clk: uniphier: Fix fixed-rate initialization
[linux-2.6-microblaze.git] / drivers / infiniband / sw / rdmavt / qp.c
1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3  * Copyright(c) 2016 - 2020 Intel Corporation.
4  */
5
6 #include <linux/hash.h>
7 #include <linux/bitops.h>
8 #include <linux/lockdep.h>
9 #include <linux/vmalloc.h>
10 #include <linux/slab.h>
11 #include <rdma/ib_verbs.h>
12 #include <rdma/ib_hdrs.h>
13 #include <rdma/opa_addr.h>
14 #include <rdma/uverbs_ioctl.h>
15 #include "qp.h"
16 #include "vt.h"
17 #include "trace.h"
18
19 #define RVT_RWQ_COUNT_THRESHOLD 16
20
21 static void rvt_rc_timeout(struct timer_list *t);
22 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
23                          enum ib_qp_type type);
24
25 /*
26  * Convert the AETH RNR timeout code into the number of microseconds.
27  */
28 static const u32 ib_rvt_rnr_table[32] = {
29         655360, /* 00: 655.36 */
30         10,     /* 01:    .01 */
31         20,     /* 02     .02 */
32         30,     /* 03:    .03 */
33         40,     /* 04:    .04 */
34         60,     /* 05:    .06 */
35         80,     /* 06:    .08 */
36         120,    /* 07:    .12 */
37         160,    /* 08:    .16 */
38         240,    /* 09:    .24 */
39         320,    /* 0A:    .32 */
40         480,    /* 0B:    .48 */
41         640,    /* 0C:    .64 */
42         960,    /* 0D:    .96 */
43         1280,   /* 0E:   1.28 */
44         1920,   /* 0F:   1.92 */
45         2560,   /* 10:   2.56 */
46         3840,   /* 11:   3.84 */
47         5120,   /* 12:   5.12 */
48         7680,   /* 13:   7.68 */
49         10240,  /* 14:  10.24 */
50         15360,  /* 15:  15.36 */
51         20480,  /* 16:  20.48 */
52         30720,  /* 17:  30.72 */
53         40960,  /* 18:  40.96 */
54         61440,  /* 19:  61.44 */
55         81920,  /* 1A:  81.92 */
56         122880, /* 1B: 122.88 */
57         163840, /* 1C: 163.84 */
58         245760, /* 1D: 245.76 */
59         327680, /* 1E: 327.68 */
60         491520  /* 1F: 491.52 */
61 };
62
63 /*
64  * Note that it is OK to post send work requests in the SQE and ERR
65  * states; rvt_do_send() will process them and generate error
66  * completions as per IB 1.2 C10-96.
67  */
68 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
69         [IB_QPS_RESET] = 0,
70         [IB_QPS_INIT] = RVT_POST_RECV_OK,
71         [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
72         [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
73             RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
74             RVT_PROCESS_NEXT_SEND_OK,
75         [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
76             RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
77         [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
78             RVT_POST_SEND_OK | RVT_FLUSH_SEND,
79         [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
80             RVT_POST_SEND_OK | RVT_FLUSH_SEND,
81 };
82 EXPORT_SYMBOL(ib_rvt_state_ops);
83
84 /* platform specific: return the last level cache (llc) size, in KiB */
85 static int rvt_wss_llc_size(void)
86 {
87         /* assume that the boot CPU value is universal for all CPUs */
88         return boot_cpu_data.x86_cache_size;
89 }
90
91 /* platform specific: cacheless copy */
92 static void cacheless_memcpy(void *dst, void *src, size_t n)
93 {
94         /*
95          * Use the only available X64 cacheless copy.  Add a __user cast
96          * to quiet sparse.  The src agument is already in the kernel so
97          * there are no security issues.  The extra fault recovery machinery
98          * is not invoked.
99          */
100         __copy_user_nocache(dst, (void __user *)src, n, 0);
101 }
102
103 void rvt_wss_exit(struct rvt_dev_info *rdi)
104 {
105         struct rvt_wss *wss = rdi->wss;
106
107         if (!wss)
108                 return;
109
110         /* coded to handle partially initialized and repeat callers */
111         kfree(wss->entries);
112         wss->entries = NULL;
113         kfree(rdi->wss);
114         rdi->wss = NULL;
115 }
116
117 /*
118  * rvt_wss_init - Init wss data structures
119  *
120  * Return: 0 on success
121  */
122 int rvt_wss_init(struct rvt_dev_info *rdi)
123 {
124         unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
125         unsigned int wss_threshold = rdi->dparms.wss_threshold;
126         unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
127         long llc_size;
128         long llc_bits;
129         long table_size;
130         long table_bits;
131         struct rvt_wss *wss;
132         int node = rdi->dparms.node;
133
134         if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
135                 rdi->wss = NULL;
136                 return 0;
137         }
138
139         rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
140         if (!rdi->wss)
141                 return -ENOMEM;
142         wss = rdi->wss;
143
144         /* check for a valid percent range - default to 80 if none or invalid */
145         if (wss_threshold < 1 || wss_threshold > 100)
146                 wss_threshold = 80;
147
148         /* reject a wildly large period */
149         if (wss_clean_period > 1000000)
150                 wss_clean_period = 256;
151
152         /* reject a zero period */
153         if (wss_clean_period == 0)
154                 wss_clean_period = 1;
155
156         /*
157          * Calculate the table size - the next power of 2 larger than the
158          * LLC size.  LLC size is in KiB.
159          */
160         llc_size = rvt_wss_llc_size() * 1024;
161         table_size = roundup_pow_of_two(llc_size);
162
163         /* one bit per page in rounded up table */
164         llc_bits = llc_size / PAGE_SIZE;
165         table_bits = table_size / PAGE_SIZE;
166         wss->pages_mask = table_bits - 1;
167         wss->num_entries = table_bits / BITS_PER_LONG;
168
169         wss->threshold = (llc_bits * wss_threshold) / 100;
170         if (wss->threshold == 0)
171                 wss->threshold = 1;
172
173         wss->clean_period = wss_clean_period;
174         atomic_set(&wss->clean_counter, wss_clean_period);
175
176         wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
177                                     GFP_KERNEL, node);
178         if (!wss->entries) {
179                 rvt_wss_exit(rdi);
180                 return -ENOMEM;
181         }
182
183         return 0;
184 }
185
186 /*
187  * Advance the clean counter.  When the clean period has expired,
188  * clean an entry.
189  *
190  * This is implemented in atomics to avoid locking.  Because multiple
191  * variables are involved, it can be racy which can lead to slightly
192  * inaccurate information.  Since this is only a heuristic, this is
193  * OK.  Any innaccuracies will clean themselves out as the counter
194  * advances.  That said, it is unlikely the entry clean operation will
195  * race - the next possible racer will not start until the next clean
196  * period.
197  *
198  * The clean counter is implemented as a decrement to zero.  When zero
199  * is reached an entry is cleaned.
200  */
201 static void wss_advance_clean_counter(struct rvt_wss *wss)
202 {
203         int entry;
204         int weight;
205         unsigned long bits;
206
207         /* become the cleaner if we decrement the counter to zero */
208         if (atomic_dec_and_test(&wss->clean_counter)) {
209                 /*
210                  * Set, not add, the clean period.  This avoids an issue
211                  * where the counter could decrement below the clean period.
212                  * Doing a set can result in lost decrements, slowing the
213                  * clean advance.  Since this a heuristic, this possible
214                  * slowdown is OK.
215                  *
216                  * An alternative is to loop, advancing the counter by a
217                  * clean period until the result is > 0. However, this could
218                  * lead to several threads keeping another in the clean loop.
219                  * This could be mitigated by limiting the number of times
220                  * we stay in the loop.
221                  */
222                 atomic_set(&wss->clean_counter, wss->clean_period);
223
224                 /*
225                  * Uniquely grab the entry to clean and move to next.
226                  * The current entry is always the lower bits of
227                  * wss.clean_entry.  The table size, wss.num_entries,
228                  * is always a power-of-2.
229                  */
230                 entry = (atomic_inc_return(&wss->clean_entry) - 1)
231                         & (wss->num_entries - 1);
232
233                 /* clear the entry and count the bits */
234                 bits = xchg(&wss->entries[entry], 0);
235                 weight = hweight64((u64)bits);
236                 /* only adjust the contended total count if needed */
237                 if (weight)
238                         atomic_sub(weight, &wss->total_count);
239         }
240 }
241
242 /*
243  * Insert the given address into the working set array.
244  */
245 static void wss_insert(struct rvt_wss *wss, void *address)
246 {
247         u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
248         u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
249         u32 nr = page & (BITS_PER_LONG - 1);
250
251         if (!test_and_set_bit(nr, &wss->entries[entry]))
252                 atomic_inc(&wss->total_count);
253
254         wss_advance_clean_counter(wss);
255 }
256
257 /*
258  * Is the working set larger than the threshold?
259  */
260 static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
261 {
262         return atomic_read(&wss->total_count) >= wss->threshold;
263 }
264
265 static void get_map_page(struct rvt_qpn_table *qpt,
266                          struct rvt_qpn_map *map)
267 {
268         unsigned long page = get_zeroed_page(GFP_KERNEL);
269
270         /*
271          * Free the page if someone raced with us installing it.
272          */
273
274         spin_lock(&qpt->lock);
275         if (map->page)
276                 free_page(page);
277         else
278                 map->page = (void *)page;
279         spin_unlock(&qpt->lock);
280 }
281
282 /**
283  * init_qpn_table - initialize the QP number table for a device
284  * @rdi: rvt dev struct
285  * @qpt: the QPN table
286  */
287 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
288 {
289         u32 offset, i;
290         struct rvt_qpn_map *map;
291         int ret = 0;
292
293         if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
294                 return -EINVAL;
295
296         spin_lock_init(&qpt->lock);
297
298         qpt->last = rdi->dparms.qpn_start;
299         qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
300
301         /*
302          * Drivers may want some QPs beyond what we need for verbs let them use
303          * our qpn table. No need for two. Lets go ahead and mark the bitmaps
304          * for those. The reserved range must be *after* the range which verbs
305          * will pick from.
306          */
307
308         /* Figure out number of bit maps needed before reserved range */
309         qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
310
311         /* This should always be zero */
312         offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
313
314         /* Starting with the first reserved bit map */
315         map = &qpt->map[qpt->nmaps];
316
317         rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
318                     rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
319         for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
320                 if (!map->page) {
321                         get_map_page(qpt, map);
322                         if (!map->page) {
323                                 ret = -ENOMEM;
324                                 break;
325                         }
326                 }
327                 set_bit(offset, map->page);
328                 offset++;
329                 if (offset == RVT_BITS_PER_PAGE) {
330                         /* next page */
331                         qpt->nmaps++;
332                         map++;
333                         offset = 0;
334                 }
335         }
336         return ret;
337 }
338
339 /**
340  * free_qpn_table - free the QP number table for a device
341  * @qpt: the QPN table
342  */
343 static void free_qpn_table(struct rvt_qpn_table *qpt)
344 {
345         int i;
346
347         for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
348                 free_page((unsigned long)qpt->map[i].page);
349 }
350
351 /**
352  * rvt_driver_qp_init - Init driver qp resources
353  * @rdi: rvt dev strucutre
354  *
355  * Return: 0 on success
356  */
357 int rvt_driver_qp_init(struct rvt_dev_info *rdi)
358 {
359         int i;
360         int ret = -ENOMEM;
361
362         if (!rdi->dparms.qp_table_size)
363                 return -EINVAL;
364
365         /*
366          * If driver is not doing any QP allocation then make sure it is
367          * providing the necessary QP functions.
368          */
369         if (!rdi->driver_f.free_all_qps ||
370             !rdi->driver_f.qp_priv_alloc ||
371             !rdi->driver_f.qp_priv_free ||
372             !rdi->driver_f.notify_qp_reset ||
373             !rdi->driver_f.notify_restart_rc)
374                 return -EINVAL;
375
376         /* allocate parent object */
377         rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
378                                    rdi->dparms.node);
379         if (!rdi->qp_dev)
380                 return -ENOMEM;
381
382         /* allocate hash table */
383         rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
384         rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
385         rdi->qp_dev->qp_table =
386                 kmalloc_array_node(rdi->qp_dev->qp_table_size,
387                              sizeof(*rdi->qp_dev->qp_table),
388                              GFP_KERNEL, rdi->dparms.node);
389         if (!rdi->qp_dev->qp_table)
390                 goto no_qp_table;
391
392         for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
393                 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
394
395         spin_lock_init(&rdi->qp_dev->qpt_lock);
396
397         /* initialize qpn map */
398         if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
399                 goto fail_table;
400
401         spin_lock_init(&rdi->n_qps_lock);
402
403         return 0;
404
405 fail_table:
406         kfree(rdi->qp_dev->qp_table);
407         free_qpn_table(&rdi->qp_dev->qpn_table);
408
409 no_qp_table:
410         kfree(rdi->qp_dev);
411
412         return ret;
413 }
414
415 /**
416  * rvt_free_qp_cb - callback function to reset a qp
417  * @qp: the qp to reset
418  * @v: a 64-bit value
419  *
420  * This function resets the qp and removes it from the
421  * qp hash table.
422  */
423 static void rvt_free_qp_cb(struct rvt_qp *qp, u64 v)
424 {
425         unsigned int *qp_inuse = (unsigned int *)v;
426         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
427
428         /* Reset the qp and remove it from the qp hash list */
429         rvt_reset_qp(rdi, qp, qp->ibqp.qp_type);
430
431         /* Increment the qp_inuse count */
432         (*qp_inuse)++;
433 }
434
435 /**
436  * rvt_free_all_qps - check for QPs still in use
437  * @rdi: rvt device info structure
438  *
439  * There should not be any QPs still in use.
