d98755e78362fb8c7058ced4b20f37447d70c671
[linux-2.6-microblaze.git] / drivers / infiniband / hw / mlx5 / odp.c
1 /*
2  * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
36 #include <linux/dma-buf.h>
37 #include <linux/dma-resv.h>
38
39 #include "mlx5_ib.h"
40 #include "cmd.h"
41 #include "qp.h"
42
43 #include <linux/mlx5/eq.h>
44
45 /* Contains the details of a pagefault. */
46 struct mlx5_pagefault {
47         u32                     bytes_committed;
48         u32                     token;
49         u8                      event_subtype;
50         u8                      type;
51         union {
52                 /* Initiator or send message responder pagefault details. */
53                 struct {
54                         /* Received packet size, only valid for responders. */
55                         u32     packet_size;
56                         /*
57                          * Number of resource holding WQE, depends on type.
58                          */
59                         u32     wq_num;
60                         /*
61                          * WQE index. Refers to either the send queue or
62                          * receive queue, according to event_subtype.
63                          */
64                         u16     wqe_index;
65                 } wqe;
66                 /* RDMA responder pagefault details */
67                 struct {
68                         u32     r_key;
69                         /*
70                          * Received packet size, minimal size page fault
71                          * resolution required for forward progress.
72                          */
73                         u32     packet_size;
74                         u32     rdma_op_len;
75                         u64     rdma_va;
76                 } rdma;
77         };
78
79         struct mlx5_ib_pf_eq    *eq;
80         struct work_struct      work;
81 };
82
83 #define MAX_PREFETCH_LEN (4*1024*1024U)
84
85 /* Timeout in ms to wait for an active mmu notifier to complete when handling
86  * a pagefault. */
87 #define MMU_NOTIFIER_TIMEOUT 1000
88
89 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
90 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
91 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
92 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
93 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
94
95 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
96
97 static u64 mlx5_imr_ksm_entries;
98
99 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
100                         struct mlx5_ib_mr *imr, int flags)
101 {
102         struct mlx5_klm *end = pklm + nentries;
103
104         if (flags & MLX5_IB_UPD_XLT_ZAP) {
105                 for (; pklm != end; pklm++, idx++) {
106                         pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
107                         pklm->key = cpu_to_be32(mr_to_mdev(imr)->null_mkey);
108                         pklm->va = 0;
109                 }
110                 return;
111         }
112
113         /*
114          * The locking here is pretty subtle. Ideally the implicit_children
115          * xarray would be protected by the umem_mutex, however that is not
116          * possible. Instead this uses a weaker update-then-lock pattern:
117          *
118          *    xa_store()
119          *    mutex_lock(umem_mutex)
120          *     mlx5_ib_update_xlt()
121          *    mutex_unlock(umem_mutex)
122          *    destroy lkey
123          *
124          * ie any change the xarray must be followed by the locked update_xlt
125          * before destroying.
126          *
127          * The umem_mutex provides the acquire/release semantic needed to make
128          * the xa_store() visible to a racing thread.
129          */
130         lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
131
132         for (; pklm != end; pklm++, idx++) {
133                 struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
134
135                 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
136                 if (mtt) {
137                         pklm->key = cpu_to_be32(mtt->ibmr.lkey);
138                         pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
139                 } else {
140                         pklm->key = cpu_to_be32(mr_to_mdev(imr)->null_mkey);
141                         pklm->va = 0;
142                 }
143         }
144 }
145
146 static u64 umem_dma_to_mtt(dma_addr_t umem_dma)
147 {
148         u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK;
149
150         if (umem_dma & ODP_READ_ALLOWED_BIT)
151                 mtt_entry |= MLX5_IB_MTT_READ;
152         if (umem_dma & ODP_WRITE_ALLOWED_BIT)
153                 mtt_entry |= MLX5_IB_MTT_WRITE;
154
155         return mtt_entry;
156 }
157
158 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries,
159                          struct mlx5_ib_mr *mr, int flags)
160 {
161         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
162         dma_addr_t pa;
163         size_t i;
164
165         if (flags & MLX5_IB_UPD_XLT_ZAP)
166                 return;
167
168         for (i = 0; i < nentries; i++) {
169                 pa = odp->dma_list[idx + i];
170                 pas[i] = cpu_to_be64(umem_dma_to_mtt(pa));
171         }
172 }
173
174 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
175                            struct mlx5_ib_mr *mr, int flags)
176 {
177         if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
178                 populate_klm(xlt, idx, nentries, mr, flags);
179         } else {
180                 populate_mtt(xlt, idx, nentries, mr, flags);
181         }
182 }
183
184 static void dma_fence_odp_mr(struct mlx5_ib_mr *mr)
185 {
186         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
187
188         /* Ensure mlx5_ib_invalidate_range() will not touch the MR any more */
189         mutex_lock(&odp->umem_mutex);
190         if (odp->npages) {
191                 mlx5_mr_cache_invalidate(mr);
192                 ib_umem_odp_unmap_dma_pages(odp, ib_umem_start(odp),
193                                             ib_umem_end(odp));
194                 WARN_ON(odp->npages);
195         }
196         odp->private = NULL;
197         mutex_unlock(&odp->umem_mutex);
198
199         if (!mr->cache_ent) {
200                 mlx5_core_destroy_mkey(mr_to_mdev(mr)->mdev, &mr->mmkey);
201                 WARN_ON(mr->descs);
202         }
203 }
204
205 /*
206  * This must be called after the mr has been removed from implicit_children.
207  * NOTE: The MR does not necessarily have to be
208  * empty here, parallel page faults could have raced with the free process and
209  * added pages to it.
210  */
211 static void free_implicit_child_mr(struct mlx5_ib_mr *mr, bool need_imr_xlt)
212 {
213         struct mlx5_ib_mr *imr = mr->parent;
214         struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
215         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
216         unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
217
218         mlx5r_deref_wait_odp_mkey(&mr->mmkey);
219
220         if (need_imr_xlt) {
221                 mutex_lock(&odp_imr->umem_mutex);
222                 mlx5_ib_update_xlt(mr->parent, idx, 1, 0,
223                                    MLX5_IB_UPD_XLT_INDIRECT |
224                                    MLX5_IB_UPD_XLT_ATOMIC);
225                 mutex_unlock(&odp_imr->umem_mutex);
226         }
227
228         dma_fence_odp_mr(mr);
229
230         mlx5_mr_cache_free(mr_to_mdev(mr), mr);
231         ib_umem_odp_release(odp);
232 }
233
234 static void free_implicit_child_mr_work(struct work_struct *work)
235 {
236         struct mlx5_ib_mr *mr =
237                 container_of(work, struct mlx5_ib_mr, odp_destroy.work);
238         struct mlx5_ib_mr *imr = mr->parent;
239
240         free_implicit_child_mr(mr, true);
241         mlx5r_deref_odp_mkey(&imr->mmkey);
242 }
243
244 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
245 {
246         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
247         unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
248         struct mlx5_ib_mr *imr = mr->parent;
249
250         if (!refcount_inc_not_zero(&imr->mmkey.usecount))
251                 return;
252
253         xa_erase(&imr->implicit_children, idx);
254
255         /* Freeing a MR is a sleeping operation, so bounce to a work queue */
256         INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
257         queue_work(system_unbound_wq, &mr->odp_destroy.work);
258 }
259
260 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
261                                      const struct mmu_notifier_range *range,
262                                      unsigned long cur_seq)
263 {
264         struct ib_umem_odp *umem_odp =
265                 container_of(mni, struct ib_umem_odp, notifier);
266         struct mlx5_ib_mr *mr;
267         const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
268                                     sizeof(struct mlx5_mtt)) - 1;
269         u64 idx = 0, blk_start_idx = 0;
270         u64 invalidations = 0;
271         unsigned long start;
272         unsigned long end;
273         int in_block = 0;
274         u64 addr;
275
276         if (!mmu_notifier_range_blockable(range))
277                 return false;
278
279         mutex_lock(&umem_odp->umem_mutex);
280         mmu_interval_set_seq(mni, cur_seq);
281         /*
282          * If npages is zero then umem_odp->private may not be setup yet. This
283          * does not complete until after the first page is mapped for DMA.
