phy: qcom-qmp: add sc8280xp UFS PHY
[linux-2.6-microblaze.git] / drivers / infiniband / sw / siw / siw_verbs.c
1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2
3 /* Authors: Bernard Metzler <bmt@zurich.ibm.com> */
4 /* Copyright (c) 2008-2019, IBM Corporation */
5
6 #include <linux/errno.h>
7 #include <linux/types.h>
8 #include <linux/uaccess.h>
9 #include <linux/vmalloc.h>
10 #include <linux/xarray.h>
11 #include <net/addrconf.h>
12
13 #include <rdma/iw_cm.h>
14 #include <rdma/ib_verbs.h>
15 #include <rdma/ib_user_verbs.h>
16 #include <rdma/uverbs_ioctl.h>
17
18 #include "siw.h"
19 #include "siw_verbs.h"
20 #include "siw_mem.h"
21
22 static int ib_qp_state_to_siw_qp_state[IB_QPS_ERR + 1] = {
23         [IB_QPS_RESET] = SIW_QP_STATE_IDLE,
24         [IB_QPS_INIT] = SIW_QP_STATE_IDLE,
25         [IB_QPS_RTR] = SIW_QP_STATE_RTR,
26         [IB_QPS_RTS] = SIW_QP_STATE_RTS,
27         [IB_QPS_SQD] = SIW_QP_STATE_CLOSING,
28         [IB_QPS_SQE] = SIW_QP_STATE_TERMINATE,
29         [IB_QPS_ERR] = SIW_QP_STATE_ERROR
30 };
31
32 static char ib_qp_state_to_string[IB_QPS_ERR + 1][sizeof("RESET")] = {
33         [IB_QPS_RESET] = "RESET", [IB_QPS_INIT] = "INIT", [IB_QPS_RTR] = "RTR",
34         [IB_QPS_RTS] = "RTS",     [IB_QPS_SQD] = "SQD",   [IB_QPS_SQE] = "SQE",
35         [IB_QPS_ERR] = "ERR"
36 };
37
38 void siw_mmap_free(struct rdma_user_mmap_entry *rdma_entry)
39 {
40         struct siw_user_mmap_entry *entry = to_siw_mmap_entry(rdma_entry);
41
42         kfree(entry);
43 }
44
45 int siw_mmap(struct ib_ucontext *ctx, struct vm_area_struct *vma)
46 {
47         struct siw_ucontext *uctx = to_siw_ctx(ctx);
48         size_t size = vma->vm_end - vma->vm_start;
49         struct rdma_user_mmap_entry *rdma_entry;
50         struct siw_user_mmap_entry *entry;
51         int rv = -EINVAL;
52
53         /*
54          * Must be page aligned
55          */
56         if (vma->vm_start & (PAGE_SIZE - 1)) {
57                 pr_warn("siw: mmap not page aligned\n");
58                 return -EINVAL;
59         }
60         rdma_entry = rdma_user_mmap_entry_get(&uctx->base_ucontext, vma);
61         if (!rdma_entry) {
62                 siw_dbg(&uctx->sdev->base_dev, "mmap lookup failed: %lu, %#zx\n",
63                         vma->vm_pgoff, size);
64                 return -EINVAL;
65         }
66         entry = to_siw_mmap_entry(rdma_entry);
67
68         rv = remap_vmalloc_range(vma, entry->address, 0);
69         if (rv) {
70                 pr_warn("remap_vmalloc_range failed: %lu, %zu\n", vma->vm_pgoff,
71                         size);
72                 goto out;
73         }
74 out:
75         rdma_user_mmap_entry_put(rdma_entry);
76
77         return rv;
78 }
79
80 int siw_alloc_ucontext(struct ib_ucontext *base_ctx, struct ib_udata *udata)
81 {
82         struct siw_device *sdev = to_siw_dev(base_ctx->device);
83         struct siw_ucontext *ctx = to_siw_ctx(base_ctx);
84         struct siw_uresp_alloc_ctx uresp = {};
85         int rv;
86
87         if (atomic_inc_return(&sdev->num_ctx) > SIW_MAX_CONTEXT) {
88                 rv = -ENOMEM;
89                 goto err_out;
90         }
91         ctx->sdev = sdev;
92
93         uresp.dev_id = sdev->vendor_part_id;
94
95         if (udata->outlen < sizeof(uresp)) {
96                 rv = -EINVAL;
97                 goto err_out;
98         }
99         rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
100         if (rv)
101                 goto err_out;
102
103         siw_dbg(base_ctx->device, "success. now %d context(s)\n",
104                 atomic_read(&sdev->num_ctx));
105
106         return 0;
107
108 err_out:
109         atomic_dec(&sdev->num_ctx);
110         siw_dbg(base_ctx->device, "failure %d. now %d context(s)\n", rv,
111                 atomic_read(&sdev->num_ctx));
112
113         return rv;
114 }
115
116 void siw_dealloc_ucontext(struct ib_ucontext *base_ctx)
117 {
118         struct siw_ucontext *uctx = to_siw_ctx(base_ctx);
119
120         atomic_dec(&uctx->sdev->num_ctx);
121 }
122
123 int siw_query_device(struct ib_device *base_dev, struct ib_device_attr *attr,
124                      struct ib_udata *udata)
125 {
126         struct siw_device *sdev = to_siw_dev(base_dev);
127
128         if (udata->inlen || udata->outlen)
129                 return -EINVAL;
130
131         memset(attr, 0, sizeof(*attr));
132
133         /* Revisit atomic caps if RFC 7306 gets supported */
134         attr->atomic_cap = 0;
135         attr->device_cap_flags =
136                 IB_DEVICE_MEM_MGT_EXTENSIONS | IB_DEVICE_ALLOW_USER_UNREG;
137         attr->max_cq = sdev->attrs.max_cq;
138         attr->max_cqe = sdev->attrs.max_cqe;
139         attr->max_fast_reg_page_list_len = SIW_MAX_SGE_PBL;
140         attr->max_mr = sdev->attrs.max_mr;
141         attr->max_mw = sdev->attrs.max_mw;
142         attr->max_mr_size = ~0ull;
143         attr->max_pd = sdev->attrs.max_pd;
144         attr->max_qp = sdev->attrs.max_qp;
145         attr->max_qp_init_rd_atom = sdev->attrs.max_ird;
146         attr->max_qp_rd_atom = sdev->attrs.max_ord;
147         attr->max_qp_wr = sdev->attrs.max_qp_wr;
148         attr->max_recv_sge = sdev->attrs.max_sge;
149         attr->max_res_rd_atom = sdev->attrs.max_qp * sdev->attrs.max_ird;
150         attr->max_send_sge = sdev->attrs.max_sge;
151         attr->max_sge_rd = sdev->attrs.max_sge_rd;
152         attr->max_srq = sdev->attrs.max_srq;
153         attr->max_srq_sge = sdev->attrs.max_srq_sge;
154         attr->max_srq_wr = sdev->attrs.max_srq_wr;
155         attr->page_size_cap = PAGE_SIZE;
156         attr->vendor_id = SIW_VENDOR_ID;
157         attr->vendor_part_id = sdev->vendor_part_id;
158
159         addrconf_addr_eui48((u8 *)&attr->sys_image_guid,
160                             sdev->netdev->dev_addr);
161
162         return 0;
163 }
164
165 int siw_query_port(struct ib_device *base_dev, u32 port,
166                    struct ib_port_attr *attr)
167 {
168         struct siw_device *sdev = to_siw_dev(base_dev);
169         int rv;
170
171         memset(attr, 0, sizeof(*attr));
172
173         rv = ib_get_eth_speed(base_dev, port, &attr->active_speed,
174                          &attr->active_width);
175         attr->gid_tbl_len = 1;
176         attr->max_msg_sz = -1;
177         attr->max_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu);
178         attr->active_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu);
179         attr->phys_state = sdev->state == IB_PORT_ACTIVE ?
