors - parameters to be encoded in a command
314  * block.
315  */
316 struct its_cmd_desc {
317         union {
318                 struct {
319                         struct its_device *dev;
320                         u32 event_id;
321                 } its_inv_cmd;
322
323                 struct {
324                         struct its_device *dev;
325                         u32 event_id;
326                 } its_clear_cmd;
327
328                 struct {
329                         struct its_device *dev;
330                         u32 event_id;
331                 } its_int_cmd;
332
333                 struct {
334                         struct its_device *dev;
335                         int valid;
336                 } its_mapd_cmd;
337
338                 struct {
339                         struct its_collection *col;
340                         int valid;
341                 } its_mapc_cmd;
342
343                 struct {
344                         struct its_device *dev;
345                         u32 phys_id;
346                         u32 event_id;
347                 } its_mapti_cmd;
348
349                 struct {
350                         struct its_device *dev;
351                         struct its_collection *col;
352                         u32 event_id;
353                 } its_movi_cmd;
354
355                 struct {
356                         struct its_device *dev;
357                         u32 event_id;
358                 } its_discard_cmd;
359
360                 struct {
361                         struct its_collection *col;
362                 } its_invall_cmd;
363
364                 struct {
365                         struct its_vpe *vpe;
366                 } its_vinvall_cmd;
367
368                 struct {
369                         struct its_vpe *vpe;
370                         struct its_collection *col;
371                         bool valid;
372                 } its_vmapp_cmd;
373
374                 struct {
375                         struct its_vpe *vpe;
376                         struct its_device *dev;
377                         u32 virt_id;
378                         u32 event_id;
379                         bool db_enabled;
380                 } its_vmapti_cmd;
381
382                 struct {
383                         struct its_vpe *vpe;
384                         struct its_device *dev;
385                         u32 event_id;
386                         bool db_enabled;
387                 } its_vmovi_cmd;
388
389                 struct {
390                         struct its_vpe *vpe;
391                         struct its_collection *col;
392                         u16 seq_num;
393                         u16 its_list;
394                 } its_vmovp_cmd;
395
396                 struct {
397                         struct its_vpe *vpe;
398                 } its_invdb_cmd;
399
400                 struct {
401                         struct its_vpe *vpe;
402                         u8 sgi;
403                         u8 priority;
404                         bool enable;
405                         bool group;
406                         bool clear;
407                 } its_vsgi_cmd;
408         };
409 };
410
411 /*
412  * The ITS command block, which is what the ITS actually parses.
413  */
414 struct its_cmd_block {
415         union {
416                 u64     raw_cmd[4];
417                 __le64  raw_cmd_le[4];
418         };
419 };
420
421 #define ITS_CMD_QUEUE_SZ                SZ_64K
422 #define ITS_CMD_QUEUE_NR_ENTRIES        (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
423
424 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
425                                                     struct its_cmd_block *,
426                                                     struct its_cmd_desc *);
427
428 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
429                                               struct its_cmd_block *,
430                                               struct its_cmd_desc *);
431
432 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
433 {
434         u64 mask = GENMASK_ULL(h, l);
435         *raw_cmd &= ~mask;
436         *raw_cmd |= (val << l) & mask;
437 }
438
439 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
440 {
441         its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
442 }
443
444 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
445 {
446         its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
447 }
448
449 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
450 {
451         its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
452 }
453
454 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
455 {
456         its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
457 }
458
459 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
460 {
461         its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
462 }
463
464 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
465 {
466         its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
467 }
468
469 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
470 {
471         its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
472 }
473
474 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
475 {
476         its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
477 }
478
479 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
480 {
481         its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
482 }
483
484 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
485 {
486         its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
487 }
488
489 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
490 {
491         its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
492 }
493
494 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
495 {
496         its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
497 }
498
499 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
500 {
501         its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
502 }
503
504 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
505 {
506         its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
507 }
508
509 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
510 {
511         its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
512 }
513
514 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
515 {
516         its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
517 }
518
519 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
520 {
521         its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
522 }
523
524 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
525 {
526         its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
527 }
528
529 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
530 {
531         its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
532 }
533
534 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
535 {
536         its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
537 }
538
539 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
540                                         u32 vpe_db_lpi)
541 {
542         its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
543 }
544
545 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
546                                         u32 vpe_db_lpi)
547 {
548         its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
549 }
550
551 static void its_encode_db(struct its_cmd_block *cmd, bool db)
552 {
553         its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
554 }
555
556 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
557 {
558         its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
559 }
560
561 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
562 {
563         its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
564 }
565
566 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
567 {
568         its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
569 }
570
571 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
572 {
573         its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
574 }
575
576 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
577 {
578         its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
579 }
580
581 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
582 {
583         /* Let's fixup BE commands */
584         cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
585         cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
586         cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
587         cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
588 }
589
590 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
591                                                  struct its_cmd_block *cmd,
592                                                  struct its_cmd_desc *desc)
593 {
594         unsigned long itt_addr;
595         u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
596
597         itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
598         itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
599
600         its_encode_cmd(cmd, GITS_CMD_MAPD);
601         its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
602         its_encode_size(cmd, size - 1);
603         its_encode_itt(cmd, itt_addr);
604         its_encode_valid(cmd, desc->its_mapd_cmd.valid);
605
606         its_fixup_cmd(cmd);
607
608         return NULL;
609 }
610
611 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
612                                                  struct its_cmd_block *cmd,
613                                                  struct its_cmd_desc *desc)
614 {
615         its_encode_cmd(cmd, GITS_CMD_MAPC);
616         its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
617         its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
618         its_encode_valid(cmd, desc->its_mapc_cmd.valid);
619
620         its_fixup_cmd(cmd);
621
622         return desc->its_mapc_cmd.col;
623 }
624
625 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
626                                                   struct its_cmd_block *cmd,
627                                                   struct its_cmd_desc *desc)
628 {
629         struct its_collection *col;
630
631         col = dev_event_to_col(desc->its_mapti_cmd.dev,
632                                desc->its_mapti_cmd.event_id);
633
634         its_encode_cmd(cmd, GITS_CMD_MAPTI);
635         its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
636         its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
637         its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
638         its_encode_collection(cmd, col->col_id);
639
640         its_fixup_cmd(cmd);
641
642         return valid_col(col);
643 }
644
645 static struct its_collection *its_build_movi_cmd(struct its_node *its,
646                                                  struct its_cmd_block *cmd,
647                                                  struct its_cmd_desc *desc)
648 {
649         struct its_collection *col;
650
651         col = dev_event_to_col(desc->its_movi_cmd.dev,
652                                desc->its_movi_cmd.event_id);
653
654         its_encode_cmd(cmd, GITS_CMD_MOVI);
655         its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
656         its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
657         its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
658
659         its_fixup_cmd(cmd);
660
661         return valid_col(col);
662 }
663
664 static struct its_collection *its_build_discard_cmd(struct its_node *its,
665                                                     struct its_cmd_block *cmd,
666                                                     struct its_cmd_desc *desc)
667 {
668         struct its_collection *col;
669
670         col = dev_event_to_col(desc->its_discard_cmd.dev,
671                                desc->its_discard_cmd.event_id);
672
673         its_encode_cmd(cmd, GITS_CMD_DISCARD);
674         its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
675         its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
676
677         its_fixup_cmd(cmd);
678
679         return valid_col(col);
680 }
681
682 static struct its_collection *its_build_inv_cmd(struct its_node *its,
683                                                 struct its_cmd_block *cmd,
684                                                 struct its_cmd_desc *desc)
685 {
686         struct its_collection *col;
687
688         col = dev_event_to_col(desc->its_inv_cmd.dev,
689                                desc->its_inv_cmd.event_id);
690
691         its_encode_cmd(cmd, GITS_CMD_INV);
692         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
693         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
694
695         its_fixup_cmd(cmd);
696
697         return valid_col(col);
698 }
699
700 static struct its_collection *its_build_int_cmd(struct its_node *its,
701                                                 struct its_cmd_block *cmd,
702                                                 struct its_cmd_desc *desc)
703 {
704         struct its_collection *col;
705
706         col = dev_event_to_col(desc->its_int_cmd.dev,
707                                desc->its_int_cmd.event_id);
708
709         its_encode_cmd(cmd, GITS_CMD_INT);
710         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
711         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
712
713         its_fixup_cmd(cmd);
714
715         return valid_col(col);
716 }
717
718 static struct its_collection *its_build_clear_cmd(struct its_node *its,
719                                                   struct its_cmd_block *cmd,
720                                                   struct its_cmd_desc *desc)
721 {
722         struct its_collection *col;
723
724         col = dev_event_to_col(desc->its_clear_cmd.dev,
725                                desc->its_clear_cmd.event_id);
726
727         its_encode_cmd(cmd, GITS_CMD_CLEAR);
728         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
729         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
730
731         its_fixup_cmd(cmd);
732
733         return valid_col(col);
734 }
735
736 static struct its_collection *its_build_invall_cmd(struct its_node *its,
737                                                    struct its_cmd_block *cmd,
738                                                    struct its_cmd_desc *desc)
739 {
740         its_encode_cmd(cmd, GITS_CMD_INVALL);
741         its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
742
743         its_fixup_cmd(cmd);
744
745         return NULL;
746 }
747
748 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
749                                              struct its_cmd_block *cmd,
750                                              struct its_cmd_desc *desc)
751 {
752         its_encode_cmd(cmd, GITS_CMD_VINVALL);
753         its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
754
755         its_fixup_cmd(cmd);
756
757         return valid_vpe(its, desc->its_vinvall_cmd.vpe);
758 }
759
760 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
761                                            struct its_cmd_block *cmd,
762                                            struct its_cmd_desc *desc)
763 {
764         unsigned long vpt_addr, vconf_addr;
765         u64 target;
766         bool alloc;
767
768         its_encode_cmd(cmd, GITS_CMD_VMAPP);
769         its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
770         its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
771
772         if (!desc->its_vmapp_cmd.valid) {
773                 if (is_v4_1(its)) {
774                         alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
775                         its_encode_alloc(cmd, alloc);
776                 }
777
778                 goto out;
779         }
780
781         vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
782         target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
783
784         its_encode_target(cmd, target);
785         its_encode_vpt_addr(cmd, vpt_addr);
786         its_encode_vpt_size(cmd, LPI_NRBITS - 1);
787
788         if (!is_v4_1(its))
789                 goto out;
790
791         vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
792
793         alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
794
795         its_encode_alloc(cmd, alloc);
796
797         /*
798          * GICv4.1 provides a way to get the VLPI state, which needs the vPE
799          * to be unmapped first, and in this case, we may remap the vPE
800          * back while the VPT is not empty. So we can't assume that the
801          * VPT is empty on map. This is why we never advertise PTZ.
802          */
803         its_encode_ptz(cmd, false);
804         its_encode_vconf_addr(cmd, vconf_addr);
805         its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
806
807 out:
808         its_fixup_cmd(cmd);
809
810         return valid_vpe(its, desc->its_vmapp_cmd.vpe);
811 }
812
813 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
814                                             struct its_cmd_block *cmd,
815                                             struct its_cmd_desc *desc)
816 {
817         u32 db;
818
819         if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
820                 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
821         else
822                 db = 1023;
823
824         its_encode_cmd(cmd, GITS_CMD_VMAPTI);
825         its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
826         its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
827         its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
828         its_encode_db_phys_id(cmd, db);
829         its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
830
831         its_fixup_cmd(cmd);
832
833         return valid_vpe(its, desc->its_vmapti_cmd.vpe);
834 }
835
836 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
837                                            struct its_cmd_block *cmd,
838                                            struct its_cmd_desc *desc)
839 {
840         u32 db;
841
842         if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
843                 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
844         else
845                 db = 1023;
846
847         its_encode_cmd(cmd, GITS_CMD_VMOVI);
848         its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
849         its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
850         its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
851         its_encode_db_phys_id(cmd, db);
852         its_encode_db_valid(cmd, true);
853
854         its_fixup_cmd(cmd);
855
856         return valid_vpe(its, desc->its_vmovi_cmd.vpe);
857 }
858
859 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
860                                            struct its_cmd_block *cmd,
861                                            struct its_cmd_desc *desc)
862 {
863         u64 target;
864
865         target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
866         its_encode_cmd(cmd, GITS_CMD_VMOVP);
867         its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
868         its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
869         its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
870         its_encode_target(cmd, target);
871
872         if (is_v4_1(its)) {
873                 its_encode_db(cmd, true);
874                 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
875         }
876
877         its_fixup_cmd(cmd);
878
879         return valid_vpe(its, desc->its_vmovp_cmd.vpe);
880 }
881
882 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
883                                           struct its_cmd_block *cmd,
884                                           struct its_cmd_desc *desc)
885 {
886         struct its_vlpi_map *map;
887
888         map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
889                                     desc->its_inv_cmd.event_id);
890
891         its_encode_cmd(cmd, GITS_CMD_INV);
892         its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
893         its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
894
895         its_fixup_cmd(cmd);
896
897         return valid_vpe(its, map->vpe);
898 }
899
900 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
901                                           struct its_cmd_block *cmd,
902                                           struct its_cmd_desc *desc)
903 {
904         struct its_vlpi_map *map;
905
906         map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
907                                     desc->its_int_cmd.event_id);
908
909         its_encode_cmd(cmd, GITS_CMD_INT);
910         its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
911         its_encode_event_id(cmd, desc->its_int_cmd.event_id);
912
913         its_fixup_cmd(cmd);
914
915         return valid_vpe(its, map->vpe);
916 }
917
918 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
919                                             struct its_cmd_block *cmd,
920                                             struct its_cmd_desc *desc)
921 {
922         struct its_vlpi_map *map;
923
924         map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
925                                     desc->its_clear_cmd.event_id);
926
927         its_encode_cmd(cmd, GITS_CMD_CLEAR);
928         its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
929         its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
930
931         its_fixup_cmd(cmd);
932
933         return valid_vpe(its, map->vpe);
934 }
935
936 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
937                                            struct its_cmd_block *cmd,
938                                            struct its_cmd_desc *desc)
939 {
940         if (WARN_ON(!is_v4_1(its)))
941                 return NULL;
942
943         its_encode_cmd(cmd, GITS_CMD_INVDB);
944         its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
945
946         its_fixup_cmd(cmd);
947
948         return valid_vpe(its, desc->its_invdb_cmd.vpe);
949 }
950
951 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
952                                           struct its_cmd_block *cmd,
953                                           struct its_cmd_desc *desc)
954 {
955         if (WARN_ON(!is_v4_1(its)))
956                 return NULL;
957
958         its_encode_cmd(cmd, GITS_CMD_VSGI);
959         its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
960         its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
961         its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
962         its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
963         its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
964         its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
965
966         its_fixup_cmd(cmd);
967
968         return valid_vpe(its, desc->its_vsgi_cmd.vpe);
969 }
970
971 static u64 its_cmd_ptr_to_offset(struct its_node *its,
972                                  struct its_cmd_block *ptr)
973 {
974         return (ptr - its->cmd_base) * sizeof(*ptr);
975 }
976
977 static int its_queue_full(struct its_node *its)
978 {
979         int widx;
980         int ridx;
981
982         widx = its->cmd_write - its->cmd_base;
983         ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
984
985         /* This is incredibly unlikely to happen, unless the ITS locks up. */
986         if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
987                 return 1;
988
989         return 0;
990 }
991
992 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
993 {
994         struct its_cmd_block *cmd;
995         u32 count = 1000000;    /* 1s! */
996
997         while (its_queue_full(its)) {
998                 count--;
999                 if (!count) {
1000                         pr_err_ratelimited("ITS queue not draining\n");
1001                         return NULL;
1002                 }
1003                 cpu_relax();
1004                 udelay(1);
1005         }
1006
1007         cmd = its->cmd_write++;
1008
1009         /* Handle queue wrapping */
1010         if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1011                 its->cmd_write = its->cmd_base;
1012
1013         /* Clear command  */
1014         cmd->raw_cmd[0] = 0;
1015         cmd->raw_cmd[1] = 0;
1016         cmd->raw_cmd[2] = 0;
1017         cmd->raw_cmd[3] = 0;
1018
1019         return cmd;
1020 }
1021
1022 static struct its_cmd_block *its_post_commands(struct its_node *its)
1023 {
1024         u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1025
1026         writel_relaxed(wr, its->base + GITS_CWRITER);
1027
1028         return its->cmd_write;
1029 }
1030
1031 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1032 {
1033         /*
1034          * Make sure the commands written to memory are observable by
1035          * the ITS.
1036          */
1037         if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1038                 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1039         else
1040                 dsb(ishst);
1041 }
1042
1043 static int its_wait_for_range_completion(struct its_node *its,
1044                                          u64    prev_idx,
1045                                          struct its_cmd_block *to)
1046 {
1047         u64 rd_idx, to_idx, linear_idx;
1048         u32 count = 1000000;    /* 1s! */
1049
1050         /* Linearize to_idx if the command set has wrapped around */
1051         to_idx = its_cmd_ptr_to_offset(its, to);
1052         if (to_idx < prev_idx)
1053                 to_idx += ITS_CMD_QUEUE_SZ;
1054
1055         linear_idx = prev_idx;
1056
1057         while (1) {
1058                 s64 delta;
1059
1060                 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1061
1062                 /*
1063                  * Compute the read pointer progress, taking the
1064                  * potential wrap-around into account.
