Merge tag 'libnvdimm-for-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdim...
[linux-2.6-microblaze.git] / drivers / infiniband / ulp / rtrs / rtrs-clt.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RDMA Transport Layer
4  *
5  * Copyright (c) 2014 - 2018 ProfitBricks GmbH. All rights reserved.
6  * Copyright (c) 2018 - 2019 1&1 IONOS Cloud GmbH. All rights reserved.
7  * Copyright (c) 2019 - 2020 1&1 IONOS SE. All rights reserved.
8  */
9
10 #undef pr_fmt
11 #define pr_fmt(fmt) KBUILD_MODNAME " L" __stringify(__LINE__) ": " fmt
12
13 #include <linux/module.h>
14 #include <linux/rculist.h>
15 #include <linux/random.h>
16
17 #include "rtrs-clt.h"
18 #include "rtrs-log.h"
19
20 #define RTRS_CONNECT_TIMEOUT_MS 30000
21 /*
22  * Wait a bit before trying to reconnect after a failure
23  * in order to give server time to finish clean up which
24  * leads to "false positives" failed reconnect attempts
25  */
26 #define RTRS_RECONNECT_BACKOFF 1000
27 /*
28  * Wait for additional random time between 0 and 8 seconds
29  * before starting to reconnect to avoid clients reconnecting
30  * all at once in case of a major network outage
31  */
32 #define RTRS_RECONNECT_SEED 8
33
34 MODULE_DESCRIPTION("RDMA Transport Client");
35 MODULE_LICENSE("GPL");
36
37 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops;
38 static struct rtrs_rdma_dev_pd dev_pd = {
39         .ops = &dev_pd_ops
40 };
41
42 static struct workqueue_struct *rtrs_wq;
43 static struct class *rtrs_clt_dev_class;
44
45 static inline bool rtrs_clt_is_connected(const struct rtrs_clt *clt)
46 {
47         struct rtrs_clt_sess *sess;
48         bool connected = false;
49
50         rcu_read_lock();
51         list_for_each_entry_rcu(sess, &clt->paths_list, s.entry)
52                 connected |= READ_ONCE(sess->state) == RTRS_CLT_CONNECTED;
53         rcu_read_unlock();
54
55         return connected;
56 }
57
58 static struct rtrs_permit *
59 __rtrs_get_permit(struct rtrs_clt *clt, enum rtrs_clt_con_type con_type)
60 {
61         size_t max_depth = clt->queue_depth;
62         struct rtrs_permit *permit;
63         int bit;
64
65         /*
66          * Adapted from null_blk get_tag(). Callers from different cpus may
67          * grab the same bit, since find_first_zero_bit is not atomic.
68          * But then the test_and_set_bit_lock will fail for all the
69          * callers but one, so that they will loop again.
70          * This way an explicit spinlock is not required.
71          */
72         do {
73                 bit = find_first_zero_bit(clt->permits_map, max_depth);
74                 if (unlikely(bit >= max_depth))
75                         return NULL;
76         } while (unlikely(test_and_set_bit_lock(bit, clt->permits_map)));
77
78         permit = get_permit(clt, bit);
79         WARN_ON(permit->mem_id != bit);
80         permit->cpu_id = raw_smp_processor_id();
81         permit->con_type = con_type;
82
83         return permit;
84 }
85
86 static inline void __rtrs_put_permit(struct rtrs_clt *clt,
87                                       struct rtrs_permit *permit)
88 {
89         clear_bit_unlock(permit->mem_id, clt->permits_map);
90 }
91
92 /**
93  * rtrs_clt_get_permit() - allocates permit for future RDMA operation
94  * @clt:        Current session
95  * @con_type:   Type of connection to use with the permit
96  * @can_wait:   Wait type
97  *
98  * Description:
99  *    Allocates permit for the following RDMA operation.  Permit is used
100  *    to preallocate all resources and to propagate memory pressure
101  *    up earlier.
102  *
103  * Context:
104  *    Can sleep if @wait == RTRS_TAG_WAIT
105  */
106 struct rtrs_permit *rtrs_clt_get_permit(struct rtrs_clt *clt,
107                                           enum rtrs_clt_con_type con_type,
108                                           int can_wait)
109 {
110         struct rtrs_permit *permit;
111         DEFINE_WAIT(wait);
112
113         permit = __rtrs_get_permit(clt, con_type);
114         if (likely(permit) || !can_wait)
115                 return permit;
116
117         do {
118                 prepare_to_wait(&clt->permits_wait, &wait,
119                                 TASK_UNINTERRUPTIBLE);
120                 permit = __rtrs_get_permit(clt, con_type);
121                 if (likely(permit))
122                         break;
123
124                 io_schedule();
125         } while (1);
126
127         finish_wait(&clt->permits_wait, &wait);
128
129         return permit;
130 }
131 EXPORT_SYMBOL(rtrs_clt_get_permit);
132
133 /**
134  * rtrs_clt_put_permit() - puts allocated permit
135  * @clt:        Current session
136  * @permit:     Permit to be freed
137  *
138  * Context:
139  *    Does not matter
140  */
141 void rtrs_clt_put_permit(struct rtrs_clt *clt, struct rtrs_permit *permit)
142 {
143         if (WARN_ON(!test_bit(permit->mem_id, clt->permits_map)))
144                 return;
145
146         __rtrs_put_permit(clt, permit);
147
148         /*
149          * rtrs_clt_get_permit() adds itself to the &clt->permits_wait list
150          * before calling schedule(). So if rtrs_clt_get_permit() is sleeping
151          * it must have added itself to &clt->permits_wait before
152          * __rtrs_put_permit() finished.
153          * Hence it is safe to guard wake_up() with a waitqueue_active() test.
154          */
155         if (waitqueue_active(&clt->permits_wait))
156                 wake_up(&clt->permits_wait);
157 }
158 EXPORT_SYMBOL(rtrs_clt_put_permit);
159
160 void *rtrs_permit_to_pdu(struct rtrs_permit *permit)
161 {
162         return permit + 1;
163 }
164 EXPORT_SYMBOL(rtrs_permit_to_pdu);
165
166 /**
167  * rtrs_permit_to_clt_con() - returns RDMA connection pointer by the permit
168  * @sess: client session pointer
169  * @permit: permit for the allocation of the RDMA buffer
170  * Note:
171  *     IO connection starts from 1.
172  *     0 connection is for user messages.
173  */
174 static
175 struct rtrs_clt_con *rtrs_permit_to_clt_con(struct rtrs_clt_sess *sess,
176                                             struct rtrs_permit *permit)
177 {
178         int id = 0;
179
180         if (likely(permit->con_type == RTRS_IO_CON))
181                 id = (permit->cpu_id % (sess->s.con_num - 1)) + 1;
182
183         return to_clt_con(sess->s.con[id]);
184 }
185
186 /**
187  * __rtrs_clt_change_state() - change the session state through session state
188  * machine.
189  *
190  * @sess: client session to change the state of.
191  * @new_state: state to change to.
192  *
193  * returns true if successful, false if the requested state can not be set.
194  *
195  * Locks:
196  * state_wq lock must be hold.
197  */
198 static bool __rtrs_clt_change_state(struct rtrs_clt_sess *sess,
199                                      enum rtrs_clt_state new_state)
200 {
201         enum rtrs_clt_state old_state;
202         bool changed = false;
203
204         lockdep_assert_held(&sess->state_wq.lock);
205
206         old_state = sess->state;
207         switch (new_state) {
208         case RTRS_CLT_CONNECTING:
209                 switch (old_state) {
210                 case RTRS_CLT_RECONNECTING:
211                         changed = true;
212                         fallthrough;
213                 default:
214                         break;
215                 }
216                 break;
217         case RTRS_CLT_RECONNECTING:
218                 switch (old_state) {
219                 case RTRS_CLT_CONNECTED:
220                 case RTRS_CLT_CONNECTING_ERR:
221                 case RTRS_CLT_CLOSED:
222                         changed = true;
223                         fallthrough;
224                 default:
225                         break;
226                 }
227                 break;
228         case RTRS_CLT_CONNECTED:
229                 switch (old_state) {
230                 case RTRS_CLT_CONNECTING:
231                         changed = true;
232                         fallthrough;
233                 default:
234                         break;
235                 }
236                 break;
237         case RTRS_CLT_CONNECTING_ERR:
238                 switch (old_state) {
239                 case RTRS_CLT_CONNECTING:
240                         changed = true;
241                         fallthrough;
242                 default:
243                         break;
244                 }
245                 break;
246         case RTRS_CLT_CLOSING:
247                 switch (old_state) {
248                 case RTRS_CLT_CONNECTING:
249                 case RTRS_CLT_CONNECTING_ERR:
250                 case RTRS_CLT_RECONNECTING:
251                 case RTRS_CLT_CONNECTED:
252                         changed = true;
253                         fallthrough;
254                 default:
255                         break;
256                 }
257                 break;
258         case RTRS_CLT_CLOSED:
259                 switch (old_state) {
260                 case RTRS_CLT_CLOSING:
261                         changed = true;
262                         fallthrough;
263                 default:
264                         break;
265                 }
266                 break;
267         case RTRS_CLT_DEAD:
268                 switch (old_state) {
269                 case RTRS_CLT_CLOSED:
270                         changed = true;
271                         fallthrough;
272                 default:
273                         break;
274                 }
275                 break;
276         default:
277                 break;
278         }
279         if (changed) {
280                 sess->state = new_state;
281                 wake_up_locked(&sess->state_wq);
282         }
283
284         return changed;
285 }
286
287 static bool rtrs_clt_change_state_from_to(struct rtrs_clt_sess *sess,
288                                            enum rtrs_clt_state old_state,
289                                            enum rtrs_clt_state new_state)
290 {
291         bool changed = false;
292
293         spin_lock_irq(&sess->state_wq.lock);
294         if (sess->state == old_state)
295                 changed = __rtrs_clt_change_state(sess, new_state);
296         spin_unlock_irq(&sess->state_wq.lock);
297
298         return changed;
299 }
300
301 static void rtrs_rdma_error_recovery(struct rtrs_clt_con *con)
302 {
303         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
304
305         if (rtrs_clt_change_state_from_to(sess,
306                                            RTRS_CLT_CONNECTED,
307                                            RTRS_CLT_RECONNECTING)) {
308                 struct rtrs_clt *clt = sess->clt;
309                 unsigned int delay_ms;
310
311                 /*
312                  * Normal scenario, reconnect if we were successfully connected
313                  */
314                 delay_ms = clt->reconnect_delay_sec * 1000;
315                 queue_delayed_work(rtrs_wq, &sess->reconnect_dwork,
316                                    msecs_to_jiffies(delay_ms +
317                                                     prandom_u32() % RTRS_RECONNECT_SEED));
318         } else {
319                 /*
320                  * Error can happen just on establishing new connection,
321                  * so notify waiter with error state, waiter is responsible
322                  * for cleaning the rest and reconnect if needed.
323                  */
324                 rtrs_clt_change_state_from_to(sess,
325                                                RTRS_CLT_CONNECTING,
326                                                RTRS_CLT_CONNECTING_ERR);
327         }
328 }
329
330 static void rtrs_clt_fast_reg_done(struct ib_cq *cq, struct ib_wc *wc)
331 {
332         struct rtrs_clt_con *con = cq->cq_context;
333
334         if (unlikely(wc->status != IB_WC_SUCCESS)) {
335                 rtrs_err(con->c.sess, "Failed IB_WR_REG_MR: %s\n",
336                           ib_wc_status_msg(wc->status));
337                 rtrs_rdma_error_recovery(con);
338         }
339 }
340
341 static struct ib_cqe fast_reg_cqe = {
342         .done = rtrs_clt_fast_reg_done
343 };
344
345 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
346                               bool notify, bool can_wait);
347
348 static void rtrs_clt_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
349 {
350         struct rtrs_clt_io_req *req =
351                 container_of(wc->wr_cqe, typeof(*req), inv_cqe);
352         struct rtrs_clt_con *con = cq->cq_context;
353
354         if (unlikely(wc->status != IB_WC_SUCCESS)) {
355                 rtrs_err(con->c.sess, "Failed IB_WR_LOCAL_INV: %s\n",
356                           ib_wc_status_msg(wc->status));
357                 rtrs_rdma_error_recovery(con);
358         }
359         req->need_inv = false;
360         if (likely(req->need_inv_comp))
361                 complete(&req->inv_comp);
362         else
363                 /* Complete request from INV callback */
364                 complete_rdma_req(req, req->inv_errno, true, false);
365 }
366
367 static int rtrs_inv_rkey(struct rtrs_clt_io_req *req)
368 {
369         struct rtrs_clt_con *con = req->con;
370         struct ib_send_wr wr = {
371                 .opcode             = IB_WR_LOCAL_INV,
372                 .wr_cqe             = &req->inv_cqe,
373                 .send_flags         = IB_SEND_SIGNALED,
374                 .ex.invalidate_rkey = req->mr->rkey,
375         };
376         req->inv_cqe.done = rtrs_clt_inv_rkey_done;
377
378         return ib_post_send(con->c.qp, &wr, NULL);
379 }
380
381 static void complete_rdma_req(struct rtrs_clt_io_req *req, int errno,
382                               bool notify, bool can_wait)
383 {
384         struct rtrs_clt_con *con = req->con;
385         struct rtrs_clt_sess *sess;
386         int err;
387
388         if (WARN_ON(!req->in_use))
389                 return;
390         if (WARN_ON(!req->con))
391                 return;
392         sess = to_clt_sess(con->c.sess);
393
394         if (req->sg_cnt) {
395                 if (unlikely(req->dir == DMA_FROM_DEVICE && req->need_inv)) {
396                         /*
397                          * We are here to invalidate read requests
398                          * ourselves.  In normal scenario server should
399                          * send INV for all read requests, but
400                          * we are here, thus two things could happen:
401                          *
402                          *    1.  this is failover, when errno != 0
403                          *        and can_wait == 1,
404                          *
405                          *    2.  something totally bad happened and
406                          *        server forgot to send INV, so we
407                          *        should do that ourselves.
408                          */
409
410                         if (likely(can_wait)) {
411                                 req->need_inv_comp = true;
412                         } else {
413                                 /* This should be IO path, so always notify */
414                                 WARN_ON(!notify);
415                                 /* Save errno for INV callback */
416                                 req->inv_errno = errno;
417                         }
418
419                         err = rtrs_inv_rkey(req);
420                         if (unlikely(err)) {
421                                 rtrs_err(con->c.sess, "Send INV WR key=%#x: %d\n",
422                                           req->mr->rkey, err);
423                         } else if (likely(can_wait)) {
424                                 wait_for_completion(&req->inv_comp);
425                         } else {
426                                 /*
427                                  * Something went wrong, so request will be
428                                  * completed from INV callback.