180                 IB_PORT_PHYS_STATE_LINK_UP : IB_PORT_PHYS_STATE_DISABLED;
181         attr->port_cap_flags = IB_PORT_CM_SUP | IB_PORT_DEVICE_MGMT_SUP;
182         attr->state = sdev->state;
183         /*
184          * All zero
185          *
186          * attr->lid = 0;
187          * attr->bad_pkey_cntr = 0;
188          * attr->qkey_viol_cntr = 0;
189          * attr->sm_lid = 0;
190          * attr->lmc = 0;
191          * attr->max_vl_num = 0;
192          * attr->sm_sl = 0;
193          * attr->subnet_timeout = 0;
194          * attr->init_type_repy = 0;
195          */
196         return rv;
197 }
198
199 int siw_get_port_immutable(struct ib_device *base_dev, u32 port,
200                            struct ib_port_immutable *port_immutable)
201 {
202         struct ib_port_attr attr;
203         int rv = siw_query_port(base_dev, port, &attr);
204
205         if (rv)
206                 return rv;
207
208         port_immutable->gid_tbl_len = attr.gid_tbl_len;
209         port_immutable->core_cap_flags = RDMA_CORE_PORT_IWARP;
210
211         return 0;
212 }
213
214 int siw_query_gid(struct ib_device *base_dev, u32 port, int idx,
215                   union ib_gid *gid)
216 {
217         struct siw_device *sdev = to_siw_dev(base_dev);
218
219         /* subnet_prefix == interface_id == 0; */
220         memset(gid, 0, sizeof(*gid));
221         memcpy(&gid->raw[0], sdev->netdev->dev_addr, 6);
222
223         return 0;
224 }
225
226 int siw_alloc_pd(struct ib_pd *pd, struct ib_udata *udata)
227 {
228         struct siw_device *sdev = to_siw_dev(pd->device);
229
230         if (atomic_inc_return(&sdev->num_pd) > SIW_MAX_PD) {
231                 atomic_dec(&sdev->num_pd);
232                 return -ENOMEM;
233         }
234         siw_dbg_pd(pd, "now %d PD's(s)\n", atomic_read(&sdev->num_pd));
235
236         return 0;
237 }
238
239 int siw_dealloc_pd(struct ib_pd *pd, struct ib_udata *udata)
240 {
241         struct siw_device *sdev = to_siw_dev(pd->device);
242
243         siw_dbg_pd(pd, "free PD\n");
244         atomic_dec(&sdev->num_pd);
245         return 0;
246 }
247
248 void siw_qp_get_ref(struct ib_qp *base_qp)
249 {
250         siw_qp_get(to_siw_qp(base_qp));
251 }
252
253 void siw_qp_put_ref(struct ib_qp *base_qp)
254 {
255         siw_qp_put(to_siw_qp(base_qp));
256 }
257
258 static struct rdma_user_mmap_entry *
259 siw_mmap_entry_insert(struct siw_ucontext *uctx,
260                       void *address, size_t length,
261                       u64 *offset)
262 {
263         struct siw_user_mmap_entry *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
264         int rv;
265
266         *offset = SIW_INVAL_UOBJ_KEY;
267         if (!entry)
268                 return NULL;
269
270         entry->address = address;
271
272         rv = rdma_user_mmap_entry_insert(&uctx->base_ucontext,
273                                          &entry->rdma_entry,
274                                          length);
275         if (rv) {
276                 kfree(entry);
277                 return NULL;
278         }
279
280         *offset = rdma_user_mmap_get_offset(&entry->rdma_entry);
281
282         return &entry->rdma_entry;
283 }
284
285 /*
286  * siw_create_qp()
287  *
288  * Create QP of requested size on given device.
289  *
290  * @qp:         Queue pait
291  * @attrs:      Initial QP attributes.
292  * @udata:      used to provide QP ID, SQ and RQ size back to user.
293  */
294
295 int siw_create_qp(struct ib_qp *ibqp, struct ib_qp_init_attr *attrs,
296                   struct ib_udata *udata)
297 {
298         struct ib_pd *pd = ibqp->pd;
299         struct siw_qp *qp = to_siw_qp(ibqp);
300         struct ib_device *base_dev = pd->device;
301         struct siw_device *sdev = to_siw_dev(base_dev);
302         struct siw_ucontext *uctx =
303                 rdma_udata_to_drv_context(udata, struct siw_ucontext,
304                                           base_ucontext);
305         unsigned long flags;
306         int num_sqe, num_rqe, rv = 0;
307         size_t length;
308
309         siw_dbg(base_dev, "create new QP\n");
310
311         if (attrs->create_flags)
312                 return -EOPNOTSUPP;
313
314         if (atomic_inc_return(&sdev->num_qp) > SIW_MAX_QP) {
315                 siw_dbg(base_dev, "too many QP's\n");
316                 return -ENOMEM;
317         }
318         if (attrs->qp_type != IB_QPT_RC) {
319                 siw_dbg(base_dev, "only RC QP's supported\n");
320                 rv = -EOPNOTSUPP;
321                 goto err_atomic;
322         }
323         if ((attrs->cap.max_send_wr > SIW_MAX_QP_WR) ||
324             (attrs->cap.max_recv_wr > SIW_MAX_QP_WR) ||
325             (attrs->cap.max_send_sge > SIW_MAX_SGE) ||
326             (attrs->cap.max_recv_sge > SIW_MAX_SGE)) {
327                 siw_dbg(base_dev, "QP size error\n");
328                 rv = -EINVAL;
329                 goto err_atomic;
330         }
331         if (attrs->cap.max_inline_data > SIW_MAX_INLINE) {
332                 siw_dbg(base_dev, "max inline send: %d > %d\n",
333                         attrs->cap.max_inline_data, (int)SIW_MAX_INLINE);
334                 rv = -EINVAL;
335                 goto err_atomic;
336         }
337         /*
338          * NOTE: we allow for zero element SQ and RQ WQE's SGL's
339          * but not for a QP unable to hold any WQE (SQ + RQ)
340          */
341         if (attrs->cap.max_send_wr + attrs->cap.max_recv_wr == 0) {
342                 siw_dbg(base_dev, "QP must have send or receive queue\n");
343                 rv = -EINVAL;
344                 goto err_atomic;
345         }
346
347         if (!attrs->send_cq || (!attrs->recv_cq && !attrs->srq)) {
348                 siw_dbg(base_dev, "send CQ or receive CQ invalid\n");
349                 rv = -EINVAL;
350                 goto err_atomic;
351         }
352
353         init_rwsem(&qp->state_lock);
354         spin_lock_init(&qp->sq_lock);
355         spin_lock_init(&qp->rq_lock);
356         spin_lock_init(&qp->orq_lock);
357
358         rv = siw_qp_add(sdev, qp);
359         if (rv)
360                 goto err_atomic;
361
362         num_sqe = attrs->cap.max_send_wr;
363         num_rqe = attrs->cap.max_recv_wr;
364
365         /* All queue indices are derived from modulo operations
366          * on a free running 'get' (consumer) and 'put' (producer)
367          * unsigned counter. Having queue sizes at power of two
368          * avoids handling counter wrap around.
369          */
370         if (num_sqe)
371                 num_sqe = roundup_pow_of_two(num_sqe);
372         else {
373                 /* Zero sized SQ is not supported */
374                 rv = -EINVAL;
375                 goto err_out_xa;
376         }
377         if (num_rqe)
378                 num_rqe = roundup_pow_of_two(num_rqe);
379
380         if (udata)
381                 qp->sendq = vmalloc_user(num_sqe * sizeof(struct siw_sqe));
382         else
383                 qp->sendq = vzalloc(num_sqe * sizeof(struct siw_sqe));
384
385         if (qp->sendq == NULL) {
386                 rv = -ENOMEM;
387                 goto err_out_xa;
388         }
389         if (attrs->sq_sig_type != IB_SIGNAL_REQ_WR) {
390                 if (attrs->sq_sig_type == IB_SIGNAL_ALL_WR)
391                         qp->attrs.flags |= SIW_SIGNAL_ALL_WR;
392                 else {
393                         rv = -EINVAL;
394                         goto err_out_xa;
395                 }
396         }
397         qp->pd = pd;
398         qp->scq = to_siw_cq(attrs->send_cq);
399         qp->rcq = to_siw_cq(attrs->recv_cq);
400
401         if (attrs->srq) {
402                 /*
403                  * SRQ support.
