Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux-2.6-microblaze.git] / drivers / infiniband / hw / hfi1 / sdma.c
1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3  * Copyright(c) 2015 - 2018 Intel Corporation.
4  */
5
6 #include <linux/spinlock.h>
7 #include <linux/seqlock.h>
8 #include <linux/netdevice.h>
9 #include <linux/moduleparam.h>
10 #include <linux/bitops.h>
11 #include <linux/timer.h>
12 #include <linux/vmalloc.h>
13 #include <linux/highmem.h>
14
15 #include "hfi.h"
16 #include "common.h"
17 #include "qp.h"
18 #include "sdma.h"
19 #include "iowait.h"
20 #include "trace.h"
21
22 /* must be a power of 2 >= 64 <= 32768 */
23 #define SDMA_DESCQ_CNT 2048
24 #define SDMA_DESC_INTR 64
25 #define INVALID_TAIL 0xffff
26 #define SDMA_PAD max_t(size_t, MAX_16B_PADDING, sizeof(u32))
27
28 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
29 module_param(sdma_descq_cnt, uint, S_IRUGO);
30 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
31
32 static uint sdma_idle_cnt = 250;
33 module_param(sdma_idle_cnt, uint, S_IRUGO);
34 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
35
36 uint mod_num_sdma;
37 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
38 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
39
40 static uint sdma_desct_intr = SDMA_DESC_INTR;
41 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
42 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
43
44 #define SDMA_WAIT_BATCH_SIZE 20
45 /* max wait time for a SDMA engine to indicate it has halted */
46 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
47 /* all SDMA engine errors that cause a halt */
48
49 #define SD(name) SEND_DMA_##name
50 #define ALL_SDMA_ENG_HALT_ERRS \
51         (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
52         | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
53         | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
54         | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
55         | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
56         | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
57         | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
58         | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
59         | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
60         | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
61         | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
62         | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
63         | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
64         | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
65         | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
66         | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
67         | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
68         | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
69
70 /* sdma_sendctrl operations */
71 #define SDMA_SENDCTRL_OP_ENABLE    BIT(0)
72 #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
73 #define SDMA_SENDCTRL_OP_HALT      BIT(2)
74 #define SDMA_SENDCTRL_OP_CLEANUP   BIT(3)
75
76 /* handle long defines */
77 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
78 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
79 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
80 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
81
82 static const char * const sdma_state_names[] = {
83         [sdma_state_s00_hw_down]                = "s00_HwDown",
84         [sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
85         [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
86         [sdma_state_s20_idle]                   = "s20_Idle",
87         [sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
88         [sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
89         [sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
90         [sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
91         [sdma_state_s80_hw_freeze]              = "s80_HwFreeze",
92         [sdma_state_s82_freeze_sw_clean]        = "s82_FreezeSwClean",
93         [sdma_state_s99_running]                = "s99_Running",
94 };
95
96 #ifdef CONFIG_SDMA_VERBOSITY
97 static const char * const sdma_event_names[] = {
98         [sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
99         [sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
100         [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
101         [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
102         [sdma_event_e30_go_running]   = "e30_GoRunning",
103         [sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
104         [sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
105         [sdma_event_e60_hw_halted]    = "e60_HwHalted",
106         [sdma_event_e70_go_idle]      = "e70_GoIdle",
107         [sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
108         [sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
109         [sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
110         [sdma_event_e85_link_down]    = "e85_LinkDown",
111         [sdma_event_e90_sw_halted]    = "e90_SwHalted",
112 };
113 #endif
114
115 static const struct sdma_set_state_action sdma_action_table[] = {
116         [sdma_state_s00_hw_down] = {
117                 .go_s99_running_tofalse = 1,
118                 .op_enable = 0,
119                 .op_intenable = 0,
120                 .op_halt = 0,
121                 .op_cleanup = 0,
122         },
123         [sdma_state_s10_hw_start_up_halt_wait] = {
124                 .op_enable = 0,
125                 .op_intenable = 0,
126                 .op_halt = 1,
127                 .op_cleanup = 0,
128         },
129         [sdma_state_s15_hw_start_up_clean_wait] = {
130                 .op_enable = 0,
131                 .op_intenable = 1,
132                 .op_halt = 0,
133                 .op_cleanup = 1,
134         },
135         [sdma_state_s20_idle] = {
136                 .op_enable = 0,
137                 .op_intenable = 1,
138                 .op_halt = 0,
139                 .op_cleanup = 0,
140         },
141         [sdma_state_s30_sw_clean_up_wait] = {
142                 .op_enable = 0,
143                 .op_intenable = 0,
144                 .op_halt = 0,
145                 .op_cleanup = 0,
146         },
147         [sdma_state_s40_hw_clean_up_wait] = {
148                 .op_enable = 0,
149                 .op_intenable = 0,
150                 .op_halt = 0,
151                 .op_cleanup = 1,
152         },
153         [sdma_state_s50_hw_halt_wait] = {
154                 .op_enable = 0,
155                 .op_intenable = 0,
156                 .op_halt = 0,
157                 .op_cleanup = 0,
158         },
159         [sdma_state_s60_idle_halt_wait] = {
160                 .go_s99_running_tofalse = 1,
161                 .op_enable = 0,
162                 .op_intenable = 0,
163                 .op_halt = 1,
164                 .op_cleanup = 0,
165         },
166         [sdma_state_s80_hw_freeze] = {
167                 .op_enable = 0,
168                 .op_intenable = 0,
169                 .op_halt = 0,
170                 .op_cleanup = 0,
171         },
172         [sdma_state_s82_freeze_sw_clean] = {
173                 .op_enable = 0,
174                 .op_intenable = 0,
175                 .op_halt = 0,
176                 .op_cleanup = 0,
177         },
178         [sdma_state_s99_running] = {
179                 .op_enable = 1,
180                 .op_intenable = 1,
181                 .op_halt = 0,
182                 .op_cleanup = 0,
183                 .go_s99_running_totrue = 1,
184         },
185 };
186
187 #define SDMA_TAIL_UPDATE_THRESH 0x1F
188
189 /* declare all statics here rather than keep sorting */
190 static void sdma_complete(struct kref *);
191 static void sdma_finalput(struct sdma_state *);
192 static void sdma_get(struct sdma_state *);
193 static void sdma_hw_clean_up_task(struct tasklet_struct *);
194 static void sdma_put(struct sdma_state *);
195 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
196 static void sdma_start_hw_clean_up(struct sdma_engine *);
197 static void sdma_sw_clean_up_task(struct tasklet_struct *);
198 static void sdma_sendctrl(struct sdma_engine *, unsigned);
199 static void init_sdma_regs(struct sdma_engine *, u32, uint);
200 static void sdma_process_event(
201         struct sdma_engine *sde,
202         enum sdma_events event);
203 static void __sdma_process_event(
204         struct sdma_engine *sde,
205         enum sdma_events event);
206 static void dump_sdma_state(struct sdma_engine *sde);
207 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
208 static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
209 static void sdma_flush_descq(struct sdma_engine *sde);
210
211 /**
212  * sdma_state_name() - return state string from enum
213  * @state: state
214  */
215 static const char *sdma_state_name(enum sdma_states state)
216 {
217         return sdma_state_names[state];
218 }
219
220 static void sdma_get(struct sdma_state *ss)
221 {
222         kref_get(&ss->kref);
223 }
224
225 static void sdma_complete(struct kref *kref)
226 {
227         struct sdma_state *ss =
228                 container_of(kref, struct sdma_state, kref);
229
230         complete(&ss->comp);
231 }
232
233 static void sdma_put(struct sdma_state *ss)
234 {
235         kref_put(&ss->kref, sdma_complete);
236 }
237
238 static void sdma_finalput(struct sdma_state *ss)
239 {
240         sdma_put(ss);
241         wait_for_completion(&ss->comp);
242 }
243
244 static inline void write_sde_csr(
245         struct sdma_engine *sde,
246         u32 offset0,
247         u64 value)
248 {
249         write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
250 }
251
252 static inline u64 read_sde_csr(
253         struct sdma_engine *sde,
254         u32 offset0)
255 {
256         return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
257 }
258
259 /*
260  * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
261  * sdma engine 'sde' to drop to 0.
262  */
263 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
264                                         int pause)
265 {
266         u64 off = 8 * sde->this_idx;
267         struct hfi1_devdata *dd = sde->dd;
268         int lcnt = 0;
269         u64 reg_prev;
270         u64 reg = 0;
271
272         while (1) {
273                 reg_prev = reg;
274                 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
275
276                 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
277                 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
278                 if (reg == 0)
279                         break;
280                 /* counter is reest if accupancy count changes */
281                 if (reg != reg_prev)
282                         lcnt = 0;
283                 if (lcnt++ > 500) {
284                         /* timed out - bounce the link */
285                         dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
286                                    __func__, sde->this_idx, (u32)reg);
287                         queue_work(dd->pport->link_wq,
288                                    &dd->pport->link_bounce_work);
289                         break;
290                 }
291                 udelay(1);
292         }
293 }
294
295 /*
296  * sdma_wait() - wait for packet egress to complete for all SDMA engines,
297  * and pause for credit return.
298  */
299 void sdma_wait(struct hfi1_devdata *dd)
300 {
301         int i;
302
303         for (i = 0; i < dd->num_sdma; i++) {
304                 struct sdma_engine *sde = &dd->per_sdma[i];
305
306                 sdma_wait_for_packet_egress(sde, 0);
307         }
308 }
309
310 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
311 {
312         u64 reg;
313
314         if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
315                 return;
316         reg = cnt;
317         reg &= SD(DESC_CNT_CNT_MASK);
318         reg <<= SD(DESC_CNT_CNT_SHIFT);
319         write_sde_csr(sde, SD(DESC_CNT), reg);
320 }
321
322 static inline void complete_tx(struct sdma_engine *sde,
323                                struct sdma_txreq *tx,
324                                int res)
325 {
326         /* protect against complete modifying */
327         struct iowait *wait = tx->wait;
328         callback_t complete = tx->complete;
329
330 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
331         trace_hfi1_sdma_out_sn(sde, tx->sn);
332         if (WARN_ON_ONCE(sde->head_sn != tx->sn))
333                 dd_dev_err(sde->dd, "expected %llu got %llu\n",
334                            sde->head_sn, tx->sn);
335         sde->head_sn++;
336 #endif
337         __sdma_txclean(sde->dd, tx);
338         if (complete)
339                 (*complete)(tx, res);
340         if (iowait_sdma_dec(wait))
341                 iowait_drain_wakeup(wait);
342 }
343
344 /*
345  * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
346  *
347  * Depending on timing there can be txreqs in two places:
348  * - in the descq ring
349  * - in the flush list
350  *
351  * To avoid ordering issues the descq ring needs to be flushed
352  * first followed by the flush list.
353  *
354  * This routine is called from two places
355  * - From a work queue item
356  * - Directly from the state machine just before setting the
357  *   state to running
358  *
359  * Must be called with head_lock held
360  *
361  */
362 static void sdma_flush(struct sdma_engine *sde)
363 {
364         struct sdma_txreq *txp, *txp_next;
365         LIST_HEAD(flushlist);
366         unsigned long flags;
367         uint seq;
368
369         /* flush from head to tail */
370         sdma_flush_descq(sde);
371         spin_lock_irqsave(&sde->flushlist_lock, flags);
372         /* copy flush list */
373         list_splice_init(&sde->flushlist, &flushlist);
374         spin_unlock_irqrestore(&sde->flushlist_lock, flags);
375         /* flush from flush list */
376         list_for_each_entry_safe(txp, txp_next, &flushlist, list)
377                 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
378         /* wakeup QPs orphaned on the dmawait list */
379         do {
380                 struct iowait *w, *nw;
381
382                 seq = read_seqbegin(&sde->waitlock);
383                 if (!list_empty(&sde->dmawait)) {
384                         write_seqlock(&sde->waitlock);
385                         list_for_each_entry_safe(w, nw, &sde->dmawait, list) {
386                                 if (w->wakeup) {
387                                         w->wakeup(w, SDMA_AVAIL_REASON);
388                                         list_del_init(&w->list);
389                                 }
390                         }
391                         write_sequnlock(&sde->waitlock);
392                 }
393         } while (read_seqretry(&sde->waitlock, seq));
394 }
395
396 /*
397  * Fields a work request for flushing the descq ring
398  * and the flush list
399  *
400  * If the engine has been brought to running during
401  * the scheduling delay, the flush is ignored, assuming
402  * that the process of bringing the engine to running
403  * would have done this flush prior to going to running.