429                                  */
430                                 WARN_ON_ONCE(1);
431
432                                 return;
433                         }
434                 }
435                 ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist,
436                                 req->sg_cnt, req->dir);
437         }
438         if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
439                 atomic_dec(&sess->stats->inflight);
440
441         req->in_use = false;
442         req->con = NULL;
443
444         if (notify)
445                 req->conf(req->priv, errno);
446 }
447
448 static int rtrs_post_send_rdma(struct rtrs_clt_con *con,
449                                 struct rtrs_clt_io_req *req,
450                                 struct rtrs_rbuf *rbuf, u32 off,
451                                 u32 imm, struct ib_send_wr *wr)
452 {
453         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
454         enum ib_send_flags flags;
455         struct ib_sge sge;
456
457         if (unlikely(!req->sg_size)) {
458                 rtrs_wrn(con->c.sess,
459                          "Doing RDMA Write failed, no data supplied\n");
460                 return -EINVAL;
461         }
462
463         /* user data and user message in the first list element */
464         sge.addr   = req->iu->dma_addr;
465         sge.length = req->sg_size;
466         sge.lkey   = sess->s.dev->ib_pd->local_dma_lkey;
467
468         /*
469          * From time to time we have to post signalled sends,
470          * or send queue will fill up and only QP reset can help.
471          */
472         flags = atomic_inc_return(&con->io_cnt) % sess->queue_depth ?
473                         0 : IB_SEND_SIGNALED;
474
475         ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr,
476                                       req->sg_size, DMA_TO_DEVICE);
477
478         return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, &sge, 1,
479                                             rbuf->rkey, rbuf->addr + off,
480                                             imm, flags, wr);
481 }
482
483 static void process_io_rsp(struct rtrs_clt_sess *sess, u32 msg_id,
484                            s16 errno, bool w_inval)
485 {
486         struct rtrs_clt_io_req *req;
487
488         if (WARN_ON(msg_id >= sess->queue_depth))
489                 return;
490
491         req = &sess->reqs[msg_id];
492         /* Drop need_inv if server responded with send with invalidation */
493         req->need_inv &= !w_inval;
494         complete_rdma_req(req, errno, true, false);
495 }
496
497 static void rtrs_clt_recv_done(struct rtrs_clt_con *con, struct ib_wc *wc)
498 {
499         struct rtrs_iu *iu;
500         int err;
501         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
502
503         WARN_ON(sess->flags != RTRS_MSG_NEW_RKEY_F);
504         iu = container_of(wc->wr_cqe, struct rtrs_iu,
505                           cqe);
506         err = rtrs_iu_post_recv(&con->c, iu);
507         if (unlikely(err)) {
508                 rtrs_err(con->c.sess, "post iu failed %d\n", err);
509                 rtrs_rdma_error_recovery(con);
510         }
511 }
512
513 static void rtrs_clt_rkey_rsp_done(struct rtrs_clt_con *con, struct ib_wc *wc)
514 {
515         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
516         struct rtrs_msg_rkey_rsp *msg;
517         u32 imm_type, imm_payload;
518         bool w_inval = false;
519         struct rtrs_iu *iu;
520         u32 buf_id;
521         int err;
522
523         WARN_ON(sess->flags != RTRS_MSG_NEW_RKEY_F);
524
525         iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
526
527         if (unlikely(wc->byte_len < sizeof(*msg))) {
528                 rtrs_err(con->c.sess, "rkey response is malformed: size %d\n",
529                           wc->byte_len);
530                 goto out;
531         }
532         ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
533                                    iu->size, DMA_FROM_DEVICE);
534         msg = iu->buf;
535         if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_RKEY_RSP)) {
536                 rtrs_err(sess->clt, "rkey response is malformed: type %d\n",
537                           le16_to_cpu(msg->type));
538                 goto out;
539         }
540         buf_id = le16_to_cpu(msg->buf_id);
541         if (WARN_ON(buf_id >= sess->queue_depth))
542                 goto out;
543
544         rtrs_from_imm(be32_to_cpu(wc->ex.imm_data), &imm_type, &imm_payload);
545         if (likely(imm_type == RTRS_IO_RSP_IMM ||
546                    imm_type == RTRS_IO_RSP_W_INV_IMM)) {
547                 u32 msg_id;
548
549                 w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
550                 rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
551
552                 if (WARN_ON(buf_id != msg_id))
553                         goto out;
554                 sess->rbufs[buf_id].rkey = le32_to_cpu(msg->rkey);
555                 process_io_rsp(sess, msg_id, err, w_inval);
556         }
557         ib_dma_sync_single_for_device(sess->s.dev->ib_dev, iu->dma_addr,
558                                       iu->size, DMA_FROM_DEVICE);
559         return rtrs_clt_recv_done(con, wc);
560 out:
561         rtrs_rdma_error_recovery(con);
562 }
563
564 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc);
565
566 static struct ib_cqe io_comp_cqe = {
567         .done = rtrs_clt_rdma_done
568 };
569
570 /*
571  * Post x2 empty WRs: first is for this RDMA with IMM,
572  * second is for RECV with INV, which happened earlier.
573  */
574 static int rtrs_post_recv_empty_x2(struct rtrs_con *con, struct ib_cqe *cqe)
575 {
576         struct ib_recv_wr wr_arr[2], *wr;
577         int i;
578
579         memset(wr_arr, 0, sizeof(wr_arr));
580         for (i = 0; i < ARRAY_SIZE(wr_arr); i++) {
581                 wr = &wr_arr[i];
582                 wr->wr_cqe  = cqe;
583                 if (i)
584                         /* Chain backwards */
585                         wr->next = &wr_arr[i - 1];
586         }
587
588         return ib_post_recv(con->qp, wr, NULL);
589 }
590
591 static void rtrs_clt_rdma_done(struct ib_cq *cq, struct ib_wc *wc)
592 {
593         struct rtrs_clt_con *con = cq->cq_context;
594         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
595         u32 imm_type, imm_payload;
596         bool w_inval = false;
597         int err;
598
599         if (unlikely(wc->status != IB_WC_SUCCESS)) {
600                 if (wc->status != IB_WC_WR_FLUSH_ERR) {
601                         rtrs_err(sess->clt, "RDMA failed: %s\n",
602                                   ib_wc_status_msg(wc->status));
603                         rtrs_rdma_error_recovery(con);
604                 }
605                 return;
606         }
607         rtrs_clt_update_wc_stats(con);
608
609         switch (wc->opcode) {
610         case IB_WC_RECV_RDMA_WITH_IMM:
611                 /*
612                  * post_recv() RDMA write completions of IO reqs (read/write)
613                  * and hb
614                  */
615                 if (WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done))
616                         return;
617                 rtrs_from_imm(be32_to_cpu(wc->ex.imm_data),
618                                &imm_type, &imm_payload);
619                 if (likely(imm_type == RTRS_IO_RSP_IMM ||
620                            imm_type == RTRS_IO_RSP_W_INV_IMM)) {
621                         u32 msg_id;
622
623                         w_inval = (imm_type == RTRS_IO_RSP_W_INV_IMM);
624                         rtrs_from_io_rsp_imm(imm_payload, &msg_id, &err);
625
626                         process_io_rsp(sess, msg_id, err, w_inval);
627                 } else if (imm_type == RTRS_HB_MSG_IMM) {
628                         WARN_ON(con->c.cid);
629                         rtrs_send_hb_ack(&sess->s);
630                         if (sess->flags == RTRS_MSG_NEW_RKEY_F)
631                                 return  rtrs_clt_recv_done(con, wc);
632                 } else if (imm_type == RTRS_HB_ACK_IMM) {
633                         WARN_ON(con->c.cid);
634                         sess->s.hb_missed_cnt = 0;
635                         if (sess->flags == RTRS_MSG_NEW_RKEY_F)
636                                 return  rtrs_clt_recv_done(con, wc);
637                 } else {
638                         rtrs_wrn(con->c.sess, "Unknown IMM type %u\n",
639                                   imm_type);
640                 }
641                 if (w_inval)
642                         /*
643                          * Post x2 empty WRs: first is for this RDMA with IMM,
644                          * second is for RECV with INV, which happened earlier.
645                          */
646                         err = rtrs_post_recv_empty_x2(&con->c, &io_comp_cqe);
647                 else
648                         err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
649                 if (unlikely(err)) {
650                         rtrs_err(con->c.sess, "rtrs_post_recv_empty(): %d\n",
651                                   err);
652                         rtrs_rdma_error_recovery(con);
653                         break;
654                 }
655                 break;
656         case IB_WC_RECV:
657                 /*
658                  * Key invalidations from server side
659                  */
660                 WARN_ON(!(wc->wc_flags & IB_WC_WITH_INVALIDATE ||
661                           wc->wc_flags & IB_WC_WITH_IMM));
662                 WARN_ON(wc->wr_cqe->done != rtrs_clt_rdma_done);
663                 if (sess->flags == RTRS_MSG_NEW_RKEY_F) {
664                         if (wc->wc_flags & IB_WC_WITH_INVALIDATE)
665                                 return  rtrs_clt_recv_done(con, wc);
666
667                         return  rtrs_clt_rkey_rsp_done(con, wc);
668                 }
669                 break;
670         case IB_WC_RDMA_WRITE:
671                 /*
672                  * post_send() RDMA write completions of IO reqs (read/write)
673                  * and hb
674                  */
675                 break;
676
677         default:
678                 rtrs_wrn(sess->clt, "Unexpected WC type: %d\n", wc->opcode);
679                 return;
680         }
681 }
682
683 static int post_recv_io(struct rtrs_clt_con *con, size_t q_size)
684 {
685         int err, i;
686         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
687
688         for (i = 0; i < q_size; i++) {
689                 if (sess->flags == RTRS_MSG_NEW_RKEY_F) {
690                         struct rtrs_iu *iu = &con->rsp_ius[i];
691
692                         err = rtrs_iu_post_recv(&con->c, iu);
693                 } else {
694                         err = rtrs_post_recv_empty(&con->c, &io_comp_cqe);
695                 }
696                 if (unlikely(err))
697                         return err;
698         }
699
700         return 0;
701 }
702
703 static int post_recv_sess(struct rtrs_clt_sess *sess)
704 {
705         size_t q_size = 0;
706         int err, cid;
707
708         for (cid = 0; cid < sess->s.con_num; cid++) {
709                 if (cid == 0)
710                         q_size = SERVICE_CON_QUEUE_DEPTH;
711                 else
712                         q_size = sess->queue_depth;
713
714                 /*
715                  * x2 for RDMA read responses + FR key invalidations,
716                  * RDMA writes do not require any FR registrations.
717                  */
718                 q_size *= 2;
719
720                 err = post_recv_io(to_clt_con(sess->s.con[cid]), q_size);
721                 if (unlikely(err)) {
722                         rtrs_err(sess->clt, "post_recv_io(), err: %d\n", err);
723                         return err;
724                 }
725         }
726
727         return 0;
728 }
729
730 struct path_it {
731         int i;
732         struct list_head skip_list;
733         struct rtrs_clt *clt;
734         struct rtrs_clt_sess *(*next_path)(struct path_it *it);
735 };
736
737 /**
738  * list_next_or_null_rr_rcu - get next list element in round-robin fashion.
739  * @head:       the head for the list.
740  * @ptr:        the list head to take the next element from.
741  * @type:       the type of the struct this is embedded in.
742  * @memb:       the name of the list_head within the struct.
743  *
744  * Next element returned in round-robin fashion, i.e. head will be skipped,
745  * but if list is observed as empty, NULL will be returned.
746  *
747  * This primitive may safely run concurrently with the _rcu list-mutation
748  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
749  */
750 #define list_next_or_null_rr_rcu(head, ptr, type, memb) \
751 ({ \
752         list_next_or_null_rcu(head, ptr, type, memb) ?: \
753                 list_next_or_null_rcu(head, READ_ONCE((ptr)->next), \
754                                       type, memb); \
755 })
756
757 /**
758  * get_next_path_rr() - Returns path in round-robin fashion.
759  * @it: the path pointer
760  *
761  * Related to @MP_POLICY_RR
762  *
763  * Locks:
764  *    rcu_read_lock() must be hold.
765  */
766 static struct rtrs_clt_sess *get_next_path_rr(struct path_it *it)
767 {
768         struct rtrs_clt_sess __rcu **ppcpu_path;
769         struct rtrs_clt_sess *path;
770         struct rtrs_clt *clt;
771
772         clt = it->clt;
773
774         /*
775          * Here we use two RCU objects: @paths_list and @pcpu_path
776          * pointer.  See rtrs_clt_remove_path_from_arr() for details
777          * how that is handled.
778          */
779
780         ppcpu_path = this_cpu_ptr(clt->pcpu_path);
781         path = rcu_dereference(*ppcpu_path);
782         if (unlikely(!path))
783                 path = list_first_or_null_rcu(&clt->paths_list,
784                                               typeof(*path), s.entry);
785         else
786                 path = list_next_or_null_rr_rcu(&clt->paths_list,
787                                                 &path->s.entry,
788                                                 typeof(*path),
789                                                 s.entry);
790         rcu_assign_pointer(*ppcpu_path, path);
791
792         return path;
793 }
794
795 /**
796  * get_next_path_min_inflight() - Returns path with minimal inflight count.
797  * @it: the path pointer
798  *
799  * Related to @MP_POLICY_MIN_INFLIGHT
800  *
801  * Locks:
802  *    rcu_read_lock() must be hold.