284          */
285         if (!umem_odp->npages)
286                 goto out;
287         mr = umem_odp->private;
288
289         start = max_t(u64, ib_umem_start(umem_odp), range->start);
290         end = min_t(u64, ib_umem_end(umem_odp), range->end);
291
292         /*
293          * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
294          * while we are doing the invalidation, no page fault will attempt to
295          * overwrite the same MTTs.  Concurent invalidations might race us,
296          * but they will write 0s as well, so no difference in the end result.
297          */
298         for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
299                 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
300                 /*
301                  * Strive to write the MTTs in chunks, but avoid overwriting
302                  * non-existing MTTs. The huristic here can be improved to
303                  * estimate the cost of another UMR vs. the cost of bigger
304                  * UMR.
305                  */
306                 if (umem_odp->dma_list[idx] &
307                     (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
308                         if (!in_block) {
309                                 blk_start_idx = idx;
310                                 in_block = 1;
311                         }
312
313                         /* Count page invalidations */
314                         invalidations += idx - blk_start_idx + 1;
315                 } else {
316                         u64 umr_offset = idx & umr_block_mask;
317
318                         if (in_block && umr_offset == 0) {
319                                 mlx5_ib_update_xlt(mr, blk_start_idx,
320                                                    idx - blk_start_idx, 0,
321                                                    MLX5_IB_UPD_XLT_ZAP |
322                                                    MLX5_IB_UPD_XLT_ATOMIC);
323                                 in_block = 0;
324                         }
325                 }
326         }
327         if (in_block)
328                 mlx5_ib_update_xlt(mr, blk_start_idx,
329                                    idx - blk_start_idx + 1, 0,
330                                    MLX5_IB_UPD_XLT_ZAP |
331                                    MLX5_IB_UPD_XLT_ATOMIC);
332
333         mlx5_update_odp_stats(mr, invalidations, invalidations);
334
335         /*
336          * We are now sure that the device will not access the
337          * memory. We can safely unmap it, and mark it as dirty if
338          * needed.
339          */
340
341         ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
342
343         if (unlikely(!umem_odp->npages && mr->parent))
344                 destroy_unused_implicit_child_mr(mr);
345 out:
346         mutex_unlock(&umem_odp->umem_mutex);
347         return true;
348 }
349
350 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
351         .invalidate = mlx5_ib_invalidate_range,
352 };
353
354 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
355 {
356         struct ib_odp_caps *caps = &dev->odp_caps;
357
358         memset(caps, 0, sizeof(*caps));
359
360         if (!MLX5_CAP_GEN(dev->mdev, pg) ||
361             !mlx5_ib_can_load_pas_with_umr(dev, 0))
362                 return;
363
364         caps->general_caps = IB_ODP_SUPPORT;
365
366         if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
367                 dev->odp_max_size = U64_MAX;
368         else
369                 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
370
371         if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
372                 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
373
374         if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
375                 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
376
377         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
378                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
379
380         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
381                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
382
383         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
384                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
385
386         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
387                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
388
389         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
390                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
391
392         if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
393                 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
394
395         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
396                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
397
398         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
399                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
400
401         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
402                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
403
404         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
405                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
406
407         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
408                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
409
410         if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
411                 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
412
413         if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
414             MLX5_CAP_GEN(dev->mdev, null_mkey) &&
415             MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
416             !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
417                 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
418 }
419
420 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
421                                       struct mlx5_pagefault *pfault,
422                                       int error)
423 {
424         int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
425                      pfault->wqe.wq_num : pfault->token;
426         u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {};
427         int err;
428
429         MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
430         MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
431         MLX5_SET(page_fault_resume_in, in, token, pfault->token);
432         MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
433         MLX5_SET(page_fault_resume_in, in, error, !!error);
434
435         err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in);
436         if (err)
437                 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
438                             wq_num, err);
439 }
440
441 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
442                                                 unsigned long idx)
443 {
444         struct ib_umem_odp *odp;
445         struct mlx5_ib_mr *mr;
446         struct mlx5_ib_mr *ret;
447         int err;
448
449         odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
450                                       idx * MLX5_IMR_MTT_SIZE,
451                                       MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
452         if (IS_ERR(odp))
453                 return ERR_CAST(odp);
454
455         ret = mr = mlx5_mr_cache_alloc(
456                 mr_to_mdev(imr), MLX5_IMR_MTT_CACHE_ENTRY, imr->access_flags);
457         if (IS_ERR(mr))
458                 goto out_umem;
459
460         mr->ibmr.pd = imr->ibmr.pd;
461         mr->ibmr.device = &mr_to_mdev(imr)->ib_dev;
462         mr->umem = &odp->umem;
463         mr->ibmr.lkey = mr->mmkey.key;
464         mr->ibmr.rkey = mr->mmkey.key;
465         mr->mmkey.iova = idx * MLX5_IMR_MTT_SIZE;
466         mr->parent = imr;
467         odp->private = mr;
468
469         /*
470          * First refcount is owned by the xarray and second refconut
471          * is returned to the caller.
472          */
473         refcount_set(&mr->mmkey.usecount, 2);
474
475         err = mlx5_ib_update_xlt(mr, 0,
476                                  MLX5_IMR_MTT_ENTRIES,
477                                  PAGE_SHIFT,
478                                  MLX5_IB_UPD_XLT_ZAP |
479                                  MLX5_IB_UPD_XLT_ENABLE);
480         if (err) {
481                 ret = ERR_PTR(err);
482                 goto out_mr;
483         }
484
485         xa_lock(&imr->implicit_children);
486         ret = __xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
487                            GFP_KERNEL);
488         if (unlikely(ret)) {
489                 if (xa_is_err(ret)) {
490                         ret = ERR_PTR(xa_err(ret));
491                         goto out_lock;
492                 }
493                 /*
494                  * Another thread beat us to creating the child mr, use
495                  * theirs.
