Merge tag 'usb-serial-5.15-rc1' of https://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / iommu / exynos-iommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
4  *              http://www.samsung.com
5  */
6
7 #ifdef CONFIG_EXYNOS_IOMMU_DEBUG
8 #define DEBUG
9 #endif
10
11 #include <linux/clk.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/io.h>
15 #include <linux/iommu.h>
16 #include <linux/interrupt.h>
17 #include <linux/kmemleak.h>
18 #include <linux/list.h>
19 #include <linux/of.h>
20 #include <linux/of_platform.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/slab.h>
24 #include <linux/dma-iommu.h>
25
26 typedef u32 sysmmu_iova_t;
27 typedef u32 sysmmu_pte_t;
28
29 /* We do not consider super section mapping (16MB) */
30 #define SECT_ORDER 20
31 #define LPAGE_ORDER 16
32 #define SPAGE_ORDER 12
33
34 #define SECT_SIZE (1 << SECT_ORDER)
35 #define LPAGE_SIZE (1 << LPAGE_ORDER)
36 #define SPAGE_SIZE (1 << SPAGE_ORDER)
37
38 #define SECT_MASK (~(SECT_SIZE - 1))
39 #define LPAGE_MASK (~(LPAGE_SIZE - 1))
40 #define SPAGE_MASK (~(SPAGE_SIZE - 1))
41
42 #define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
43                            ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
44 #define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
45 #define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
46 #define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
47                           ((*(sent) & 3) == 1))
48 #define lv1ent_section(sent) ((*(sent) & 3) == 2)
49
50 #define lv2ent_fault(pent) ((*(pent) & 3) == 0)
51 #define lv2ent_small(pent) ((*(pent) & 2) == 2)
52 #define lv2ent_large(pent) ((*(pent) & 3) == 1)
53
54 /*
55  * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
56  * v5.0 introduced support for 36bit physical address space by shifting
57  * all page entry values by 4 bits.
58  * All SYSMMU controllers in the system support the address spaces of the same
59  * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
60  * value (0 or 4).
61  */
62 static short PG_ENT_SHIFT = -1;
63 #define SYSMMU_PG_ENT_SHIFT 0
64 #define SYSMMU_V5_PG_ENT_SHIFT 4
65
66 static const sysmmu_pte_t *LV1_PROT;
67 static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
68         ((0 << 15) | (0 << 10)), /* no access */
69         ((1 << 15) | (1 << 10)), /* IOMMU_READ only */
70         ((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
71         ((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
72 };
73 static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
74         (0 << 4), /* no access */
75         (1 << 4), /* IOMMU_READ only */
76         (2 << 4), /* IOMMU_WRITE only */
77         (3 << 4), /* IOMMU_READ | IOMMU_WRITE */
78 };
79
80 static const sysmmu_pte_t *LV2_PROT;
81 static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
82         ((0 << 9) | (0 << 4)), /* no access */
83         ((1 << 9) | (1 << 4)), /* IOMMU_READ only */
84         ((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
85         ((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
86 };
87 static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
88         (0 << 2), /* no access */
89         (1 << 2), /* IOMMU_READ only */
90         (2 << 2), /* IOMMU_WRITE only */
91         (3 << 2), /* IOMMU_READ | IOMMU_WRITE */
92 };
93
94 #define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)
95
96 #define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
97 #define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
98 #define section_offs(iova) (iova & (SECT_SIZE - 1))
99 #define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
100 #define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
101 #define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
102 #define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
103
104 #define NUM_LV1ENTRIES 4096
105 #define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
106
107 static u32 lv1ent_offset(sysmmu_iova_t iova)
108 {
109         return iova >> SECT_ORDER;
110 }
111
112 static u32 lv2ent_offset(sysmmu_iova_t iova)
113 {
114         return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
115 }
116
117 #define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
118 #define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
119
120 #define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
121 #define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
122
123 #define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
124 #define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
125 #define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
126 #define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)
127
128 #define CTRL_ENABLE     0x5
129 #define CTRL_BLOCK      0x7
130 #define CTRL_DISABLE    0x0
131
132 #define CFG_LRU         0x1
133 #define CFG_EAP         (1 << 2)
134 #define CFG_QOS(n)      ((n & 0xF) << 7)
135 #define CFG_ACGEN       (1 << 24) /* System MMU 3.3 only */
136 #define CFG_SYSSEL      (1 << 22) /* System MMU 3.2 only */
137 #define CFG_FLPDCACHE   (1 << 20) /* System MMU 3.2+ only */
138
139 /* common registers */
140 #define REG_MMU_CTRL            0x000
141 #define REG_MMU_CFG             0x004
142 #define REG_MMU_STATUS          0x008
143 #define REG_MMU_VERSION         0x034
144
145 #define MMU_MAJ_VER(val)        ((val) >> 7)
146 #define MMU_MIN_VER(val)        ((val) & 0x7F)
147 #define MMU_RAW_VER(reg)        (((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
148
149 #define MAKE_MMU_VER(maj, min)  ((((maj) & 0xF) << 7) | ((min) & 0x7F))
150
151 /* v1.x - v3.x registers */
152 #define REG_MMU_FLUSH           0x00C
153 #define REG_MMU_FLUSH_ENTRY     0x010
154 #define REG_PT_BASE_ADDR        0x014
155 #define REG_INT_STATUS          0x018
156 #define REG_INT_CLEAR           0x01C
157
158 #define REG_PAGE_FAULT_ADDR     0x024
159 #define REG_AW_FAULT_ADDR       0x028
160 #define REG_AR_FAULT_ADDR       0x02C
161 #define REG_DEFAULT_SLAVE_ADDR  0x030
162
163 /* v5.x registers */
164 #define REG_V5_PT_BASE_PFN      0x00C
165 #define REG_V5_MMU_FLUSH_ALL    0x010
166 #define REG_V5_MMU_FLUSH_ENTRY  0x014
167 #define REG_V5_MMU_FLUSH_RANGE  0x018
168 #define REG_V5_MMU_FLUSH_START  0x020
169 #define REG_V5_MMU_FLUSH_END    0x024
170 #define REG_V5_INT_STATUS       0x060
171 #define REG_V5_INT_CLEAR        0x064
172 #define REG_V5_FAULT_AR_VA      0x070
173 #define REG_V5_FAULT_AW_VA      0x080
174
175 #define has_sysmmu(dev)         (dev_iommu_priv_get(dev) != NULL)
176
177 static struct device *dma_dev;
178 static struct kmem_cache *lv2table_kmem_cache;
179 static sysmmu_pte_t *zero_lv2_table;
180 #define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
