Merge tag 'driver-core-6.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / iommu / ipmmu-vmsa.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * IOMMU API for Renesas VMSA-compatible IPMMU
4  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
5  *
6  * Copyright (C) 2014-2020 Renesas Electronics Corporation
7  */
8
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/err.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/iopoll.h>
18 #include <linux/io-pgtable.h>
19 #include <linux/iommu.h>
20 #include <linux/of.h>
21 #include <linux/of_platform.h>
22 #include <linux/pci.h>
23 #include <linux/platform_device.h>
24 #include <linux/sizes.h>
25 #include <linux/slab.h>
26 #include <linux/sys_soc.h>
27
28 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
29 #include <asm/dma-iommu.h>
30 #else
31 #define arm_iommu_create_mapping(...)   NULL
32 #define arm_iommu_attach_device(...)    -ENODEV
33 #define arm_iommu_release_mapping(...)  do {} while (0)
34 #endif
35
36 #define IPMMU_CTX_MAX           16U
37 #define IPMMU_CTX_INVALID       -1
38
39 #define IPMMU_UTLB_MAX          64U
40
41 struct ipmmu_features {
42         bool use_ns_alias_offset;
43         bool has_cache_leaf_nodes;
44         unsigned int number_of_contexts;
45         unsigned int num_utlbs;
46         bool setup_imbuscr;
47         bool twobit_imttbcr_sl0;
48         bool reserved_context;
49         bool cache_snoop;
50         unsigned int ctx_offset_base;
51         unsigned int ctx_offset_stride;
52         unsigned int utlb_offset_base;
53 };
54
55 struct ipmmu_vmsa_device {
56         struct device *dev;
57         void __iomem *base;
58         struct iommu_device iommu;
59         struct ipmmu_vmsa_device *root;
60         const struct ipmmu_features *features;
61         unsigned int num_ctx;
62         spinlock_t lock;                        /* Protects ctx and domains[] */
63         DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
64         struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
65         s8 utlb_ctx[IPMMU_UTLB_MAX];
66
67         struct dma_iommu_mapping *mapping;
68 };
69
70 struct ipmmu_vmsa_domain {
71         struct ipmmu_vmsa_device *mmu;
72         struct iommu_domain io_domain;
73
74         struct io_pgtable_cfg cfg;
75         struct io_pgtable_ops *iop;
76
77         unsigned int context_id;
78         struct mutex mutex;                     /* Protects mappings */
79 };
80
81 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
82 {
83         return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
84 }
85
86 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
87 {
88         return dev_iommu_priv_get(dev);
89 }
90
91 #define TLB_LOOP_TIMEOUT                100     /* 100us */
92
93 /* -----------------------------------------------------------------------------
94  * Registers Definition
95  */
96
97 #define IM_NS_ALIAS_OFFSET              0x800
98
99 /* MMU "context" registers */
100 #define IMCTR                           0x0000          /* R-Car Gen2/3 */
101 #define IMCTR_INTEN                     (1 << 2)        /* R-Car Gen2/3 */
102 #define IMCTR_FLUSH                     (1 << 1)        /* R-Car Gen2/3 */
103 #define IMCTR_MMUEN                     (1 << 0)        /* R-Car Gen2/3 */
104
105 #define IMTTBCR                         0x0008          /* R-Car Gen2/3 */
106 #define IMTTBCR_EAE                     (1 << 31)       /* R-Car Gen2/3 */
107 #define IMTTBCR_SH0_INNER_SHAREABLE     (3 << 12)       /* R-Car Gen2 only */
108 #define IMTTBCR_ORGN0_WB_WA             (1 << 10)       /* R-Car Gen2 only */
109 #define IMTTBCR_IRGN0_WB_WA             (1 << 8)        /* R-Car Gen2 only */
110 #define IMTTBCR_SL0_TWOBIT_LVL_1        (2 << 6)        /* R-Car Gen3 only */
111 #define IMTTBCR_SL0_LVL_1               (1 << 4)        /* R-Car Gen2 only */
112
113 #define IMBUSCR                         0x000c          /* R-Car Gen2 only */
114 #define IMBUSCR_DVM                     (1 << 2)        /* R-Car Gen2 only */
115 #define IMBUSCR_BUSSEL_MASK             (3 << 0)        /* R-Car Gen2 only */
116
117 #define IMTTLBR0                        0x0010          /* R-Car Gen2/3 */
118 #define IMTTUBR0                        0x0014          /* R-Car Gen2/3 */
119
120 #define IMSTR                           0x0020          /* R-Car Gen2/3 */
121 #define IMSTR_MHIT                      (1 << 4)        /* R-Car Gen2/3 */
122 #define IMSTR_ABORT                     (1 << 2)        /* R-Car Gen2/3 */
123 #define IMSTR_PF                        (1 << 1)        /* R-Car Gen2/3 */
124 #define IMSTR_TF                        (1 << 0)        /* R-Car Gen2/3 */
125
126 #define IMMAIR0                         0x0028          /* R-Car Gen2/3 */
127
128 #define IMELAR                          0x0030          /* R-Car Gen2/3, IMEAR on R-Car Gen2 */
129 #define IMEUAR                          0x0034          /* R-Car Gen3 only */
130
131 /* uTLB registers */
132 #define IMUCTR(n)                       ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
133 #define IMUCTR0(n)                      (0x0300 + ((n) * 16))           /* R-Car Gen2/3 */