496                  */
497                 refcount_inc(&ret->mmkey.usecount);
498                 goto out_lock;
499         }
500         xa_unlock(&imr->implicit_children);
501
502         mlx5_ib_dbg(mr_to_mdev(imr), "key %x mr %p\n", mr->mmkey.key, mr);
503         return mr;
504
505 out_lock:
506         xa_unlock(&imr->implicit_children);
507 out_mr:
508         mlx5_mr_cache_free(mr_to_mdev(imr), mr);
509 out_umem:
510         ib_umem_odp_release(odp);
511         return ret;
512 }
513
514 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
515                                              struct ib_udata *udata,
516                                              int access_flags)
517 {
518         struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
519         struct ib_umem_odp *umem_odp;
520         struct mlx5_ib_mr *imr;
521         int err;
522
523         if (!mlx5_ib_can_load_pas_with_umr(dev,
524                                            MLX5_IMR_MTT_ENTRIES * PAGE_SIZE))
525                 return ERR_PTR(-EOPNOTSUPP);
526
527         umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
528         if (IS_ERR(umem_odp))
529                 return ERR_CAST(umem_odp);
530
531         imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY, access_flags);
532         if (IS_ERR(imr)) {
533                 err = PTR_ERR(imr);
534                 goto out_umem;
535         }
536
537         imr->ibmr.pd = &pd->ibpd;
538         imr->mmkey.iova = 0;
539         imr->umem = &umem_odp->umem;
540         imr->ibmr.lkey = imr->mmkey.key;
541         imr->ibmr.rkey = imr->mmkey.key;
542         imr->ibmr.device = &dev->ib_dev;
543         imr->umem = &umem_odp->umem;
544         imr->is_odp_implicit = true;
545         xa_init(&imr->implicit_children);
546
547         err = mlx5_ib_update_xlt(imr, 0,
548                                  mlx5_imr_ksm_entries,
549                                  MLX5_KSM_PAGE_SHIFT,
550                                  MLX5_IB_UPD_XLT_INDIRECT |
551                                  MLX5_IB_UPD_XLT_ZAP |
552                                  MLX5_IB_UPD_XLT_ENABLE);
553         if (err)
554                 goto out_mr;
555
556         err = mlx5r_store_odp_mkey(dev, &imr->mmkey);
557         if (err)
558                 goto out_mr;
559
560         mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
561         return imr;
562 out_mr:
563         mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
564         mlx5_mr_cache_free(dev, imr);
565 out_umem:
566         ib_umem_odp_release(umem_odp);
567         return ERR_PTR(err);
568 }
569
570 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
571 {
572         struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
573         struct mlx5_ib_dev *dev = mr_to_mdev(imr);
574         struct mlx5_ib_mr *mtt;
575         unsigned long idx;
576
577         xa_erase(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key));
578         /*
579          * All work on the prefetch list must be completed, xa_erase() prevented
580          * new work from being created.
581          */
582         mlx5r_deref_wait_odp_mkey(&imr->mmkey);
583         /*
584          * At this point it is forbidden for any other thread to enter
585          * pagefault_mr() on this imr. It is already forbidden to call
586          * pagefault_mr() on an implicit child. Due to this additions to
587          * implicit_children are prevented.
588          * In addition, any new call to destroy_unused_implicit_child_mr()
589          * may return immediately.
590          */
591
592         /*
593          * Fence the imr before we destroy the children. This allows us to
594          * skip updating the XLT of the imr during destroy of the child mkey
595          * the imr points to.
596          */
597         mlx5_mr_cache_invalidate(imr);
598
599         xa_for_each(&imr->implicit_children, idx, mtt) {
600                 xa_erase(&imr->implicit_children, idx);
601                 free_implicit_child_mr(mtt, false);
602         }
603
604         mlx5_mr_cache_free(dev, imr);
605         ib_umem_odp_release(odp_imr);
606 }
607
608 /**
609  * mlx5_ib_fence_odp_mr - Stop all access to the ODP MR
610  * @mr: to fence
611  *
612  * On return no parallel threads will be touching this MR and no DMA will be
613  * active.
614  */
615 void mlx5_ib_fence_odp_mr(struct mlx5_ib_mr *mr)
616 {
617         /* Prevent new page faults and prefetch requests from succeeding */
618         xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key));
619
620         /* Wait for all running page-fault handlers to finish. */
621         mlx5r_deref_wait_odp_mkey(&mr->mmkey);
622
623         dma_fence_odp_mr(mr);
624 }
625
626 /**
627  * mlx5_ib_fence_dmabuf_mr - Stop all access to the dmabuf MR
628  * @mr: to fence
629  *
630  * On return no parallel threads will be touching this MR and no DMA will be
631  * active.
632  */
633 void mlx5_ib_fence_dmabuf_mr(struct mlx5_ib_mr *mr)
634 {
635         struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem);
636
637         /* Prevent new page faults and prefetch requests from succeeding */
638         xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key));
639
640         mlx5r_deref_wait_odp_mkey(&mr->mmkey);
641
642         dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL);
643         mlx5_mr_cache_invalidate(mr);
644         umem_dmabuf->private = NULL;
645         ib_umem_dmabuf_unmap_pages(umem_dmabuf);
646         dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
647
648         if (!mr->cache_ent) {
649                 mlx5_core_destroy_mkey(mr_to_mdev(mr)->mdev, &mr->mmkey);
650                 WARN_ON(mr->descs);
651         }
652 }
653
654 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
655 #define MLX5_PF_FLAGS_SNAPSHOT BIT(2)
656 #define MLX5_PF_FLAGS_ENABLE BIT(3)
657 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
658                              u64 user_va, size_t bcnt, u32 *bytes_mapped,
659                              u32 flags)
660 {
661         int page_shift, ret, np;
662         bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
663         u64 access_mask;
664         u64 start_idx;
665         bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT);
666         u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC;
667
668         if (flags & MLX5_PF_FLAGS_ENABLE)
669                 xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
670
671         page_shift = odp->page_shift;
672         start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
673         access_mask = ODP_READ_ALLOWED_BIT;
674
675         if (odp->umem.writable && !downgrade)
676                 access_mask |= ODP_WRITE_ALLOWED_BIT;
677
678         np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault);
679         if (np < 0)
680                 return np;
681
682         /*
683          * No need to check whether the MTTs really belong to this MR, since
684          * ib_umem_odp_map_dma_and_lock already checks this.
685          */
686         ret = mlx5_ib_update_xlt(mr, start_idx, np, page_shift, xlt_flags);
687         mutex_unlock(&odp->umem_mutex);
688
689         if (ret < 0) {
690                 if (ret != -EAGAIN)
691                         mlx5_ib_err(mr_to_mdev(mr),
692                                     "Failed to update mkey page tables\n");
693                 goto out;
694         }
695
696         if (bytes_mapped) {
697                 u32 new_mappings = (np << page_shift) -
698                         (user_va - round_down(user_va, 1 << page_shift));
699
700                 *bytes_mapped += min_t(u32, new_mappings, bcnt);
701         }
702
703         return np << (page_shift - PAGE_SHIFT);
704
705 out:
706         return ret;
707 }
708
709 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
710                                  struct ib_umem_odp *odp_imr, u64 user_va,
711                                  size_t bcnt, u32 *bytes_mapped, u32 flags)
712 {
713         unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
714         unsigned long upd_start_idx = end_idx + 1;
715         unsigned long upd_len = 0;
716         unsigned long npages = 0;
717         int err;
718         int ret;
719
720         if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
721                      mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
722                 return -EFAULT;
723
724         /* Fault each child mr that intersects with our interval. */
725         while (bcnt) {
726                 unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
727                 struct ib_umem_odp *umem_odp;
728                 struct mlx5_ib_mr *mtt;
729                 u64 len;
730
731                 xa_lock(&imr->implicit_children);
732                 mtt = xa_load(&imr->implicit_children, idx);
733                 if (unlikely(!mtt)) {
734                         xa_unlock(&imr->implicit_children);
735                         mtt = implicit_get_child_mr(imr, idx);
736                         if (IS_ERR(mtt)) {
737                                 ret = PTR_ERR(mtt);
738                                 goto out;
739                         }
740                         upd_start_idx = min(upd_start_idx, idx);
741                         upd_len = idx - upd_start_idx + 1;
742                 } else {
743                         refcount_inc(&mtt->mmkey.usecount);
744                         xa_unlock(&imr->implicit_children);
745                 }
746
747                 umem_odp = to_ib_umem_odp(mtt->umem);
748                 len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
749                       user_va;
750
751                 ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
752                                         bytes_mapped, flags);
753
754                 mlx5r_deref_odp_mkey(&mtt->mmkey);
755
756                 if (ret < 0)
757                         goto out;
758                 user_va += len;
759                 bcnt -= len;
760                 npages += ret;
761         }
762
763         ret = npages;
764
765         /*
766          * Any time the implicit_children are changed we must perform an
767          * update of the xlt before exiting to ensure the HW and the
768          * implicit_children remains synchronized.