803  */
804 static struct rtrs_clt_sess *get_next_path_min_inflight(struct path_it *it)
805 {
806         struct rtrs_clt_sess *min_path = NULL;
807         struct rtrs_clt *clt = it->clt;
808         struct rtrs_clt_sess *sess;
809         int min_inflight = INT_MAX;
810         int inflight;
811
812         list_for_each_entry_rcu(sess, &clt->paths_list, s.entry) {
813                 if (unlikely(!list_empty(raw_cpu_ptr(sess->mp_skip_entry))))
814                         continue;
815
816                 inflight = atomic_read(&sess->stats->inflight);
817
818                 if (inflight < min_inflight) {
819                         min_inflight = inflight;
820                         min_path = sess;
821                 }
822         }
823
824         /*
825          * add the path to the skip list, so that next time we can get
826          * a different one
827          */
828         if (min_path)
829                 list_add(raw_cpu_ptr(min_path->mp_skip_entry), &it->skip_list);
830
831         return min_path;
832 }
833
834 static inline void path_it_init(struct path_it *it, struct rtrs_clt *clt)
835 {
836         INIT_LIST_HEAD(&it->skip_list);
837         it->clt = clt;
838         it->i = 0;
839
840         if (clt->mp_policy == MP_POLICY_RR)
841                 it->next_path = get_next_path_rr;
842         else
843                 it->next_path = get_next_path_min_inflight;
844 }
845
846 static inline void path_it_deinit(struct path_it *it)
847 {
848         struct list_head *skip, *tmp;
849         /*
850          * The skip_list is used only for the MIN_INFLIGHT policy.
851          * We need to remove paths from it, so that next IO can insert
852          * paths (->mp_skip_entry) into a skip_list again.
853          */
854         list_for_each_safe(skip, tmp, &it->skip_list)
855                 list_del_init(skip);
856 }
857
858 /**
859  * rtrs_clt_init_req() Initialize an rtrs_clt_io_req holding information
860  * about an inflight IO.
861  * The user buffer holding user control message (not data) is copied into
862  * the corresponding buffer of rtrs_iu (req->iu->buf), which later on will
863  * also hold the control message of rtrs.
864  * @req: an io request holding information about IO.
865  * @sess: client session
866  * @conf: conformation callback function to notify upper layer.
867  * @permit: permit for allocation of RDMA remote buffer
868  * @priv: private pointer
869  * @vec: kernel vector containing control message
870  * @usr_len: length of the user message
871  * @sg: scater list for IO data
872  * @sg_cnt: number of scater list entries
873  * @data_len: length of the IO data
874  * @dir: direction of the IO.
875  */
876 static void rtrs_clt_init_req(struct rtrs_clt_io_req *req,
877                               struct rtrs_clt_sess *sess,
878                               void (*conf)(void *priv, int errno),
879                               struct rtrs_permit *permit, void *priv,
880                               const struct kvec *vec, size_t usr_len,
881                               struct scatterlist *sg, size_t sg_cnt,
882                               size_t data_len, int dir)
883 {
884         struct iov_iter iter;
885         size_t len;
886
887         req->permit = permit;
888         req->in_use = true;
889         req->usr_len = usr_len;
890         req->data_len = data_len;
891         req->sglist = sg;
892         req->sg_cnt = sg_cnt;
893         req->priv = priv;
894         req->dir = dir;
895         req->con = rtrs_permit_to_clt_con(sess, permit);
896         req->conf = conf;
897         req->need_inv = false;
898         req->need_inv_comp = false;
899         req->inv_errno = 0;
900
901         iov_iter_kvec(&iter, READ, vec, 1, usr_len);
902         len = _copy_from_iter(req->iu->buf, usr_len, &iter);
903         WARN_ON(len != usr_len);
904
905         reinit_completion(&req->inv_comp);
906 }
907
908 static struct rtrs_clt_io_req *
909 rtrs_clt_get_req(struct rtrs_clt_sess *sess,
910                  void (*conf)(void *priv, int errno),
911                  struct rtrs_permit *permit, void *priv,
912                  const struct kvec *vec, size_t usr_len,
913                  struct scatterlist *sg, size_t sg_cnt,
914                  size_t data_len, int dir)
915 {
916         struct rtrs_clt_io_req *req;
917
918         req = &sess->reqs[permit->mem_id];
919         rtrs_clt_init_req(req, sess, conf, permit, priv, vec, usr_len,
920                            sg, sg_cnt, data_len, dir);
921         return req;
922 }
923
924 static struct rtrs_clt_io_req *
925 rtrs_clt_get_copy_req(struct rtrs_clt_sess *alive_sess,
926                        struct rtrs_clt_io_req *fail_req)
927 {
928         struct rtrs_clt_io_req *req;
929         struct kvec vec = {
930                 .iov_base = fail_req->iu->buf,
931                 .iov_len  = fail_req->usr_len
932         };
933
934         req = &alive_sess->reqs[fail_req->permit->mem_id];
935         rtrs_clt_init_req(req, alive_sess, fail_req->conf, fail_req->permit,
936                            fail_req->priv, &vec, fail_req->usr_len,
937                            fail_req->sglist, fail_req->sg_cnt,
938                            fail_req->data_len, fail_req->dir);
939         return req;
940 }
941
942 static int rtrs_post_rdma_write_sg(struct rtrs_clt_con *con,
943                                     struct rtrs_clt_io_req *req,
944                                     struct rtrs_rbuf *rbuf,
945                                     u32 size, u32 imm)
946 {
947         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
948         struct ib_sge *sge = req->sge;
949         enum ib_send_flags flags;
950         struct scatterlist *sg;
951         size_t num_sge;
952         int i;
953
954         for_each_sg(req->sglist, sg, req->sg_cnt, i) {
955                 sge[i].addr   = sg_dma_address(sg);
956                 sge[i].length = sg_dma_len(sg);
957                 sge[i].lkey   = sess->s.dev->ib_pd->local_dma_lkey;
958         }
959         sge[i].addr   = req->iu->dma_addr;
960         sge[i].length = size;
961         sge[i].lkey   = sess->s.dev->ib_pd->local_dma_lkey;
962
963         num_sge = 1 + req->sg_cnt;
964
965         /*
966          * From time to time we have to post signalled sends,
967          * or send queue will fill up and only QP reset can help.
968          */
969         flags = atomic_inc_return(&con->io_cnt) % sess->queue_depth ?
970                         0 : IB_SEND_SIGNALED;
971
972         ib_dma_sync_single_for_device(sess->s.dev->ib_dev, req->iu->dma_addr,
973                                       size, DMA_TO_DEVICE);
974
975         return rtrs_iu_post_rdma_write_imm(&con->c, req->iu, sge, num_sge,
976                                             rbuf->rkey, rbuf->addr, imm,
977                                             flags, NULL);
978 }
979
980 static int rtrs_clt_write_req(struct rtrs_clt_io_req *req)
981 {
982         struct rtrs_clt_con *con = req->con;
983         struct rtrs_sess *s = con->c.sess;
984         struct rtrs_clt_sess *sess = to_clt_sess(s);
985         struct rtrs_msg_rdma_write *msg;
986
987         struct rtrs_rbuf *rbuf;
988         int ret, count = 0;
989         u32 imm, buf_id;
990
991         const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
992
993         if (unlikely(tsize > sess->chunk_size)) {
994                 rtrs_wrn(s, "Write request failed, size too big %zu > %d\n",
995                           tsize, sess->chunk_size);
996                 return -EMSGSIZE;
997         }
998         if (req->sg_cnt) {
999                 count = ib_dma_map_sg(sess->s.dev->ib_dev, req->sglist,
1000                                       req->sg_cnt, req->dir);
1001                 if (unlikely(!count)) {
1002                         rtrs_wrn(s, "Write request failed, map failed\n");
1003                         return -EINVAL;
1004                 }
1005         }
1006         /* put rtrs msg after sg and user message */
1007         msg = req->iu->buf + req->usr_len;
1008         msg->type = cpu_to_le16(RTRS_MSG_WRITE);
1009         msg->usr_len = cpu_to_le16(req->usr_len);
1010
1011         /* rtrs message on server side will be after user data and message */
1012         imm = req->permit->mem_off + req->data_len + req->usr_len;
1013         imm = rtrs_to_io_req_imm(imm);
1014         buf_id = req->permit->mem_id;
1015         req->sg_size = tsize;
1016         rbuf = &sess->rbufs[buf_id];
1017
1018         /*
1019          * Update stats now, after request is successfully sent it is not
1020          * safe anymore to touch it.
1021          */
1022         rtrs_clt_update_all_stats(req, WRITE);
1023
1024         ret = rtrs_post_rdma_write_sg(req->con, req, rbuf,
1025                                        req->usr_len + sizeof(*msg),
1026                                        imm);
1027         if (unlikely(ret)) {
1028                 rtrs_err(s, "Write request failed: %d\n", ret);
1029                 if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
1030                         atomic_dec(&sess->stats->inflight);
1031                 if (req->sg_cnt)
1032                         ib_dma_unmap_sg(sess->s.dev->ib_dev, req->sglist,
1033                                         req->sg_cnt, req->dir);
1034         }
1035
1036         return ret;
1037 }
1038
1039 static int rtrs_map_sg_fr(struct rtrs_clt_io_req *req, size_t count)
1040 {
1041         int nr;
1042
1043         /* Align the MR to a 4K page size to match the block virt boundary */
1044         nr = ib_map_mr_sg(req->mr, req->sglist, count, NULL, SZ_4K);
1045         if (nr < 0)
1046                 return nr;
1047         if (unlikely(nr < req->sg_cnt))
1048                 return -EINVAL;
1049         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1050
1051         return nr;
1052 }
1053
1054 static int rtrs_clt_read_req(struct rtrs_clt_io_req *req)
1055 {
1056         struct rtrs_clt_con *con = req->con;
1057         struct rtrs_sess *s = con->c.sess;
1058         struct rtrs_clt_sess *sess = to_clt_sess(s);
1059         struct rtrs_msg_rdma_read *msg;
1060         struct rtrs_ib_dev *dev;
1061
1062         struct ib_reg_wr rwr;
1063         struct ib_send_wr *wr = NULL;
1064
1065         int ret, count = 0;
1066         u32 imm, buf_id;
1067
1068         const size_t tsize = sizeof(*msg) + req->data_len + req->usr_len;
1069
1070         s = &sess->s;
1071         dev = sess->s.dev;
1072
1073         if (unlikely(tsize > sess->chunk_size)) {
1074                 rtrs_wrn(s,
1075                           "Read request failed, message size is %zu, bigger than CHUNK_SIZE %d\n",
1076                           tsize, sess->chunk_size);
1077                 return -EMSGSIZE;
1078         }
1079
1080         if (req->sg_cnt) {
1081                 count = ib_dma_map_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1082                                       req->dir);
1083                 if (unlikely(!count)) {
1084                         rtrs_wrn(s,
1085                                   "Read request failed, dma map failed\n");
1086                         return -EINVAL;
1087                 }
1088         }
1089         /* put our message into req->buf after user message*/
1090         msg = req->iu->buf + req->usr_len;
1091         msg->type = cpu_to_le16(RTRS_MSG_READ);
1092         msg->usr_len = cpu_to_le16(req->usr_len);
1093
1094         if (count) {
1095                 ret = rtrs_map_sg_fr(req, count);
1096                 if (ret < 0) {
1097                         rtrs_err_rl(s,
1098                                      "Read request failed, failed to map  fast reg. data, err: %d\n",
1099                                      ret);
1100                         ib_dma_unmap_sg(dev->ib_dev, req->sglist, req->sg_cnt,
1101                                         req->dir);
1102                         return ret;
1103                 }
1104                 rwr = (struct ib_reg_wr) {
1105                         .wr.opcode = IB_WR_REG_MR,
1106                         .wr.wr_cqe = &fast_reg_cqe,
1107                         .mr = req->mr,
1108                         .key = req->mr->rkey,
1109                         .access = (IB_ACCESS_LOCAL_WRITE |
1110                                    IB_ACCESS_REMOTE_WRITE),
1111                 };
1112                 wr = &rwr.wr;
1113
1114                 msg->sg_cnt = cpu_to_le16(1);
1115                 msg->flags = cpu_to_le16(RTRS_MSG_NEED_INVAL_F);
1116
1117                 msg->desc[0].addr = cpu_to_le64(req->mr->iova);
1118                 msg->desc[0].key = cpu_to_le32(req->mr->rkey);
1119                 msg->desc[0].len = cpu_to_le32(req->mr->length);
1120
1121                 /* Further invalidation is required */
1122                 req->need_inv = !!RTRS_MSG_NEED_INVAL_F;
1123
1124         } else {
1125                 msg->sg_cnt = 0;
1126                 msg->flags = 0;
1127         }
1128         /*
1129          * rtrs message will be after the space reserved for disk data and
1130          * user message
1131          */
1132         imm = req->permit->mem_off + req->data_len + req->usr_len;
1133         imm = rtrs_to_io_req_imm(imm);
1134         buf_id = req->permit->mem_id;
1135
1136         req->sg_size  = sizeof(*msg);
1137         req->sg_size += le16_to_cpu(msg->sg_cnt) * sizeof(struct rtrs_sg_desc);
1138         req->sg_size += req->usr_len;
1139
1140         /*
1141          * Update stats now, after request is successfully sent it is not
1142          * safe anymore to touch it.
1143          */
1144         rtrs_clt_update_all_stats(req, READ);
1145
1146         ret = rtrs_post_send_rdma(req->con, req, &sess->rbufs[buf_id],
1147                                    req->data_len, imm, wr);
1148         if (unlikely(ret)) {
1149                 rtrs_err(s, "Read request failed: %d\n", ret);
1150                 if (sess->clt->mp_policy == MP_POLICY_MIN_INFLIGHT)
1151                         atomic_dec(&sess->stats->inflight);
1152                 req->need_inv = false;
1153                 if (req->sg_cnt)
1154                         ib_dma_unmap_sg(dev->ib_dev, req->sglist,
1155                                         req->sg_cnt, req->dir);
1156         }
1157
1158         return ret;
1159 }
1160
1161 /**
1162  * rtrs_clt_failover_req() Try to find an active path for a failed request
1163  * @clt: clt context
1164  * @fail_req: a failed io request.