1065                  */
1066                 delta = rd_idx - prev_idx;
1067                 if (rd_idx < prev_idx)
1068                         delta += ITS_CMD_QUEUE_SZ;
1069
1070                 linear_idx += delta;
1071                 if (linear_idx >= to_idx)
1072                         break;
1073
1074                 count--;
1075                 if (!count) {
1076                         pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1077                                            to_idx, linear_idx);
1078                         return -1;
1079                 }
1080                 prev_idx = rd_idx;
1081                 cpu_relax();
1082                 udelay(1);
1083         }
1084
1085         return 0;
1086 }
1087
1088 /* Warning, macro hell follows */
1089 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)       \
1090 void name(struct its_node *its,                                         \
1091           buildtype builder,                                            \
1092           struct its_cmd_desc *desc)                                    \
1093 {                                                                       \
1094         struct its_cmd_block *cmd, *sync_cmd, *next_cmd;                \
1095         synctype *sync_obj;                                             \
1096         unsigned long flags;                                            \
1097         u64 rd_idx;                                                     \
1098                                                                         \
1099         raw_spin_lock_irqsave(&its->lock, flags);                       \
1100                                                                         \
1101         cmd = its_allocate_entry(its);                                  \
1102         if (!cmd) {             /* We're soooooo screewed... */         \
1103                 raw_spin_unlock_irqrestore(&its->lock, flags);          \
1104                 return;                                                 \
1105         }                                                               \
1106         sync_obj = builder(its, cmd, desc);                             \
1107         its_flush_cmd(its, cmd);                                        \
1108                                                                         \
1109         if (sync_obj) {                                                 \
1110                 sync_cmd = its_allocate_entry(its);                     \
1111                 if (!sync_cmd)                                          \
1112                         goto post;                                      \
1113                                                                         \
1114                 buildfn(its, sync_cmd, sync_obj);                       \
1115                 its_flush_cmd(its, sync_cmd);                           \
1116         }                                                               \
1117                                                                         \
1118 post:                                                                   \
1119         rd_idx = readl_relaxed(its->base + GITS_CREADR);                \
1120         next_cmd = its_post_commands(its);                              \
1121         raw_spin_unlock_irqrestore(&its->lock, flags);                  \
1122                                                                         \
1123         if (its_wait_for_range_completion(its, rd_idx, next_cmd))       \
1124                 pr_err_ratelimited("ITS cmd %ps failed\n", builder);    \
1125 }
1126
1127 static void its_build_sync_cmd(struct its_node *its,
1128                                struct its_cmd_block *sync_cmd,
1129                                struct its_collection *sync_col)
1130 {
1131         its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1132         its_encode_target(sync_cmd, sync_col->target_address);
1133
1134         its_fixup_cmd(sync_cmd);
1135 }
1136
1137 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1138                              struct its_collection, its_build_sync_cmd)
1139
1140 static void its_build_vsync_cmd(struct its_node *its,
1141                                 struct its_cmd_block *sync_cmd,
1142                                 struct its_vpe *sync_vpe)
1143 {
1144         its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1145         its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1146
1147         its_fixup_cmd(sync_cmd);
1148 }
1149
1150 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1151                              struct its_vpe, its_build_vsync_cmd)
1152
1153 static void its_send_int(struct its_device *dev, u32 event_id)
1154 {
1155         struct its_cmd_desc desc;
1156
1157         desc.its_int_cmd.dev = dev;
1158         desc.its_int_cmd.event_id = event_id;
1159
1160         its_send_single_command(dev->its, its_build_int_cmd, &desc);
1161 }
1162
1163 static void its_send_clear(struct its_device *dev, u32 event_id)
1164 {
1165         struct its_cmd_desc desc;
1166
1167         desc.its_clear_cmd.dev = dev;
1168         desc.its_clear_cmd.event_id = event_id;
1169
1170         its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1171 }
1172
1173 static void its_send_inv(struct its_device *dev, u32 event_id)
1174 {
1175         struct its_cmd_desc desc;
1176
1177         desc.its_inv_cmd.dev = dev;
1178         desc.its_inv_cmd.event_id = event_id;
1179
1180         its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1181 }
1182
1183 static void its_send_mapd(struct its_device *dev, int valid)
1184 {
1185         struct its_cmd_desc desc;
1186
1187         desc.its_mapd_cmd.dev = dev;
1188         desc.its_mapd_cmd.valid = !!valid;
1189
1190         its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1191 }
1192
1193 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1194                           int valid)
1195 {
1196         struct its_cmd_desc desc;
1197
1198         desc.its_mapc_cmd.col = col;
1199         desc.its_mapc_cmd.valid = !!valid;
1200
1201         its_send_single_command(its, its_build_mapc_cmd, &desc);
1202 }
1203
1204 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1205 {
1206         struct its_cmd_desc desc;
1207
1208         desc.its_mapti_cmd.dev = dev;
1209         desc.its_mapti_cmd.phys_id = irq_id;
1210         desc.its_mapti_cmd.event_id = id;
1211
1212         its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1213 }
1214
1215 static void its_send_movi(struct its_device *dev,
1216                           struct its_collection *col, u32 id)
1217 {
1218         struct its_cmd_desc desc;
1219
1220         desc.its_movi_cmd.dev = dev;
1221         desc.its_movi_cmd.col = col;
1222         desc.its_movi_cmd.event_id = id;
1223
1224         its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1225 }
1226
1227 static void its_send_discard(struct its_device *dev, u32 id)
1228 {
1229         struct its_cmd_desc desc;
1230
1231         desc.its_discard_cmd.dev = dev;
1232         desc.its_discard_cmd.event_id = id;
1233
1234         its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1235 }
1236
1237 static void its_send_invall(struct its_node *its, struct its_collection *col)
1238 {
1239         struct its_cmd_desc desc;
1240
1241         desc.its_invall_cmd.col = col;
1242
1243         its_send_single_command(its, its_build_invall_cmd, &desc);
1244 }
1245
1246 static void its_send_vmapti(struct its_device *dev, u32 id)
1247 {
1248         struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1249         struct its_cmd_desc desc;
1250
1251         desc.its_vmapti_cmd.vpe = map->vpe;
1252         desc.its_vmapti_cmd.dev = dev;
1253         desc.its_vmapti_cmd.virt_id = map->vintid;
1254         desc.its_vmapti_cmd.event_id = id;
1255         desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1256
1257         its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1258 }
1259
1260 static void its_send_vmovi(struct its_device *dev, u32 id)
1261 {
1262         struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1263         struct its_cmd_desc desc;
1264
1265         desc.its_vmovi_cmd.vpe = map->vpe;
1266         desc.its_vmovi_cmd.dev = dev;
1267         desc.its_vmovi_cmd.event_id = id;
1268         desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1269
1270         its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1271 }
1272
1273 static void its_send_vmapp(struct its_node *its,
1274                            struct its_vpe *vpe, bool valid)
1275 {
1276         struct its_cmd_desc desc;
1277
1278         desc.its_vmapp_cmd.vpe = vpe;
1279         desc.its_vmapp_cmd.valid = valid;
1280         desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1281
1282         its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1283 }
1284
1285 static void its_send_vmovp(struct its_vpe *vpe)
1286 {
1287         struct its_cmd_desc desc = {};
1288         struct its_node *its;
1289         unsigned long flags;
1290         int col_id = vpe->col_idx;
1291
1292         desc.its_vmovp_cmd.vpe = vpe;
1293
1294         if (!its_list_map) {
1295                 its = list_first_entry(&its_nodes, struct its_node, entry);
1296                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1297                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1298                 return;
1299         }
1300
1301         /*
1302          * Yet another marvel of the architecture. If using the
1303          * its_list "feature", we need to make sure that all ITSs
1304          * receive all VMOVP commands in the same order. The only way
1305          * to guarantee this is to make vmovp a serialization point.
1306          *
1307          * Wall <-- Head.
1308          */
1309         raw_spin_lock_irqsave(&vmovp_lock, flags);
1310
1311         desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1312         desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1313
1314         /* Emit VMOVPs */
1315         list_for_each_entry(its, &its_nodes, entry) {
1316                 if (!is_v4(its))
1317                         continue;
1318
1319                 if (!require_its_list_vmovp(vpe->its_vm, its))
1320                         continue;
1321
1322                 desc.its_vmovp_cmd.col = &its->collections[col_id];
1323                 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1324         }
1325
1326         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1327 }
1328
1329 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1330 {
1331         struct its_cmd_desc desc;
1332
1333         desc.its_vinvall_cmd.vpe = vpe;
1334         its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1335 }
1336
1337 static void its_send_vinv(struct its_device *dev, u32 event_id)
1338 {
1339         struct its_cmd_desc desc;
1340
1341         /*
1342          * There is no real VINV command. This is just a normal INV,
1343          * with a VSYNC instead of a SYNC.
1344          */
1345         desc.its_inv_cmd.dev = dev;
1346         desc.its_inv_cmd.event_id = event_id;
1347
1348         its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1349 }
1350
1351 static void its_send_vint(struct its_device *dev, u32 event_id)
1352 {
1353         struct its_cmd_desc desc;
1354
1355         /*
1356          * There is no real VINT command. This is just a normal INT,
1357          * with a VSYNC instead of a SYNC.
1358          */
1359         desc.its_int_cmd.dev = dev;
1360         desc.its_int_cmd.event_id = event_id;
1361
1362         its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1363 }
1364
1365 static void its_send_vclear(struct its_device *dev, u32 event_id)
1366 {
1367         struct its_cmd_desc desc;
1368
1369         /*
1370          * There is no real VCLEAR command. This is just a normal CLEAR,
1371          * with a VSYNC instead of a SYNC.
1372          */
1373         desc.its_clear_cmd.dev = dev;
1374         desc.its_clear_cmd.event_id = event_id;
1375
1376         its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1377 }
1378
1379 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1380 {
1381         struct its_cmd_desc desc;
1382
1383         desc.its_invdb_cmd.vpe = vpe;
1384         its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1385 }
1386
1387 /*
1388  * irqchip functions - assumes MSI, mostly.
1389  */
1390 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1391 {
1392         struct its_vlpi_map *map = get_vlpi_map(d);
1393         irq_hw_number_t hwirq;
1394         void *va;
1395         u8 *cfg;
1396
1397         if (map) {
1398                 va = page_address(map->vm->vprop_page);
1399                 hwirq = map->vintid;
1400
1401                 /* Remember the updated property */
1402                 map->properties &= ~clr;
1403                 map->properties |= set | LPI_PROP_GROUP1;
1404         } else {
1405                 va = gic_rdists->prop_table_va;
1406                 hwirq = d->hwirq;
1407         }
1408
1409         cfg = va + hwirq - 8192;
1410         *cfg &= ~clr;
1411         *cfg |= set | LPI_PROP_GROUP1;
1412
1413         /*
1414          * Make the above write visible to the redistributors.
1415          * And yes, we're flushing exactly: One. Single. Byte.
1416          * Humpf...
1417          */
1418         if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1419                 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1420         else
1421                 dsb(ishst);
1422 }
1423
1424 static void wait_for_syncr(void __iomem *rdbase)
1425 {
1426         while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1427                 cpu_relax();
1428 }
1429
1430 static void direct_lpi_inv(struct irq_data *d)
1431 {
1432         struct its_vlpi_map *map = get_vlpi_map(d);
1433         void __iomem *rdbase;
1434         unsigned long flags;
1435         u64 val;
1436         int cpu;
1437
1438         if (map) {
1439                 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1440
1441                 WARN_ON(!is_v4_1(its_dev->its));
1442
1443                 val  = GICR_INVLPIR_V;
1444                 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1445                 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1446         } else {
1447                 val = d->hwirq;
1448         }
1449
1450         /* Target the redistributor this LPI is currently routed to */
1451         cpu = irq_to_cpuid_lock(d, &flags);
1452         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1453         rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1454         gic_write_lpir(val, rdbase + GICR_INVLPIR);
1455
1456         wait_for_syncr(rdbase);
1457         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1458         irq_to_cpuid_unlock(d, flags);
1459 }
1460
1461 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1462 {
1463         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1464
1465         lpi_write_config(d, clr, set);
1466         if (gic_rdists->has_direct_lpi &&
1467             (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1468                 direct_lpi_inv(d);
1469         else if (!irqd_is_forwarded_to_vcpu(d))
1470                 its_send_inv(its_dev, its_get_event_id(d));
1471         else
1472                 its_send_vinv(its_dev, its_get_event_id(d));
1473 }
1474
1475 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1476 {
1477         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1478         u32 event = its_get_event_id(d);
1479         struct its_vlpi_map *map;
1480
1481         /*
1482          * GICv4.1 does away with the per-LPI nonsense, nothing to do
1483          * here.
1484          */
1485         if (is_v4_1(its_dev->its))
1486                 return;
1487
1488         map = dev_event_to_vlpi_map(its_dev, event);
1489
1490         if (map->db_enabled == enable)
1491                 return;
1492
1493         map->db_enabled = enable;
1494
1495         /*
1496          * More fun with the architecture:
1497          *
1498          * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1499          * value or to 1023, depending on the enable bit. But that
1500          * would be issuing a mapping for an /existing/ DevID+EventID
1501          * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1502          * to the /same/ vPE, using this opportunity to adjust the
1503          * doorbell. Mouahahahaha. We loves it, Precious.
1504          */
1505         its_send_vmovi(its_dev, event);
1506 }
1507
1508 static void its_mask_irq(struct irq_data *d)
1509 {
1510         if (irqd_is_forwarded_to_vcpu(d))
1511                 its_vlpi_set_doorbell(d, false);
1512
1513         lpi_update_config(d, LPI_PROP_ENABLED, 0);
1514 }
1515
1516 static void its_unmask_irq(struct irq_data *d)
1517 {
1518         if (irqd_is_forwarded_to_vcpu(d))
1519                 its_vlpi_set_doorbell(d, true);
1520
1521         lpi_update_config(d, 0, LPI_PROP_ENABLED);
1522 }
1523
1524 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1525 {
1526         if (irqd_affinity_is_managed(d))
1527                 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1528
1529         return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1530 }
1531
1532 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1533 {
1534         if (irqd_affinity_is_managed(d))
1535                 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1536         else
1537                 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1538 }
1539
1540 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1541 {
1542         if (irqd_affinity_is_managed(d))
1543                 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1544         else
1545                 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1546 }
1547
1548 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1549                                               const struct cpumask *cpu_mask)
1550 {
1551         unsigned int cpu = nr_cpu_ids, tmp;
1552         int count = S32_MAX;
1553
1554         for_each_cpu(tmp, cpu_mask) {
1555                 int this_count = its_read_lpi_count(d, tmp);
1556                 if (this_count < count) {
1557                         cpu = tmp;
1558                         count = this_count;
1559                 }
1560         }
1561
1562         return cpu;
1563 }
1564
1565 /*
1566  * As suggested by Thomas Gleixner in:
1567  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1568  */
1569 static int its_select_cpu(struct irq_data *d,
1570                           const struct cpumask *aff_mask)
1571 {
1572         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1573         cpumask_var_t tmpmask;
1574         int cpu, node;
1575
1576         if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
1577                 return -ENOMEM;
1578
1579         node = its_dev->its->numa_node;
1580
1581         if (!irqd_affinity_is_managed(d)) {
1582                 /* First try the NUMA node */
1583                 if (node != NUMA_NO_NODE) {
1584                         /*
1585                          * Try the intersection of the affinity mask and the
1586                          * node mask (and the online mask, just to be safe).
1587                          */
1588                         cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1589                         cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1590
1591                         /*
1592                          * Ideally, we would check if the mask is empty, and
1593                          * try again on the full node here.
1594                          *
1595                          * But it turns out that the way ACPI describes the
1596                          * affinity for ITSs only deals about memory, and
1597                          * not target CPUs, so it cannot describe a single
1598                          * ITS placed next to two NUMA nodes.
1599                          *
1600                          * Instead, just fallback on the online mask. This
1601                          * diverges from Thomas' suggestion above.
1602                          */
1603                         cpu = cpumask_pick_least_loaded(d, tmpmask);
1604                         if (cpu < nr_cpu_ids)
1605                                 goto out;
1606
1607                         /* If we can't cross sockets, give up */
1608                         if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1609                                 goto out;
1610
1611                         /* If the above failed, expand the search */
1612                 }
1613
1614                 /* Try the intersection of the affinity and online masks */
1615                 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1616
1617                 /* If that doesn't fly, the online mask is the last resort */
1618                 if (cpumask_empty(tmpmask))
1619                         cpumask_copy(tmpmask, cpu_online_mask);
1620
1621                 cpu = cpumask_pick_least_loaded(d, tmpmask);
1622         } else {
1623                 cpumask_and(tmpmask, irq_data_get_affinity_mask(d), cpu_online_mask);
1624
1625                 /* If we cannot cross sockets, limit the search to that node */
1626                 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1627                     node != NUMA_NO_NODE)
1628                         cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1629
1630                 cpu = cpumask_pick_least_loaded(d, tmpmask);
1631         }
1632 out:
1633         free_cpumask_var(tmpmask);
1634
1635         pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1636         return cpu;
1637 }
1638
1639 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1640                             bool force)
1641 {
1642         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1643         struct its_collection *target_col;
1644         u32 id = its_get_event_id(d);
1645         int cpu, prev_cpu;
1646
1647         /* A forwarded interrupt should use irq_set_vcpu_affinity */
1648         if (irqd_is_forwarded_to_vcpu(d))
1649                 return -EINVAL;
1650
1651         prev_cpu = its_dev->event_map.col_map[id];
1652         its_dec_lpi_count(d, prev_cpu);
1653
1654         if (!force)
1655                 cpu = its_select_cpu(d, mask_val);
1656         else
1657                 cpu = cpumask_pick_least_loaded(d, mask_val);
1658
1659         if (cpu < 0 || cpu >= nr_cpu_ids)
1660                 goto err;
1661
1662         /* don't set the affinity when the target cpu is same as current one */
1663         if (cpu != prev_cpu) {
1664                 target_col = &its_dev->its->collections[cpu];
1665                 its_send_movi(its_dev, target_col, id);
1666                 its_dev->event_map.col_map[id] = cpu;
1667                 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1668         }
1669
1670         its_inc_lpi_count(d, cpu);
1671
1672         return IRQ_SET_MASK_OK_DONE;
1673
1674 err:
1675         its_inc_lpi_count(d, prev_cpu);
1676         return -EINVAL;
1677 }
1678
1679 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1680 {
1681         struct its_node *its = its_dev->its;
1682
1683         return its->phys_base + GITS_TRANSLATER;
1684 }
1685
1686 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1687 {
1688         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1689         struct its_node *its;
1690         u64 addr;
1691
1692         its = its_dev->its;
1693         addr = its->get_msi_base(its_dev);
1694
1695         msg->address_lo         = lower_32_bits(addr);
1696         msg->address_hi         = upper_32_bits(addr);
1697         msg->data               = its_get_event_id(d);
1698
1699         iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1700 }
1701
1702 static int its_irq_set_irqchip_state(struct irq_data *d,
1703                                      enum irqchip_irq_state which,
1704                                      bool state)
1705 {
1706         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1707         u32 event = its_get_event_id(d);
1708
1709         if (which != IRQCHIP_STATE_PENDING)
1710                 return -EINVAL;
1711
1712         if (irqd_is_forwarded_to_vcpu(d)) {
1713                 if (state)
1714                         its_send_vint(its_dev, event);
1715                 else
1716                         its_send_vclear(its_dev, event);
1717         } else {
1718                 if (state)
1719                         its_send_int(its_dev, event);
1720                 else
1721                         its_send_clear(its_dev, event);
1722         }
1723
1724         return 0;
1725 }
1726
1727 static int its_irq_retrigger(struct irq_data *d)
1728 {
1729         return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1730 }
1731
1732 /*
1733  * Two favourable cases:
1734  *
1735  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1736  *     for vSGI delivery
1737  *
1738  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1739  *     and we're better off mapping all VPEs always
1740  *
1741  * If neither (a) nor (b) is true, then we map vPEs on demand.