404                  * Verbs 6.3.7: ignore RQ size, if SRQ present
405                  * Verbs 6.3.5: do not check PD of SRQ against PD of QP
406                  */
407                 qp->srq = to_siw_srq(attrs->srq);
408                 qp->attrs.rq_size = 0;
409                 siw_dbg(base_dev, "QP [%u]: SRQ attached\n",
410                         qp->base_qp.qp_num);
411         } else if (num_rqe) {
412                 if (udata)
413                         qp->recvq =
414                                 vmalloc_user(num_rqe * sizeof(struct siw_rqe));
415                 else
416                         qp->recvq = vzalloc(num_rqe * sizeof(struct siw_rqe));
417
418                 if (qp->recvq == NULL) {
419                         rv = -ENOMEM;
420                         goto err_out_xa;
421                 }
422                 qp->attrs.rq_size = num_rqe;
423         }
424         qp->attrs.sq_size = num_sqe;
425         qp->attrs.sq_max_sges = attrs->cap.max_send_sge;
426         qp->attrs.rq_max_sges = attrs->cap.max_recv_sge;
427
428         /* Make those two tunables fixed for now. */
429         qp->tx_ctx.gso_seg_limit = 1;
430         qp->tx_ctx.zcopy_tx = zcopy_tx;
431
432         qp->attrs.state = SIW_QP_STATE_IDLE;
433
434         if (udata) {
435                 struct siw_uresp_create_qp uresp = {};
436
437                 uresp.num_sqe = num_sqe;
438                 uresp.num_rqe = num_rqe;
439                 uresp.qp_id = qp_id(qp);
440
441                 if (qp->sendq) {
442                         length = num_sqe * sizeof(struct siw_sqe);
443                         qp->sq_entry =
444                                 siw_mmap_entry_insert(uctx, qp->sendq,
445                                                       length, &uresp.sq_key);
446                         if (!qp->sq_entry) {
447                                 rv = -ENOMEM;
448                                 goto err_out_xa;
449                         }
450                 }
451
452                 if (qp->recvq) {
453                         length = num_rqe * sizeof(struct siw_rqe);
454                         qp->rq_entry =
455                                 siw_mmap_entry_insert(uctx, qp->recvq,
456                                                       length, &uresp.rq_key);
457                         if (!qp->rq_entry) {
458                                 uresp.sq_key = SIW_INVAL_UOBJ_KEY;
459                                 rv = -ENOMEM;
460                                 goto err_out_xa;
461                         }
462                 }
463
464                 if (udata->outlen < sizeof(uresp)) {
465                         rv = -EINVAL;
466                         goto err_out_xa;
467                 }
468                 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
469                 if (rv)
470                         goto err_out_xa;
471         }
472         qp->tx_cpu = siw_get_tx_cpu(sdev);
473         if (qp->tx_cpu < 0) {
474                 rv = -EINVAL;
475                 goto err_out_xa;
476         }
477         INIT_LIST_HEAD(&qp->devq);
478         spin_lock_irqsave(&sdev->lock, flags);
479         list_add_tail(&qp->devq, &sdev->qp_list);
480         spin_unlock_irqrestore(&sdev->lock, flags);
481
482         return 0;
483
484 err_out_xa:
485         xa_erase(&sdev->qp_xa, qp_id(qp));
486         if (uctx) {
487                 rdma_user_mmap_entry_remove(qp->sq_entry);
488                 rdma_user_mmap_entry_remove(qp->rq_entry);
489         }
490         vfree(qp->sendq);
491         vfree(qp->recvq);
492
493 err_atomic:
494         atomic_dec(&sdev->num_qp);
495         return rv;
496 }
497
498 /*
499  * Minimum siw_query_qp() verb interface.
500  *
501  * @qp_attr_mask is not used but all available information is provided
502  */
503 int siw_query_qp(struct ib_qp *base_qp, struct ib_qp_attr *qp_attr,
504                  int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr)
505 {
506         struct siw_qp *qp;
507         struct siw_device *sdev;
508
509         if (base_qp && qp_attr && qp_init_attr) {
510                 qp = to_siw_qp(base_qp);
511                 sdev = to_siw_dev(base_qp->device);
512         } else {
513                 return -EINVAL;
514         }
515         qp_attr->cap.max_inline_data = SIW_MAX_INLINE;
516         qp_attr->cap.max_send_wr = qp->attrs.sq_size;
517         qp_attr->cap.max_send_sge = qp->attrs.sq_max_sges;
518         qp_attr->cap.max_recv_wr = qp->attrs.rq_size;
519         qp_attr->cap.max_recv_sge = qp->attrs.rq_max_sges;
520         qp_attr->path_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu);
521         qp_attr->max_rd_atomic = qp->attrs.irq_size;
522         qp_attr->max_dest_rd_atomic = qp->attrs.orq_size;
523
524         qp_attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE |
525                                    IB_ACCESS_REMOTE_WRITE |
526                                    IB_ACCESS_REMOTE_READ;
527
528         qp_init_attr->qp_type = base_qp->qp_type;
529         qp_init_attr->send_cq = base_qp->send_cq;
530         qp_init_attr->recv_cq = base_qp->recv_cq;
531         qp_init_attr->srq = base_qp->srq;
532
533         qp_init_attr->cap = qp_attr->cap;
534
535         return 0;
536 }
537
538 int siw_verbs_modify_qp(struct ib_qp *base_qp, struct ib_qp_attr *attr,
539                         int attr_mask, struct ib_udata *udata)
540 {
541         struct siw_qp_attrs new_attrs;
542         enum siw_qp_attr_mask siw_attr_mask = 0;
543         struct siw_qp *qp = to_siw_qp(base_qp);
544         int rv = 0;
545
546         if (!attr_mask)
547                 return 0;
548
549         if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS)
550                 return -EOPNOTSUPP;
551
552         memset(&new_attrs, 0, sizeof(new_attrs));
553
554         if (attr_mask & IB_QP_ACCESS_FLAGS) {
555                 siw_attr_mask = SIW_QP_ATTR_ACCESS_FLAGS;
556
557                 if (attr->qp_access_flags & IB_ACCESS_REMOTE_READ)
558                         new_attrs.flags |= SIW_RDMA_READ_ENABLED;
559                 if (attr->qp_access_flags & IB_ACCESS_REMOTE_WRITE)
560                         new_attrs.flags |= SIW_RDMA_WRITE_ENABLED;
561                 if (attr->qp_access_flags & IB_ACCESS_MW_BIND)
562                         new_attrs.flags |= SIW_RDMA_BIND_ENABLED;
563         }
564         if (attr_mask & IB_QP_STATE) {
565                 siw_dbg_qp(qp, "desired IB QP state: %s\n",
566                            ib_qp_state_to_string[attr->qp_state]);
567
568                 new_attrs.state = ib_qp_state_to_siw_qp_state[attr->qp_state];
569
570                 if (new_attrs.state > SIW_QP_STATE_RTS)
571                         qp->tx_ctx.tx_suspend = 1;
572
573                 siw_attr_mask |= SIW_QP_ATTR_STATE;
574         }
575         if (!siw_attr_mask)
576                 goto out;
577
578         down_write(&qp->state_lock);
579
580         rv = siw_qp_modify(qp, &new_attrs, siw_attr_mask);
581
582         up_write(&qp->state_lock);
583 out:
584         return rv;
585 }
586
587 int siw_destroy_qp(struct ib_qp *base_qp, struct ib_udata *udata)
588 {
589         struct siw_qp *qp = to_siw_qp(base_qp);
590         struct siw_ucontext *uctx =
591                 rdma_udata_to_drv_context(udata, struct siw_ucontext,
592                                           base_ucontext);
593         struct siw_qp_attrs qp_attrs;
594
595         siw_dbg_qp(qp, "state %d\n", qp->attrs.state);
596
597         /*
598          * Mark QP as in process of destruction to prevent from
599          * any async callbacks to RDMA core
600          */
601         qp->attrs.flags |= SIW_QP_IN_DESTROY;
602         qp->rx_stream.rx_suspend = 1;
603
604         if (uctx) {
605                 rdma_user_mmap_entry_remove(qp->sq_entry);
606                 rdma_user_mmap_entry_remove(qp->rq_entry);
607         }
608
609         down_write(&qp->state_lock);
610
611         qp_attrs.state = SIW_QP_STATE_ERROR;
612         siw_qp_modify(qp, &qp_attrs, SIW_QP_ATTR_STATE);
613
614         if (qp->cep) {
615                 siw_cep_put(qp->cep);
616                 qp->cep = NULL;
617         }
618         up_write(&qp->state_lock);
619
620         kfree(qp->tx_ctx.mpa_crc_hd);
621         kfree(qp->rx_stream.mpa_crc_hd);
622
623         qp->scq = qp->rcq = NULL;
624
625         siw_qp_put(qp);
626
627         return 0;
628 }
629
630 /*
631  * siw_copy_inline_sgl()
632  *
633  * Prepare sgl of inlined data for sending. For userland callers
634  * function checks if given buffer addresses and len's are within
635  * process context bounds.
636  * Data from all provided sge's are copied together into the wqe,
637  * referenced by a single sge.