1165  */
1166 static int rtrs_clt_failover_req(struct rtrs_clt *clt,
1167                                  struct rtrs_clt_io_req *fail_req)
1168 {
1169         struct rtrs_clt_sess *alive_sess;
1170         struct rtrs_clt_io_req *req;
1171         int err = -ECONNABORTED;
1172         struct path_it it;
1173
1174         rcu_read_lock();
1175         for (path_it_init(&it, clt);
1176              (alive_sess = it.next_path(&it)) && it.i < it.clt->paths_num;
1177              it.i++) {
1178                 if (unlikely(READ_ONCE(alive_sess->state) !=
1179                              RTRS_CLT_CONNECTED))
1180                         continue;
1181                 req = rtrs_clt_get_copy_req(alive_sess, fail_req);
1182                 if (req->dir == DMA_TO_DEVICE)
1183                         err = rtrs_clt_write_req(req);
1184                 else
1185                         err = rtrs_clt_read_req(req);
1186                 if (unlikely(err)) {
1187                         req->in_use = false;
1188                         continue;
1189                 }
1190                 /* Success path */
1191                 rtrs_clt_inc_failover_cnt(alive_sess->stats);
1192                 break;
1193         }
1194         path_it_deinit(&it);
1195         rcu_read_unlock();
1196
1197         return err;
1198 }
1199
1200 static void fail_all_outstanding_reqs(struct rtrs_clt_sess *sess)
1201 {
1202         struct rtrs_clt *clt = sess->clt;
1203         struct rtrs_clt_io_req *req;
1204         int i, err;
1205
1206         if (!sess->reqs)
1207                 return;
1208         for (i = 0; i < sess->queue_depth; ++i) {
1209                 req = &sess->reqs[i];
1210                 if (!req->in_use)
1211                         continue;
1212
1213                 /*
1214                  * Safely (without notification) complete failed request.
1215                  * After completion this request is still useble and can
1216                  * be failovered to another path.
1217                  */
1218                 complete_rdma_req(req, -ECONNABORTED, false, true);
1219
1220                 err = rtrs_clt_failover_req(clt, req);
1221                 if (unlikely(err))
1222                         /* Failover failed, notify anyway */
1223                         req->conf(req->priv, err);
1224         }
1225 }
1226
1227 static void free_sess_reqs(struct rtrs_clt_sess *sess)
1228 {
1229         struct rtrs_clt_io_req *req;
1230         int i;
1231
1232         if (!sess->reqs)
1233                 return;
1234         for (i = 0; i < sess->queue_depth; ++i) {
1235                 req = &sess->reqs[i];
1236                 if (req->mr)
1237                         ib_dereg_mr(req->mr);
1238                 kfree(req->sge);
1239                 rtrs_iu_free(req->iu, sess->s.dev->ib_dev, 1);
1240         }
1241         kfree(sess->reqs);
1242         sess->reqs = NULL;
1243 }
1244
1245 static int alloc_sess_reqs(struct rtrs_clt_sess *sess)
1246 {
1247         struct rtrs_clt_io_req *req;
1248         struct rtrs_clt *clt = sess->clt;
1249         int i, err = -ENOMEM;
1250
1251         sess->reqs = kcalloc(sess->queue_depth, sizeof(*sess->reqs),
1252                              GFP_KERNEL);
1253         if (!sess->reqs)
1254                 return -ENOMEM;
1255
1256         for (i = 0; i < sess->queue_depth; ++i) {
1257                 req = &sess->reqs[i];
1258                 req->iu = rtrs_iu_alloc(1, sess->max_hdr_size, GFP_KERNEL,
1259                                          sess->s.dev->ib_dev,
1260                                          DMA_TO_DEVICE,
1261                                          rtrs_clt_rdma_done);
1262                 if (!req->iu)
1263                         goto out;
1264
1265                 req->sge = kmalloc_array(clt->max_segments + 1,
1266                                          sizeof(*req->sge), GFP_KERNEL);
1267                 if (!req->sge)
1268                         goto out;
1269
1270                 req->mr = ib_alloc_mr(sess->s.dev->ib_pd, IB_MR_TYPE_MEM_REG,
1271                                       sess->max_pages_per_mr);
1272                 if (IS_ERR(req->mr)) {
1273                         err = PTR_ERR(req->mr);
1274                         req->mr = NULL;
1275                         pr_err("Failed to alloc sess->max_pages_per_mr %d\n",
1276                                sess->max_pages_per_mr);
1277                         goto out;
1278                 }
1279
1280                 init_completion(&req->inv_comp);
1281         }
1282
1283         return 0;
1284
1285 out:
1286         free_sess_reqs(sess);
1287
1288         return err;
1289 }
1290
1291 static int alloc_permits(struct rtrs_clt *clt)
1292 {
1293         unsigned int chunk_bits;
1294         int err, i;
1295
1296         clt->permits_map = kcalloc(BITS_TO_LONGS(clt->queue_depth),
1297                                    sizeof(long), GFP_KERNEL);
1298         if (!clt->permits_map) {
1299                 err = -ENOMEM;
1300                 goto out_err;
1301         }
1302         clt->permits = kcalloc(clt->queue_depth, permit_size(clt), GFP_KERNEL);
1303         if (!clt->permits) {
1304                 err = -ENOMEM;
1305                 goto err_map;
1306         }
1307         chunk_bits = ilog2(clt->queue_depth - 1) + 1;
1308         for (i = 0; i < clt->queue_depth; i++) {
1309                 struct rtrs_permit *permit;
1310
1311                 permit = get_permit(clt, i);
1312                 permit->mem_id = i;
1313                 permit->mem_off = i << (MAX_IMM_PAYL_BITS - chunk_bits);
1314         }
1315
1316         return 0;
1317
1318 err_map:
1319         kfree(clt->permits_map);
1320         clt->permits_map = NULL;
1321 out_err:
1322         return err;
1323 }
1324
1325 static void free_permits(struct rtrs_clt *clt)
1326 {
1327         kfree(clt->permits_map);
1328         clt->permits_map = NULL;
1329         kfree(clt->permits);
1330         clt->permits = NULL;
1331 }
1332
1333 static void query_fast_reg_mode(struct rtrs_clt_sess *sess)
1334 {
1335         struct ib_device *ib_dev;
1336         u64 max_pages_per_mr;
1337         int mr_page_shift;
1338
1339         ib_dev = sess->s.dev->ib_dev;
1340
1341         /*
1342          * Use the smallest page size supported by the HCA, down to a
1343          * minimum of 4096 bytes. We're unlikely to build large sglists
1344          * out of smaller entries.
1345          */
1346         mr_page_shift      = max(12, ffs(ib_dev->attrs.page_size_cap) - 1);
1347         max_pages_per_mr   = ib_dev->attrs.max_mr_size;
1348         do_div(max_pages_per_mr, (1ull << mr_page_shift));
1349         sess->max_pages_per_mr =
1350                 min3(sess->max_pages_per_mr, (u32)max_pages_per_mr,
1351                      ib_dev->attrs.max_fast_reg_page_list_len);
1352         sess->max_send_sge = ib_dev->attrs.max_send_sge;
1353 }
1354
1355 static bool rtrs_clt_change_state_get_old(struct rtrs_clt_sess *sess,
1356                                            enum rtrs_clt_state new_state,
1357                                            enum rtrs_clt_state *old_state)
1358 {
1359         bool changed;
1360
1361         spin_lock_irq(&sess->state_wq.lock);
1362         *old_state = sess->state;
1363         changed = __rtrs_clt_change_state(sess, new_state);
1364         spin_unlock_irq(&sess->state_wq.lock);
1365
1366         return changed;
1367 }
1368
1369 static bool rtrs_clt_change_state(struct rtrs_clt_sess *sess,
1370                                    enum rtrs_clt_state new_state)
1371 {
1372         enum rtrs_clt_state old_state;
1373
1374         return rtrs_clt_change_state_get_old(sess, new_state, &old_state);
1375 }
1376
1377 static void rtrs_clt_hb_err_handler(struct rtrs_con *c)
1378 {
1379         struct rtrs_clt_con *con = container_of(c, typeof(*con), c);
1380
1381         rtrs_rdma_error_recovery(con);
1382 }
1383
1384 static void rtrs_clt_init_hb(struct rtrs_clt_sess *sess)
1385 {
1386         rtrs_init_hb(&sess->s, &io_comp_cqe,
1387                       RTRS_HB_INTERVAL_MS,
1388                       RTRS_HB_MISSED_MAX,
1389                       rtrs_clt_hb_err_handler,
1390                       rtrs_wq);
1391 }
1392
1393 static void rtrs_clt_start_hb(struct rtrs_clt_sess *sess)
1394 {
1395         rtrs_start_hb(&sess->s);
1396 }
1397
1398 static void rtrs_clt_stop_hb(struct rtrs_clt_sess *sess)
1399 {
1400         rtrs_stop_hb(&sess->s);
1401 }
1402
1403 static void rtrs_clt_reconnect_work(struct work_struct *work);
1404 static void rtrs_clt_close_work(struct work_struct *work);
1405
1406 static struct rtrs_clt_sess *alloc_sess(struct rtrs_clt *clt,
1407                                          const struct rtrs_addr *path,
1408                                          size_t con_num, u16 max_segments,
1409                                          size_t max_segment_size)
1410 {
1411         struct rtrs_clt_sess *sess;
1412         int err = -ENOMEM;
1413         int cpu;
1414
1415         sess = kzalloc(sizeof(*sess), GFP_KERNEL);
1416         if (!sess)
1417                 goto err;
1418
1419         /* Extra connection for user messages */
1420         con_num += 1;
1421
1422         sess->s.con = kcalloc(con_num, sizeof(*sess->s.con), GFP_KERNEL);
1423         if (!sess->s.con)
1424                 goto err_free_sess;
1425
1426         sess->stats = kzalloc(sizeof(*sess->stats), GFP_KERNEL);
1427         if (!sess->stats)
1428                 goto err_free_con;
1429
1430         mutex_init(&sess->init_mutex);
1431         uuid_gen(&sess->s.uuid);
1432         memcpy(&sess->s.dst_addr, path->dst,
1433                rdma_addr_size((struct sockaddr *)path->dst));
1434
1435         /*
1436          * rdma_resolve_addr() passes src_addr to cma_bind_addr, which
1437          * checks the sa_family to be non-zero. If user passed src_addr=NULL
1438          * the sess->src_addr will contain only zeros, which is then fine.
1439          */
1440         if (path->src)
1441                 memcpy(&sess->s.src_addr, path->src,
1442                        rdma_addr_size((struct sockaddr *)path->src));
1443         strlcpy(sess->s.sessname, clt->sessname, sizeof(sess->s.sessname));
1444         sess->s.con_num = con_num;
1445         sess->clt = clt;
1446         sess->max_pages_per_mr = max_segments * max_segment_size >> 12;
1447         init_waitqueue_head(&sess->state_wq);
1448         sess->state = RTRS_CLT_CONNECTING;
1449         atomic_set(&sess->connected_cnt, 0);
1450         INIT_WORK(&sess->close_work, rtrs_clt_close_work);
1451         INIT_DELAYED_WORK(&sess->reconnect_dwork, rtrs_clt_reconnect_work);
1452         rtrs_clt_init_hb(sess);
1453
1454         sess->mp_skip_entry = alloc_percpu(typeof(*sess->mp_skip_entry));
1455         if (!sess->mp_skip_entry)
1456                 goto err_free_stats;
1457
1458         for_each_possible_cpu(cpu)
1459                 INIT_LIST_HEAD(per_cpu_ptr(sess->mp_skip_entry, cpu));
1460
1461         err = rtrs_clt_init_stats(sess->stats);
1462         if (err)
1463                 goto err_free_percpu;
1464
1465         return sess;
1466
1467 err_free_percpu:
1468         free_percpu(sess->mp_skip_entry);
1469 err_free_stats:
1470         kfree(sess->stats);
1471 err_free_con:
1472         kfree(sess->s.con);
1473 err_free_sess:
1474         kfree(sess);
1475 err:
1476         return ERR_PTR(err);
1477 }
1478
1479 void free_sess(struct rtrs_clt_sess *sess)
1480 {
1481         free_percpu(sess->mp_skip_entry);
1482         mutex_destroy(&sess->init_mutex);
1483         kfree(sess->s.con);
1484         kfree(sess->rbufs);
1485         kfree(sess);
1486 }
1487
1488 static int create_con(struct rtrs_clt_sess *sess, unsigned int cid)
1489 {
1490         struct rtrs_clt_con *con;
1491
1492         con = kzalloc(sizeof(*con), GFP_KERNEL);
1493         if (!con)
1494                 return -ENOMEM;
1495
1496         /* Map first two connections to the first CPU */
1497         con->cpu  = (cid ? cid - 1 : 0) % nr_cpu_ids;
1498         con->c.cid = cid;
1499         con->c.sess = &sess->s;
1500         atomic_set(&con->io_cnt, 0);
1501         mutex_init(&con->con_mutex);
1502
1503         sess->s.con[cid] = &con->c;
1504
1505         return 0;
1506 }
1507
1508 static void destroy_con(struct rtrs_clt_con *con)
1509 {
1510         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1511
1512         sess->s.con[con->c.cid] = NULL;
1513         mutex_destroy(&con->con_mutex);
1514         kfree(con);
1515 }
1516
1517 static int create_con_cq_qp(struct rtrs_clt_con *con)
1518 {
1519         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1520         u16 wr_queue_size;
1521         int err, cq_vector;
1522         struct rtrs_msg_rkey_rsp *rsp;
1523
1524         lockdep_assert_held(&con->con_mutex);
1525         if (con->c.cid == 0) {
1526                 /*
1527                  * One completion for each receive and two for each send
1528                  * (send request + registration)
1529                  * + 2 for drain and heartbeat
1530                  * in case qp gets into error state
1531                  */
1532                 wr_queue_size = SERVICE_CON_QUEUE_DEPTH * 3 + 2;
1533                 /* We must be the first here */
1534                 if (WARN_ON(sess->s.dev))
1535                         return -EINVAL;
1536
1537                 /*
1538                  * The whole session uses device from user connection.
1539                  * Be careful not to close user connection before ib dev
1540                  * is gracefully put.
1541                  */
1542                 sess->s.dev = rtrs_ib_dev_find_or_add(con->c.cm_id->device,
1543                                                        &dev_pd);
1544                 if (!sess->s.dev) {
1545                         rtrs_wrn(sess->clt,
1546                                   "rtrs_ib_dev_find_get_or_add(): no memory\n");
1547                         return -ENOMEM;
1548                 }
1549                 sess->s.dev_ref = 1;
1550                 query_fast_reg_mode(sess);
1551         } else {
1552                 /*
1553                  * Here we assume that session members are correctly set.
1554                  * This is always true if user connection (cid == 0) is
1555                  * established first.