440  * Free memory for table.
441  * Return the number of QPs still in use.
442  */
443 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
444 {
445         unsigned int qp_inuse = 0;
446
447         qp_inuse += rvt_mcast_tree_empty(rdi);
448
449         rvt_qp_iter(rdi, (u64)&qp_inuse, rvt_free_qp_cb);
450
451         return qp_inuse;
452 }
453
454 /**
455  * rvt_qp_exit - clean up qps on device exit
456  * @rdi: rvt dev structure
457  *
458  * Check for qp leaks and free resources.
459  */
460 void rvt_qp_exit(struct rvt_dev_info *rdi)
461 {
462         u32 qps_inuse = rvt_free_all_qps(rdi);
463
464         if (qps_inuse)
465                 rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
466                            qps_inuse);
467         if (!rdi->qp_dev)
468                 return;
469
470         kfree(rdi->qp_dev->qp_table);
471         free_qpn_table(&rdi->qp_dev->qpn_table);
472         kfree(rdi->qp_dev);
473 }
474
475 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
476                               struct rvt_qpn_map *map, unsigned off)
477 {
478         return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
479 }
480
481 /**
482  * alloc_qpn - Allocate the next available qpn or zero/one for QP type
483  *             IB_QPT_SMI/IB_QPT_GSI
484  * @rdi: rvt device info structure
485  * @qpt: queue pair number table pointer
486  * @type: the QP type
487  * @port_num: IB port number, 1 based, comes from core
488  * @exclude_prefix: prefix of special queue pair number being allocated
489  *
490  * Return: The queue pair number
491  */
492 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
493                      enum ib_qp_type type, u8 port_num, u8 exclude_prefix)
494 {
495         u32 i, offset, max_scan, qpn;
496         struct rvt_qpn_map *map;
497         u32 ret;
498         u32 max_qpn = exclude_prefix == RVT_AIP_QP_PREFIX ?
499                 RVT_AIP_QPN_MAX : RVT_QPN_MAX;
500
501         if (rdi->driver_f.alloc_qpn)
502                 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
503
504         if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
505                 unsigned n;
506
507                 ret = type == IB_QPT_GSI;
508                 n = 1 << (ret + 2 * (port_num - 1));
509                 spin_lock(&qpt->lock);
510                 if (qpt->flags & n)
511                         ret = -EINVAL;
512                 else
513                         qpt->flags |= n;
514                 spin_unlock(&qpt->lock);
515                 goto bail;
516         }
517
518         qpn = qpt->last + qpt->incr;
519         if (qpn >= max_qpn)
520                 qpn = qpt->incr | ((qpt->last & 1) ^ 1);
521         /* offset carries bit 0 */
522         offset = qpn & RVT_BITS_PER_PAGE_MASK;
523         map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
524         max_scan = qpt->nmaps - !offset;
525         for (i = 0;;) {
526                 if (unlikely(!map->page)) {
527                         get_map_page(qpt, map);
528                         if (unlikely(!map->page))
529                                 break;
530                 }
531                 do {
532                         if (!test_and_set_bit(offset, map->page)) {
533                                 qpt->last = qpn;
534                                 ret = qpn;
535                                 goto bail;
536                         }
537                         offset += qpt->incr;
538                         /*
539                          * This qpn might be bogus if offset >= BITS_PER_PAGE.
540                          * That is OK.   It gets re-assigned below
541                          */
542                         qpn = mk_qpn(qpt, map, offset);
543                 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
544                 /*
545                  * In order to keep the number of pages allocated to a
546                  * minimum, we scan the all existing pages before increasing
547                  * the size of the bitmap table.
548                  */
549                 if (++i > max_scan) {
550                         if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
551                                 break;
552                         map = &qpt->map[qpt->nmaps++];
553                         /* start at incr with current bit 0 */
554                         offset = qpt->incr | (offset & 1);
555                 } else if (map < &qpt->map[qpt->nmaps]) {
556                         ++map;
557                         /* start at incr with current bit 0 */
558                         offset = qpt->incr | (offset & 1);
559                 } else {
560                         map = &qpt->map[0];
561                         /* wrap to first map page, invert bit 0 */
562                         offset = qpt->incr | ((offset & 1) ^ 1);
563                 }
564                 /* there can be no set bits in low-order QoS bits */
565                 WARN_ON(rdi->dparms.qos_shift > 1 &&
566                         offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1));
567                 qpn = mk_qpn(qpt, map, offset);
568         }
569
570         ret = -ENOMEM;
571
572 bail:
573         return ret;
574 }
575
576 /**
577  * rvt_clear_mr_refs - Drop help mr refs
578  * @qp: rvt qp data structure
579  * @clr_sends: If shoudl clear send side or not
580  */
581 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
582 {
583         unsigned n;
584         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
585
586         if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
587                 rvt_put_ss(&qp->s_rdma_read_sge);
588
589         rvt_put_ss(&qp->r_sge);
590
591         if (clr_sends) {
592                 while (qp->s_last != qp->s_head) {
593                         struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
594
595                         rvt_put_qp_swqe(qp, wqe);
596                         if (++qp->s_last >= qp->s_size)
597                                 qp->s_last = 0;
598                         smp_wmb(); /* see qp_set_savail */
599                 }
600                 if (qp->s_rdma_mr) {
601                         rvt_put_mr(qp->s_rdma_mr);
602                         qp->s_rdma_mr = NULL;
603                 }
604         }
605
606         for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
607                 struct rvt_ack_entry *e = &qp->s_ack_queue[n];
608
609                 if (e->rdma_sge.mr) {
610                         rvt_put_mr(e->rdma_sge.mr);
611                         e->rdma_sge.mr = NULL;
612                 }
613         }
614 }
615
616 /**
617  * rvt_swqe_has_lkey - return true if lkey is used by swqe
618  * @wqe: the send wqe
619  * @lkey: the lkey
620  *
621  * Test the swqe for using lkey
622  */
623 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
624 {
625         int i;
626
627         for (i = 0; i < wqe->wr.num_sge; i++) {
628                 struct rvt_sge *sge = &wqe->sg_list[i];
629
630                 if (rvt_mr_has_lkey(sge->mr, lkey))
631                         return true;
632         }
633         return false;
634 }
635
636 /**
637  * rvt_qp_sends_has_lkey - return true is qp sends use lkey
638  * @qp: the rvt_qp
639  * @lkey: the lkey
640  */
641 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
642 {
643         u32 s_last = qp->s_last;
644
645         while (s_last != qp->s_head) {
646                 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
647
648                 if (rvt_swqe_has_lkey(wqe, lkey))
649                         return true;
650
651                 if (++s_last >= qp->s_size)
652                         s_last = 0;
653         }
654         if (qp->s_rdma_mr)
655                 if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
656                         return true;
657         return false;
658 }
659
660 /**
661  * rvt_qp_acks_has_lkey - return true if acks have lkey
662  * @qp: the qp
663  * @lkey: the lkey
664  */
665 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
666 {
667         int i;
668         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
669
670         for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
671                 struct rvt_ack_entry *e = &qp->s_ack_queue[i];
672
673                 if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
674                         return true;
675         }
676         return false;
677 }
678
679 /**
680  * rvt_qp_mr_clean - clean up remote ops for lkey
681  * @qp: the qp
682  * @lkey: the lkey that is being de-registered
683  *
684  * This routine checks if the lkey is being used by
685  * the qp.
686  *
687  * If so, the qp is put into an error state to elminate
688  * any references from the qp.
689  */
690 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
691 {
692         bool lastwqe = false;
693
694         if (qp->ibqp.qp_type == IB_QPT_SMI ||
695             qp->ibqp.qp_type == IB_QPT_GSI)
696                 /* avoid special QPs */
697                 return;
698         spin_lock_irq(&qp->r_lock);
699         spin_lock(&qp->s_hlock);
700         spin_lock(&qp->s_lock);
701
702         if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
703                 goto check_lwqe;
704
705         if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
706             rvt_qp_sends_has_lkey(qp, lkey) ||
707             rvt_qp_acks_has_lkey(qp, lkey))
708                 lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
709 check_lwqe:
710         spin_unlock(&qp->s_lock);
711         spin_unlock(&qp->s_hlock);
712         spin_unlock_irq(&qp->r_lock);
713         if (lastwqe) {
714                 struct ib_event ev;
715
716                 ev.device = qp->ibqp.device;
717                 ev.element.qp = &qp->ibqp;
718                 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
719                 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
720         }
721 }
722
723 /**
724  * rvt_remove_qp - remove qp form table
725  * @rdi: rvt dev struct
726  * @qp: qp to remove
727  *
728  * Remove the QP from the table so it can't be found asynchronously by
729  * the receive routine.
730  */
731 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
732 {
733         struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
734         u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
735         unsigned long flags;
736         int removed = 1;
737
738         spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
739
740         if (rcu_dereference_protected(rvp->qp[0],
741                         lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
742                 RCU_INIT_POINTER(rvp->qp[0], NULL);
743         } else if (rcu_dereference_protected(rvp->qp[1],
744                         lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
745                 RCU_INIT_POINTER(rvp->qp[1], NULL);
746         } else {
747                 struct rvt_qp *q;
748                 struct rvt_qp __rcu **qpp;
749
750                 removed = 0;
751                 qpp = &rdi->qp_dev->qp_table[n];
752                 for (; (q = rcu_dereference_protected(*qpp,
753                         lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
754                         qpp = &q->next) {
755                         if (q == qp) {
756                                 RCU_INIT_POINTER(*qpp,
757                                      rcu_dereference_protected(qp->next,
758                                      lockdep_is_held(&rdi->qp_dev->qpt_lock)));
759                                 removed = 1;
760                                 trace_rvt_qpremove(qp, n);
761                                 break;
762                         }
763                 }
764         }
765
766         spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
767         if (removed) {
768                 synchronize_rcu();
769                 rvt_put_qp(qp);
770         }
771 }
772
773 /**
774  * rvt_alloc_rq - allocate memory for user or kernel buffer
775  * @rq: receive queue data structure
776  * @size: number of request queue entries
777  * @node: The NUMA node
778  * @udata: True if user data is available or not false
779  *
780  * Return: If memory allocation failed, return -ENONEM
781  * This function is used by both shared receive
782  * queues and non-shared receive queues to allocate
783  * memory.
784  */
785 int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node,
786                  struct ib_udata *udata)
787 {
788         if (udata) {
789                 rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size);
790                 if (!rq->wq)
791                         goto bail;
792                 /* need kwq with no buffers */
793                 rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node);
794                 if (!rq->kwq)
795                         goto bail;
796                 rq->kwq->curr_wq = rq->wq->wq;
797         } else {
798                 /* need kwq with buffers */
799                 rq->kwq =
800                         vzalloc_node(sizeof(struct rvt_krwq) + size, node);
801                 if (!rq->kwq)
802                         goto bail;
803                 rq->kwq->curr_wq = rq->kwq->wq;
804         }
805
806         spin_lock_init(&rq->kwq->p_lock);
807         spin_lock_init(&rq->kwq->c_lock);
808         return 0;
809 bail:
810         rvt_free_rq(rq);
811         return -ENOMEM;
812 }
813
814 /**
815  * rvt_init_qp - initialize the QP state to the reset state
816  * @rdi: rvt dev struct
817  * @qp: the QP to init or reinit
818  * @type: the QP type
819  *
820  * This function is called from both rvt_create_qp() and
821  * rvt_reset_qp().   The difference is that the reset
822  * patch the necessary locks to protect against concurent
823  * access.
