Merge tag 'mips_5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
[linux-2.6-microblaze.git] / drivers / iommu / ipmmu-vmsa.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * IOMMU API for Renesas VMSA-compatible IPMMU
4  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
5  *
6  * Copyright (C) 2014-2020 Renesas Electronics Corporation
7  */
8
9 #include <linux/bitmap.h>
10 #include <linux/delay.h>
11 #include <linux/dma-iommu.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/io-pgtable.h>
19 #include <linux/iommu.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/of_iommu.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/sizes.h>
26 #include <linux/slab.h>
27 #include <linux/sys_soc.h>
28
29 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
30 #include <asm/dma-iommu.h>
31 #else
32 #define arm_iommu_create_mapping(...)   NULL
33 #define arm_iommu_attach_device(...)    -ENODEV
34 #define arm_iommu_release_mapping(...)  do {} while (0)
35 #define arm_iommu_detach_device(...)    do {} while (0)
36 #endif
37
38 #define IPMMU_CTX_MAX           8U
39 #define IPMMU_CTX_INVALID       -1
40
41 #define IPMMU_UTLB_MAX          48U
42
43 struct ipmmu_features {
44         bool use_ns_alias_offset;
45         bool has_cache_leaf_nodes;
46         unsigned int number_of_contexts;
47         unsigned int num_utlbs;
48         bool setup_imbuscr;
49         bool twobit_imttbcr_sl0;
50         bool reserved_context;
51         bool cache_snoop;
52         unsigned int ctx_offset_base;
53         unsigned int ctx_offset_stride;
54         unsigned int utlb_offset_base;
55 };
56
57 struct ipmmu_vmsa_device {
58         struct device *dev;
59         void __iomem *base;
60         struct iommu_device iommu;
61         struct ipmmu_vmsa_device *root;
62         const struct ipmmu_features *features;
63         unsigned int num_ctx;
64         spinlock_t lock;                        /* Protects ctx and domains[] */
65         DECLARE_BITMAP(ctx, IPMMU_CTX_MAX);
66         struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX];
67         s8 utlb_ctx[IPMMU_UTLB_MAX];
68
69         struct iommu_group *group;
70         struct dma_iommu_mapping *mapping;
71 };
72
73 struct ipmmu_vmsa_domain {
74         struct ipmmu_vmsa_device *mmu;
75         struct iommu_domain io_domain;
76
77         struct io_pgtable_cfg cfg;
78         struct io_pgtable_ops *iop;
79
80         unsigned int context_id;
81         struct mutex mutex;                     /* Protects mappings */
82 };
83
84 static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
85 {
86         return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
87 }
88
89 static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev)
90 {
91         return dev_iommu_priv_get(dev);
92 }
93
94 #define TLB_LOOP_TIMEOUT                100     /* 100us */
95
96 /* -----------------------------------------------------------------------------
97  * Registers Definition
98  */
99
100 #define IM_NS_ALIAS_OFFSET              0x800
101
102 /* MMU "context" registers */
103 #define IMCTR                           0x0000          /* R-Car Gen2/3 */
104 #define IMCTR_INTEN                     (1 << 2)        /* R-Car Gen2/3 */
105 #define IMCTR_FLUSH                     (1 << 1)        /* R-Car Gen2/3 */
106 #define IMCTR_MMUEN                     (1 << 0)        /* R-Car Gen2/3 */
107
108 #define IMTTBCR                         0x0008          /* R-Car Gen2/3 */
109 #define IMTTBCR_EAE                     (1 << 31)       /* R-Car Gen2/3 */
110 #define IMTTBCR_SH0_INNER_SHAREABLE     (3 << 12)       /* R-Car Gen2 only */
111 #define IMTTBCR_ORGN0_WB_WA             (1 << 10)       /* R-Car Gen2 only */
112 #define IMTTBCR_IRGN0_WB_WA             (1 << 8)        /* R-Car Gen2 only */
113 #define IMTTBCR_SL0_TWOBIT_LVL_1        (2 << 6)        /* R-Car Gen3 only */
114 #define IMTTBCR_SL0_LVL_1               (1 << 4)        /* R-Car Gen2 only */
115
116 #define IMBUSCR                         0x000c          /* R-Car Gen2 only */
117 #define IMBUSCR_DVM                     (1 << 2)        /* R-Car Gen2 only */
118 #define IMBUSCR_BUSSEL_MASK             (3 << 0)        /* R-Car Gen2 only */
119
120 #define IMTTLBR0                        0x0010          /* R-Car Gen2/3 */
121 #define IMTTUBR0                        0x0014          /* R-Car Gen2/3 */
122
123 #define IMSTR                           0x0020          /* R-Car Gen2/3 */
124 #define IMSTR_MHIT                      (1 << 4)        /* R-Car Gen2/3 */
125 #define IMSTR_ABORT                     (1 << 2)        /* R-Car Gen2/3 */
126 #define IMSTR_PF                        (1 << 1)        /* R-Car Gen2/3 */
127 #define IMSTR_TF                        (1 << 0)        /* R-Car Gen2/3 */
128
129 #define IMMAIR0                         0x0028          /* R-Car Gen2/3 */
130
131 #define IMELAR                          0x0030          /* R-Car Gen2/3, IMEAR on R-Car Gen2 */
132 #define IMEUAR                          0x0034          /* R-Car Gen3 only */
133
134 /* uTLB registers */
135 #define IMUCTR(n)                       ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n))