181
182 static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
183 {
184         return pgtable + lv1ent_offset(iova);
185 }
186
187 static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
188 {
189         return (sysmmu_pte_t *)phys_to_virt(
190                                 lv2table_base(sent)) + lv2ent_offset(iova);
191 }
192
193 /*
194  * IOMMU fault information register
195  */
196 struct sysmmu_fault_info {
197         unsigned int bit;       /* bit number in STATUS register */
198         unsigned short addr_reg; /* register to read VA fault address */
199         const char *name;       /* human readable fault name */
200         unsigned int type;      /* fault type for report_iommu_fault */
201 };
202
203 static const struct sysmmu_fault_info sysmmu_faults[] = {
204         { 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
205         { 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ },
206         { 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
207         { 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
208         { 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
209         { 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
210         { 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
211         { 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
212 };
213
214 static const struct sysmmu_fault_info sysmmu_v5_faults[] = {
215         { 0, REG_V5_FAULT_AR_VA, "AR PTW", IOMMU_FAULT_READ },
216         { 1, REG_V5_FAULT_AR_VA, "AR PAGE", IOMMU_FAULT_READ },
217         { 2, REG_V5_FAULT_AR_VA, "AR MULTI-HIT", IOMMU_FAULT_READ },
218         { 3, REG_V5_FAULT_AR_VA, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
219         { 4, REG_V5_FAULT_AR_VA, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
220         { 16, REG_V5_FAULT_AW_VA, "AW PTW", IOMMU_FAULT_WRITE },
221         { 17, REG_V5_FAULT_AW_VA, "AW PAGE", IOMMU_FAULT_WRITE },
222         { 18, REG_V5_FAULT_AW_VA, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
223         { 19, REG_V5_FAULT_AW_VA, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
224         { 20, REG_V5_FAULT_AW_VA, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
225 };
226
227 /*
228  * This structure is attached to dev->iommu->priv of the master device
229  * on device add, contains a list of SYSMMU controllers defined by device tree,
230  * which are bound to given master device. It is usually referenced by 'owner'
231  * pointer.
232 */
233 struct exynos_iommu_owner {
234         struct list_head controllers;   /* list of sysmmu_drvdata.owner_node */
235         struct iommu_domain *domain;    /* domain this device is attached */
236         struct mutex rpm_lock;          /* for runtime pm of all sysmmus */
237 };
238
239 /*
240  * This structure exynos specific generalization of struct iommu_domain.
241  * It contains list of SYSMMU controllers from all master devices, which has
242  * been attached to this domain and page tables of IO address space defined by
243  * it. It is usually referenced by 'domain' pointer.
244  */
245 struct exynos_iommu_domain {
246         struct list_head clients; /* list of sysmmu_drvdata.domain_node */
247         sysmmu_pte_t *pgtable;  /* lv1 page table, 16KB */
248         short *lv2entcnt;       /* free lv2 entry counter for each section */
249         spinlock_t lock;        /* lock for modyfying list of clients */
250         spinlock_t pgtablelock; /* lock for modifying page table @ pgtable */
251         struct iommu_domain domain; /* generic domain data structure */
252 };
253
254 /*
255  * This structure hold all data of a single SYSMMU controller, this includes
256  * hw resources like registers and clocks, pointers and list nodes to connect
257  * it to all other structures, internal state and parameters read from device
258  * tree. It is usually referenced by 'data' pointer.
259  */
260 struct sysmmu_drvdata {
261         struct device *sysmmu;          /* SYSMMU controller device */
262         struct device *master;          /* master device (owner) */
263         struct device_link *link;       /* runtime PM link to master */
264         void __iomem *sfrbase;          /* our registers */
265         struct clk *clk;                /* SYSMMU's clock */
266         struct clk *aclk;               /* SYSMMU's aclk clock */
267         struct clk *pclk;               /* SYSMMU's pclk clock */
268         struct clk *clk_master;         /* master's device clock */
269         spinlock_t lock;                /* lock for modyfying state */
270         bool active;                    /* current status */
271         struct exynos_iommu_domain *domain; /* domain we belong to */
272         struct list_head domain_node;   /* node for domain clients list */
273         struct list_head owner_node;    /* node for owner controllers list */
274         phys_addr_t pgtable;            /* assigned page table structure */
275         unsigned int version;           /* our version */
276
277         struct iommu_device iommu;      /* IOMMU core handle */
278 };
279
280 static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
281 {
282         return container_of(dom, struct exynos_iommu_domain, domain);
283 }
284
285 static void sysmmu_unblock(struct sysmmu_drvdata *data)
286 {
287         writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
288 }
289
290 static bool sysmmu_block(struct sysmmu_drvdata *data)
291 {
292         int i = 120;
293
294         writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
295         while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
296                 --i;
297
298         if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
299                 sysmmu_unblock(data);
300                 return false;
301         }
302
303         return true;
304 }
305
306 static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
307 {
308         if (MMU_MAJ_VER(data->version) < 5)
309                 writel(0x1, data->sfrbase + REG_MMU_FLUSH);
310         else
311                 writel(0x1, data->sfrbase + REG_V5_MMU_FLUSH_ALL);
312 }
313
314 static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
315                                 sysmmu_iova_t iova, unsigned int num_inv)
316 {
317         unsigned int i;
318
319         if (MMU_MAJ_VER(data->version) < 5) {
320                 for (i = 0; i < num_inv; i++) {
321                         writel((iova & SPAGE_MASK) | 1,
322                                      data->sfrbase + REG_MMU_FLUSH_ENTRY);
323                         iova += SPAGE_SIZE;
324                 }
325         } else {
326                 if (num_inv == 1) {