769          */
770 out:
771         if (likely(!upd_len))
772                 return ret;
773
774         /*
775          * Notice this is not strictly ordered right, the KSM is updated after
776          * the implicit_children is updated, so a parallel page fault could
777          * see a MR that is not yet visible in the KSM.  This is similar to a
778          * parallel page fault seeing a MR that is being concurrently removed
779          * from the KSM. Both of these improbable situations are resolved
780          * safely by resuming the HW and then taking another page fault. The
781          * next pagefault handler will see the new information.
782          */
783         mutex_lock(&odp_imr->umem_mutex);
784         err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0,
785                                  MLX5_IB_UPD_XLT_INDIRECT |
786                                          MLX5_IB_UPD_XLT_ATOMIC);
787         mutex_unlock(&odp_imr->umem_mutex);
788         if (err) {
789                 mlx5_ib_err(mr_to_mdev(imr), "Failed to update PAS\n");
790                 return err;
791         }
792         return ret;
793 }
794
795 static int pagefault_dmabuf_mr(struct mlx5_ib_mr *mr, size_t bcnt,
796                                u32 *bytes_mapped, u32 flags)
797 {
798         struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem);
799         u32 xlt_flags = 0;
800         int err;
801         unsigned int page_size;
802
803         if (flags & MLX5_PF_FLAGS_ENABLE)
804                 xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
805
806         dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL);
807         err = ib_umem_dmabuf_map_pages(umem_dmabuf);
808         if (err) {
809                 dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
810                 return err;
811         }
812
813         page_size = mlx5_umem_find_best_pgsz(&umem_dmabuf->umem, mkc,
814                                              log_page_size, 0,
815                                              umem_dmabuf->umem.iova);
816         if (unlikely(page_size < PAGE_SIZE)) {
817                 ib_umem_dmabuf_unmap_pages(umem_dmabuf);
818                 err = -EINVAL;
819         } else {
820                 err = mlx5_ib_update_mr_pas(mr, xlt_flags);
821         }
822         dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
823
824         if (err)
825                 return err;
826
827         if (bytes_mapped)
828                 *bytes_mapped += bcnt;
829
830         return ib_umem_num_pages(mr->umem);
831 }
832
833 /*
834  * Returns:
835  *  -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
836  *           not accessible, or the MR is no longer valid.
837  *  -EAGAIN/-ENOMEM: The operation should be retried
838  *
839  *  -EINVAL/others: General internal malfunction
840  *  >0: Number of pages mapped
841  */
842 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
843                         u32 *bytes_mapped, u32 flags)
844 {
845         struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
846
847         if (unlikely(io_virt < mr->mmkey.iova))
848                 return -EFAULT;
849
850         if (mr->umem->is_dmabuf)
851                 return pagefault_dmabuf_mr(mr, bcnt, bytes_mapped, flags);
852
853         if (!odp->is_implicit_odp) {
854                 u64 user_va;
855
856                 if (check_add_overflow(io_virt - mr->mmkey.iova,
857                                        (u64)odp->umem.address, &user_va))
858                         return -EFAULT;
859                 if (unlikely(user_va >= ib_umem_end(odp) ||
860                              ib_umem_end(odp) - user_va < bcnt))
861                         return -EFAULT;
862                 return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
863                                          flags);
864         }
865         return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
866                                      flags);
867 }
868
869 int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr)
870 {
871         int ret;
872
873         ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), mr->umem->address,
874                                 mr->umem->length, NULL,
875                                 MLX5_PF_FLAGS_SNAPSHOT | MLX5_PF_FLAGS_ENABLE);
876         return ret >= 0 ? 0 : ret;
877 }
878
879 int mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr *mr)
880 {
881         int ret;
882
883         ret = pagefault_dmabuf_mr(mr, mr->umem->length, NULL,
884                                   MLX5_PF_FLAGS_ENABLE);
885
886         return ret >= 0 ? 0 : ret;
887 }
888
889 struct pf_frame {
890         struct pf_frame *next;
891         u32 key;
892         u64 io_virt;
893         size_t bcnt;
894         int depth;
895 };
896
897 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key)
898 {
899         if (!mmkey)
900                 return false;
901         if (mmkey->type == MLX5_MKEY_MW)
902                 return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
903         return mmkey->key == key;
904 }
905
906 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
907 {
908         struct mlx5_ib_mw *mw;
909         struct mlx5_ib_devx_mr *devx_mr;
910
911         if (mmkey->type == MLX5_MKEY_MW) {
912                 mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
913                 return mw->ndescs;
914         }
915
916         devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
917                                mmkey);
918         return devx_mr->ndescs;
919 }
920
921 /*
922  * Handle a single data segment in a page-fault WQE or RDMA region.
923  *
924  * Returns number of OS pages retrieved on success. The caller may continue to
925  * the next data segment.
926  * Can return the following error codes:
927  * -EAGAIN to designate a temporary error. The caller will abort handling the
928  *  page fault and resolve it.
929  * -EFAULT when there's an error mapping the requested pages. The caller will
930  *  abort the page fault handling.
931  */
932 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
933                                          struct ib_pd *pd, u32 key,
934                                          u64 io_virt, size_t bcnt,
935                                          u32 *bytes_committed,
936                                          u32 *bytes_mapped)
937 {
938         int npages = 0, ret, i, outlen, cur_outlen = 0, depth = 0;
939         struct pf_frame *head = NULL, *frame;
940         struct mlx5_core_mkey *mmkey;
941         struct mlx5_ib_mr *mr;
942         struct mlx5_klm *pklm;
943         u32 *out = NULL;
944         size_t offset;
945         int ndescs;
946
947         io_virt += *bytes_committed;
948         bcnt -= *bytes_committed;
949
950 next_mr:
951         xa_lock(&dev->odp_mkeys);
952         mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
953         if (!mmkey) {
954                 xa_unlock(&dev->odp_mkeys);
955                 mlx5_ib_dbg(
956                         dev,
957                         "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
958                         key);
959                 if (bytes_mapped)
960                         *bytes_mapped += bcnt;
961                 /*
962                  * The user could specify a SGL with multiple lkeys and only
963                  * some of them are ODP. Treat the non-ODP ones as fully
964                  * faulted.