136 #define IMUCTR0(n)                      (0x0300 + ((n) * 16))           /* R-Car Gen2/3 */
137 #define IMUCTR32(n)                     (0x0600 + (((n) - 32) * 16))    /* R-Car Gen3 only */
138 #define IMUCTR_TTSEL_MMU(n)             ((n) << 4)      /* R-Car Gen2/3 */
139 #define IMUCTR_FLUSH                    (1 << 1)        /* R-Car Gen2/3 */
140 #define IMUCTR_MMUEN                    (1 << 0)        /* R-Car Gen2/3 */
141
142 #define IMUASID(n)                      ((n) < 32 ? IMUASID0(n) : IMUASID32(n))
143 #define IMUASID0(n)                     (0x0308 + ((n) * 16))           /* R-Car Gen2/3 */
144 #define IMUASID32(n)                    (0x0608 + (((n) - 32) * 16))    /* R-Car Gen3 only */
145
146 /* -----------------------------------------------------------------------------
147  * Root device handling
148  */
149
150 static struct platform_driver ipmmu_driver;
151
152 static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu)
153 {
154         return mmu->root == mmu;
155 }
156
157 static int __ipmmu_check_device(struct device *dev, void *data)
158 {
159         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
160         struct ipmmu_vmsa_device **rootp = data;
161
162         if (ipmmu_is_root(mmu))
163                 *rootp = mmu;
164
165         return 0;
166 }
167
168 static struct ipmmu_vmsa_device *ipmmu_find_root(void)
169 {
170         struct ipmmu_vmsa_device *root = NULL;
171
172         return driver_for_each_device(&ipmmu_driver.driver, NULL, &root,
173                                       __ipmmu_check_device) == 0 ? root : NULL;
174 }
175
176 /* -----------------------------------------------------------------------------
177  * Read/Write Access
178  */
179
180 static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
181 {
182         return ioread32(mmu->base + offset);
183 }
184
185 static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
186                         u32 data)
187 {
188         iowrite32(data, mmu->base + offset);
189 }
190
191 static unsigned int ipmmu_ctx_reg(struct ipmmu_vmsa_device *mmu,
192                                   unsigned int context_id, unsigned int reg)
193 {
194         return mmu->features->ctx_offset_base +
195                context_id * mmu->features->ctx_offset_stride + reg;
196 }
197
198 static u32 ipmmu_ctx_read(struct ipmmu_vmsa_device *mmu,
199                           unsigned int context_id, unsigned int reg)
200 {
201         return ipmmu_read(mmu, ipmmu_ctx_reg(mmu, context_id, reg));
202 }
203
204 static void ipmmu_ctx_write(struct ipmmu_vmsa_device *mmu,
205                             unsigned int context_id, unsigned int reg, u32 data)
206 {
207         ipmmu_write(mmu, ipmmu_ctx_reg(mmu, context_id, reg), data);
208 }
209
210 static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain,
211                                unsigned int reg)
212 {
213         return ipmmu_ctx_read(domain->mmu->root, domain->context_id, reg);
214 }
215
216 static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain,
217                                  unsigned int reg, u32 data)
218 {
219         ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
220 }
221
222 static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain,
223                                 unsigned int reg, u32 data)
224 {
225         if (domain->mmu != domain->mmu->root)
226                 ipmmu_ctx_write(domain->mmu, domain->context_id, reg, data);
227
228         ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data);
229 }
230
231 static u32 ipmmu_utlb_reg(struct ipmmu_vmsa_device *mmu, unsigned int reg)
232 {
233         return mmu->features->utlb_offset_base + reg;
234 }
235
236 static void ipmmu_imuasid_write(struct ipmmu_vmsa_device *mmu,
237                                 unsigned int utlb, u32 data)
238 {
239         ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUASID(utlb)), data);
240 }
241
242 static void ipmmu_imuctr_write(struct ipmmu_vmsa_device *mmu,
243                                unsigned int utlb, u32 data)
244 {
245         ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUCTR(utlb)), data);
246 }
247
248 /* -----------------------------------------------------------------------------
249  * TLB and microTLB Management
250  */
251
252 /* Wait for any pending TLB invalidations to complete */
253 static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
254 {
255         unsigned int count = 0;
256
257         while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) {
258                 cpu_relax();
259                 if (++count == TLB_LOOP_TIMEOUT) {
260                         dev_err_ratelimited(domain->mmu->dev,
261                         "TLB sync timed out -- MMU may be deadlocked\n");
262                         return;
263                 }
264                 udelay(1);
265         }
266 }
267
268 static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
269 {
270         u32 reg;
271
272         reg = ipmmu_ctx_read_root(domain, IMCTR);
273         reg |= IMCTR_FLUSH;
274         ipmmu_ctx_write_all(domain, IMCTR, reg);
275
276         ipmmu_tlb_sync(domain);
277 }
278
279 /*
280  * Enable MMU translation for the microTLB.