134 #define IMUCTR32(n)                     (0x0600 + (((n) - 32) * 16))    /* R-Car Gen3 only */
135 #define IMUCTR_TTSEL_MMU(n)             ((n) << 4)      /* R-Car Gen2/3 */
136 #define IMUCTR_FLUSH                    (1 << 1)        /* R-Car Gen2/3 */
137 #define IMUCTR_MMUEN                    (1 << 0)        /* R-Car Gen2/3 */
138
139 #define IMUASID(n)                      ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
140 #define IMUASID0(n)                     (0x0308 + ((n) * 16))           /* R-Car Gen2/3 */
141 #define IMUASID32(n)                    (0x0608 + (((n) - 32) * 16))    /* R-Car Gen3 only */
142
143 /* -----------------------------------------------------------------------------
144  * Root device handling
145  */
146
147 static struct platform_driver ipmmu_driver;
148
149 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
150 {
151         return mmu->root == mmu;
152 }
153
154 static int __ipmmu_check_device(struct device *dev, void *data)
155 {
156         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
157         struct ipmmu_vmsa_device **rootp = data;
158
159         if (ipmmu_is_root(mmu))
160                 *rootp = mmu;
161
162         return 0;
163 }
164
165 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
166 {
167         struct ipmmu_vmsa_device *root = NULL;
168
169         return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
170                                       __ipmmu_check_device) == 0 ? root : NULL;
171 }
172
173 /* -----------------------------------------------------------------------------
174  * Read/Write Access
175  */
176
177 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
178 {
179         return ioread32(mmu->base + offset);
180 }
181
182 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
183                         u32 data)
184 {
185         iowrite32(data, mmu->base + offset);
186 }
187
188 static unsigned int ipmmu_ctx_reg(struct ipmmu_vmsa_device *mmu,
189                                   unsigned int context_id, unsigned int reg)
190 {
191         unsigned int base = mmu->features->ctx_offset_base;
192
193         if (context_id > 7)
194                 base += 0x800 - 8 * 0x40;
195
196         return base + context_id * mmu->features->ctx_offset_stride + reg;
197 }
198
199 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_device *mmu,
200                           unsigned int context_id, unsigned int reg)
201 {
202         return ipmmu_read(mmu, ipmmu_ctx_reg(mmu, context_id, reg));
203 }
204
205 static void ipmmu_ctx_write(struct ipmmu_vmsa_device *mmu,
206                             unsigned int context_id, unsigned int reg, u32 data)
207 {
208         ipmmu_write(mmu, ipmmu_ctx_reg(mmu, context_id, reg), data);
209 }
210
211 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
212                                unsigned int reg)
213 {
214         return ipmmu_ctx_read(domain->mmu->root, domain->context_id, reg);
215 }
216
217 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
218                                  unsigned int reg, u32 data)
219 {
220         ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
221 }
222
223 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
224                                 unsigned int reg, u32 data)
225 {
226         if (domain->mmu != domain->mmu->root)
227                 ipmmu_ctx_write(domain->mmu, domain->context_id, reg, data);
228
229         ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
230 }
231
232 static u32 ipmmu_utlb_reg(struct ipmmu_vmsa_device *mmu, unsigned int reg)
233 {
234         return mmu->features->utlb_offset_base + reg;
235 }
236
237 static void ipmmu_imuasid_write(struct ipmmu_vmsa_device *mmu,
238                                 unsigned int utlb, u32 data)
239 {
240         ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUASID(utlb)), data);
241 }
242
243 static void ipmmu_imuctr_write(struct ipmmu_vmsa_device *mmu,
244                                unsigned int utlb, u32 data)
245 {
246         ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUCTR(utlb)), data);
247 }
248
249 /* -----------------------------------------------------------------------------
250  * TLB and microTLB Management
251  */
252
253 /* Wait for any pending TLB invalidations to complete */
254 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
255 {
256         u32 val;
257
258         if (read_poll_timeout_atomic(ipmmu_ctx_read_root, val,
259                                      !(val & IMCTR_FLUSH), 1, TLB_LOOP_TIMEOUT,
260                                      false, domain, IMCTR))
261                 dev_err_ratelimited(domain->mmu->dev,
262                         "TLB sync timed out -- MMU may be deadlocked\n");
263 }
264
265 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
266 {
267         u32 reg;
268
269         reg = ipmmu_ctx_read_root(domain, IMCTR);
270         reg |= IMCTR_FLUSH;
271         ipmmu_ctx_write_all(domain, IMCTR, reg);
272
273         ipmmu_tlb_sync(domain);
274 }
275
276 /*
277  * Enable MMU translation for the microTLB.