1556                  */
1557                 if (WARN_ON(!sess->s.dev))
1558                         return -EINVAL;
1559                 if (WARN_ON(!sess->queue_depth))
1560                         return -EINVAL;
1561
1562                 /* Shared between connections */
1563                 sess->s.dev_ref++;
1564                 wr_queue_size =
1565                         min_t(int, sess->s.dev->ib_dev->attrs.max_qp_wr,
1566                               /* QD * (REQ + RSP + FR REGS or INVS) + drain */
1567                               sess->queue_depth * 3 + 1);
1568         }
1569         /* alloc iu to recv new rkey reply when server reports flags set */
1570         if (sess->flags == RTRS_MSG_NEW_RKEY_F || con->c.cid == 0) {
1571                 con->rsp_ius = rtrs_iu_alloc(wr_queue_size, sizeof(*rsp),
1572                                               GFP_KERNEL, sess->s.dev->ib_dev,
1573                                               DMA_FROM_DEVICE,
1574                                               rtrs_clt_rdma_done);
1575                 if (!con->rsp_ius)
1576                         return -ENOMEM;
1577                 con->queue_size = wr_queue_size;
1578         }
1579         cq_vector = con->cpu % sess->s.dev->ib_dev->num_comp_vectors;
1580         err = rtrs_cq_qp_create(&sess->s, &con->c, sess->max_send_sge,
1581                                  cq_vector, wr_queue_size, wr_queue_size,
1582                                  IB_POLL_SOFTIRQ);
1583         /*
1584          * In case of error we do not bother to clean previous allocations,
1585          * since destroy_con_cq_qp() must be called.
1586          */
1587         return err;
1588 }
1589
1590 static void destroy_con_cq_qp(struct rtrs_clt_con *con)
1591 {
1592         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1593
1594         /*
1595          * Be careful here: destroy_con_cq_qp() can be called even
1596          * create_con_cq_qp() failed, see comments there.
1597          */
1598         lockdep_assert_held(&con->con_mutex);
1599         rtrs_cq_qp_destroy(&con->c);
1600         if (con->rsp_ius) {
1601                 rtrs_iu_free(con->rsp_ius, sess->s.dev->ib_dev, con->queue_size);
1602                 con->rsp_ius = NULL;
1603                 con->queue_size = 0;
1604         }
1605         if (sess->s.dev_ref && !--sess->s.dev_ref) {
1606                 rtrs_ib_dev_put(sess->s.dev);
1607                 sess->s.dev = NULL;
1608         }
1609 }
1610
1611 static void stop_cm(struct rtrs_clt_con *con)
1612 {
1613         rdma_disconnect(con->c.cm_id);
1614         if (con->c.qp)
1615                 ib_drain_qp(con->c.qp);
1616 }
1617
1618 static void destroy_cm(struct rtrs_clt_con *con)
1619 {
1620         rdma_destroy_id(con->c.cm_id);
1621         con->c.cm_id = NULL;
1622 }
1623
1624 static int rtrs_rdma_addr_resolved(struct rtrs_clt_con *con)
1625 {
1626         struct rtrs_sess *s = con->c.sess;
1627         int err;
1628
1629         mutex_lock(&con->con_mutex);
1630         err = create_con_cq_qp(con);
1631         mutex_unlock(&con->con_mutex);
1632         if (err) {
1633                 rtrs_err(s, "create_con_cq_qp(), err: %d\n", err);
1634                 return err;
1635         }
1636         err = rdma_resolve_route(con->c.cm_id, RTRS_CONNECT_TIMEOUT_MS);
1637         if (err)
1638                 rtrs_err(s, "Resolving route failed, err: %d\n", err);
1639
1640         return err;
1641 }
1642
1643 static int rtrs_rdma_route_resolved(struct rtrs_clt_con *con)
1644 {
1645         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1646         struct rtrs_clt *clt = sess->clt;
1647         struct rtrs_msg_conn_req msg;
1648         struct rdma_conn_param param;
1649
1650         int err;
1651
1652         param = (struct rdma_conn_param) {
1653                 .retry_count = 7,
1654                 .rnr_retry_count = 7,
1655                 .private_data = &msg,
1656                 .private_data_len = sizeof(msg),
1657         };
1658
1659         msg = (struct rtrs_msg_conn_req) {
1660                 .magic = cpu_to_le16(RTRS_MAGIC),
1661                 .version = cpu_to_le16(RTRS_PROTO_VER),
1662                 .cid = cpu_to_le16(con->c.cid),
1663                 .cid_num = cpu_to_le16(sess->s.con_num),
1664                 .recon_cnt = cpu_to_le16(sess->s.recon_cnt),
1665         };
1666         uuid_copy(&msg.sess_uuid, &sess->s.uuid);
1667         uuid_copy(&msg.paths_uuid, &clt->paths_uuid);
1668
1669         err = rdma_connect_locked(con->c.cm_id, &param);
1670         if (err)
1671                 rtrs_err(clt, "rdma_connect_locked(): %d\n", err);
1672
1673         return err;
1674 }
1675
1676 static int rtrs_rdma_conn_established(struct rtrs_clt_con *con,
1677                                        struct rdma_cm_event *ev)
1678 {
1679         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1680         struct rtrs_clt *clt = sess->clt;
1681         const struct rtrs_msg_conn_rsp *msg;
1682         u16 version, queue_depth;
1683         int errno;
1684         u8 len;
1685
1686         msg = ev->param.conn.private_data;
1687         len = ev->param.conn.private_data_len;
1688         if (len < sizeof(*msg)) {
1689                 rtrs_err(clt, "Invalid RTRS connection response\n");
1690                 return -ECONNRESET;
1691         }
1692         if (le16_to_cpu(msg->magic) != RTRS_MAGIC) {
1693                 rtrs_err(clt, "Invalid RTRS magic\n");
1694                 return -ECONNRESET;
1695         }
1696         version = le16_to_cpu(msg->version);
1697         if (version >> 8 != RTRS_PROTO_VER_MAJOR) {
1698                 rtrs_err(clt, "Unsupported major RTRS version: %d, expected %d\n",
1699                           version >> 8, RTRS_PROTO_VER_MAJOR);
1700                 return -ECONNRESET;
1701         }
1702         errno = le16_to_cpu(msg->errno);
1703         if (errno) {
1704                 rtrs_err(clt, "Invalid RTRS message: errno %d\n",
1705                           errno);
1706                 return -ECONNRESET;
1707         }
1708         if (con->c.cid == 0) {
1709                 queue_depth = le16_to_cpu(msg->queue_depth);
1710
1711                 if (queue_depth > MAX_SESS_QUEUE_DEPTH) {
1712                         rtrs_err(clt, "Invalid RTRS message: queue=%d\n",
1713                                   queue_depth);
1714                         return -ECONNRESET;
1715                 }
1716                 if (!sess->rbufs || sess->queue_depth < queue_depth) {
1717                         kfree(sess->rbufs);
1718                         sess->rbufs = kcalloc(queue_depth, sizeof(*sess->rbufs),
1719                                               GFP_KERNEL);
1720                         if (!sess->rbufs)
1721                                 return -ENOMEM;
1722                 }
1723                 sess->queue_depth = queue_depth;
1724                 sess->max_hdr_size = le32_to_cpu(msg->max_hdr_size);
1725                 sess->max_io_size = le32_to_cpu(msg->max_io_size);
1726                 sess->flags = le32_to_cpu(msg->flags);
1727                 sess->chunk_size = sess->max_io_size + sess->max_hdr_size;
1728
1729                 /*
1730                  * Global queue depth and IO size is always a minimum.
1731                  * If while a reconnection server sends us a value a bit
1732                  * higher - client does not care and uses cached minimum.
1733                  *
1734                  * Since we can have several sessions (paths) restablishing
1735                  * connections in parallel, use lock.
1736                  */
1737                 mutex_lock(&clt->paths_mutex);
1738                 clt->queue_depth = min_not_zero(sess->queue_depth,
1739                                                 clt->queue_depth);
1740                 clt->max_io_size = min_not_zero(sess->max_io_size,
1741                                                 clt->max_io_size);
1742                 mutex_unlock(&clt->paths_mutex);
1743
1744                 /*
1745                  * Cache the hca_port and hca_name for sysfs
1746                  */
1747                 sess->hca_port = con->c.cm_id->port_num;
1748                 scnprintf(sess->hca_name, sizeof(sess->hca_name),
1749                           sess->s.dev->ib_dev->name);
1750                 sess->s.src_addr = con->c.cm_id->route.addr.src_addr;
1751         }
1752
1753         return 0;
1754 }
1755
1756 static inline void flag_success_on_conn(struct rtrs_clt_con *con)
1757 {
1758         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
1759
1760         atomic_inc(&sess->connected_cnt);
1761         con->cm_err = 1;
1762 }
1763
1764 static int rtrs_rdma_conn_rejected(struct rtrs_clt_con *con,
1765                                     struct rdma_cm_event *ev)
1766 {
1767         struct rtrs_sess *s = con->c.sess;
1768         const struct rtrs_msg_conn_rsp *msg;
1769         const char *rej_msg;
1770         int status, errno;
1771         u8 data_len;
1772
1773         status = ev->status;
1774         rej_msg = rdma_reject_msg(con->c.cm_id, status);
1775         msg = rdma_consumer_reject_data(con->c.cm_id, ev, &data_len);
1776
1777         if (msg && data_len >= sizeof(*msg)) {
1778                 errno = (int16_t)le16_to_cpu(msg->errno);
1779                 if (errno == -EBUSY)
1780                         rtrs_err(s,
1781                                   "Previous session is still exists on the server, please reconnect later\n");
1782                 else
1783                         rtrs_err(s,
1784                                   "Connect rejected: status %d (%s), rtrs errno %d\n",
1785                                   status, rej_msg, errno);
1786         } else {
1787                 rtrs_err(s,
1788                           "Connect rejected but with malformed message: status %d (%s)\n",
1789                           status, rej_msg);
1790         }
1791
1792         return -ECONNRESET;
1793 }
1794
1795 static void rtrs_clt_close_conns(struct rtrs_clt_sess *sess, bool wait)
1796 {
1797         if (rtrs_clt_change_state(sess, RTRS_CLT_CLOSING))
1798                 queue_work(rtrs_wq, &sess->close_work);
1799         if (wait)
1800                 flush_work(&sess->close_work);
1801 }
1802
1803 static inline void flag_error_on_conn(struct rtrs_clt_con *con, int cm_err)
1804 {
1805         if (con->cm_err == 1) {
1806                 struct rtrs_clt_sess *sess;
1807
1808                 sess = to_clt_sess(con->c.sess);
1809                 if (atomic_dec_and_test(&sess->connected_cnt))
1810
1811                         wake_up(&sess->state_wq);
1812         }
1813         con->cm_err = cm_err;
1814 }
1815
1816 static int rtrs_clt_rdma_cm_handler(struct rdma_cm_id *cm_id,
1817                                      struct rdma_cm_event *ev)
1818 {
1819         struct rtrs_clt_con *con = cm_id->context;
1820         struct rtrs_sess *s = con->c.sess;
1821         struct rtrs_clt_sess *sess = to_clt_sess(s);
1822         int cm_err = 0;
1823
1824         switch (ev->event) {
1825         case RDMA_CM_EVENT_ADDR_RESOLVED:
1826                 cm_err = rtrs_rdma_addr_resolved(con);
1827                 break;
1828         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1829                 cm_err = rtrs_rdma_route_resolved(con);
1830                 break;
1831         case RDMA_CM_EVENT_ESTABLISHED:
1832                 cm_err = rtrs_rdma_conn_established(con, ev);
1833                 if (likely(!cm_err)) {
1834                         /*
1835                          * Report success and wake up. Here we abuse state_wq,
1836                          * i.e. wake up without state change, but we set cm_err.
1837                          */
1838                         flag_success_on_conn(con);
1839                         wake_up(&sess->state_wq);
1840                         return 0;
1841                 }
1842                 break;
1843         case RDMA_CM_EVENT_REJECTED:
1844                 cm_err = rtrs_rdma_conn_rejected(con, ev);
1845                 break;
1846         case RDMA_CM_EVENT_DISCONNECTED:
1847                 /* No message for disconnecting */
1848                 cm_err = -ECONNRESET;
1849                 break;
1850         case RDMA_CM_EVENT_CONNECT_ERROR:
1851         case RDMA_CM_EVENT_UNREACHABLE:
1852         case RDMA_CM_EVENT_ADDR_CHANGE:
1853         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1854                 rtrs_wrn(s, "CM error event %d\n", ev->event);
1855                 cm_err = -ECONNRESET;
1856                 break;
1857         case RDMA_CM_EVENT_ADDR_ERROR:
1858         case RDMA_CM_EVENT_ROUTE_ERROR:
1859                 rtrs_wrn(s, "CM error event %d\n", ev->event);
1860                 cm_err = -EHOSTUNREACH;
1861                 break;
1862         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1863                 /*
1864                  * Device removal is a special case.  Queue close and return 0.
1865                  */
1866                 rtrs_clt_close_conns(sess, false);
1867                 return 0;
1868         default:
1869                 rtrs_err(s, "Unexpected RDMA CM event (%d)\n", ev->event);
1870                 cm_err = -ECONNRESET;
1871                 break;
1872         }
1873
1874         if (cm_err) {
1875                 /*
1876                  * cm error makes sense only on connection establishing,
1877                  * in other cases we rely on normal procedure of reconnecting.
1878                  */
1879                 flag_error_on_conn(con, cm_err);
1880                 rtrs_rdma_error_recovery(con);
1881         }
1882
1883         return 0;
1884 }
1885
1886 static int create_cm(struct rtrs_clt_con *con)
1887 {
1888         struct rtrs_sess *s = con->c.sess;
1889         struct rtrs_clt_sess *sess = to_clt_sess(s);
1890         struct rdma_cm_id *cm_id;
1891         int err;
1892
1893         cm_id = rdma_create_id(&init_net, rtrs_clt_rdma_cm_handler, con,
1894                                sess->s.dst_addr.ss_family == AF_IB ?
1895                                RDMA_PS_IB : RDMA_PS_TCP, IB_QPT_RC);
1896         if (IS_ERR(cm_id)) {
1897                 err = PTR_ERR(cm_id);
1898                 rtrs_err(s, "Failed to create CM ID, err: %d\n", err);
1899
1900                 return err;
1901         }
1902         con->c.cm_id = cm_id;
1903         con->cm_err = 0;
1904         /* allow the port to be reused */
1905         err = rdma_set_reuseaddr(cm_id, 1);
1906         if (err != 0) {
1907                 rtrs_err(s, "Set address reuse failed, err: %d\n", err);
1908                 goto destroy_cm;
1909         }
1910         err = rdma_resolve_addr(cm_id, (struct sockaddr *)&sess->s.src_addr,
1911                                 (struct sockaddr *)&sess->s.dst_addr,
1912                                 RTRS_CONNECT_TIMEOUT_MS);
1913         if (err) {
1914                 rtrs_err(s, "Failed to resolve address, err: %d\n", err);
1915                 goto destroy_cm;
1916         }
1917         /*
1918          * Combine connection status and session events. This is needed
1919          * for waiting two possible cases: cm_err has something meaningful
1920          * or session state was really changed to error by device removal.