404  *
405  */
406 static void sdma_field_flush(struct work_struct *work)
407 {
408         unsigned long flags;
409         struct sdma_engine *sde =
410                 container_of(work, struct sdma_engine, flush_worker);
411
412         write_seqlock_irqsave(&sde->head_lock, flags);
413         if (!__sdma_running(sde))
414                 sdma_flush(sde);
415         write_sequnlock_irqrestore(&sde->head_lock, flags);
416 }
417
418 static void sdma_err_halt_wait(struct work_struct *work)
419 {
420         struct sdma_engine *sde = container_of(work, struct sdma_engine,
421                                                 err_halt_worker);
422         u64 statuscsr;
423         unsigned long timeout;
424
425         timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
426         while (1) {
427                 statuscsr = read_sde_csr(sde, SD(STATUS));
428                 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
429                 if (statuscsr)
430                         break;
431                 if (time_after(jiffies, timeout)) {
432                         dd_dev_err(sde->dd,
433                                    "SDMA engine %d - timeout waiting for engine to halt\n",
434                                    sde->this_idx);
435                         /*
436                          * Continue anyway.  This could happen if there was
437                          * an uncorrectable error in the wrong spot.
438                          */
439                         break;
440                 }
441                 usleep_range(80, 120);
442         }
443
444         sdma_process_event(sde, sdma_event_e15_hw_halt_done);
445 }
446
447 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
448 {
449         if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
450                 unsigned index;
451                 struct hfi1_devdata *dd = sde->dd;
452
453                 for (index = 0; index < dd->num_sdma; index++) {
454                         struct sdma_engine *curr_sdma = &dd->per_sdma[index];
455
456                         if (curr_sdma != sde)
457                                 curr_sdma->progress_check_head =
458                                                         curr_sdma->descq_head;
459                 }
460                 dd_dev_err(sde->dd,
461                            "SDMA engine %d - check scheduled\n",
462                                 sde->this_idx);
463                 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
464         }
465 }
466
467 static void sdma_err_progress_check(struct timer_list *t)
468 {
469         unsigned index;
470         struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
471
472         dd_dev_err(sde->dd, "SDE progress check event\n");
473         for (index = 0; index < sde->dd->num_sdma; index++) {
474                 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
475                 unsigned long flags;
476
477                 /* check progress on each engine except the current one */
478                 if (curr_sde == sde)
479                         continue;
480                 /*
481                  * We must lock interrupts when acquiring sde->lock,
482                  * to avoid a deadlock if interrupt triggers and spins on
483                  * the same lock on same CPU
484                  */
485                 spin_lock_irqsave(&curr_sde->tail_lock, flags);
486                 write_seqlock(&curr_sde->head_lock);
487
488                 /* skip non-running queues */
489                 if (curr_sde->state.current_state != sdma_state_s99_running) {
490                         write_sequnlock(&curr_sde->head_lock);
491                         spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
492                         continue;
493                 }
494
495                 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
496                     (curr_sde->descq_head ==
497                                 curr_sde->progress_check_head))
498                         __sdma_process_event(curr_sde,
499                                              sdma_event_e90_sw_halted);
500                 write_sequnlock(&curr_sde->head_lock);
501                 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
502         }
503         schedule_work(&sde->err_halt_worker);
504 }
505
506 static void sdma_hw_clean_up_task(struct tasklet_struct *t)
507 {
508         struct sdma_engine *sde = from_tasklet(sde, t,
509                                                sdma_hw_clean_up_task);
510         u64 statuscsr;
511
512         while (1) {
513 #ifdef CONFIG_SDMA_VERBOSITY
514                 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
515                            sde->this_idx, slashstrip(__FILE__), __LINE__,
516                         __func__);
517 #endif
518                 statuscsr = read_sde_csr(sde, SD(STATUS));
519                 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
520                 if (statuscsr)
521                         break;
522                 udelay(10);
523         }
524
525         sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
526 }
527
528 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
529 {
530         return sde->tx_ring[sde->tx_head & sde->sdma_mask];
531 }
532
533 /*
534  * flush ring for recovery
535  */
536 static void sdma_flush_descq(struct sdma_engine *sde)
537 {
538         u16 head, tail;
539         int progress = 0;
540         struct sdma_txreq *txp = get_txhead(sde);
541
542         /* The reason for some of the complexity of this code is that
543          * not all descriptors have corresponding txps.  So, we have to
544          * be able to skip over descs until we wander into the range of
545          * the next txp on the list.
546          */
547         head = sde->descq_head & sde->sdma_mask;
548         tail = sde->descq_tail & sde->sdma_mask;
549         while (head != tail) {
550                 /* advance head, wrap if needed */
551                 head = ++sde->descq_head & sde->sdma_mask;
552                 /* if now past this txp's descs, do the callback */
553                 if (txp && txp->next_descq_idx == head) {
554                         /* remove from list */
555                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
556                         complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
557                         trace_hfi1_sdma_progress(sde, head, tail, txp);
558                         txp = get_txhead(sde);
559                 }
560                 progress++;
561         }
562         if (progress)
563                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
564 }
565
566 static void sdma_sw_clean_up_task(struct tasklet_struct *t)
567 {
568         struct sdma_engine *sde = from_tasklet(sde, t, sdma_sw_clean_up_task);
569         unsigned long flags;
570
571         spin_lock_irqsave(&sde->tail_lock, flags);
572         write_seqlock(&sde->head_lock);
573
574         /*
575          * At this point, the following should always be true:
576          * - We are halted, so no more descriptors are getting retired.
577          * - We are not running, so no one is submitting new work.
578          * - Only we can send the e40_sw_cleaned, so we can't start
579          *   running again until we say so.  So, the active list and
580          *   descq are ours to play with.
581          */
582
583         /*
584          * In the error clean up sequence, software clean must be called
585          * before the hardware clean so we can use the hardware head in
586          * the progress routine.  A hardware clean or SPC unfreeze will
587          * reset the hardware head.
588          *
589          * Process all retired requests. The progress routine will use the
590          * latest physical hardware head - we are not running so speed does
591          * not matter.
592          */
593         sdma_make_progress(sde, 0);
594
595         sdma_flush(sde);
596
597         /*
598          * Reset our notion of head and tail.
599          * Note that the HW registers have been reset via an earlier
600          * clean up.
601          */
602         sde->descq_tail = 0;
603         sde->descq_head = 0;
604         sde->desc_avail = sdma_descq_freecnt(sde);
605         *sde->head_dma = 0;
606
607         __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
608
609         write_sequnlock(&sde->head_lock);
610         spin_unlock_irqrestore(&sde->tail_lock, flags);
611 }
612
613 static void sdma_sw_tear_down(struct sdma_engine *sde)
614 {
615         struct sdma_state *ss = &sde->state;
616
617         /* Releasing this reference means the state machine has stopped. */
618         sdma_put(ss);
619
620         /* stop waiting for all unfreeze events to complete */
621         atomic_set(&sde->dd->sdma_unfreeze_count, -1);
622         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
623 }
624
625 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
626 {
627         tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
628 }
629
630 static void sdma_set_state(struct sdma_engine *sde,
631                            enum sdma_states next_state)
632 {
633         struct sdma_state *ss = &sde->state;
634         const struct sdma_set_state_action *action = sdma_action_table;
635         unsigned op = 0;
636
637         trace_hfi1_sdma_state(
638                 sde,
639                 sdma_state_names[ss->current_state],
640                 sdma_state_names[next_state]);
641
642         /* debugging bookkeeping */
643         ss->previous_state = ss->current_state;
644         ss->previous_op = ss->current_op;
645         ss->current_state = next_state;
646
647         if (ss->previous_state != sdma_state_s99_running &&
648             next_state == sdma_state_s99_running)
649                 sdma_flush(sde);
650
651         if (action[next_state].op_enable)
652                 op |= SDMA_SENDCTRL_OP_ENABLE;
653
654         if (action[next_state].op_intenable)
655                 op |= SDMA_SENDCTRL_OP_INTENABLE;
656
657         if (action[next_state].op_halt)
658                 op |= SDMA_SENDCTRL_OP_HALT;
659
660         if (action[next_state].op_cleanup)
661                 op |= SDMA_SENDCTRL_OP_CLEANUP;
662
663         if (action[next_state].go_s99_running_tofalse)
664                 ss->go_s99_running = 0;
665
666         if (action[next_state].go_s99_running_totrue)
667                 ss->go_s99_running = 1;
668
669         ss->current_op = op;
670         sdma_sendctrl(sde, ss->current_op);
671 }
672
673 /**
674  * sdma_get_descq_cnt() - called when device probed
675  *
676  * Return a validated descq count.
677  *
678  * This is currently only used in the verbs initialization to build the tx
679  * list.
680  *
681  * This will probably be deleted in favor of a more scalable approach to
682  * alloc tx's.
683  *
684  */
685 u16 sdma_get_descq_cnt(void)
686 {
687         u16 count = sdma_descq_cnt;
688
689         if (!count)
690                 return SDMA_DESCQ_CNT;
691         /* count must be a power of 2 greater than 64 and less than
692          * 32768.   Otherwise return default.
693          */
694         if (!is_power_of_2(count))
695                 return SDMA_DESCQ_CNT;
696         if (count < 64 || count > 32768)
697                 return SDMA_DESCQ_CNT;
698         return count;
699 }
700
701 /**
702  * sdma_engine_get_vl() - return vl for a given sdma engine
703  * @sde: sdma engine
704  *
705  * This function returns the vl mapped to a given engine, or an error if
706  * the mapping can't be found. The mapping fields are protected by RCU.
707  */
708 int sdma_engine_get_vl(struct sdma_engine *sde)
709 {
710         struct hfi1_devdata *dd = sde->dd;
711         struct sdma_vl_map *m;
712         u8 vl;
713
714         if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
715                 return -EINVAL;
716
717         rcu_read_lock();
718         m = rcu_dereference(dd->sdma_map);
719         if (unlikely(!m)) {
720                 rcu_read_unlock();
721                 return -EINVAL;
722         }
723         vl = m->engine_to_vl[sde->this_idx];
724         rcu_read_unlock();
725
726         return vl;
727 }
728
729 /**
730  * sdma_select_engine_vl() - select sdma engine
731  * @dd: devdata
732  * @selector: a spreading factor
733  * @vl: this vl
734  *
735  *
736  * This function returns an engine based on the selector and a vl.  The
737  * mapping fields are protected by RCU.
738  */
739 struct sdma_engine *sdma_select_engine_vl(
740         struct hfi1_devdata *dd,
741         u32 selector,
742         u8 vl)
743 {
744         struct sdma_vl_map *m;
745         struct sdma_map_elem *e;
746         struct sdma_engine *rval;
747
748         /* NOTE This should only happen if SC->VL changed after the initial
749          *      checks on the QP/AH
750          *      Default will return engine 0 below
751          */
752         if (vl >= num_vls) {
753                 rval = NULL;
754                 goto done;
755         }
756
757         rcu_read_lock();
758         m = rcu_dereference(dd->sdma_map);
759         if (unlikely(!m)) {
760                 rcu_read_unlock();
761                 return &dd->per_sdma[0];
762         }
763         e = m->map[vl & m->mask];
764         rval = e->sde[selector & e->mask];
765         rcu_read_unlock();
766
767 done:
768         rval =  !rval ? &dd->per_sdma[0] : rval;
769         trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
770         return rval;
771 }
772
773 /**
774  * sdma_select_engine_sc() - select sdma engine
775  * @dd: devdata
776  * @selector: a spreading factor
777  * @sc5: the 5 bit sc
778  *
779  *
780  * This function returns an engine based on the selector and an sc.
781  */
782 struct sdma_engine *sdma_select_engine_sc(
783         struct hfi1_devdata *dd,
784         u32 selector,
785         u8 sc5)
786 {
787         u8 vl = sc_to_vlt(dd, sc5);
788
789         return sdma_select_engine_vl(dd, selector, vl);
790 }
791
792 struct sdma_rht_map_elem {
793         u32 mask;
794         u8 ctr;
795         struct sdma_engine *sde[];
796 };
797
798 struct sdma_rht_node {
799         unsigned long cpu_id;
800         struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
801         struct rhash_head node;
802 };
803
804 #define NR_CPUS_HINT 192
805
806 static const struct rhashtable_params sdma_rht_params = {
807         .nelem_hint = NR_CPUS_HINT,
808         .head_offset = offsetof(struct sdma_rht_node, node),
809         .key_offset = offsetof(struct sdma_rht_node, cpu_id),
810         .key_len = sizeof_field(struct sdma_rht_node, cpu_id),
811         .max_size = NR_CPUS,
812         .min_size = 8,
813         .automatic_shrinking = true,
814 };
815
816 /*
817  * sdma_select_user_engine() - select sdma engine based on user setup
818  * @dd: devdata
819  * @selector: a spreading factor
820  * @vl: this vl
821  *
822  * This function returns an sdma engine for a user sdma request.