824  */
825 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
826                         enum ib_qp_type type)
827 {
828         qp->remote_qpn = 0;
829         qp->qkey = 0;
830         qp->qp_access_flags = 0;
831         qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
832         qp->s_hdrwords = 0;
833         qp->s_wqe = NULL;
834         qp->s_draining = 0;
835         qp->s_next_psn = 0;
836         qp->s_last_psn = 0;
837         qp->s_sending_psn = 0;
838         qp->s_sending_hpsn = 0;
839         qp->s_psn = 0;
840         qp->r_psn = 0;
841         qp->r_msn = 0;
842         if (type == IB_QPT_RC) {
843                 qp->s_state = IB_OPCODE_RC_SEND_LAST;
844                 qp->r_state = IB_OPCODE_RC_SEND_LAST;
845         } else {
846                 qp->s_state = IB_OPCODE_UC_SEND_LAST;
847                 qp->r_state = IB_OPCODE_UC_SEND_LAST;
848         }
849         qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
850         qp->r_nak_state = 0;
851         qp->r_aflags = 0;
852         qp->r_flags = 0;
853         qp->s_head = 0;
854         qp->s_tail = 0;
855         qp->s_cur = 0;
856         qp->s_acked = 0;
857         qp->s_last = 0;
858         qp->s_ssn = 1;
859         qp->s_lsn = 0;
860         qp->s_mig_state = IB_MIG_MIGRATED;
861         qp->r_head_ack_queue = 0;
862         qp->s_tail_ack_queue = 0;
863         qp->s_acked_ack_queue = 0;
864         qp->s_num_rd_atomic = 0;
865         qp->r_sge.num_sge = 0;
866         atomic_set(&qp->s_reserved_used, 0);
867 }
868
869 /**
870  * _rvt_reset_qp - initialize the QP state to the reset state
871  * @rdi: rvt dev struct
872  * @qp: the QP to reset
873  * @type: the QP type
874  *
875  * r_lock, s_hlock, and s_lock are required to be held by the caller
876  */
877 static void _rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
878                           enum ib_qp_type type)
879         __must_hold(&qp->s_lock)
880         __must_hold(&qp->s_hlock)
881         __must_hold(&qp->r_lock)
882 {
883         lockdep_assert_held(&qp->r_lock);
884         lockdep_assert_held(&qp->s_hlock);
885         lockdep_assert_held(&qp->s_lock);
886         if (qp->state != IB_QPS_RESET) {
887                 qp->state = IB_QPS_RESET;
888
889                 /* Let drivers flush their waitlist */
890                 rdi->driver_f.flush_qp_waiters(qp);
891                 rvt_stop_rc_timers(qp);
892                 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
893                 spin_unlock(&qp->s_lock);
894                 spin_unlock(&qp->s_hlock);
895                 spin_unlock_irq(&qp->r_lock);
896
897                 /* Stop the send queue and the retry timer */
898                 rdi->driver_f.stop_send_queue(qp);
899                 rvt_del_timers_sync(qp);
900                 /* Wait for things to stop */
901                 rdi->driver_f.quiesce_qp(qp);
902
903                 /* take qp out the hash and wait for it to be unused */
904                 rvt_remove_qp(rdi, qp);
905
906                 /* grab the lock b/c it was locked at call time */
907                 spin_lock_irq(&qp->r_lock);
908                 spin_lock(&qp->s_hlock);
909                 spin_lock(&qp->s_lock);
910
911                 rvt_clear_mr_refs(qp, 1);
912                 /*
913                  * Let the driver do any tear down or re-init it needs to for
914                  * a qp that has been reset
915                  */
916                 rdi->driver_f.notify_qp_reset(qp);
917         }
918         rvt_init_qp(rdi, qp, type);
919         lockdep_assert_held(&qp->r_lock);
920         lockdep_assert_held(&qp->s_hlock);
921         lockdep_assert_held(&qp->s_lock);
922 }
923
924 /**
925  * rvt_reset_qp - initialize the QP state to the reset state
926  * @rdi: the device info
927  * @qp: the QP to reset
928  * @type: the QP type
929  *
930  * This is the wrapper function to acquire the r_lock, s_hlock, and s_lock
931  * before calling _rvt_reset_qp().
932  */
933 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
934                          enum ib_qp_type type)
935 {
936         spin_lock_irq(&qp->r_lock);
937         spin_lock(&qp->s_hlock);
938         spin_lock(&qp->s_lock);
939         _rvt_reset_qp(rdi, qp, type);
940         spin_unlock(&qp->s_lock);
941         spin_unlock(&qp->s_hlock);
942         spin_unlock_irq(&qp->r_lock);
943 }
944
945 /**
946  * rvt_free_qpn - Free a qpn from the bit map
947  * @qpt: QP table
948  * @qpn: queue pair number to free
949  */
950 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
951 {
952         struct rvt_qpn_map *map;
953
954         if ((qpn & RVT_AIP_QP_PREFIX_MASK) == RVT_AIP_QP_BASE)
955                 qpn &= RVT_AIP_QP_SUFFIX;
956
957         map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
958         if (map->page)
959                 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
960 }
961
962 /**
963  * get_allowed_ops - Given a QP type return the appropriate allowed OP
964  * @type: valid, supported, QP type
965  */
966 static u8 get_allowed_ops(enum ib_qp_type type)
967 {
968         return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ?
969                 IB_OPCODE_UC : IB_OPCODE_UD;
970 }
971
972 /**
973  * free_ud_wq_attr - Clean up AH attribute cache for UD QPs
974  * @qp: Valid QP with allowed_ops set
975  *
976  * The rvt_swqe data structure being used is a union, so this is
977  * only valid for UD QPs.
978  */
979 static void free_ud_wq_attr(struct rvt_qp *qp)
980 {
981         struct rvt_swqe *wqe;
982         int i;
983
984         for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
985                 wqe = rvt_get_swqe_ptr(qp, i);
986                 kfree(wqe->ud_wr.attr);
987                 wqe->ud_wr.attr = NULL;
988         }
989 }
990
991 /**
992  * alloc_ud_wq_attr - AH attribute cache for UD QPs
993  * @qp: Valid QP with allowed_ops set
994  * @node: Numa node for allocation
995  *
996  * The rvt_swqe data structure being used is a union, so this is
997  * only valid for UD QPs.
998  */
999 static int alloc_ud_wq_attr(struct rvt_qp *qp, int node)
1000 {
1001         struct rvt_swqe *wqe;
1002         int i;
1003
1004         for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1005                 wqe = rvt_get_swqe_ptr(qp, i);
1006                 wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr),
1007                                                GFP_KERNEL, node);
1008                 if (!wqe->ud_wr.attr) {
1009                         free_ud_wq_attr(qp);
1010                         return -ENOMEM;
1011                 }
1012         }
1013
1014         return 0;
1015 }
1016
1017 /**
1018  * rvt_create_qp - create a queue pair for a device
1019  * @ibqp: the queue pair
1020  * @init_attr: the attributes of the queue pair
1021  * @udata: user data for libibverbs.so
1022  *
1023  * Queue pair creation is mostly an rvt issue. However, drivers have their own
1024  * unique idea of what queue pair numbers mean. For instance there is a reserved
1025  * range for PSM.
1026  *
1027  * Return: 0 on success, otherwise returns an errno.
1028  *
1029  * Called by the ib_create_qp() core verbs function.
1030  */
1031 int rvt_create_qp(struct ib_qp *ibqp, struct ib_qp_init_attr *init_attr,
1032                   struct ib_udata *udata)
1033 {
1034         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1035         int ret = -ENOMEM;
1036         struct rvt_swqe *swq = NULL;
1037         size_t sz;
1038         size_t sg_list_sz = 0;
1039         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1040         void *priv = NULL;
1041         size_t sqsize;
1042         u8 exclude_prefix = 0;
1043
1044         if (!rdi)
1045                 return -EINVAL;
1046
1047         if (init_attr->create_flags & ~IB_QP_CREATE_NETDEV_USE)
1048                 return -EOPNOTSUPP;
1049
1050         if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
1051             init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr)
1052                 return -EINVAL;
1053
1054         /* Check receive queue parameters if no SRQ is specified. */
1055         if (!init_attr->srq) {
1056                 if (init_attr->cap.max_recv_sge >
1057                     rdi->dparms.props.max_recv_sge ||
1058                     init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
1059                         return -EINVAL;
1060
1061                 if (init_attr->cap.max_send_sge +
1062                     init_attr->cap.max_send_wr +
1063                     init_attr->cap.max_recv_sge +
1064                     init_attr->cap.max_recv_wr == 0)
1065                         return -EINVAL;
1066         }
1067         sqsize =
1068                 init_attr->cap.max_send_wr + 1 +
1069                 rdi->dparms.reserved_operations;
1070         switch (init_attr->qp_type) {
1071         case IB_QPT_SMI:
1072         case IB_QPT_GSI:
1073                 if (init_attr->port_num == 0 ||
1074                     init_attr->port_num > ibqp->device->phys_port_cnt)
1075                         return -EINVAL;
1076                 fallthrough;
1077         case IB_QPT_UC:
1078         case IB_QPT_RC:
1079         case IB_QPT_UD:
1080                 sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge);
1081                 swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
1082                 if (!swq)
1083                         return -ENOMEM;
1084
1085                 if (init_attr->srq) {
1086                         struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
1087
1088                         if (srq->rq.max_sge > 1)
1089                                 sg_list_sz = sizeof(*qp->r_sg_list) *
1090                                         (srq->rq.max_sge - 1);
1091                 } else if (init_attr->cap.max_recv_sge > 1)
1092                         sg_list_sz = sizeof(*qp->r_sg_list) *
1093                                 (init_attr->cap.max_recv_sge - 1);
1094                 qp->r_sg_list =
1095                         kzalloc_node(sg_list_sz, GFP_KERNEL, rdi->dparms.node);
1096                 if (!qp->r_sg_list)
1097                         goto bail_qp;
1098                 qp->allowed_ops = get_allowed_ops(init_attr->qp_type);
1099
1100                 RCU_INIT_POINTER(qp->next, NULL);
1101                 if (init_attr->qp_type == IB_QPT_RC) {
1102                         qp->s_ack_queue =
1103                                 kcalloc_node(rvt_max_atomic(rdi),
1104                                              sizeof(*qp->s_ack_queue),
1105                                              GFP_KERNEL,
1106                                              rdi->dparms.node);
1107                         if (!qp->s_ack_queue)
1108                                 goto bail_qp;
1109                 }
1110                 /* initialize timers needed for rc qp */
1111                 timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
1112                 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
1113                              HRTIMER_MODE_REL);
1114                 qp->s_rnr_timer.function = rvt_rc_rnr_retry;
1115
1116                 /*
1117                  * Driver needs to set up it's private QP structure and do any
1118                  * initialization that is needed.
1119                  */
1120                 priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
1121                 if (IS_ERR(priv)) {
1122                         ret = PTR_ERR(priv);
1123                         goto bail_qp;
1124                 }
1125                 qp->priv = priv;
1126                 qp->timeout_jiffies =
1127                         usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1128                                 1000UL);
1129                 if (init_attr->srq) {
1130                         sz = 0;
1131                 } else {
1132                         qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1133                         qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1134                         sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1135                                 sizeof(struct rvt_rwqe);
1136                         ret = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz,
1137                                            rdi->dparms.node, udata);
1138                         if (ret)
1139                                 goto bail_driver_priv;
1140                 }
1141
1142                 /*
1143                  * ib_create_qp() will initialize qp->ibqp
1144                  * except for qp->ibqp.qp_num.
1145                  */
1146                 spin_lock_init(&qp->r_lock);
1147                 spin_lock_init(&qp->s_hlock);
1148                 spin_lock_init(&qp->s_lock);
1149                 atomic_set(&qp->refcount, 0);
1150                 atomic_set(&qp->local_ops_pending, 0);
1151                 init_waitqueue_head(&qp->wait);
1152                 INIT_LIST_HEAD(&qp->rspwait);
1153                 qp->state = IB_QPS_RESET;
1154                 qp->s_wq = swq;
1155                 qp->s_size = sqsize;
1156                 qp->s_avail = init_attr->cap.max_send_wr;
1157                 qp->s_max_sge = init_attr->cap.max_send_sge;
1158                 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1159                         qp->s_flags = RVT_S_SIGNAL_REQ_WR;
1160                 ret = alloc_ud_wq_attr(qp, rdi->dparms.node);
1161                 if (ret)
1162                         goto bail_rq_rvt;
1163
1164                 if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1165                         exclude_prefix = RVT_AIP_QP_PREFIX;
1166
1167                 ret = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
1168                                 init_attr->qp_type,
1169                                 init_attr->port_num,
1170                                 exclude_prefix);
1171                 if (ret < 0)
1172                         goto bail_rq_wq;
1173
1174                 qp->ibqp.qp_num = ret;
1175                 if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1176                         qp->ibqp.qp_num |= RVT_AIP_QP_BASE;
1177                 qp->port_num = init_attr->port_num;
1178                 rvt_init_qp(rdi, qp, init_attr->qp_type);
1179                 if (rdi->driver_f.qp_priv_init) {
1180                         ret = rdi->driver_f.qp_priv_init(rdi, qp, init_attr);
1181                         if (ret)
1182                                 goto bail_rq_wq;
1183                 }
1184                 break;
1185
1186         default:
1187                 /* Don't support raw QPs */
1188                 return -EOPNOTSUPP;
1189         }
1190
1191         init_attr->cap.max_inline_data = 0;
1192
1193         /*
1194          * Return the address of the RWQ as the offset to mmap.
1195          * See rvt_mmap() for details.
1196          */
1197         if (udata && udata->outlen >= sizeof(__u64)) {
1198                 if (!qp->r_rq.wq) {
1199                         __u64 offset = 0;
1200
1201                         ret = ib_copy_to_udata(udata, &offset,
1202                                                sizeof(offset));
1203                         if (ret)
1204                                 goto bail_qpn;
1205                 } else {
1206                         u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
1207
1208                         qp->ip = rvt_create_mmap_info(rdi, s, udata,
1209                                                       qp->r_rq.wq);
1210                         if (IS_ERR(qp->ip)) {
1211                                 ret = PTR_ERR(qp->ip);
1212                                 goto bail_qpn;
1213                         }
1214
1215                         ret = ib_copy_to_udata(udata, &qp->ip->offset,
1216                                                sizeof(qp->ip->offset));
1217                         if (ret)
1218                                 goto bail_ip;
1219                 }
1220                 qp->pid = current->pid;
1221         }
1222
1223         spin_lock(&rdi->n_qps_lock);
1224         if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
1225                 spin_unlock(&rdi->n_qps_lock);
1226                 ret = -ENOMEM;
1227                 goto bail_ip;
1228         }
1229
1230         rdi->n_qps_allocated++;
1231         /*
1232          * Maintain a busy_jiffies variable that will be added to the timeout
1233          * period in mod_retry_timer and add_retry_timer. This busy jiffies
1234          * is scaled by the number of rc qps created for the device to reduce
1235          * the number of timeouts occurring when there is a large number of
1236          * qps. busy_jiffies is incremented every rc qp scaling interval.
1237          * The scaling interval is selected based on extensive performance
1238          * evaluation of targeted workloads.