965                  */
966                 ret = 0;
967                 goto end;
968         }
969         refcount_inc(&mmkey->usecount);
970         xa_unlock(&dev->odp_mkeys);
971
972         if (!mkey_is_eq(mmkey, key)) {
973                 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
974                 ret = -EFAULT;
975                 goto end;
976         }
977
978         switch (mmkey->type) {
979         case MLX5_MKEY_MR:
980                 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
981
982                 ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0);
983                 if (ret < 0)
984                         goto end;
985
986                 mlx5_update_odp_stats(mr, faults, ret);
987
988                 npages += ret;
989                 ret = 0;
990                 break;
991
992         case MLX5_MKEY_MW:
993         case MLX5_MKEY_INDIRECT_DEVX:
994                 ndescs = get_indirect_num_descs(mmkey);
995
996                 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
997                         mlx5_ib_dbg(dev, "indirection level exceeded\n");
998                         ret = -EFAULT;
999                         goto end;
1000                 }
1001
1002                 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
1003                         sizeof(*pklm) * (ndescs - 2);
1004
1005                 if (outlen > cur_outlen) {
1006                         kfree(out);
1007                         out = kzalloc(outlen, GFP_KERNEL);
1008                         if (!out) {
1009                                 ret = -ENOMEM;
1010                                 goto end;
1011                         }
1012                         cur_outlen = outlen;
1013                 }
1014
1015                 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
1016                                                        bsf0_klm0_pas_mtt0_1);
1017
1018                 ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
1019                 if (ret)
1020                         goto end;
1021
1022                 offset = io_virt - MLX5_GET64(query_mkey_out, out,
1023                                               memory_key_mkey_entry.start_addr);
1024
1025                 for (i = 0; bcnt && i < ndescs; i++, pklm++) {
1026                         if (offset >= be32_to_cpu(pklm->bcount)) {
1027                                 offset -= be32_to_cpu(pklm->bcount);
1028                                 continue;
1029                         }
1030
1031                         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1032                         if (!frame) {
1033                                 ret = -ENOMEM;
1034                                 goto end;
1035                         }
1036
1037                         frame->key = be32_to_cpu(pklm->key);
1038                         frame->io_virt = be64_to_cpu(pklm->va) + offset;
1039                         frame->bcnt = min_t(size_t, bcnt,
1040                                             be32_to_cpu(pklm->bcount) - offset);
1041                         frame->depth = depth + 1;
1042                         frame->next = head;
1043                         head = frame;
1044
1045                         bcnt -= frame->bcnt;
1046                         offset = 0;
1047                 }
1048                 break;
1049
1050         default:
1051                 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
1052                 ret = -EFAULT;
1053                 goto end;
1054         }
1055
1056         if (head) {
1057                 frame = head;
1058                 head = frame->next;
1059
1060                 key = frame->key;
1061                 io_virt = frame->io_virt;
1062                 bcnt = frame->bcnt;
1063                 depth = frame->depth;
1064                 kfree(frame);
1065
1066                 mlx5r_deref_odp_mkey(mmkey);
1067                 goto next_mr;
1068         }
1069
1070 end:
1071         if (mmkey)
1072                 mlx5r_deref_odp_mkey(mmkey);
1073         while (head) {
1074                 frame = head;
1075                 head = frame->next;
1076                 kfree(frame);
1077         }
1078         kfree(out);
1079
1080         *bytes_committed = 0;
1081         return ret ? ret : npages;
1082 }
1083
1084 /*
1085  * Parse a series of data segments for page fault handling.
1086  *
1087  * @dev:  Pointer to mlx5 IB device
1088  * @pfault: contains page fault information.
1089  * @wqe: points at the first data segment in the WQE.
1090  * @wqe_end: points after the end of the WQE.
1091  * @bytes_mapped: receives the number of bytes that the function was able to
1092  *                map. This allows the caller to decide intelligently whether
1093  *                enough memory was mapped to resolve the page fault
1094  *                successfully (e.g. enough for the next MTU, or the entire
1095  *                WQE).
1096  * @total_wqe_bytes: receives the total data size of this WQE in bytes (minus
1097  *                   the committed bytes).
1098  * @receive_queue: receive WQE end of sg list
1099  *
1100  * Returns the number of pages loaded if positive, zero for an empty WQE, or a
1101  * negative error code.
1102  */
1103 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
1104                                    struct mlx5_pagefault *pfault,
1105                                    void *wqe,
1106                                    void *wqe_end, u32 *bytes_mapped,
1107                                    u32 *total_wqe_bytes, bool receive_queue)
1108 {
1109         int ret = 0, npages = 0;
1110         u64 io_virt;
1111         u32 key;
1112         u32 byte_count;
1113         size_t bcnt;
1114         int inline_segment;
1115
1116         if (bytes_mapped)
1117                 *bytes_mapped = 0;
1118         if (total_wqe_bytes)
1119                 *total_wqe_bytes = 0;
1120
1121         while (wqe < wqe_end) {
1122                 struct mlx5_wqe_data_seg *dseg = wqe;
1123
1124                 io_virt = be64_to_cpu(dseg->addr);
1125                 key = be32_to_cpu(dseg->lkey);
1126                 byte_count = be32_to_cpu(dseg->byte_count);
1127                 inline_segment = !!(byte_count &  MLX5_INLINE_SEG);
1128                 bcnt           = byte_count & ~MLX5_INLINE_SEG;
1129
1130                 if (inline_segment) {
1131                         bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1132                         wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1133                                      16);
1134                 } else {
1135                         wqe += sizeof(*dseg);
1136                 }
1137
1138                 /* receive WQE end of sg list. */
1139                 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
1140                     io_virt == 0)
1141                         break;
1142
1143                 if (!inline_segment && total_wqe_bytes) {
1144                         *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1145                                         pfault->bytes_committed);
1146                 }
1147
1148                 /* A zero length data segment designates a length of 2GB. */
1149                 if (bcnt == 0)
1150                         bcnt = 1U << 31;
1151
1152                 if (inline_segment || bcnt <= pfault->bytes_committed) {
1153                         pfault->bytes_committed -=
1154                                 min_t(size_t, bcnt,
1155                                       pfault->bytes_committed);
1156                         continue;
1157                 }
1158
1159                 ret = pagefault_single_data_segment(dev, NULL, key,
1160                                                     io_virt, bcnt,
1161                                                     &pfault->bytes_committed,
1162                                                     bytes_mapped);
1163                 if (ret < 0)
1164                         break;
1165                 npages += ret;
1166         }
1167
1168         return ret < 0 ? ret : npages;
1169 }
1170
1171 /*
1172  * Parse initiator WQE. Advances the wqe pointer to point at the
1173  * scatter-gather list, and set wqe_end to the end of the WQE.