278  */
279 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
280                               unsigned int utlb)
281 {
282         struct ipmmu_vmsa_device *mmu = domain->mmu;
283
284         /*
285          * TODO: Reference-count the microTLB as several bus masters can be
286          * connected to the same microTLB.
287          */
288
289         /* TODO: What should we set the ASID to ? */
290         ipmmu_imuasid_write(mmu, utlb, 0);
291         /* TODO: Do we need to flush the microTLB ? */
292         ipmmu_imuctr_write(mmu, utlb, IMUCTR_TTSEL_MMU(domain->context_id) |
293                                       IMUCTR_FLUSH | IMUCTR_MMUEN);
294         mmu->utlb_ctx[utlb] = domain->context_id;
295 }
296
297 /*
298  * Disable MMU translation for the microTLB.
299  */
300 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
301                                unsigned int utlb)
302 {
303         struct ipmmu_vmsa_device *mmu = domain->mmu;
304
305         ipmmu_imuctr_write(mmu, utlb, 0);
306         mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
307 }
308
309 static void ipmmu_tlb_flush_all(void *cookie)
310 {
311         struct ipmmu_vmsa_domain *domain = cookie;
312
313         ipmmu_tlb_invalidate(domain);
314 }
315
316 static void ipmmu_tlb_flush(unsigned long iova, size_t size,
317                                 size_t granule, void *cookie)
318 {
319         ipmmu_tlb_flush_all(cookie);
320 }
321
322 static const struct iommu_flush_ops ipmmu_flush_ops = {
323         .tlb_flush_all = ipmmu_tlb_flush_all,
324         .tlb_flush_walk = ipmmu_tlb_flush,
325 };
326
327 /* -----------------------------------------------------------------------------
328  * Domain/Context Management
329  */
330
331 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
332                                          struct ipmmu_vmsa_domain *domain)
333 {
334         unsigned long flags;
335         int ret;
336
337         spin_lock_irqsave(&mmu->lock, flags);
338
339         ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
340         if (ret != mmu->num_ctx) {
341                 mmu->domains[ret] = domain;
342                 set_bit(ret, mmu->ctx);
343         } else
344                 ret = -EBUSY;
345
346         spin_unlock_irqrestore(&mmu->lock, flags);
347
348         return ret;
349 }
350
351 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
352                                       unsigned int context_id)
353 {
354         unsigned long flags;
355
356         spin_lock_irqsave(&mmu->lock, flags);
357
358         clear_bit(context_id, mmu->ctx);
359         mmu->domains[context_id] = NULL;
360
361         spin_unlock_irqrestore(&mmu->lock, flags);
362 }
363
364 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
365 {
366         u64 ttbr;
367         u32 tmp;
368
369         /* TTBR0 */
370         ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr;
371         ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
372         ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
373
374         /*
375          * TTBCR
376          * We use long descriptors and allocate the whole 32-bit VA space to
377          * TTBR0.
378          */
379         if (domain->mmu->features->twobit_imttbcr_sl0)
380                 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
381         else
382                 tmp = IMTTBCR_SL0_LVL_1;
383
384         if (domain->mmu->features->cache_snoop)
385                 tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
386                        IMTTBCR_IRGN0_WB_WA;
387
388         ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp);
389
390         /* MAIR0 */
391         ipmmu_ctx_write_root(domain, IMMAIR0,
392                              domain->cfg.arm_lpae_s1_cfg.mair);
393
394         /* IMBUSCR */
395         if (domain->mmu->features->setup_imbuscr)
396                 ipmmu_ctx_write_root(domain, IMBUSCR,
397                                      ipmmu_ctx_read_root(domain, IMBUSCR) &
398                                      ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
399
400         /*
401          * IMSTR
402          * Clear all interrupt flags.
403          */
404         ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
405
406         /*
407          * IMCTR
408          * Enable the MMU and interrupt generation. The long-descriptor
409          * translation table format doesn't use TEX remapping. Don't enable AF
410          * software management as we have no use for it. Flush the TLB as
411          * required when modifying the context registers.
412          */
413         ipmmu_ctx_write_all(domain, IMCTR,
414                             IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
415 }
416
417 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
418 {
419         int ret;
420
421         /*
422          * Allocate the page table operations.