638  */
639 static int siw_copy_inline_sgl(const struct ib_send_wr *core_wr,
640                                struct siw_sqe *sqe)
641 {
642         struct ib_sge *core_sge = core_wr->sg_list;
643         void *kbuf = &sqe->sge[1];
644         int num_sge = core_wr->num_sge, bytes = 0;
645
646         sqe->sge[0].laddr = (uintptr_t)kbuf;
647         sqe->sge[0].lkey = 0;
648
649         while (num_sge--) {
650                 if (!core_sge->length) {
651                         core_sge++;
652                         continue;
653                 }
654                 bytes += core_sge->length;
655                 if (bytes > SIW_MAX_INLINE) {
656                         bytes = -EINVAL;
657                         break;
658                 }
659                 memcpy(kbuf, (void *)(uintptr_t)core_sge->addr,
660                        core_sge->length);
661
662                 kbuf += core_sge->length;
663                 core_sge++;
664         }
665         sqe->sge[0].length = max(bytes, 0);
666         sqe->num_sge = bytes > 0 ? 1 : 0;
667
668         return bytes;
669 }
670
671 /* Complete SQ WR's without processing */
672 static int siw_sq_flush_wr(struct siw_qp *qp, const struct ib_send_wr *wr,
673                            const struct ib_send_wr **bad_wr)
674 {
675         struct siw_sqe sqe = {};
676         int rv = 0;
677
678         while (wr) {
679                 sqe.id = wr->wr_id;
680                 sqe.opcode = wr->opcode;
681                 rv = siw_sqe_complete(qp, &sqe, 0, SIW_WC_WR_FLUSH_ERR);
682                 if (rv) {
683                         if (bad_wr)
684                                 *bad_wr = wr;
685                         break;
686                 }
687                 wr = wr->next;
688         }
689         return rv;
690 }
691
692 /* Complete RQ WR's without processing */
693 static int siw_rq_flush_wr(struct siw_qp *qp, const struct ib_recv_wr *wr,
694                            const struct ib_recv_wr **bad_wr)
695 {
696         struct siw_rqe rqe = {};
697         int rv = 0;
698
699         while (wr) {
700                 rqe.id = wr->wr_id;
701                 rv = siw_rqe_complete(qp, &rqe, 0, 0, SIW_WC_WR_FLUSH_ERR);
702                 if (rv) {
703                         if (bad_wr)
704                                 *bad_wr = wr;
705                         break;
706                 }
707                 wr = wr->next;
708         }
709         return rv;
710 }
711
712 /*
713  * siw_post_send()
714  *
715  * Post a list of S-WR's to a SQ.
716  *
717  * @base_qp:    Base QP contained in siw QP
718  * @wr:         Null terminated list of user WR's
719  * @bad_wr:     Points to failing WR in case of synchronous failure.
720  */
721 int siw_post_send(struct ib_qp *base_qp, const struct ib_send_wr *wr,
722                   const struct ib_send_wr **bad_wr)
723 {
724         struct siw_qp *qp = to_siw_qp(base_qp);
725         struct siw_wqe *wqe = tx_wqe(qp);
726
727         unsigned long flags;
728         int rv = 0;
729
730         if (wr && !rdma_is_kernel_res(&qp->base_qp.res)) {
731                 siw_dbg_qp(qp, "wr must be empty for user mapped sq\n");
732                 *bad_wr = wr;
733                 return -EINVAL;
734         }
735
736         /*
737          * Try to acquire QP state lock. Must be non-blocking
738          * to accommodate kernel clients needs.
739          */
740         if (!down_read_trylock(&qp->state_lock)) {
741                 if (qp->attrs.state == SIW_QP_STATE_ERROR) {
742                         /*
743                          * ERROR state is final, so we can be sure
744                          * this state will not change as long as the QP
745                          * exists.
746                          *
747                          * This handles an ib_drain_sq() call with
748                          * a concurrent request to set the QP state
749                          * to ERROR.
750                          */
751                         rv = siw_sq_flush_wr(qp, wr, bad_wr);
752                 } else {
753                         siw_dbg_qp(qp, "QP locked, state %d\n",
754                                    qp->attrs.state);
755                         *bad_wr = wr;
756                         rv = -ENOTCONN;
757                 }
758                 return rv;
759         }
760         if (unlikely(qp->attrs.state != SIW_QP_STATE_RTS)) {
761                 if (qp->attrs.state == SIW_QP_STATE_ERROR) {
762                         /*
763                          * Immediately flush this WR to CQ, if QP
764                          * is in ERROR state. SQ is guaranteed to
765                          * be empty, so WR complets in-order.
766                          *
767                          * Typically triggered by ib_drain_sq().
768                          */
769                         rv = siw_sq_flush_wr(qp, wr, bad_wr);
770                 } else {
771                         siw_dbg_qp(qp, "QP out of state %d\n",
772                                    qp->attrs.state);
773                         *bad_wr = wr;
774                         rv = -ENOTCONN;
775                 }
776                 up_read(&qp->state_lock);
777                 return rv;
778         }
779         spin_lock_irqsave(&qp->sq_lock, flags);
780
781         while (wr) {
782                 u32 idx = qp->sq_put % qp->attrs.sq_size;
783                 struct siw_sqe *sqe = &qp->sendq[idx];
784
785                 if (sqe->flags) {
786                         siw_dbg_qp(qp, "sq full\n");
787                         rv = -ENOMEM;
788                         break;
789                 }
790                 if (wr->num_sge > qp->attrs.sq_max_sges) {
791                         siw_dbg_qp(qp, "too many sge's: %d\n", wr->num_sge);
792                         rv = -EINVAL;
793                         break;
794                 }
795                 sqe->id = wr->wr_id;
796
797                 if ((wr->send_flags & IB_SEND_SIGNALED) ||
798                     (qp->attrs.flags & SIW_SIGNAL_ALL_WR))
799                         sqe->flags |= SIW_WQE_SIGNALLED;
800
801                 if (wr->send_flags & IB_SEND_FENCE)
802                         sqe->flags |= SIW_WQE_READ_FENCE;
803
804                 switch (wr->opcode) {
805                 case IB_WR_SEND:
806                 case IB_WR_SEND_WITH_INV:
807                         if (wr->send_flags & IB_SEND_SOLICITED)
808                                 sqe->flags |= SIW_WQE_SOLICITED;
809
810                         if (!(wr->send_flags & IB_SEND_INLINE)) {
811                                 siw_copy_sgl(wr->sg_list, sqe->sge,
812                                              wr->num_sge);
813                                 sqe->num_sge = wr->num_sge;
814                         } else {
815                                 rv = siw_copy_inline_sgl(wr, sqe);
816                                 if (rv <= 0) {
817                                         rv = -EINVAL;
818                                         break;
819                                 }
820                                 sqe->flags |= SIW_WQE_INLINE;
821                                 sqe->num_sge = 1;
822                         }
823                         if (wr->opcode == IB_WR_SEND)
824                                 sqe->opcode = SIW_OP_SEND;
825                         else {
826                                 sqe->opcode = SIW_OP_SEND_REMOTE_INV;
827                                 sqe->rkey = wr->ex.invalidate_rkey;
828                         }
829                         break;
830
831                 case IB_WR_RDMA_READ_WITH_INV:
832                 case IB_WR_RDMA_READ:
833                         /*
834                          * iWarp restricts RREAD sink to SGL containing
835                          * 1 SGE only. we could relax to SGL with multiple
836                          * elements referring the SAME ltag or even sending
837                          * a private per-rreq tag referring to a checked
838                          * local sgl with MULTIPLE ltag's.
839                          */
840                         if (unlikely(wr->num_sge != 1)) {
841                                 rv = -EINVAL;
842                                 break;
843                         }
844                         siw_copy_sgl(wr->sg_list, &sqe->sge[0], 1);
845                         /*
846                          * NOTE: zero length RREAD is allowed!
847                          */
848                         sqe->raddr = rdma_wr(wr)->remote_addr;
849                         sqe->rkey = rdma_wr(wr)->rkey;
850                         sqe->num_sge = 1;
851
852                         if (wr->opcode == IB_WR_RDMA_READ)
853                                 sqe->opcode = SIW_OP_READ;
854                         else
855                                 sqe->opcode = SIW_OP_READ_LOCAL_INV;
856                         break;
857
858                 case IB_WR_RDMA_WRITE:
859                         if (!(wr->send_flags & IB_SEND_INLINE)) {
860                                 siw_copy_sgl(wr->sg_list, &sqe->sge[0],
861                                              wr->num_sge);
862                                 sqe->num_sge = wr->num_sge;
863                         } else {
864                                 rv = siw_copy_inline_sgl(wr, sqe);
865                                 if (unlikely(rv < 0)) {
866                                         rv = -EINVAL;
867                                         break;
868                                 }
869                                 sqe->flags |= SIW_WQE_INLINE;
870                                 sqe->num_sge = 1;
871                         }
872                         sqe->raddr = rdma_wr(wr)->remote_addr;
873                         sqe->rkey = rdma_wr(wr)->rkey;
874                         sqe->opcode = SIW_OP_WRITE;
875                         break;
876
877                 case IB_WR_REG_MR:
878                         sqe->base_mr = (uintptr_t)reg_wr(wr)->mr;
879                         sqe->rkey = reg_wr(wr)->key;
880                         sqe->access = reg_wr(wr)->access & IWARP_ACCESS_MASK;
881                         sqe->opcode = SIW_OP_REG_MR;
882                         break;
883
884                 case IB_WR_LOCAL_INV:
885                         sqe->rkey = wr->ex.invalidate_rkey;
886                         sqe->opcode = SIW_OP_INVAL_STAG;
887                         break;
888
889                 default:
890                         siw_dbg_qp(qp, "ib wr type %d unsupported\n",
891                                    wr->opcode);
892                         rv = -EINVAL;
893                         break;
894                 }
895                 siw_dbg_qp(qp, "opcode %d, flags 0x%x, wr_id 0x%pK\n",
896                            sqe->opcode, sqe->flags,
897                            (void *)(uintptr_t)sqe->id);
898
899                 if (unlikely(rv < 0))
900                         break;
901
902                 /* make SQE only valid after completely written */
903                 smp_wmb();
904                 sqe->flags |= SIW_WQE_VALID;
905
906                 qp->sq_put++;
907                 wr = wr->next;
908         }
909
910         /*
911          * Send directly if SQ processing is not in progress.