327                         writel((iova & SPAGE_MASK) | 1,
328                                      data->sfrbase + REG_V5_MMU_FLUSH_ENTRY);
329                 } else {
330                         writel((iova & SPAGE_MASK),
331                                      data->sfrbase + REG_V5_MMU_FLUSH_START);
332                         writel((iova & SPAGE_MASK) + (num_inv - 1) * SPAGE_SIZE,
333                                      data->sfrbase + REG_V5_MMU_FLUSH_END);
334                         writel(1, data->sfrbase + REG_V5_MMU_FLUSH_RANGE);
335                 }
336         }
337 }
338
339 static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
340 {
341         if (MMU_MAJ_VER(data->version) < 5)
342                 writel(pgd, data->sfrbase + REG_PT_BASE_ADDR);
343         else
344                 writel(pgd >> PAGE_SHIFT,
345                              data->sfrbase + REG_V5_PT_BASE_PFN);
346
347         __sysmmu_tlb_invalidate(data);
348 }
349
350 static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
351 {
352         BUG_ON(clk_prepare_enable(data->clk_master));
353         BUG_ON(clk_prepare_enable(data->clk));
354         BUG_ON(clk_prepare_enable(data->pclk));
355         BUG_ON(clk_prepare_enable(data->aclk));
356 }
357
358 static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
359 {
360         clk_disable_unprepare(data->aclk);
361         clk_disable_unprepare(data->pclk);
362         clk_disable_unprepare(data->clk);
363         clk_disable_unprepare(data->clk_master);
364 }
365
366 static void __sysmmu_get_version(struct sysmmu_drvdata *data)
367 {
368         u32 ver;
369
370         __sysmmu_enable_clocks(data);
371
372         ver = readl(data->sfrbase + REG_MMU_VERSION);
373
374         /* controllers on some SoCs don't report proper version */
375         if (ver == 0x80000001u)
376                 data->version = MAKE_MMU_VER(1, 0);
377         else
378                 data->version = MMU_RAW_VER(ver);
379
380         dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
381                 MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
382
383         __sysmmu_disable_clocks(data);
384 }
385
386 static void show_fault_information(struct sysmmu_drvdata *data,
387                                    const struct sysmmu_fault_info *finfo,
388                                    sysmmu_iova_t fault_addr)
389 {
390         sysmmu_pte_t *ent;
391
392         dev_err(data->sysmmu, "%s: %s FAULT occurred at %#x\n",
393                 dev_name(data->master), finfo->name, fault_addr);
394         dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable);
395         ent = section_entry(phys_to_virt(data->pgtable), fault_addr);
396         dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
397         if (lv1ent_page(ent)) {
398                 ent = page_entry(ent, fault_addr);
399                 dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
400         }
401 }
402
403 static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
404 {
405         /* SYSMMU is in blocked state when interrupt occurred. */
406         struct sysmmu_drvdata *data = dev_id;
407         const struct sysmmu_fault_info *finfo;
408         unsigned int i, n, itype;
409         sysmmu_iova_t fault_addr;
410         unsigned short reg_status, reg_clear;
411         int ret = -ENOSYS;
412
413         WARN_ON(!data->active);
414
415         if (MMU_MAJ_VER(data->version) < 5) {
416                 reg_status = REG_INT_STATUS;
417                 reg_clear = REG_INT_CLEAR;
418                 finfo = sysmmu_faults;
419                 n = ARRAY_SIZE(sysmmu_faults);
420         } else {
421                 reg_status = REG_V5_INT_STATUS;
422                 reg_clear = REG_V5_INT_CLEAR;
423                 finfo = sysmmu_v5_faults;
424                 n = ARRAY_SIZE(sysmmu_v5_faults);
425         }
426
427         spin_lock(&data->lock);
428
429         clk_enable(data->clk_master);
430
431         itype = __ffs(readl(data->sfrbase + reg_status));
432         for (i = 0; i < n; i++, finfo++)
433                 if (finfo->bit == itype)
434                         break;
435         /* unknown/unsupported fault */
436         BUG_ON(i == n);
437
438         /* print debug message */
439         fault_addr = readl(data->sfrbase + finfo->addr_reg);
440         show_fault_information(data, finfo, fault_addr);
441
442         if (data->domain)
443                 ret = report_iommu_fault(&data->domain->domain,
444                                         data->master, fault_addr, finfo->type);
445         /* fault is not recovered by fault handler */
446         BUG_ON(ret != 0);
447
448         writel(1 << itype, data->sfrbase + reg_clear);
449
450         sysmmu_unblock(data);
451
452         clk_disable(data->clk_master);
453
454         spin_unlock(&data->lock);
455
456         return IRQ_HANDLED;
457 }
458
459 static void __sysmmu_disable(struct sysmmu_drvdata *data)
460 {
461         unsigned long flags;
462
463         clk_enable(data->clk_master);
464
465         spin_lock_irqsave(&data->lock, flags);
466         writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
467         writel(0, data->sfrbase + REG_MMU_CFG);
468         data->active = false;
469         spin_unlock_irqrestore(&data->lock, flags);
470
471         __sysmmu_disable_clocks(data);
472 }
473
474 static void __sysmmu_init_config(struct sysmmu_drvdata *data)
475 {
476         unsigned int cfg;
477
478         if (data->version <= MAKE_MMU_VER(3, 1))
479                 cfg = CFG_LRU | CFG_QOS(15);
480         else if (data->version <= MAKE_MMU_VER(3, 2))
481                 cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
482         else
483                 cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
484
485         cfg |= CFG_EAP; /* enable access protection bits check */
486
487         writel(cfg, data->sfrbase + REG_MMU_CFG);
488 }
489
490 static void __sysmmu_enable(struct sysmmu_drvdata *data)
491 {
492         unsigned long flags;
493
494         __sysmmu_enable_clocks(data);
495
496         spin_lock_irqsave(&data->lock, flags);
497         writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
498         __sysmmu_init_config(data);
499         __sysmmu_set_ptbase(data, data->pgtable);
500         writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
501         data->active = true;
502         spin_unlock_irqrestore(&data->lock, flags);
503
504         /*
505          * SYSMMU driver keeps master's clock enabled only for the short
506          * time, while accessing the registers. For performing address
507          * translation during DMA transaction it relies on the client
508          * driver to enable it.