1742  *
1743  */
1744 static bool gic_requires_eager_mapping(void)
1745 {
1746         if (!its_list_map || gic_rdists->has_rvpeid)
1747                 return true;
1748
1749         return false;
1750 }
1751
1752 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1753 {
1754         unsigned long flags;
1755
1756         if (gic_requires_eager_mapping())
1757                 return;
1758
1759         raw_spin_lock_irqsave(&vmovp_lock, flags);
1760
1761         /*
1762          * If the VM wasn't mapped yet, iterate over the vpes and get
1763          * them mapped now.
1764          */
1765         vm->vlpi_count[its->list_nr]++;
1766
1767         if (vm->vlpi_count[its->list_nr] == 1) {
1768                 int i;
1769
1770                 for (i = 0; i < vm->nr_vpes; i++) {
1771                         struct its_vpe *vpe = vm->vpes[i];
1772                         struct irq_data *d = irq_get_irq_data(vpe->irq);
1773
1774                         /* Map the VPE to the first possible CPU */
1775                         vpe->col_idx = cpumask_first(cpu_online_mask);
1776                         its_send_vmapp(its, vpe, true);
1777                         its_send_vinvall(its, vpe);
1778                         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1779                 }
1780         }
1781
1782         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1783 }
1784
1785 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1786 {
1787         unsigned long flags;
1788
1789         /* Not using the ITS list? Everything is always mapped. */
1790         if (gic_requires_eager_mapping())
1791                 return;
1792
1793         raw_spin_lock_irqsave(&vmovp_lock, flags);
1794
1795         if (!--vm->vlpi_count[its->list_nr]) {
1796                 int i;
1797
1798                 for (i = 0; i < vm->nr_vpes; i++)
1799                         its_send_vmapp(its, vm->vpes[i], false);
1800         }
1801
1802         raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1803 }
1804
1805 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1806 {
1807         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1808         u32 event = its_get_event_id(d);
1809         int ret = 0;
1810
1811         if (!info->map)
1812                 return -EINVAL;
1813
1814         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1815
1816         if (!its_dev->event_map.vm) {
1817                 struct its_vlpi_map *maps;
1818
1819                 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1820                                GFP_ATOMIC);
1821                 if (!maps) {
1822                         ret = -ENOMEM;
1823                         goto out;
1824                 }
1825
1826                 its_dev->event_map.vm = info->map->vm;
1827                 its_dev->event_map.vlpi_maps = maps;
1828         } else if (its_dev->event_map.vm != info->map->vm) {
1829                 ret = -EINVAL;
1830                 goto out;
1831         }
1832
1833         /* Get our private copy of the mapping information */
1834         its_dev->event_map.vlpi_maps[event] = *info->map;
1835
1836         if (irqd_is_forwarded_to_vcpu(d)) {
1837                 /* Already mapped, move it around */
1838                 its_send_vmovi(its_dev, event);
1839         } else {
1840                 /* Ensure all the VPEs are mapped on this ITS */
1841                 its_map_vm(its_dev->its, info->map->vm);
1842
1843                 /*
1844                  * Flag the interrupt as forwarded so that we can
1845                  * start poking the virtual property table.
1846                  */
1847                 irqd_set_forwarded_to_vcpu(d);
1848
1849                 /* Write out the property to the prop table */
1850                 lpi_write_config(d, 0xff, info->map->properties);
1851
1852                 /* Drop the physical mapping */
1853                 its_send_discard(its_dev, event);
1854
1855                 /* and install the virtual one */
1856                 its_send_vmapti(its_dev, event);
1857
1858                 /* Increment the number of VLPIs */
1859                 its_dev->event_map.nr_vlpis++;
1860         }
1861
1862 out:
1863         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1864         return ret;
1865 }
1866
1867 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1868 {
1869         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1870         struct its_vlpi_map *map;
1871         int ret = 0;
1872
1873         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1874
1875         map = get_vlpi_map(d);
1876
1877         if (!its_dev->event_map.vm || !map) {
1878                 ret = -EINVAL;
1879                 goto out;
1880         }
1881
1882         /* Copy our mapping information to the incoming request */
1883         *info->map = *map;
1884
1885 out:
1886         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1887         return ret;
1888 }
1889
1890 static int its_vlpi_unmap(struct irq_data *d)
1891 {
1892         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1893         u32 event = its_get_event_id(d);
1894         int ret = 0;
1895
1896         raw_spin_lock(&its_dev->event_map.vlpi_lock);
1897
1898         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1899                 ret = -EINVAL;
1900                 goto out;
1901         }
1902
1903         /* Drop the virtual mapping */
1904         its_send_discard(its_dev, event);
1905
1906         /* and restore the physical one */
1907         irqd_clr_forwarded_to_vcpu(d);
1908         its_send_mapti(its_dev, d->hwirq, event);
1909         lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1910                                     LPI_PROP_ENABLED |
1911                                     LPI_PROP_GROUP1));
1912
1913         /* Potentially unmap the VM from this ITS */
1914         its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1915
1916         /*
1917          * Drop the refcount and make the device available again if
1918          * this was the last VLPI.
1919          */
1920         if (!--its_dev->event_map.nr_vlpis) {
1921                 its_dev->event_map.vm = NULL;
1922                 kfree(its_dev->event_map.vlpi_maps);
1923         }
1924
1925 out:
1926         raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1927         return ret;
1928 }
1929
1930 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1931 {
1932         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1933
1934         if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1935                 return -EINVAL;
1936
1937         if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1938                 lpi_update_config(d, 0xff, info->config);
1939         else
1940                 lpi_write_config(d, 0xff, info->config);
1941         its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1942
1943         return 0;
1944 }
1945
1946 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1947 {
1948         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1949         struct its_cmd_info *info = vcpu_info;
1950
1951         /* Need a v4 ITS */
1952         if (!is_v4(its_dev->its))
1953                 return -EINVAL;
1954
1955         /* Unmap request? */
1956         if (!info)
1957                 return its_vlpi_unmap(d);
1958
1959         switch (info->cmd_type) {
1960         case MAP_VLPI:
1961                 return its_vlpi_map(d, info);
1962
1963         case GET_VLPI:
1964                 return its_vlpi_get(d, info);
1965
1966         case PROP_UPDATE_VLPI:
1967         case PROP_UPDATE_AND_INV_VLPI:
1968                 return its_vlpi_prop_update(d, info);
1969
1970         default:
1971                 return -EINVAL;
1972         }
1973 }
1974
1975 static struct irq_chip its_irq_chip = {
1976         .name                   = "ITS",
1977         .irq_mask               = its_mask_irq,
1978         .irq_unmask             = its_unmask_irq,
1979         .irq_eoi                = irq_chip_eoi_parent,
1980         .irq_set_affinity       = its_set_affinity,
1981         .irq_compose_msi_msg    = its_irq_compose_msi_msg,
1982         .irq_set_irqchip_state  = its_irq_set_irqchip_state,
1983         .irq_retrigger          = its_irq_retrigger,
1984         .irq_set_vcpu_affinity  = its_irq_set_vcpu_affinity,
1985 };
1986
1987
1988 /*
1989  * How we allocate LPIs:
1990  *
1991  * lpi_range_list contains ranges of LPIs that are to available to
1992  * allocate from. To allocate LPIs, just pick the first range that
1993  * fits the required allocation, and reduce it by the required
1994  * amount. Once empty, remove the range from the list.
1995  *
1996  * To free a range of LPIs, add a free range to the list, sort it and
1997  * merge the result if the new range happens to be adjacent to an
1998  * already free block.
1999  *
2000  * The consequence of the above is that allocation is cost is low, but
2001  * freeing is expensive. We assumes that freeing rarely occurs.
2002  */
2003 #define ITS_MAX_LPI_NRBITS      16 /* 64K LPIs */
2004
2005 static DEFINE_MUTEX(lpi_range_lock);
2006 static LIST_HEAD(lpi_range_list);
2007
2008 struct lpi_range {
2009         struct list_head        entry;
2010         u32                     base_id;
2011         u32                     span;
2012 };
2013
2014 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2015 {
2016         struct lpi_range *range;
2017
2018         range = kmalloc(sizeof(*range), GFP_KERNEL);
2019         if (range) {
2020                 range->base_id = base;
2021                 range->span = span;
2022         }
2023
2024         return range;
2025 }
2026
2027 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2028 {
2029         struct lpi_range *range, *tmp;
2030         int err = -ENOSPC;
2031
2032         mutex_lock(&lpi_range_lock);
2033
2034         list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2035                 if (range->span >= nr_lpis) {
2036                         *base = range->base_id;
2037                         range->base_id += nr_lpis;
2038                         range->span -= nr_lpis;
2039
2040                         if (range->span == 0) {
2041                                 list_del(&range->entry);
2042                                 kfree(range);
2043                         }
2044
2045                         err = 0;
2046                         break;
2047                 }
2048         }
2049
2050         mutex_unlock(&lpi_range_lock);
2051
2052         pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2053         return err;
2054 }
2055
2056 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2057 {
2058         if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2059                 return;
2060         if (a->base_id + a->span != b->base_id)
2061                 return;
2062         b->base_id = a->base_id;
2063         b->span += a->span;
2064         list_del(&a->entry);
2065         kfree(a);
2066 }
2067
2068 static int free_lpi_range(u32 base, u32 nr_lpis)
2069 {
2070         struct lpi_range *new, *old;
2071
2072         new = mk_lpi_range(base, nr_lpis);
2073         if (!new)
2074                 return -ENOMEM;
2075
2076         mutex_lock(&lpi_range_lock);
2077
2078         list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2079                 if (old->base_id < base)
2080                         break;
2081         }
2082         /*
2083          * old is the last element with ->base_id smaller than base,
2084          * so new goes right after it. If there are no elements with
2085          * ->base_id smaller than base, &old->entry ends up pointing
2086          * at the head of the list, and inserting new it the start of
2087          * the list is the right thing to do in that case as well.
2088          */
2089         list_add(&new->entry, &old->entry);
2090         /*
2091          * Now check if we can merge with the preceding and/or
2092          * following ranges.
2093          */
2094         merge_lpi_ranges(old, new);
2095         merge_lpi_ranges(new, list_next_entry(new, entry));
2096
2097         mutex_unlock(&lpi_range_lock);
2098         return 0;
2099 }
2100
2101 static int __init its_lpi_init(u32 id_bits)
2102 {
2103         u32 lpis = (1UL << id_bits) - 8192;
2104         u32 numlpis;
2105         int err;
2106
2107         numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2108
2109         if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2110                 lpis = numlpis;
2111                 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2112                         lpis);
2113         }
2114
2115         /*
2116          * Initializing the allocator is just the same as freeing the
2117          * full range of LPIs.
2118          */
2119         err = free_lpi_range(8192, lpis);
2120         pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2121         return err;
2122 }
2123
2124 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2125 {
2126         unsigned long *bitmap = NULL;
2127         int err = 0;
2128
2129         do {
2130                 err = alloc_lpi_range(nr_irqs, base);
2131                 if (!err)
2132                         break;
2133
2134                 nr_irqs /= 2;
2135         } while (nr_irqs > 0);
2136
2137         if (!nr_irqs)
2138                 err = -ENOSPC;
2139
2140         if (err)
2141                 goto out;
2142
2143         bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2144         if (!bitmap)
2145                 goto out;
2146
2147         *nr_ids = nr_irqs;
2148
2149 out:
2150         if (!bitmap)
2151                 *base = *nr_ids = 0;
2152
2153         return bitmap;
2154 }
2155
2156 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2157 {
2158         WARN_ON(free_lpi_range(base, nr_ids));
2159         bitmap_free(bitmap);
2160 }
2161
2162 static void gic_reset_prop_table(void *va)
2163 {
2164         /* Priority 0xa0, Group-1, disabled */
2165         memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2166
2167         /* Make sure the GIC will observe the written configuration */
2168         gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2169 }
2170
2171 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2172 {
2173         struct page *prop_page;
2174
2175         prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2176         if (!prop_page)
2177                 return NULL;
2178
2179         gic_reset_prop_table(page_address(prop_page));
2180
2181         return prop_page;
2182 }
2183
2184 static void its_free_prop_table(struct page *prop_page)
2185 {
2186         free_pages((unsigned long)page_address(prop_page),
2187                    get_order(LPI_PROPBASE_SZ));
2188 }
2189
2190 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2191 {
2192         phys_addr_t start, end, addr_end;
2193         u64 i;
2194
2195         /*
2196          * We don't bother checking for a kdump kernel as by
2197          * construction, the LPI tables are out of this kernel's
2198          * memory map.
2199          */
2200         if (is_kdump_kernel())
2201                 return true;
2202
2203         addr_end = addr + size - 1;
2204
2205         for_each_reserved_mem_range(i, &start, &end) {
2206                 if (addr >= start && addr_end <= end)
2207                         return true;
2208         }
2209
2210         /* Not found, not a good sign... */
2211         pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2212                 &addr, &addr_end);
2213         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2214         return false;
2215 }
2216
2217 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2218 {
2219         if (efi_enabled(EFI_CONFIG_TABLES))
2220                 return efi_mem_reserve_persistent(addr, size);
2221
2222         return 0;
2223 }
2224
2225 static int __init its_setup_lpi_prop_table(void)
2226 {
2227         if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2228                 u64 val;
2229
2230                 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2231                 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2232
2233                 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2234                 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2235                                                      LPI_PROPBASE_SZ,
2236                                                      MEMREMAP_WB);
2237                 gic_reset_prop_table(gic_rdists->prop_table_va);
2238         } else {
2239                 struct page *page;
2240
2241                 lpi_id_bits = min_t(u32,
2242                                     GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2243                                     ITS_MAX_LPI_NRBITS);
2244                 page = its_allocate_prop_table(GFP_NOWAIT);
2245                 if (!page) {
2246                         pr_err("Failed to allocate PROPBASE\n");
2247                         return -ENOMEM;
2248                 }
2249
2250                 gic_rdists->prop_table_pa = page_to_phys(page);
2251                 gic_rdists->prop_table_va = page_address(page);
2252                 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2253                                           LPI_PROPBASE_SZ));
2254         }
2255
2256         pr_info("GICv3: using LPI property table @%pa\n",
2257                 &gic_rdists->prop_table_pa);
2258
2259         return its_lpi_init(lpi_id_bits);
2260 }
2261
2262 static const char *its_base_type_string[] = {
2263         [GITS_BASER_TYPE_DEVICE]        = "Devices",
2264         [GITS_BASER_TYPE_VCPU]          = "Virtual CPUs",
2265         [GITS_BASER_TYPE_RESERVED3]     = "Reserved (3)",
2266         [GITS_BASER_TYPE_COLLECTION]    = "Interrupt Collections",
2267         [GITS_BASER_TYPE_RESERVED5]     = "Reserved (5)",
2268         [GITS_BASER_TYPE_RESERVED6]     = "Reserved (6)",
2269         [GITS_BASER_TYPE_RESERVED7]     = "Reserved (7)",
2270 };
2271
2272 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2273 {
2274         u32 idx = baser - its->tables;
2275
2276         return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2277 }
2278
2279 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2280                             u64 val)
2281 {
2282         u32 idx = baser - its->tables;
2283
2284         gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2285         baser->val = its_read_baser(its, baser);
2286 }
2287
2288 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2289                            u64 cache, u64 shr, u32 order, bool indirect)
2290 {
2291         u64 val = its_read_baser(its, baser);
2292         u64 esz = GITS_BASER_ENTRY_SIZE(val);
2293         u64 type = GITS_BASER_TYPE(val);
2294         u64 baser_phys, tmp;
2295         u32 alloc_pages, psz;
2296         struct page *page;
2297         void *base;
2298
2299         psz = baser->psz;
2300         alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2301         if (alloc_pages > GITS_BASER_PAGES_MAX) {
2302                 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2303                         &its->phys_base, its_base_type_string[type],
2304                         alloc_pages, GITS_BASER_PAGES_MAX);
2305                 alloc_pages = GITS_BASER_PAGES_MAX;
2306                 order = get_order(GITS_BASER_PAGES_MAX * psz);
2307         }
2308
2309         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2310         if (!page)
2311                 return -ENOMEM;
2312
2313         base = (void *)page_address(page);
2314         baser_phys = virt_to_phys(base);
2315
2316         /* Check if the physical address of the memory is above 48bits */
2317         if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2318
2319                 /* 52bit PA is supported only when PageSize=64K */
2320                 if (psz != SZ_64K) {
2321                         pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2322                         free_pages((unsigned long)base, order);
2323                         return -ENXIO;
2324                 }
2325
2326                 /* Convert 52bit PA to 48bit field */
2327                 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2328         }
2329
2330 retry_baser:
2331         val = (baser_phys                                        |
2332                 (type << GITS_BASER_TYPE_SHIFT)                  |
2333                 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)       |
2334                 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)    |
2335                 cache                                            |
2336                 shr                                              |
2337                 GITS_BASER_VALID);
2338
2339         val |=  indirect ? GITS_BASER_INDIRECT : 0x0;
2340
2341         switch (psz) {
2342         case SZ_4K:
2343                 val |= GITS_BASER_PAGE_SIZE_4K;
2344                 break;
2345         case SZ_16K:
2346                 val |= GITS_BASER_PAGE_SIZE_16K;
2347                 break;
2348         case SZ_64K:
2349                 val |= GITS_BASER_PAGE_SIZE_64K;
2350                 break;
2351         }
2352
2353         its_write_baser(its, baser, val);
2354         tmp = baser->val;
2355
2356         if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2357                 /*
2358                  * Shareability didn't stick. Just use
2359                  * whatever the read reported, which is likely
2360                  * to be the only thing this redistributor
2361                  * supports. If that's zero, make it
2362                  * non-cacheable as well.