1921          */
1922         err = wait_event_interruptible_timeout(
1923                         sess->state_wq,
1924                         con->cm_err || sess->state != RTRS_CLT_CONNECTING,
1925                         msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
1926         if (err == 0 || err == -ERESTARTSYS) {
1927                 if (err == 0)
1928                         err = -ETIMEDOUT;
1929                 /* Timedout or interrupted */
1930                 goto errr;
1931         }
1932         if (con->cm_err < 0) {
1933                 err = con->cm_err;
1934                 goto errr;
1935         }
1936         if (READ_ONCE(sess->state) != RTRS_CLT_CONNECTING) {
1937                 /* Device removal */
1938                 err = -ECONNABORTED;
1939                 goto errr;
1940         }
1941
1942         return 0;
1943
1944 errr:
1945         stop_cm(con);
1946         mutex_lock(&con->con_mutex);
1947         destroy_con_cq_qp(con);
1948         mutex_unlock(&con->con_mutex);
1949 destroy_cm:
1950         destroy_cm(con);
1951
1952         return err;
1953 }
1954
1955 static void rtrs_clt_sess_up(struct rtrs_clt_sess *sess)
1956 {
1957         struct rtrs_clt *clt = sess->clt;
1958         int up;
1959
1960         /*
1961          * We can fire RECONNECTED event only when all paths were
1962          * connected on rtrs_clt_open(), then each was disconnected
1963          * and the first one connected again.  That's why this nasty
1964          * game with counter value.
1965          */
1966
1967         mutex_lock(&clt->paths_ev_mutex);
1968         up = ++clt->paths_up;
1969         /*
1970          * Here it is safe to access paths num directly since up counter
1971          * is greater than MAX_PATHS_NUM only while rtrs_clt_open() is
1972          * in progress, thus paths removals are impossible.
1973          */
1974         if (up > MAX_PATHS_NUM && up == MAX_PATHS_NUM + clt->paths_num)
1975                 clt->paths_up = clt->paths_num;
1976         else if (up == 1)
1977                 clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_RECONNECTED);
1978         mutex_unlock(&clt->paths_ev_mutex);
1979
1980         /* Mark session as established */
1981         sess->established = true;
1982         sess->reconnect_attempts = 0;
1983         sess->stats->reconnects.successful_cnt++;
1984 }
1985
1986 static void rtrs_clt_sess_down(struct rtrs_clt_sess *sess)
1987 {
1988         struct rtrs_clt *clt = sess->clt;
1989
1990         if (!sess->established)
1991                 return;
1992
1993         sess->established = false;
1994         mutex_lock(&clt->paths_ev_mutex);
1995         WARN_ON(!clt->paths_up);
1996         if (--clt->paths_up == 0)
1997                 clt->link_ev(clt->priv, RTRS_CLT_LINK_EV_DISCONNECTED);
1998         mutex_unlock(&clt->paths_ev_mutex);
1999 }
2000
2001 static void rtrs_clt_stop_and_destroy_conns(struct rtrs_clt_sess *sess)
2002 {
2003         struct rtrs_clt_con *con;
2004         unsigned int cid;
2005
2006         WARN_ON(READ_ONCE(sess->state) == RTRS_CLT_CONNECTED);
2007
2008         /*
2009          * Possible race with rtrs_clt_open(), when DEVICE_REMOVAL comes
2010          * exactly in between.  Start destroying after it finishes.
2011          */
2012         mutex_lock(&sess->init_mutex);
2013         mutex_unlock(&sess->init_mutex);
2014
2015         /*
2016          * All IO paths must observe !CONNECTED state before we
2017          * free everything.
2018          */
2019         synchronize_rcu();
2020
2021         rtrs_clt_stop_hb(sess);
2022
2023         /*
2024          * The order it utterly crucial: firstly disconnect and complete all
2025          * rdma requests with error (thus set in_use=false for requests),
2026          * then fail outstanding requests checking in_use for each, and
2027          * eventually notify upper layer about session disconnection.
2028          */
2029
2030         for (cid = 0; cid < sess->s.con_num; cid++) {
2031                 if (!sess->s.con[cid])
2032                         break;
2033                 con = to_clt_con(sess->s.con[cid]);
2034                 stop_cm(con);
2035         }
2036         fail_all_outstanding_reqs(sess);
2037         free_sess_reqs(sess);
2038         rtrs_clt_sess_down(sess);
2039
2040         /*
2041          * Wait for graceful shutdown, namely when peer side invokes
2042          * rdma_disconnect(). 'connected_cnt' is decremented only on
2043          * CM events, thus if other side had crashed and hb has detected
2044          * something is wrong, here we will stuck for exactly timeout ms,
2045          * since CM does not fire anything.  That is fine, we are not in
2046          * hurry.
2047          */
2048         wait_event_timeout(sess->state_wq, !atomic_read(&sess->connected_cnt),
2049                            msecs_to_jiffies(RTRS_CONNECT_TIMEOUT_MS));
2050
2051         for (cid = 0; cid < sess->s.con_num; cid++) {
2052                 if (!sess->s.con[cid])
2053                         break;
2054                 con = to_clt_con(sess->s.con[cid]);
2055                 mutex_lock(&con->con_mutex);
2056                 destroy_con_cq_qp(con);
2057                 mutex_unlock(&con->con_mutex);
2058                 destroy_cm(con);
2059                 destroy_con(con);
2060         }
2061 }
2062
2063 static inline bool xchg_sessions(struct rtrs_clt_sess __rcu **rcu_ppcpu_path,
2064                                  struct rtrs_clt_sess *sess,
2065                                  struct rtrs_clt_sess *next)
2066 {
2067         struct rtrs_clt_sess **ppcpu_path;
2068
2069         /* Call cmpxchg() without sparse warnings */
2070         ppcpu_path = (typeof(ppcpu_path))rcu_ppcpu_path;
2071         return sess == cmpxchg(ppcpu_path, sess, next);
2072 }
2073
2074 static void rtrs_clt_remove_path_from_arr(struct rtrs_clt_sess *sess)
2075 {
2076         struct rtrs_clt *clt = sess->clt;
2077         struct rtrs_clt_sess *next;
2078         bool wait_for_grace = false;
2079         int cpu;
2080
2081         mutex_lock(&clt->paths_mutex);
2082         list_del_rcu(&sess->s.entry);
2083
2084         /* Make sure everybody observes path removal. */
2085         synchronize_rcu();
2086
2087         /*
2088          * At this point nobody sees @sess in the list, but still we have
2089          * dangling pointer @pcpu_path which _can_ point to @sess.  Since
2090          * nobody can observe @sess in the list, we guarantee that IO path
2091          * will not assign @sess to @pcpu_path, i.e. @pcpu_path can be equal
2092          * to @sess, but can never again become @sess.
2093          */
2094
2095         /*
2096          * Decrement paths number only after grace period, because
2097          * caller of do_each_path() must firstly observe list without
2098          * path and only then decremented paths number.
2099          *
2100          * Otherwise there can be the following situation:
2101          *    o Two paths exist and IO is coming.
2102          *    o One path is removed:
2103          *      CPU#0                          CPU#1
2104          *      do_each_path():                rtrs_clt_remove_path_from_arr():
2105          *          path = get_next_path()
2106          *          ^^^                            list_del_rcu(path)
2107          *          [!CONNECTED path]              clt->paths_num--
2108          *                                              ^^^^^^^^^
2109          *          load clt->paths_num                 from 2 to 1
2110          *                    ^^^^^^^^^
2111          *                    sees 1
2112          *
2113          *      path is observed as !CONNECTED, but do_each_path() loop
2114          *      ends, because expression i < clt->paths_num is false.
2115          */
2116         clt->paths_num--;
2117
2118         /*
2119          * Get @next connection from current @sess which is going to be
2120          * removed.  If @sess is the last element, then @next is NULL.
2121          */
2122         rcu_read_lock();
2123         next = list_next_or_null_rr_rcu(&clt->paths_list, &sess->s.entry,
2124                                         typeof(*next), s.entry);
2125         rcu_read_unlock();
2126
2127         /*
2128          * @pcpu paths can still point to the path which is going to be
2129          * removed, so change the pointer manually.
2130          */
2131         for_each_possible_cpu(cpu) {
2132                 struct rtrs_clt_sess __rcu **ppcpu_path;
2133
2134                 ppcpu_path = per_cpu_ptr(clt->pcpu_path, cpu);
2135                 if (rcu_dereference_protected(*ppcpu_path,
2136                         lockdep_is_held(&clt->paths_mutex)) != sess)
2137                         /*
2138                          * synchronize_rcu() was called just after deleting
2139                          * entry from the list, thus IO code path cannot
2140                          * change pointer back to the pointer which is going
2141                          * to be removed, we are safe here.
2142                          */
2143                         continue;
2144
2145                 /*
2146                  * We race with IO code path, which also changes pointer,
2147                  * thus we have to be careful not to overwrite it.
2148                  */
2149                 if (xchg_sessions(ppcpu_path, sess, next))
2150                         /*
2151                          * @ppcpu_path was successfully replaced with @next,
2152                          * that means that someone could also pick up the
2153                          * @sess and dereferencing it right now, so wait for
2154                          * a grace period is required.
2155                          */
2156                         wait_for_grace = true;
2157         }
2158         if (wait_for_grace)
2159                 synchronize_rcu();
2160
2161         mutex_unlock(&clt->paths_mutex);
2162 }
2163
2164 static void rtrs_clt_add_path_to_arr(struct rtrs_clt_sess *sess)
2165 {
2166         struct rtrs_clt *clt = sess->clt;
2167
2168         mutex_lock(&clt->paths_mutex);
2169         clt->paths_num++;
2170
2171         list_add_tail_rcu(&sess->s.entry, &clt->paths_list);
2172         mutex_unlock(&clt->paths_mutex);
2173 }
2174
2175 static void rtrs_clt_close_work(struct work_struct *work)
2176 {
2177         struct rtrs_clt_sess *sess;
2178
2179         sess = container_of(work, struct rtrs_clt_sess, close_work);
2180
2181         cancel_delayed_work_sync(&sess->reconnect_dwork);
2182         rtrs_clt_stop_and_destroy_conns(sess);
2183         rtrs_clt_change_state(sess, RTRS_CLT_CLOSED);
2184 }
2185
2186 static int init_conns(struct rtrs_clt_sess *sess)
2187 {
2188         unsigned int cid;
2189         int err;
2190
2191         /*
2192          * On every new session connections increase reconnect counter
2193          * to avoid clashes with previous sessions not yet closed
2194          * sessions on a server side.
2195          */
2196         sess->s.recon_cnt++;
2197
2198         /* Establish all RDMA connections  */
2199         for (cid = 0; cid < sess->s.con_num; cid++) {
2200                 err = create_con(sess, cid);
2201                 if (err)
2202                         goto destroy;
2203
2204                 err = create_cm(to_clt_con(sess->s.con[cid]));
2205                 if (err) {
2206                         destroy_con(to_clt_con(sess->s.con[cid]));
2207                         goto destroy;
2208                 }
2209         }
2210         err = alloc_sess_reqs(sess);
2211         if (err)
2212                 goto destroy;
2213
2214         rtrs_clt_start_hb(sess);
2215
2216         return 0;
2217
2218 destroy:
2219         while (cid--) {
2220                 struct rtrs_clt_con *con = to_clt_con(sess->s.con[cid]);
2221
2222                 stop_cm(con);
2223
2224                 mutex_lock(&con->con_mutex);
2225                 destroy_con_cq_qp(con);
2226                 mutex_unlock(&con->con_mutex);
2227                 destroy_cm(con);
2228                 destroy_con(con);
2229         }
2230         /*
2231          * If we've never taken async path and got an error, say,
2232          * doing rdma_resolve_addr(), switch to CONNECTION_ERR state
2233          * manually to keep reconnecting.
2234          */
2235         rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING_ERR);
2236
2237         return err;
2238 }
2239
2240 static void rtrs_clt_info_req_done(struct ib_cq *cq, struct ib_wc *wc)
2241 {
2242         struct rtrs_clt_con *con = cq->cq_context;
2243         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
2244         struct rtrs_iu *iu;
2245
2246         iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2247         rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
2248
2249         if (unlikely(wc->status != IB_WC_SUCCESS)) {
2250                 rtrs_err(sess->clt, "Sess info request send failed: %s\n",
2251                           ib_wc_status_msg(wc->status));
2252                 rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING_ERR);
2253                 return;
2254         }
2255
2256         rtrs_clt_update_wc_stats(con);
2257 }
2258
2259 static int process_info_rsp(struct rtrs_clt_sess *sess,
2260                             const struct rtrs_msg_info_rsp *msg)
2261 {
2262         unsigned int sg_cnt, total_len;
2263         int i, sgi;
2264
2265         sg_cnt = le16_to_cpu(msg->sg_cnt);
2266         if (unlikely(!sg_cnt || (sess->queue_depth % sg_cnt))) {
2267                 rtrs_err(sess->clt, "Incorrect sg_cnt %d, is not multiple\n",
2268                           sg_cnt);
2269                 return -EINVAL;
2270         }
2271
2272         /*
2273          * Check if IB immediate data size is enough to hold the mem_id and
2274          * the offset inside the memory chunk.