509          */
510         clk_disable(data->clk_master);
511 }
512
513 static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
514                                             sysmmu_iova_t iova)
515 {
516         unsigned long flags;
517
518         spin_lock_irqsave(&data->lock, flags);
519         if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
520                 clk_enable(data->clk_master);
521                 if (sysmmu_block(data)) {
522                         if (data->version >= MAKE_MMU_VER(5, 0))
523                                 __sysmmu_tlb_invalidate(data);
524                         else
525                                 __sysmmu_tlb_invalidate_entry(data, iova, 1);
526                         sysmmu_unblock(data);
527                 }
528                 clk_disable(data->clk_master);
529         }
530         spin_unlock_irqrestore(&data->lock, flags);
531 }
532
533 static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
534                                         sysmmu_iova_t iova, size_t size)
535 {
536         unsigned long flags;
537
538         spin_lock_irqsave(&data->lock, flags);
539         if (data->active) {
540                 unsigned int num_inv = 1;
541
542                 clk_enable(data->clk_master);
543
544                 /*
545                  * L2TLB invalidation required
546                  * 4KB page: 1 invalidation
547                  * 64KB page: 16 invalidations
548                  * 1MB page: 64 invalidations
549                  * because it is set-associative TLB
550                  * with 8-way and 64 sets.
551                  * 1MB page can be cached in one of all sets.
552                  * 64KB page can be one of 16 consecutive sets.
553                  */
554                 if (MMU_MAJ_VER(data->version) == 2)
555                         num_inv = min_t(unsigned int, size / PAGE_SIZE, 64);
556
557                 if (sysmmu_block(data)) {
558                         __sysmmu_tlb_invalidate_entry(data, iova, num_inv);
559                         sysmmu_unblock(data);
560                 }
561                 clk_disable(data->clk_master);
562         }
563         spin_unlock_irqrestore(&data->lock, flags);
564 }
565
566 static const struct iommu_ops exynos_iommu_ops;
567
568 static int exynos_sysmmu_probe(struct platform_device *pdev)
569 {
570         int irq, ret;
571         struct device *dev = &pdev->dev;
572         struct sysmmu_drvdata *data;
573         struct resource *res;
574
575         data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
576         if (!data)
577                 return -ENOMEM;
578
579         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
580         data->sfrbase = devm_ioremap_resource(dev, res);
581         if (IS_ERR(data->sfrbase))
582                 return PTR_ERR(data->sfrbase);
583
584         irq = platform_get_irq(pdev, 0);
585         if (irq <= 0)
586                 return irq;
587
588         ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
589                                 dev_name(dev), data);
590         if (ret) {
591                 dev_err(dev, "Unabled to register handler of irq %d\n", irq);
592                 return ret;
593         }
594
595         data->clk = devm_clk_get(dev, "sysmmu");
596         if (PTR_ERR(data->clk) == -ENOENT)
597                 data->clk = NULL;
598         else if (IS_ERR(data->clk))
599                 return PTR_ERR(data->clk);
600
601         data->aclk = devm_clk_get(dev, "aclk");
602         if (PTR_ERR(data->aclk) == -ENOENT)
603                 data->aclk = NULL;
604         else if (IS_ERR(data->aclk))
605                 return PTR_ERR(data->aclk);
606
607         data->pclk = devm_clk_get(dev, "pclk");
608         if (PTR_ERR(data->pclk) == -ENOENT)
609                 data->pclk = NULL;
610         else if (IS_ERR(data->pclk))
611                 return PTR_ERR(data->pclk);
612
613         if (!data->clk && (!data->aclk || !data->pclk)) {
614                 dev_err(dev, "Failed to get device clock(s)!\n");
615                 return -ENOSYS;
616         }
617
618         data->clk_master = devm_clk_get(dev, "master");
619         if (PTR_ERR(data->clk_master) == -ENOENT)
620                 data->clk_master = NULL;
621         else if (IS_ERR(data->clk_master))
622                 return PTR_ERR(data->clk_master);
623
624         data->sysmmu = dev;
625         spin_lock_init(&data->lock);
626
627         ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL,
628                                      dev_name(data->sysmmu));
629         if (ret)
630                 return ret;
631
632         ret = iommu_device_register(&data->iommu, &exynos_iommu_ops, dev);
633         if (ret)
634                 return ret;
635
636         platform_set_drvdata(pdev, data);
637
638         __sysmmu_get_version(data);
639         if (PG_ENT_SHIFT < 0) {
640                 if (MMU_MAJ_VER(data->version) < 5) {
641                         PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
642                         LV1_PROT = SYSMMU_LV1_PROT;
643                         LV2_PROT = SYSMMU_LV2_PROT;
644                 } else {
645                         PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
646                         LV1_PROT = SYSMMU_V5_LV1_PROT;
647                         LV2_PROT = SYSMMU_V5_LV2_PROT;
648                 }
649         }
650
651         /*
652          * use the first registered sysmmu device for performing
653          * dma mapping operations on iommu page tables (cpu cache flush)
654          */
655         if (!dma_dev)
656                 dma_dev = &pdev->dev;
657
658         pm_runtime_enable(dev);
659
660         return 0;
661 }
662
663 static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
664 {
665         struct sysmmu_drvdata *data = dev_get_drvdata(dev);
666         struct device *master = data->master;
667
668         if (master) {
669                 struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
670
671                 mutex_lock(&owner->rpm_lock);
672                 if (data->domain) {
673                         dev_dbg(data->sysmmu, "saving state\n");
674                         __sysmmu_disable(data);
675                 }
676                 mutex_unlock(&owner->rpm_lock);
677         }
678         return 0;
679 }
680
681 static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
682 {
683         struct sysmmu_drvdata *data = dev_get_drvdata(dev);
684         struct device *master = data->master;
685
686         if (master) {
687                 struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
688
689                 mutex_lock(&owner->rpm_lock);
690                 if (data->domain) {
691                         dev_dbg(data->sysmmu, "restoring state\n");
692                         __sysmmu_enable(data);
693                 }
694                 mutex_unlock(&owner->rpm_lock);
695         }
696         return 0;
697 }
698
699 static const struct dev_pm_ops sysmmu_pm_ops = {