2363                  */
2364                 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2365                 if (!shr) {
2366                         cache = GITS_BASER_nC;
2367                         gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2368                 }
2369                 goto retry_baser;
2370         }
2371
2372         if (val != tmp) {
2373                 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2374                        &its->phys_base, its_base_type_string[type],
2375                        val, tmp);
2376                 free_pages((unsigned long)base, order);
2377                 return -ENXIO;
2378         }
2379
2380         baser->order = order;
2381         baser->base = base;
2382         baser->psz = psz;
2383         tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2384
2385         pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2386                 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2387                 its_base_type_string[type],
2388                 (unsigned long)virt_to_phys(base),
2389                 indirect ? "indirect" : "flat", (int)esz,
2390                 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2391
2392         return 0;
2393 }
2394
2395 static bool its_parse_indirect_baser(struct its_node *its,
2396                                      struct its_baser *baser,
2397                                      u32 *order, u32 ids)
2398 {
2399         u64 tmp = its_read_baser(its, baser);
2400         u64 type = GITS_BASER_TYPE(tmp);
2401         u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2402         u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2403         u32 new_order = *order;
2404         u32 psz = baser->psz;
2405         bool indirect = false;
2406
2407         /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2408         if ((esz << ids) > (psz * 2)) {
2409                 /*
2410                  * Find out whether hw supports a single or two-level table by
2411                  * table by reading bit at offset '62' after writing '1' to it.
2412                  */
2413                 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2414                 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2415
2416                 if (indirect) {
2417                         /*
2418                          * The size of the lvl2 table is equal to ITS page size
2419                          * which is 'psz'. For computing lvl1 table size,
2420                          * subtract ID bits that sparse lvl2 table from 'ids'
2421                          * which is reported by ITS hardware times lvl1 table
2422                          * entry size.
2423                          */
2424                         ids -= ilog2(psz / (int)esz);
2425                         esz = GITS_LVL1_ENTRY_SIZE;
2426                 }
2427         }
2428
2429         /*
2430          * Allocate as many entries as required to fit the
2431          * range of device IDs that the ITS can grok... The ID
2432          * space being incredibly sparse, this results in a
2433          * massive waste of memory if two-level device table
2434          * feature is not supported by hardware.
2435          */
2436         new_order = max_t(u32, get_order(esz << ids), new_order);
2437         if (new_order >= MAX_ORDER) {
2438                 new_order = MAX_ORDER - 1;
2439                 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2440                 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2441                         &its->phys_base, its_base_type_string[type],
2442                         device_ids(its), ids);
2443         }
2444
2445         *order = new_order;
2446
2447         return indirect;
2448 }
2449
2450 static u32 compute_common_aff(u64 val)
2451 {
2452         u32 aff, clpiaff;
2453
2454         aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2455         clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2456
2457         return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2458 }
2459
2460 static u32 compute_its_aff(struct its_node *its)
2461 {
2462         u64 val;
2463         u32 svpet;
2464
2465         /*
2466          * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2467          * the resulting affinity. We then use that to see if this match
2468          * our own affinity.
2469          */
2470         svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2471         val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2472         val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2473         return compute_common_aff(val);
2474 }
2475
2476 static struct its_node *find_sibling_its(struct its_node *cur_its)
2477 {
2478         struct its_node *its;
2479         u32 aff;
2480
2481         if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2482                 return NULL;
2483
2484         aff = compute_its_aff(cur_its);
2485
2486         list_for_each_entry(its, &its_nodes, entry) {
2487                 u64 baser;
2488
2489                 if (!is_v4_1(its) || its == cur_its)
2490                         continue;
2491
2492                 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2493                         continue;
2494
2495                 if (aff != compute_its_aff(its))
2496                         continue;
2497
2498                 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2499                 baser = its->tables[2].val;
2500                 if (!(baser & GITS_BASER_VALID))
2501                         continue;
2502
2503                 return its;
2504         }
2505
2506         return NULL;
2507 }
2508
2509 static void its_free_tables(struct its_node *its)
2510 {
2511         int i;
2512
2513         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2514                 if (its->tables[i].base) {
2515                         free_pages((unsigned long)its->tables[i].base,
2516                                    its->tables[i].order);
2517                         its->tables[i].base = NULL;
2518                 }
2519         }
2520 }
2521
2522 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2523 {
2524         u64 psz = SZ_64K;
2525
2526         while (psz) {
2527                 u64 val, gpsz;
2528
2529                 val = its_read_baser(its, baser);
2530                 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2531
2532                 switch (psz) {
2533                 case SZ_64K:
2534                         gpsz = GITS_BASER_PAGE_SIZE_64K;
2535                         break;
2536                 case SZ_16K:
2537                         gpsz = GITS_BASER_PAGE_SIZE_16K;
2538                         break;
2539                 case SZ_4K:
2540                 default:
2541                         gpsz = GITS_BASER_PAGE_SIZE_4K;
2542                         break;
2543                 }
2544
2545                 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2546
2547                 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2548                 its_write_baser(its, baser, val);
2549
2550                 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2551                         break;
2552
2553                 switch (psz) {
2554                 case SZ_64K:
2555                         psz = SZ_16K;
2556                         break;
2557                 case SZ_16K:
2558                         psz = SZ_4K;
2559                         break;
2560                 case SZ_4K:
2561                 default:
2562                         return -1;
2563                 }
2564         }
2565
2566         baser->psz = psz;
2567         return 0;
2568 }
2569
2570 static int its_alloc_tables(struct its_node *its)
2571 {
2572         u64 shr = GITS_BASER_InnerShareable;
2573         u64 cache = GITS_BASER_RaWaWb;
2574         int err, i;
2575
2576         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2577                 /* erratum 24313: ignore memory access type */
2578                 cache = GITS_BASER_nCnB;
2579
2580         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2581                 struct its_baser *baser = its->tables + i;
2582                 u64 val = its_read_baser(its, baser);
2583                 u64 type = GITS_BASER_TYPE(val);
2584                 bool indirect = false;
2585                 u32 order;
2586
2587                 if (type == GITS_BASER_TYPE_NONE)
2588                         continue;
2589
2590                 if (its_probe_baser_psz(its, baser)) {
2591                         its_free_tables(its);
2592                         return -ENXIO;
2593                 }
2594
2595                 order = get_order(baser->psz);
2596
2597                 switch (type) {
2598                 case GITS_BASER_TYPE_DEVICE:
2599                         indirect = its_parse_indirect_baser(its, baser, &order,
2600                                                             device_ids(its));
2601                         break;
2602
2603                 case GITS_BASER_TYPE_VCPU:
2604                         if (is_v4_1(its)) {
2605                                 struct its_node *sibling;
2606
2607                                 WARN_ON(i != 2);
2608                                 if ((sibling = find_sibling_its(its))) {
2609                                         *baser = sibling->tables[2];
2610                                         its_write_baser(its, baser, baser->val);
2611                                         continue;
2612                                 }
2613                         }
2614
2615                         indirect = its_parse_indirect_baser(its, baser, &order,
2616                                                             ITS_MAX_VPEID_BITS);
2617                         break;
2618                 }
2619
2620                 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2621                 if (err < 0) {
2622                         its_free_tables(its);
2623                         return err;
2624                 }
2625
2626                 /* Update settings which will be used for next BASERn */
2627                 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2628                 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2629         }
2630
2631         return 0;
2632 }
2633
2634 static u64 inherit_vpe_l1_table_from_its(void)
2635 {
2636         struct its_node *its;
2637         u64 val;
2638         u32 aff;
2639
2640         val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2641         aff = compute_common_aff(val);
2642
2643         list_for_each_entry(its, &its_nodes, entry) {
2644                 u64 baser, addr;
2645
2646                 if (!is_v4_1(its))
2647                         continue;
2648
2649                 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2650                         continue;
2651
2652                 if (aff != compute_its_aff(its))
2653                         continue;
2654
2655                 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2656                 baser = its->tables[2].val;
2657                 if (!(baser & GITS_BASER_VALID))
2658                         continue;
2659
2660                 /* We have a winner! */
2661                 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2662
2663                 val  = GICR_VPROPBASER_4_1_VALID;
2664                 if (baser & GITS_BASER_INDIRECT)
2665                         val |= GICR_VPROPBASER_4_1_INDIRECT;
2666                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2667                                   FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2668                 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2669                 case GIC_PAGE_SIZE_64K:
2670                         addr = GITS_BASER_ADDR_48_to_52(baser);
2671                         break;
2672                 default:
2673                         addr = baser & GENMASK_ULL(47, 12);
2674                         break;
2675                 }
2676                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2677                 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2678                                   FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2679                 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2680                                   FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2681                 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2682
2683                 return val;
2684         }
2685
2686         return 0;
2687 }
2688
2689 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2690 {
2691         u32 aff;
2692         u64 val;
2693         int cpu;
2694
2695         val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2696         aff = compute_common_aff(val);
2697
2698         for_each_possible_cpu(cpu) {
2699                 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2700
2701                 if (!base || cpu == smp_processor_id())
2702                         continue;
2703
2704                 val = gic_read_typer(base + GICR_TYPER);
2705                 if (aff != compute_common_aff(val))
2706                         continue;
2707
2708                 /*
2709                  * At this point, we have a victim. This particular CPU
2710                  * has already booted, and has an affinity that matches
2711                  * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2712                  * Make sure we don't write the Z bit in that case.
2713                  */
2714                 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2715                 val &= ~GICR_VPROPBASER_4_1_Z;
2716
2717                 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2718                 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2719
2720                 return val;
2721         }
2722
2723         return 0;
2724 }
2725
2726 static bool allocate_vpe_l2_table(int cpu, u32 id)
2727 {
2728         void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2729         unsigned int psz, esz, idx, npg, gpsz;
2730         u64 val;
2731         struct page *page;
2732         __le64 *table;
2733
2734         if (!gic_rdists->has_rvpeid)
2735                 return true;
2736
2737         /* Skip non-present CPUs */
2738         if (!base)
2739                 return true;
2740
2741         val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2742
2743         esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2744         gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2745         npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2746
2747         switch (gpsz) {
2748         default:
2749                 WARN_ON(1);
2750                 fallthrough;
2751         case GIC_PAGE_SIZE_4K:
2752                 psz = SZ_4K;
2753                 break;
2754         case GIC_PAGE_SIZE_16K:
2755                 psz = SZ_16K;
2756                 break;
2757         case GIC_PAGE_SIZE_64K:
2758                 psz = SZ_64K;
2759                 break;
2760         }
2761
2762         /* Don't allow vpe_id that exceeds single, flat table limit */
2763         if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2764                 return (id < (npg * psz / (esz * SZ_8)));
2765
2766         /* Compute 1st level table index & check if that exceeds table limit */
2767         idx = id >> ilog2(psz / (esz * SZ_8));
2768         if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2769                 return false;
2770
2771         table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2772
2773         /* Allocate memory for 2nd level table */
2774         if (!table[idx]) {
2775                 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2776                 if (!page)
2777                         return false;
2778
2779                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2780                 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2781                         gic_flush_dcache_to_poc(page_address(page), psz);
2782
2783                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2784
2785                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2786                 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2787                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2788
2789                 /* Ensure updated table contents are visible to RD hardware */
2790                 dsb(sy);
2791         }
2792
2793         return true;
2794 }
2795
2796 static int allocate_vpe_l1_table(void)
2797 {
2798         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2799         u64 val, gpsz, npg, pa;
2800         unsigned int psz = SZ_64K;
2801         unsigned int np, epp, esz;
2802         struct page *page;
2803
2804         if (!gic_rdists->has_rvpeid)
2805                 return 0;
2806
2807         /*
2808          * if VPENDBASER.Valid is set, disable any previously programmed
2809          * VPE by setting PendingLast while clearing Valid. This has the
2810          * effect of making sure no doorbell will be generated and we can
2811          * then safely clear VPROPBASER.Valid.
2812          */
2813         if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2814                 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2815                                       vlpi_base + GICR_VPENDBASER);
2816
2817         /*
2818          * If we can inherit the configuration from another RD, let's do
2819          * so. Otherwise, we have to go through the allocation process. We
2820          * assume that all RDs have the exact same requirements, as
2821          * nothing will work otherwise.
2822          */
2823         val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2824         if (val & GICR_VPROPBASER_4_1_VALID)
2825                 goto out;
2826
2827         gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2828         if (!gic_data_rdist()->vpe_table_mask)
2829                 return -ENOMEM;
2830
2831         val = inherit_vpe_l1_table_from_its();
2832         if (val & GICR_VPROPBASER_4_1_VALID)
2833                 goto out;
2834
2835         /* First probe the page size */
2836         val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2837         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2838         val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2839         gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2840         esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2841
2842         switch (gpsz) {
2843         default:
2844                 gpsz = GIC_PAGE_SIZE_4K;
2845                 fallthrough;
2846         case GIC_PAGE_SIZE_4K:
2847                 psz = SZ_4K;
2848                 break;
2849         case GIC_PAGE_SIZE_16K:
2850                 psz = SZ_16K;
2851                 break;
2852         case GIC_PAGE_SIZE_64K:
2853                 psz = SZ_64K;
2854                 break;
2855         }
2856
2857         /*
2858          * Start populating the register from scratch, including RO fields
2859          * (which we want to print in debug cases...)
2860          */
2861         val = 0;
2862         val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2863         val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2864
2865         /* How many entries per GIC page? */
2866         esz++;
2867         epp = psz / (esz * SZ_8);
2868
2869         /*
2870          * If we need more than just a single L1 page, flag the table
2871          * as indirect and compute the number of required L1 pages.
2872          */
2873         if (epp < ITS_MAX_VPEID) {
2874                 int nl2;
2875
2876                 val |= GICR_VPROPBASER_4_1_INDIRECT;
2877
2878                 /* Number of L2 pages required to cover the VPEID space */
2879                 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2880
2881                 /* Number of L1 pages to point to the L2 pages */
2882                 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2883         } else {
2884                 npg = 1;
2885         }
2886
2887         val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2888
2889         /* Right, that's the number of CPU pages we need for L1 */
2890         np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2891
2892         pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2893                  np, npg, psz, epp, esz);
2894         page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2895         if (!page)
2896                 return -ENOMEM;
2897
2898         gic_data_rdist()->vpe_l1_base = page_address(page);
2899         pa = virt_to_phys(page_address(page));
2900         WARN_ON(!IS_ALIGNED(pa, psz));
2901
2902         val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2903         val |= GICR_VPROPBASER_RaWb;
2904         val |= GICR_VPROPBASER_InnerShareable;
2905         val |= GICR_VPROPBASER_4_1_Z;
2906         val |= GICR_VPROPBASER_4_1_VALID;
2907
2908 out:
2909         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2910         cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2911
2912         pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2913                  smp_processor_id(), val,
2914                  cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2915
2916         return 0;
2917 }
2918
2919 static int its_alloc_collections(struct its_node *its)
2920 {
2921         int i;
2922
2923         its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2924                                    GFP_KERNEL);
2925         if (!its->collections)
2926                 return -ENOMEM;
2927
2928         for (i = 0; i < nr_cpu_ids; i++)
2929                 its->collections[i].target_address = ~0ULL;
2930
2931         return 0;
2932 }
2933
2934 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2935 {
2936         struct page *pend_page;
2937
2938         pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2939                                 get_order(LPI_PENDBASE_SZ));
2940         if (!pend_page)
2941                 return NULL;
2942
2943         /* Make sure the GIC will observe the zero-ed page */
2944         gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2945
2946         return pend_page;
2947 }
2948
2949 static void its_free_pending_table(struct page *pt)
2950 {
2951         free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2952 }
2953
2954 /*
2955  * Booting with kdump and LPIs enabled is generally fine. Any other
2956  * case is wrong in the absence of firmware/EFI support.
2957  */
2958 static bool enabled_lpis_allowed(void)
2959 {
2960         phys_addr_t addr;
2961         u64 val;
2962
2963         /* Check whether the property table is in a reserved region */
2964         val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2965         addr = val & GENMASK_ULL(51, 12);
2966
2967         return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2968 }
2969
2970 static int __init allocate_lpi_tables(void)
2971 {
2972         u64 val;
2973         int err, cpu;
2974
2975         /*
2976          * If LPIs are enabled while we run this from the boot CPU,
2977          * flag the RD tables as pre-allocated if the stars do align.
2978          */
2979         val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2980         if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2981                 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2982                                       RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2983                 pr_info("GICv3: Using preallocated redistributor tables\n");
2984         }
2985
2986         err = its_setup_lpi_prop_table();
2987         if (err)
2988                 return err;
2989
2990         /*
2991          * We allocate all the pending tables anyway, as we may have a
2992          * mix of RDs that have had LPIs enabled, and some that
2993          * don't. We'll free the unused ones as each CPU comes online.