823  * User defined sdma engine affinity setting is honored when applicable,
824  * otherwise system default sdma engine mapping is used. To ensure correct
825  * ordering, the mapping from <selector, vl> to sde must remain unchanged.
826  */
827 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
828                                             u32 selector, u8 vl)
829 {
830         struct sdma_rht_node *rht_node;
831         struct sdma_engine *sde = NULL;
832         unsigned long cpu_id;
833
834         /*
835          * To ensure that always the same sdma engine(s) will be
836          * selected make sure the process is pinned to this CPU only.
837          */
838         if (current->nr_cpus_allowed != 1)
839                 goto out;
840
841         cpu_id = smp_processor_id();
842         rcu_read_lock();
843         rht_node = rhashtable_lookup(dd->sdma_rht, &cpu_id,
844                                      sdma_rht_params);
845
846         if (rht_node && rht_node->map[vl]) {
847                 struct sdma_rht_map_elem *map = rht_node->map[vl];
848
849                 sde = map->sde[selector & map->mask];
850         }
851         rcu_read_unlock();
852
853         if (sde)
854                 return sde;
855
856 out:
857         return sdma_select_engine_vl(dd, selector, vl);
858 }
859
860 static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
861 {
862         int i;
863
864         for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
865                 map->sde[map->ctr + i] = map->sde[i];
866 }
867
868 static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
869                                  struct sdma_engine *sde)
870 {
871         unsigned int i, pow;
872
873         /* only need to check the first ctr entries for a match */
874         for (i = 0; i < map->ctr; i++) {
875                 if (map->sde[i] == sde) {
876                         memmove(&map->sde[i], &map->sde[i + 1],
877                                 (map->ctr - i - 1) * sizeof(map->sde[0]));
878                         map->ctr--;
879                         pow = roundup_pow_of_two(map->ctr ? : 1);
880                         map->mask = pow - 1;
881                         sdma_populate_sde_map(map);
882                         break;
883                 }
884         }
885 }
886
887 /*
888  * Prevents concurrent reads and writes of the sdma engine cpu_mask
889  */
890 static DEFINE_MUTEX(process_to_sde_mutex);
891
892 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
893                                 size_t count)
894 {
895         struct hfi1_devdata *dd = sde->dd;
896         cpumask_var_t mask, new_mask;
897         unsigned long cpu;
898         int ret, vl, sz;
899         struct sdma_rht_node *rht_node;
900
901         vl = sdma_engine_get_vl(sde);
902         if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map)))
903                 return -EINVAL;
904
905         ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
906         if (!ret)
907                 return -ENOMEM;
908
909         ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
910         if (!ret) {
911                 free_cpumask_var(mask);
912                 return -ENOMEM;
913         }
914         ret = cpulist_parse(buf, mask);
915         if (ret)
916                 goto out_free;
917
918         if (!cpumask_subset(mask, cpu_online_mask)) {
919                 dd_dev_warn(sde->dd, "Invalid CPU mask\n");
920                 ret = -EINVAL;
921                 goto out_free;
922         }
923
924         sz = sizeof(struct sdma_rht_map_elem) +
925                         (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
926
927         mutex_lock(&process_to_sde_mutex);
928
929         for_each_cpu(cpu, mask) {
930                 /* Check if we have this already mapped */
931                 if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
932                         cpumask_set_cpu(cpu, new_mask);
933                         continue;
934                 }
935
936                 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
937                                                   sdma_rht_params);
938                 if (!rht_node) {
939                         rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
940                         if (!rht_node) {
941                                 ret = -ENOMEM;
942                                 goto out;
943                         }
944
945                         rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
946                         if (!rht_node->map[vl]) {
947                                 kfree(rht_node);
948                                 ret = -ENOMEM;
949                                 goto out;
950                         }
951                         rht_node->cpu_id = cpu;
952                         rht_node->map[vl]->mask = 0;
953                         rht_node->map[vl]->ctr = 1;
954                         rht_node->map[vl]->sde[0] = sde;
955
956                         ret = rhashtable_insert_fast(dd->sdma_rht,
957                                                      &rht_node->node,
958                                                      sdma_rht_params);
959                         if (ret) {
960                                 kfree(rht_node->map[vl]);
961                                 kfree(rht_node);
962                                 dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
963                                            cpu);
964                                 goto out;
965                         }
966
967                 } else {
968                         int ctr, pow;
969
970                         /* Add new user mappings */
971                         if (!rht_node->map[vl])
972                                 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
973
974                         if (!rht_node->map[vl]) {
975                                 ret = -ENOMEM;
976                                 goto out;
977                         }
978
979                         rht_node->map[vl]->ctr++;
980                         ctr = rht_node->map[vl]->ctr;
981                         rht_node->map[vl]->sde[ctr - 1] = sde;
982                         pow = roundup_pow_of_two(ctr);
983                         rht_node->map[vl]->mask = pow - 1;
984
985                         /* Populate the sde map table */
986                         sdma_populate_sde_map(rht_node->map[vl]);
987                 }
988                 cpumask_set_cpu(cpu, new_mask);
989         }
990
991         /* Clean up old mappings */
992         for_each_cpu(cpu, cpu_online_mask) {
993                 struct sdma_rht_node *rht_node;
994
995                 /* Don't cleanup sdes that are set in the new mask */
996                 if (cpumask_test_cpu(cpu, mask))
997                         continue;
998
999                 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
1000                                                   sdma_rht_params);
1001                 if (rht_node) {
1002                         bool empty = true;
1003                         int i;
1004
1005                         /* Remove mappings for old sde */
1006                         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1007                                 if (rht_node->map[i])
1008                                         sdma_cleanup_sde_map(rht_node->map[i],
1009                                                              sde);
1010
1011                         /* Free empty hash table entries */
1012                         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1013                                 if (!rht_node->map[i])
1014                                         continue;
1015
1016                                 if (rht_node->map[i]->ctr) {
1017                                         empty = false;
1018                                         break;
1019                                 }
1020                         }
1021
1022                         if (empty) {
1023                                 ret = rhashtable_remove_fast(dd->sdma_rht,
1024                                                              &rht_node->node,
1025                                                              sdma_rht_params);
1026                                 WARN_ON(ret);
1027
1028                                 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1029                                         kfree(rht_node->map[i]);
1030
1031                                 kfree(rht_node);
1032                         }
1033                 }
1034         }
1035
1036         cpumask_copy(&sde->cpu_mask, new_mask);
1037 out:
1038         mutex_unlock(&process_to_sde_mutex);
1039 out_free:
1040         free_cpumask_var(mask);
1041         free_cpumask_var(new_mask);
1042         return ret ? : strnlen(buf, PAGE_SIZE);
1043 }
1044
1045 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1046 {
1047         mutex_lock(&process_to_sde_mutex);
1048         if (cpumask_empty(&sde->cpu_mask))
1049                 snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1050         else
1051                 cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1052         mutex_unlock(&process_to_sde_mutex);
1053         return strnlen(buf, PAGE_SIZE);
1054 }
1055
1056 static void sdma_rht_free(void *ptr, void *arg)
1057 {
1058         struct sdma_rht_node *rht_node = ptr;
1059         int i;
1060
1061         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1062                 kfree(rht_node->map[i]);
1063
1064         kfree(rht_node);
1065 }
1066
1067 /**
1068  * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1069  * @s: seq file
1070  * @dd: hfi1_devdata
1071  * @cpuid: cpu id
1072  *
1073  * This routine dumps the process to sde mappings per cpu
1074  */
1075 void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1076                                 struct hfi1_devdata *dd,
1077                                 unsigned long cpuid)
1078 {
1079         struct sdma_rht_node *rht_node;
1080         int i, j;
1081
1082         rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
1083                                           sdma_rht_params);
1084         if (!rht_node)
1085                 return;
1086
1087         seq_printf(s, "cpu%3lu: ", cpuid);
1088         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1089                 if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1090                         continue;
1091
1092                 seq_printf(s, " vl%d: [", i);
1093
1094                 for (j = 0; j < rht_node->map[i]->ctr; j++) {
1095                         if (!rht_node->map[i]->sde[j])
1096                                 continue;
1097
1098                         if (j > 0)
1099                                 seq_puts(s, ",");
1100
1101                         seq_printf(s, " sdma%2d",
1102                                    rht_node->map[i]->sde[j]->this_idx);
1103                 }
1104                 seq_puts(s, " ]");
1105         }
1106
1107         seq_puts(s, "\n");
1108 }
1109
1110 /*
1111  * Free the indicated map struct
1112  */
1113 static void sdma_map_free(struct sdma_vl_map *m)
1114 {
1115         int i;
1116
1117         for (i = 0; m && i < m->actual_vls; i++)
1118                 kfree(m->map[i]);
1119         kfree(m);
1120 }
1121
1122 /*
1123  * Handle RCU callback
1124  */
1125 static void sdma_map_rcu_callback(struct rcu_head *list)
1126 {
1127         struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1128
1129         sdma_map_free(m);
1130 }
1131
1132 /**
1133  * sdma_map_init - called when # vls change
1134  * @dd: hfi1_devdata
1135  * @port: port number
1136  * @num_vls: number of vls
1137  * @vl_engines: per vl engine mapping (optional)
1138  *
1139  * This routine changes the mapping based on the number of vls.
1140  *
1141  * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1142  * implies auto computing the loading and giving each VLs a uniform
1143  * distribution of engines per VL.
1144  *
1145  * The auto algorithm computes the sde_per_vl and the number of extra
1146  * engines.  Any extra engines are added from the last VL on down.
1147  *
1148  * rcu locking is used here to control access to the mapping fields.
1149  *
1150  * If either the num_vls or num_sdma are non-power of 2, the array sizes
1151  * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1152  * up to the next highest power of 2 and the first entry is reused
1153  * in a round robin fashion.
1154  *
1155  * If an error occurs the map change is not done and the mapping is
1156  * not changed.