1239          */
1240         if (init_attr->qp_type == IB_QPT_RC) {
1241                 rdi->n_rc_qps++;
1242                 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1243         }
1244         spin_unlock(&rdi->n_qps_lock);
1245
1246         if (qp->ip) {
1247                 spin_lock_irq(&rdi->pending_lock);
1248                 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
1249                 spin_unlock_irq(&rdi->pending_lock);
1250         }
1251
1252         return 0;
1253
1254 bail_ip:
1255         if (qp->ip)
1256                 kref_put(&qp->ip->ref, rvt_release_mmap_info);
1257
1258 bail_qpn:
1259         rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1260
1261 bail_rq_wq:
1262         free_ud_wq_attr(qp);
1263
1264 bail_rq_rvt:
1265         rvt_free_rq(&qp->r_rq);
1266
1267 bail_driver_priv:
1268         rdi->driver_f.qp_priv_free(rdi, qp);
1269
1270 bail_qp:
1271         kfree(qp->s_ack_queue);
1272         kfree(qp->r_sg_list);
1273         vfree(swq);
1274         return ret;
1275 }
1276
1277 /**
1278  * rvt_error_qp - put a QP into the error state
1279  * @qp: the QP to put into the error state
1280  * @err: the receive completion error to signal if a RWQE is active
1281  *
1282  * Flushes both send and receive work queues.
1283  *
1284  * Return: true if last WQE event should be generated.
1285  * The QP r_lock and s_lock should be held and interrupts disabled.
1286  * If we are already in error state, just return.
1287  */
1288 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1289 {
1290         struct ib_wc wc;
1291         int ret = 0;
1292         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1293
1294         lockdep_assert_held(&qp->r_lock);
1295         lockdep_assert_held(&qp->s_lock);
1296         if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1297                 goto bail;
1298
1299         qp->state = IB_QPS_ERR;
1300
1301         if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1302                 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1303                 del_timer(&qp->s_timer);
1304         }
1305
1306         if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1307                 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1308
1309         rdi->driver_f.notify_error_qp(qp);
1310
1311         /* Schedule the sending tasklet to drain the send work queue. */
1312         if (READ_ONCE(qp->s_last) != qp->s_head)
1313                 rdi->driver_f.schedule_send(qp);
1314
1315         rvt_clear_mr_refs(qp, 0);
1316
1317         memset(&wc, 0, sizeof(wc));
1318         wc.qp = &qp->ibqp;
1319         wc.opcode = IB_WC_RECV;
1320
1321         if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1322                 wc.wr_id = qp->r_wr_id;
1323                 wc.status = err;
1324                 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1325         }
1326         wc.status = IB_WC_WR_FLUSH_ERR;
1327
1328         if (qp->r_rq.kwq) {
1329                 u32 head;
1330                 u32 tail;
1331                 struct rvt_rwq *wq = NULL;
1332                 struct rvt_krwq *kwq = NULL;
1333
1334                 spin_lock(&qp->r_rq.kwq->c_lock);
1335                 /* qp->ip used to validate if there is a  user buffer mmaped */
1336                 if (qp->ip) {
1337                         wq = qp->r_rq.wq;
1338                         head = RDMA_READ_UAPI_ATOMIC(wq->head);
1339                         tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
1340                 } else {
1341                         kwq = qp->r_rq.kwq;
1342                         head = kwq->head;
1343                         tail = kwq->tail;
1344                 }
1345                 /* sanity check pointers before trusting them */
1346                 if (head >= qp->r_rq.size)
1347                         head = 0;
1348                 if (tail >= qp->r_rq.size)
1349                         tail = 0;
1350                 while (tail != head) {
1351                         wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1352                         if (++tail >= qp->r_rq.size)
1353                                 tail = 0;
1354                         rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1355                 }
1356                 if (qp->ip)
1357                         RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
1358                 else
1359                         kwq->tail = tail;
1360                 spin_unlock(&qp->r_rq.kwq->c_lock);
1361         } else if (qp->ibqp.event_handler) {
1362                 ret = 1;
1363         }
1364
1365 bail:
1366         return ret;
1367 }
1368 EXPORT_SYMBOL(rvt_error_qp);
1369
1370 /*
1371  * Put the QP into the hash table.
1372  * The hash table holds a reference to the QP.
1373  */
1374 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1375 {
1376         struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1377         unsigned long flags;
1378
1379         rvt_get_qp(qp);
1380         spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1381
1382         if (qp->ibqp.qp_num <= 1) {
1383                 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1384         } else {
1385                 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1386
1387                 qp->next = rdi->qp_dev->qp_table[n];
1388                 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1389                 trace_rvt_qpinsert(qp, n);
1390         }
1391
1392         spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1393 }
1394
1395 /**
1396  * rvt_modify_qp - modify the attributes of a queue pair
1397  * @ibqp: the queue pair who's attributes we're modifying
1398  * @attr: the new attributes
1399  * @attr_mask: the mask of attributes to modify
1400  * @udata: user data for libibverbs.so
1401  *
1402  * Return: 0 on success, otherwise returns an errno.
1403  */
1404 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1405                   int attr_mask, struct ib_udata *udata)
1406 {
1407         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1408         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1409         enum ib_qp_state cur_state, new_state;
1410         struct ib_event ev;
1411         int lastwqe = 0;
1412         int mig = 0;
1413         int pmtu = 0; /* for gcc warning only */
1414         int opa_ah;
1415
1416         if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS)
1417                 return -EOPNOTSUPP;
1418
1419         spin_lock_irq(&qp->r_lock);
1420         spin_lock(&qp->s_hlock);
1421         spin_lock(&qp->s_lock);
1422
1423         cur_state = attr_mask & IB_QP_CUR_STATE ?
1424                 attr->cur_qp_state : qp->state;
1425         new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1426         opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1427
1428         if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1429                                 attr_mask))
1430                 goto inval;
1431
1432         if (rdi->driver_f.check_modify_qp &&
1433             rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1434                 goto inval;
1435
1436         if (attr_mask & IB_QP_AV) {
1437                 if (opa_ah) {
1438                         if (rdma_ah_get_dlid(&attr->ah_attr) >=
1439                                 opa_get_mcast_base(OPA_MCAST_NR))
1440                                 goto inval;
1441                 } else {
1442                         if (rdma_ah_get_dlid(&attr->ah_attr) >=
1443                                 be16_to_cpu(IB_MULTICAST_LID_BASE))
1444                                 goto inval;
1445                 }
1446
1447                 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1448                         goto inval;
1449         }
1450
1451         if (attr_mask & IB_QP_ALT_PATH) {
1452                 if (opa_ah) {
1453                         if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1454                                 opa_get_mcast_base(OPA_MCAST_NR))
1455                                 goto inval;
1456                 } else {
1457                         if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1458                                 be16_to_cpu(IB_MULTICAST_LID_BASE))
1459                                 goto inval;
1460                 }
1461
1462                 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1463                         goto inval;
1464                 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1465                         goto inval;
1466         }
1467
1468         if (attr_mask & IB_QP_PKEY_INDEX)
1469                 if (attr->pkey_index >= rvt_get_npkeys(rdi))
1470                         goto inval;
1471
1472         if (attr_mask & IB_QP_MIN_RNR_TIMER)
1473                 if (attr->min_rnr_timer > 31)
1474                         goto inval;
1475
1476         if (attr_mask & IB_QP_PORT)
1477                 if (qp->ibqp.qp_type == IB_QPT_SMI ||
1478                     qp->ibqp.qp_type == IB_QPT_GSI ||
1479                     attr->port_num == 0 ||
1480                     attr->port_num > ibqp->device->phys_port_cnt)
1481                         goto inval;
1482
1483         if (attr_mask & IB_QP_DEST_QPN)
1484                 if (attr->dest_qp_num > RVT_QPN_MASK)
1485                         goto inval;
1486
1487         if (attr_mask & IB_QP_RETRY_CNT)
1488                 if (attr->retry_cnt > 7)
1489                         goto inval;
1490
1491         if (attr_mask & IB_QP_RNR_RETRY)
1492                 if (attr->rnr_retry > 7)
1493                         goto inval;
1494
1495         /*
1496          * Don't allow invalid path_mtu values.  OK to set greater
1497          * than the active mtu (or even the max_cap, if we have tuned
1498          * that to a small mtu.  We'll set qp->path_mtu
1499          * to the lesser of requested attribute mtu and active,
1500          * for packetizing messages.
1501          * Note that the QP port has to be set in INIT and MTU in RTR.
1502          */
1503         if (attr_mask & IB_QP_PATH_MTU) {
1504                 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1505                 if (pmtu < 0)
1506                         goto inval;
1507         }
1508
1509         if (attr_mask & IB_QP_PATH_MIG_STATE) {
1510                 if (attr->path_mig_state == IB_MIG_REARM) {
1511                         if (qp->s_mig_state == IB_MIG_ARMED)
1512                                 goto inval;
1513                         if (new_state != IB_QPS_RTS)
1514                                 goto inval;
1515                 } else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1516                         if (qp->s_mig_state == IB_MIG_REARM)
1517                                 goto inval;
1518                         if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1519                                 goto inval;
1520                         if (qp->s_mig_state == IB_MIG_ARMED)
1521                                 mig = 1;
1522                 } else {
1523                         goto inval;
1524                 }
1525         }
1526
1527         if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1528                 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1529                         goto inval;
1530
1531         switch (new_state) {
1532         case IB_QPS_RESET:
1533                 if (qp->state != IB_QPS_RESET)
1534                         _rvt_reset_qp(rdi, qp, ibqp->qp_type);
1535                 break;
1536
1537         case IB_QPS_RTR:
1538                 /* Allow event to re-trigger if QP set to RTR more than once */
1539                 qp->r_flags &= ~RVT_R_COMM_EST;
1540                 qp->state = new_state;
1541                 break;
1542
1543         case IB_QPS_SQD:
1544                 qp->s_draining = qp->s_last != qp->s_cur;
1545                 qp->state = new_state;
1546                 break;
1547
1548         case IB_QPS_SQE:
1549                 if (qp->ibqp.qp_type == IB_QPT_RC)
1550                         goto inval;
1551                 qp->state = new_state;
1552                 break;
1553
1554         case IB_QPS_ERR:
1555                 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1556                 break;
1557
1558         default:
1559                 qp->state = new_state;
1560                 break;
1561         }
1562
1563         if (attr_mask & IB_QP_PKEY_INDEX)
1564                 qp->s_pkey_index = attr->pkey_index;
1565
1566         if (attr_mask & IB_QP_PORT)
1567                 qp->port_num = attr->port_num;
1568
1569         if (attr_mask & IB_QP_DEST_QPN)
1570                 qp->remote_qpn = attr->dest_qp_num;
1571
1572         if (attr_mask & IB_QP_SQ_PSN) {
1573                 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1574                 qp->s_psn = qp->s_next_psn;
1575                 qp->s_sending_psn = qp->s_next_psn;
1576                 qp->s_last_psn = qp->s_next_psn - 1;
1577                 qp->s_sending_hpsn = qp->s_last_psn;
1578         }
1579
1580         if (attr_mask & IB_QP_RQ_PSN)
1581                 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1582
1583         if (attr_mask & IB_QP_ACCESS_FLAGS)
1584                 qp->qp_access_flags = attr->qp_access_flags;
1585
1586         if (attr_mask & IB_QP_AV) {
1587                 rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1588                 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1589                 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1590         }
1591
1592         if (attr_mask & IB_QP_ALT_PATH) {
1593                 rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1594                 qp->s_alt_pkey_index = attr->alt_pkey_index;
1595         }
1596
1597         if (attr_mask & IB_QP_PATH_MIG_STATE) {
1598                 qp->s_mig_state = attr->path_mig_state;
1599                 if (mig) {
1600                         qp->remote_ah_attr = qp->alt_ah_attr;
1601                         qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1602                         qp->s_pkey_index = qp->s_alt_pkey_index;
1603                 }
1604         }
1605
1606         if (attr_mask & IB_QP_PATH_MTU) {
1607                 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1608                 qp->log_pmtu = ilog2(qp->pmtu);
1609         }
1610
1611         if (attr_mask & IB_QP_RETRY_CNT) {
1612                 qp->s_retry_cnt = attr->retry_cnt;
1613                 qp->s_retry = attr->retry_cnt;
1614         }
1615
1616         if (attr_mask & IB_QP_RNR_RETRY) {
1617                 qp->s_rnr_retry_cnt = attr->rnr_retry;
1618                 qp->s_rnr_retry = attr->rnr_retry;
1619         }
1620
1621         if (attr_mask & IB_QP_MIN_RNR_TIMER)
1622                 qp->r_min_rnr_timer = attr->min_rnr_timer;
1623
1624         if (attr_mask & IB_QP_TIMEOUT) {
1625                 qp->timeout = attr->timeout;
1626                 qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1627         }
1628
1629         if (attr_mask & IB_QP_QKEY)
1630                 qp->qkey = attr->qkey;
1631
1632         if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1633                 qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1634
1635         if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1636                 qp->s_max_rd_atomic = attr->max_rd_atomic;
1637
1638         if (rdi->driver_f.modify_qp)
1639                 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1640
1641         spin_unlock(&qp->s_lock);
1642         spin_unlock(&qp->s_hlock);
1643         spin_unlock_irq(&qp->r_lock);
1644
1645         if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1646                 rvt_insert_qp(rdi, qp);
1647
1648         if (lastwqe) {
1649                 ev.device = qp->ibqp.device;
1650                 ev.element.qp = &qp->ibqp;
1651                 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1652                 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1653         }
1654         if (mig) {
1655                 ev.device = qp->ibqp.device;
1656                 ev.element.qp = &qp->ibqp;
1657                 ev.event = IB_EVENT_PATH_MIG;
1658                 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1659         }
1660         return 0;
1661
1662 inval:
1663         spin_unlock(&qp->s_lock);
1664         spin_unlock(&qp->s_hlock);
1665         spin_unlock_irq(&qp->r_lock);
1666         return -EINVAL;
1667 }
1668
1669 /**
1670  * rvt_destroy_qp - destroy a queue pair
1671  * @ibqp: the queue pair to destroy
1672  * @udata: unused by the driver
1673  *
1674  * Note that this can be called while the QP is actively sending or
1675  * receiving!