281  */
282 static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
283                               unsigned int utlb)
284 {
285         struct ipmmu_vmsa_device *mmu = domain->mmu;
286
287         /*
288          * TODO: Reference-count the microTLB as several bus masters can be
289          * connected to the same microTLB.
290          */
291
292         /* TODO: What should we set the ASID to ? */
293         ipmmu_imuasid_write(mmu, utlb, 0);
294         /* TODO: Do we need to flush the microTLB ? */
295         ipmmu_imuctr_write(mmu, utlb, IMUCTR_TTSEL_MMU(domain->context_id) |
296                                       IMUCTR_FLUSH | IMUCTR_MMUEN);
297         mmu->utlb_ctx[utlb] = domain->context_id;
298 }
299
300 /*
301  * Disable MMU translation for the microTLB.
302  */
303 static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
304                                unsigned int utlb)
305 {
306         struct ipmmu_vmsa_device *mmu = domain->mmu;
307
308         ipmmu_imuctr_write(mmu, utlb, 0);
309         mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID;
310 }
311
312 static void ipmmu_tlb_flush_all(void *cookie)
313 {
314         struct ipmmu_vmsa_domain *domain = cookie;
315
316         ipmmu_tlb_invalidate(domain);
317 }
318
319 static void ipmmu_tlb_flush(unsigned long iova, size_t size,
320                                 size_t granule, void *cookie)
321 {
322         ipmmu_tlb_flush_all(cookie);
323 }
324
325 static const struct iommu_flush_ops ipmmu_flush_ops = {
326         .tlb_flush_all = ipmmu_tlb_flush_all,
327         .tlb_flush_walk = ipmmu_tlb_flush,
328         .tlb_flush_leaf = ipmmu_tlb_flush,
329 };
330
331 /* -----------------------------------------------------------------------------
332  * Domain/Context Management
333  */
334
335 static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu,
336                                          struct ipmmu_vmsa_domain *domain)
337 {
338         unsigned long flags;
339         int ret;
340
341         spin_lock_irqsave(&mmu->lock, flags);
342
343         ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx);
344         if (ret != mmu->num_ctx) {
345                 mmu->domains[ret] = domain;
346                 set_bit(ret, mmu->ctx);
347         } else
348                 ret = -EBUSY;
349
350         spin_unlock_irqrestore(&mmu->lock, flags);
351
352         return ret;
353 }
354
355 static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu,
356                                       unsigned int context_id)
357 {
358         unsigned long flags;
359
360         spin_lock_irqsave(&mmu->lock, flags);
361
362         clear_bit(context_id, mmu->ctx);
363         mmu->domains[context_id] = NULL;
364
365         spin_unlock_irqrestore(&mmu->lock, flags);
366 }
367
368 static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain)
369 {
370         u64 ttbr;
371         u32 tmp;
372
373         /* TTBR0 */
374         ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr;
375         ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr);
376         ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32);
377
378         /*
379          * TTBCR
380          * We use long descriptors and allocate the whole 32-bit VA space to
381          * TTBR0.
382          */
383         if (domain->mmu->features->twobit_imttbcr_sl0)
384                 tmp = IMTTBCR_SL0_TWOBIT_LVL_1;
385         else
386                 tmp = IMTTBCR_SL0_LVL_1;
387
388         if (domain->mmu->features->cache_snoop)
389                 tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
390                        IMTTBCR_IRGN0_WB_WA;
391
392         ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp);
393
394         /* MAIR0 */
395         ipmmu_ctx_write_root(domain, IMMAIR0,
396                              domain->cfg.arm_lpae_s1_cfg.mair);
397
398         /* IMBUSCR */
399         if (domain->mmu->features->setup_imbuscr)
400                 ipmmu_ctx_write_root(domain, IMBUSCR,
401                                      ipmmu_ctx_read_root(domain, IMBUSCR) &
402                                      ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
403
404         /*
405          * IMSTR
406          * Clear all interrupt flags.
407          */
408         ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR));
409
410         /*
411          * IMCTR
412          * Enable the MMU and interrupt generation. The long-descriptor
413          * translation table format doesn't use TEX remapping. Don't enable AF
414          * software management as we have no use for it. Flush the TLB as
415          * required when modifying the context registers.
416          */
417         ipmmu_ctx_write_all(domain, IMCTR,
418                             IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
419 }
420
421 static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
422 {
423         int ret;
424
425         /*
426          * Allocate the page table operations.