1157  *
1158  */
1159 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1160 {
1161         int i, j;
1162         int extra, sde_per_vl;
1163         int engine = 0;
1164         u8 lvl_engines[OPA_MAX_VLS];
1165         struct sdma_vl_map *oldmap, *newmap;
1166
1167         if (!(dd->flags & HFI1_HAS_SEND_DMA))
1168                 return 0;
1169
1170         if (!vl_engines) {
1171                 /* truncate divide */
1172                 sde_per_vl = dd->num_sdma / num_vls;
1173                 /* extras */
1174                 extra = dd->num_sdma % num_vls;
1175                 vl_engines = lvl_engines;
1176                 /* add extras from last vl down */
1177                 for (i = num_vls - 1; i >= 0; i--, extra--)
1178                         vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1179         }
1180         /* build new map */
1181         newmap = kzalloc(
1182                 sizeof(struct sdma_vl_map) +
1183                         roundup_pow_of_two(num_vls) *
1184                         sizeof(struct sdma_map_elem *),
1185                 GFP_KERNEL);
1186         if (!newmap)
1187                 goto bail;
1188         newmap->actual_vls = num_vls;
1189         newmap->vls = roundup_pow_of_two(num_vls);
1190         newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1191         /* initialize back-map */
1192         for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1193                 newmap->engine_to_vl[i] = -1;
1194         for (i = 0; i < newmap->vls; i++) {
1195                 /* save for wrap around */
1196                 int first_engine = engine;
1197
1198                 if (i < newmap->actual_vls) {
1199                         int sz = roundup_pow_of_two(vl_engines[i]);
1200
1201                         /* only allocate once */
1202                         newmap->map[i] = kzalloc(
1203                                 sizeof(struct sdma_map_elem) +
1204                                         sz * sizeof(struct sdma_engine *),
1205                                 GFP_KERNEL);
1206                         if (!newmap->map[i])
1207                                 goto bail;
1208                         newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1209                         /* assign engines */
1210                         for (j = 0; j < sz; j++) {
1211                                 newmap->map[i]->sde[j] =
1212                                         &dd->per_sdma[engine];
1213                                 if (++engine >= first_engine + vl_engines[i])
1214                                         /* wrap back to first engine */
1215                                         engine = first_engine;
1216                         }
1217                         /* assign back-map */
1218                         for (j = 0; j < vl_engines[i]; j++)
1219                                 newmap->engine_to_vl[first_engine + j] = i;
1220                 } else {
1221                         /* just re-use entry without allocating */
1222                         newmap->map[i] = newmap->map[i % num_vls];
1223                 }
1224                 engine = first_engine + vl_engines[i];
1225         }
1226         /* newmap in hand, save old map */
1227         spin_lock_irq(&dd->sde_map_lock);
1228         oldmap = rcu_dereference_protected(dd->sdma_map,
1229                                            lockdep_is_held(&dd->sde_map_lock));
1230
1231         /* publish newmap */
1232         rcu_assign_pointer(dd->sdma_map, newmap);
1233
1234         spin_unlock_irq(&dd->sde_map_lock);
1235         /* success, free any old map after grace period */
1236         if (oldmap)
1237                 call_rcu(&oldmap->list, sdma_map_rcu_callback);
1238         return 0;
1239 bail:
1240         /* free any partial allocation */
1241         sdma_map_free(newmap);
1242         return -ENOMEM;
1243 }
1244
1245 /**
1246  * sdma_clean - Clean up allocated memory
1247  * @dd:          struct hfi1_devdata
1248  * @num_engines: num sdma engines
1249  *
1250  * This routine can be called regardless of the success of
1251  * sdma_init()
1252  */
1253 void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1254 {
1255         size_t i;
1256         struct sdma_engine *sde;
1257
1258         if (dd->sdma_pad_dma) {
1259                 dma_free_coherent(&dd->pcidev->dev, SDMA_PAD,
1260                                   (void *)dd->sdma_pad_dma,
1261                                   dd->sdma_pad_phys);
1262                 dd->sdma_pad_dma = NULL;
1263                 dd->sdma_pad_phys = 0;
1264         }
1265         if (dd->sdma_heads_dma) {
1266                 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1267                                   (void *)dd->sdma_heads_dma,
1268                                   dd->sdma_heads_phys);
1269                 dd->sdma_heads_dma = NULL;
1270                 dd->sdma_heads_phys = 0;
1271         }
1272         for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1273                 sde = &dd->per_sdma[i];
1274
1275                 sde->head_dma = NULL;
1276                 sde->head_phys = 0;
1277
1278                 if (sde->descq) {
1279                         dma_free_coherent(
1280                                 &dd->pcidev->dev,
1281                                 sde->descq_cnt * sizeof(u64[2]),
1282                                 sde->descq,
1283                                 sde->descq_phys
1284                         );
1285                         sde->descq = NULL;
1286                         sde->descq_phys = 0;
1287                 }
1288                 kvfree(sde->tx_ring);
1289                 sde->tx_ring = NULL;
1290         }
1291         spin_lock_irq(&dd->sde_map_lock);
1292         sdma_map_free(rcu_access_pointer(dd->sdma_map));
1293         RCU_INIT_POINTER(dd->sdma_map, NULL);
1294         spin_unlock_irq(&dd->sde_map_lock);
1295         synchronize_rcu();
1296         kfree(dd->per_sdma);
1297         dd->per_sdma = NULL;
1298
1299         if (dd->sdma_rht) {
1300                 rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
1301                 kfree(dd->sdma_rht);
1302                 dd->sdma_rht = NULL;
1303         }
1304 }
1305
1306 /**
1307  * sdma_init() - called when device probed
1308  * @dd: hfi1_devdata
1309  * @port: port number (currently only zero)
1310  *
1311  * Initializes each sde and its csrs.
1312  * Interrupts are not required to be enabled.
1313  *
1314  * Returns:
1315  * 0 - success, -errno on failure
1316  */
1317 int sdma_init(struct hfi1_devdata *dd, u8 port)
1318 {
1319         unsigned this_idx;
1320         struct sdma_engine *sde;
1321         struct rhashtable *tmp_sdma_rht;
1322         u16 descq_cnt;
1323         void *curr_head;
1324         struct hfi1_pportdata *ppd = dd->pport + port;
1325         u32 per_sdma_credits;
1326         uint idle_cnt = sdma_idle_cnt;
1327         size_t num_engines = chip_sdma_engines(dd);
1328         int ret = -ENOMEM;
1329
1330         if (!HFI1_CAP_IS_KSET(SDMA)) {
1331                 HFI1_CAP_CLEAR(SDMA_AHG);
1332                 return 0;
1333         }
1334         if (mod_num_sdma &&
1335             /* can't exceed chip support */
1336             mod_num_sdma <= chip_sdma_engines(dd) &&
1337             /* count must be >= vls */
1338             mod_num_sdma >= num_vls)
1339                 num_engines = mod_num_sdma;
1340
1341         dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1342         dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd));
1343         dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1344                     chip_sdma_mem_size(dd));
1345
1346         per_sdma_credits =
1347                 chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE);
1348
1349         /* set up freeze waitqueue */
1350         init_waitqueue_head(&dd->sdma_unfreeze_wq);
1351         atomic_set(&dd->sdma_unfreeze_count, 0);
1352
1353         descq_cnt = sdma_get_descq_cnt();
1354         dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1355                     num_engines, descq_cnt);
1356
1357         /* alloc memory for array of send engines */
1358         dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
1359                                     GFP_KERNEL, dd->node);
1360         if (!dd->per_sdma)
1361                 return ret;
1362
1363         idle_cnt = ns_to_cclock(dd, idle_cnt);
1364         if (idle_cnt)
1365                 dd->default_desc1 =
1366                         SDMA_DESC1_HEAD_TO_HOST_FLAG;
1367         else
1368                 dd->default_desc1 =
1369                         SDMA_DESC1_INT_REQ_FLAG;
1370
1371         if (!sdma_desct_intr)
1372                 sdma_desct_intr = SDMA_DESC_INTR;
1373
1374         /* Allocate memory for SendDMA descriptor FIFOs */
1375         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1376                 sde = &dd->per_sdma[this_idx];
1377                 sde->dd = dd;
1378                 sde->ppd = ppd;
1379                 sde->this_idx = this_idx;
1380                 sde->descq_cnt = descq_cnt;
1381                 sde->desc_avail = sdma_descq_freecnt(sde);
1382                 sde->sdma_shift = ilog2(descq_cnt);
1383                 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1384
1385                 /* Create a mask specifically for each interrupt source */
1386                 sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1387                                            this_idx);
1388                 sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1389                                                 this_idx);
1390                 sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1391                                             this_idx);
1392                 /* Create a combined mask to cover all 3 interrupt sources */
1393                 sde->imask = sde->int_mask | sde->progress_mask |
1394                              sde->idle_mask;
1395
1396                 spin_lock_init(&sde->tail_lock);
1397                 seqlock_init(&sde->head_lock);
1398                 spin_lock_init(&sde->senddmactrl_lock);
1399                 spin_lock_init(&sde->flushlist_lock);
1400                 seqlock_init(&sde->waitlock);
1401                 /* insure there is always a zero bit */
1402                 sde->ahg_bits = 0xfffffffe00000000ULL;
1403
1404                 sdma_set_state(sde, sdma_state_s00_hw_down);
1405
1406                 /* set up reference counting */
1407                 kref_init(&sde->state.kref);
1408                 init_completion(&sde->state.comp);
1409
1410                 INIT_LIST_HEAD(&sde->flushlist);
1411                 INIT_LIST_HEAD(&sde->dmawait);
1412
1413                 sde->tail_csr =
1414                         get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1415
1416                 tasklet_setup(&sde->sdma_hw_clean_up_task,
1417                               sdma_hw_clean_up_task);
1418                 tasklet_setup(&sde->sdma_sw_clean_up_task,
1419                               sdma_sw_clean_up_task);
1420                 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1421                 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1422
1423                 sde->progress_check_head = 0;
1424
1425                 timer_setup(&sde->err_progress_check_timer,
1426                             sdma_err_progress_check, 0);
1427
1428                 sde->descq = dma_alloc_coherent(&dd->pcidev->dev,
1429                                                 descq_cnt * sizeof(u64[2]),
1430                                                 &sde->descq_phys, GFP_KERNEL);
1431                 if (!sde->descq)
1432                         goto bail;
1433                 sde->tx_ring =
1434                         kvzalloc_node(array_size(descq_cnt,
1435                                                  sizeof(struct sdma_txreq *)),
1436                                       GFP_KERNEL, dd->node);
1437                 if (!sde->tx_ring)
1438                         goto bail;
1439         }
1440
1441         dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1442         /* Allocate memory for DMA of head registers to memory */
1443         dd->sdma_heads_dma = dma_alloc_coherent(&dd->pcidev->dev,
1444                                                 dd->sdma_heads_size,
1445                                                 &dd->sdma_heads_phys,
1446                                                 GFP_KERNEL);
1447         if (!dd->sdma_heads_dma) {
1448                 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1449                 goto bail;
1450         }
1451
1452         /* Allocate memory for pad */
1453         dd->sdma_pad_dma = dma_alloc_coherent(&dd->pcidev->dev, SDMA_PAD,
1454                                               &dd->sdma_pad_phys, GFP_KERNEL);
1455         if (!dd->sdma_pad_dma) {
1456                 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1457                 goto bail;
1458         }
1459
1460         /* assign each engine to different cacheline and init registers */
1461         curr_head = (void *)dd->sdma_heads_dma;
1462         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1463                 unsigned long phys_offset;
1464
1465                 sde = &dd->per_sdma[this_idx];
1466
1467                 sde->head_dma = curr_head;
1468                 curr_head += L1_CACHE_BYTES;
1469                 phys_offset = (unsigned long)sde->head_dma -
1470                               (unsigned long)dd->sdma_heads_dma;
1471                 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1472                 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1473         }
1474         dd->flags |= HFI1_HAS_SEND_DMA;
1475         dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1476         dd->num_sdma = num_engines;
1477         ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
1478         if (ret < 0)
1479                 goto bail;
1480
1481         tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
1482         if (!tmp_sdma_rht) {
1483                 ret = -ENOMEM;
1484                 goto bail;
1485         }
1486
1487         ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
1488         if (ret < 0) {
1489                 kfree(tmp_sdma_rht);
1490                 goto bail;
1491         }
1492
1493         dd->sdma_rht = tmp_sdma_rht;
1494
1495         dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1496         return 0;
1497
1498 bail:
1499         sdma_clean(dd, num_engines);
1500         return ret;
1501 }
1502
1503 /**
1504  * sdma_all_running() - called when the link goes up
1505  * @dd: hfi1_devdata
1506  *
1507  * This routine moves all engines to the running state.
1508  */
1509 void sdma_all_running(struct hfi1_devdata *dd)
1510 {
1511         struct sdma_engine *sde;
1512         unsigned int i;
1513
1514         /* move all engines to running */
1515         for (i = 0; i < dd->num_sdma; ++i) {
1516                 sde = &dd->per_sdma[i];
1517                 sdma_process_event(sde, sdma_event_e30_go_running);
1518         }
1519 }
1520
1521 /**
1522  * sdma_all_idle() - called when the link goes down
1523  * @dd: hfi1_devdata
1524  *
1525  * This routine moves all engines to the idle state.
1526  */
1527 void sdma_all_idle(struct hfi1_devdata *dd)
1528 {
1529         struct sdma_engine *sde;
1530         unsigned int i;
1531
1532         /* idle all engines */
1533         for (i = 0; i < dd->num_sdma; ++i) {
1534                 sde = &dd->per_sdma[i];
1535                 sdma_process_event(sde, sdma_event_e70_go_idle);
1536         }
1537 }
1538
1539 /**
1540  * sdma_start() - called to kick off state processing for all engines
1541  * @dd: hfi1_devdata
1542  *
1543  * This routine is for kicking off the state processing for all required
1544  * sdma engines.  Interrupts need to be working at this point.
1545  *
1546  */
1547 void sdma_start(struct hfi1_devdata *dd)
1548 {
1549         unsigned i;
1550         struct sdma_engine *sde;
1551
1552         /* kick off the engines state processing */
1553         for (i = 0; i < dd->num_sdma; ++i) {
1554                 sde = &dd->per_sdma[i];
1555                 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1556         }
1557 }
1558
1559 /**
1560  * sdma_exit() - used when module is removed
1561  * @dd: hfi1_devdata
1562  */
1563 void sdma_exit(struct hfi1_devdata *dd)
1564 {
1565         unsigned this_idx;
1566         struct sdma_engine *sde;
1567
1568         for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1569                         ++this_idx) {
1570                 sde = &dd->per_sdma[this_idx];
1571                 if (!list_empty(&sde->dmawait))
1572                         dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1573                                    sde->this_idx);
1574                 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1575
1576                 del_timer_sync(&sde->err_progress_check_timer);
1577
1578                 /*
1579                  * This waits for the state machine to exit so it is not
1580                  * necessary to kill the sdma_sw_clean_up_task to make sure
1581                  * it is not running.