912          * Eventual immediate errors (rv < 0) do not affect the involved
913          * RI resources (Verbs, 8.3.1) and thus do not prevent from SQ
914          * processing, if new work is already pending. But rv must be passed
915          * to caller.
916          */
917         if (wqe->wr_status != SIW_WR_IDLE) {
918                 spin_unlock_irqrestore(&qp->sq_lock, flags);
919                 goto skip_direct_sending;
920         }
921         rv = siw_activate_tx(qp);
922         spin_unlock_irqrestore(&qp->sq_lock, flags);
923
924         if (rv <= 0)
925                 goto skip_direct_sending;
926
927         if (rdma_is_kernel_res(&qp->base_qp.res)) {
928                 rv = siw_sq_start(qp);
929         } else {
930                 qp->tx_ctx.in_syscall = 1;
931
932                 if (siw_qp_sq_process(qp) != 0 && !(qp->tx_ctx.tx_suspend))
933                         siw_qp_cm_drop(qp, 0);
934
935                 qp->tx_ctx.in_syscall = 0;
936         }
937 skip_direct_sending:
938
939         up_read(&qp->state_lock);
940
941         if (rv >= 0)
942                 return 0;
943         /*
944          * Immediate error
945          */
946         siw_dbg_qp(qp, "error %d\n", rv);
947
948         *bad_wr = wr;
949         return rv;
950 }
951
952 /*
953  * siw_post_receive()
954  *
955  * Post a list of R-WR's to a RQ.
956  *
957  * @base_qp:    Base QP contained in siw QP
958  * @wr:         Null terminated list of user WR's
959  * @bad_wr:     Points to failing WR in case of synchronous failure.
960  */
961 int siw_post_receive(struct ib_qp *base_qp, const struct ib_recv_wr *wr,
962                      const struct ib_recv_wr **bad_wr)
963 {
964         struct siw_qp *qp = to_siw_qp(base_qp);
965         unsigned long flags;
966         int rv = 0;
967
968         if (qp->srq || qp->attrs.rq_size == 0) {
969                 *bad_wr = wr;
970                 return -EINVAL;
971         }
972         if (!rdma_is_kernel_res(&qp->base_qp.res)) {
973                 siw_dbg_qp(qp, "no kernel post_recv for user mapped rq\n");
974                 *bad_wr = wr;
975                 return -EINVAL;
976         }
977
978         /*
979          * Try to acquire QP state lock. Must be non-blocking
980          * to accommodate kernel clients needs.
981          */
982         if (!down_read_trylock(&qp->state_lock)) {
983                 if (qp->attrs.state == SIW_QP_STATE_ERROR) {
984                         /*
985                          * ERROR state is final, so we can be sure
986                          * this state will not change as long as the QP
987                          * exists.
988                          *
989                          * This handles an ib_drain_rq() call with
990                          * a concurrent request to set the QP state
991                          * to ERROR.
992                          */
993                         rv = siw_rq_flush_wr(qp, wr, bad_wr);
994                 } else {
995                         siw_dbg_qp(qp, "QP locked, state %d\n",
996                                    qp->attrs.state);
997                         *bad_wr = wr;
998                         rv = -ENOTCONN;
999                 }
1000                 return rv;
1001         }
1002         if (qp->attrs.state > SIW_QP_STATE_RTS) {
1003                 if (qp->attrs.state == SIW_QP_STATE_ERROR) {
1004                         /*
1005                          * Immediately flush this WR to CQ, if QP
1006                          * is in ERROR state. RQ is guaranteed to
1007                          * be empty, so WR complets in-order.
1008                          *
1009                          * Typically triggered by ib_drain_rq().
1010                          */
1011                         rv = siw_rq_flush_wr(qp, wr, bad_wr);
1012                 } else {
1013                         siw_dbg_qp(qp, "QP out of state %d\n",
1014                                    qp->attrs.state);
1015                         *bad_wr = wr;
1016                         rv = -ENOTCONN;
1017                 }
1018                 up_read(&qp->state_lock);
1019                 return rv;
1020         }
1021         /*
1022          * Serialize potentially multiple producers.
1023          * Not needed for single threaded consumer side.
1024          */
1025         spin_lock_irqsave(&qp->rq_lock, flags);
1026
1027         while (wr) {
1028                 u32 idx = qp->rq_put % qp->attrs.rq_size;
1029                 struct siw_rqe *rqe = &qp->recvq[idx];
1030
1031                 if (rqe->flags) {
1032                         siw_dbg_qp(qp, "RQ full\n");
1033                         rv = -ENOMEM;
1034                         break;
1035                 }
1036                 if (wr->num_sge > qp->attrs.rq_max_sges) {
1037                         siw_dbg_qp(qp, "too many sge's: %d\n", wr->num_sge);
1038                         rv = -EINVAL;
1039                         break;
1040                 }
1041                 rqe->id = wr->wr_id;
1042                 rqe->num_sge = wr->num_sge;
1043                 siw_copy_sgl(wr->sg_list, rqe->sge, wr->num_sge);
1044
1045                 /* make sure RQE is completely written before valid */
1046                 smp_wmb();
1047
1048                 rqe->flags = SIW_WQE_VALID;
1049
1050                 qp->rq_put++;
1051                 wr = wr->next;
1052         }
1053         spin_unlock_irqrestore(&qp->rq_lock, flags);
1054
1055         up_read(&qp->state_lock);
1056
1057         if (rv < 0) {
1058                 siw_dbg_qp(qp, "error %d\n", rv);
1059                 *bad_wr = wr;
1060         }
1061         return rv > 0 ? 0 : rv;
1062 }
1063
1064 int siw_destroy_cq(struct ib_cq *base_cq, struct ib_udata *udata)
1065 {
1066         struct siw_cq *cq = to_siw_cq(base_cq);
1067         struct siw_device *sdev = to_siw_dev(base_cq->device);
1068         struct siw_ucontext *ctx =
1069                 rdma_udata_to_drv_context(udata, struct siw_ucontext,
1070                                           base_ucontext);
1071
1072         siw_dbg_cq(cq, "free CQ resources\n");
1073
1074         siw_cq_flush(cq);
1075
1076         if (ctx)
1077                 rdma_user_mmap_entry_remove(cq->cq_entry);
1078
1079         atomic_dec(&sdev->num_cq);
1080
1081         vfree(cq->queue);
1082         return 0;
1083 }
1084
1085 /*
1086  * siw_create_cq()
1087  *
1088  * Populate CQ of requested size
1089  *
1090  * @base_cq: CQ as allocated by RDMA midlayer
1091  * @attr: Initial CQ attributes
1092  * @udata: relates to user context
1093  */
1094
1095 int siw_create_cq(struct ib_cq *base_cq, const struct ib_cq_init_attr *attr,
1096                   struct ib_udata *udata)
1097 {
1098         struct siw_device *sdev = to_siw_dev(base_cq->device);
1099         struct siw_cq *cq = to_siw_cq(base_cq);
1100         int rv, size = attr->cqe;
1101
1102         if (attr->flags)
1103                 return -EOPNOTSUPP;
1104
1105         if (atomic_inc_return(&sdev->num_cq) > SIW_MAX_CQ) {
1106                 siw_dbg(base_cq->device, "too many CQ's\n");
1107                 rv = -ENOMEM;
1108                 goto err_out;
1109         }
1110         if (size < 1 || size > sdev->attrs.max_cqe) {
1111                 siw_dbg(base_cq->device, "CQ size error: %d\n", size);
1112                 rv = -EINVAL;
1113                 goto err_out;
1114         }
1115         size = roundup_pow_of_two(size);
1116         cq->base_cq.cqe = size;
1117         cq->num_cqe = size;
1118
1119         if (udata)
1120                 cq->queue = vmalloc_user(size * sizeof(struct siw_cqe) +
1121                                          sizeof(struct siw_cq_ctrl));
1122         else
1123                 cq->queue = vzalloc(size * sizeof(struct siw_cqe) +
1124                                     sizeof(struct siw_cq_ctrl));
1125
1126         if (cq->queue == NULL) {
1127                 rv = -ENOMEM;
1128                 goto err_out;
1129         }
1130         get_random_bytes(&cq->id, 4);
1131         siw_dbg(base_cq->device, "new CQ [%u]\n", cq->id);
1132
1133         spin_lock_init(&cq->lock);
1134
1135         cq->notify = (struct siw_cq_ctrl *)&cq->queue[size];
1136
1137         if (udata) {
1138                 struct siw_uresp_create_cq uresp = {};
1139                 struct siw_ucontext *ctx =
1140                         rdma_udata_to_drv_context(udata, struct siw_ucontext,
1141                                                   base_ucontext);
1142                 size_t length = size * sizeof(struct siw_cqe) +
1143                         sizeof(struct siw_cq_ctrl);
1144
1145                 cq->cq_entry =
1146                         siw_mmap_entry_insert(ctx, cq->queue,
1147                                               length, &uresp.cq_key);
1148                 if (!cq->cq_entry) {
1149                         rv = -ENOMEM;
1150                         goto err_out;
1151                 }
1152
1153                 uresp.cq_id = cq->id;
1154                 uresp.num_cqe = size;
1155
1156                 if (udata->outlen < sizeof(uresp)) {
1157                         rv = -EINVAL;
1158                         goto err_out;
1159                 }
1160                 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
1161                 if (rv)
1162                         goto err_out;
1163         }
1164         return 0;
1165
1166 err_out:
1167         siw_dbg(base_cq->device, "CQ creation failed: %d", rv);
1168
1169         if (cq && cq->queue) {
1170                 struct siw_ucontext *ctx =
1171                         rdma_udata_to_drv_context(udata, struct siw_ucontext,
1172                                                   base_ucontext);
1173                 if (ctx)
1174                         rdma_user_mmap_entry_remove(cq->cq_entry);
1175                 vfree(cq->queue);
1176         }
1177         atomic_dec(&sdev->num_cq);
1178
1179         return rv;
1180 }
1181
1182 /*
1183  * siw_poll_cq()
1184  *
1185  * Reap CQ entries if available and copy work completion status into
1186  * array of WC's provided by caller. Returns number of reaped CQE's.