427          *
428          * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
429          * access, Long-descriptor format" that the NStable bit being set in a
430          * table descriptor will result in the NStable and NS bits of all child
431          * entries being ignored and considered as being set. The IPMMU seems
432          * not to comply with this, as it generates a secure access page fault
433          * if any of the NStable and NS bits isn't set when running in
434          * non-secure mode.
435          */
436         domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
437         domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K;
438         domain->cfg.ias = 32;
439         domain->cfg.oas = 40;
440         domain->cfg.tlb = &ipmmu_flush_ops;
441         domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32);
442         domain->io_domain.geometry.force_aperture = true;
443         /*
444          * TODO: Add support for coherent walk through CCI with DVM and remove
445          * cache handling. For now, delegate it to the io-pgtable code.
446          */
447         domain->cfg.coherent_walk = false;
448         domain->cfg.iommu_dev = domain->mmu->root->dev;
449
450         /*
451          * Find an unused context.
452          */
453         ret = ipmmu_domain_allocate_context(domain->mmu->root, domain);
454         if (ret < 0)
455                 return ret;
456
457         domain->context_id = ret;
458
459         domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
460                                            domain);
461         if (!domain->iop) {
462                 ipmmu_domain_free_context(domain->mmu->root,
463                                           domain->context_id);
464                 return -EINVAL;
465         }
466
467         ipmmu_domain_setup_context(domain);
468         return 0;
469 }
470
471 static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
472 {
473         if (!domain->mmu)
474                 return;
475
476         /*
477          * Disable the context. Flush the TLB as required when modifying the
478          * context registers.
479          *
480          * TODO: Is TLB flush really needed ?
481          */
482         ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH);
483         ipmmu_tlb_sync(domain);
484         ipmmu_domain_free_context(domain->mmu->root, domain->context_id);
485 }
486
487 /* -----------------------------------------------------------------------------
488  * Fault Handling
489  */
490
491 static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
492 {
493         const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
494         struct ipmmu_vmsa_device *mmu = domain->mmu;
495         unsigned long iova;
496         u32 status;
497
498         status = ipmmu_ctx_read_root(domain, IMSTR);
499         if (!(status & err_mask))
500                 return IRQ_NONE;
501
502         iova = ipmmu_ctx_read_root(domain, IMELAR);
503         if (IS_ENABLED(CONFIG_64BIT))
504                 iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32;
505
506         /*
507          * Clear the error status flags. Unlike traditional interrupt flag
508          * registers that must be cleared by writing 1, this status register
509          * seems to require 0. The error address register must be read before,
510          * otherwise its value will be 0.
511          */
512         ipmmu_ctx_write_root(domain, IMSTR, 0);
513
514         /* Log fatal errors. */
515         if (status & IMSTR_MHIT)
516                 dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n",
517                                     iova);
518         if (status & IMSTR_ABORT)
519                 dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n",
520                                     iova);
521
522         if (!(status & (IMSTR_PF | IMSTR_TF)))
523                 return IRQ_NONE;
524
525         /*
526          * Try to handle page faults and translation faults.
527          *
528          * TODO: We need to look up the faulty device based on the I/O VA. Use
529          * the IOMMU device for now.
530          */
531         if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
532                 return IRQ_HANDLED;
533
534         dev_err_ratelimited(mmu->dev,
535                             "Unhandled fault: status 0x%08x iova 0x%lx\n",
536                             status, iova);
537
538         return IRQ_HANDLED;
539 }
540
541 static irqreturn_t ipmmu_irq(int irq, void *dev)
542 {
543         struct ipmmu_vmsa_device *mmu = dev;
544         irqreturn_t status = IRQ_NONE;
545         unsigned int i;
546         unsigned long flags;
547
548         spin_lock_irqsave(&mmu->lock, flags);
549
550         /*
551          * Check interrupts for all active contexts.
552          */
553         for (i = 0; i < mmu->num_ctx; i++) {
554                 if (!mmu->domains[i])
555                         continue;
556                 if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED)
557                         status = IRQ_HANDLED;
558         }
559
560         spin_unlock_irqrestore(&mmu->lock, flags);
561
562         return status;
563 }
564
565 /* -----------------------------------------------------------------------------
566  * IOMMU Operations
567  */
568
569 static struct iommu_domain *__ipmmu_domain_alloc(unsigned type)
570 {
571         struct ipmmu_vmsa_domain *domain;
572
573         domain = kzalloc(sizeof(*domain), GFP_KERNEL);
574         if (!domain)
575                 return NULL;
576
577         mutex_init(&domain->mutex);
578
579         return &domain->io_domain;
580 }
581
582 static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
583 {
584         struct iommu_domain *io_domain = NULL;
585
586         switch (type) {
587         case IOMMU_DOMAIN_UNMANAGED:
588                 io_domain = __ipmmu_domain_alloc(type);
589                 break;
590
591         case IOMMU_DOMAIN_DMA:
592                 io_domain = __ipmmu_domain_alloc(type);
593                 if (io_domain && iommu_get_dma_cookie(io_domain)) {
594                         kfree(io_domain);
595                         io_domain = NULL;
596                 }
597                 break;
598         }
599
600         return io_domain;
601 }
602
603 static void ipmmu_domain_free(struct iommu_domain *io_domain)
604 {
605         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
606
607         /*
608          * Free the domain resources. We assume that all devices have already
609          * been detached.