1582                  */
1583                 sdma_finalput(&sde->state);
1584         }
1585 }
1586
1587 /*
1588  * unmap the indicated descriptor
1589  */
1590 static inline void sdma_unmap_desc(
1591         struct hfi1_devdata *dd,
1592         struct sdma_desc *descp)
1593 {
1594         switch (sdma_mapping_type(descp)) {
1595         case SDMA_MAP_SINGLE:
1596                 dma_unmap_single(
1597                         &dd->pcidev->dev,
1598                         sdma_mapping_addr(descp),
1599                         sdma_mapping_len(descp),
1600                         DMA_TO_DEVICE);
1601                 break;
1602         case SDMA_MAP_PAGE:
1603                 dma_unmap_page(
1604                         &dd->pcidev->dev,
1605                         sdma_mapping_addr(descp),
1606                         sdma_mapping_len(descp),
1607                         DMA_TO_DEVICE);
1608                 break;
1609         }
1610 }
1611
1612 /*
1613  * return the mode as indicated by the first
1614  * descriptor in the tx.
1615  */
1616 static inline u8 ahg_mode(struct sdma_txreq *tx)
1617 {
1618         return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1619                 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1620 }
1621
1622 /**
1623  * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1624  * @dd: hfi1_devdata for unmapping
1625  * @tx: tx request to clean
1626  *
1627  * This is used in the progress routine to clean the tx or
1628  * by the ULP to toss an in-process tx build.
1629  *
1630  * The code can be called multiple times without issue.
1631  *
1632  */
1633 void __sdma_txclean(
1634         struct hfi1_devdata *dd,
1635         struct sdma_txreq *tx)
1636 {
1637         u16 i;
1638
1639         if (tx->num_desc) {
1640                 u8 skip = 0, mode = ahg_mode(tx);
1641
1642                 /* unmap first */
1643                 sdma_unmap_desc(dd, &tx->descp[0]);
1644                 /* determine number of AHG descriptors to skip */
1645                 if (mode > SDMA_AHG_APPLY_UPDATE1)
1646                         skip = mode >> 1;
1647                 for (i = 1 + skip; i < tx->num_desc; i++)
1648                         sdma_unmap_desc(dd, &tx->descp[i]);
1649                 tx->num_desc = 0;
1650         }
1651         kfree(tx->coalesce_buf);
1652         tx->coalesce_buf = NULL;
1653         /* kmalloc'ed descp */
1654         if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1655                 tx->desc_limit = ARRAY_SIZE(tx->descs);
1656                 kfree(tx->descp);
1657         }
1658 }
1659
1660 static inline u16 sdma_gethead(struct sdma_engine *sde)
1661 {
1662         struct hfi1_devdata *dd = sde->dd;
1663         int use_dmahead;
1664         u16 hwhead;
1665
1666 #ifdef CONFIG_SDMA_VERBOSITY
1667         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1668                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1669 #endif
1670
1671 retry:
1672         use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1673                                         (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1674         hwhead = use_dmahead ?
1675                 (u16)le64_to_cpu(*sde->head_dma) :
1676                 (u16)read_sde_csr(sde, SD(HEAD));
1677
1678         if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1679                 u16 cnt;
1680                 u16 swtail;
1681                 u16 swhead;
1682                 int sane;
1683
1684                 swhead = sde->descq_head & sde->sdma_mask;
1685                 /* this code is really bad for cache line trading */
1686                 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1687                 cnt = sde->descq_cnt;
1688
1689                 if (swhead < swtail)
1690                         /* not wrapped */
1691                         sane = (hwhead >= swhead) & (hwhead <= swtail);
1692                 else if (swhead > swtail)
1693                         /* wrapped around */
1694                         sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1695                                 (hwhead <= swtail);
1696                 else
1697                         /* empty */
1698                         sane = (hwhead == swhead);
1699
1700                 if (unlikely(!sane)) {
1701                         dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%u swhd=%u swtl=%u cnt=%u\n",
1702                                    sde->this_idx,
1703                                    use_dmahead ? "dma" : "kreg",
1704                                    hwhead, swhead, swtail, cnt);
1705                         if (use_dmahead) {
1706                                 /* try one more time, using csr */
1707                                 use_dmahead = 0;
1708                                 goto retry;
1709                         }
1710                         /* proceed as if no progress */
1711                         hwhead = swhead;
1712                 }
1713         }
1714         return hwhead;
1715 }
1716
1717 /*
1718  * This is called when there are send DMA descriptors that might be
1719  * available.
1720  *
1721  * This is called with head_lock held.
1722  */
1723 static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
1724 {
1725         struct iowait *wait, *nw, *twait;
1726         struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1727         uint i, n = 0, seq, tidx = 0;
1728
1729 #ifdef CONFIG_SDMA_VERBOSITY
1730         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1731                    slashstrip(__FILE__), __LINE__, __func__);
1732         dd_dev_err(sde->dd, "avail: %u\n", avail);
1733 #endif
1734
1735         do {
1736                 seq = read_seqbegin(&sde->waitlock);
1737                 if (!list_empty(&sde->dmawait)) {
1738                         /* at least one item */
1739                         write_seqlock(&sde->waitlock);
1740                         /* Harvest waiters wanting DMA descriptors */
1741                         list_for_each_entry_safe(
1742                                         wait,
1743                                         nw,
1744                                         &sde->dmawait,
1745                                         list) {
1746                                 u32 num_desc;
1747
1748                                 if (!wait->wakeup)
1749                                         continue;
1750                                 if (n == ARRAY_SIZE(waits))
1751                                         break;
1752                                 iowait_init_priority(wait);
1753                                 num_desc = iowait_get_all_desc(wait);
1754                                 if (num_desc > avail)
1755                                         break;
1756                                 avail -= num_desc;
1757                                 /* Find the top-priority wait memeber */
1758                                 if (n) {
1759                                         twait = waits[tidx];
1760                                         tidx =
1761                                             iowait_priority_update_top(wait,
1762                                                                        twait,
1763                                                                        n,
1764                                                                        tidx);
1765                                 }
1766                                 list_del_init(&wait->list);
1767                                 waits[n++] = wait;
1768                         }
1769                         write_sequnlock(&sde->waitlock);
1770                         break;
1771                 }
1772         } while (read_seqretry(&sde->waitlock, seq));
1773
1774         /* Schedule the top-priority entry first */
1775         if (n)
1776                 waits[tidx]->wakeup(waits[tidx], SDMA_AVAIL_REASON);
1777
1778         for (i = 0; i < n; i++)
1779                 if (i != tidx)
1780                         waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1781 }
1782
1783 /* head_lock must be held */
1784 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1785 {
1786         struct sdma_txreq *txp = NULL;
1787         int progress = 0;
1788         u16 hwhead, swhead;
1789         int idle_check_done = 0;
1790
1791         hwhead = sdma_gethead(sde);
1792
1793         /* The reason for some of the complexity of this code is that
1794          * not all descriptors have corresponding txps.  So, we have to
1795          * be able to skip over descs until we wander into the range of
1796          * the next txp on the list.
1797          */
1798
1799 retry:
1800         txp = get_txhead(sde);
1801         swhead = sde->descq_head & sde->sdma_mask;
1802         trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1803         while (swhead != hwhead) {
1804                 /* advance head, wrap if needed */
1805                 swhead = ++sde->descq_head & sde->sdma_mask;
1806
1807                 /* if now past this txp's descs, do the callback */
1808                 if (txp && txp->next_descq_idx == swhead) {
1809                         /* remove from list */
1810                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1811                         complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1812                         /* see if there is another txp */
1813                         txp = get_txhead(sde);
1814                 }
1815                 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1816                 progress++;
1817         }
1818
1819         /*
1820          * The SDMA idle interrupt is not guaranteed to be ordered with respect
1821          * to updates to the dma_head location in host memory. The head
1822          * value read might not be fully up to date. If there are pending
1823          * descriptors and the SDMA idle interrupt fired then read from the
1824          * CSR SDMA head instead to get the latest value from the hardware.
1825          * The hardware SDMA head should be read at most once in this invocation
1826          * of sdma_make_progress(..) which is ensured by idle_check_done flag
1827          */
1828         if ((status & sde->idle_mask) && !idle_check_done) {
1829                 u16 swtail;
1830
1831                 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1832                 if (swtail != hwhead) {
1833                         hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1834                         idle_check_done = 1;
1835                         goto retry;
1836                 }
1837         }
1838
1839         sde->last_status = status;
1840         if (progress)
1841                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1842 }
1843
1844 /*
1845  * sdma_engine_interrupt() - interrupt handler for engine
1846  * @sde: sdma engine
1847  * @status: sdma interrupt reason
1848  *
1849  * Status is a mask of the 3 possible interrupts for this engine.  It will
1850  * contain bits _only_ for this SDMA engine.  It will contain at least one
1851  * bit, it may contain more.
1852  */
1853 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1854 {
1855         trace_hfi1_sdma_engine_interrupt(sde, status);
1856         write_seqlock(&sde->head_lock);
1857         sdma_set_desc_cnt(sde, sdma_desct_intr);
1858         if (status & sde->idle_mask)
1859                 sde->idle_int_cnt++;
1860         else if (status & sde->progress_mask)
1861                 sde->progress_int_cnt++;
1862         else if (status & sde->int_mask)
1863                 sde->sdma_int_cnt++;
1864         sdma_make_progress(sde, status);
1865         write_sequnlock(&sde->head_lock);
1866 }
1867
1868 /**
1869  * sdma_engine_error() - error handler for engine
1870  * @sde: sdma engine
1871  * @status: sdma interrupt reason
1872  */
1873 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1874 {
1875         unsigned long flags;
1876
1877 #ifdef CONFIG_SDMA_VERBOSITY
1878         dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1879                    sde->this_idx,
1880                    (unsigned long long)status,
1881                    sdma_state_names[sde->state.current_state]);
1882 #endif
1883         spin_lock_irqsave(&sde->tail_lock, flags);
1884         write_seqlock(&sde->head_lock);
1885         if (status & ALL_SDMA_ENG_HALT_ERRS)
1886                 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1887         if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1888                 dd_dev_err(sde->dd,
1889                            "SDMA (%u) engine error: 0x%llx state %s\n",
1890                            sde->this_idx,
1891                            (unsigned long long)status,
1892                            sdma_state_names[sde->state.current_state]);
1893                 dump_sdma_state(sde);
1894         }
1895         write_sequnlock(&sde->head_lock);
1896         spin_unlock_irqrestore(&sde->tail_lock, flags);
1897 }
1898
1899 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1900 {
1901         u64 set_senddmactrl = 0;
1902         u64 clr_senddmactrl = 0;
1903         unsigned long flags;
1904
1905 #ifdef CONFIG_SDMA_VERBOSITY
1906         dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1907                    sde->this_idx,
1908                    (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1909                    (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1910                    (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1911                    (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1912 #endif
1913
1914         if (op & SDMA_SENDCTRL_OP_ENABLE)
1915                 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1916         else
1917                 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1918
1919         if (op & SDMA_SENDCTRL_OP_INTENABLE)
1920                 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1921         else
1922                 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1923
1924         if (op & SDMA_SENDCTRL_OP_HALT)
1925                 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1926         else
1927                 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1928
1929         spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1930
1931         sde->p_senddmactrl |= set_senddmactrl;
1932         sde->p_senddmactrl &= ~clr_senddmactrl;
1933
1934         if (op & SDMA_SENDCTRL_OP_CLEANUP)
1935                 write_sde_csr(sde, SD(CTRL),
1936                               sde->p_senddmactrl |
1937                               SD(CTRL_SDMA_CLEANUP_SMASK));
1938         else
1939                 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1940
1941         spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1942
1943 #ifdef CONFIG_SDMA_VERBOSITY
1944         sdma_dumpstate(sde);
1945 #endif
1946 }
1947
1948 static void sdma_setlengen(struct sdma_engine *sde)
1949 {
1950 #ifdef CONFIG_SDMA_VERBOSITY
1951         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1952                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1953 #endif
1954
1955         /*
1956          * Set SendDmaLenGen and clear-then-set the MSB of the generation
1957          * count to enable generation checking and load the internal
1958          * generation counter.
1959          */
1960         write_sde_csr(sde, SD(LEN_GEN),
1961                       (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
1962         write_sde_csr(sde, SD(LEN_GEN),
1963                       ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
1964                       (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
1965 }
1966
1967 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
1968 {
1969         /* Commit writes to memory and advance the tail on the chip */
1970         smp_wmb(); /* see get_txhead() */
1971         writeq(tail, sde->tail_csr);
1972 }
1973
1974 /*
1975  * This is called when changing to state s10_hw_start_up_halt_wait as
1976  * a result of send buffer errors or send DMA descriptor errors.