1676  *
1677  * Return: 0 on success.
1678  */
1679 int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata)
1680 {
1681         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1682         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1683
1684         rvt_reset_qp(rdi, qp, ibqp->qp_type);
1685
1686         wait_event(qp->wait, !atomic_read(&qp->refcount));
1687         /* qpn is now available for use again */
1688         rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1689
1690         spin_lock(&rdi->n_qps_lock);
1691         rdi->n_qps_allocated--;
1692         if (qp->ibqp.qp_type == IB_QPT_RC) {
1693                 rdi->n_rc_qps--;
1694                 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1695         }
1696         spin_unlock(&rdi->n_qps_lock);
1697
1698         if (qp->ip)
1699                 kref_put(&qp->ip->ref, rvt_release_mmap_info);
1700         kvfree(qp->r_rq.kwq);
1701         rdi->driver_f.qp_priv_free(rdi, qp);
1702         kfree(qp->s_ack_queue);
1703         kfree(qp->r_sg_list);
1704         rdma_destroy_ah_attr(&qp->remote_ah_attr);
1705         rdma_destroy_ah_attr(&qp->alt_ah_attr);
1706         free_ud_wq_attr(qp);
1707         vfree(qp->s_wq);
1708         return 0;
1709 }
1710
1711 /**
1712  * rvt_query_qp - query an ipbq
1713  * @ibqp: IB qp to query
1714  * @attr: attr struct to fill in
1715  * @attr_mask: attr mask ignored
1716  * @init_attr: struct to fill in
1717  *
1718  * Return: always 0
1719  */
1720 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1721                  int attr_mask, struct ib_qp_init_attr *init_attr)
1722 {
1723         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1724         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1725
1726         attr->qp_state = qp->state;
1727         attr->cur_qp_state = attr->qp_state;
1728         attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1729         attr->path_mig_state = qp->s_mig_state;
1730         attr->qkey = qp->qkey;
1731         attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1732         attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1733         attr->dest_qp_num = qp->remote_qpn;
1734         attr->qp_access_flags = qp->qp_access_flags;
1735         attr->cap.max_send_wr = qp->s_size - 1 -
1736                 rdi->dparms.reserved_operations;
1737         attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1738         attr->cap.max_send_sge = qp->s_max_sge;
1739         attr->cap.max_recv_sge = qp->r_rq.max_sge;
1740         attr->cap.max_inline_data = 0;
1741         attr->ah_attr = qp->remote_ah_attr;
1742         attr->alt_ah_attr = qp->alt_ah_attr;
1743         attr->pkey_index = qp->s_pkey_index;
1744         attr->alt_pkey_index = qp->s_alt_pkey_index;
1745         attr->en_sqd_async_notify = 0;
1746         attr->sq_draining = qp->s_draining;
1747         attr->max_rd_atomic = qp->s_max_rd_atomic;
1748         attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1749         attr->min_rnr_timer = qp->r_min_rnr_timer;
1750         attr->port_num = qp->port_num;
1751         attr->timeout = qp->timeout;
1752         attr->retry_cnt = qp->s_retry_cnt;
1753         attr->rnr_retry = qp->s_rnr_retry_cnt;
1754         attr->alt_port_num =
1755                 rdma_ah_get_port_num(&qp->alt_ah_attr);
1756         attr->alt_timeout = qp->alt_timeout;
1757
1758         init_attr->event_handler = qp->ibqp.event_handler;
1759         init_attr->qp_context = qp->ibqp.qp_context;
1760         init_attr->send_cq = qp->ibqp.send_cq;
1761         init_attr->recv_cq = qp->ibqp.recv_cq;
1762         init_attr->srq = qp->ibqp.srq;
1763         init_attr->cap = attr->cap;
1764         if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1765                 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1766         else
1767                 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1768         init_attr->qp_type = qp->ibqp.qp_type;
1769         init_attr->port_num = qp->port_num;
1770         return 0;
1771 }
1772
1773 /**
1774  * rvt_post_recv - post a receive on a QP
1775  * @ibqp: the QP to post the receive on
1776  * @wr: the WR to post
1777  * @bad_wr: the first bad WR is put here
1778  *
1779  * This may be called from interrupt context.
1780  *
1781  * Return: 0 on success otherwise errno
1782  */
1783 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1784                   const struct ib_recv_wr **bad_wr)
1785 {
1786         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1787         struct rvt_krwq *wq = qp->r_rq.kwq;
1788         unsigned long flags;
1789         int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1790                                 !qp->ibqp.srq;
1791
1792         /* Check that state is OK to post receive. */
1793         if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1794                 *bad_wr = wr;
1795                 return -EINVAL;
1796         }
1797
1798         for (; wr; wr = wr->next) {
1799                 struct rvt_rwqe *wqe;
1800                 u32 next;
1801                 int i;
1802
1803                 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1804                         *bad_wr = wr;
1805                         return -EINVAL;
1806                 }
1807
1808                 spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags);
1809                 next = wq->head + 1;
1810                 if (next >= qp->r_rq.size)
1811                         next = 0;
1812                 if (next == READ_ONCE(wq->tail)) {
1813                         spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1814                         *bad_wr = wr;
1815                         return -ENOMEM;
1816                 }
1817                 if (unlikely(qp_err_flush)) {
1818                         struct ib_wc wc;
1819
1820                         memset(&wc, 0, sizeof(wc));
1821                         wc.qp = &qp->ibqp;
1822                         wc.opcode = IB_WC_RECV;
1823                         wc.wr_id = wr->wr_id;
1824                         wc.status = IB_WC_WR_FLUSH_ERR;
1825                         rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1826                 } else {
1827                         wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1828                         wqe->wr_id = wr->wr_id;
1829                         wqe->num_sge = wr->num_sge;
1830                         for (i = 0; i < wr->num_sge; i++) {
1831                                 wqe->sg_list[i].addr = wr->sg_list[i].addr;
1832                                 wqe->sg_list[i].length = wr->sg_list[i].length;
1833                                 wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
1834                         }
1835                         /*
1836                          * Make sure queue entry is written
1837                          * before the head index.
1838                          */
1839                         smp_store_release(&wq->head, next);
1840                 }
1841                 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1842         }
1843         return 0;
1844 }
1845
1846 /**
1847  * rvt_qp_valid_operation - validate post send wr request
1848  * @qp: the qp
1849  * @post_parms: the post send table for the driver
1850  * @wr: the work request
1851  *
1852  * The routine validates the operation based on the
1853  * validation table an returns the length of the operation
1854  * which can extend beyond the ib_send_bw.  Operation
1855  * dependent flags key atomic operation validation.
1856  *
1857  * There is an exception for UD qps that validates the pd and
1858  * overrides the length to include the additional UD specific
1859  * length.
1860  *
1861  * Returns a negative error or the length of the work request
1862  * for building the swqe.
1863  */
1864 static inline int rvt_qp_valid_operation(
1865         struct rvt_qp *qp,
1866         const struct rvt_operation_params *post_parms,
1867         const struct ib_send_wr *wr)
1868 {
1869         int len;
1870
1871         if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1872                 return -EINVAL;
1873         if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1874                 return -EINVAL;
1875         if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1876             ibpd_to_rvtpd(qp->ibqp.pd)->user)
1877                 return -EINVAL;
1878         if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1879             (wr->num_sge == 0 ||
1880              wr->sg_list[0].length < sizeof(u64) ||
1881              wr->sg_list[0].addr & (sizeof(u64) - 1)))
1882                 return -EINVAL;
1883         if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1884             !qp->s_max_rd_atomic)
1885                 return -EINVAL;
1886         len = post_parms[wr->opcode].length;
1887         /* UD specific */
1888         if (qp->ibqp.qp_type != IB_QPT_UC &&
1889             qp->ibqp.qp_type != IB_QPT_RC) {
1890                 if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1891                         return -EINVAL;
1892                 len = sizeof(struct ib_ud_wr);
1893         }
1894         return len;
1895 }
1896
1897 /**
1898  * rvt_qp_is_avail - determine queue capacity
1899  * @qp: the qp
1900  * @rdi: the rdmavt device
1901  * @reserved_op: is reserved operation
1902  *
1903  * This assumes the s_hlock is held but the s_last
1904  * qp variable is uncontrolled.
1905  *
1906  * For non reserved operations, the qp->s_avail
1907  * may be changed.
1908  *
1909  * The return value is zero or a -ENOMEM.
1910  */
1911 static inline int rvt_qp_is_avail(
1912         struct rvt_qp *qp,
1913         struct rvt_dev_info *rdi,
1914         bool reserved_op)
1915 {
1916         u32 slast;
1917         u32 avail;
1918         u32 reserved_used;
1919
1920         /* see rvt_qp_wqe_unreserve() */
1921         smp_mb__before_atomic();
1922         if (unlikely(reserved_op)) {
1923                 /* see rvt_qp_wqe_unreserve() */
1924                 reserved_used = atomic_read(&qp->s_reserved_used);
1925                 if (reserved_used >= rdi->dparms.reserved_operations)
1926                         return -ENOMEM;
1927                 return 0;
1928         }
1929         /* non-reserved operations */
1930         if (likely(qp->s_avail))
1931                 return 0;
1932         /* See rvt_qp_complete_swqe() */
1933         slast = smp_load_acquire(&qp->s_last);
1934         if (qp->s_head >= slast)
1935                 avail = qp->s_size - (qp->s_head - slast);
1936         else
1937                 avail = slast - qp->s_head;
1938
1939         reserved_used = atomic_read(&qp->s_reserved_used);
1940         avail =  avail - 1 -
1941                 (rdi->dparms.reserved_operations - reserved_used);
1942         /* insure we don't assign a negative s_avail */
1943         if ((s32)avail <= 0)
1944                 return -ENOMEM;
1945         qp->s_avail = avail;
1946         if (WARN_ON(qp->s_avail >
1947                     (qp->s_size - 1 - rdi->dparms.reserved_operations)))
1948                 rvt_pr_err(rdi,
1949                            "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
1950                            qp->ibqp.qp_num, qp->s_size, qp->s_avail,
1951                            qp->s_head, qp->s_tail, qp->s_cur,
1952                            qp->s_acked, qp->s_last);
1953         return 0;
1954 }
1955
1956 /**
1957  * rvt_post_one_wr - post one RC, UC, or UD send work request
1958  * @qp: the QP to post on
1959  * @wr: the work request to send
1960  * @call_send: kick the send engine into gear
1961  */
1962 static int rvt_post_one_wr(struct rvt_qp *qp,
1963                            const struct ib_send_wr *wr,
1964                            bool *call_send)
1965 {
1966         struct rvt_swqe *wqe;
1967         u32 next;
1968         int i;
1969         int j;
1970         int acc;
1971         struct rvt_lkey_table *rkt;
1972         struct rvt_pd *pd;
1973         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1974         u8 log_pmtu;
1975         int ret;
1976         size_t cplen;
1977         bool reserved_op;
1978         int local_ops_delayed = 0;
1979
1980         BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
1981
1982         /* IB spec says that num_sge == 0 is OK. */
1983         if (unlikely(wr->num_sge > qp->s_max_sge))
1984                 return -EINVAL;
1985
1986         ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
1987         if (ret < 0)
1988                 return ret;
1989         cplen = ret;
1990
1991         /*
1992          * Local operations include fast register and local invalidate.
1993          * Fast register needs to be processed immediately because the
1994          * registered lkey may be used by following work requests and the
1995          * lkey needs to be valid at the time those requests are posted.
1996          * Local invalidate can be processed immediately if fencing is
1997          * not required and no previous local invalidate ops are pending.
1998          * Signaled local operations that have been processed immediately
1999          * need to have requests with "completion only" flags set posted
2000          * to the send queue in order to generate completions.
2001          */
2002         if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
2003                 switch (wr->opcode) {
2004                 case IB_WR_REG_MR:
2005                         ret = rvt_fast_reg_mr(qp,
2006                                               reg_wr(wr)->mr,
2007                                               reg_wr(wr)->key,
2008                                               reg_wr(wr)->access);
2009                         if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2010                                 return ret;
2011                         break;
2012                 case IB_WR_LOCAL_INV:
2013                         if ((wr->send_flags & IB_SEND_FENCE) ||
2014                             atomic_read(&qp->local_ops_pending)) {
2015                                 local_ops_delayed = 1;
2016                         } else {
2017                                 ret = rvt_invalidate_rkey(
2018                                         qp, wr->ex.invalidate_rkey);
2019                                 if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2020                                         return ret;
2021                         }
2022                         break;
2023                 default:
2024                         return -EINVAL;
2025                 }
2026         }
2027
2028         reserved_op = rdi->post_parms[wr->opcode].flags &
2029                         RVT_OPERATION_USE_RESERVE;
2030         /* check for avail */
2031         ret = rvt_qp_is_avail(qp, rdi, reserved_op);
2032         if (ret)
2033                 return ret;
2034         next = qp->s_head + 1;
2035         if (next >= qp->s_size)
2036                 next = 0;
2037
2038         rkt = &rdi->lkey_table;
2039         pd = ibpd_to_rvtpd(qp->ibqp.pd);
2040         wqe = rvt_get_swqe_ptr(qp, qp->s_head);
2041
2042         /* cplen has length from above */
2043         memcpy(&wqe->wr, wr, cplen);
2044
2045         wqe->length = 0;
2046         j = 0;
2047         if (wr->num_sge) {
2048                 struct rvt_sge *last_sge = NULL;
2049
2050                 acc = wr->opcode >= IB_WR_RDMA_READ ?