423          *
424          * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
425          * access, Long-descriptor format" that the NStable bit being set in a
426          * table descriptor will result in the NStable and NS bits of all child
427          * entries being ignored and considered as being set. The IPMMU seems
428          * not to comply with this, as it generates a secure access page fault
429          * if any of the NStable and NS bits isn't set when running in
430          * non-secure mode.
431          */
432         domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
433         domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
434         domain->cfg.ias = 32;
435         domain->cfg.oas = 40;
436         domain->cfg.tlb = &ipmmu_flush_ops;
437         domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
438         domain->io_domain.geometry.force_aperture = true;
439         /*
440          * TODO: Add support for coherent walk through CCI with DVM and remove
441          * cache handling. For now, delegate it to the io-pgtable code.
442          */
443         domain->cfg.coherent_walk = false;
444         domain->cfg.iommu_dev = domain->mmu->root->dev;
445
446         /*
447          * Find an unused context.
448          */
449         ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
450         if (ret < 0)
451                 return ret;
452
453         domain->context_id = ret;
454
455         domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
456                                            domain);
457         if (!domain->iop) {
458                 ipmmu_domain_free_context(domain->mmu->root,
459                                           domain->context_id);
460                 return -EINVAL;
461         }
462
463         ipmmu_domain_setup_context(domain);
464         return 0;
465 }
466
467 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
468 {
469         if (!domain->mmu)
470                 return;
471
472         /*
473          * Disable the context. Flush the TLB as required when modifying the
474          * context registers.
475          *
476          * TODO: Is TLB flush really needed ?
477          */
478         ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
479         ipmmu_tlb_sync(domain);
480         ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
481 }
482
483 /* -----------------------------------------------------------------------------
484  * Fault Handling
485  */
486
487 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
488 {
489         const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
490         struct ipmmu_vmsa_device *mmu = domain->mmu;
491         unsigned long iova;
492         u32 status;
493
494         status = ipmmu_ctx_read_root(domain, IMSTR);
495         if (!(status & err_mask))
496                 return IRQ_NONE;
497
498         iova = ipmmu_ctx_read_root(domain, IMELAR);
499         if (IS_ENABLED(CONFIG_64BIT))
500                 iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
501
502         /*
503          * Clear the error status flags. Unlike traditional interrupt flag
504          * registers that must be cleared by writing 1, this status register
505          * seems to require 0. The error address register must be read before,
506          * otherwise its value will be 0.
507          */
508         ipmmu_ctx_write_root(domain, IMSTR, 0);
509
510         /* Log fatal errors. */
511         if (status & IMSTR_MHIT)
512                 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
513                                     iova);
514         if (status & IMSTR_ABORT)
515                 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
516                                     iova);
517
518         if (!(status & (IMSTR_PF | IMSTR_TF)))
519                 return IRQ_NONE;
520
521         /*
522          * Try to handle page faults and translation faults.
523          *
524          * TODO: We need to look up the faulty device based on the I/O VA. Use
525          * the IOMMU device for now.
526          */
527         if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
528                 return IRQ_HANDLED;
529
530         dev_err_ratelimited(mmu->dev,
531                             "Unhandled fault: status 0x%08x iova 0x%lx\n",
532                             status, iova);
533
534         return IRQ_HANDLED;
535 }
536
537 static irqreturn_t ipmmu_irq(int irq, void *dev)
538 {
539         struct ipmmu_vmsa_device *mmu = dev;
540         irqreturn_t status = IRQ_NONE;
541         unsigned int i;
542         unsigned long flags;
543
544         spin_lock_irqsave(&mmu->lock, flags);
545
546         /*
547          * Check interrupts for all active contexts.
548          */
549         for (i = 0; i < mmu->num_ctx; i++) {
550                 if (!mmu->domains[i])
551                         continue;
552                 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
553                         status = IRQ_HANDLED;
554         }
555
556         spin_unlock_irqrestore(&mmu->lock, flags);
557
558         return status;
559 }
560
561 /* -----------------------------------------------------------------------------
562  * IOMMU Operations
563  */
564
565 static struct iommu_domain *ipmmu_domain_alloc_paging(struct device *dev)
566 {
567         struct ipmmu_vmsa_domain *domain;
568
569         domain = kzalloc(sizeof(*domain), GFP_KERNEL);
570         if (!domain)
571                 return NULL;
572
573         mutex_init(&domain->mutex);
574
575         return &domain->io_domain;
576 }
577
578 static void ipmmu_domain_free(struct iommu_domain *io_domain)
579 {
580         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
581
582         /*
583          * Free the domain resources. We assume that all devices have already
584          * been detached.