1187  *
1188  * @base_cq:    Base CQ contained in siw CQ.
1189  * @num_cqe:    Maximum number of CQE's to reap.
1190  * @wc:         Array of work completions to be filled by siw.
1191  */
1192 int siw_poll_cq(struct ib_cq *base_cq, int num_cqe, struct ib_wc *wc)
1193 {
1194         struct siw_cq *cq = to_siw_cq(base_cq);
1195         int i;
1196
1197         for (i = 0; i < num_cqe; i++) {
1198                 if (!siw_reap_cqe(cq, wc))
1199                         break;
1200                 wc++;
1201         }
1202         return i;
1203 }
1204
1205 /*
1206  * siw_req_notify_cq()
1207  *
1208  * Request notification for new CQE's added to that CQ.
1209  * Defined flags:
1210  * o SIW_CQ_NOTIFY_SOLICITED lets siw trigger a notification
1211  *   event if a WQE with notification flag set enters the CQ
1212  * o SIW_CQ_NOTIFY_NEXT_COMP lets siw trigger a notification
1213  *   event if a WQE enters the CQ.
1214  * o IB_CQ_REPORT_MISSED_EVENTS: return value will provide the
1215  *   number of not reaped CQE's regardless of its notification
1216  *   type and current or new CQ notification settings.
1217  *
1218  * @base_cq:    Base CQ contained in siw CQ.
1219  * @flags:      Requested notification flags.
1220  */
1221 int siw_req_notify_cq(struct ib_cq *base_cq, enum ib_cq_notify_flags flags)
1222 {
1223         struct siw_cq *cq = to_siw_cq(base_cq);
1224
1225         siw_dbg_cq(cq, "flags: 0x%02x\n", flags);
1226
1227         if ((flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED)
1228                 /*
1229                  * Enable CQ event for next solicited completion.
1230                  * and make it visible to all associated producers.
1231                  */
1232                 smp_store_mb(cq->notify->flags, SIW_NOTIFY_SOLICITED);
1233         else
1234                 /*
1235                  * Enable CQ event for any signalled completion.
1236                  * and make it visible to all associated producers.
1237                  */
1238                 smp_store_mb(cq->notify->flags, SIW_NOTIFY_ALL);
1239
1240         if (flags & IB_CQ_REPORT_MISSED_EVENTS)
1241                 return cq->cq_put - cq->cq_get;
1242
1243         return 0;
1244 }
1245
1246 /*
1247  * siw_dereg_mr()
1248  *
1249  * Release Memory Region.
1250  *
1251  * @base_mr: Base MR contained in siw MR.
1252  * @udata: points to user context, unused.
1253  */
1254 int siw_dereg_mr(struct ib_mr *base_mr, struct ib_udata *udata)
1255 {
1256         struct siw_mr *mr = to_siw_mr(base_mr);
1257         struct siw_device *sdev = to_siw_dev(base_mr->device);
1258
1259         siw_dbg_mem(mr->mem, "deregister MR\n");
1260
1261         atomic_dec(&sdev->num_mr);
1262
1263         siw_mr_drop_mem(mr);
1264         kfree_rcu(mr, rcu);
1265
1266         return 0;
1267 }
1268
1269 /*
1270  * siw_reg_user_mr()
1271  *
1272  * Register Memory Region.
1273  *
1274  * @pd:         Protection Domain
1275  * @start:      starting address of MR (virtual address)
1276  * @len:        len of MR
1277  * @rnic_va:    not used by siw
1278  * @rights:     MR access rights
1279  * @udata:      user buffer to communicate STag and Key.
1280  */
1281 struct ib_mr *siw_reg_user_mr(struct ib_pd *pd, u64 start, u64 len,
1282                               u64 rnic_va, int rights, struct ib_udata *udata)
1283 {
1284         struct siw_mr *mr = NULL;
1285         struct siw_umem *umem = NULL;
1286         struct siw_ureq_reg_mr ureq;
1287         struct siw_device *sdev = to_siw_dev(pd->device);
1288
1289         unsigned long mem_limit = rlimit(RLIMIT_MEMLOCK);
1290         int rv;
1291
1292         siw_dbg_pd(pd, "start: 0x%pK, va: 0x%pK, len: %llu\n",
1293                    (void *)(uintptr_t)start, (void *)(uintptr_t)rnic_va,
1294                    (unsigned long long)len);
1295
1296         if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) {
1297                 siw_dbg_pd(pd, "too many mr's\n");
1298                 rv = -ENOMEM;
1299                 goto err_out;
1300         }
1301         if (!len) {
1302                 rv = -EINVAL;
1303                 goto err_out;
1304         }
1305         if (mem_limit != RLIM_INFINITY) {
1306                 unsigned long num_pages =
1307                         (PAGE_ALIGN(len + (start & ~PAGE_MASK))) >> PAGE_SHIFT;
1308                 mem_limit >>= PAGE_SHIFT;
1309
1310                 if (num_pages > mem_limit - current->mm->locked_vm) {
1311                         siw_dbg_pd(pd, "pages req %lu, max %lu, lock %lu\n",
1312                                    num_pages, mem_limit,
1313                                    current->mm->locked_vm);
1314                         rv = -ENOMEM;
1315                         goto err_out;
1316                 }
1317         }
1318         umem = siw_umem_get(start, len, ib_access_writable(rights));
1319         if (IS_ERR(umem)) {
1320                 rv = PTR_ERR(umem);
1321                 siw_dbg_pd(pd, "getting user memory failed: %d\n", rv);
1322                 umem = NULL;
1323                 goto err_out;
1324         }
1325         mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1326         if (!mr) {
1327                 rv = -ENOMEM;
1328                 goto err_out;
1329         }
1330         rv = siw_mr_add_mem(mr, pd, umem, start, len, rights);
1331         if (rv)
1332                 goto err_out;
1333
1334         if (udata) {
1335                 struct siw_uresp_reg_mr uresp = {};
1336                 struct siw_mem *mem = mr->mem;
1337
1338                 if (udata->inlen < sizeof(ureq)) {
1339                         rv = -EINVAL;
1340                         goto err_out;
1341                 }
1342                 rv = ib_copy_from_udata(&ureq, udata, sizeof(ureq));
1343                 if (rv)
1344                         goto err_out;
1345
1346                 mr->base_mr.lkey |= ureq.stag_key;
1347                 mr->base_mr.rkey |= ureq.stag_key;
1348                 mem->stag |= ureq.stag_key;
1349                 uresp.stag = mem->stag;
1350
1351                 if (udata->outlen < sizeof(uresp)) {
1352                         rv = -EINVAL;
1353                         goto err_out;
1354                 }
1355                 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
1356                 if (rv)
1357                         goto err_out;
1358         }
1359         mr->mem->stag_valid = 1;
1360
1361         return &mr->base_mr;
1362
1363 err_out:
1364         atomic_dec(&sdev->num_mr);
1365         if (mr) {
1366                 if (mr->mem)
1367                         siw_mr_drop_mem(mr);
1368                 kfree_rcu(mr, rcu);
1369         } else {
1370                 if (umem)
1371                         siw_umem_release(umem, false);
1372         }
1373         return ERR_PTR(rv);
1374 }
1375
1376 struct ib_mr *siw_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
1377                            u32 max_sge)
1378 {
1379         struct siw_device *sdev = to_siw_dev(pd->device);
1380         struct siw_mr *mr = NULL;
1381         struct siw_pbl *pbl = NULL;
1382         int rv;
1383
1384         if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) {
1385                 siw_dbg_pd(pd, "too many mr's\n");
1386                 rv = -ENOMEM;
1387                 goto err_out;
1388         }
1389         if (mr_type != IB_MR_TYPE_MEM_REG) {
1390                 siw_dbg_pd(pd, "mr type %d unsupported\n", mr_type);
1391                 rv = -EOPNOTSUPP;
1392                 goto err_out;
1393         }
1394         if (max_sge > SIW_MAX_SGE_PBL) {
1395                 siw_dbg_pd(pd, "too many sge's: %d\n", max_sge);
1396                 rv = -ENOMEM;
1397                 goto err_out;
1398         }
1399         pbl = siw_pbl_alloc(max_sge);
1400         if (IS_ERR(pbl)) {
1401                 rv = PTR_ERR(pbl);
1402                 siw_dbg_pd(pd, "pbl allocation failed: %d\n", rv);
1403                 pbl = NULL;
1404                 goto err_out;
1405         }
1406         mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1407         if (!mr) {
1408                 rv = -ENOMEM;
1409                 goto err_out;
1410         }
1411         rv = siw_mr_add_mem(mr, pd, pbl, 0, max_sge * PAGE_SIZE, 0);