610          */
611         iommu_put_dma_cookie(io_domain);
612         ipmmu_domain_destroy_context(domain);
613         free_io_pgtable_ops(domain->iop);
614         kfree(domain);
615 }
616
617 static int ipmmu_attach_device(struct iommu_domain *io_domain,
618                                struct device *dev)
619 {
620         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
621         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
622         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
623         unsigned int i;
624         int ret = 0;
625
626         if (!mmu) {
627                 dev_err(dev, "Cannot attach to IPMMU\n");
628                 return -ENXIO;
629         }
630
631         mutex_lock(&domain->mutex);
632
633         if (!domain->mmu) {
634                 /* The domain hasn't been used yet, initialize it. */
635                 domain->mmu = mmu;
636                 ret = ipmmu_domain_init_context(domain);
637                 if (ret < 0) {
638                         dev_err(dev, "Unable to initialize IPMMU context\n");
639                         domain->mmu = NULL;
640                 } else {
641                         dev_info(dev, "Using IPMMU context %u\n",
642                                  domain->context_id);
643                 }
644         } else if (domain->mmu != mmu) {
645                 /*
646                  * Something is wrong, we can't attach two devices using
647                  * different IOMMUs to the same domain.
648                  */
649                 dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
650                         dev_name(mmu->dev), dev_name(domain->mmu->dev));
651                 ret = -EINVAL;
652         } else
653                 dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id);
654
655         mutex_unlock(&domain->mutex);
656
657         if (ret < 0)
658                 return ret;
659
660         for (i = 0; i < fwspec->num_ids; ++i)
661                 ipmmu_utlb_enable(domain, fwspec->ids[i]);
662
663         return 0;
664 }
665
666 static void ipmmu_detach_device(struct iommu_domain *io_domain,
667                                 struct device *dev)
668 {
669         struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
670         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
671         unsigned int i;
672
673         for (i = 0; i < fwspec->num_ids; ++i)
674                 ipmmu_utlb_disable(domain, fwspec->ids[i]);
675
676         /*
677          * TODO: Optimize by disabling the context when no device is attached.
678          */
679 }
680
681 static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
682                      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
683 {
684         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
685
686         if (!domain)
687                 return -ENODEV;
688
689         return domain->iop->map(domain->iop, iova, paddr, size, prot, gfp);
690 }
691
692 static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
693                           size_t size, struct iommu_iotlb_gather *gather)
694 {
695         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
696
697         return domain->iop->unmap(domain->iop, iova, size, gather);
698 }
699
700 static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain)
701 {
702         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
703
704         if (domain->mmu)
705                 ipmmu_tlb_flush_all(domain);
706 }
707
708 static void ipmmu_iotlb_sync(struct iommu_domain *io_domain,
709                              struct iommu_iotlb_gather *gather)
710 {
711         ipmmu_flush_iotlb_all(io_domain);
712 }
713
714 static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
715                                       dma_addr_t iova)
716 {
717         struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
718
719         /* TODO: Is locking needed ? */
720
721         return domain->iop->iova_to_phys(domain->iop, iova);
722 }
723
724 static int ipmmu_init_platform_device(struct device *dev,
725                                       struct of_phandle_args *args)
726 {
727         struct platform_device *ipmmu_pdev;
728
729         ipmmu_pdev = of_find_device_by_node(args->np);
730         if (!ipmmu_pdev)
731                 return -ENODEV;
732
733         dev_iommu_priv_set(dev, platform_get_drvdata(ipmmu_pdev));
734
735         return 0;
736 }
737
738 static const struct soc_device_attribute soc_rcar_gen3[] = {
739         { .soc_id = "r8a774a1", },
740         { .soc_id = "r8a774b1", },
741         { .soc_id = "r8a774c0", },
742         { .soc_id = "r8a774e1", },
743         { .soc_id = "r8a7795", },
744         { .soc_id = "r8a77961", },
745         { .soc_id = "r8a7796", },
746         { .soc_id = "r8a77965", },
747         { .soc_id = "r8a77970", },
748         { .soc_id = "r8a77990", },
749         { .soc_id = "r8a77995", },
750         { /* sentinel */ }
751 };
752
753 static const struct soc_device_attribute soc_rcar_gen3_whitelist[] = {
754         { .soc_id = "r8a774b1", },
755         { .soc_id = "r8a774c0", },
756         { .soc_id = "r8a774e1", },
757         { .soc_id = "r8a7795", .revision = "ES3.*" },
758         { .soc_id = "r8a77961", },
759         { .soc_id = "r8a77965", },
760         { .soc_id = "r8a77990", },
761         { .soc_id = "r8a77995", },
762         { /* sentinel */ }
763 };
764
765 static const char * const rcar_gen3_slave_whitelist[] = {
766 };
767
768 static bool ipmmu_slave_whitelist(struct device *dev)
769 {
770         unsigned int i;
771
772         /*
773          * For R-Car Gen3 use a white list to opt-in slave devices.