1174  */
1175 static int mlx5_ib_mr_initiator_pfault_handler(
1176         struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1177         struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1178 {
1179         struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1180         u16 wqe_index = pfault->wqe.wqe_index;
1181         struct mlx5_base_av *av;
1182         unsigned ds, opcode;
1183         u32 qpn = qp->trans_qp.base.mqp.qpn;
1184
1185         ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1186         if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1187                 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1188                             ds, wqe_length);
1189                 return -EFAULT;
1190         }
1191
1192         if (ds == 0) {
1193                 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1194                             wqe_index, qpn);
1195                 return -EFAULT;
1196         }
1197
1198         *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1199         *wqe += sizeof(*ctrl);
1200
1201         opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1202                  MLX5_WQE_CTRL_OPCODE_MASK;
1203
1204         if (qp->ibqp.qp_type == IB_QPT_XRC_INI)
1205                 *wqe += sizeof(struct mlx5_wqe_xrc_seg);
1206
1207         if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) {
1208                 av = *wqe;
1209                 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1210                         *wqe += sizeof(struct mlx5_av);
1211                 else
1212                         *wqe += sizeof(struct mlx5_base_av);
1213         }
1214
1215         switch (opcode) {
1216         case MLX5_OPCODE_RDMA_WRITE:
1217         case MLX5_OPCODE_RDMA_WRITE_IMM:
1218         case MLX5_OPCODE_RDMA_READ:
1219                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1220                 break;
1221         case MLX5_OPCODE_ATOMIC_CS:
1222         case MLX5_OPCODE_ATOMIC_FA:
1223                 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1224                 *wqe += sizeof(struct mlx5_wqe_atomic_seg);
1225                 break;
1226         }
1227
1228         return 0;
1229 }
1230
1231 /*
1232  * Parse responder WQE and set wqe_end to the end of the WQE.
1233  */
1234 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1235                                                    struct mlx5_ib_srq *srq,
1236                                                    void **wqe, void **wqe_end,
1237                                                    int wqe_length)
1238 {
1239         int wqe_size = 1 << srq->msrq.wqe_shift;
1240
1241         if (wqe_size > wqe_length) {
1242                 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1243                 return -EFAULT;
1244         }
1245
1246         *wqe_end = *wqe + wqe_size;
1247         *wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1248
1249         return 0;
1250 }
1251
1252 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1253                                                   struct mlx5_ib_qp *qp,
1254                                                   void *wqe, void **wqe_end,
1255                                                   int wqe_length)
1256 {
1257         struct mlx5_ib_wq *wq = &qp->rq;
1258         int wqe_size = 1 << wq->wqe_shift;
1259
1260         if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) {
1261                 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1262                 return -EFAULT;
1263         }
1264
1265         if (wqe_size > wqe_length) {
1266                 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1267                 return -EFAULT;
1268         }
1269
1270         *wqe_end = wqe + wqe_size;
1271
1272         return 0;
1273 }
1274
1275 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1276                                                        u32 wq_num, int pf_type)
1277 {
1278         struct mlx5_core_rsc_common *common = NULL;
1279         struct mlx5_core_srq *srq;
1280
1281         switch (pf_type) {
1282         case MLX5_WQE_PF_TYPE_RMP:
1283                 srq = mlx5_cmd_get_srq(dev, wq_num);
1284                 if (srq)
1285                         common = &srq->common;
1286                 break;
1287         case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1288         case MLX5_WQE_PF_TYPE_RESP:
1289         case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1290                 common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
1291                 break;
1292         default:
1293                 break;
1294         }
1295
1296         return common;
1297 }
1298
1299 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1300 {
1301         struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1302
1303         return to_mibqp(mqp);
1304 }
1305
1306 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1307 {
1308         struct mlx5_core_srq *msrq =
1309                 container_of(res, struct mlx5_core_srq, common);
1310
1311         return to_mibsrq(msrq);
1312 }
1313
1314 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1315                                           struct mlx5_pagefault *pfault)
1316 {
1317         bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1318         u16 wqe_index = pfault->wqe.wqe_index;
1319         void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1320         u32 bytes_mapped, total_wqe_bytes;
1321         struct mlx5_core_rsc_common *res;
1322         int resume_with_error = 1;
1323         struct mlx5_ib_qp *qp;
1324         size_t bytes_copied;
1325         int ret = 0;
1326
1327         res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1328         if (!res) {
1329                 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1330                 return;
1331         }
1332
1333         if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1334             res->res != MLX5_RES_XSRQ) {
1335                 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1336                             pfault->type);
1337                 goto resolve_page_fault;
1338         }
1339
1340         wqe_start = (void *)__get_free_page(GFP_KERNEL);
1341         if (!wqe_start) {
1342                 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1343                 goto resolve_page_fault;
1344         }
1345
1346         wqe = wqe_start;
1347         qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1348         if (qp && sq) {
1349                 ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1350                                           &bytes_copied);
1351                 if (ret)
1352                         goto read_user;
1353                 ret = mlx5_ib_mr_initiator_pfault_handler(
1354                         dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1355         } else if (qp && !sq) {
1356                 ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1357                                           &bytes_copied);
1358                 if (ret)
1359                         goto read_user;
1360                 ret = mlx5_ib_mr_responder_pfault_handler_rq(
1361                         dev, qp, wqe, &wqe_end, bytes_copied);
1362         } else if (!qp) {
1363                 struct mlx5_ib_srq *srq = res_to_srq(res);
1364
1365                 ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1366                                            &bytes_copied);
1367                 if (ret)
1368                         goto read_user;
1369                 ret = mlx5_ib_mr_responder_pfault_handler_srq(
1370                         dev, srq, &wqe, &wqe_end, bytes_copied);
1371         }
1372
1373         if (ret < 0 || wqe >= wqe_end)
1374                 goto resolve_page_fault;
1375
1376         ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1377                                       &total_wqe_bytes, !sq);
1378         if (ret == -EAGAIN)
1379                 goto out;
1380
1381         if (ret < 0 || total_wqe_bytes > bytes_mapped)
1382                 goto resolve_page_fault;
1383
1384 out:
1385         ret = 0;
1386         resume_with_error = 0;
1387
1388 read_user:
1389         if (ret)
1390                 mlx5_ib_err(
1391                         dev,
1392                         "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1393                         ret, wqe_index, pfault->token);
1394
1395 resolve_page_fault:
1396         mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1397         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1398                     pfault->wqe.wq_num, resume_with_error,
1399                     pfault->type);
1400         mlx5_core_res_put(res);
1401         free_page((unsigned long)wqe_start);
1402 }
1403
1404 static int pages_in_range(u64 address, u32 length)
1405 {
1406         return (ALIGN(address + length, PAGE_SIZE) -
1407                 (address & PAGE_MASK)) >> PAGE_SHIFT;
1408 }
1409
1410 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1411                                            struct mlx5_pagefault *pfault)
1412 {
1413         u64 address;
1414         u32 length;
1415         u32 prefetch_len = pfault->bytes_committed;
1416         int prefetch_activated = 0;
1417         u32 rkey = pfault->rdma.r_key;
1418         int ret;
1419
1420         /* The RDMA responder handler handles the page fault in two parts.