2275          */
2276         if (unlikely((ilog2(sg_cnt - 1) + 1) +
2277                      (ilog2(sess->chunk_size - 1) + 1) >
2278                      MAX_IMM_PAYL_BITS)) {
2279                 rtrs_err(sess->clt,
2280                           "RDMA immediate size (%db) not enough to encode %d buffers of size %dB\n",
2281                           MAX_IMM_PAYL_BITS, sg_cnt, sess->chunk_size);
2282                 return -EINVAL;
2283         }
2284         total_len = 0;
2285         for (sgi = 0, i = 0; sgi < sg_cnt && i < sess->queue_depth; sgi++) {
2286                 const struct rtrs_sg_desc *desc = &msg->desc[sgi];
2287                 u32 len, rkey;
2288                 u64 addr;
2289
2290                 addr = le64_to_cpu(desc->addr);
2291                 rkey = le32_to_cpu(desc->key);
2292                 len  = le32_to_cpu(desc->len);
2293
2294                 total_len += len;
2295
2296                 if (unlikely(!len || (len % sess->chunk_size))) {
2297                         rtrs_err(sess->clt, "Incorrect [%d].len %d\n", sgi,
2298                                   len);
2299                         return -EINVAL;
2300                 }
2301                 for ( ; len && i < sess->queue_depth; i++) {
2302                         sess->rbufs[i].addr = addr;
2303                         sess->rbufs[i].rkey = rkey;
2304
2305                         len  -= sess->chunk_size;
2306                         addr += sess->chunk_size;
2307                 }
2308         }
2309         /* Sanity check */
2310         if (unlikely(sgi != sg_cnt || i != sess->queue_depth)) {
2311                 rtrs_err(sess->clt, "Incorrect sg vector, not fully mapped\n");
2312                 return -EINVAL;
2313         }
2314         if (unlikely(total_len != sess->chunk_size * sess->queue_depth)) {
2315                 rtrs_err(sess->clt, "Incorrect total_len %d\n", total_len);
2316                 return -EINVAL;
2317         }
2318
2319         return 0;
2320 }
2321
2322 static void rtrs_clt_info_rsp_done(struct ib_cq *cq, struct ib_wc *wc)
2323 {
2324         struct rtrs_clt_con *con = cq->cq_context;
2325         struct rtrs_clt_sess *sess = to_clt_sess(con->c.sess);
2326         struct rtrs_msg_info_rsp *msg;
2327         enum rtrs_clt_state state;
2328         struct rtrs_iu *iu;
2329         size_t rx_sz;
2330         int err;
2331
2332         state = RTRS_CLT_CONNECTING_ERR;
2333
2334         WARN_ON(con->c.cid);
2335         iu = container_of(wc->wr_cqe, struct rtrs_iu, cqe);
2336         if (unlikely(wc->status != IB_WC_SUCCESS)) {
2337                 rtrs_err(sess->clt, "Sess info response recv failed: %s\n",
2338                           ib_wc_status_msg(wc->status));
2339                 goto out;
2340         }
2341         WARN_ON(wc->opcode != IB_WC_RECV);
2342
2343         if (unlikely(wc->byte_len < sizeof(*msg))) {
2344                 rtrs_err(sess->clt, "Sess info response is malformed: size %d\n",
2345                           wc->byte_len);
2346                 goto out;
2347         }
2348         ib_dma_sync_single_for_cpu(sess->s.dev->ib_dev, iu->dma_addr,
2349                                    iu->size, DMA_FROM_DEVICE);
2350         msg = iu->buf;
2351         if (unlikely(le16_to_cpu(msg->type) != RTRS_MSG_INFO_RSP)) {
2352                 rtrs_err(sess->clt, "Sess info response is malformed: type %d\n",
2353                           le16_to_cpu(msg->type));
2354                 goto out;
2355         }
2356         rx_sz  = sizeof(*msg);
2357         rx_sz += sizeof(msg->desc[0]) * le16_to_cpu(msg->sg_cnt);
2358         if (unlikely(wc->byte_len < rx_sz)) {
2359                 rtrs_err(sess->clt, "Sess info response is malformed: size %d\n",
2360                           wc->byte_len);
2361                 goto out;
2362         }
2363         err = process_info_rsp(sess, msg);
2364         if (unlikely(err))
2365                 goto out;
2366
2367         err = post_recv_sess(sess);
2368         if (unlikely(err))
2369                 goto out;
2370
2371         state = RTRS_CLT_CONNECTED;
2372
2373 out:
2374         rtrs_clt_update_wc_stats(con);
2375         rtrs_iu_free(iu, sess->s.dev->ib_dev, 1);
2376         rtrs_clt_change_state(sess, state);
2377 }
2378
2379 static int rtrs_send_sess_info(struct rtrs_clt_sess *sess)
2380 {
2381         struct rtrs_clt_con *usr_con = to_clt_con(sess->s.con[0]);
2382         struct rtrs_msg_info_req *msg;
2383         struct rtrs_iu *tx_iu, *rx_iu;
2384         size_t rx_sz;
2385         int err;
2386
2387         rx_sz  = sizeof(struct rtrs_msg_info_rsp);
2388         rx_sz += sizeof(u64) * MAX_SESS_QUEUE_DEPTH;
2389
2390         tx_iu = rtrs_iu_alloc(1, sizeof(struct rtrs_msg_info_req), GFP_KERNEL,
2391                                sess->s.dev->ib_dev, DMA_TO_DEVICE,
2392                                rtrs_clt_info_req_done);
2393         rx_iu = rtrs_iu_alloc(1, rx_sz, GFP_KERNEL, sess->s.dev->ib_dev,
2394                                DMA_FROM_DEVICE, rtrs_clt_info_rsp_done);
2395         if (unlikely(!tx_iu || !rx_iu)) {
2396                 err = -ENOMEM;
2397                 goto out;
2398         }
2399         /* Prepare for getting info response */
2400         err = rtrs_iu_post_recv(&usr_con->c, rx_iu);
2401         if (unlikely(err)) {
2402                 rtrs_err(sess->clt, "rtrs_iu_post_recv(), err: %d\n", err);
2403                 goto out;
2404         }
2405         rx_iu = NULL;
2406
2407         msg = tx_iu->buf;
2408         msg->type = cpu_to_le16(RTRS_MSG_INFO_REQ);
2409         memcpy(msg->sessname, sess->s.sessname, sizeof(msg->sessname));
2410
2411         ib_dma_sync_single_for_device(sess->s.dev->ib_dev, tx_iu->dma_addr,
2412                                       tx_iu->size, DMA_TO_DEVICE);
2413
2414         /* Send info request */
2415         err = rtrs_iu_post_send(&usr_con->c, tx_iu, sizeof(*msg), NULL);
2416         if (unlikely(err)) {
2417                 rtrs_err(sess->clt, "rtrs_iu_post_send(), err: %d\n", err);
2418                 goto out;
2419         }
2420         tx_iu = NULL;
2421
2422         /* Wait for state change */
2423         wait_event_interruptible_timeout(sess->state_wq,
2424                                          sess->state != RTRS_CLT_CONNECTING,
2425                                          msecs_to_jiffies(
2426                                                  RTRS_CONNECT_TIMEOUT_MS));
2427         if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED)) {
2428                 if (READ_ONCE(sess->state) == RTRS_CLT_CONNECTING_ERR)
2429                         err = -ECONNRESET;
2430                 else
2431                         err = -ETIMEDOUT;
2432                 goto out;
2433         }
2434
2435 out:
2436         if (tx_iu)
2437                 rtrs_iu_free(tx_iu, sess->s.dev->ib_dev, 1);
2438         if (rx_iu)
2439                 rtrs_iu_free(rx_iu, sess->s.dev->ib_dev, 1);
2440         if (unlikely(err))
2441                 /* If we've never taken async path because of malloc problems */
2442                 rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING_ERR);
2443
2444         return err;
2445 }
2446
2447 /**
2448  * init_sess() - establishes all session connections and does handshake
2449  * @sess: client session.
2450  * In case of error full close or reconnect procedure should be taken,
2451  * because reconnect or close async works can be started.
2452  */
2453 static int init_sess(struct rtrs_clt_sess *sess)
2454 {
2455         int err;
2456
2457         mutex_lock(&sess->init_mutex);
2458         err = init_conns(sess);
2459         if (err) {
2460                 rtrs_err(sess->clt, "init_conns(), err: %d\n", err);
2461                 goto out;
2462         }
2463         err = rtrs_send_sess_info(sess);
2464         if (err) {
2465                 rtrs_err(sess->clt, "rtrs_send_sess_info(), err: %d\n", err);
2466                 goto out;
2467         }
2468         rtrs_clt_sess_up(sess);
2469 out:
2470         mutex_unlock(&sess->init_mutex);
2471
2472         return err;
2473 }
2474
2475 static void rtrs_clt_reconnect_work(struct work_struct *work)
2476 {
2477         struct rtrs_clt_sess *sess;
2478         struct rtrs_clt *clt;
2479         unsigned int delay_ms;
2480         int err;
2481
2482         sess = container_of(to_delayed_work(work), struct rtrs_clt_sess,
2483                             reconnect_dwork);
2484         clt = sess->clt;
2485
2486         if (READ_ONCE(sess->state) != RTRS_CLT_RECONNECTING)
2487                 return;
2488
2489         if (sess->reconnect_attempts >= clt->max_reconnect_attempts) {
2490                 /* Close a session completely if max attempts is reached */
2491                 rtrs_clt_close_conns(sess, false);
2492                 return;
2493         }
2494         sess->reconnect_attempts++;
2495
2496         /* Stop everything */
2497         rtrs_clt_stop_and_destroy_conns(sess);
2498         msleep(RTRS_RECONNECT_BACKOFF);
2499         if (rtrs_clt_change_state(sess, RTRS_CLT_CONNECTING)) {
2500                 err = init_sess(sess);
2501                 if (err)
2502                         goto reconnect_again;
2503         }
2504
2505         return;
2506
2507 reconnect_again:
2508         if (rtrs_clt_change_state(sess, RTRS_CLT_RECONNECTING)) {
2509                 sess->stats->reconnects.fail_cnt++;
2510                 delay_ms = clt->reconnect_delay_sec * 1000;
2511                 queue_delayed_work(rtrs_wq, &sess->reconnect_dwork,
2512                                    msecs_to_jiffies(delay_ms +
2513                                                     prandom_u32() %
2514                                                     RTRS_RECONNECT_SEED));
2515         }
2516 }
2517
2518 static void rtrs_clt_dev_release(struct device *dev)
2519 {
2520         struct rtrs_clt *clt = container_of(dev, struct rtrs_clt, dev);
2521
2522         kfree(clt);
2523 }
2524
2525 static struct rtrs_clt *alloc_clt(const char *sessname, size_t paths_num,
2526                                   u16 port, size_t pdu_sz, void *priv,
2527                                   void  (*link_ev)(void *priv,
2528                                                    enum rtrs_clt_link_ev ev),
2529                                   unsigned int max_segments,
2530                                   size_t max_segment_size,
2531                                   unsigned int reconnect_delay_sec,
2532                                   unsigned int max_reconnect_attempts)
2533 {
2534         struct rtrs_clt *clt;
2535         int err;
2536
2537         if (!paths_num || paths_num > MAX_PATHS_NUM)
2538                 return ERR_PTR(-EINVAL);
2539
2540         if (strlen(sessname) >= sizeof(clt->sessname))
2541                 return ERR_PTR(-EINVAL);
2542
2543         clt = kzalloc(sizeof(*clt), GFP_KERNEL);
2544         if (!clt)
2545                 return ERR_PTR(-ENOMEM);
2546
2547         clt->pcpu_path = alloc_percpu(typeof(*clt->pcpu_path));
2548         if (!clt->pcpu_path) {
2549                 kfree(clt);
2550                 return ERR_PTR(-ENOMEM);
2551         }
2552
2553         uuid_gen(&clt->paths_uuid);
2554         INIT_LIST_HEAD_RCU(&clt->paths_list);
2555         clt->paths_num = paths_num;
2556         clt->paths_up = MAX_PATHS_NUM;
2557         clt->port = port;
2558         clt->pdu_sz = pdu_sz;
2559         clt->max_segments = max_segments;
2560         clt->max_segment_size = max_segment_size;
2561         clt->reconnect_delay_sec = reconnect_delay_sec;
2562         clt->max_reconnect_attempts = max_reconnect_attempts;
2563         clt->priv = priv;
2564         clt->link_ev = link_ev;
2565         clt->mp_policy = MP_POLICY_MIN_INFLIGHT;
2566         strlcpy(clt->sessname, sessname, sizeof(clt->sessname));
2567         init_waitqueue_head(&clt->permits_wait);
2568         mutex_init(&clt->paths_ev_mutex);
2569         mutex_init(&clt->paths_mutex);
2570
2571         clt->dev.class = rtrs_clt_dev_class;
2572         clt->dev.release = rtrs_clt_dev_release;
2573         err = dev_set_name(&clt->dev, "%s", sessname);
2574         if (err) {
2575                 free_percpu(clt->pcpu_path);
2576                 kfree(clt);
2577                 return ERR_PTR(err);
2578         }
2579         /*
2580          * Suppress user space notification until
2581          * sysfs files are created
2582          */
2583         dev_set_uevent_suppress(&clt->dev, true);
2584         err = device_register(&clt->dev);
2585         if (err) {
2586                 free_percpu(clt->pcpu_path);
2587                 put_device(&clt->dev);
2588                 return ERR_PTR(err);
2589         }
2590
2591         clt->kobj_paths = kobject_create_and_add("paths", &clt->dev.kobj);
2592         if (!clt->kobj_paths) {
2593                 free_percpu(clt->pcpu_path);
2594                 device_unregister(&clt->dev);
2595                 return NULL;
2596         }
2597         err = rtrs_clt_create_sysfs_root_files(clt);
2598         if (err) {
2599                 free_percpu(clt->pcpu_path);
2600                 kobject_del(clt->kobj_paths);
2601                 kobject_put(clt->kobj_paths);
2602                 device_unregister(&clt->dev);
2603                 return ERR_PTR(err);
2604         }
2605         dev_set_uevent_suppress(&clt->dev, false);
2606         kobject_uevent(&clt->dev.kobj, KOBJ_ADD);
2607
2608         return clt;
2609 }
2610
2611 static void wait_for_inflight_permits(struct rtrs_clt *clt)
2612 {
2613         if (clt->permits_map) {
2614                 size_t sz = clt->queue_depth;
2615
2616                 wait_event(clt->permits_wait,
2617                            find_first_bit(clt->permits_map, sz) >= sz);
2618         }
2619 }
2620
2621 static void free_clt(struct rtrs_clt *clt)
2622 {
2623         wait_for_inflight_permits(clt);
2624         free_permits(clt);
2625         free_percpu(clt->pcpu_path);
2626         mutex_destroy(&clt->paths_ev_mutex);
2627         mutex_destroy(&clt->paths_mutex);
2628         /* release callback will free clt in last put */
2629         device_unregister(&clt->dev);
2630 }
2631
2632 /**
2633  * rtrs_clt_open() - Open a session to an RTRS server
2634  * @ops: holds the link event callback and the private pointer.