1412         if (rv)
1413                 goto err_out;
1414
1415         mr->mem->is_pbl = 1;
1416
1417         siw_dbg_pd(pd, "[MEM %u]: success\n", mr->mem->stag);
1418
1419         return &mr->base_mr;
1420
1421 err_out:
1422         atomic_dec(&sdev->num_mr);
1423
1424         if (!mr) {
1425                 kfree(pbl);
1426         } else {
1427                 if (mr->mem)
1428                         siw_mr_drop_mem(mr);
1429                 kfree_rcu(mr, rcu);
1430         }
1431         siw_dbg_pd(pd, "failed: %d\n", rv);
1432
1433         return ERR_PTR(rv);
1434 }
1435
1436 /* Just used to count number of pages being mapped */
1437 static int siw_set_pbl_page(struct ib_mr *base_mr, u64 buf_addr)
1438 {
1439         return 0;
1440 }
1441
1442 int siw_map_mr_sg(struct ib_mr *base_mr, struct scatterlist *sl, int num_sle,
1443                   unsigned int *sg_off)
1444 {
1445         struct scatterlist *slp;
1446         struct siw_mr *mr = to_siw_mr(base_mr);
1447         struct siw_mem *mem = mr->mem;
1448         struct siw_pbl *pbl = mem->pbl;
1449         struct siw_pble *pble;
1450         unsigned long pbl_size;
1451         int i, rv;
1452
1453         if (!pbl) {
1454                 siw_dbg_mem(mem, "no PBL allocated\n");
1455                 return -EINVAL;
1456         }
1457         pble = pbl->pbe;
1458
1459         if (pbl->max_buf < num_sle) {
1460                 siw_dbg_mem(mem, "too many SGE's: %d > %d\n",
1461                             mem->pbl->max_buf, num_sle);
1462                 return -ENOMEM;
1463         }
1464         for_each_sg(sl, slp, num_sle, i) {
1465                 if (sg_dma_len(slp) == 0) {
1466                         siw_dbg_mem(mem, "empty SGE\n");
1467                         return -EINVAL;
1468                 }
1469                 if (i == 0) {
1470                         pble->addr = sg_dma_address(slp);
1471                         pble->size = sg_dma_len(slp);
1472                         pble->pbl_off = 0;
1473                         pbl_size = pble->size;
1474                         pbl->num_buf = 1;
1475                 } else {
1476                         /* Merge PBL entries if adjacent */
1477                         if (pble->addr + pble->size == sg_dma_address(slp)) {
1478                                 pble->size += sg_dma_len(slp);
1479                         } else {
1480                                 pble++;
1481                                 pbl->num_buf++;
1482                                 pble->addr = sg_dma_address(slp);
1483                                 pble->size = sg_dma_len(slp);
1484                                 pble->pbl_off = pbl_size;
1485                         }
1486                         pbl_size += sg_dma_len(slp);
1487                 }
1488                 siw_dbg_mem(mem,
1489                         "sge[%d], size %u, addr 0x%p, total %lu\n",
1490                         i, pble->size, (void *)(uintptr_t)pble->addr,
1491                         pbl_size);
1492         }
1493         rv = ib_sg_to_pages(base_mr, sl, num_sle, sg_off, siw_set_pbl_page);
1494         if (rv > 0) {
1495                 mem->len = base_mr->length;
1496                 mem->va = base_mr->iova;
1497                 siw_dbg_mem(mem,
1498                         "%llu bytes, start 0x%pK, %u SLE to %u entries\n",
1499                         mem->len, (void *)(uintptr_t)mem->va, num_sle,
1500                         pbl->num_buf);
1501         }
1502         return rv;
1503 }
1504
1505 /*
1506  * siw_get_dma_mr()
1507  *
1508  * Create a (empty) DMA memory region, where no umem is attached.
1509  */
1510 struct ib_mr *siw_get_dma_mr(struct ib_pd *pd, int rights)
1511 {
1512         struct siw_device *sdev = to_siw_dev(pd->device);
1513         struct siw_mr *mr = NULL;
1514         int rv;
1515
1516         if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) {
1517                 siw_dbg_pd(pd, "too many mr's\n");
1518                 rv = -ENOMEM;
1519                 goto err_out;
1520         }
1521         mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1522         if (!mr) {
1523                 rv = -ENOMEM;
1524                 goto err_out;
1525         }
1526         rv = siw_mr_add_mem(mr, pd, NULL, 0, ULONG_MAX, rights);
1527         if (rv)
1528                 goto err_out;
1529
1530         mr->mem->stag_valid = 1;
1531
1532         siw_dbg_pd(pd, "[MEM %u]: success\n", mr->mem->stag);
1533
1534         return &mr->base_mr;
1535
1536 err_out:
1537         if (rv)
1538                 kfree(mr);
1539
1540         atomic_dec(&sdev->num_mr);
1541
1542         return ERR_PTR(rv);
1543 }
1544
1545 /*
1546  * siw_create_srq()
1547  *
1548  * Create Shared Receive Queue of attributes @init_attrs
1549  * within protection domain given by @pd.
1550  *
1551  * @base_srq:   Base SRQ contained in siw SRQ.
1552  * @init_attrs: SRQ init attributes.
1553  * @udata:      points to user context
1554  */
1555 int siw_create_srq(struct ib_srq *base_srq,
1556                    struct ib_srq_init_attr *init_attrs, struct ib_udata *udata)
1557 {
1558         struct siw_srq *srq = to_siw_srq(base_srq);
1559         struct ib_srq_attr *attrs = &init_attrs->attr;
1560         struct siw_device *sdev = to_siw_dev(base_srq->device);
1561         struct siw_ucontext *ctx =
1562                 rdma_udata_to_drv_context(udata, struct siw_ucontext,
1563                                           base_ucontext);
1564         int rv;
1565
1566         if (init_attrs->srq_type != IB_SRQT_BASIC)
1567                 return -EOPNOTSUPP;
1568
1569         if (atomic_inc_return(&sdev->num_srq) > SIW_MAX_SRQ) {
1570                 siw_dbg_pd(base_srq->pd, "too many SRQ's\n");
1571                 rv = -ENOMEM;
1572                 goto err_out;
1573         }
1574         if (attrs->max_wr == 0 || attrs->max_wr > SIW_MAX_SRQ_WR ||
1575             attrs->max_sge > SIW_MAX_SGE || attrs->srq_limit > attrs->max_wr) {
1576                 rv = -EINVAL;
1577                 goto err_out;
1578         }
1579         srq->max_sge = attrs->max_sge;
1580         srq->num_rqe = roundup_pow_of_two(attrs->max_wr);
1581         srq->limit = attrs->srq_limit;
1582         if (srq->limit)
1583                 srq->armed = true;
1584
1585         srq->is_kernel_res = !udata;
1586
1587         if (udata)
1588                 srq->recvq =
1589                         vmalloc_user(srq->num_rqe * sizeof(struct siw_rqe));
1590         else
1591                 srq->recvq = vzalloc(srq->num_rqe * sizeof(struct siw_rqe));
1592
1593         if (srq->recvq == NULL) {
1594                 rv = -ENOMEM;
1595                 goto err_out;
1596         }
1597         if (udata) {
1598                 struct siw_uresp_create_srq uresp = {};
1599                 size_t length = srq->num_rqe * sizeof(struct siw_rqe);
1600
1601                 srq->srq_entry =
1602                         siw_mmap_entry_insert(ctx, srq->recvq,
1603                                               length, &uresp.srq_key);
1604                 if (!srq->srq_entry) {
1605                         rv = -ENOMEM;
1606                         goto err_out;
1607                 }
1608
1609                 uresp.num_rqe = srq->num_rqe;
1610
1611                 if (udata->outlen < sizeof(uresp)) {
1612                         rv = -EINVAL;
1613                         goto err_out;
1614                 }
1615                 rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp));
1616                 if (rv)
1617                         goto err_out;
1618         }
1619         spin_lock_init(&srq->lock);
1620
1621         siw_dbg_pd(base_srq->pd, "[SRQ]: success\n");
1622
1623         return 0;
1624
1625 err_out:
1626         if (srq->recvq) {
1627                 if (ctx)
1628                         rdma_user_mmap_entry_remove(srq->srq_entry);
1629                 vfree(srq->recvq);
1630         }
1631         atomic_dec(&sdev->num_srq);
1632
1633         return rv;
1634 }
1635
1636 /*
1637  * siw_modify_srq()
1638  *
1639  * Modify SRQ. The caller may resize SRQ and/or set/reset notification
1640  * limit and (re)arm IB_EVENT_SRQ_LIMIT_REACHED notification.