585          */
586         ipmmu_domain_destroy_context(domain);
587         free_io_pgtable_ops(domain->iop);
588         kfree(domain);
589 }
590
591 static int ipmmu_attach_device(struct iommu_domain *io_domain,
592                                struct device *dev)
593 {
594         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
595         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
596         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
597         unsigned int i;
598         int ret = 0;
599
600         if (!mmu) {
601                 dev_err(dev, "Cannot attach to IPMMU\n");
602                 return -ENXIO;
603         }
604
605         mutex_lock(&domain->mutex);
606
607         if (!domain->mmu) {
608                 /* The domain hasn't been used yet, initialize it. */
609                 domain->mmu = mmu;
610                 ret = ipmmu_domain_init_context(domain);
611                 if (ret < 0) {
612                         dev_err(dev, "Unable to initialize IPMMU context\n");
613                         domain->mmu = NULL;
614                 } else {
615                         dev_info(dev, "Using IPMMU context %u\n",
616                                  domain->context_id);
617                 }
618         } else if (domain->mmu != mmu) {
619                 /*
620                  * Something is wrong, we can't attach two devices using
621                  * different IOMMUs to the same domain.
622                  */
623                 ret = -EINVAL;
624         } else
625                 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
626
627         mutex_unlock(&domain->mutex);
628
629         if (ret < 0)
630                 return ret;
631
632         for (i = 0; i < fwspec->num_ids; ++i)
633                 ipmmu_utlb_enable(domain, fwspec->ids[i]);
634
635         return 0;
636 }
637
638 static int ipmmu_iommu_identity_attach(struct iommu_domain *identity_domain,
639                                        struct device *dev)
640 {
641         struct iommu_domain *io_domain = iommu_get_domain_for_dev(dev);
642         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
643         struct ipmmu_vmsa_domain *domain;
644         unsigned int i;
645
646         if (io_domain == identity_domain || !io_domain)
647                 return 0;
648
649         domain = to_vmsa_domain(io_domain);
650         for (i = 0; i < fwspec->num_ids; ++i)
651                 ipmmu_utlb_disable(domain, fwspec->ids[i]);
652
653         /*
654          * TODO: Optimize by disabling the context when no device is attached.
655          */
656         return 0;
657 }
658
659 static struct iommu_domain_ops ipmmu_iommu_identity_ops = {
660         .attach_dev = ipmmu_iommu_identity_attach,
661 };
662
663 static struct iommu_domain ipmmu_iommu_identity_domain = {
664         .type = IOMMU_DOMAIN_IDENTITY,
665         .ops = &ipmmu_iommu_identity_ops,
666 };
667
668 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
669                      phys_addr_t paddr, size_t pgsize, size_t pgcount,
670                      int prot, gfp_t gfp, size_t *mapped)
671 {
672         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
673
674         return domain->iop->map_pages(domain->iop, iova, paddr, pgsize, pgcount,
675                                       prot, gfp, mapped);
676 }
677
678 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
679                           size_t pgsize, size_t pgcount,
680                           struct iommu_iotlb_gather *gather)
681 {
682         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
683
684         return domain->iop->unmap_pages(domain->iop, iova, pgsize, pgcount, gather);
685 }
686
687 static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain)
688 {
689         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
690
691         if (domain->mmu)
692                 ipmmu_tlb_flush_all(domain);
693 }
694
695 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain,
696                              struct iommu_iotlb_gather *gather)
697 {
698         ipmmu_flush_iotlb_all(io_domain);
699 }
700
701 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
702                                       dma_addr_t iova)
703 {
704         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
705
706         /* TODO: Is locking needed ? */
707
708         return domain->iop->iova_to_phys(domain->iop, iova);
709 }
710
711 static int ipmmu_init_platform_device(struct device *dev,
712                                       const struct of_phandle_args *args)
713 {
714         struct platform_device *ipmmu_pdev;
715
716         ipmmu_pdev = of_find_device_by_node(args->np);
717         if (!ipmmu_pdev)
718                 return -ENODEV;
719
720         dev_iommu_priv_set(dev, platform_get_drvdata(ipmmu_pdev));
721
722         return 0;
723 }
724
725 static const struct soc_device_attribute soc_needs_opt_in[] = {
726         { .family = "R-Car Gen3", },
727         { .family = "R-Car Gen4", },
728         { .family = "RZ/G2", },
729         { /* sentinel */ }
730 };
731
732 static const struct soc_device_attribute soc_denylist[] = {
733         { .soc_id = "r8a774a1", },
734         { .soc_id = "r8a7795", .revision = "ES2.*" },
735         { .soc_id = "r8a7796", },
736         { /* sentinel */ }
737 };
738
739 static const char * const devices_allowlist[] = {
740         "ee100000.mmc",
741         "ee120000.mmc",
742         "ee140000.mmc",
743         "ee160000.mmc"
744 };
745
746 static bool ipmmu_device_is_allowed(struct device *dev)
747 {
748         unsigned int i;
749
750         /*
751          * R-Car Gen3/4 and RZ/G2 use the allow list to opt-in devices.