2051                         IB_ACCESS_LOCAL_WRITE : 0;
2052                 for (i = 0; i < wr->num_sge; i++) {
2053                         u32 length = wr->sg_list[i].length;
2054
2055                         if (length == 0)
2056                                 continue;
2057                         ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
2058                                           &wr->sg_list[i], acc);
2059                         if (unlikely(ret < 0))
2060                                 goto bail_inval_free;
2061                         wqe->length += length;
2062                         if (ret)
2063                                 last_sge = &wqe->sg_list[j];
2064                         j += ret;
2065                 }
2066                 wqe->wr.num_sge = j;
2067         }
2068
2069         /*
2070          * Calculate and set SWQE PSN values prior to handing it off
2071          * to the driver's check routine. This give the driver the
2072          * opportunity to adjust PSN values based on internal checks.
2073          */
2074         log_pmtu = qp->log_pmtu;
2075         if (qp->allowed_ops == IB_OPCODE_UD) {
2076                 struct rvt_ah *ah = rvt_get_swqe_ah(wqe);
2077
2078                 log_pmtu = ah->log_pmtu;
2079                 rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr);
2080         }
2081
2082         if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
2083                 if (local_ops_delayed)
2084                         atomic_inc(&qp->local_ops_pending);
2085                 else
2086                         wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
2087                 wqe->ssn = 0;
2088                 wqe->psn = 0;
2089                 wqe->lpsn = 0;
2090         } else {
2091                 wqe->ssn = qp->s_ssn++;
2092                 wqe->psn = qp->s_next_psn;
2093                 wqe->lpsn = wqe->psn +
2094                                 (wqe->length ?
2095                                         ((wqe->length - 1) >> log_pmtu) :
2096                                         0);
2097         }
2098
2099         /* general part of wqe valid - allow for driver checks */
2100         if (rdi->driver_f.setup_wqe) {
2101                 ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
2102                 if (ret < 0)
2103                         goto bail_inval_free_ref;
2104         }
2105
2106         if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
2107                 qp->s_next_psn = wqe->lpsn + 1;
2108
2109         if (unlikely(reserved_op)) {
2110                 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
2111                 rvt_qp_wqe_reserve(qp, wqe);
2112         } else {
2113                 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
2114                 qp->s_avail--;
2115         }
2116         trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
2117         smp_wmb(); /* see request builders */
2118         qp->s_head = next;
2119
2120         return 0;
2121
2122 bail_inval_free_ref:
2123         if (qp->allowed_ops == IB_OPCODE_UD)
2124                 rdma_destroy_ah_attr(wqe->ud_wr.attr);
2125 bail_inval_free:
2126         /* release mr holds */
2127         while (j) {
2128                 struct rvt_sge *sge = &wqe->sg_list[--j];
2129
2130                 rvt_put_mr(sge->mr);
2131         }
2132         return ret;
2133 }
2134
2135 /**
2136  * rvt_post_send - post a send on a QP
2137  * @ibqp: the QP to post the send on
2138  * @wr: the list of work requests to post
2139  * @bad_wr: the first bad WR is put here
2140  *
2141  * This may be called from interrupt context.
2142  *
2143  * Return: 0 on success else errno
2144  */
2145 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
2146                   const struct ib_send_wr **bad_wr)
2147 {
2148         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
2149         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2150         unsigned long flags = 0;
2151         bool call_send;
2152         unsigned nreq = 0;
2153         int err = 0;
2154
2155         spin_lock_irqsave(&qp->s_hlock, flags);
2156
2157         /*
2158          * Ensure QP state is such that we can send. If not bail out early,
2159          * there is no need to do this every time we post a send.
2160          */
2161         if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
2162                 spin_unlock_irqrestore(&qp->s_hlock, flags);
2163                 return -EINVAL;
2164         }
2165
2166         /*
2167          * If the send queue is empty, and we only have a single WR then just go
2168          * ahead and kick the send engine into gear. Otherwise we will always
2169          * just schedule the send to happen later.
2170          */
2171         call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
2172
2173         for (; wr; wr = wr->next) {
2174                 err = rvt_post_one_wr(qp, wr, &call_send);
2175                 if (unlikely(err)) {
2176                         *bad_wr = wr;
2177                         goto bail;
2178                 }
2179                 nreq++;
2180         }
2181 bail:
2182         spin_unlock_irqrestore(&qp->s_hlock, flags);
2183         if (nreq) {
2184                 /*
2185                  * Only call do_send if there is exactly one packet, and the
2186                  * driver said it was ok.
2187                  */
2188                 if (nreq == 1 && call_send)
2189                         rdi->driver_f.do_send(qp);
2190                 else
2191                         rdi->driver_f.schedule_send_no_lock(qp);
2192         }
2193         return err;
2194 }
2195
2196 /**
2197  * rvt_post_srq_recv - post a receive on a shared receive queue
2198  * @ibsrq: the SRQ to post the receive on
2199  * @wr: the list of work requests to post
2200  * @bad_wr: A pointer to the first WR to cause a problem is put here
2201  *
2202  * This may be called from interrupt context.
2203  *
2204  * Return: 0 on success else errno
2205  */
2206 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
2207                       const struct ib_recv_wr **bad_wr)
2208 {
2209         struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
2210         struct rvt_krwq *wq;
2211         unsigned long flags;
2212
2213         for (; wr; wr = wr->next) {
2214                 struct rvt_rwqe *wqe;
2215                 u32 next;
2216                 int i;
2217
2218                 if ((unsigned)wr->num_sge > srq->rq.max_sge) {
2219                         *bad_wr = wr;
2220                         return -EINVAL;
2221                 }
2222
2223                 spin_lock_irqsave(&srq->rq.kwq->p_lock, flags);
2224                 wq = srq->rq.kwq;
2225                 next = wq->head + 1;
2226                 if (next >= srq->rq.size)
2227                         next = 0;
2228                 if (next == READ_ONCE(wq->tail)) {
2229                         spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2230                         *bad_wr = wr;
2231                         return -ENOMEM;
2232                 }
2233
2234                 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
2235                 wqe->wr_id = wr->wr_id;
2236                 wqe->num_sge = wr->num_sge;
2237                 for (i = 0; i < wr->num_sge; i++) {
2238                         wqe->sg_list[i].addr = wr->sg_list[i].addr;
2239                         wqe->sg_list[i].length = wr->sg_list[i].length;
2240                         wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
2241                 }
2242                 /* Make sure queue entry is written before the head index. */
2243                 smp_store_release(&wq->head, next);
2244                 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2245         }
2246         return 0;
2247 }
2248
2249 /*
2250  * rvt used the internal kernel struct as part of its ABI, for now make sure
2251  * the kernel struct does not change layout. FIXME: rvt should never cast the
2252  * user struct to a kernel struct.
2253  */
2254 static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge)
2255 {
2256         BUILD_BUG_ON(offsetof(struct ib_sge, addr) !=
2257                      offsetof(struct rvt_wqe_sge, addr));
2258         BUILD_BUG_ON(offsetof(struct ib_sge, length) !=
2259                      offsetof(struct rvt_wqe_sge, length));
2260         BUILD_BUG_ON(offsetof(struct ib_sge, lkey) !=
2261                      offsetof(struct rvt_wqe_sge, lkey));
2262         return (struct ib_sge *)sge;
2263 }
2264
2265 /*
2266  * Validate a RWQE and fill in the SGE state.
2267  * Return 1 if OK.
2268  */
2269 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2270 {
2271         int i, j, ret;
2272         struct ib_wc wc;
2273         struct rvt_lkey_table *rkt;
2274         struct rvt_pd *pd;
2275         struct rvt_sge_state *ss;
2276         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2277
2278         rkt = &rdi->lkey_table;
2279         pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2280         ss = &qp->r_sge;
2281         ss->sg_list = qp->r_sg_list;
2282         qp->r_len = 0;
2283         for (i = j = 0; i < wqe->num_sge; i++) {
2284                 if (wqe->sg_list[i].length == 0)
2285                         continue;
2286                 /* Check LKEY */
2287                 ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2288                                   NULL, rvt_cast_sge(&wqe->sg_list[i]),
2289                                   IB_ACCESS_LOCAL_WRITE);
2290                 if (unlikely(ret <= 0))
2291                         goto bad_lkey;
2292                 qp->r_len += wqe->sg_list[i].length;
2293                 j++;
2294         }
2295         ss->num_sge = j;
2296         ss->total_len = qp->r_len;
2297         return 1;
2298
2299 bad_lkey:
2300         while (j) {
2301                 struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2302
2303                 rvt_put_mr(sge->mr);
2304         }
2305         ss->num_sge = 0;
2306         memset(&wc, 0, sizeof(wc));
2307         wc.wr_id = wqe->wr_id;
2308         wc.status = IB_WC_LOC_PROT_ERR;
2309         wc.opcode = IB_WC_RECV;
2310         wc.qp = &qp->ibqp;
2311         /* Signal solicited completion event. */
2312         rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2313         return 0;
2314 }
2315
2316 /**
2317  * get_rvt_head - get head indices of the circular buffer
2318  * @rq: data structure for request queue entry
2319  * @ip: the QP
2320  *
2321  * Return - head index value
2322  */
2323 static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip)
2324 {
2325         u32 head;
2326
2327         if (ip)
2328                 head = RDMA_READ_UAPI_ATOMIC(rq->wq->head);
2329         else
2330                 head = rq->kwq->head;
2331
2332         return head;
2333 }
2334
2335 /**
2336  * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2337  * @qp: the QP
2338  * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2339  *
2340  * Return -1 if there is a local error, 0 if no RWQE is available,
2341  * otherwise return 1.
2342  *
2343  * Can be called from interrupt level.
2344  */
2345 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2346 {
2347         unsigned long flags;
2348         struct rvt_rq *rq;
2349         struct rvt_krwq *kwq = NULL;
2350         struct rvt_rwq *wq;
2351         struct rvt_srq *srq;
2352         struct rvt_rwqe *wqe;
2353         void (*handler)(struct ib_event *, void *);
2354         u32 tail;
2355         u32 head;
2356         int ret;
2357         void *ip = NULL;
2358
2359         if (qp->ibqp.srq) {
2360                 srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2361                 handler = srq->ibsrq.event_handler;
2362                 rq = &srq->rq;
2363                 ip = srq->ip;
2364         } else {
2365                 srq = NULL;
2366                 handler = NULL;
2367                 rq = &qp->r_rq;
2368                 ip = qp->ip;
2369         }
2370
2371         spin_lock_irqsave(&rq->kwq->c_lock, flags);
2372         if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2373                 ret = 0;
2374                 goto unlock;
2375         }
2376         kwq = rq->kwq;
2377         if (ip) {
2378                 wq = rq->wq;
2379                 tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
2380         } else {
2381                 tail = kwq->tail;
2382         }
2383
2384         /* Validate tail before using it since it is user writable. */
2385         if (tail >= rq->size)
2386                 tail = 0;
2387
2388         if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) {
2389                 head = get_rvt_head(rq, ip);
2390                 kwq->count = rvt_get_rq_count(rq, head, tail);
2391         }
2392         if (unlikely(kwq->count == 0)) {
2393                 ret = 0;
2394                 goto unlock;
2395         }
2396         /* Make sure entry is read after the count is read. */
2397         smp_rmb();
2398         wqe = rvt_get_rwqe_ptr(rq, tail);
2399         /*
2400          * Even though we update the tail index in memory, the verbs
2401          * consumer is not supposed to post more entries until a
2402          * completion is generated.
2403          */
2404         if (++tail >= rq->size)
2405                 tail = 0;
2406         if (ip)
2407                 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
2408         else
2409                 kwq->tail = tail;
2410         if (!wr_id_only && !init_sge(qp, wqe)) {
2411                 ret = -1;
2412                 goto unlock;
2413         }
2414         qp->r_wr_id = wqe->wr_id;
2415
2416         kwq->count--;
2417         ret = 1;
2418         set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2419         if (handler) {
2420                 /*
2421                  * Validate head pointer value and compute
2422                  * the number of remaining WQEs.