700         SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
701         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
702                                 pm_runtime_force_resume)
703 };
704
705 static const struct of_device_id sysmmu_of_match[] = {
706         { .compatible   = "samsung,exynos-sysmmu", },
707         { },
708 };
709
710 static struct platform_driver exynos_sysmmu_driver __refdata = {
711         .probe  = exynos_sysmmu_probe,
712         .driver = {
713                 .name           = "exynos-sysmmu",
714                 .of_match_table = sysmmu_of_match,
715                 .pm             = &sysmmu_pm_ops,
716                 .suppress_bind_attrs = true,
717         }
718 };
719
720 static inline void exynos_iommu_set_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
721 {
722         dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
723                                 DMA_TO_DEVICE);
724         *ent = cpu_to_le32(val);
725         dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
726                                    DMA_TO_DEVICE);
727 }
728
729 static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
730 {
731         struct exynos_iommu_domain *domain;
732         dma_addr_t handle;
733         int i;
734
735         /* Check if correct PTE offsets are initialized */
736         BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
737
738         domain = kzalloc(sizeof(*domain), GFP_KERNEL);
739         if (!domain)
740                 return NULL;
741
742         if (type == IOMMU_DOMAIN_DMA) {
743                 if (iommu_get_dma_cookie(&domain->domain) != 0)
744                         goto err_pgtable;
745         } else if (type != IOMMU_DOMAIN_UNMANAGED) {
746                 goto err_pgtable;
747         }
748
749         domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
750         if (!domain->pgtable)
751                 goto err_dma_cookie;
752
753         domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
754         if (!domain->lv2entcnt)
755                 goto err_counter;
756
757         /* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
758         for (i = 0; i < NUM_LV1ENTRIES; i++)
759                 domain->pgtable[i] = ZERO_LV2LINK;
760
761         handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
762                                 DMA_TO_DEVICE);
763         /* For mapping page table entries we rely on dma == phys */
764         BUG_ON(handle != virt_to_phys(domain->pgtable));
765         if (dma_mapping_error(dma_dev, handle))
766                 goto err_lv2ent;
767
768         spin_lock_init(&domain->lock);
769         spin_lock_init(&domain->pgtablelock);
770         INIT_LIST_HEAD(&domain->clients);
771
772         domain->domain.geometry.aperture_start = 0;
773         domain->domain.geometry.aperture_end   = ~0UL;
774         domain->domain.geometry.force_aperture = true;
775
776         return &domain->domain;
777
778 err_lv2ent:
779         free_pages((unsigned long)domain->lv2entcnt, 1);
780 err_counter:
781         free_pages((unsigned long)domain->pgtable, 2);
782 err_dma_cookie:
783         if (type == IOMMU_DOMAIN_DMA)
784                 iommu_put_dma_cookie(&domain->domain);
785 err_pgtable:
786         kfree(domain);
787         return NULL;
788 }
789
790 static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
791 {
792         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
793         struct sysmmu_drvdata *data, *next;
794         unsigned long flags;
795         int i;
796
797         WARN_ON(!list_empty(&domain->clients));
798
799         spin_lock_irqsave(&domain->lock, flags);
800
801         list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
802                 spin_lock(&data->lock);
803                 __sysmmu_disable(data);
804                 data->pgtable = 0;
805                 data->domain = NULL;
806                 list_del_init(&data->domain_node);
807                 spin_unlock(&data->lock);
808         }
809
810         spin_unlock_irqrestore(&domain->lock, flags);
811
812         if (iommu_domain->type == IOMMU_DOMAIN_DMA)
813                 iommu_put_dma_cookie(iommu_domain);
814
815         dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
816                          DMA_TO_DEVICE);
817
818         for (i = 0; i < NUM_LV1ENTRIES; i++)
819                 if (lv1ent_page(domain->pgtable + i)) {
820                         phys_addr_t base = lv2table_base(domain->pgtable + i);
821
822                         dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
823                                          DMA_TO_DEVICE);
824                         kmem_cache_free(lv2table_kmem_cache,
825                                         phys_to_virt(base));
826                 }
827
828         free_pages((unsigned long)domain->pgtable, 2);
829         free_pages((unsigned long)domain->lv2entcnt, 1);
830         kfree(domain);
831 }
832
833 static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
834                                     struct device *dev)
835 {
836         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
837         struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
838         phys_addr_t pagetable = virt_to_phys(domain->pgtable);
839         struct sysmmu_drvdata *data, *next;
840         unsigned long flags;
841
842         if (!has_sysmmu(dev) || owner->domain != iommu_domain)
843                 return;
844
845         mutex_lock(&owner->rpm_lock);
846
847         list_for_each_entry(data, &owner->controllers, owner_node) {
848                 pm_runtime_get_noresume(data->sysmmu);
849                 if (pm_runtime_active(data->sysmmu))
850                         __sysmmu_disable(data);
851                 pm_runtime_put(data->sysmmu);
852         }
853
854         spin_lock_irqsave(&domain->lock, flags);
855         list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
856                 spin_lock(&data->lock);
857                 data->pgtable = 0;
858                 data->domain = NULL;
859                 list_del_init(&data->domain_node);
860                 spin_unlock(&data->lock);
861         }
862         owner->domain = NULL;
863         spin_unlock_irqrestore(&domain->lock, flags);
864
865         mutex_unlock(&owner->rpm_lock);
866
867         dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__,
868                 &pagetable);
869 }
870
871 static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
872                                    struct device *dev)
873 {
874         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
875         struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
876         struct sysmmu_drvdata *data;
877         phys_addr_t pagetable = virt_to_phys(domain->pgtable);
878         unsigned long flags;
879
880         if (!has_sysmmu(dev))
881                 return -ENODEV;
882
883         if (owner->domain)
884                 exynos_iommu_detach_device(owner->domain, dev);
885
886         mutex_lock(&owner->rpm_lock);
887