2994          */
2995         for_each_possible_cpu(cpu) {
2996                 struct page *pend_page;
2997
2998                 pend_page = its_allocate_pending_table(GFP_NOWAIT);
2999                 if (!pend_page) {
3000                         pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3001                         return -ENOMEM;
3002                 }
3003
3004                 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3005         }
3006
3007         return 0;
3008 }
3009
3010 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3011 {
3012         u32 count = 1000000;    /* 1s! */
3013         bool clean;
3014         u64 val;
3015
3016         val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3017         val &= ~GICR_VPENDBASER_Valid;
3018         val &= ~clr;
3019         val |= set;
3020         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3021
3022         do {
3023                 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3024                 clean = !(val & GICR_VPENDBASER_Dirty);
3025                 if (!clean) {
3026                         count--;
3027                         cpu_relax();
3028                         udelay(1);
3029                 }
3030         } while (!clean && count);
3031
3032         if (unlikely(val & GICR_VPENDBASER_Dirty)) {
3033                 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3034                 val |= GICR_VPENDBASER_PendingLast;
3035         }
3036
3037         return val;
3038 }
3039
3040 static void its_cpu_init_lpis(void)
3041 {
3042         void __iomem *rbase = gic_data_rdist_rd_base();
3043         struct page *pend_page;
3044         phys_addr_t paddr;
3045         u64 val, tmp;
3046
3047         if (gic_data_rdist()->lpi_enabled)
3048                 return;
3049
3050         val = readl_relaxed(rbase + GICR_CTLR);
3051         if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3052             (val & GICR_CTLR_ENABLE_LPIS)) {
3053                 /*
3054                  * Check that we get the same property table on all
3055                  * RDs. If we don't, this is hopeless.
3056                  */
3057                 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3058                 paddr &= GENMASK_ULL(51, 12);
3059                 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3060                         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3061
3062                 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3063                 paddr &= GENMASK_ULL(51, 16);
3064
3065                 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3066                 its_free_pending_table(gic_data_rdist()->pend_page);
3067                 gic_data_rdist()->pend_page = NULL;
3068
3069                 goto out;
3070         }
3071
3072         pend_page = gic_data_rdist()->pend_page;
3073         paddr = page_to_phys(pend_page);
3074         WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
3075
3076         /* set PROPBASE */
3077         val = (gic_rdists->prop_table_pa |
3078                GICR_PROPBASER_InnerShareable |
3079                GICR_PROPBASER_RaWaWb |
3080                ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3081
3082         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3083         tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3084
3085         if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3086                 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3087                         /*
3088                          * The HW reports non-shareable, we must
3089                          * remove the cacheability attributes as
3090                          * well.
3091                          */
3092                         val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3093                                  GICR_PROPBASER_CACHEABILITY_MASK);
3094                         val |= GICR_PROPBASER_nC;
3095                         gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3096                 }
3097                 pr_info_once("GIC: using cache flushing for LPI property table\n");
3098                 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3099         }
3100
3101         /* set PENDBASE */
3102         val = (page_to_phys(pend_page) |
3103                GICR_PENDBASER_InnerShareable |
3104                GICR_PENDBASER_RaWaWb);
3105
3106         gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3107         tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3108
3109         if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3110                 /*
3111                  * The HW reports non-shareable, we must remove the
3112                  * cacheability attributes as well.
3113                  */
3114                 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3115                          GICR_PENDBASER_CACHEABILITY_MASK);
3116                 val |= GICR_PENDBASER_nC;
3117                 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3118         }
3119
3120         /* Enable LPIs */
3121         val = readl_relaxed(rbase + GICR_CTLR);
3122         val |= GICR_CTLR_ENABLE_LPIS;
3123         writel_relaxed(val, rbase + GICR_CTLR);
3124
3125         if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3126                 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3127
3128                 /*
3129                  * It's possible for CPU to receive VLPIs before it is
3130                  * scheduled as a vPE, especially for the first CPU, and the
3131                  * VLPI with INTID larger than 2^(IDbits+1) will be considered
3132                  * as out of range and dropped by GIC.
3133                  * So we initialize IDbits to known value to avoid VLPI drop.
3134                  */
3135                 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3136                 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3137                         smp_processor_id(), val);
3138                 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3139
3140                 /*
3141                  * Also clear Valid bit of GICR_VPENDBASER, in case some
3142                  * ancient programming gets left in and has possibility of
3143                  * corrupting memory.
3144                  */
3145                 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3146         }
3147
3148         if (allocate_vpe_l1_table()) {
3149                 /*
3150                  * If the allocation has failed, we're in massive trouble.
3151                  * Disable direct injection, and pray that no VM was
3152                  * already running...
3153                  */
3154                 gic_rdists->has_rvpeid = false;
3155                 gic_rdists->has_vlpis = false;
3156         }
3157
3158         /* Make sure the GIC has seen the above */
3159         dsb(sy);
3160 out:
3161         gic_data_rdist()->lpi_enabled = true;
3162         pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3163                 smp_processor_id(),
3164                 gic_data_rdist()->pend_page ? "allocated" : "reserved",
3165                 &paddr);
3166 }
3167
3168 static void its_cpu_init_collection(struct its_node *its)
3169 {
3170         int cpu = smp_processor_id();
3171         u64 target;
3172
3173         /* avoid cross node collections and its mapping */
3174         if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3175                 struct device_node *cpu_node;
3176
3177                 cpu_node = of_get_cpu_node(cpu, NULL);
3178                 if (its->numa_node != NUMA_NO_NODE &&
3179                         its->numa_node != of_node_to_nid(cpu_node))
3180                         return;
3181         }
3182
3183         /*
3184          * We now have to bind each collection to its target
3185          * redistributor.
3186          */
3187         if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3188                 /*
3189                  * This ITS wants the physical address of the
3190                  * redistributor.
3191                  */
3192                 target = gic_data_rdist()->phys_base;
3193         } else {
3194                 /* This ITS wants a linear CPU number. */
3195                 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3196                 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3197         }
3198
3199         /* Perform collection mapping */
3200         its->collections[cpu].target_address = target;
3201         its->collections[cpu].col_id = cpu;
3202
3203         its_send_mapc(its, &its->collections[cpu], 1);
3204         its_send_invall(its, &its->collections[cpu]);
3205 }
3206
3207 static void its_cpu_init_collections(void)
3208 {
3209         struct its_node *its;
3210
3211         raw_spin_lock(&its_lock);
3212
3213         list_for_each_entry(its, &its_nodes, entry)
3214                 its_cpu_init_collection(its);
3215
3216         raw_spin_unlock(&its_lock);
3217 }
3218
3219 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3220 {
3221         struct its_device *its_dev = NULL, *tmp;
3222         unsigned long flags;
3223
3224         raw_spin_lock_irqsave(&its->lock, flags);
3225
3226         list_for_each_entry(tmp, &its->its_device_list, entry) {
3227                 if (tmp->device_id == dev_id) {
3228                         its_dev = tmp;
3229                         break;
3230                 }
3231         }
3232
3233         raw_spin_unlock_irqrestore(&its->lock, flags);
3234
3235         return its_dev;
3236 }
3237
3238 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3239 {
3240         int i;
3241
3242         for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3243                 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3244                         return &its->tables[i];
3245         }
3246
3247         return NULL;
3248 }
3249
3250 static bool its_alloc_table_entry(struct its_node *its,
3251                                   struct its_baser *baser, u32 id)
3252 {
3253         struct page *page;
3254         u32 esz, idx;
3255         __le64 *table;
3256
3257         /* Don't allow device id that exceeds single, flat table limit */
3258         esz = GITS_BASER_ENTRY_SIZE(baser->val);
3259         if (!(baser->val & GITS_BASER_INDIRECT))
3260                 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3261
3262         /* Compute 1st level table index & check if that exceeds table limit */
3263         idx = id >> ilog2(baser->psz / esz);
3264         if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3265                 return false;
3266
3267         table = baser->base;
3268
3269         /* Allocate memory for 2nd level table */
3270         if (!table[idx]) {
3271                 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3272                                         get_order(baser->psz));
3273                 if (!page)
3274                         return false;
3275
3276                 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3277                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3278                         gic_flush_dcache_to_poc(page_address(page), baser->psz);
3279
3280                 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3281
3282                 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3283                 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3284                         gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3285
3286                 /* Ensure updated table contents are visible to ITS hardware */
3287                 dsb(sy);
3288         }
3289
3290         return true;
3291 }
3292
3293 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3294 {
3295         struct its_baser *baser;
3296
3297         baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3298
3299         /* Don't allow device id that exceeds ITS hardware limit */
3300         if (!baser)
3301                 return (ilog2(dev_id) < device_ids(its));
3302
3303         return its_alloc_table_entry(its, baser, dev_id);
3304 }
3305
3306 static bool its_alloc_vpe_table(u32 vpe_id)
3307 {
3308         struct its_node *its;
3309         int cpu;
3310
3311         /*
3312          * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3313          * could try and only do it on ITSs corresponding to devices
3314          * that have interrupts targeted at this VPE, but the
3315          * complexity becomes crazy (and you have tons of memory
3316          * anyway, right?).
3317          */
3318         list_for_each_entry(its, &its_nodes, entry) {
3319                 struct its_baser *baser;
3320
3321                 if (!is_v4(its))
3322                         continue;
3323
3324                 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3325                 if (!baser)
3326                         return false;
3327
3328                 if (!its_alloc_table_entry(its, baser, vpe_id))
3329                         return false;
3330         }
3331
3332         /* Non v4.1? No need to iterate RDs and go back early. */
3333         if (!gic_rdists->has_rvpeid)
3334                 return true;
3335
3336         /*
3337          * Make sure the L2 tables are allocated for all copies of
3338          * the L1 table on *all* v4.1 RDs.
3339          */
3340         for_each_possible_cpu(cpu) {
3341                 if (!allocate_vpe_l2_table(cpu, vpe_id))
3342                         return false;
3343         }
3344
3345         return true;
3346 }
3347
3348 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3349                                             int nvecs, bool alloc_lpis)
3350 {
3351         struct its_device *dev;
3352         unsigned long *lpi_map = NULL;
3353         unsigned long flags;
3354         u16 *col_map = NULL;
3355         void *itt;
3356         int lpi_base;
3357         int nr_lpis;
3358         int nr_ites;
3359         int sz;
3360
3361         if (!its_alloc_device_table(its, dev_id))
3362                 return NULL;
3363
3364         if (WARN_ON(!is_power_of_2(nvecs)))
3365                 nvecs = roundup_pow_of_two(nvecs);
3366
3367         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3368         /*
3369          * Even if the device wants a single LPI, the ITT must be
3370          * sized as a power of two (and you need at least one bit...).
3371          */
3372         nr_ites = max(2, nvecs);
3373         sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3374         sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3375         itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3376         if (alloc_lpis) {
3377                 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3378                 if (lpi_map)
3379                         col_map = kcalloc(nr_lpis, sizeof(*col_map),
3380                                           GFP_KERNEL);
3381         } else {
3382                 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3383                 nr_lpis = 0;
3384                 lpi_base = 0;
3385         }
3386
3387         if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3388                 kfree(dev);
3389                 kfree(itt);
3390                 bitmap_free(lpi_map);
3391                 kfree(col_map);
3392                 return NULL;
3393         }
3394
3395         gic_flush_dcache_to_poc(itt, sz);
3396
3397         dev->its = its;
3398         dev->itt = itt;
3399         dev->nr_ites = nr_ites;
3400         dev->event_map.lpi_map = lpi_map;
3401         dev->event_map.col_map = col_map;
3402         dev->event_map.lpi_base = lpi_base;
3403         dev->event_map.nr_lpis = nr_lpis;
3404         raw_spin_lock_init(&dev->event_map.vlpi_lock);
3405         dev->device_id = dev_id;
3406         INIT_LIST_HEAD(&dev->entry);
3407
3408         raw_spin_lock_irqsave(&its->lock, flags);
3409         list_add(&dev->entry, &its->its_device_list);
3410         raw_spin_unlock_irqrestore(&its->lock, flags);
3411
3412         /* Map device to its ITT */
3413         its_send_mapd(dev, 1);
3414
3415         return dev;
3416 }
3417
3418 static void its_free_device(struct its_device *its_dev)
3419 {
3420         unsigned long flags;
3421
3422         raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3423         list_del(&its_dev->entry);
3424         raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3425         kfree(its_dev->event_map.col_map);
3426         kfree(its_dev->itt);
3427         kfree(its_dev);
3428 }
3429
3430 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3431 {
3432         int idx;
3433
3434         /* Find a free LPI region in lpi_map and allocate them. */
3435         idx = bitmap_find_free_region(dev->event_map.lpi_map,
3436                                       dev->event_map.nr_lpis,
3437                                       get_count_order(nvecs));
3438         if (idx < 0)
3439                 return -ENOSPC;
3440
3441         *hwirq = dev->event_map.lpi_base + idx;
3442
3443         return 0;
3444 }
3445
3446 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3447                            int nvec, msi_alloc_info_t *info)
3448 {
3449         struct its_node *its;
3450         struct its_device *its_dev;
3451         struct msi_domain_info *msi_info;
3452         u32 dev_id;
3453         int err = 0;
3454
3455         /*
3456          * We ignore "dev" entirely, and rely on the dev_id that has
3457          * been passed via the scratchpad. This limits this domain's
3458          * usefulness to upper layers that definitely know that they
3459          * are built on top of the ITS.
3460          */
3461         dev_id = info->scratchpad[0].ul;
3462
3463         msi_info = msi_get_domain_info(domain);
3464         its = msi_info->data;
3465
3466         if (!gic_rdists->has_direct_lpi &&
3467             vpe_proxy.dev &&
3468             vpe_proxy.dev->its == its &&
3469             dev_id == vpe_proxy.dev->device_id) {
3470                 /* Bad luck. Get yourself a better implementation */
3471                 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3472                           dev_id);
3473                 return -EINVAL;
3474         }
3475
3476         mutex_lock(&its->dev_alloc_lock);
3477         its_dev = its_find_device(its, dev_id);
3478         if (its_dev) {
3479                 /*
3480                  * We already have seen this ID, probably through
3481                  * another alias (PCI bridge of some sort). No need to
3482                  * create the device.
3483                  */
3484                 its_dev->shared = true;
3485                 pr_debug("Reusing ITT for devID %x\n", dev_id);
3486                 goto out;
3487         }
3488
3489         its_dev = its_create_device(its, dev_id, nvec, true);
3490         if (!its_dev) {
3491                 err = -ENOMEM;
3492                 goto out;
3493         }
3494
3495         if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3496                 its_dev->shared = true;
3497
3498         pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3499 out:
3500         mutex_unlock(&its->dev_alloc_lock);
3501         info->scratchpad[0].ptr = its_dev;
3502         return err;
3503 }
3504
3505 static struct msi_domain_ops its_msi_domain_ops = {
3506         .msi_prepare    = its_msi_prepare,
3507 };
3508
3509 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3510                                     unsigned int virq,
3511                                     irq_hw_number_t hwirq)
3512 {
3513         struct irq_fwspec fwspec;
3514
3515         if (irq_domain_get_of_node(domain->parent)) {
3516                 fwspec.fwnode = domain->parent->fwnode;
3517                 fwspec.param_count = 3;
3518                 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3519                 fwspec.param[1] = hwirq;
3520                 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3521         } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3522                 fwspec.fwnode = domain->parent->fwnode;
3523                 fwspec.param_count = 2;
3524                 fwspec.param[0] = hwirq;
3525                 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3526         } else {
3527                 return -EINVAL;
3528         }
3529
3530         return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3531 }
3532
3533 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3534                                 unsigned int nr_irqs, void *args)
3535 {
3536         msi_alloc_info_t *info = args;
3537         struct its_device *its_dev = info->scratchpad[0].ptr;
3538         struct its_node *its = its_dev->its;
3539         struct irq_data *irqd;
3540         irq_hw_number_t hwirq;
3541         int err;
3542         int i;
3543
3544         err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3545         if (err)
3546                 return err;
3547
3548         err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3549         if (err)
3550                 return err;
3551
3552         for (i = 0; i < nr_irqs; i++) {
3553                 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3554                 if (err)
3555                         return err;
3556
3557                 irq_domain_set_hwirq_and_chip(domain, virq + i,
3558                                               hwirq + i, &its_irq_chip, its_dev);
3559                 irqd = irq_get_irq_data(virq + i);
3560                 irqd_set_single_target(irqd);
3561                 irqd_set_affinity_on_activate(irqd);
3562                 pr_debug("ID:%d pID:%d vID:%d\n",
3563                          (int)(hwirq + i - its_dev->event_map.lpi_base),
3564                          (int)(hwirq + i), virq + i);
3565         }
3566
3567         return 0;
3568 }
3569
3570 static int its_irq_domain_activate(struct irq_domain *domain,
3571                                    struct irq_data *d, bool reserve)
3572 {
3573         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3574         u32 event = its_get_event_id(d);
3575         int cpu;
3576
3577         cpu = its_select_cpu(d, cpu_online_mask);
3578         if (cpu < 0 || cpu >= nr_cpu_ids)
3579                 return -EINVAL;
3580
3581         its_inc_lpi_count(d, cpu);
3582         its_dev->event_map.col_map[event] = cpu;
3583         irq_data_update_effective_affinity(d, cpumask_of(cpu));
3584
3585         /* Map the GIC IRQ and event to the device */
3586         its_send_mapti(its_dev, d->hwirq, event);
3587         return 0;
3588 }
3589
3590 static void its_irq_domain_deactivate(struct irq_domain *domain,
3591                                       struct irq_data *d)
3592 {
3593         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3594         u32 event = its_get_event_id(d);
3595
3596         its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3597         /* Stop the delivery of interrupts */
3598         its_send_discard(its_dev, event);
3599 }
3600
3601 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3602                                 unsigned int nr_irqs)
3603 {
3604         struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3605         struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3606         struct its_node *its = its_dev->its;
3607         int i;
3608
3609         bitmap_release_region(its_dev->event_map.lpi_map,
3610                               its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3611                               get_count_order(nr_irqs));
3612
3613         for (i = 0; i < nr_irqs; i++) {
3614                 struct irq_data *data = irq_domain_get_irq_data(domain,
3615                                                                 virq + i);
3616                 /* Nuke the entry in the domain */
3617                 irq_domain_reset_irq_data(data);
3618         }
3619
3620         mutex_lock(&its->dev_alloc_lock);
3621
3622         /*
3623          * If all interrupts have been freed, start mopping the
3624          * floor. This is conditioned on the device not being shared.