774          * For Other SoCs, this returns true anyway.
775          */
776         if (!soc_device_match(soc_rcar_gen3))
777                 return true;
778
779         /* Check whether this R-Car Gen3 can use the IPMMU correctly or not */
780         if (!soc_device_match(soc_rcar_gen3_whitelist))
781                 return false;
782
783         /* Check whether this slave device can work with the IPMMU */
784         for (i = 0; i < ARRAY_SIZE(rcar_gen3_slave_whitelist); i++) {
785                 if (!strcmp(dev_name(dev), rcar_gen3_slave_whitelist[i]))
786                         return true;
787         }
788
789         /* Otherwise, do not allow use of IPMMU */
790         return false;
791 }
792
793 static int ipmmu_of_xlate(struct device *dev,
794                           struct of_phandle_args *spec)
795 {
796         if (!ipmmu_slave_whitelist(dev))
797                 return -ENODEV;
798
799         iommu_fwspec_add_ids(dev, spec->args, 1);
800
801         /* Initialize once - xlate() will call multiple times */
802         if (to_ipmmu(dev))
803                 return 0;
804
805         return ipmmu_init_platform_device(dev, spec);
806 }
807
808 static int ipmmu_init_arm_mapping(struct device *dev)
809 {
810         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
811         int ret;
812
813         /*
814          * Create the ARM mapping, used by the ARM DMA mapping core to allocate
815          * VAs. This will allocate a corresponding IOMMU domain.
816          *
817          * TODO:
818          * - Create one mapping per context (TLB).
819          * - Make the mapping size configurable ? We currently use a 2GB mapping
820          *   at a 1GB offset to ensure that NULL VAs will fault.
821          */
822         if (!mmu->mapping) {
823                 struct dma_iommu_mapping *mapping;
824
825                 mapping = arm_iommu_create_mapping(&platform_bus_type,
826                                                    SZ_1G, SZ_2G);
827                 if (IS_ERR(mapping)) {
828                         dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
829                         ret = PTR_ERR(mapping);
830                         goto error;
831                 }
832
833                 mmu->mapping = mapping;
834         }
835
836         /* Attach the ARM VA mapping to the device. */
837         ret = arm_iommu_attach_device(dev, mmu->mapping);
838         if (ret < 0) {
839                 dev_err(dev, "Failed to attach device to VA mapping\n");
840                 goto error;
841         }
842
843         return 0;
844
845 error:
846         if (mmu->mapping)
847                 arm_iommu_release_mapping(mmu->mapping);
848
849         return ret;
850 }
851
852 static struct iommu_device *ipmmu_probe_device(struct device *dev)
853 {
854         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
855
856         /*
857          * Only let through devices that have been verified in xlate()
858          */
859         if (!mmu)
860                 return ERR_PTR(-ENODEV);
861
862         return &mmu->iommu;
863 }
864
865 static void ipmmu_probe_finalize(struct device *dev)
866 {
867         int ret = 0;
868
869         if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA))
870                 ret = ipmmu_init_arm_mapping(dev);
871
872         if (ret)
873                 dev_err(dev, "Can't create IOMMU mapping - DMA-OPS will not work\n");
874 }
875
876 static void ipmmu_release_device(struct device *dev)
877 {
878         arm_iommu_detach_device(dev);
879 }
880
881 static struct iommu_group *ipmmu_find_group(struct device *dev)
882 {
883         struct ipmmu_vmsa_device *mmu = to_ipmmu(dev);
884         struct iommu_group *group;
885
886         if (mmu->group)
887                 return iommu_group_ref_get(mmu->group);
888
889         group = iommu_group_alloc();
890         if (!IS_ERR(group))
891                 mmu->group = group;
892
893         return group;
894 }
895
896 static const struct iommu_ops ipmmu_ops = {
897         .domain_alloc = ipmmu_domain_alloc,
898         .domain_free = ipmmu_domain_free,
899         .attach_dev = ipmmu_attach_device,
900         .detach_dev = ipmmu_detach_device,
901         .map = ipmmu_map,
902         .unmap = ipmmu_unmap,
903         .flush_iotlb_all = ipmmu_flush_iotlb_all,
904         .iotlb_sync = ipmmu_iotlb_sync,
905         .iova_to_phys = ipmmu_iova_to_phys,
906         .probe_device = ipmmu_probe_device,
907         .release_device = ipmmu_release_device,
908         .probe_finalize = ipmmu_probe_finalize,
909         .device_group = IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)
910                         ? generic_device_group : ipmmu_find_group,
911         .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
912         .of_xlate = ipmmu_of_xlate,
913 };
914
915 /* -----------------------------------------------------------------------------
916  * Probe/remove and init
917  */
918
919 static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