1977  */
1978 static void sdma_hw_start_up(struct sdma_engine *sde)
1979 {
1980         u64 reg;
1981
1982 #ifdef CONFIG_SDMA_VERBOSITY
1983         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1984                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1985 #endif
1986
1987         sdma_setlengen(sde);
1988         sdma_update_tail(sde, 0); /* Set SendDmaTail */
1989         *sde->head_dma = 0;
1990
1991         reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
1992               SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
1993         write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
1994 }
1995
1996 /*
1997  * set_sdma_integrity
1998  *
1999  * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2000  */
2001 static void set_sdma_integrity(struct sdma_engine *sde)
2002 {
2003         struct hfi1_devdata *dd = sde->dd;
2004
2005         write_sde_csr(sde, SD(CHECK_ENABLE),
2006                       hfi1_pkt_base_sdma_integrity(dd));
2007 }
2008
2009 static void init_sdma_regs(
2010         struct sdma_engine *sde,
2011         u32 credits,
2012         uint idle_cnt)
2013 {
2014         u8 opval, opmask;
2015 #ifdef CONFIG_SDMA_VERBOSITY
2016         struct hfi1_devdata *dd = sde->dd;
2017
2018         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2019                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2020 #endif
2021
2022         write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2023         sdma_setlengen(sde);
2024         sdma_update_tail(sde, 0); /* Set SendDmaTail */
2025         write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2026         write_sde_csr(sde, SD(DESC_CNT), 0);
2027         write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2028         write_sde_csr(sde, SD(MEMORY),
2029                       ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2030                       ((u64)(credits * sde->this_idx) <<
2031                        SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2032         write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2033         set_sdma_integrity(sde);
2034         opmask = OPCODE_CHECK_MASK_DISABLED;
2035         opval = OPCODE_CHECK_VAL_DISABLED;
2036         write_sde_csr(sde, SD(CHECK_OPCODE),
2037                       (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2038                       (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2039 }
2040
2041 #ifdef CONFIG_SDMA_VERBOSITY
2042
2043 #define sdma_dumpstate_helper0(reg) do { \
2044                 csr = read_csr(sde->dd, reg); \
2045                 dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
2046         } while (0)
2047
2048 #define sdma_dumpstate_helper(reg) do { \
2049                 csr = read_sde_csr(sde, reg); \
2050                 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2051                         #reg, sde->this_idx, csr); \
2052         } while (0)
2053
2054 #define sdma_dumpstate_helper2(reg) do { \
2055                 csr = read_csr(sde->dd, reg + (8 * i)); \
2056                 dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
2057                                 #reg, i, csr); \
2058         } while (0)
2059
2060 void sdma_dumpstate(struct sdma_engine *sde)
2061 {
2062         u64 csr;
2063         unsigned i;
2064
2065         sdma_dumpstate_helper(SD(CTRL));
2066         sdma_dumpstate_helper(SD(STATUS));
2067         sdma_dumpstate_helper0(SD(ERR_STATUS));
2068         sdma_dumpstate_helper0(SD(ERR_MASK));
2069         sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2070         sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2071
2072         for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2073                 sdma_dumpstate_helper2(CCE_INT_STATUS);
2074                 sdma_dumpstate_helper2(CCE_INT_MASK);
2075                 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2076         }
2077
2078         sdma_dumpstate_helper(SD(TAIL));
2079         sdma_dumpstate_helper(SD(HEAD));
2080         sdma_dumpstate_helper(SD(PRIORITY_THLD));
2081         sdma_dumpstate_helper(SD(IDLE_CNT));
2082         sdma_dumpstate_helper(SD(RELOAD_CNT));
2083         sdma_dumpstate_helper(SD(DESC_CNT));
2084         sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2085         sdma_dumpstate_helper(SD(MEMORY));
2086         sdma_dumpstate_helper0(SD(ENGINES));
2087         sdma_dumpstate_helper0(SD(MEM_SIZE));
2088         /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
2089         sdma_dumpstate_helper(SD(BASE_ADDR));
2090         sdma_dumpstate_helper(SD(LEN_GEN));
2091         sdma_dumpstate_helper(SD(HEAD_ADDR));
2092         sdma_dumpstate_helper(SD(CHECK_ENABLE));
2093         sdma_dumpstate_helper(SD(CHECK_VL));
2094         sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2095         sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2096         sdma_dumpstate_helper(SD(CHECK_SLID));
2097         sdma_dumpstate_helper(SD(CHECK_OPCODE));
2098 }
2099 #endif
2100
2101 static void dump_sdma_state(struct sdma_engine *sde)
2102 {
2103         struct hw_sdma_desc *descqp;
2104         u64 desc[2];
2105         u64 addr;
2106         u8 gen;
2107         u16 len;
2108         u16 head, tail, cnt;
2109
2110         head = sde->descq_head & sde->sdma_mask;
2111         tail = sde->descq_tail & sde->sdma_mask;
2112         cnt = sdma_descq_freecnt(sde);
2113
2114         dd_dev_err(sde->dd,
2115                    "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2116                    sde->this_idx, head, tail, cnt,
2117                    !list_empty(&sde->flushlist));
2118
2119         /* print info for each entry in the descriptor queue */
2120         while (head != tail) {
2121                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2122
2123                 descqp = &sde->descq[head];
2124                 desc[0] = le64_to_cpu(descqp->qw[0]);
2125                 desc[1] = le64_to_cpu(descqp->qw[1]);
2126                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2127                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2128                                 'H' : '-';
2129                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2130                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2131                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2132                         & SDMA_DESC0_PHY_ADDR_MASK;
2133                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2134                         & SDMA_DESC1_GENERATION_MASK;
2135                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2136                         & SDMA_DESC0_BYTE_COUNT_MASK;
2137                 dd_dev_err(sde->dd,
2138                            "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2139                            head, flags, addr, gen, len);
2140                 dd_dev_err(sde->dd,
2141                            "\tdesc0:0x%016llx desc1 0x%016llx\n",
2142                            desc[0], desc[1]);
2143                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2144                         dd_dev_err(sde->dd,
2145                                    "\taidx: %u amode: %u alen: %u\n",
2146                                    (u8)((desc[1] &
2147                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
2148                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
2149                                    (u8)((desc[1] &
2150                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
2151                                         SDMA_DESC1_HEADER_MODE_SHIFT),
2152                                    (u8)((desc[1] &
2153                                          SDMA_DESC1_HEADER_DWS_SMASK) >>
2154                                         SDMA_DESC1_HEADER_DWS_SHIFT));
2155                 head++;
2156                 head &= sde->sdma_mask;
2157         }
2158 }
2159
2160 #define SDE_FMT \
2161         "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2162 /**
2163  * sdma_seqfile_dump_sde() - debugfs dump of sde
2164  * @s: seq file
2165  * @sde: send dma engine to dump
2166  *
2167  * This routine dumps the sde to the indicated seq file.
2168  */
2169 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2170 {
2171         u16 head, tail;
2172         struct hw_sdma_desc *descqp;
2173         u64 desc[2];
2174         u64 addr;
2175         u8 gen;
2176         u16 len;
2177
2178         head = sde->descq_head & sde->sdma_mask;
2179         tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
2180         seq_printf(s, SDE_FMT, sde->this_idx,
2181                    sde->cpu,
2182                    sdma_state_name(sde->state.current_state),
2183                    (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2184                    (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2185                    (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2186                    (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2187                    (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2188                    (unsigned long long)le64_to_cpu(*sde->head_dma),
2189                    (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2190                    (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2191                    (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2192                    (unsigned long long)sde->last_status,
2193                    (unsigned long long)sde->ahg_bits,
2194                    sde->tx_tail,
2195                    sde->tx_head,
2196                    sde->descq_tail,
2197                    sde->descq_head,
2198                    !list_empty(&sde->flushlist),
2199                    sde->descq_full_count,
2200                    (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2201
2202         /* print info for each entry in the descriptor queue */
2203         while (head != tail) {
2204                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2205
2206                 descqp = &sde->descq[head];
2207                 desc[0] = le64_to_cpu(descqp->qw[0]);
2208                 desc[1] = le64_to_cpu(descqp->qw[1]);
2209                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2210                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2211                                 'H' : '-';
2212                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2213                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2214                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2215                         & SDMA_DESC0_PHY_ADDR_MASK;
2216                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2217                         & SDMA_DESC1_GENERATION_MASK;
2218                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2219                         & SDMA_DESC0_BYTE_COUNT_MASK;
2220                 seq_printf(s,
2221                            "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2222                            head, flags, addr, gen, len);
2223                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2224                         seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2225                                    (u8)((desc[1] &
2226                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
2227                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
2228                                    (u8)((desc[1] &
2229                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
2230                                         SDMA_DESC1_HEADER_MODE_SHIFT));
2231                 head = (head + 1) & sde->sdma_mask;
2232         }
2233 }
2234
2235 /*
2236  * add the generation number into
2237  * the qw1 and return
2238  */
2239 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2240 {
2241         u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2242
2243         qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2244         qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2245                         << SDMA_DESC1_GENERATION_SHIFT;
2246         return qw1;
2247 }
2248
2249 /*
2250  * This routine submits the indicated tx
2251  *
2252  * Space has already been guaranteed and
2253  * tail side of ring is locked.
2254  *
2255  * The hardware tail update is done
2256  * in the caller and that is facilitated
2257  * by returning the new tail.
2258  *
2259  * There is special case logic for ahg
2260  * to not add the generation number for
2261  * up to 2 descriptors that follow the
2262  * first descriptor.
2263  *
2264  */
2265 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2266 {
2267         int i;
2268         u16 tail;
2269         struct sdma_desc *descp = tx->descp;
2270         u8 skip = 0, mode = ahg_mode(tx);
2271
2272         tail = sde->descq_tail & sde->sdma_mask;
2273         sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2274         sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2275         trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2276                                    tail, &sde->descq[tail]);
2277         tail = ++sde->descq_tail & sde->sdma_mask;
2278         descp++;
2279         if (mode > SDMA_AHG_APPLY_UPDATE1)
2280                 skip = mode >> 1;
2281         for (i = 1; i < tx->num_desc; i++, descp++) {
2282                 u64 qw1;
2283
2284                 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2285                 if (skip) {
2286                         /* edits don't have generation */
2287                         qw1 = descp->qw[1];
2288                         skip--;
2289                 } else {
2290                         /* replace generation with real one for non-edits */
2291                         qw1 = add_gen(sde, descp->qw[1]);
2292                 }
2293                 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2294                 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2295                                            tail, &sde->descq[tail]);
2296                 tail = ++sde->descq_tail & sde->sdma_mask;
2297         }
2298         tx->next_descq_idx = tail;
2299 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2300         tx->sn = sde->tail_sn++;
2301         trace_hfi1_sdma_in_sn(sde, tx->sn);
2302         WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2303 #endif
2304         sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2305         sde->desc_avail -= tx->num_desc;
2306         return tail;
2307 }
2308
2309 /*
2310  * Check for progress
2311  */
2312 static int sdma_check_progress(
2313         struct sdma_engine *sde,
2314         struct iowait_work *wait,
2315         struct sdma_txreq *tx,
2316         bool pkts_sent)
2317 {
2318         int ret;
2319
2320         sde->desc_avail = sdma_descq_freecnt(sde);
2321         if (tx->num_desc <= sde->desc_avail)
2322                 return -EAGAIN;
2323         /* pulse the head_lock */
2324         if (wait && iowait_ioww_to_iow(wait)->sleep) {
2325                 unsigned seq;
2326
2327                 seq = raw_seqcount_begin(
2328                         (const seqcount_t *)&sde->head_lock.seqcount);
2329                 ret = wait->iow->sleep(sde, wait, tx, seq, pkts_sent);
2330                 if (ret == -EAGAIN)
2331                         sde->desc_avail = sdma_descq_freecnt(sde);
2332         } else {
2333                 ret = -EBUSY;
2334         }
2335         return ret;
2336 }
2337
2338 /**
2339  * sdma_send_txreq() - submit a tx req to ring
2340  * @sde: sdma engine to use
2341  * @wait: SE wait structure to use when full (may be NULL)
2342  * @tx: sdma_txreq to submit
2343  * @pkts_sent: has any packet been sent yet?
2344  *
2345  * The call submits the tx into the ring.  If a iowait structure is non-NULL
2346  * the packet will be queued to the list in wait.