1421          * First it brings the necessary pages for the current packet
1422          * (and uses the pfault context), and then (after resuming the QP)
1423          * prefetches more pages. The second operation cannot use the pfault
1424          * context and therefore uses the dummy_pfault context allocated on
1425          * the stack */
1426         pfault->rdma.rdma_va += pfault->bytes_committed;
1427         pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1428                                          pfault->rdma.rdma_op_len);
1429         pfault->bytes_committed = 0;
1430
1431         address = pfault->rdma.rdma_va;
1432         length  = pfault->rdma.rdma_op_len;
1433
1434         /* For some operations, the hardware cannot tell the exact message
1435          * length, and in those cases it reports zero. Use prefetch
1436          * logic. */
1437         if (length == 0) {
1438                 prefetch_activated = 1;
1439                 length = pfault->rdma.packet_size;
1440                 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1441         }
1442
1443         ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1444                                             &pfault->bytes_committed, NULL);
1445         if (ret == -EAGAIN) {
1446                 /* We're racing with an invalidation, don't prefetch */
1447                 prefetch_activated = 0;
1448         } else if (ret < 0 || pages_in_range(address, length) > ret) {
1449                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1450                 if (ret != -ENOENT)
1451                         mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1452                                     ret, pfault->token, pfault->type);
1453                 return;
1454         }
1455
1456         mlx5_ib_page_fault_resume(dev, pfault, 0);
1457         mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1458                     pfault->token, pfault->type,
1459                     prefetch_activated);
1460
1461         /* At this point, there might be a new pagefault already arriving in
1462          * the eq, switch to the dummy pagefault for the rest of the
1463          * processing. We're still OK with the objects being alive as the
1464          * work-queue is being fenced. */
1465
1466         if (prefetch_activated) {
1467                 u32 bytes_committed = 0;
1468
1469                 ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1470                                                     prefetch_len,
1471                                                     &bytes_committed, NULL);
1472                 if (ret < 0 && ret != -EAGAIN) {
1473                         mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1474                                     ret, pfault->token, address, prefetch_len);
1475                 }
1476         }
1477 }
1478
1479 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1480 {
1481         u8 event_subtype = pfault->event_subtype;
1482
1483         switch (event_subtype) {
1484         case MLX5_PFAULT_SUBTYPE_WQE:
1485                 mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1486                 break;
1487         case MLX5_PFAULT_SUBTYPE_RDMA:
1488                 mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1489                 break;
1490         default:
1491                 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1492                             event_subtype);
1493                 mlx5_ib_page_fault_resume(dev, pfault, 1);
1494         }
1495 }
1496
1497 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1498 {
1499         struct mlx5_pagefault *pfault = container_of(work,
1500                                                      struct mlx5_pagefault,
1501                                                      work);
1502         struct mlx5_ib_pf_eq *eq = pfault->eq;
1503
1504         mlx5_ib_pfault(eq->dev, pfault);
1505         mempool_free(pfault, eq->pool);
1506 }
1507
1508 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1509 {
1510         struct mlx5_eqe_page_fault *pf_eqe;
1511         struct mlx5_pagefault *pfault;
1512         struct mlx5_eqe *eqe;
1513         int cc = 0;
1514
1515         while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1516                 pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1517                 if (!pfault) {
1518                         schedule_work(&eq->work);
1519                         break;
1520                 }
1521
1522                 pf_eqe = &eqe->data.page_fault;
1523                 pfault->event_subtype = eqe->sub_type;
1524                 pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1525
1526                 mlx5_ib_dbg(eq->dev,
1527                             "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1528                             eqe->sub_type, pfault->bytes_committed);
1529
1530                 switch (eqe->sub_type) {
1531                 case MLX5_PFAULT_SUBTYPE_RDMA:
1532                         /* RDMA based event */
1533                         pfault->type =
1534                                 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1535                         pfault->token =
1536                                 be32_to_cpu(pf_eqe->rdma.pftype_token) &
1537                                 MLX5_24BIT_MASK;
1538                         pfault->rdma.r_key =
1539                                 be32_to_cpu(pf_eqe->rdma.r_key);
1540                         pfault->rdma.packet_size =
1541                                 be16_to_cpu(pf_eqe->rdma.packet_length);
1542                         pfault->rdma.rdma_op_len =
1543                                 be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1544                         pfault->rdma.rdma_va =
1545                                 be64_to_cpu(pf_eqe->rdma.rdma_va);
1546                         mlx5_ib_dbg(eq->dev,
1547                                     "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1548                                     pfault->type, pfault->token,
1549                                     pfault->rdma.r_key);
1550                         mlx5_ib_dbg(eq->dev,
1551                                     "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1552                                     pfault->rdma.rdma_op_len,
1553                                     pfault->rdma.rdma_va);
1554                         break;
1555
1556                 case MLX5_PFAULT_SUBTYPE_WQE:
1557                         /* WQE based event */
1558                         pfault->type =
1559                                 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1560                         pfault->token =
1561                                 be32_to_cpu(pf_eqe->wqe.token);
1562                         pfault->wqe.wq_num =
1563                                 be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1564                                 MLX5_24BIT_MASK;
1565                         pfault->wqe.wqe_index =
1566                                 be16_to_cpu(pf_eqe->wqe.wqe_index);
1567                         pfault->wqe.packet_size =
1568                                 be16_to_cpu(pf_eqe->wqe.packet_length);
1569                         mlx5_ib_dbg(eq->dev,
1570                                     "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1571                                     pfault->type, pfault->token,
1572                                     pfault->wqe.wq_num,
1573                                     pfault->wqe.wqe_index);
1574                         break;
1575
1576                 default:
1577                         mlx5_ib_warn(eq->dev,
1578                                      "Unsupported page fault event sub-type: 0x%02hhx\n",
1579                                      eqe->sub_type);
1580                         /* Unsupported page faults should still be
1581                          * resolved by the page fault handler
1582                          */
1583                 }
1584
1585                 pfault->eq = eq;
1586                 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1587                 queue_work(eq->wq, &pfault->work);
1588
1589                 cc = mlx5_eq_update_cc(eq->core, ++cc);
1590         }
1591
1592         mlx5_eq_update_ci(eq->core, cc, 1);
1593 }
1594
1595 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1596                              void *data)
1597 {
1598         struct mlx5_ib_pf_eq *eq =
1599                 container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1600         unsigned long flags;
1601
1602         if (spin_trylock_irqsave(&eq->lock, flags)) {
1603                 mlx5_ib_eq_pf_process(eq);
1604                 spin_unlock_irqrestore(&eq->lock, flags);
1605         } else {
1606                 schedule_work(&eq->work);
1607         }
1608
1609         return IRQ_HANDLED;
1610 }
1611
1612 /* mempool_refill() was proposed but unfortunately wasn't accepted
1613  * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1614  * Cheap workaround.