2423                  */
2424                 if (kwq->count < srq->limit) {
2425                         kwq->count =
2426                                 rvt_get_rq_count(rq,
2427                                                  get_rvt_head(rq, ip), tail);
2428                         if (kwq->count < srq->limit) {
2429                                 struct ib_event ev;
2430
2431                                 srq->limit = 0;
2432                                 spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2433                                 ev.device = qp->ibqp.device;
2434                                 ev.element.srq = qp->ibqp.srq;
2435                                 ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2436                                 handler(&ev, srq->ibsrq.srq_context);
2437                                 goto bail;
2438                         }
2439                 }
2440         }
2441 unlock:
2442         spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2443 bail:
2444         return ret;
2445 }
2446 EXPORT_SYMBOL(rvt_get_rwqe);
2447
2448 /**
2449  * rvt_comm_est - handle trap with QP established
2450  * @qp: the QP
2451  */
2452 void rvt_comm_est(struct rvt_qp *qp)
2453 {
2454         qp->r_flags |= RVT_R_COMM_EST;
2455         if (qp->ibqp.event_handler) {
2456                 struct ib_event ev;
2457
2458                 ev.device = qp->ibqp.device;
2459                 ev.element.qp = &qp->ibqp;
2460                 ev.event = IB_EVENT_COMM_EST;
2461                 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2462         }
2463 }
2464 EXPORT_SYMBOL(rvt_comm_est);
2465
2466 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2467 {
2468         unsigned long flags;
2469         int lastwqe;
2470
2471         spin_lock_irqsave(&qp->s_lock, flags);
2472         lastwqe = rvt_error_qp(qp, err);
2473         spin_unlock_irqrestore(&qp->s_lock, flags);
2474
2475         if (lastwqe) {
2476                 struct ib_event ev;
2477
2478                 ev.device = qp->ibqp.device;
2479                 ev.element.qp = &qp->ibqp;
2480                 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2481                 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2482         }
2483 }
2484 EXPORT_SYMBOL(rvt_rc_error);
2485
2486 /*
2487  *  rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2488  *  @index - the index
2489  *  return usec from an index into ib_rvt_rnr_table
2490  */
2491 unsigned long rvt_rnr_tbl_to_usec(u32 index)
2492 {
2493         return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2494 }
2495 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2496
2497 static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2498 {
2499         return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2500                                   IB_AETH_CREDIT_MASK];
2501 }
2502
2503 /*
2504  *  rvt_add_retry_timer_ext - add/start a retry timer
2505  *  @qp - the QP
2506  *  @shift - timeout shift to wait for multiple packets
2507  *  add a retry timer on the QP
2508  */
2509 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift)
2510 {
2511         struct ib_qp *ibqp = &qp->ibqp;
2512         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2513
2514         lockdep_assert_held(&qp->s_lock);
2515         qp->s_flags |= RVT_S_TIMER;
2516        /* 4.096 usec. * (1 << qp->timeout) */
2517         qp->s_timer.expires = jiffies + rdi->busy_jiffies +
2518                               (qp->timeout_jiffies << shift);
2519         add_timer(&qp->s_timer);
2520 }
2521 EXPORT_SYMBOL(rvt_add_retry_timer_ext);
2522
2523 /**
2524  * rvt_add_rnr_timer - add/start an rnr timer on the QP
2525  * @qp: the QP
2526  * @aeth: aeth of RNR timeout, simulated aeth for loopback
2527  */
2528 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2529 {
2530         u32 to;
2531
2532         lockdep_assert_held(&qp->s_lock);
2533         qp->s_flags |= RVT_S_WAIT_RNR;
2534         to = rvt_aeth_to_usec(aeth);
2535         trace_rvt_rnrnak_add(qp, to);
2536         hrtimer_start(&qp->s_rnr_timer,
2537                       ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2538 }
2539 EXPORT_SYMBOL(rvt_add_rnr_timer);
2540
2541 /**
2542  * rvt_stop_rc_timers - stop all timers
2543  * @qp: the QP
2544  * stop any pending timers
2545  */
2546 void rvt_stop_rc_timers(struct rvt_qp *qp)
2547 {
2548         lockdep_assert_held(&qp->s_lock);
2549         /* Remove QP from all timers */
2550         if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2551                 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2552                 del_timer(&qp->s_timer);
2553                 hrtimer_try_to_cancel(&qp->s_rnr_timer);
2554         }
2555 }
2556 EXPORT_SYMBOL(rvt_stop_rc_timers);
2557
2558 /**
2559  * rvt_stop_rnr_timer - stop an rnr timer
2560  * @qp: the QP
2561  *
2562  * stop an rnr timer and return if the timer
2563  * had been pending.
2564  */
2565 static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2566 {
2567         lockdep_assert_held(&qp->s_lock);
2568         /* Remove QP from rnr timer */
2569         if (qp->s_flags & RVT_S_WAIT_RNR) {
2570                 qp->s_flags &= ~RVT_S_WAIT_RNR;
2571                 trace_rvt_rnrnak_stop(qp, 0);
2572         }
2573 }
2574
2575 /**
2576  * rvt_del_timers_sync - wait for any timeout routines to exit
2577  * @qp: the QP
2578  */
2579 void rvt_del_timers_sync(struct rvt_qp *qp)
2580 {
2581         del_timer_sync(&qp->s_timer);
2582         hrtimer_cancel(&qp->s_rnr_timer);
2583 }
2584 EXPORT_SYMBOL(rvt_del_timers_sync);
2585
2586 /*
2587  * This is called from s_timer for missing responses.
2588  */
2589 static void rvt_rc_timeout(struct timer_list *t)
2590 {
2591         struct rvt_qp *qp = from_timer(qp, t, s_timer);
2592         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2593         unsigned long flags;
2594
2595         spin_lock_irqsave(&qp->r_lock, flags);
2596         spin_lock(&qp->s_lock);
2597         if (qp->s_flags & RVT_S_TIMER) {
2598                 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2599
2600                 qp->s_flags &= ~RVT_S_TIMER;
2601                 rvp->n_rc_timeouts++;
2602                 del_timer(&qp->s_timer);
2603                 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2604                 if (rdi->driver_f.notify_restart_rc)
2605                         rdi->driver_f.notify_restart_rc(qp,
2606                                                         qp->s_last_psn + 1,
2607                                                         1);
2608                 rdi->driver_f.schedule_send(qp);
2609         }
2610         spin_unlock(&qp->s_lock);
2611         spin_unlock_irqrestore(&qp->r_lock, flags);
2612 }
2613
2614 /*
2615  * This is called from s_timer for RNR timeouts.
2616  */
2617 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2618 {
2619         struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2620         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2621         unsigned long flags;
2622
2623         spin_lock_irqsave(&qp->s_lock, flags);
2624         rvt_stop_rnr_timer(qp);
2625         trace_rvt_rnrnak_timeout(qp, 0);
2626         rdi->driver_f.schedule_send(qp);
2627         spin_unlock_irqrestore(&qp->s_lock, flags);
2628         return HRTIMER_NORESTART;
2629 }
2630 EXPORT_SYMBOL(rvt_rc_rnr_retry);
2631
2632 /**
2633  * rvt_qp_iter_init - initial for QP iteration
2634  * @rdi: rvt devinfo
2635  * @v: u64 value
2636  * @cb: user-defined callback
2637  *
2638  * This returns an iterator suitable for iterating QPs
2639  * in the system.
2640  *
2641  * The @cb is a user-defined callback and @v is a 64-bit
2642  * value passed to and relevant for processing in the
2643  * @cb.  An example use case would be to alter QP processing
2644  * based on criteria not part of the rvt_qp.
2645  *
2646  * Use cases that require memory allocation to succeed
2647  * must preallocate appropriately.
2648  *
2649  * Return: a pointer to an rvt_qp_iter or NULL
2650  */
2651 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2652                                      u64 v,
2653                                      void (*cb)(struct rvt_qp *qp, u64 v))
2654 {
2655         struct rvt_qp_iter *i;
2656
2657         i = kzalloc(sizeof(*i), GFP_KERNEL);
2658         if (!i)
2659                 return NULL;
2660
2661         i->rdi = rdi;
2662         /* number of special QPs (SMI/GSI) for device */
2663         i->specials = rdi->ibdev.phys_port_cnt * 2;
2664         i->v = v;
2665         i->cb = cb;
2666
2667         return i;
2668 }
2669 EXPORT_SYMBOL(rvt_qp_iter_init);
2670
2671 /**
2672  * rvt_qp_iter_next - return the next QP in iter
2673  * @iter: the iterator
2674  *
2675  * Fine grained QP iterator suitable for use
2676  * with debugfs seq_file mechanisms.
2677  *
2678  * Updates iter->qp with the current QP when the return
2679  * value is 0.
2680  *
2681  * Return: 0 - iter->qp is valid 1 - no more QPs
2682  */
2683 int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2684         __must_hold(RCU)
2685 {
2686         int n = iter->n;
2687         int ret = 1;
2688         struct rvt_qp *pqp = iter->qp;
2689         struct rvt_qp *qp;
2690         struct rvt_dev_info *rdi = iter->rdi;
2691
2692         /*
2693          * The approach is to consider the special qps
2694          * as additional table entries before the
2695          * real hash table.  Since the qp code sets
2696          * the qp->next hash link to NULL, this works just fine.
2697          *
2698          * iter->specials is 2 * # ports
2699          *
2700          * n = 0..iter->specials is the special qp indices
2701          *
2702          * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2703          * the potential hash bucket entries
2704          *
2705          */
2706         for (; n <  rdi->qp_dev->qp_table_size + iter->specials; n++) {
2707                 if (pqp) {
2708                         qp = rcu_dereference(pqp->next);
2709                 } else {
2710                         if (n < iter->specials) {
2711                                 struct rvt_ibport *rvp;
2712                                 int pidx;
2713
2714                                 pidx = n % rdi->ibdev.phys_port_cnt;
2715                                 rvp = rdi->ports[pidx];
2716                                 qp = rcu_dereference(rvp->qp[n & 1]);
2717                         } else {
2718                                 qp = rcu_dereference(
2719                                         rdi->qp_dev->qp_table[
2720                                                 (n - iter->specials)]);
2721                         }
2722                 }
2723                 pqp = qp;
2724                 if (qp) {
2725                         iter->qp = qp;
2726                         iter->n = n;
2727                         return 0;
2728                 }
2729         }
2730         return ret;
2731 }
2732 EXPORT_SYMBOL(rvt_qp_iter_next);
2733
2734 /**
2735  * rvt_qp_iter - iterate all QPs
2736  * @rdi: rvt devinfo
2737  * @v: a 64-bit value
2738  * @cb: a callback
2739  *
2740  * This provides a way for iterating all QPs.
2741  *
2742  * The @cb is a user-defined callback and @v is a 64-bit
2743  * value passed to and relevant for processing in the
2744  * cb.  An example use case would be to alter QP processing
2745  * based on criteria not part of the rvt_qp.
2746  *
2747  * The code has an internal iterator to simplify
2748  * non seq_file use cases.
2749  */
2750 void rvt_qp_iter(struct rvt_dev_info *rdi,
2751                  u64 v,
2752                  void (*cb)(struct rvt_qp *qp, u64 v))
2753 {
2754         int ret;
2755         struct rvt_qp_iter i = {
2756                 .rdi = rdi,
2757                 .specials = rdi->ibdev.phys_port_cnt * 2,
2758                 .v = v,
2759                 .cb = cb
2760         };
2761
2762         rcu_read_lock();
2763         do {
2764                 ret = rvt_qp_iter_next(&i);
2765                 if (!ret) {
2766                         rvt_get_qp(i.qp);
2767                         rcu_read_unlock();
2768                         i.cb(i.qp, i.v);
2769                         rcu_read_lock();
2770                         rvt_put_qp(i.qp);
2771                 }
2772         } while (!ret);
2773         rcu_read_unlock();
2774 }
2775 EXPORT_SYMBOL(rvt_qp_iter);
2776
2777 /*
2778  * This should be called with s_lock held.
2779  */
2780 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
2781                        enum ib_wc_status status)
2782 {
2783         u32 old_last, last;
2784         struct rvt_dev_info *rdi;
2785
2786         if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2787                 return;
2788         rdi = ib_to_rvt(qp->ibqp.device);
2789
2790         old_last = qp->s_last;
2791         trace_rvt_qp_send_completion(qp, wqe, old_last);
2792         last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode],
2793                                     status);
2794         if (qp->s_acked == old_last)
2795                 qp->s_acked = last;
2796         if (qp->s_cur == old_last)
2797                 qp->s_cur = last;
2798         if (qp->s_tail == old_last)
2799                 qp->s_tail = last;
2800         if (qp->state == IB_QPS_SQD && last == qp->s_cur)
2801                 qp->s_draining = 0;
2802 }
2803 EXPORT_SYMBOL(rvt_send_complete);
2804
2805 /**
2806  * rvt_copy_sge - copy data to SGE memory
2807  * @qp: associated QP
2808  * @ss: the SGE state
2809  * @data: the data to copy
2810  * @length: the length of the data
2811  * @release: boolean to release MR
2812  * @copy_last: do a separate copy of the last 8 bytes
2813  */
2814 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
2815                   void *data, u32 length,
2816                   bool release, bool copy_last)
2817 {
2818         struct rvt_sge *sge = &ss->sge;
2819         int i;
2820         bool in_last = false;
2821         bool cacheless_copy = false;
2822         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2823         struct rvt_wss *wss = rdi->wss;
2824         unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
2825
2826         if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
2827                 cacheless_copy = length >= PAGE_SIZE;
2828         } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
2829                 if (length >= PAGE_SIZE) {
2830                         /*
2831                          * NOTE: this *assumes*:
2832                          * o The first vaddr is the dest.
2833                          * o If multiple pages, then vaddr is sequential.