2347  *
2348  * Return:
2349  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2350  * ring (wait == NULL)
2351  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2352  */
2353 int sdma_send_txreq(struct sdma_engine *sde,
2354                     struct iowait_work *wait,
2355                     struct sdma_txreq *tx,
2356                     bool pkts_sent)
2357 {
2358         int ret = 0;
2359         u16 tail;
2360         unsigned long flags;
2361
2362         /* user should have supplied entire packet */
2363         if (unlikely(tx->tlen))
2364                 return -EINVAL;
2365         tx->wait = iowait_ioww_to_iow(wait);
2366         spin_lock_irqsave(&sde->tail_lock, flags);
2367 retry:
2368         if (unlikely(!__sdma_running(sde)))
2369                 goto unlock_noconn;
2370         if (unlikely(tx->num_desc > sde->desc_avail))
2371                 goto nodesc;
2372         tail = submit_tx(sde, tx);
2373         if (wait)
2374                 iowait_sdma_inc(iowait_ioww_to_iow(wait));
2375         sdma_update_tail(sde, tail);
2376 unlock:
2377         spin_unlock_irqrestore(&sde->tail_lock, flags);
2378         return ret;
2379 unlock_noconn:
2380         if (wait)
2381                 iowait_sdma_inc(iowait_ioww_to_iow(wait));
2382         tx->next_descq_idx = 0;
2383 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2384         tx->sn = sde->tail_sn++;
2385         trace_hfi1_sdma_in_sn(sde, tx->sn);
2386 #endif
2387         spin_lock(&sde->flushlist_lock);
2388         list_add_tail(&tx->list, &sde->flushlist);
2389         spin_unlock(&sde->flushlist_lock);
2390         iowait_inc_wait_count(wait, tx->num_desc);
2391         queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2392         ret = -ECOMM;
2393         goto unlock;
2394 nodesc:
2395         ret = sdma_check_progress(sde, wait, tx, pkts_sent);
2396         if (ret == -EAGAIN) {
2397                 ret = 0;
2398                 goto retry;
2399         }
2400         sde->descq_full_count++;
2401         goto unlock;
2402 }
2403
2404 /**
2405  * sdma_send_txlist() - submit a list of tx req to ring
2406  * @sde: sdma engine to use
2407  * @wait: SE wait structure to use when full (may be NULL)
2408  * @tx_list: list of sdma_txreqs to submit
2409  * @count_out: pointer to a u16 which, after return will contain the total number of
2410  *             sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2411  *             whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2412  *             which are added to SDMA engine flush list if the SDMA engine state is
2413  *             not running.
2414  *
2415  * The call submits the list into the ring.
2416  *
2417  * If the iowait structure is non-NULL and not equal to the iowait list
2418  * the unprocessed part of the list  will be appended to the list in wait.
2419  *
2420  * In all cases, the tx_list will be updated so the head of the tx_list is
2421  * the list of descriptors that have yet to be transmitted.
2422  *
2423  * The intent of this call is to provide a more efficient
2424  * way of submitting multiple packets to SDMA while holding the tail
2425  * side locking.
2426  *
2427  * Return:
2428  * 0 - Success,
2429  * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2430  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2431  */
2432 int sdma_send_txlist(struct sdma_engine *sde, struct iowait_work *wait,
2433                      struct list_head *tx_list, u16 *count_out)
2434 {
2435         struct sdma_txreq *tx, *tx_next;
2436         int ret = 0;
2437         unsigned long flags;
2438         u16 tail = INVALID_TAIL;
2439         u32 submit_count = 0, flush_count = 0, total_count;
2440
2441         spin_lock_irqsave(&sde->tail_lock, flags);
2442 retry:
2443         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2444                 tx->wait = iowait_ioww_to_iow(wait);
2445                 if (unlikely(!__sdma_running(sde)))
2446                         goto unlock_noconn;
2447                 if (unlikely(tx->num_desc > sde->desc_avail))
2448                         goto nodesc;
2449                 if (unlikely(tx->tlen)) {
2450                         ret = -EINVAL;
2451                         goto update_tail;
2452                 }
2453                 list_del_init(&tx->list);
2454                 tail = submit_tx(sde, tx);
2455                 submit_count++;
2456                 if (tail != INVALID_TAIL &&
2457                     (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2458                         sdma_update_tail(sde, tail);
2459                         tail = INVALID_TAIL;
2460                 }
2461         }
2462 update_tail:
2463         total_count = submit_count + flush_count;
2464         if (wait) {
2465                 iowait_sdma_add(iowait_ioww_to_iow(wait), total_count);
2466                 iowait_starve_clear(submit_count > 0,
2467                                     iowait_ioww_to_iow(wait));
2468         }
2469         if (tail != INVALID_TAIL)
2470                 sdma_update_tail(sde, tail);
2471         spin_unlock_irqrestore(&sde->tail_lock, flags);
2472         *count_out = total_count;
2473         return ret;
2474 unlock_noconn:
2475         spin_lock(&sde->flushlist_lock);
2476         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2477                 tx->wait = iowait_ioww_to_iow(wait);
2478                 list_del_init(&tx->list);
2479                 tx->next_descq_idx = 0;
2480 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2481                 tx->sn = sde->tail_sn++;
2482                 trace_hfi1_sdma_in_sn(sde, tx->sn);
2483 #endif
2484                 list_add_tail(&tx->list, &sde->flushlist);
2485                 flush_count++;
2486                 iowait_inc_wait_count(wait, tx->num_desc);
2487         }
2488         spin_unlock(&sde->flushlist_lock);
2489         queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
2490         ret = -ECOMM;
2491         goto update_tail;
2492 nodesc:
2493         ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
2494         if (ret == -EAGAIN) {
2495                 ret = 0;
2496                 goto retry;
2497         }
2498         sde->descq_full_count++;
2499         goto update_tail;
2500 }
2501
2502 static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2503 {
2504         unsigned long flags;
2505
2506         spin_lock_irqsave(&sde->tail_lock, flags);
2507         write_seqlock(&sde->head_lock);
2508
2509         __sdma_process_event(sde, event);
2510
2511         if (sde->state.current_state == sdma_state_s99_running)
2512                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2513
2514         write_sequnlock(&sde->head_lock);
2515         spin_unlock_irqrestore(&sde->tail_lock, flags);
2516 }
2517
2518 static void __sdma_process_event(struct sdma_engine *sde,
2519                                  enum sdma_events event)
2520 {
2521         struct sdma_state *ss = &sde->state;
2522         int need_progress = 0;
2523
2524         /* CONFIG SDMA temporary */
2525 #ifdef CONFIG_SDMA_VERBOSITY
2526         dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2527                    sdma_state_names[ss->current_state],
2528                    sdma_event_names[event]);
2529 #endif
2530
2531         switch (ss->current_state) {
2532         case sdma_state_s00_hw_down:
2533                 switch (event) {
2534                 case sdma_event_e00_go_hw_down:
2535                         break;
2536                 case sdma_event_e30_go_running:
2537                         /*
2538                          * If down, but running requested (usually result
2539                          * of link up, then we need to start up.
2540                          * This can happen when hw down is requested while
2541                          * bringing the link up with traffic active on
2542                          * 7220, e.g.
2543                          */
2544                         ss->go_s99_running = 1;
2545                         fallthrough;    /* and start dma engine */
2546                 case sdma_event_e10_go_hw_start:
2547                         /* This reference means the state machine is started */
2548                         sdma_get(&sde->state);
2549                         sdma_set_state(sde,
2550                                        sdma_state_s10_hw_start_up_halt_wait);
2551                         break;
2552                 case sdma_event_e15_hw_halt_done:
2553                         break;
2554                 case sdma_event_e25_hw_clean_up_done:
2555                         break;
2556                 case sdma_event_e40_sw_cleaned:
2557                         sdma_sw_tear_down(sde);
2558                         break;
2559                 case sdma_event_e50_hw_cleaned:
2560                         break;
2561                 case sdma_event_e60_hw_halted:
2562                         break;
2563                 case sdma_event_e70_go_idle:
2564                         break;
2565                 case sdma_event_e80_hw_freeze:
2566                         break;
2567                 case sdma_event_e81_hw_frozen:
2568                         break;
2569                 case sdma_event_e82_hw_unfreeze:
2570                         break;
2571                 case sdma_event_e85_link_down:
2572                         break;
2573                 case sdma_event_e90_sw_halted:
2574                         break;
2575                 }
2576                 break;
2577
2578         case sdma_state_s10_hw_start_up_halt_wait:
2579                 switch (event) {
2580                 case sdma_event_e00_go_hw_down:
2581                         sdma_set_state(sde, sdma_state_s00_hw_down);
2582                         sdma_sw_tear_down(sde);
2583                         break;
2584                 case sdma_event_e10_go_hw_start:
2585                         break;
2586                 case sdma_event_e15_hw_halt_done:
2587                         sdma_set_state(sde,
2588                                        sdma_state_s15_hw_start_up_clean_wait);
2589                         sdma_start_hw_clean_up(sde);
2590                         break;
2591                 case sdma_event_e25_hw_clean_up_done:
2592                         break;
2593                 case sdma_event_e30_go_running:
2594                         ss->go_s99_running = 1;
2595                         break;
2596                 case sdma_event_e40_sw_cleaned:
2597                         break;
2598                 case sdma_event_e50_hw_cleaned:
2599                         break;
2600                 case sdma_event_e60_hw_halted:
2601                         schedule_work(&sde->err_halt_worker);
2602                         break;
2603                 case sdma_event_e70_go_idle:
2604                         ss->go_s99_running = 0;
2605                         break;
2606                 case sdma_event_e80_hw_freeze:
2607                         break;
2608                 case sdma_event_e81_hw_frozen:
2609                         break;
2610                 case sdma_event_e82_hw_unfreeze:
2611                         break;
2612                 case sdma_event_e85_link_down:
2613                         break;
2614                 case sdma_event_e90_sw_halted:
2615                         break;
2616                 }
2617                 break;
2618
2619         case sdma_state_s15_hw_start_up_clean_wait:
2620                 switch (event) {
2621                 case sdma_event_e00_go_hw_down:
2622                         sdma_set_state(sde, sdma_state_s00_hw_down);
2623                         sdma_sw_tear_down(sde);
2624                         break;
2625                 case sdma_event_e10_go_hw_start:
2626                         break;
2627                 case sdma_event_e15_hw_halt_done:
2628                         break;
2629                 case sdma_event_e25_hw_clean_up_done:
2630                         sdma_hw_start_up(sde);
2631                         sdma_set_state(sde, ss->go_s99_running ?
2632                                        sdma_state_s99_running :
2633                                        sdma_state_s20_idle);
2634                         break;
2635                 case sdma_event_e30_go_running:
2636                         ss->go_s99_running = 1;
2637                         break;
2638                 case sdma_event_e40_sw_cleaned:
2639                         break;
2640                 case sdma_event_e50_hw_cleaned:
2641                         break;
2642                 case sdma_event_e60_hw_halted:
2643                         break;
2644                 case sdma_event_e70_go_idle:
2645                         ss->go_s99_running = 0;
2646                         break;
2647                 case sdma_event_e80_hw_freeze:
2648                         break;
2649                 case sdma_event_e81_hw_frozen:
2650                         break;
2651                 case sdma_event_e82_hw_unfreeze:
2652                         break;
2653                 case sdma_event_e85_link_down:
2654                         break;
2655                 case sdma_event_e90_sw_halted:
2656                         break;
2657                 }
2658                 break;
2659
2660         case sdma_state_s20_idle:
2661                 switch (event) {
2662                 case sdma_event_e00_go_hw_down:
2663                         sdma_set_state(sde, sdma_state_s00_hw_down);
2664                         sdma_sw_tear_down(sde);
2665                         break;
2666                 case sdma_event_e10_go_hw_start:
2667                         break;
2668                 case sdma_event_e15_hw_halt_done:
2669                         break;
2670                 case sdma_event_e25_hw_clean_up_done:
2671                         break;
2672                 case sdma_event_e30_go_running:
2673                         sdma_set_state(sde, sdma_state_s99_running);
2674                         ss->go_s99_running = 1;
2675                         break;
2676                 case sdma_event_e40_sw_cleaned:
2677                         break;
2678                 case sdma_event_e50_hw_cleaned:
2679                         break;
2680                 case sdma_event_e60_hw_halted:
2681                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2682                         schedule_work(&sde->err_halt_worker);
2683                         break;
2684                 case sdma_event_e70_go_idle:
2685                         break;
2686                 case sdma_event_e85_link_down:
2687                 case sdma_event_e80_hw_freeze:
2688                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
2689                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2690                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2691                         break;
2692                 case sdma_event_e81_hw_frozen:
2693                         break;
2694                 case sdma_event_e82_hw_unfreeze:
2695                         break;
2696                 case sdma_event_e90_sw_halted:
2697                         break;
2698                 }
2699                 break;
2700
2701         case sdma_state_s30_sw_clean_up_wait:
2702                 switch (event) {
2703                 case sdma_event_e00_go_hw_down:
2704                         sdma_set_state(sde, sdma_state_s00_hw_down);
2705                         break;
2706                 case sdma_event_e10_go_hw_start:
2707                         break;
2708                 case sdma_event_e15_hw_halt_done:
2709                         break;
2710                 case sdma_event_e25_hw_clean_up_done:
2711                         break;
2712                 case sdma_event_e30_go_running:
2713                         ss->go_s99_running = 1;
2714                         break;
2715                 case sdma_event_e40_sw_cleaned:
2716                         sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2717                         sdma_start_hw_clean_up(sde);
2718                         break;
2719                 case sdma_event_e50_hw_cleaned:
2720                         break;
2721                 case sdma_event_e60_hw_halted:
2722                         break;
2723                 case sdma_event_e70_go_idle:
2724                         ss->go_s99_running = 0;
2725                         break;
2726                 case sdma_event_e80_hw_freeze:
2727                         break;
2728                 case sdma_event_e81_hw_frozen:
2729                         break;
2730                 case sdma_event_e82_hw_unfreeze:
2731                         break;
2732                 case sdma_event_e85_link_down:
2733                         ss->go_s99_running = 0;
2734                         break;
2735                 case sdma_event_e90_sw_halted:
2736                         break;
2737                 }
2738                 break;
2739
2740         case sdma_state_s40_hw_clean_up_wait:
2741                 switch (event) {
2742                 case sdma_event_e00_go_hw_down:
2743                         sdma_set_state(sde, sdma_state_s00_hw_down);
2744                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2745                         break;
2746                 case sdma_event_e10_go_hw_start:
2747                         break;
2748                 case sdma_event_e15_hw_halt_done:
2749                         break;
2750                 case sdma_event_e25_hw_clean_up_done:
2751                         sdma_hw_start_up(sde);
2752                         sdma_set_state(sde, ss->go_s99_running ?