1641  *
1642  * NOTE: it is unclear if RDMA core allows for changing the MAX_SGE
1643  * parameter. siw_modify_srq() does not check the attrs->max_sge param.
1644  */
1645 int siw_modify_srq(struct ib_srq *base_srq, struct ib_srq_attr *attrs,
1646                    enum ib_srq_attr_mask attr_mask, struct ib_udata *udata)
1647 {
1648         struct siw_srq *srq = to_siw_srq(base_srq);
1649         unsigned long flags;
1650         int rv = 0;
1651
1652         spin_lock_irqsave(&srq->lock, flags);
1653
1654         if (attr_mask & IB_SRQ_MAX_WR) {
1655                 /* resize request not yet supported */
1656                 rv = -EOPNOTSUPP;
1657                 goto out;
1658         }
1659         if (attr_mask & IB_SRQ_LIMIT) {
1660                 if (attrs->srq_limit) {
1661                         if (unlikely(attrs->srq_limit > srq->num_rqe)) {
1662                                 rv = -EINVAL;
1663                                 goto out;
1664                         }
1665                         srq->armed = true;
1666                 } else {
1667                         srq->armed = false;
1668                 }
1669                 srq->limit = attrs->srq_limit;
1670         }
1671 out:
1672         spin_unlock_irqrestore(&srq->lock, flags);
1673
1674         return rv;
1675 }
1676
1677 /*
1678  * siw_query_srq()
1679  *
1680  * Query SRQ attributes.
1681  */
1682 int siw_query_srq(struct ib_srq *base_srq, struct ib_srq_attr *attrs)
1683 {
1684         struct siw_srq *srq = to_siw_srq(base_srq);
1685         unsigned long flags;
1686
1687         spin_lock_irqsave(&srq->lock, flags);
1688
1689         attrs->max_wr = srq->num_rqe;
1690         attrs->max_sge = srq->max_sge;
1691         attrs->srq_limit = srq->limit;
1692
1693         spin_unlock_irqrestore(&srq->lock, flags);
1694
1695         return 0;
1696 }
1697
1698 /*
1699  * siw_destroy_srq()
1700  *
1701  * Destroy SRQ.
1702  * It is assumed that the SRQ is not referenced by any
1703  * QP anymore - the code trusts the RDMA core environment to keep track
1704  * of QP references.
1705  */
1706 int siw_destroy_srq(struct ib_srq *base_srq, struct ib_udata *udata)
1707 {
1708         struct siw_srq *srq = to_siw_srq(base_srq);
1709         struct siw_device *sdev = to_siw_dev(base_srq->device);
1710         struct siw_ucontext *ctx =
1711                 rdma_udata_to_drv_context(udata, struct siw_ucontext,
1712                                           base_ucontext);
1713
1714         if (ctx)
1715                 rdma_user_mmap_entry_remove(srq->srq_entry);
1716         vfree(srq->recvq);
1717         atomic_dec(&sdev->num_srq);
1718         return 0;
1719 }
1720
1721 /*
1722  * siw_post_srq_recv()
1723  *
1724  * Post a list of receive queue elements to SRQ.
1725  * NOTE: The function does not check or lock a certain SRQ state
1726  *       during the post operation. The code simply trusts the
1727  *       RDMA core environment.
1728  *
1729  * @base_srq:   Base SRQ contained in siw SRQ
1730  * @wr:         List of R-WR's
1731  * @bad_wr:     Updated to failing WR if posting fails.
1732  */
1733 int siw_post_srq_recv(struct ib_srq *base_srq, const struct ib_recv_wr *wr,
1734                       const struct ib_recv_wr **bad_wr)
1735 {
1736         struct siw_srq *srq = to_siw_srq(base_srq);
1737         unsigned long flags;
1738         int rv = 0;
1739
1740         if (unlikely(!srq->is_kernel_res)) {
1741                 siw_dbg_pd(base_srq->pd,
1742                            "[SRQ]: no kernel post_recv for mapped srq\n");
1743                 rv = -EINVAL;
1744                 goto out;
1745         }
1746         /*
1747          * Serialize potentially multiple producers.
1748          * Also needed to serialize potentially multiple
1749          * consumers.
1750          */
1751         spin_lock_irqsave(&srq->lock, flags);
1752
1753         while (wr) {
1754                 u32 idx = srq->rq_put % srq->num_rqe;
1755                 struct siw_rqe *rqe = &srq->recvq[idx];
1756
1757                 if (rqe->flags) {
1758                         siw_dbg_pd(base_srq->pd, "SRQ full\n");
1759                         rv = -ENOMEM;
1760                         break;
1761                 }
1762                 if (unlikely(wr->num_sge > srq->max_sge)) {
1763                         siw_dbg_pd(base_srq->pd,
1764                                    "[SRQ]: too many sge's: %d\n", wr->num_sge);
1765                         rv = -EINVAL;
1766                         break;
1767                 }
1768                 rqe->id = wr->wr_id;
1769                 rqe->num_sge = wr->num_sge;
1770                 siw_copy_sgl(wr->sg_list, rqe->sge, wr->num_sge);
1771
1772                 /* Make sure S-RQE is completely written before valid */
1773                 smp_wmb();
1774
1775                 rqe->flags = SIW_WQE_VALID;
1776
1777                 srq->rq_put++;
1778                 wr = wr->next;
1779         }
1780         spin_unlock_irqrestore(&srq->lock, flags);
1781 out:
1782         if (unlikely(rv < 0)) {
1783                 siw_dbg_pd(base_srq->pd, "[SRQ]: error %d\n", rv);
1784                 *bad_wr = wr;
1785         }
1786         return rv;
1787 }
1788
1789 void siw_qp_event(struct siw_qp *qp, enum ib_event_type etype)
1790 {
1791         struct ib_event event;
1792         struct ib_qp *base_qp = &qp->base_qp;
1793
1794         /*
1795          * Do not report asynchronous errors on QP which gets
1796          * destroyed via verbs interface (siw_destroy_qp())
1797          */
1798         if (qp->attrs.flags & SIW_QP_IN_DESTROY)
1799                 return;
1800
1801         event.event = etype;
1802         event.device = base_qp->device;
1803         event.element.qp = base_qp;
1804
1805         if (base_qp->event_handler) {
1806                 siw_dbg_qp(qp, "reporting event %d\n", etype);
1807                 base_qp->event_handler(&event, base_qp->qp_context);
1808         }
1809 }
1810
1811 void siw_cq_event(struct siw_cq *cq, enum ib_event_type etype)
1812 {
1813         struct ib_event event;
1814         struct ib_cq *base_cq = &cq->base_cq;
1815
1816         event.event = etype;
1817         event.device = base_cq->device;
1818         event.element.cq = base_cq;
1819
1820         if (base_cq->event_handler) {
1821                 siw_dbg_cq(cq, "reporting CQ event %d\n", etype);
1822                 base_cq->event_handler(&event, base_cq->cq_context);
1823         }
1824 }
1825
1826 void siw_srq_event(struct siw_srq *srq, enum ib_event_type etype)
1827 {
1828         struct ib_event event;
1829         struct ib_srq *base_srq = &srq->base_srq;
1830
1831         event.event = etype;
1832         event.device = base_srq->device;
1833         event.element.srq = base_srq;
1834
1835         if (base_srq->event_handler) {
1836                 siw_dbg_pd(srq->base_srq.pd,
1837                            "reporting SRQ event %d\n", etype);
1838                 base_srq->event_handler(&event, base_srq->srq_context);
1839         }
1840 }
1841
1842 void siw_port_event(struct siw_device *sdev, u32 port, enum ib_event_type etype)
1843 {
1844         struct ib_event event;
1845
1846         event.event = etype;
1847         event.device = &sdev->base_dev;
1848         event.element.port_num = port;
1849
1850         siw_dbg(&sdev->base_dev, "reporting port event %d\n", etype);
1851
1852         ib_dispatch_event(&event);
1853 }