2834                          */
2835                         wss_insert(wss, sge->vaddr);
2836                         if (length >= (2 * PAGE_SIZE))
2837                                 wss_insert(wss, (sge->vaddr + PAGE_SIZE));
2838
2839                         cacheless_copy = wss_exceeds_threshold(wss);
2840                 } else {
2841                         wss_advance_clean_counter(wss);
2842                 }
2843         }
2844
2845         if (copy_last) {
2846                 if (length > 8) {
2847                         length -= 8;
2848                 } else {
2849                         copy_last = false;
2850                         in_last = true;
2851                 }
2852         }
2853
2854 again:
2855         while (length) {
2856                 u32 len = rvt_get_sge_length(sge, length);
2857
2858                 WARN_ON_ONCE(len == 0);
2859                 if (unlikely(in_last)) {
2860                         /* enforce byte transfer ordering */
2861                         for (i = 0; i < len; i++)
2862                                 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
2863                 } else if (cacheless_copy) {
2864                         cacheless_memcpy(sge->vaddr, data, len);
2865                 } else {
2866                         memcpy(sge->vaddr, data, len);
2867                 }
2868                 rvt_update_sge(ss, len, release);
2869                 data += len;
2870                 length -= len;
2871         }
2872
2873         if (copy_last) {
2874                 copy_last = false;
2875                 in_last = true;
2876                 length = 8;
2877                 goto again;
2878         }
2879 }
2880 EXPORT_SYMBOL(rvt_copy_sge);
2881
2882 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp,
2883                                           struct rvt_qp *sqp)
2884 {
2885         rvp->n_pkt_drops++;
2886         /*
2887          * For RC, the requester would timeout and retry so
2888          * shortcut the timeouts and just signal too many retries.
2889          */
2890         return sqp->ibqp.qp_type == IB_QPT_RC ?
2891                 IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS;
2892 }
2893
2894 /**
2895  * rvt_ruc_loopback - handle UC and RC loopback requests
2896  * @sqp: the sending QP
2897  *
2898  * This is called from rvt_do_send() to forward a WQE addressed to the same HFI
2899  * Note that although we are single threaded due to the send engine, we still
2900  * have to protect against post_send().  We don't have to worry about
2901  * receive interrupts since this is a connected protocol and all packets
2902  * will pass through here.
2903  */
2904 void rvt_ruc_loopback(struct rvt_qp *sqp)
2905 {
2906         struct rvt_ibport *rvp =  NULL;
2907         struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
2908         struct rvt_qp *qp;
2909         struct rvt_swqe *wqe;
2910         struct rvt_sge *sge;
2911         unsigned long flags;
2912         struct ib_wc wc;
2913         u64 sdata;
2914         atomic64_t *maddr;
2915         enum ib_wc_status send_status;
2916         bool release;
2917         int ret;
2918         bool copy_last = false;
2919         int local_ops = 0;
2920
2921         rcu_read_lock();
2922         rvp = rdi->ports[sqp->port_num - 1];
2923
2924         /*
2925          * Note that we check the responder QP state after
2926          * checking the requester's state.
2927          */
2928
2929         qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
2930                             sqp->remote_qpn);
2931
2932         spin_lock_irqsave(&sqp->s_lock, flags);
2933
2934         /* Return if we are already busy processing a work request. */
2935         if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
2936             !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2937                 goto unlock;
2938
2939         sqp->s_flags |= RVT_S_BUSY;
2940
2941 again:
2942         if (sqp->s_last == READ_ONCE(sqp->s_head))
2943                 goto clr_busy;
2944         wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
2945
2946         /* Return if it is not OK to start a new work request. */
2947         if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
2948                 if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
2949                         goto clr_busy;
2950                 /* We are in the error state, flush the work request. */
2951                 send_status = IB_WC_WR_FLUSH_ERR;
2952                 goto flush_send;
2953         }
2954
2955         /*
2956          * We can rely on the entry not changing without the s_lock
2957          * being held until we update s_last.
2958          * We increment s_cur to indicate s_last is in progress.
2959          */
2960         if (sqp->s_last == sqp->s_cur) {
2961                 if (++sqp->s_cur >= sqp->s_size)
2962                         sqp->s_cur = 0;
2963         }
2964         spin_unlock_irqrestore(&sqp->s_lock, flags);
2965
2966         if (!qp) {
2967                 send_status = loopback_qp_drop(rvp, sqp);
2968                 goto serr_no_r_lock;
2969         }
2970         spin_lock_irqsave(&qp->r_lock, flags);
2971         if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
2972             qp->ibqp.qp_type != sqp->ibqp.qp_type) {
2973                 send_status = loopback_qp_drop(rvp, sqp);
2974                 goto serr;
2975         }
2976
2977         memset(&wc, 0, sizeof(wc));
2978         send_status = IB_WC_SUCCESS;
2979
2980         release = true;
2981         sqp->s_sge.sge = wqe->sg_list[0];
2982         sqp->s_sge.sg_list = wqe->sg_list + 1;
2983         sqp->s_sge.num_sge = wqe->wr.num_sge;
2984         sqp->s_len = wqe->length;
2985         switch (wqe->wr.opcode) {
2986         case IB_WR_REG_MR:
2987                 goto send_comp;
2988
2989         case IB_WR_LOCAL_INV:
2990                 if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
2991                         if (rvt_invalidate_rkey(sqp,
2992                                                 wqe->wr.ex.invalidate_rkey))
2993                                 send_status = IB_WC_LOC_PROT_ERR;
2994                         local_ops = 1;
2995                 }
2996                 goto send_comp;
2997
2998         case IB_WR_SEND_WITH_INV:
2999         case IB_WR_SEND_WITH_IMM:
3000         case IB_WR_SEND:
3001                 ret = rvt_get_rwqe(qp, false);
3002                 if (ret < 0)
3003                         goto op_err;
3004                 if (!ret)
3005                         goto rnr_nak;
3006                 if (wqe->length > qp->r_len)
3007                         goto inv_err;
3008                 switch (wqe->wr.opcode) {
3009                 case IB_WR_SEND_WITH_INV:
3010                         if (!rvt_invalidate_rkey(qp,
3011                                                  wqe->wr.ex.invalidate_rkey)) {
3012                                 wc.wc_flags = IB_WC_WITH_INVALIDATE;
3013                                 wc.ex.invalidate_rkey =
3014                                         wqe->wr.ex.invalidate_rkey;
3015                         }
3016                         break;
3017                 case IB_WR_SEND_WITH_IMM:
3018                         wc.wc_flags = IB_WC_WITH_IMM;
3019                         wc.ex.imm_data = wqe->wr.ex.imm_data;
3020                         break;
3021                 default:
3022                         break;
3023                 }
3024                 break;
3025
3026         case IB_WR_RDMA_WRITE_WITH_IMM:
3027                 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3028                         goto inv_err;
3029                 wc.wc_flags = IB_WC_WITH_IMM;
3030                 wc.ex.imm_data = wqe->wr.ex.imm_data;
3031                 ret = rvt_get_rwqe(qp, true);
3032                 if (ret < 0)
3033                         goto op_err;
3034                 if (!ret)
3035                         goto rnr_nak;
3036                 /* skip copy_last set and qp_access_flags recheck */
3037                 goto do_write;
3038         case IB_WR_RDMA_WRITE:
3039                 copy_last = rvt_is_user_qp(qp);
3040                 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3041                         goto inv_err;
3042 do_write:
3043                 if (wqe->length == 0)
3044                         break;
3045                 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
3046                                           wqe->rdma_wr.remote_addr,
3047                                           wqe->rdma_wr.rkey,
3048                                           IB_ACCESS_REMOTE_WRITE)))
3049                         goto acc_err;
3050                 qp->r_sge.sg_list = NULL;
3051                 qp->r_sge.num_sge = 1;
3052                 qp->r_sge.total_len = wqe->length;
3053                 break;
3054
3055         case IB_WR_RDMA_READ:
3056                 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
3057                         goto inv_err;
3058                 if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
3059                                           wqe->rdma_wr.remote_addr,
3060                                           wqe->rdma_wr.rkey,
3061                                           IB_ACCESS_REMOTE_READ)))
3062                         goto acc_err;
3063                 release = false;
3064                 sqp->s_sge.sg_list = NULL;
3065                 sqp->s_sge.num_sge = 1;
3066                 qp->r_sge.sge = wqe->sg_list[0];
3067                 qp->r_sge.sg_list = wqe->sg_list + 1;
3068                 qp->r_sge.num_sge = wqe->wr.num_sge;
3069                 qp->r_sge.total_len = wqe->length;
3070                 break;
3071
3072         case IB_WR_ATOMIC_CMP_AND_SWP:
3073         case IB_WR_ATOMIC_FETCH_AND_ADD:
3074                 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
3075                         goto inv_err;
3076                 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
3077                                           wqe->atomic_wr.remote_addr,
3078                                           wqe->atomic_wr.rkey,
3079                                           IB_ACCESS_REMOTE_ATOMIC)))
3080                         goto acc_err;
3081                 /* Perform atomic OP and save result. */
3082                 maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
3083                 sdata = wqe->atomic_wr.compare_add;
3084                 *(u64 *)sqp->s_sge.sge.vaddr =
3085                         (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
3086                         (u64)atomic64_add_return(sdata, maddr) - sdata :
3087                         (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
3088                                       sdata, wqe->atomic_wr.swap);
3089                 rvt_put_mr(qp->r_sge.sge.mr);
3090                 qp->r_sge.num_sge = 0;
3091                 goto send_comp;
3092
3093         default:
3094                 send_status = IB_WC_LOC_QP_OP_ERR;
3095                 goto serr;
3096         }
3097
3098         sge = &sqp->s_sge.sge;
3099         while (sqp->s_len) {
3100                 u32 len = rvt_get_sge_length(sge, sqp->s_len);
3101
3102                 WARN_ON_ONCE(len == 0);
3103                 rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
3104                              len, release, copy_last);
3105                 rvt_update_sge(&sqp->s_sge, len, !release);
3106                 sqp->s_len -= len;
3107         }
3108         if (release)
3109                 rvt_put_ss(&qp->r_sge);
3110
3111         if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
3112                 goto send_comp;
3113
3114         if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
3115                 wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
3116         else
3117                 wc.opcode = IB_WC_RECV;
3118         wc.wr_id = qp->r_wr_id;
3119         wc.status = IB_WC_SUCCESS;
3120         wc.byte_len = wqe->length;
3121         wc.qp = &qp->ibqp;
3122         wc.src_qp = qp->remote_qpn;
3123         wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
3124         wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
3125         wc.port_num = 1;
3126         /* Signal completion event if the solicited bit is set. */
3127         rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED);
3128
3129 send_comp:
3130         spin_unlock_irqrestore(&qp->r_lock, flags);
3131         spin_lock_irqsave(&sqp->s_lock, flags);
3132         rvp->n_loop_pkts++;
3133 flush_send:
3134         sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
3135         rvt_send_complete(sqp, wqe, send_status);
3136         if (local_ops) {
3137                 atomic_dec(&sqp->local_ops_pending);
3138                 local_ops = 0;
3139         }
3140         goto again;
3141
3142 rnr_nak:
3143         /* Handle RNR NAK */
3144         if (qp->ibqp.qp_type == IB_QPT_UC)
3145                 goto send_comp;
3146         rvp->n_rnr_naks++;
3147         /*
3148          * Note: we don't need the s_lock held since the BUSY flag
3149          * makes this single threaded.
3150          */
3151         if (sqp->s_rnr_retry == 0) {
3152                 send_status = IB_WC_RNR_RETRY_EXC_ERR;
3153                 goto serr;
3154         }
3155         if (sqp->s_rnr_retry_cnt < 7)
3156                 sqp->s_rnr_retry--;
3157         spin_unlock_irqrestore(&qp->r_lock, flags);
3158         spin_lock_irqsave(&sqp->s_lock, flags);
3159         if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
3160                 goto clr_busy;
3161         rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
3162                                 IB_AETH_CREDIT_SHIFT);
3163         goto clr_busy;
3164
3165 op_err:
3166         send_status = IB_WC_REM_OP_ERR;
3167         wc.status = IB_WC_LOC_QP_OP_ERR;
3168         goto err;
3169
3170 inv_err:
3171         send_status =
3172                 sqp->ibqp.qp_type == IB_QPT_RC ?
3173                         IB_WC_REM_INV_REQ_ERR :
3174                         IB_WC_SUCCESS;
3175         wc.status = IB_WC_LOC_QP_OP_ERR;
3176         goto err;
3177
3178 acc_err:
3179         send_status = IB_WC_REM_ACCESS_ERR;
3180         wc.status = IB_WC_LOC_PROT_ERR;
3181 err:
3182         /* responder goes to error state */
3183         rvt_rc_error(qp, wc.status);
3184
3185 serr:
3186         spin_unlock_irqrestore(&qp->r_lock, flags);
3187 serr_no_r_lock:
3188         spin_lock_irqsave(&sqp->s_lock, flags);
3189         rvt_send_complete(sqp, wqe, send_status);
3190         if (sqp->ibqp.qp_type == IB_QPT_RC) {
3191                 int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
3192
3193                 sqp->s_flags &= ~RVT_S_BUSY;
3194                 spin_unlock_irqrestore(&sqp->s_lock, flags);
3195                 if (lastwqe) {
3196                         struct ib_event ev;
3197
3198                         ev.device = sqp->ibqp.device;
3199                         ev.element.qp = &sqp->ibqp;
3200                         ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
3201                         sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
3202                 }
3203                 goto done;
3204         }
3205 clr_busy:
3206         sqp->s_flags &= ~RVT_S_BUSY;
3207 unlock:
3208         spin_unlock_irqrestore(&sqp->s_lock, flags);
3209 done:
3210         rcu_read_unlock();
3211 }
3212 EXPORT_SYMBOL(rvt_ruc_loopback);