920 {
921         unsigned int i;
922
923         /* Disable all contexts. */
924         for (i = 0; i < mmu->num_ctx; ++i)
925                 ipmmu_ctx_write(mmu, i, IMCTR, 0);
926 }
927
928 static const struct ipmmu_features ipmmu_features_default = {
929         .use_ns_alias_offset = true,
930         .has_cache_leaf_nodes = false,
931         .number_of_contexts = 1, /* software only tested with one context */
932         .num_utlbs = 32,
933         .setup_imbuscr = true,
934         .twobit_imttbcr_sl0 = false,
935         .reserved_context = false,
936         .cache_snoop = true,
937         .ctx_offset_base = 0,
938         .ctx_offset_stride = 0x40,
939         .utlb_offset_base = 0,
940 };
941
942 static const struct ipmmu_features ipmmu_features_rcar_gen3 = {
943         .use_ns_alias_offset = false,
944         .has_cache_leaf_nodes = true,
945         .number_of_contexts = 8,
946         .num_utlbs = 48,
947         .setup_imbuscr = false,
948         .twobit_imttbcr_sl0 = true,
949         .reserved_context = true,
950         .cache_snoop = false,
951         .ctx_offset_base = 0,
952         .ctx_offset_stride = 0x40,
953         .utlb_offset_base = 0,
954 };
955
956 static const struct of_device_id ipmmu_of_ids[] = {
957         {
958                 .compatible = "renesas,ipmmu-vmsa",
959                 .data = &ipmmu_features_default,
960         }, {
961                 .compatible = "renesas,ipmmu-r8a774a1",
962                 .data = &ipmmu_features_rcar_gen3,
963         }, {
964                 .compatible = "renesas,ipmmu-r8a774b1",
965                 .data = &ipmmu_features_rcar_gen3,
966         }, {
967                 .compatible = "renesas,ipmmu-r8a774c0",
968                 .data = &ipmmu_features_rcar_gen3,
969         }, {
970                 .compatible = "renesas,ipmmu-r8a774e1",
971                 .data = &ipmmu_features_rcar_gen3,
972         }, {
973                 .compatible = "renesas,ipmmu-r8a7795",
974                 .data = &ipmmu_features_rcar_gen3,
975         }, {
976                 .compatible = "renesas,ipmmu-r8a7796",
977                 .data = &ipmmu_features_rcar_gen3,
978         }, {
979                 .compatible = "renesas,ipmmu-r8a77961",
980                 .data = &ipmmu_features_rcar_gen3,
981         }, {
982                 .compatible = "renesas,ipmmu-r8a77965",
983                 .data = &ipmmu_features_rcar_gen3,
984         }, {
985                 .compatible = "renesas,ipmmu-r8a77970",
986                 .data = &ipmmu_features_rcar_gen3,
987         }, {
988                 .compatible = "renesas,ipmmu-r8a77990",
989                 .data = &ipmmu_features_rcar_gen3,
990         }, {
991                 .compatible = "renesas,ipmmu-r8a77995",
992                 .data = &ipmmu_features_rcar_gen3,
993         }, {
994                 /* Terminator */
995         },
996 };
997
998 static int ipmmu_probe(struct platform_device *pdev)
999 {
1000         struct ipmmu_vmsa_device *mmu;
1001         struct resource *res;
1002         int irq;
1003         int ret;
1004
1005         mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
1006         if (!mmu) {
1007                 dev_err(&pdev->dev, "cannot allocate device data\n");
1008                 return -ENOMEM;
1009         }
1010
1011         mmu->dev = &pdev->dev;
1012         spin_lock_init(&mmu->lock);
1013         bitmap_zero(mmu->ctx, IPMMU_CTX_MAX);
1014         mmu->features = of_device_get_match_data(&pdev->dev);
1015         memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs);
1016         dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
1017
1018         /* Map I/O memory and request IRQ. */
1019         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1020         mmu->base = devm_ioremap_resource(&pdev->dev, res);
1021         if (IS_ERR(mmu->base))
1022                 return PTR_ERR(mmu->base);
1023
1024         /*
1025          * The IPMMU has two register banks, for secure and non-secure modes.
1026          * The bank mapped at the beginning of the IPMMU address space
1027          * corresponds to the running mode of the CPU. When running in secure
1028          * mode the non-secure register bank is also available at an offset.
1029          *
1030          * Secure mode operation isn't clearly documented and is thus currently
1031          * not implemented in the driver. Furthermore, preliminary tests of
1032          * non-secure operation with the main register bank were not successful.
1033          * Offset the registers base unconditionally to point to the non-secure
1034          * alias space for now.
1035          */
1036         if (mmu->features->use_ns_alias_offset)
1037                 mmu->base += IM_NS_ALIAS_OFFSET;
1038
1039         mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts);
1040
1041         /*
1042          * Determine if this IPMMU instance is a root device by checking for
1043          * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property.