752          * For Other SoCs, this returns true anyway.
753          */
754         if (!soc_device_match(soc_needs_opt_in))
755                 return true;
756
757         /* Check whether this SoC can use the IPMMU correctly or not */
758         if (soc_device_match(soc_denylist))
759                 return false;
760
761         /* Check whether this device is a PCI device */
762         if (dev_is_pci(dev))
763                 return true;
764
765         /* Check whether this device can work with the IPMMU */
766         for (i = 0; i < ARRAY_SIZE(devices_allowlist); i++) {
767                 if (!strcmp(dev_name(dev), devices_allowlist[i]))
768                         return true;
769         }
770
771         /* Otherwise, do not allow use of IPMMU */
772         return false;
773 }
774
775 static int ipmmu_of_xlate(struct device *dev,
776                           const struct of_phandle_args *spec)
777 {
778         if (!ipmmu_device_is_allowed(dev))
779                 return -ENODEV;
780
781         iommu_fwspec_add_ids(dev, spec->args, 1);
782
783         /* Initialize once - xlate() will call multiple times */
784         if (to_ipmmu(dev))
785                 return 0;
786
787         return ipmmu_init_platform_device(dev, spec);
788 }
789
790 static int ipmmu_init_arm_mapping(struct device *dev)
791 {
792         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
793         int ret;
794
795         /*
796          * Create the ARM mapping, used by the ARM DMA mapping core to allocate
797          * VAs. This will allocate a corresponding IOMMU domain.
798          *
799          * TODO:
800          * - Create one mapping per context (TLB).
801          * - Make the mapping size configurable ? We currently use a 2GB mapping
802          *   at a 1GB offset to ensure that NULL VAs will fault.
803          */
804         if (!mmu->mapping) {
805                 struct dma_iommu_mapping *mapping;
806
807                 mapping = arm_iommu_create_mapping(&platform_bus_type,
808                                                    SZ_1G, SZ_2G);
809                 if (IS_ERR(mapping)) {
810                         dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
811                         ret = PTR_ERR(mapping);
812                         goto error;
813                 }
814
815                 mmu->mapping = mapping;
816         }
817
818         /* Attach the ARM VA mapping to the device. */
819         ret = arm_iommu_attach_device(dev, mmu->mapping);
820         if (ret < 0) {
821                 dev_err(dev, "Failed to attach device to VA mapping\n");
822                 goto error;
823         }
824
825         return 0;
826
827 error:
828         if (mmu->mapping)
829                 arm_iommu_release_mapping(mmu->mapping);
830
831         return ret;
832 }
833
834 static struct iommu_device *ipmmu_probe_device(struct device *dev)
835 {
836         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
837
838         /*
839          * Only let through devices that have been verified in xlate()
840          */
841         if (!mmu)
842                 return ERR_PTR(-ENODEV);
843
844         return &mmu->iommu;
845 }
846
847 static void ipmmu_probe_finalize(struct device *dev)
848 {
849         int ret = 0;
850
851         if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA))
852                 ret = ipmmu_init_arm_mapping(dev);
853
854         if (ret)
855                 dev_err(dev, "Can't create IOMMU mapping - DMA-OPS will not work\n");
856 }
857
858 static void ipmmu_release_device(struct device *dev)
859 {
860         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
861         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
862         unsigned int i;
863
864         for (i = 0; i < fwspec->num_ids; ++i) {
865                 unsigned int utlb = fwspec->ids[i];
866
867                 ipmmu_imuctr_write(mmu, utlb, 0);
868                 mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
869         }
870
871         arm_iommu_release_mapping(mmu->mapping);
872 }
873
874 static const struct iommu_ops ipmmu_ops = {
875         .identity_domain = &ipmmu_iommu_identity_domain,
876         .domain_alloc_paging = ipmmu_domain_alloc_paging,
877         .probe_device = ipmmu_probe_device,
878         .release_device = ipmmu_release_device,
879         .probe_finalize = ipmmu_probe_finalize,
880         /*
881          * FIXME: The device grouping is a fixed property of the hardware's
882          * ability to isolate and control DMA, it should not depend on kconfig.