3625          */
3626         if (!its_dev->shared &&
3627             bitmap_empty(its_dev->event_map.lpi_map,
3628                          its_dev->event_map.nr_lpis)) {
3629                 its_lpi_free(its_dev->event_map.lpi_map,
3630                              its_dev->event_map.lpi_base,
3631                              its_dev->event_map.nr_lpis);
3632
3633                 /* Unmap device/itt */
3634                 its_send_mapd(its_dev, 0);
3635                 its_free_device(its_dev);
3636         }
3637
3638         mutex_unlock(&its->dev_alloc_lock);
3639
3640         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3641 }
3642
3643 static const struct irq_domain_ops its_domain_ops = {
3644         .alloc                  = its_irq_domain_alloc,
3645         .free                   = its_irq_domain_free,
3646         .activate               = its_irq_domain_activate,
3647         .deactivate             = its_irq_domain_deactivate,
3648 };
3649
3650 /*
3651  * This is insane.
3652  *
3653  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3654  * likely), the only way to perform an invalidate is to use a fake
3655  * device to issue an INV command, implying that the LPI has first
3656  * been mapped to some event on that device. Since this is not exactly
3657  * cheap, we try to keep that mapping around as long as possible, and
3658  * only issue an UNMAP if we're short on available slots.
3659  *
3660  * Broken by design(tm).
3661  *
3662  * GICv4.1, on the other hand, mandates that we're able to invalidate
3663  * by writing to a MMIO register. It doesn't implement the whole of
3664  * DirectLPI, but that's good enough. And most of the time, we don't
3665  * even have to invalidate anything, as the redistributor can be told
3666  * whether to generate a doorbell or not (we thus leave it enabled,
3667  * always).
3668  */
3669 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3670 {
3671         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3672         if (gic_rdists->has_rvpeid)
3673                 return;
3674
3675         /* Already unmapped? */
3676         if (vpe->vpe_proxy_event == -1)
3677                 return;
3678
3679         its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3680         vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3681
3682         /*
3683          * We don't track empty slots at all, so let's move the
3684          * next_victim pointer if we can quickly reuse that slot
3685          * instead of nuking an existing entry. Not clear that this is
3686          * always a win though, and this might just generate a ripple
3687          * effect... Let's just hope VPEs don't migrate too often.
3688          */
3689         if (vpe_proxy.vpes[vpe_proxy.next_victim])
3690                 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3691
3692         vpe->vpe_proxy_event = -1;
3693 }
3694
3695 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3696 {
3697         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3698         if (gic_rdists->has_rvpeid)
3699                 return;
3700
3701         if (!gic_rdists->has_direct_lpi) {
3702                 unsigned long flags;
3703
3704                 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3705                 its_vpe_db_proxy_unmap_locked(vpe);
3706                 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3707         }
3708 }
3709
3710 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3711 {
3712         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3713         if (gic_rdists->has_rvpeid)
3714                 return;
3715
3716         /* Already mapped? */
3717         if (vpe->vpe_proxy_event != -1)
3718                 return;
3719
3720         /* This slot was already allocated. Kick the other VPE out. */
3721         if (vpe_proxy.vpes[vpe_proxy.next_victim])
3722                 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3723
3724         /* Map the new VPE instead */
3725         vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3726         vpe->vpe_proxy_event = vpe_proxy.next_victim;
3727         vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3728
3729         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3730         its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3731 }
3732
3733 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3734 {
3735         unsigned long flags;
3736         struct its_collection *target_col;
3737
3738         /* GICv4.1 doesn't use a proxy, so nothing to do here */
3739         if (gic_rdists->has_rvpeid)
3740                 return;
3741
3742         if (gic_rdists->has_direct_lpi) {
3743                 void __iomem *rdbase;
3744
3745                 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3746                 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3747                 wait_for_syncr(rdbase);
3748
3749                 return;
3750         }
3751
3752         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3753
3754         its_vpe_db_proxy_map_locked(vpe);
3755
3756         target_col = &vpe_proxy.dev->its->collections[to];
3757         its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3758         vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3759
3760         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3761 }
3762
3763 static int its_vpe_set_affinity(struct irq_data *d,
3764                                 const struct cpumask *mask_val,
3765                                 bool force)
3766 {
3767         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3768         int from, cpu = cpumask_first(mask_val);
3769         unsigned long flags;
3770
3771         /*
3772          * Changing affinity is mega expensive, so let's be as lazy as
3773          * we can and only do it if we really have to. Also, if mapped
3774          * into the proxy device, we need to move the doorbell
3775          * interrupt to its new location.
3776          *
3777          * Another thing is that changing the affinity of a vPE affects
3778          * *other interrupts* such as all the vLPIs that are routed to
3779          * this vPE. This means that the irq_desc lock is not enough to
3780          * protect us, and that we must ensure nobody samples vpe->col_idx
3781          * during the update, hence the lock below which must also be
3782          * taken on any vLPI handling path that evaluates vpe->col_idx.
3783          */
3784         from = vpe_to_cpuid_lock(vpe, &flags);
3785         if (from == cpu)
3786                 goto out;
3787
3788         vpe->col_idx = cpu;
3789
3790         /*
3791          * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3792          * is sharing its VPE table with the current one.
3793          */
3794         if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3795             cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3796                 goto out;
3797
3798         its_send_vmovp(vpe);
3799         its_vpe_db_proxy_move(vpe, from, cpu);
3800
3801 out:
3802         irq_data_update_effective_affinity(d, cpumask_of(cpu));
3803         vpe_to_cpuid_unlock(vpe, flags);
3804
3805         return IRQ_SET_MASK_OK_DONE;
3806 }
3807
3808 static void its_wait_vpt_parse_complete(void)
3809 {
3810         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3811         u64 val;
3812
3813         if (!gic_rdists->has_vpend_valid_dirty)
3814                 return;
3815
3816         WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3817                                                        val,
3818                                                        !(val & GICR_VPENDBASER_Dirty),
3819                                                        1, 500));
3820 }
3821
3822 static void its_vpe_schedule(struct its_vpe *vpe)
3823 {
3824         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3825         u64 val;
3826
3827         /* Schedule the VPE */
3828         val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3829                 GENMASK_ULL(51, 12);
3830         val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3831         val |= GICR_VPROPBASER_RaWb;
3832         val |= GICR_VPROPBASER_InnerShareable;
3833         gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3834
3835         val  = virt_to_phys(page_address(vpe->vpt_page)) &
3836                 GENMASK_ULL(51, 16);
3837         val |= GICR_VPENDBASER_RaWaWb;
3838         val |= GICR_VPENDBASER_InnerShareable;
3839         /*
3840          * There is no good way of finding out if the pending table is
3841          * empty as we can race against the doorbell interrupt very
3842          * easily. So in the end, vpe->pending_last is only an
3843          * indication that the vcpu has something pending, not one
3844          * that the pending table is empty. A good implementation
3845          * would be able to read its coarse map pretty quickly anyway,
3846          * making this a tolerable issue.
3847          */
3848         val |= GICR_VPENDBASER_PendingLast;
3849         val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3850         val |= GICR_VPENDBASER_Valid;
3851         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3852 }
3853
3854 static void its_vpe_deschedule(struct its_vpe *vpe)
3855 {
3856         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3857         u64 val;
3858
3859         val = its_clear_vpend_valid(vlpi_base, 0, 0);
3860
3861         vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3862         vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3863 }
3864
3865 static void its_vpe_invall(struct its_vpe *vpe)
3866 {
3867         struct its_node *its;
3868
3869         list_for_each_entry(its, &its_nodes, entry) {
3870                 if (!is_v4(its))
3871                         continue;
3872
3873                 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3874                         continue;
3875
3876                 /*
3877                  * Sending a VINVALL to a single ITS is enough, as all
3878                  * we need is to reach the redistributors.
3879                  */
3880                 its_send_vinvall(its, vpe);
3881                 return;
3882         }
3883 }
3884
3885 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3886 {
3887         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3888         struct its_cmd_info *info = vcpu_info;
3889
3890         switch (info->cmd_type) {
3891         case SCHEDULE_VPE:
3892                 its_vpe_schedule(vpe);
3893                 return 0;
3894
3895         case DESCHEDULE_VPE:
3896                 its_vpe_deschedule(vpe);
3897                 return 0;
3898
3899         case COMMIT_VPE:
3900                 its_wait_vpt_parse_complete();
3901                 return 0;
3902
3903         case INVALL_VPE:
3904                 its_vpe_invall(vpe);
3905                 return 0;
3906
3907         default:
3908                 return -EINVAL;
3909         }
3910 }
3911
3912 static void its_vpe_send_cmd(struct its_vpe *vpe,
3913                              void (*cmd)(struct its_device *, u32))
3914 {
3915         unsigned long flags;
3916
3917         raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3918
3919         its_vpe_db_proxy_map_locked(vpe);
3920         cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3921
3922         raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3923 }
3924
3925 static void its_vpe_send_inv(struct irq_data *d)
3926 {
3927         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3928
3929         if (gic_rdists->has_direct_lpi) {
3930                 void __iomem *rdbase;
3931
3932                 /* Target the redistributor this VPE is currently known on */
3933                 raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3934                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3935                 gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3936                 wait_for_syncr(rdbase);
3937                 raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3938         } else {
3939                 its_vpe_send_cmd(vpe, its_send_inv);
3940         }
3941 }
3942
3943 static void its_vpe_mask_irq(struct irq_data *d)
3944 {
3945         /*
3946          * We need to unmask the LPI, which is described by the parent
3947          * irq_data. Instead of calling into the parent (which won't
3948          * exactly do the right thing, let's simply use the
3949          * parent_data pointer. Yes, I'm naughty.
3950          */
3951         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3952         its_vpe_send_inv(d);
3953 }
3954
3955 static void its_vpe_unmask_irq(struct irq_data *d)
3956 {
3957         /* Same hack as above... */
3958         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3959         its_vpe_send_inv(d);
3960 }
3961
3962 static int its_vpe_set_irqchip_state(struct irq_data *d,
3963                                      enum irqchip_irq_state which,
3964                                      bool state)
3965 {
3966         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3967
3968         if (which != IRQCHIP_STATE_PENDING)
3969                 return -EINVAL;
3970
3971         if (gic_rdists->has_direct_lpi) {
3972                 void __iomem *rdbase;
3973
3974                 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3975                 if (state) {
3976                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
3977                 } else {
3978                         gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3979                         wait_for_syncr(rdbase);
3980                 }
3981         } else {
3982                 if (state)
3983                         its_vpe_send_cmd(vpe, its_send_int);
3984                 else
3985                         its_vpe_send_cmd(vpe, its_send_clear);
3986         }
3987
3988         return 0;
3989 }
3990
3991 static int its_vpe_retrigger(struct irq_data *d)
3992 {
3993         return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
3994 }
3995
3996 static struct irq_chip its_vpe_irq_chip = {
3997         .name                   = "GICv4-vpe",
3998         .irq_mask               = its_vpe_mask_irq,
3999         .irq_unmask             = its_vpe_unmask_irq,
4000         .irq_eoi                = irq_chip_eoi_parent,
4001         .irq_set_affinity       = its_vpe_set_affinity,
4002         .irq_retrigger          = its_vpe_retrigger,
4003         .irq_set_irqchip_state  = its_vpe_set_irqchip_state,
4004         .irq_set_vcpu_affinity  = its_vpe_set_vcpu_affinity,
4005 };
4006
4007 static struct its_node *find_4_1_its(void)
4008 {
4009         static struct its_node *its = NULL;
4010
4011         if (!its) {
4012                 list_for_each_entry(its, &its_nodes, entry) {
4013                         if (is_v4_1(its))
4014                                 return its;
4015                 }
4016
4017                 /* Oops? */
4018                 its = NULL;
4019         }
4020
4021         return its;
4022 }
4023
4024 static void its_vpe_4_1_send_inv(struct irq_data *d)
4025 {
4026         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4027         struct its_node *its;
4028
4029         /*
4030          * GICv4.1 wants doorbells to be invalidated using the
4031          * INVDB command in order to be broadcast to all RDs. Send
4032          * it to the first valid ITS, and let the HW do its magic.
4033          */
4034         its = find_4_1_its();
4035         if (its)
4036                 its_send_invdb(its, vpe);
4037 }
4038
4039 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4040 {
4041         lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4042         its_vpe_4_1_send_inv(d);
4043 }
4044
4045 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4046 {
4047         lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4048         its_vpe_4_1_send_inv(d);
4049 }
4050
4051 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4052                                  struct its_cmd_info *info)
4053 {
4054         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4055         u64 val = 0;
4056
4057         /* Schedule the VPE */
4058         val |= GICR_VPENDBASER_Valid;
4059         val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4060         val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4061         val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4062
4063         gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4064 }
4065
4066 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4067                                    struct its_cmd_info *info)
4068 {
4069         void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4070         u64 val;
4071
4072         if (info->req_db) {
4073                 unsigned long flags;
4074
4075                 /*
4076                  * vPE is going to block: make the vPE non-resident with
4077                  * PendingLast clear and DB set. The GIC guarantees that if
4078                  * we read-back PendingLast clear, then a doorbell will be
4079                  * delivered when an interrupt comes.
4080                  *
4081                  * Note the locking to deal with the concurrent update of
4082                  * pending_last from the doorbell interrupt handler that can
4083                  * run concurrently.
4084                  */
4085                 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4086                 val = its_clear_vpend_valid(vlpi_base,
4087                                             GICR_VPENDBASER_PendingLast,
4088                                             GICR_VPENDBASER_4_1_DB);
4089                 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4090                 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4091         } else {
4092                 /*
4093                  * We're not blocking, so just make the vPE non-resident
4094                  * with PendingLast set, indicating that we'll be back.
4095                  */
4096                 val = its_clear_vpend_valid(vlpi_base,
4097                                             0,
4098                                             GICR_VPENDBASER_PendingLast);
4099                 vpe->pending_last = true;
4100         }
4101 }
4102
4103 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4104 {
4105         void __iomem *rdbase;
4106         unsigned long flags;
4107         u64 val;
4108         int cpu;
4109
4110         val  = GICR_INVALLR_V;
4111         val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4112
4113         /* Target the redistributor this vPE is currently known on */
4114         cpu = vpe_to_cpuid_lock(vpe, &flags);
4115         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4116         rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4117         gic_write_lpir(val, rdbase + GICR_INVALLR);
4118
4119         wait_for_syncr(rdbase);
4120         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4121         vpe_to_cpuid_unlock(vpe, flags);
4122 }
4123
4124 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4125 {
4126         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4127         struct its_cmd_info *info = vcpu_info;
4128
4129         switch (info->cmd_type) {
4130         case SCHEDULE_VPE:
4131                 its_vpe_4_1_schedule(vpe, info);
4132                 return 0;
4133
4134         case DESCHEDULE_VPE:
4135                 its_vpe_4_1_deschedule(vpe, info);
4136                 return 0;
4137
4138         case COMMIT_VPE:
4139                 its_wait_vpt_parse_complete();
4140                 return 0;
4141
4142         case INVALL_VPE:
4143                 its_vpe_4_1_invall(vpe);
4144                 return 0;
4145
4146         default:
4147                 return -EINVAL;
4148         }
4149 }
4150
4151 static struct irq_chip its_vpe_4_1_irq_chip = {
4152         .name                   = "GICv4.1-vpe",
4153         .irq_mask               = its_vpe_4_1_mask_irq,
4154         .irq_unmask             = its_vpe_4_1_unmask_irq,
4155         .irq_eoi                = irq_chip_eoi_parent,
4156         .irq_set_affinity       = its_vpe_set_affinity,
4157         .irq_set_vcpu_affinity  = its_vpe_4_1_set_vcpu_affinity,
4158 };
4159
4160 static void its_configure_sgi(struct irq_data *d, bool clear)
4161 {
4162         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4163         struct its_cmd_desc desc;
4164
4165         desc.its_vsgi_cmd.vpe = vpe;
4166         desc.its_vsgi_cmd.sgi = d->hwirq;
4167         desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4168         desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4169         desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4170         desc.its_vsgi_cmd.clear = clear;
4171
4172         /*
4173          * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4174          * destination VPE is mapped there. Since we map them eagerly at
4175          * activation time, we're pretty sure the first GICv4.1 ITS will do.
4176          */
4177         its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4178 }
4179
4180 static void its_sgi_mask_irq(struct irq_data *d)
4181 {
4182         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4183
4184         vpe->sgi_config[d->hwirq].enabled = false;
4185         its_configure_sgi(d, false);
4186 }
4187
4188 static void its_sgi_unmask_irq(struct irq_data *d)
4189 {
4190         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4191
4192         vpe->sgi_config[d->hwirq].enabled = true;
4193         its_configure_sgi(d, false);
4194 }
4195
4196 static int its_sgi_set_affinity(struct irq_data *d,
4197                                 const struct cpumask *mask_val,
4198                                 bool force)
4199 {
4200         /*
4201          * There is no notion of affinity for virtual SGIs, at least
4202          * not on the host (since they can only be targeting a vPE).
4203          * Tell the kernel we've done whatever it asked for.