2635  * @sessname: name of the session
2636  * @paths: Paths to be established defined by their src and dst addresses
2637  * @paths_num: Number of elements in the @paths array
2638  * @port: port to be used by the RTRS session
2639  * @pdu_sz: Size of extra payload which can be accessed after permit allocation.
2640  * @reconnect_delay_sec: time between reconnect tries
2641  * @max_segments: Max. number of segments per IO request
2642  * @max_segment_size: Max. size of one segment
2643  * @max_reconnect_attempts: Number of times to reconnect on error before giving
2644  *                          up, 0 for * disabled, -1 for forever
2645  *
2646  * Starts session establishment with the rtrs_server. The function can block
2647  * up to ~2000ms before it returns.
2648  *
2649  * Return a valid pointer on success otherwise PTR_ERR.
2650  */
2651 struct rtrs_clt *rtrs_clt_open(struct rtrs_clt_ops *ops,
2652                                  const char *sessname,
2653                                  const struct rtrs_addr *paths,
2654                                  size_t paths_num, u16 port,
2655                                  size_t pdu_sz, u8 reconnect_delay_sec,
2656                                  u16 max_segments,
2657                                  size_t max_segment_size,
2658                                  s16 max_reconnect_attempts)
2659 {
2660         struct rtrs_clt_sess *sess, *tmp;
2661         struct rtrs_clt *clt;
2662         int err, i;
2663
2664         clt = alloc_clt(sessname, paths_num, port, pdu_sz, ops->priv,
2665                         ops->link_ev,
2666                         max_segments, max_segment_size, reconnect_delay_sec,
2667                         max_reconnect_attempts);
2668         if (IS_ERR(clt)) {
2669                 err = PTR_ERR(clt);
2670                 goto out;
2671         }
2672         for (i = 0; i < paths_num; i++) {
2673                 struct rtrs_clt_sess *sess;
2674
2675                 sess = alloc_sess(clt, &paths[i], nr_cpu_ids,
2676                                   max_segments, max_segment_size);
2677                 if (IS_ERR(sess)) {
2678                         err = PTR_ERR(sess);
2679                         goto close_all_sess;
2680                 }
2681                 list_add_tail_rcu(&sess->s.entry, &clt->paths_list);
2682
2683                 err = init_sess(sess);
2684                 if (err) {
2685                         list_del_rcu(&sess->s.entry);
2686                         rtrs_clt_close_conns(sess, true);
2687                         free_sess(sess);
2688                         goto close_all_sess;
2689                 }
2690
2691                 err = rtrs_clt_create_sess_files(sess);
2692                 if (err) {
2693                         list_del_rcu(&sess->s.entry);
2694                         rtrs_clt_close_conns(sess, true);
2695                         free_sess(sess);
2696                         goto close_all_sess;
2697                 }
2698         }
2699         err = alloc_permits(clt);
2700         if (err)
2701                 goto close_all_sess;
2702
2703         return clt;
2704
2705 close_all_sess:
2706         list_for_each_entry_safe(sess, tmp, &clt->paths_list, s.entry) {
2707                 rtrs_clt_destroy_sess_files(sess, NULL);
2708                 rtrs_clt_close_conns(sess, true);
2709                 kobject_put(&sess->kobj);
2710         }
2711         rtrs_clt_destroy_sysfs_root_files(clt);
2712         rtrs_clt_destroy_sysfs_root_folders(clt);
2713         free_clt(clt);
2714
2715 out:
2716         return ERR_PTR(err);
2717 }
2718 EXPORT_SYMBOL(rtrs_clt_open);
2719
2720 /**
2721  * rtrs_clt_close() - Close a session
2722  * @clt: Session handle. Session is freed upon return.
2723  */
2724 void rtrs_clt_close(struct rtrs_clt *clt)
2725 {
2726         struct rtrs_clt_sess *sess, *tmp;
2727
2728         /* Firstly forbid sysfs access */
2729         rtrs_clt_destroy_sysfs_root_files(clt);
2730         rtrs_clt_destroy_sysfs_root_folders(clt);
2731
2732         /* Now it is safe to iterate over all paths without locks */
2733         list_for_each_entry_safe(sess, tmp, &clt->paths_list, s.entry) {
2734                 rtrs_clt_destroy_sess_files(sess, NULL);
2735                 rtrs_clt_close_conns(sess, true);
2736                 kobject_put(&sess->kobj);
2737         }
2738         free_clt(clt);
2739 }
2740 EXPORT_SYMBOL(rtrs_clt_close);
2741
2742 int rtrs_clt_reconnect_from_sysfs(struct rtrs_clt_sess *sess)
2743 {
2744         enum rtrs_clt_state old_state;
2745         int err = -EBUSY;
2746         bool changed;
2747
2748         changed = rtrs_clt_change_state_get_old(sess, RTRS_CLT_RECONNECTING,
2749                                                  &old_state);
2750         if (changed) {
2751                 sess->reconnect_attempts = 0;
2752                 queue_delayed_work(rtrs_wq, &sess->reconnect_dwork, 0);
2753         }
2754         if (changed || old_state == RTRS_CLT_RECONNECTING) {
2755                 /*
2756                  * flush_delayed_work() queues pending work for immediate
2757                  * execution, so do the flush if we have queued something
2758                  * right now or work is pending.
2759                  */
2760                 flush_delayed_work(&sess->reconnect_dwork);
2761                 err = (READ_ONCE(sess->state) ==
2762                        RTRS_CLT_CONNECTED ? 0 : -ENOTCONN);
2763         }
2764
2765         return err;
2766 }
2767
2768 int rtrs_clt_disconnect_from_sysfs(struct rtrs_clt_sess *sess)
2769 {
2770         rtrs_clt_close_conns(sess, true);
2771
2772         return 0;
2773 }
2774
2775 int rtrs_clt_remove_path_from_sysfs(struct rtrs_clt_sess *sess,
2776                                      const struct attribute *sysfs_self)
2777 {
2778         enum rtrs_clt_state old_state;
2779         bool changed;
2780
2781         /*
2782          * Continue stopping path till state was changed to DEAD or
2783          * state was observed as DEAD:
2784          * 1. State was changed to DEAD - we were fast and nobody
2785          *    invoked rtrs_clt_reconnect(), which can again start
2786          *    reconnecting.
2787          * 2. State was observed as DEAD - we have someone in parallel
2788          *    removing the path.
2789          */
2790         do {
2791                 rtrs_clt_close_conns(sess, true);
2792                 changed = rtrs_clt_change_state_get_old(sess,
2793                                                         RTRS_CLT_DEAD,
2794                                                         &old_state);
2795         } while (!changed && old_state != RTRS_CLT_DEAD);
2796
2797         if (likely(changed)) {
2798                 rtrs_clt_destroy_sess_files(sess, sysfs_self);
2799                 rtrs_clt_remove_path_from_arr(sess);
2800                 kobject_put(&sess->kobj);
2801         }
2802
2803         return 0;
2804 }
2805
2806 void rtrs_clt_set_max_reconnect_attempts(struct rtrs_clt *clt, int value)
2807 {
2808         clt->max_reconnect_attempts = (unsigned int)value;
2809 }
2810
2811 int rtrs_clt_get_max_reconnect_attempts(const struct rtrs_clt *clt)
2812 {
2813         return (int)clt->max_reconnect_attempts;
2814 }
2815
2816 /**
2817  * rtrs_clt_request() - Request data transfer to/from server via RDMA.
2818  *
2819  * @dir:        READ/WRITE
2820  * @ops:        callback function to be called as confirmation, and the pointer.
2821  * @clt:        Session
2822  * @permit:     Preallocated permit
2823  * @vec:        Message that is sent to server together with the request.
2824  *              Sum of len of all @vec elements limited to <= IO_MSG_SIZE.
2825  *              Since the msg is copied internally it can be allocated on stack.
2826  * @nr:         Number of elements in @vec.
2827  * @data_len:   length of data sent to/from server
2828  * @sg:         Pages to be sent/received to/from server.
2829  * @sg_cnt:     Number of elements in the @sg
2830  *
2831  * Return:
2832  * 0:           Success
2833  * <0:          Error
2834  *
2835  * On dir=READ rtrs client will request a data transfer from Server to client.
2836  * The data that the server will respond with will be stored in @sg when
2837  * the user receives an %RTRS_CLT_RDMA_EV_RDMA_REQUEST_WRITE_COMPL event.
2838  * On dir=WRITE rtrs client will rdma write data in sg to server side.
2839  */
2840 int rtrs_clt_request(int dir, struct rtrs_clt_req_ops *ops,
2841                      struct rtrs_clt *clt, struct rtrs_permit *permit,
2842                       const struct kvec *vec, size_t nr, size_t data_len,
2843                       struct scatterlist *sg, unsigned int sg_cnt)
2844 {
2845         struct rtrs_clt_io_req *req;
2846         struct rtrs_clt_sess *sess;
2847
2848         enum dma_data_direction dma_dir;
2849         int err = -ECONNABORTED, i;
2850         size_t usr_len, hdr_len;
2851         struct path_it it;
2852
2853         /* Get kvec length */
2854         for (i = 0, usr_len = 0; i < nr; i++)
2855                 usr_len += vec[i].iov_len;
2856
2857         if (dir == READ) {
2858                 hdr_len = sizeof(struct rtrs_msg_rdma_read) +
2859                           sg_cnt * sizeof(struct rtrs_sg_desc);
2860                 dma_dir = DMA_FROM_DEVICE;
2861         } else {
2862                 hdr_len = sizeof(struct rtrs_msg_rdma_write);
2863                 dma_dir = DMA_TO_DEVICE;
2864         }
2865
2866         rcu_read_lock();
2867         for (path_it_init(&it, clt);
2868              (sess = it.next_path(&it)) && it.i < it.clt->paths_num; it.i++) {
2869                 if (unlikely(READ_ONCE(sess->state) != RTRS_CLT_CONNECTED))
2870                         continue;
2871
2872                 if (unlikely(usr_len + hdr_len > sess->max_hdr_size)) {
2873                         rtrs_wrn_rl(sess->clt,
2874                                      "%s request failed, user message size is %zu and header length %zu, but max size is %u\n",
2875                                      dir == READ ? "Read" : "Write",
2876                                      usr_len, hdr_len, sess->max_hdr_size);
2877                         err = -EMSGSIZE;
2878                         break;
2879                 }
2880                 req = rtrs_clt_get_req(sess, ops->conf_fn, permit, ops->priv,
2881                                        vec, usr_len, sg, sg_cnt, data_len,
2882                                        dma_dir);
2883                 if (dir == READ)
2884                         err = rtrs_clt_read_req(req);
2885                 else
2886                         err = rtrs_clt_write_req(req);
2887                 if (unlikely(err)) {
2888                         req->in_use = false;
2889                         continue;
2890                 }
2891                 /* Success path */
2892                 break;
2893         }
2894         path_it_deinit(&it);
2895         rcu_read_unlock();
2896
2897         return err;
2898 }
2899 EXPORT_SYMBOL(rtrs_clt_request);
2900
2901 /**
2902  * rtrs_clt_query() - queries RTRS session attributes
2903  *@clt: session pointer
2904  *@attr: query results for session attributes.
2905  * Returns:
2906  *    0 on success
2907  *    -ECOMM            no connection to the server
2908  */
2909 int rtrs_clt_query(struct rtrs_clt *clt, struct rtrs_attrs *attr)
2910 {
2911         if (!rtrs_clt_is_connected(clt))
2912                 return -ECOMM;
2913
2914         attr->queue_depth      = clt->queue_depth;
2915         attr->max_io_size      = clt->max_io_size;
2916         attr->sess_kobj        = &clt->dev.kobj;
2917         strlcpy(attr->sessname, clt->sessname, sizeof(attr->sessname));
2918
2919         return 0;
2920 }
2921 EXPORT_SYMBOL(rtrs_clt_query);
2922
2923 int rtrs_clt_create_path_from_sysfs(struct rtrs_clt *clt,
2924                                      struct rtrs_addr *addr)
2925 {
2926         struct rtrs_clt_sess *sess;
2927         int err;
2928
2929         sess = alloc_sess(clt, addr, nr_cpu_ids, clt->max_segments,
2930                           clt->max_segment_size);
2931         if (IS_ERR(sess))
2932                 return PTR_ERR(sess);
2933
2934         /*
2935          * It is totally safe to add path in CONNECTING state: coming
2936          * IO will never grab it.  Also it is very important to add
2937          * path before init, since init fires LINK_CONNECTED event.
2938          */
2939         rtrs_clt_add_path_to_arr(sess);
2940
2941         err = init_sess(sess);
2942         if (err)
2943                 goto close_sess;
2944
2945         err = rtrs_clt_create_sess_files(sess);
2946         if (err)
2947                 goto close_sess;
2948
2949         return 0;
2950
2951 close_sess:
2952         rtrs_clt_remove_path_from_arr(sess);
2953         rtrs_clt_close_conns(sess, true);
2954         free_sess(sess);
2955
2956         return err;
2957 }
2958
2959 static int rtrs_clt_ib_dev_init(struct rtrs_ib_dev *dev)
2960 {
2961         if (!(dev->ib_dev->attrs.device_cap_flags &
2962               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
2963                 pr_err("Memory registrations not supported.\n");
2964                 return -ENOTSUPP;
2965         }
2966
2967         return 0;
2968 }
2969
2970 static const struct rtrs_rdma_dev_pd_ops dev_pd_ops = {
2971         .init = rtrs_clt_ib_dev_init
2972 };
2973
2974 static int __init rtrs_client_init(void)
2975 {
2976         rtrs_rdma_dev_pd_init(0, &dev_pd);
2977
2978         rtrs_clt_dev_class = class_create(THIS_MODULE, "rtrs-client");
2979         if (IS_ERR(rtrs_clt_dev_class)) {
2980                 pr_err("Failed to create rtrs-client dev class\n");
2981                 return PTR_ERR(rtrs_clt_dev_class);
2982         }
2983         rtrs_wq = alloc_workqueue("rtrs_client_wq", 0, 0);
2984         if (!rtrs_wq) {
2985                 class_destroy(rtrs_clt_dev_class);
2986                 return -ENOMEM;
2987         }
2988
2989         return 0;
2990 }
2991
2992 static void __exit rtrs_client_exit(void)
2993 {
2994         destroy_workqueue(rtrs_wq);
2995         class_destroy(rtrs_clt_dev_class);
2996         rtrs_rdma_dev_pd_deinit(&dev_pd);
2997 }
2998
2999 module_init(rtrs_client_init);
3000 module_exit(rtrs_client_exit);