888         spin_lock_irqsave(&domain->lock, flags);
889         list_for_each_entry(data, &owner->controllers, owner_node) {
890                 spin_lock(&data->lock);
891                 data->pgtable = pagetable;
892                 data->domain = domain;
893                 list_add_tail(&data->domain_node, &domain->clients);
894                 spin_unlock(&data->lock);
895         }
896         owner->domain = iommu_domain;
897         spin_unlock_irqrestore(&domain->lock, flags);
898
899         list_for_each_entry(data, &owner->controllers, owner_node) {
900                 pm_runtime_get_noresume(data->sysmmu);
901                 if (pm_runtime_active(data->sysmmu))
902                         __sysmmu_enable(data);
903                 pm_runtime_put(data->sysmmu);
904         }
905
906         mutex_unlock(&owner->rpm_lock);
907
908         dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
909                 &pagetable);
910
911         return 0;
912 }
913
914 static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
915                 sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
916 {
917         if (lv1ent_section(sent)) {
918                 WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
919                 return ERR_PTR(-EADDRINUSE);
920         }
921
922         if (lv1ent_fault(sent)) {
923                 dma_addr_t handle;
924                 sysmmu_pte_t *pent;
925                 bool need_flush_flpd_cache = lv1ent_zero(sent);
926
927                 pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
928                 BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
929                 if (!pent)
930                         return ERR_PTR(-ENOMEM);
931
932                 exynos_iommu_set_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
933                 kmemleak_ignore(pent);
934                 *pgcounter = NUM_LV2ENTRIES;
935                 handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE,
936                                         DMA_TO_DEVICE);
937                 if (dma_mapping_error(dma_dev, handle)) {
938                         kmem_cache_free(lv2table_kmem_cache, pent);
939                         return ERR_PTR(-EADDRINUSE);
940                 }
941
942                 /*
943                  * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
944                  * FLPD cache may cache the address of zero_l2_table. This
945                  * function replaces the zero_l2_table with new L2 page table
946                  * to write valid mappings.
947                  * Accessing the valid area may cause page fault since FLPD
948                  * cache may still cache zero_l2_table for the valid area
949                  * instead of new L2 page table that has the mapping
950                  * information of the valid area.
951                  * Thus any replacement of zero_l2_table with other valid L2
952                  * page table must involve FLPD cache invalidation for System
953                  * MMU v3.3.
954                  * FLPD cache invalidation is performed with TLB invalidation
955                  * by VPN without blocking. It is safe to invalidate TLB without
956                  * blocking because the target address of TLB invalidation is
957                  * not currently mapped.
958                  */
959                 if (need_flush_flpd_cache) {
960                         struct sysmmu_drvdata *data;
961
962                         spin_lock(&domain->lock);
963                         list_for_each_entry(data, &domain->clients, domain_node)
964                                 sysmmu_tlb_invalidate_flpdcache(data, iova);
965                         spin_unlock(&domain->lock);
966                 }
967         }
968
969         return page_entry(sent, iova);
970 }
971
972 static int lv1set_section(struct exynos_iommu_domain *domain,
973                           sysmmu_pte_t *sent, sysmmu_iova_t iova,
974                           phys_addr_t paddr, int prot, short *pgcnt)
975 {
976         if (lv1ent_section(sent)) {
977                 WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
978                         iova);
979                 return -EADDRINUSE;
980         }
981
982         if (lv1ent_page(sent)) {
983                 if (*pgcnt != NUM_LV2ENTRIES) {
984                         WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
985                                 iova);
986                         return -EADDRINUSE;
987                 }
988
989                 kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
990                 *pgcnt = 0;
991         }
992
993         exynos_iommu_set_pte(sent, mk_lv1ent_sect(paddr, prot));
994
995         spin_lock(&domain->lock);
996         if (lv1ent_page_zero(sent)) {
997                 struct sysmmu_drvdata *data;
998                 /*
999                  * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
1000                  * entry by speculative prefetch of SLPD which has no mapping.
1001                  */
1002                 list_for_each_entry(data, &domain->clients, domain_node)
1003                         sysmmu_tlb_invalidate_flpdcache(data, iova);
1004         }
1005         spin_unlock(&domain->lock);
1006
1007         return 0;
1008 }
1009
1010 static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
1011                        int prot, short *pgcnt)
1012 {
1013         if (size == SPAGE_SIZE) {
1014                 if (WARN_ON(!lv2ent_fault(pent)))
1015                         return -EADDRINUSE;
1016
1017                 exynos_iommu_set_pte(pent, mk_lv2ent_spage(paddr, prot));
1018                 *pgcnt -= 1;
1019         } else { /* size == LPAGE_SIZE */
1020                 int i;
1021                 dma_addr_t pent_base = virt_to_phys(pent);
1022
1023                 dma_sync_single_for_cpu(dma_dev, pent_base,
1024                                         sizeof(*pent) * SPAGES_PER_LPAGE,
1025                                         DMA_TO_DEVICE);
1026                 for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
1027                         if (WARN_ON(!lv2ent_fault(pent))) {
1028                                 if (i > 0)
1029                                         memset(pent - i, 0, sizeof(*pent) * i);
1030                                 return -EADDRINUSE;
1031                         }
1032
1033                         *pent = mk_lv2ent_lpage(paddr, prot);
1034                 }
1035                 dma_sync_single_for_device(dma_dev, pent_base,
1036                                            sizeof(*pent) * SPAGES_PER_LPAGE,
1037                                            DMA_TO_DEVICE);
1038                 *pgcnt -= SPAGES_PER_LPAGE;
1039         }
1040
1041         return 0;
1042 }
1043
1044 /*
1045  * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
1046  *
1047  * System MMU v3.x has advanced logic to improve address translation
1048  * performance with caching more page table entries by a page table walk.