1615  */
1616 static void mempool_refill(mempool_t *pool)
1617 {
1618         while (pool->curr_nr < pool->min_nr)
1619                 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1620 }
1621
1622 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1623 {
1624         struct mlx5_ib_pf_eq *eq =
1625                 container_of(work, struct mlx5_ib_pf_eq, work);
1626
1627         mempool_refill(eq->pool);
1628
1629         spin_lock_irq(&eq->lock);
1630         mlx5_ib_eq_pf_process(eq);
1631         spin_unlock_irq(&eq->lock);
1632 }
1633
1634 enum {
1635         MLX5_IB_NUM_PF_EQE      = 0x1000,
1636         MLX5_IB_NUM_PF_DRAIN    = 64,
1637 };
1638
1639 static int
1640 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1641 {
1642         struct mlx5_eq_param param = {};
1643         int err;
1644
1645         INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1646         spin_lock_init(&eq->lock);
1647         eq->dev = dev;
1648
1649         eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1650                                                sizeof(struct mlx5_pagefault));
1651         if (!eq->pool)
1652                 return -ENOMEM;
1653
1654         eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1655                                  WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1656                                  MLX5_NUM_CMD_EQE);
1657         if (!eq->wq) {
1658                 err = -ENOMEM;
1659                 goto err_mempool;
1660         }
1661
1662         eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1663         param = (struct mlx5_eq_param) {
1664                 .irq_index = 0,
1665                 .nent = MLX5_IB_NUM_PF_EQE,
1666         };
1667         param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1668         eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1669         if (IS_ERR(eq->core)) {
1670                 err = PTR_ERR(eq->core);
1671                 goto err_wq;
1672         }
1673         err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1674         if (err) {
1675                 mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1676                 goto err_eq;
1677         }
1678
1679         return 0;
1680 err_eq:
1681         mlx5_eq_destroy_generic(dev->mdev, eq->core);
1682 err_wq:
1683         destroy_workqueue(eq->wq);
1684 err_mempool:
1685         mempool_destroy(eq->pool);
1686         return err;
1687 }
1688
1689 static int
1690 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1691 {
1692         int err;
1693
1694         mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1695         err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1696         cancel_work_sync(&eq->work);
1697         destroy_workqueue(eq->wq);
1698         mempool_destroy(eq->pool);
1699
1700         return err;
1701 }
1702
1703 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1704 {
1705         if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1706                 return;
1707
1708         switch (ent->order - 2) {
1709         case MLX5_IMR_MTT_CACHE_ENTRY:
1710                 ent->page = PAGE_SHIFT;
1711                 ent->xlt = MLX5_IMR_MTT_ENTRIES *
1712                            sizeof(struct mlx5_mtt) /
1713                            MLX5_IB_UMR_OCTOWORD;
1714                 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1715                 ent->limit = 0;
1716                 break;
1717
1718         case MLX5_IMR_KSM_CACHE_ENTRY:
1719                 ent->page = MLX5_KSM_PAGE_SHIFT;
1720                 ent->xlt = mlx5_imr_ksm_entries *
1721                            sizeof(struct mlx5_klm) /
1722                            MLX5_IB_UMR_OCTOWORD;
1723                 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1724                 ent->limit = 0;
1725                 break;
1726         }
1727 }
1728
1729 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1730         .advise_mr = mlx5_ib_advise_mr,
1731 };
1732
1733 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1734 {
1735         int ret = 0;
1736
1737         if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1738                 return ret;
1739
1740         ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1741
1742         if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1743                 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1744                 if (ret) {
1745                         mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1746                         return ret;
1747                 }
1748         }
1749
1750         ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
1751
1752         return ret;
1753 }
1754
1755 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1756 {
1757         if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1758                 return;
1759
1760         mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
1761 }
1762
1763 int mlx5_ib_odp_init(void)
1764 {
1765         mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1766                                        MLX5_IMR_MTT_BITS);
1767
1768         return 0;
1769 }
1770
1771 struct prefetch_mr_work {
1772         struct work_struct work;
1773         u32 pf_flags;
1774         u32 num_sge;
1775         struct {
1776                 u64 io_virt;
1777                 struct mlx5_ib_mr *mr;
1778                 size_t length;
1779         } frags[];
1780 };
1781
1782 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1783 {
1784         u32 i;
1785
1786         for (i = 0; i < work->num_sge; ++i)
1787                 mlx5r_deref_odp_mkey(&work->frags[i].mr->mmkey);
1788
1789         kvfree(work);
1790 }
1791
1792 static struct mlx5_ib_mr *
1793 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1794                     u32 lkey)
1795 {
1796         struct mlx5_ib_dev *dev = to_mdev(pd->device);
1797         struct mlx5_core_mkey *mmkey;
1798         struct mlx5_ib_mr *mr = NULL;
1799
1800         xa_lock(&dev->odp_mkeys);
1801         mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1802         if (!mmkey || mmkey->key != lkey || mmkey->type != MLX5_MKEY_MR)
1803                 goto end;
1804
1805         mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1806
1807         if (mr->ibmr.pd != pd) {
1808                 mr = NULL;
1809                 goto end;
1810         }
1811
1812         /* prefetch with write-access must be supported by the MR */
1813         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1814             !mr->umem->writable) {
1815                 mr = NULL;
1816                 goto end;
1817         }
1818
1819         refcount_inc(&mmkey->usecount);
1820 end:
1821         xa_unlock(&dev->odp_mkeys);
1822         return mr;
1823 }
1824
1825 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1826 {
1827         struct prefetch_mr_work *work =
1828                 container_of(w, struct prefetch_mr_work, work);
1829         u32 bytes_mapped = 0;
1830         int ret;
1831         u32 i;
1832
1833         /* We rely on IB/core that work is executed if we have num_sge != 0 only. */
1834         WARN_ON(!work->num_sge);
1835         for (i = 0; i < work->num_sge; ++i) {
1836                 ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1837                                    work->frags[i].length, &bytes_mapped,
1838                                    work->pf_flags);
1839                 if (ret <= 0)
1840                         continue;
1841                 mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret);
1842         }
1843
1844         destroy_prefetch_work(work);
1845 }
1846
1847 static bool init_prefetch_work(struct ib_pd *pd,
1848                                enum ib_uverbs_advise_mr_advice advice,
1849                                u32 pf_flags, struct prefetch_mr_work *work,
1850                                struct ib_sge *sg_list, u32 num_sge)
1851 {
1852         u32 i;
1853
1854         INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1855         work->pf_flags = pf_flags;
1856
1857         for (i = 0; i < num_sge; ++i) {
1858                 work->frags[i].io_virt = sg_list[i].addr;
1859                 work->frags[i].length = sg_list[i].length;
1860                 work->frags[i].mr =
1861                         get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1862                 if (!work->frags[i].mr) {
1863                         work->num_sge = i;
1864                         return false;
1865                 }
1866         }
1867         work->num_sge = num_sge;
1868         return true;
1869 }
1870
1871 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
1872                                     enum ib_uverbs_advise_mr_advice advice,
1873                                     u32 pf_flags, struct ib_sge *sg_list,
1874                                     u32 num_sge)
1875 {
1876         u32 bytes_mapped = 0;
1877         int ret = 0;
1878         u32 i;
1879
1880         for (i = 0; i < num_sge; ++i) {
1881                 struct mlx5_ib_mr *mr;
1882
1883                 mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1884                 if (!mr)
1885                         return -ENOENT;
1886                 ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
1887                                    &bytes_mapped, pf_flags);
1888                 if (ret < 0) {
1889                         mlx5r_deref_odp_mkey(&mr->mmkey);
1890                         return ret;
1891                 }
1892                 mlx5_update_odp_stats(mr, prefetch, ret);
1893                 mlx5r_deref_odp_mkey(&mr->mmkey);
1894         }
1895
1896         return 0;
1897 }
1898
1899 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1900                                enum ib_uverbs_advise_mr_advice advice,
1901                                u32 flags, struct ib_sge *sg_list, u32 num_sge)
1902 {
1903         u32 pf_flags = 0;
1904         struct prefetch_mr_work *work;
1905
1906         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1907                 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1908
1909         if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1910                 pf_flags |= MLX5_PF_FLAGS_SNAPSHOT;
1911
1912         if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1913                 return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
1914                                                 num_sge);
1915
1916         work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
1917         if (!work)
1918                 return -ENOMEM;
1919
1920         if (!init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge)) {
1921                 destroy_prefetch_work(work);
1922                 return -EINVAL;
1923         }
1924         queue_work(system_unbound_wq, &work->work);
1925         return 0;
1926 }