883          */
884         .device_group = IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)
885                         ? generic_device_group : generic_single_device_group,
886         .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
887         .of_xlate = ipmmu_of_xlate,
888         .default_domain_ops = &(const struct iommu_domain_ops) {
889                 .attach_dev     = ipmmu_attach_device,
890                 .map_pages      = ipmmu_map,
891                 .unmap_pages    = ipmmu_unmap,
892                 .flush_iotlb_all = ipmmu_flush_iotlb_all,
893                 .iotlb_sync     = ipmmu_iotlb_sync,
894                 .iova_to_phys   = ipmmu_iova_to_phys,
895                 .free           = ipmmu_domain_free,
896         }
897 };
898
899 /* -----------------------------------------------------------------------------
900  * Probe/remove and init
901  */
902
903 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
904 {
905         unsigned int i;
906
907         /* Disable all contexts. */
908         for (i = 0; i < mmu->num_ctx; ++i)
909                 ipmmu_ctx_write(mmu, i, IMCTR, 0);
910 }
911
912 static const struct ipmmu_features ipmmu_features_default = {
913         .use_ns_alias_offset = true,
914         .has_cache_leaf_nodes = false,
915         .number_of_contexts = 1, /* software only tested with one context */
916         .num_utlbs = 32,
917         .setup_imbuscr = true,
918         .twobit_imttbcr_sl0 = false,
919         .reserved_context = false,
920         .cache_snoop = true,
921         .ctx_offset_base = 0,
922         .ctx_offset_stride = 0x40,
923         .utlb_offset_base = 0,
924 };
925
926 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
927         .use_ns_alias_offset = false,
928         .has_cache_leaf_nodes = true,
929         .number_of_contexts = 8,
930         .num_utlbs = 48,
931         .setup_imbuscr = false,
932         .twobit_imttbcr_sl0 = true,
933         .reserved_context = true,
934         .cache_snoop = false,
935         .ctx_offset_base = 0,
936         .ctx_offset_stride = 0x40,
937         .utlb_offset_base = 0,
938 };
939
940 static const struct ipmmu_features ipmmu_features_rcar_gen4 = {
941         .use_ns_alias_offset = false,
942         .has_cache_leaf_nodes = true,
943         .number_of_contexts = 16,
944         .num_utlbs = 64,
945         .setup_imbuscr = false,
946         .twobit_imttbcr_sl0 = true,
947         .reserved_context = true,
948         .cache_snoop = false,
949         .ctx_offset_base = 0x10000,
950         .ctx_offset_stride = 0x1040,
951         .utlb_offset_base = 0x3000,
952 };
953
954 static const struct of_device_id ipmmu_of_ids[] = {
955         {
956                 .compatible = "renesas,ipmmu-vmsa",
957                 .data = &ipmmu_features_default,
958         }, {
959                 .compatible = "renesas,ipmmu-r8a774a1",
960                 .data = &ipmmu_features_rcar_gen3,
961         }, {
962                 .compatible = "renesas,ipmmu-r8a774b1",
963                 .data = &ipmmu_features_rcar_gen3,
964         }, {
965                 .compatible = "renesas,ipmmu-r8a774c0",
966                 .data = &ipmmu_features_rcar_gen3,
967         }, {
968                 .compatible = "renesas,ipmmu-r8a774e1",
969                 .data = &ipmmu_features_rcar_gen3,
970         }, {
971                 .compatible = "renesas,ipmmu-r8a7795",
972                 .data = &ipmmu_features_rcar_gen3,
973         }, {
974                 .compatible = "renesas,ipmmu-r8a7796",
975                 .data = &ipmmu_features_rcar_gen3,
976         }, {
977                 .compatible = "renesas,ipmmu-r8a77961",
978                 .data = &ipmmu_features_rcar_gen3,
979         }, {
980                 .compatible = "renesas,ipmmu-r8a77965",
981                 .data = &ipmmu_features_rcar_gen3,
982         }, {
983                 .compatible = "renesas,ipmmu-r8a77970",
984                 .data = &ipmmu_features_rcar_gen3,
985         }, {
986                 .compatible = "renesas,ipmmu-r8a77980",
987                 .data = &ipmmu_features_rcar_gen3,
988         }, {
989                 .compatible = "renesas,ipmmu-r8a77990",
990                 .data = &ipmmu_features_rcar_gen3,
991         }, {
992                 .compatible = "renesas,ipmmu-r8a77995",
993                 .data = &ipmmu_features_rcar_gen3,
994         }, {
995                 .compatible = "renesas,ipmmu-r8a779a0",
996                 .data = &ipmmu_features_rcar_gen4,
997         }, {
998                 .compatible = "renesas,rcar-gen4-ipmmu-vmsa",
999                 .data = &ipmmu_features_rcar_gen4,
1000         }, {
1001                 /* Terminator */
1002         },
1003 };
1004
1005 static int ipmmu_probe(struct platform_device *pdev)
1006 {
1007         struct ipmmu_vmsa_device *mmu;
1008         int irq;
1009         int ret;
1010
1011         mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1012         if (!mmu) {
1013                 dev_err(&pdev->dev, "cannot allocate device data\n");
1014                 return -ENOMEM;
1015         }
1016
1017         mmu->dev = &pdev->dev;
1018         spin_lock_init(&mmu->lock);
1019         bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
1020         mmu->features = of_device_get_match_data(&pdev->dev);
1021         memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
1022         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
1023         if (ret)
1024                 return ret;
1025
1026         /* Map I/O memory and request IRQ. */
1027         mmu->base = devm_platform_ioremap_resource(pdev, 0);
1028         if (IS_ERR(mmu->base))
1029                 return PTR_ERR(mmu->base);
1030
1031         /*
1032          * The IPMMU has two register banks, for secure and non-secure modes.