1044          */
1045         if (!mmu->features->has_cache_leaf_nodes ||
1046             !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL))
1047                 mmu->root = mmu;
1048         else
1049                 mmu->root = ipmmu_find_root();
1050
1051         /*
1052          * Wait until the root device has been registered for sure.
1053          */
1054         if (!mmu->root)
1055                 return -EPROBE_DEFER;
1056
1057         /* Root devices have mandatory IRQs */
1058         if (ipmmu_is_root(mmu)) {
1059                 irq = platform_get_irq(pdev, 0);
1060                 if (irq < 0)
1061                         return irq;
1062
1063                 ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
1064                                        dev_name(&pdev->dev), mmu);
1065                 if (ret < 0) {
1066                         dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
1067                         return ret;
1068                 }
1069
1070                 ipmmu_device_reset(mmu);
1071
1072                 if (mmu->features->reserved_context) {
1073                         dev_info(&pdev->dev, "IPMMU context 0 is reserved\n");
1074                         set_bit(0, mmu->ctx);
1075                 }
1076         }
1077
1078         /*
1079          * Register the IPMMU to the IOMMU subsystem in the following cases:
1080          * - R-Car Gen2 IPMMU (all devices registered)
1081          * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device)
1082          */
1083         if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) {
1084                 ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL,
1085                                              dev_name(&pdev->dev));
1086                 if (ret)
1087                         return ret;
1088
1089                 iommu_device_set_ops(&mmu->iommu, &ipmmu_ops);
1090                 iommu_device_set_fwnode(&mmu->iommu,
1091                                         &pdev->dev.of_node->fwnode);
1092
1093                 ret = iommu_device_register(&mmu->iommu);
1094                 if (ret)
1095                         return ret;
1096
1097 #if defined(CONFIG_IOMMU_DMA)
1098                 if (!iommu_present(&platform_bus_type))
1099                         bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1100 #endif
1101         }
1102
1103         /*
1104          * We can't create the ARM mapping here as it requires the bus to have
1105          * an IOMMU, which only happens when bus_set_iommu() is called in
1106          * ipmmu_init() after the probe function returns.
1107          */
1108
1109         platform_set_drvdata(pdev, mmu);
1110
1111         return 0;
1112 }
1113
1114 static int ipmmu_remove(struct platform_device *pdev)
1115 {
1116         struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
1117
1118         iommu_device_sysfs_remove(&mmu->iommu);
1119         iommu_device_unregister(&mmu->iommu);
1120
1121         arm_iommu_release_mapping(mmu->mapping);
1122
1123         ipmmu_device_reset(mmu);
1124
1125         return 0;
1126 }
1127
1128 #ifdef CONFIG_PM_SLEEP
1129 static int ipmmu_resume_noirq(struct device *dev)
1130 {
1131         struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev);
1132         unsigned int i;
1133
1134         /* Reset root MMU and restore contexts */
1135         if (ipmmu_is_root(mmu)) {
1136                 ipmmu_device_reset(mmu);
1137
1138                 for (i = 0; i < mmu->num_ctx; i++) {
1139                         if (!mmu->domains[i])
1140                                 continue;
1141
1142                         ipmmu_domain_setup_context(mmu->domains[i]);
1143                 }
1144         }
1145
1146         /* Re-enable active micro-TLBs */
1147         for (i = 0; i < mmu->features->num_utlbs; i++) {
1148                 if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID)
1149                         continue;
1150
1151                 ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i);
1152         }
1153
1154         return 0;
1155 }
1156
1157 static const struct dev_pm_ops ipmmu_pm  = {
1158         SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq)
1159 };
1160 #define DEV_PM_OPS      &ipmmu_pm
1161 #else
1162 #define DEV_PM_OPS      NULL
1163 #endif /* CONFIG_PM_SLEEP */
1164
1165 static struct platform_driver ipmmu_driver = {
1166         .driver = {
1167                 .name = "ipmmu-vmsa",
1168                 .of_match_table = of_match_ptr(ipmmu_of_ids),
1169                 .pm = DEV_PM_OPS,
1170         },
1171         .probe = ipmmu_probe,
1172         .remove = ipmmu_remove,
1173 };
1174
1175 static int __init ipmmu_init(void)
1176 {
1177         struct device_node *np;
1178         static bool setup_done;
1179         int ret;
1180
1181         if (setup_done)
1182                 return 0;
1183
1184         np = of_find_matching_node(NULL, ipmmu_of_ids);
1185         if (!np)
1186                 return 0;
1187
1188         of_node_put(np);
1189
1190         ret = platform_driver_register(&ipmmu_driver);
1191         if (ret < 0)
1192                 return ret;
1193
1194 #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA)
1195         if (!iommu_present(&platform_bus_type))
1196                 bus_set_iommu(&platform_bus_type, &ipmmu_ops);
1197 #endif
1198
1199         setup_done = true;
1200         return 0;
1201 }
1202 subsys_initcall(ipmmu_init);