4204          */
4205         irq_data_update_effective_affinity(d, mask_val);
4206         return IRQ_SET_MASK_OK;
4207 }
4208
4209 static int its_sgi_set_irqchip_state(struct irq_data *d,
4210                                      enum irqchip_irq_state which,
4211                                      bool state)
4212 {
4213         if (which != IRQCHIP_STATE_PENDING)
4214                 return -EINVAL;
4215
4216         if (state) {
4217                 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4218                 struct its_node *its = find_4_1_its();
4219                 u64 val;
4220
4221                 val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4222                 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4223                 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4224         } else {
4225                 its_configure_sgi(d, true);
4226         }
4227
4228         return 0;
4229 }
4230
4231 static int its_sgi_get_irqchip_state(struct irq_data *d,
4232                                      enum irqchip_irq_state which, bool *val)
4233 {
4234         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4235         void __iomem *base;
4236         unsigned long flags;
4237         u32 count = 1000000;    /* 1s! */
4238         u32 status;
4239         int cpu;
4240
4241         if (which != IRQCHIP_STATE_PENDING)
4242                 return -EINVAL;
4243
4244         /*
4245          * Locking galore! We can race against two different events:
4246          *
4247          * - Concurrent vPE affinity change: we must make sure it cannot
4248          *   happen, or we'll talk to the wrong redistributor. This is
4249          *   identical to what happens with vLPIs.
4250          *
4251          * - Concurrent VSGIPENDR access: As it involves accessing two
4252          *   MMIO registers, this must be made atomic one way or another.
4253          */
4254         cpu = vpe_to_cpuid_lock(vpe, &flags);
4255         raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4256         base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4257         writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4258         do {
4259                 status = readl_relaxed(base + GICR_VSGIPENDR);
4260                 if (!(status & GICR_VSGIPENDR_BUSY))
4261                         goto out;
4262
4263                 count--;
4264                 if (!count) {
4265                         pr_err_ratelimited("Unable to get SGI status\n");
4266                         goto out;
4267                 }
4268                 cpu_relax();
4269                 udelay(1);
4270         } while (count);
4271
4272 out:
4273         raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4274         vpe_to_cpuid_unlock(vpe, flags);
4275
4276         if (!count)
4277                 return -ENXIO;
4278
4279         *val = !!(status & (1 << d->hwirq));
4280
4281         return 0;
4282 }
4283
4284 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4285 {
4286         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4287         struct its_cmd_info *info = vcpu_info;
4288
4289         switch (info->cmd_type) {
4290         case PROP_UPDATE_VSGI:
4291                 vpe->sgi_config[d->hwirq].priority = info->priority;
4292                 vpe->sgi_config[d->hwirq].group = info->group;
4293                 its_configure_sgi(d, false);
4294                 return 0;
4295
4296         default:
4297                 return -EINVAL;
4298         }
4299 }
4300
4301 static struct irq_chip its_sgi_irq_chip = {
4302         .name                   = "GICv4.1-sgi",
4303         .irq_mask               = its_sgi_mask_irq,
4304         .irq_unmask             = its_sgi_unmask_irq,
4305         .irq_set_affinity       = its_sgi_set_affinity,
4306         .irq_set_irqchip_state  = its_sgi_set_irqchip_state,
4307         .irq_get_irqchip_state  = its_sgi_get_irqchip_state,
4308         .irq_set_vcpu_affinity  = its_sgi_set_vcpu_affinity,
4309 };
4310
4311 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4312                                     unsigned int virq, unsigned int nr_irqs,
4313                                     void *args)
4314 {
4315         struct its_vpe *vpe = args;
4316         int i;
4317
4318         /* Yes, we do want 16 SGIs */
4319         WARN_ON(nr_irqs != 16);
4320
4321         for (i = 0; i < 16; i++) {
4322                 vpe->sgi_config[i].priority = 0;
4323                 vpe->sgi_config[i].enabled = false;
4324                 vpe->sgi_config[i].group = false;
4325
4326                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4327                                               &its_sgi_irq_chip, vpe);
4328                 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4329         }
4330
4331         return 0;
4332 }
4333
4334 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4335                                     unsigned int virq,
4336                                     unsigned int nr_irqs)
4337 {
4338         /* Nothing to do */
4339 }
4340
4341 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4342                                        struct irq_data *d, bool reserve)
4343 {
4344         /* Write out the initial SGI configuration */
4345         its_configure_sgi(d, false);
4346         return 0;
4347 }
4348
4349 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4350                                           struct irq_data *d)
4351 {
4352         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4353
4354         /*
4355          * The VSGI command is awkward:
4356          *
4357          * - To change the configuration, CLEAR must be set to false,
4358          *   leaving the pending bit unchanged.
4359          * - To clear the pending bit, CLEAR must be set to true, leaving
4360          *   the configuration unchanged.
4361          *
4362          * You just can't do both at once, hence the two commands below.
4363          */
4364         vpe->sgi_config[d->hwirq].enabled = false;
4365         its_configure_sgi(d, false);
4366         its_configure_sgi(d, true);
4367 }
4368
4369 static const struct irq_domain_ops its_sgi_domain_ops = {
4370         .alloc          = its_sgi_irq_domain_alloc,
4371         .free           = its_sgi_irq_domain_free,
4372         .activate       = its_sgi_irq_domain_activate,
4373         .deactivate     = its_sgi_irq_domain_deactivate,
4374 };
4375
4376 static int its_vpe_id_alloc(void)
4377 {
4378         return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4379 }
4380
4381 static void its_vpe_id_free(u16 id)
4382 {
4383         ida_simple_remove(&its_vpeid_ida, id);
4384 }
4385
4386 static int its_vpe_init(struct its_vpe *vpe)
4387 {
4388         struct page *vpt_page;
4389         int vpe_id;
4390
4391         /* Allocate vpe_id */
4392         vpe_id = its_vpe_id_alloc();
4393         if (vpe_id < 0)
4394                 return vpe_id;
4395
4396         /* Allocate VPT */
4397         vpt_page = its_allocate_pending_table(GFP_KERNEL);
4398         if (!vpt_page) {
4399                 its_vpe_id_free(vpe_id);
4400                 return -ENOMEM;
4401         }
4402
4403         if (!its_alloc_vpe_table(vpe_id)) {
4404                 its_vpe_id_free(vpe_id);
4405                 its_free_pending_table(vpt_page);
4406                 return -ENOMEM;
4407         }
4408
4409         raw_spin_lock_init(&vpe->vpe_lock);
4410         vpe->vpe_id = vpe_id;
4411         vpe->vpt_page = vpt_page;
4412         if (gic_rdists->has_rvpeid)
4413                 atomic_set(&vpe->vmapp_count, 0);
4414         else
4415                 vpe->vpe_proxy_event = -1;
4416
4417         return 0;
4418 }
4419
4420 static void its_vpe_teardown(struct its_vpe *vpe)
4421 {
4422         its_vpe_db_proxy_unmap(vpe);
4423         its_vpe_id_free(vpe->vpe_id);
4424         its_free_pending_table(vpe->vpt_page);
4425 }
4426
4427 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4428                                     unsigned int virq,
4429                                     unsigned int nr_irqs)
4430 {
4431         struct its_vm *vm = domain->host_data;
4432         int i;
4433
4434         irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4435
4436         for (i = 0; i < nr_irqs; i++) {
4437                 struct irq_data *data = irq_domain_get_irq_data(domain,
4438                                                                 virq + i);
4439                 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4440
4441                 BUG_ON(vm != vpe->its_vm);
4442
4443                 clear_bit(data->hwirq, vm->db_bitmap);
4444                 its_vpe_teardown(vpe);
4445                 irq_domain_reset_irq_data(data);
4446         }
4447
4448         if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4449                 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4450                 its_free_prop_table(vm->vprop_page);
4451         }
4452 }
4453
4454 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4455                                     unsigned int nr_irqs, void *args)
4456 {
4457         struct irq_chip *irqchip = &its_vpe_irq_chip;
4458         struct its_vm *vm = args;
4459         unsigned long *bitmap;
4460         struct page *vprop_page;
4461         int base, nr_ids, i, err = 0;
4462
4463         BUG_ON(!vm);
4464
4465         bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4466         if (!bitmap)
4467                 return -ENOMEM;
4468
4469         if (nr_ids < nr_irqs) {
4470                 its_lpi_free(bitmap, base, nr_ids);
4471                 return -ENOMEM;
4472         }
4473
4474         vprop_page = its_allocate_prop_table(GFP_KERNEL);
4475         if (!vprop_page) {
4476                 its_lpi_free(bitmap, base, nr_ids);
4477                 return -ENOMEM;
4478         }
4479
4480         vm->db_bitmap = bitmap;
4481         vm->db_lpi_base = base;
4482         vm->nr_db_lpis = nr_ids;
4483         vm->vprop_page = vprop_page;
4484
4485         if (gic_rdists->has_rvpeid)
4486                 irqchip = &its_vpe_4_1_irq_chip;
4487
4488         for (i = 0; i < nr_irqs; i++) {
4489                 vm->vpes[i]->vpe_db_lpi = base + i;
4490                 err = its_vpe_init(vm->vpes[i]);
4491                 if (err)
4492                         break;
4493                 err = its_irq_gic_domain_alloc(domain, virq + i,
4494                                                vm->vpes[i]->vpe_db_lpi);
4495                 if (err)
4496                         break;
4497                 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4498                                               irqchip, vm->vpes[i]);
4499                 set_bit(i, bitmap);
4500         }
4501
4502         if (err) {
4503                 if (i > 0)
4504                         its_vpe_irq_domain_free(domain, virq, i - 1);
4505
4506                 its_lpi_free(bitmap, base, nr_ids);
4507                 its_free_prop_table(vprop_page);
4508         }
4509
4510         return err;
4511 }
4512
4513 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4514                                        struct irq_data *d, bool reserve)
4515 {
4516         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4517         struct its_node *its;
4518
4519         /*
4520          * If we use the list map, we issue VMAPP on demand... Unless
4521          * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4522          * so that VSGIs can work.
4523          */
4524         if (!gic_requires_eager_mapping())
4525                 return 0;
4526
4527         /* Map the VPE to the first possible CPU */
4528         vpe->col_idx = cpumask_first(cpu_online_mask);
4529
4530         list_for_each_entry(its, &its_nodes, entry) {
4531                 if (!is_v4(its))
4532                         continue;
4533
4534                 its_send_vmapp(its, vpe, true);
4535                 its_send_vinvall(its, vpe);
4536         }
4537
4538         irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4539
4540         return 0;
4541 }
4542
4543 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4544                                           struct irq_data *d)
4545 {
4546         struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4547         struct its_node *its;
4548
4549         /*
4550          * If we use the list map on GICv4.0, we unmap the VPE once no
4551          * VLPIs are associated with the VM.
4552          */
4553         if (!gic_requires_eager_mapping())
4554                 return;
4555
4556         list_for_each_entry(its, &its_nodes, entry) {
4557                 if (!is_v4(its))
4558                         continue;
4559
4560                 its_send_vmapp(its, vpe, false);
4561         }
4562
4563         /*
4564          * There may be a direct read to the VPT after unmapping the
4565          * vPE, to guarantee the validity of this, we make the VPT
4566          * memory coherent with the CPU caches here.
4567          */
4568         if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4569                 gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4570                                         LPI_PENDBASE_SZ);
4571 }
4572
4573 static const struct irq_domain_ops its_vpe_domain_ops = {
4574         .alloc                  = its_vpe_irq_domain_alloc,
4575         .free                   = its_vpe_irq_domain_free,
4576         .activate               = its_vpe_irq_domain_activate,
4577         .deactivate             = its_vpe_irq_domain_deactivate,
4578 };
4579
4580 static int its_force_quiescent(void __iomem *base)
4581 {
4582         u32 count = 1000000;    /* 1s */
4583         u32 val;
4584
4585         val = readl_relaxed(base + GITS_CTLR);
4586         /*
4587          * GIC architecture specification requires the ITS to be both
4588          * disabled and quiescent for writes to GITS_BASER<n> or
4589          * GITS_CBASER to not have UNPREDICTABLE results.
4590          */
4591         if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4592                 return 0;
4593
4594         /* Disable the generation of all interrupts to this ITS */
4595         val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4596         writel_relaxed(val, base + GITS_CTLR);
4597
4598         /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4599         while (1) {
4600                 val = readl_relaxed(base + GITS_CTLR);
4601                 if (val & GITS_CTLR_QUIESCENT)
4602                         return 0;
4603
4604                 count--;
4605                 if (!count)
4606                         return -EBUSY;
4607
4608                 cpu_relax();
4609                 udelay(1);
4610         }
4611 }
4612
4613 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4614 {
4615         struct its_node *its = data;
4616
4617         /* erratum 22375: only alloc 8MB table size (20 bits) */
4618         its->typer &= ~GITS_TYPER_DEVBITS;
4619         its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4620         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4621
4622         return true;
4623 }
4624
4625 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4626 {
4627         struct its_node *its = data;
4628
4629         its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4630
4631         return true;
4632 }
4633
4634 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4635 {
4636         struct its_node *its = data;
4637
4638         /* On QDF2400, the size of the ITE is 16Bytes */
4639         its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4640         its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4641
4642         return true;
4643 }
4644
4645 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4646 {
4647         struct its_node *its = its_dev->its;
4648
4649         /*
4650          * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4651          * which maps 32-bit writes targeted at a separate window of
4652          * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4653          * with device ID taken from bits [device_id_bits + 1:2] of
4654          * the window offset.
4655          */
4656         return its->pre_its_base + (its_dev->device_id << 2);
4657 }
4658
4659 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4660 {
4661         struct its_node *its = data;
4662         u32 pre_its_window[2];
4663         u32 ids;
4664
4665         if (!fwnode_property_read_u32_array(its->fwnode_handle,
4666                                            "socionext,synquacer-pre-its",
4667                                            pre_its_window,
4668                                            ARRAY_SIZE(pre_its_window))) {
4669
4670                 its->pre_its_base = pre_its_window[0];
4671                 its->get_msi_base = its_irq_get_msi_base_pre_its;
4672
4673                 ids = ilog2(pre_its_window[1]) - 2;
4674                 if (device_ids(its) > ids) {
4675                         its->typer &= ~GITS_TYPER_DEVBITS;
4676                         its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4677                 }
4678
4679                 /* the pre-ITS breaks isolation, so disable MSI remapping */
4680                 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4681                 return true;
4682         }
4683         return false;
4684 }
4685
4686 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4687 {
4688         struct its_node *its = data;
4689
4690         /*
4691          * Hip07 insists on using the wrong address for the VLPI
4692          * page. Trick it into doing the right thing...
4693          */
4694         its->vlpi_redist_offset = SZ_128K;
4695         return true;
4696 }
4697
4698 static const struct gic_quirk its_quirks[] = {
4699 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4700         {
4701                 .desc   = "ITS: Cavium errata 22375, 24313",
4702                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
4703                 .mask   = 0xffff0fff,
4704                 .init   = its_enable_quirk_cavium_22375,
4705         },
4706 #endif
4707 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4708         {
4709                 .desc   = "ITS: Cavium erratum 23144",
4710                 .iidr   = 0xa100034c,   /* ThunderX pass 1.x */
4711                 .mask   = 0xffff0fff,
4712                 .init   = its_enable_quirk_cavium_23144,
4713         },
4714 #endif
4715 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4716         {
4717                 .desc   = "ITS: QDF2400 erratum 0065",
4718                 .iidr   = 0x00001070, /* QDF2400 ITS rev 1.x */
4719                 .mask   = 0xffffffff,
4720                 .init   = its_enable_quirk_qdf2400_e0065,
4721         },
4722 #endif
4723 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4724         {
4725                 /*
4726                  * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4727                  * implementation, but with a 'pre-ITS' added that requires
4728                  * special handling in software.
4729                  */
4730                 .desc   = "ITS: Socionext Synquacer pre-ITS",
4731                 .iidr   = 0x0001143b,
4732                 .mask   = 0xffffffff,
4733                 .init   = its_enable_quirk_socionext_synquacer,
4734         },
4735 #endif
4736 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4737         {
4738                 .desc   = "ITS: Hip07 erratum 161600802",
4739                 .iidr   = 0x00000004,
4740                 .mask   = 0xffffffff,
4741                 .init   = its_enable_quirk_hip07_161600802,
4742         },
4743 #endif
4744         {
4745         }
4746 };
4747
4748 static void its_enable_quirks(struct its_node *its)
4749 {
4750         u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4751
4752         gic_enable_quirks(iidr, its_quirks, its);
4753 }
4754
4755 static int its_save_disable(void)
4756 {
4757         struct its_node *its;
4758         int err = 0;
4759
4760         raw_spin_lock(&its_lock);
4761         list_for_each_entry(its, &its_nodes, entry) {
4762                 void __iomem *base;
4763
4764                 base = its->base;
4765                 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4766                 err = its_force_quiescent(base);
4767                 if (err) {
4768                         pr_err("ITS@%pa: failed to quiesce: %d\n",
4769                                &its->phys_base, err);
4770                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4771                         goto err;
4772                 }
4773
4774                 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4775         }
4776
4777 err:
4778         if (err) {
4779                 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4780                         void __iomem *base;
4781
4782                         base = its->base;
4783                         writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4784                 }
4785         }
4786         raw_spin_unlock(&its_lock);
4787
4788         return err;
4789 }
4790
4791 static void its_restore_enable(void)
4792 {
4793         struct its_node *its;
4794         int ret;
4795
4796         raw_spin_lock(&its_lock);
4797         list_for_each_entry(its, &its_nodes, entry) {
4798                 void __iomem *base;
4799                 int i;
4800
4801                 base = its->base;
4802
4803                 /*
4804                  * Make sure that the ITS is disabled. If it fails to quiesce,
4805                  * don't restore it since writing to CBASER or BASER<n>
4806                  * registers is undefined according to the GIC v3 ITS
4807                  * Specification.
4808                  *
4809                  * Firmware resuming with the ITS enabled is terminally broken.
4810                  */
4811                 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4812                 ret = its_force_quiescent(base);
4813                 if (ret) {
4814                         pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4815                                &its->phys_base, ret);
4816                         continue;
4817                 }
4818
4819                 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4820
4821                 /*
4822                  * Writing CBASER resets CREADR to 0, so make CWRITER and
4823                  * cmd_write line up with it.