1033          * The bank mapped at the beginning of the IPMMU address space
1034          * corresponds to the running mode of the CPU. When running in secure
1035          * mode the non-secure register bank is also available at an offset.
1036          *
1037          * Secure mode operation isn't clearly documented and is thus currently
1038          * not implemented in the driver. Furthermore, preliminary tests of
1039          * non-secure operation with the main register bank were not successful.
1040          * Offset the registers base unconditionally to point to the non-secure
1041          * alias space for now.
1042          */
1043         if (mmu->features->use_ns_alias_offset)
1044                 mmu->base += IM_NS_ALIAS_OFFSET;
1045
1046         mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1047
1048         /*
1049          * Determine if this IPMMU instance is a root device by checking for
1050          * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1051          */
1052         if (!mmu->features->has_cache_leaf_nodes ||
1053             !of_property_present(pdev->dev.of_node, "renesas,ipmmu-main"))
1054                 mmu->root = mmu;
1055         else
1056                 mmu->root = ipmmu_find_root();
1057
1058         /*
1059          * Wait until the root device has been registered for sure.
1060          */
1061         if (!mmu->root)
1062                 return -EPROBE_DEFER;
1063
1064         /* Root devices have mandatory IRQs */
1065         if (ipmmu_is_root(mmu)) {
1066                 irq = platform_get_irq(pdev, 0);
1067                 if (irq < 0)
1068                         return irq;
1069
1070                 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1071                                        dev_name(&pdev->dev), mmu);
1072                 if (ret < 0) {
1073                         dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1074                         return ret;
1075                 }
1076
1077                 ipmmu_device_reset(mmu);
1078
1079                 if (mmu->features->reserved_context) {
1080                         dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1081                         set_bit(0, mmu->ctx);
1082                 }
1083         }
1084
1085         /*
1086          * Register the IPMMU to the IOMMU subsystem in the following cases:
1087          * - R-Car Gen2 IPMMU (all devices registered)
1088          * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1089          */
1090         if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1091                 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1092                                              dev_name(&pdev->dev));
1093                 if (ret)
1094                         return ret;
1095
1096                 ret = iommu_device_register(&mmu->iommu, &ipmmu_ops, &pdev->dev);
1097                 if (ret)
1098                         return ret;
1099         }
1100
1101         /*
1102          * We can't create the ARM mapping here as it requires the bus to have
1103          * an IOMMU, which only happens when bus_set_iommu() is called in
1104          * ipmmu_init() after the probe function returns.
1105          */
1106
1107         platform_set_drvdata(pdev, mmu);
1108
1109         return 0;
1110 }
1111
1112 static void ipmmu_remove(struct platform_device *pdev)
1113 {
1114         struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1115
1116         iommu_device_sysfs_remove(&mmu->iommu);
1117         iommu_device_unregister(&mmu->iommu);
1118
1119         arm_iommu_release_mapping(mmu->mapping);
1120
1121         ipmmu_device_reset(mmu);
1122 }
1123
1124 static int ipmmu_resume_noirq(struct device *dev)
1125 {
1126         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1127         unsigned int i;
1128
1129         /* Reset root MMU and restore contexts */
1130         if (ipmmu_is_root(mmu)) {
1131                 ipmmu_device_reset(mmu);
1132
1133                 for (i = 0; i < mmu->num_ctx; i++) {
1134                         if (!mmu->domains[i])
1135                                 continue;
1136
1137                         ipmmu_domain_setup_context(mmu->domains[i]);
1138                 }
1139         }
1140
1141         /* Re-enable active micro-TLBs */
1142         for (i = 0; i < mmu->features->num_utlbs; i++) {
1143                 if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1144                         continue;
1145
1146                 ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1147         }
1148
1149         return 0;
1150 }
1151
1152 static const struct dev_pm_ops ipmmu_pm  = {
1153         NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1154 };
1155
1156 static struct platform_driver ipmmu_driver = {
1157         .driver = {
1158                 .name = "ipmmu-vmsa",
1159                 .of_match_table = ipmmu_of_ids,
1160                 .pm = pm_sleep_ptr(&ipmmu_pm),
1161         },
1162         .probe = ipmmu_probe,
1163         .remove_new = ipmmu_remove,
1164 };
1165 builtin_platform_driver(ipmmu_driver);