1049  * However, the logic has a bug that while caching faulty page table entries,
1050  * System MMU reports page fault if the cached fault entry is hit even though
1051  * the fault entry is updated to a valid entry after the entry is cached.
1052  * To prevent caching faulty page table entries which may be updated to valid
1053  * entries later, the virtual memory manager should care about the workaround
1054  * for the problem. The following describes the workaround.
1055  *
1056  * Any two consecutive I/O virtual address regions must have a hole of 128KiB
1057  * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
1058  *
1059  * Precisely, any start address of I/O virtual region must be aligned with
1060  * the following sizes for System MMU v3.1 and v3.2.
1061  * System MMU v3.1: 128KiB
1062  * System MMU v3.2: 256KiB
1063  *
1064  * Because System MMU v3.3 caches page table entries more aggressively, it needs
1065  * more workarounds.
1066  * - Any two consecutive I/O virtual regions must have a hole of size larger
1067  *   than or equal to 128KiB.
1068  * - Start address of an I/O virtual region must be aligned by 128KiB.
1069  */
1070 static int exynos_iommu_map(struct iommu_domain *iommu_domain,
1071                             unsigned long l_iova, phys_addr_t paddr, size_t size,
1072                             int prot, gfp_t gfp)
1073 {
1074         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1075         sysmmu_pte_t *entry;
1076         sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1077         unsigned long flags;
1078         int ret = -ENOMEM;
1079
1080         BUG_ON(domain->pgtable == NULL);
1081         prot &= SYSMMU_SUPPORTED_PROT_BITS;
1082
1083         spin_lock_irqsave(&domain->pgtablelock, flags);
1084
1085         entry = section_entry(domain->pgtable, iova);
1086
1087         if (size == SECT_SIZE) {
1088                 ret = lv1set_section(domain, entry, iova, paddr, prot,
1089                                      &domain->lv2entcnt[lv1ent_offset(iova)]);
1090         } else {
1091                 sysmmu_pte_t *pent;
1092
1093                 pent = alloc_lv2entry(domain, entry, iova,
1094                                       &domain->lv2entcnt[lv1ent_offset(iova)]);
1095
1096                 if (IS_ERR(pent))
1097                         ret = PTR_ERR(pent);
1098                 else
1099                         ret = lv2set_page(pent, paddr, size, prot,
1100                                        &domain->lv2entcnt[lv1ent_offset(iova)]);
1101         }
1102
1103         if (ret)
1104                 pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
1105                         __func__, ret, size, iova);
1106
1107         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1108
1109         return ret;
1110 }
1111
1112 static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
1113                                               sysmmu_iova_t iova, size_t size)
1114 {
1115         struct sysmmu_drvdata *data;
1116         unsigned long flags;
1117
1118         spin_lock_irqsave(&domain->lock, flags);
1119
1120         list_for_each_entry(data, &domain->clients, domain_node)
1121                 sysmmu_tlb_invalidate_entry(data, iova, size);
1122
1123         spin_unlock_irqrestore(&domain->lock, flags);
1124 }
1125
1126 static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1127                                  unsigned long l_iova, size_t size,
1128                                  struct iommu_iotlb_gather *gather)
1129 {
1130         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1131         sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1132         sysmmu_pte_t *ent;
1133         size_t err_pgsize;
1134         unsigned long flags;
1135
1136         BUG_ON(domain->pgtable == NULL);
1137
1138         spin_lock_irqsave(&domain->pgtablelock, flags);
1139
1140         ent = section_entry(domain->pgtable, iova);
1141
1142         if (lv1ent_section(ent)) {
1143                 if (WARN_ON(size < SECT_SIZE)) {
1144                         err_pgsize = SECT_SIZE;
1145                         goto err;
1146                 }
1147
1148                 /* workaround for h/w bug in System MMU v3.3 */
1149                 exynos_iommu_set_pte(ent, ZERO_LV2LINK);
1150                 size = SECT_SIZE;
1151                 goto done;
1152         }
1153
1154         if (unlikely(lv1ent_fault(ent))) {
1155                 if (size > SECT_SIZE)
1156                         size = SECT_SIZE;
1157                 goto done;
1158         }
1159
1160         /* lv1ent_page(sent) == true here */
1161
1162         ent = page_entry(ent, iova);
1163
1164         if (unlikely(lv2ent_fault(ent))) {
1165                 size = SPAGE_SIZE;
1166                 goto done;
1167         }
1168
1169         if (lv2ent_small(ent)) {
1170                 exynos_iommu_set_pte(ent, 0);
1171                 size = SPAGE_SIZE;
1172                 domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1173                 goto done;
1174         }
1175
1176         /* lv1ent_large(ent) == true here */
1177         if (WARN_ON(size < LPAGE_SIZE)) {
1178                 err_pgsize = LPAGE_SIZE;
1179                 goto err;
1180         }
1181
1182         dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
1183                                 sizeof(*ent) * SPAGES_PER_LPAGE,
1184                                 DMA_TO_DEVICE);
1185         memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1186         dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
1187                                    sizeof(*ent) * SPAGES_PER_LPAGE,
1188                                    DMA_TO_DEVICE);
1189         size = LPAGE_SIZE;
1190         domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1191 done:
1192         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1193
1194         exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1195
1196         return size;
1197 err:
1198         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1199
1200         pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1201                 __func__, size, iova, err_pgsize);
1202
1203         return 0;
1204 }
1205
1206 static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1207                                           dma_addr_t iova)
1208 {
1209         struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1210         sysmmu_pte_t *entry;
1211         unsigned long flags;
1212         phys_addr_t phys = 0;
1213
1214         spin_lock_irqsave(&domain->pgtablelock, flags);
1215
1216         entry = section_entry(domain->pgtable, iova);
1217
1218         if (lv1ent_section(entry)) {
1219                 phys = section_phys(entry) + section_offs(iova);
1220         } else if (lv1ent_page(entry)) {
1221                 entry = page_entry(entry, iova);
1222
1223                 if (lv2ent_large(entry))
1224                         phys = lpage_phys(entry) + lpage_offs(iova);
1225                 else if (lv2ent_small(entry))
1226                         phys = spage_phys(entry) + spage_offs(iova);
1227         }
1228
1229         spin_unlock_irqrestore(&domain->pgtablelock, flags);
1230
1231         return phys;
1232 }
1233
1234 static struct iommu_device *exynos_iommu_probe_device(struct device *dev)
1235 {
1236         struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1237         struct sysmmu_drvdata *data;
1238
1239         if (!has_sysmmu(dev))
1240                 return ERR_PTR(-ENODEV);
1241
1242         list_for_each_entry(data, &owner->controllers, owner_node) {
1243                 /*
1244                  * SYSMMU will be runtime activated via device link
1245                  * (dependency) to its master device, so there are no
1246                  * direct calls to pm_runtime_get/put in this driver.