4824                  */
4825                 its->cmd_write = its->cmd_base;
4826                 gits_write_cwriter(0, base + GITS_CWRITER);
4827
4828                 /* Restore GITS_BASER from the value cache. */
4829                 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4830                         struct its_baser *baser = &its->tables[i];
4831
4832                         if (!(baser->val & GITS_BASER_VALID))
4833                                 continue;
4834
4835                         its_write_baser(its, baser, baser->val);
4836                 }
4837                 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4838
4839                 /*
4840                  * Reinit the collection if it's stored in the ITS. This is
4841                  * indicated by the col_id being less than the HCC field.
4842                  * CID < HCC as specified in the GIC v3 Documentation.
4843                  */
4844                 if (its->collections[smp_processor_id()].col_id <
4845                     GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4846                         its_cpu_init_collection(its);
4847         }
4848         raw_spin_unlock(&its_lock);
4849 }
4850
4851 static struct syscore_ops its_syscore_ops = {
4852         .suspend = its_save_disable,
4853         .resume = its_restore_enable,
4854 };
4855
4856 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4857 {
4858         struct irq_domain *inner_domain;
4859         struct msi_domain_info *info;
4860
4861         info = kzalloc(sizeof(*info), GFP_KERNEL);
4862         if (!info)
4863                 return -ENOMEM;
4864
4865         inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
4866         if (!inner_domain) {
4867                 kfree(info);
4868                 return -ENOMEM;
4869         }
4870
4871         inner_domain->parent = its_parent;
4872         irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4873         inner_domain->flags |= its->msi_domain_flags;
4874         info->ops = &its_msi_domain_ops;
4875         info->data = its;
4876         inner_domain->host_data = info;
4877
4878         return 0;
4879 }
4880
4881 static int its_init_vpe_domain(void)
4882 {
4883         struct its_node *its;
4884         u32 devid;
4885         int entries;
4886
4887         if (gic_rdists->has_direct_lpi) {
4888                 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4889                 return 0;
4890         }
4891
4892         /* Any ITS will do, even if not v4 */
4893         its = list_first_entry(&its_nodes, struct its_node, entry);
4894
4895         entries = roundup_pow_of_two(nr_cpu_ids);
4896         vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4897                                  GFP_KERNEL);
4898         if (!vpe_proxy.vpes)
4899                 return -ENOMEM;
4900
4901         /* Use the last possible DevID */
4902         devid = GENMASK(device_ids(its) - 1, 0);
4903         vpe_proxy.dev = its_create_device(its, devid, entries, false);
4904         if (!vpe_proxy.dev) {
4905                 kfree(vpe_proxy.vpes);
4906                 pr_err("ITS: Can't allocate GICv4 proxy device\n");
4907                 return -ENOMEM;
4908         }
4909
4910         BUG_ON(entries > vpe_proxy.dev->nr_ites);
4911
4912         raw_spin_lock_init(&vpe_proxy.lock);
4913         vpe_proxy.next_victim = 0;
4914         pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4915                 devid, vpe_proxy.dev->nr_ites);
4916
4917         return 0;
4918 }
4919
4920 static int __init its_compute_its_list_map(struct resource *res,
4921                                            void __iomem *its_base)
4922 {
4923         int its_number;
4924         u32 ctlr;
4925
4926         /*
4927          * This is assumed to be done early enough that we're
4928          * guaranteed to be single-threaded, hence no
4929          * locking. Should this change, we should address
4930          * this.
4931          */
4932         its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4933         if (its_number >= GICv4_ITS_LIST_MAX) {
4934                 pr_err("ITS@%pa: No ITSList entry available!\n",
4935                        &res->start);
4936                 return -EINVAL;
4937         }
4938
4939         ctlr = readl_relaxed(its_base + GITS_CTLR);
4940         ctlr &= ~GITS_CTLR_ITS_NUMBER;
4941         ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4942         writel_relaxed(ctlr, its_base + GITS_CTLR);
4943         ctlr = readl_relaxed(its_base + GITS_CTLR);
4944         if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4945                 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4946                 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4947         }
4948
4949         if (test_and_set_bit(its_number, &its_list_map)) {
4950                 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4951                        &res->start, its_number);
4952                 return -EINVAL;
4953         }
4954
4955         return its_number;
4956 }
4957
4958 static int __init its_probe_one(struct resource *res,
4959                                 struct fwnode_handle *handle, int numa_node)
4960 {
4961         struct its_node *its;
4962         void __iomem *its_base;
4963         u32 val, ctlr;
4964         u64 baser, tmp, typer;
4965         struct page *page;
4966         int err;
4967
4968         its_base = ioremap(res->start, SZ_64K);
4969         if (!its_base) {
4970                 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4971                 return -ENOMEM;
4972         }
4973
4974         val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4975         if (val != 0x30 && val != 0x40) {
4976                 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4977                 err = -ENODEV;
4978                 goto out_unmap;
4979         }
4980
4981         err = its_force_quiescent(its_base);
4982         if (err) {
4983                 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4984                 goto out_unmap;
4985         }
4986
4987         pr_info("ITS %pR\n", res);
4988
4989         its = kzalloc(sizeof(*its), GFP_KERNEL);
4990         if (!its) {
4991                 err = -ENOMEM;
4992                 goto out_unmap;
4993         }
4994
4995         raw_spin_lock_init(&its->lock);
4996         mutex_init(&its->dev_alloc_lock);
4997         INIT_LIST_HEAD(&its->entry);
4998         INIT_LIST_HEAD(&its->its_device_list);
4999         typer = gic_read_typer(its_base + GITS_TYPER);
5000         its->typer = typer;
5001         its->base = its_base;
5002         its->phys_base = res->start;
5003         if (is_v4(its)) {
5004                 if (!(typer & GITS_TYPER_VMOVP)) {
5005                         err = its_compute_its_list_map(res, its_base);
5006                         if (err < 0)
5007                                 goto out_free_its;
5008
5009                         its->list_nr = err;
5010
5011                         pr_info("ITS@%pa: Using ITS number %d\n",
5012                                 &res->start, err);
5013                 } else {
5014                         pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5015                 }
5016
5017                 if (is_v4_1(its)) {
5018                         u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5019
5020                         its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5021                         if (!its->sgir_base) {
5022                                 err = -ENOMEM;
5023                                 goto out_free_its;
5024                         }
5025
5026                         its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5027
5028                         pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5029                                 &res->start, its->mpidr, svpet);
5030                 }
5031         }
5032
5033         its->numa_node = numa_node;
5034
5035         page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5036                                 get_order(ITS_CMD_QUEUE_SZ));
5037         if (!page) {
5038                 err = -ENOMEM;
5039                 goto out_unmap_sgir;
5040         }
5041         its->cmd_base = (void *)page_address(page);
5042         its->cmd_write = its->cmd_base;
5043         its->fwnode_handle = handle;
5044         its->get_msi_base = its_irq_get_msi_base;
5045         its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
5046
5047         its_enable_quirks(its);
5048
5049         err = its_alloc_tables(its);
5050         if (err)
5051                 goto out_free_cmd;
5052
5053         err = its_alloc_collections(its);
5054         if (err)
5055                 goto out_free_tables;
5056
5057         baser = (virt_to_phys(its->cmd_base)    |
5058                  GITS_CBASER_RaWaWb             |
5059                  GITS_CBASER_InnerShareable     |
5060                  (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5061                  GITS_CBASER_VALID);
5062
5063         gits_write_cbaser(baser, its->base + GITS_CBASER);
5064         tmp = gits_read_cbaser(its->base + GITS_CBASER);
5065
5066         if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5067                 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5068                         /*
5069                          * The HW reports non-shareable, we must
5070                          * remove the cacheability attributes as
5071                          * well.
5072                          */
5073                         baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5074                                    GITS_CBASER_CACHEABILITY_MASK);
5075                         baser |= GITS_CBASER_nC;
5076                         gits_write_cbaser(baser, its->base + GITS_CBASER);
5077                 }
5078                 pr_info("ITS: using cache flushing for cmd queue\n");
5079                 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5080         }
5081
5082         gits_write_cwriter(0, its->base + GITS_CWRITER);
5083         ctlr = readl_relaxed(its->base + GITS_CTLR);
5084         ctlr |= GITS_CTLR_ENABLE;
5085         if (is_v4(its))
5086                 ctlr |= GITS_CTLR_ImDe;
5087         writel_relaxed(ctlr, its->base + GITS_CTLR);
5088
5089         err = its_init_domain(handle, its);
5090         if (err)
5091                 goto out_free_tables;
5092
5093         raw_spin_lock(&its_lock);
5094         list_add(&its->entry, &its_nodes);
5095         raw_spin_unlock(&its_lock);
5096
5097         return 0;
5098
5099 out_free_tables:
5100         its_free_tables(its);
5101 out_free_cmd:
5102         free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5103 out_unmap_sgir:
5104         if (its->sgir_base)
5105                 iounmap(its->sgir_base);
5106 out_free_its:
5107         kfree(its);
5108 out_unmap:
5109         iounmap(its_base);
5110         pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5111         return err;
5112 }
5113
5114 static bool gic_rdists_supports_plpis(void)
5115 {
5116         return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5117 }
5118
5119 static int redist_disable_lpis(void)
5120 {
5121         void __iomem *rbase = gic_data_rdist_rd_base();
5122         u64 timeout = USEC_PER_SEC;
5123         u64 val;
5124
5125         if (!gic_rdists_supports_plpis()) {
5126                 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5127                 return -ENXIO;
5128         }
5129
5130         val = readl_relaxed(rbase + GICR_CTLR);
5131         if (!(val & GICR_CTLR_ENABLE_LPIS))
5132                 return 0;
5133
5134         /*
5135          * If coming via a CPU hotplug event, we don't need to disable
5136          * LPIs before trying to re-enable them. They are already
5137          * configured and all is well in the world.
5138          *
5139          * If running with preallocated tables, there is nothing to do.
5140          */
5141         if (gic_data_rdist()->lpi_enabled ||
5142             (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5143                 return 0;
5144
5145         /*
5146          * From that point on, we only try to do some damage control.
5147          */
5148         pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5149                 smp_processor_id());
5150         add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5151
5152         /* Disable LPIs */
5153         val &= ~GICR_CTLR_ENABLE_LPIS;
5154         writel_relaxed(val, rbase + GICR_CTLR);
5155
5156         /* Make sure any change to GICR_CTLR is observable by the GIC */
5157         dsb(sy);
5158
5159         /*
5160          * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5161          * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5162          * Error out if we time out waiting for RWP to clear.
5163          */
5164         while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5165                 if (!timeout) {
5166                         pr_err("CPU%d: Timeout while disabling LPIs\n",
5167                                smp_processor_id());
5168                         return -ETIMEDOUT;
5169                 }
5170                 udelay(1);
5171                 timeout--;
5172         }
5173
5174         /*
5175          * After it has been written to 1, it is IMPLEMENTATION
5176          * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5177          * cleared to 0. Error out if clearing the bit failed.
5178          */
5179         if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5180                 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5181                 return -EBUSY;
5182         }
5183
5184         return 0;
5185 }
5186
5187 int its_cpu_init(void)
5188 {
5189         if (!list_empty(&its_nodes)) {
5190                 int ret;
5191
5192                 ret = redist_disable_lpis();
5193                 if (ret)
5194                         return ret;
5195
5196                 its_cpu_init_lpis();
5197                 its_cpu_init_collections();
5198         }
5199
5200         return 0;
5201 }
5202
5203 static const struct of_device_id its_device_id[] = {
5204         {       .compatible     = "arm,gic-v3-its",     },
5205         {},
5206 };
5207
5208 static int __init its_of_probe(struct device_node *node)
5209 {
5210         struct device_node *np;
5211         struct resource res;
5212
5213         for (np = of_find_matching_node(node, its_device_id); np;
5214              np = of_find_matching_node(np, its_device_id)) {
5215                 if (!of_device_is_available(np))
5216                         continue;
5217                 if (!of_property_read_bool(np, "msi-controller")) {
5218                         pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5219                                 np);
5220                         continue;
5221                 }
5222
5223                 if (of_address_to_resource(np, 0, &res)) {
5224                         pr_warn("%pOF: no regs?\n", np);
5225                         continue;
5226                 }
5227
5228                 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5229         }
5230         return 0;
5231 }
5232
5233 #ifdef CONFIG_ACPI
5234
5235 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5236
5237 #ifdef CONFIG_ACPI_NUMA
5238 struct its_srat_map {
5239         /* numa node id */
5240         u32     numa_node;
5241         /* GIC ITS ID */
5242         u32     its_id;
5243 };
5244
5245 static struct its_srat_map *its_srat_maps __initdata;
5246 static int its_in_srat __initdata;
5247
5248 static int __init acpi_get_its_numa_node(u32 its_id)
5249 {
5250         int i;
5251
5252         for (i = 0; i < its_in_srat; i++) {
5253                 if (its_id == its_srat_maps[i].its_id)
5254                         return its_srat_maps[i].numa_node;
5255         }
5256         return NUMA_NO_NODE;
5257 }
5258
5259 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5260                                           const unsigned long end)
5261 {
5262         return 0;
5263 }
5264
5265 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5266                          const unsigned long end)
5267 {
5268         int node;
5269         struct acpi_srat_gic_its_affinity *its_affinity;
5270
5271         its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5272         if (!its_affinity)
5273                 return -EINVAL;
5274
5275         if (its_affinity->header.length < sizeof(*its_affinity)) {
5276                 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5277                         its_affinity->header.length);
5278                 return -EINVAL;
5279         }
5280
5281         /*
5282          * Note that in theory a new proximity node could be created by this
5283          * entry as it is an SRAT resource allocation structure.
5284          * We do not currently support doing so.
5285          */
5286         node = pxm_to_node(its_affinity->proximity_domain);
5287
5288         if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5289                 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5290                 return 0;
5291         }
5292
5293         its_srat_maps[its_in_srat].numa_node = node;
5294         its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5295         its_in_srat++;
5296         pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5297                 its_affinity->proximity_domain, its_affinity->its_id, node);
5298
5299         return 0;
5300 }
5301
5302 static void __init acpi_table_parse_srat_its(void)
5303 {
5304         int count;
5305
5306         count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5307                         sizeof(struct acpi_table_srat),
5308                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5309                         gic_acpi_match_srat_its, 0);
5310         if (count <= 0)
5311                 return;
5312
5313         its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5314                                       GFP_KERNEL);
5315         if (!its_srat_maps)
5316                 return;
5317
5318         acpi_table_parse_entries(ACPI_SIG_SRAT,
5319                         sizeof(struct acpi_table_srat),
5320                         ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5321                         gic_acpi_parse_srat_its, 0);
5322 }
5323
5324 /* free the its_srat_maps after ITS probing */
5325 static void __init acpi_its_srat_maps_free(void)
5326 {
5327         kfree(its_srat_maps);
5328 }
5329 #else
5330 static void __init acpi_table_parse_srat_its(void)      { }
5331 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
5332 static void __init acpi_its_srat_maps_free(void) { }
5333 #endif
5334
5335 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5336                                           const unsigned long end)
5337 {
5338         struct acpi_madt_generic_translator *its_entry;
5339         struct fwnode_handle *dom_handle;
5340         struct resource res;
5341         int err;
5342
5343         its_entry = (struct acpi_madt_generic_translator *)header;
5344         memset(&res, 0, sizeof(res));
5345         res.start = its_entry->base_address;
5346         res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5347         res.flags = IORESOURCE_MEM;
5348
5349         dom_handle = irq_domain_alloc_fwnode(&res.start);
5350         if (!dom_handle) {
5351                 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5352                        &res.start);
5353                 return -ENOMEM;
5354         }
5355
5356         err = iort_register_domain_token(its_entry->translation_id, res.start,
5357                                          dom_handle);
5358         if (err) {
5359                 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5360                        &res.start, its_entry->translation_id);
5361                 goto dom_err;
5362         }
5363
5364         err = its_probe_one(&res, dom_handle,
5365                         acpi_get_its_numa_node(its_entry->translation_id));
5366         if (!err)
5367                 return 0;
5368
5369         iort_deregister_domain_token(its_entry->translation_id);
5370 dom_err:
5371         irq_domain_free_fwnode(dom_handle);
5372         return err;
5373 }
5374
5375 static void __init its_acpi_probe(void)
5376 {
5377         acpi_table_parse_srat_its();
5378         acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5379                               gic_acpi_parse_madt_its, 0);
5380         acpi_its_srat_maps_free();
5381 }
5382 #else
5383 static void __init its_acpi_probe(void) { }
5384 #endif
5385
5386 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5387                     struct irq_domain *parent_domain)
5388 {
5389         struct device_node *of_node;
5390         struct its_node *its;
5391         bool has_v4 = false;
5392         bool has_v4_1 = false;
5393         int err;
5394
5395         gic_rdists = rdists;
5396
5397         its_parent = parent_domain;
5398         of_node = to_of_node(handle);
5399         if (of_node)
5400                 its_of_probe(of_node);
5401         else
5402                 its_acpi_probe();
5403
5404         if (list_empty(&its_nodes)) {
5405                 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5406                 return -ENXIO;
5407         }
5408
5409         err = allocate_lpi_tables();
5410         if (err)
5411                 return err;
5412
5413         list_for_each_entry(its, &its_nodes, entry) {
5414                 has_v4 |= is_v4(its);
5415                 has_v4_1 |= is_v4_1(its);
5416         }
5417
5418         /* Don't bother with inconsistent systems */
5419         if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5420                 rdists->has_rvpeid = false;
5421
5422         if (has_v4 & rdists->has_vlpis) {
5423                 const struct irq_domain_ops *sgi_ops;
5424
5425                 if (has_v4_1)
5426                         sgi_ops = &its_sgi_domain_ops;
5427                 else
5428                         sgi_ops = NULL;
5429
5430                 if (its_init_vpe_domain() ||
5431                     its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5432                         rdists->has_vlpis = false;
5433                         pr_err("ITS: Disabling GICv4 support\n");
5434                 }
5435         }
5436
5437         register_syscore_ops(&its_syscore_ops);
5438
5439         return 0;
5440 }