1247                  */
1248                 data->link = device_link_add(dev, data->sysmmu,
1249                                              DL_FLAG_STATELESS |
1250                                              DL_FLAG_PM_RUNTIME);
1251         }
1252
1253         /* There is always at least one entry, see exynos_iommu_of_xlate() */
1254         data = list_first_entry(&owner->controllers,
1255                                 struct sysmmu_drvdata, owner_node);
1256
1257         return &data->iommu;
1258 }
1259
1260 static void exynos_iommu_release_device(struct device *dev)
1261 {
1262         struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1263         struct sysmmu_drvdata *data;
1264
1265         if (!has_sysmmu(dev))
1266                 return;
1267
1268         if (owner->domain) {
1269                 struct iommu_group *group = iommu_group_get(dev);
1270
1271                 if (group) {
1272                         WARN_ON(owner->domain !=
1273                                 iommu_group_default_domain(group));
1274                         exynos_iommu_detach_device(owner->domain, dev);
1275                         iommu_group_put(group);
1276                 }
1277         }
1278
1279         list_for_each_entry(data, &owner->controllers, owner_node)
1280                 device_link_del(data->link);
1281 }
1282
1283 static int exynos_iommu_of_xlate(struct device *dev,
1284                                  struct of_phandle_args *spec)
1285 {
1286         struct platform_device *sysmmu = of_find_device_by_node(spec->np);
1287         struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1288         struct sysmmu_drvdata *data, *entry;
1289
1290         if (!sysmmu)
1291                 return -ENODEV;
1292
1293         data = platform_get_drvdata(sysmmu);
1294         if (!data) {
1295                 put_device(&sysmmu->dev);
1296                 return -ENODEV;
1297         }
1298
1299         if (!owner) {
1300                 owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1301                 if (!owner) {
1302                         put_device(&sysmmu->dev);
1303                         return -ENOMEM;
1304                 }
1305
1306                 INIT_LIST_HEAD(&owner->controllers);
1307                 mutex_init(&owner->rpm_lock);
1308                 dev_iommu_priv_set(dev, owner);
1309         }
1310
1311         list_for_each_entry(entry, &owner->controllers, owner_node)
1312                 if (entry == data)
1313                         return 0;
1314
1315         list_add_tail(&data->owner_node, &owner->controllers);
1316         data->master = dev;
1317
1318         return 0;
1319 }
1320
1321 static const struct iommu_ops exynos_iommu_ops = {
1322         .domain_alloc = exynos_iommu_domain_alloc,
1323         .domain_free = exynos_iommu_domain_free,
1324         .attach_dev = exynos_iommu_attach_device,
1325         .detach_dev = exynos_iommu_detach_device,
1326         .map = exynos_iommu_map,
1327         .unmap = exynos_iommu_unmap,
1328         .iova_to_phys = exynos_iommu_iova_to_phys,
1329         .device_group = generic_device_group,
1330         .probe_device = exynos_iommu_probe_device,
1331         .release_device = exynos_iommu_release_device,
1332         .pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
1333         .of_xlate = exynos_iommu_of_xlate,
1334 };
1335
1336 static int __init exynos_iommu_init(void)
1337 {
1338         struct device_node *np;
1339         int ret;
1340
1341         np = of_find_matching_node(NULL, sysmmu_of_match);
1342         if (!np)
1343                 return 0;
1344
1345         of_node_put(np);
1346
1347         lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1348                                 LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1349         if (!lv2table_kmem_cache) {
1350                 pr_err("%s: Failed to create kmem cache\n", __func__);
1351                 return -ENOMEM;
1352         }
1353
1354         ret = platform_driver_register(&exynos_sysmmu_driver);
1355         if (ret) {
1356                 pr_err("%s: Failed to register driver\n", __func__);
1357                 goto err_reg_driver;
1358         }
1359
1360         zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1361         if (zero_lv2_table == NULL) {
1362                 pr_err("%s: Failed to allocate zero level2 page table\n",
1363                         __func__);
1364                 ret = -ENOMEM;
1365                 goto err_zero_lv2;
1366         }
1367
1368         ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
1369         if (ret) {
1370                 pr_err("%s: Failed to register exynos-iommu driver.\n",
1371                                                                 __func__);
1372                 goto err_set_iommu;
1373         }
1374
1375         return 0;
1376 err_set_iommu:
1377         kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
1378 err_zero_lv2:
1379         platform_driver_unregister(&exynos_sysmmu_driver);
1380 err_reg_driver:
1381         kmem_cache_destroy(lv2table_kmem_cache);
1382         return ret;
1383 }
1384 core_initcall(exynos_iommu_init);