2753                                        sdma_state_s99_running :
2754                                        sdma_state_s20_idle);
2755                         break;
2756                 case sdma_event_e30_go_running:
2757                         ss->go_s99_running = 1;
2758                         break;
2759                 case sdma_event_e40_sw_cleaned:
2760                         break;
2761                 case sdma_event_e50_hw_cleaned:
2762                         break;
2763                 case sdma_event_e60_hw_halted:
2764                         break;
2765                 case sdma_event_e70_go_idle:
2766                         ss->go_s99_running = 0;
2767                         break;
2768                 case sdma_event_e80_hw_freeze:
2769                         break;
2770                 case sdma_event_e81_hw_frozen:
2771                         break;
2772                 case sdma_event_e82_hw_unfreeze:
2773                         break;
2774                 case sdma_event_e85_link_down:
2775                         ss->go_s99_running = 0;
2776                         break;
2777                 case sdma_event_e90_sw_halted:
2778                         break;
2779                 }
2780                 break;
2781
2782         case sdma_state_s50_hw_halt_wait:
2783                 switch (event) {
2784                 case sdma_event_e00_go_hw_down:
2785                         sdma_set_state(sde, sdma_state_s00_hw_down);
2786                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2787                         break;
2788                 case sdma_event_e10_go_hw_start:
2789                         break;
2790                 case sdma_event_e15_hw_halt_done:
2791                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2792                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2793                         break;
2794                 case sdma_event_e25_hw_clean_up_done:
2795                         break;
2796                 case sdma_event_e30_go_running:
2797                         ss->go_s99_running = 1;
2798                         break;
2799                 case sdma_event_e40_sw_cleaned:
2800                         break;
2801                 case sdma_event_e50_hw_cleaned:
2802                         break;
2803                 case sdma_event_e60_hw_halted:
2804                         schedule_work(&sde->err_halt_worker);
2805                         break;
2806                 case sdma_event_e70_go_idle:
2807                         ss->go_s99_running = 0;
2808                         break;
2809                 case sdma_event_e80_hw_freeze:
2810                         break;
2811                 case sdma_event_e81_hw_frozen:
2812                         break;
2813                 case sdma_event_e82_hw_unfreeze:
2814                         break;
2815                 case sdma_event_e85_link_down:
2816                         ss->go_s99_running = 0;
2817                         break;
2818                 case sdma_event_e90_sw_halted:
2819                         break;
2820                 }
2821                 break;
2822
2823         case sdma_state_s60_idle_halt_wait:
2824                 switch (event) {
2825                 case sdma_event_e00_go_hw_down:
2826                         sdma_set_state(sde, sdma_state_s00_hw_down);
2827                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2828                         break;
2829                 case sdma_event_e10_go_hw_start:
2830                         break;
2831                 case sdma_event_e15_hw_halt_done:
2832                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2833                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2834                         break;
2835                 case sdma_event_e25_hw_clean_up_done:
2836                         break;
2837                 case sdma_event_e30_go_running:
2838                         ss->go_s99_running = 1;
2839                         break;
2840                 case sdma_event_e40_sw_cleaned:
2841                         break;
2842                 case sdma_event_e50_hw_cleaned:
2843                         break;
2844                 case sdma_event_e60_hw_halted:
2845                         schedule_work(&sde->err_halt_worker);
2846                         break;
2847                 case sdma_event_e70_go_idle:
2848                         ss->go_s99_running = 0;
2849                         break;
2850                 case sdma_event_e80_hw_freeze:
2851                         break;
2852                 case sdma_event_e81_hw_frozen:
2853                         break;
2854                 case sdma_event_e82_hw_unfreeze:
2855                         break;
2856                 case sdma_event_e85_link_down:
2857                         break;
2858                 case sdma_event_e90_sw_halted:
2859                         break;
2860                 }
2861                 break;
2862
2863         case sdma_state_s80_hw_freeze:
2864                 switch (event) {
2865                 case sdma_event_e00_go_hw_down:
2866                         sdma_set_state(sde, sdma_state_s00_hw_down);
2867                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2868                         break;
2869                 case sdma_event_e10_go_hw_start:
2870                         break;
2871                 case sdma_event_e15_hw_halt_done:
2872                         break;
2873                 case sdma_event_e25_hw_clean_up_done:
2874                         break;
2875                 case sdma_event_e30_go_running:
2876                         ss->go_s99_running = 1;
2877                         break;
2878                 case sdma_event_e40_sw_cleaned:
2879                         break;
2880                 case sdma_event_e50_hw_cleaned:
2881                         break;
2882                 case sdma_event_e60_hw_halted:
2883                         break;
2884                 case sdma_event_e70_go_idle:
2885                         ss->go_s99_running = 0;
2886                         break;
2887                 case sdma_event_e80_hw_freeze:
2888                         break;
2889                 case sdma_event_e81_hw_frozen:
2890                         sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2891                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2892                         break;
2893                 case sdma_event_e82_hw_unfreeze:
2894                         break;
2895                 case sdma_event_e85_link_down:
2896                         break;
2897                 case sdma_event_e90_sw_halted:
2898                         break;
2899                 }
2900                 break;
2901
2902         case sdma_state_s82_freeze_sw_clean:
2903                 switch (event) {
2904                 case sdma_event_e00_go_hw_down:
2905                         sdma_set_state(sde, sdma_state_s00_hw_down);
2906                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2907                         break;
2908                 case sdma_event_e10_go_hw_start:
2909                         break;
2910                 case sdma_event_e15_hw_halt_done:
2911                         break;
2912                 case sdma_event_e25_hw_clean_up_done:
2913                         break;
2914                 case sdma_event_e30_go_running:
2915                         ss->go_s99_running = 1;
2916                         break;
2917                 case sdma_event_e40_sw_cleaned:
2918                         /* notify caller this engine is done cleaning */
2919                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2920                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2921                         break;
2922                 case sdma_event_e50_hw_cleaned:
2923                         break;
2924                 case sdma_event_e60_hw_halted:
2925                         break;
2926                 case sdma_event_e70_go_idle:
2927                         ss->go_s99_running = 0;
2928                         break;
2929                 case sdma_event_e80_hw_freeze:
2930                         break;
2931                 case sdma_event_e81_hw_frozen:
2932                         break;
2933                 case sdma_event_e82_hw_unfreeze:
2934                         sdma_hw_start_up(sde);
2935                         sdma_set_state(sde, ss->go_s99_running ?
2936                                        sdma_state_s99_running :
2937                                        sdma_state_s20_idle);
2938                         break;
2939                 case sdma_event_e85_link_down:
2940                         break;
2941                 case sdma_event_e90_sw_halted:
2942                         break;
2943                 }
2944                 break;
2945
2946         case sdma_state_s99_running:
2947                 switch (event) {
2948                 case sdma_event_e00_go_hw_down:
2949                         sdma_set_state(sde, sdma_state_s00_hw_down);
2950                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2951                         break;
2952                 case sdma_event_e10_go_hw_start:
2953                         break;
2954                 case sdma_event_e15_hw_halt_done:
2955                         break;
2956                 case sdma_event_e25_hw_clean_up_done:
2957                         break;
2958                 case sdma_event_e30_go_running:
2959                         break;
2960                 case sdma_event_e40_sw_cleaned:
2961                         break;
2962                 case sdma_event_e50_hw_cleaned:
2963                         break;
2964                 case sdma_event_e60_hw_halted:
2965                         need_progress = 1;
2966                         sdma_err_progress_check_schedule(sde);
2967                         fallthrough;
2968                 case sdma_event_e90_sw_halted:
2969                         /*
2970                         * SW initiated halt does not perform engines
2971                         * progress check
2972                         */
2973                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2974                         schedule_work(&sde->err_halt_worker);
2975                         break;
2976                 case sdma_event_e70_go_idle:
2977                         sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
2978                         break;
2979                 case sdma_event_e85_link_down:
2980                         ss->go_s99_running = 0;
2981                         fallthrough;
2982                 case sdma_event_e80_hw_freeze:
2983                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
2984                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2985                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2986                         break;
2987                 case sdma_event_e81_hw_frozen:
2988                         break;
2989                 case sdma_event_e82_hw_unfreeze:
2990                         break;
2991                 }
2992                 break;
2993         }
2994
2995         ss->last_event = event;
2996         if (need_progress)
2997                 sdma_make_progress(sde, 0);
2998 }
2999
3000 /*
3001  * _extend_sdma_tx_descs() - helper to extend txreq
3002  *
3003  * This is called once the initial nominal allocation
3004  * of descriptors in the sdma_txreq is exhausted.
3005  *
3006  * The code will bump the allocation up to the max
3007  * of MAX_DESC (64) descriptors. There doesn't seem
3008  * much point in an interim step. The last descriptor
3009  * is reserved for coalesce buffer in order to support
3010  * cases where input packet has >MAX_DESC iovecs.
3011  *
3012  */
3013 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3014 {
3015         int i;
3016         struct sdma_desc *descp;
3017
3018         /* Handle last descriptor */
3019         if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3020                 /* if tlen is 0, it is for padding, release last descriptor */
3021                 if (!tx->tlen) {
3022                         tx->desc_limit = MAX_DESC;
3023                 } else if (!tx->coalesce_buf) {
3024                         /* allocate coalesce buffer with space for padding */
3025                         tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3026                                                    GFP_ATOMIC);
3027                         if (!tx->coalesce_buf)
3028                                 goto enomem;
3029                         tx->coalesce_idx = 0;
3030                 }
3031                 return 0;
3032         }
3033
3034         if (unlikely(tx->num_desc == MAX_DESC))
3035                 goto enomem;
3036
3037         descp = kmalloc_array(MAX_DESC, sizeof(struct sdma_desc), GFP_ATOMIC);
3038         if (!descp)
3039                 goto enomem;
3040         tx->descp = descp;
3041
3042         /* reserve last descriptor for coalescing */
3043         tx->desc_limit = MAX_DESC - 1;
3044         /* copy ones already built */
3045         for (i = 0; i < tx->num_desc; i++)
3046                 tx->descp[i] = tx->descs[i];
3047         return 0;
3048 enomem:
3049         __sdma_txclean(dd, tx);
3050         return -ENOMEM;
3051 }
3052
3053 /*
3054  * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3055  *
3056  * This is called once the initial nominal allocation of descriptors
3057  * in the sdma_txreq is exhausted.
3058  *
3059  * This function calls _extend_sdma_tx_descs to extend or allocate
3060  * coalesce buffer. If there is a allocated coalesce buffer, it will
3061  * copy the input packet data into the coalesce buffer. It also adds
3062  * coalesce buffer descriptor once when whole packet is received.
3063  *
3064  * Return:
3065  * <0 - error
3066  * 0 - coalescing, don't populate descriptor
3067  * 1 - continue with populating descriptor
3068  */
3069 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3070                            int type, void *kvaddr, struct page *page,
3071                            unsigned long offset, u16 len)
3072 {
3073         int pad_len, rval;
3074         dma_addr_t addr;
3075
3076         rval = _extend_sdma_tx_descs(dd, tx);
3077         if (rval) {
3078                 __sdma_txclean(dd, tx);
3079                 return rval;
3080         }
3081
3082         /* If coalesce buffer is allocated, copy data into it */
3083         if (tx->coalesce_buf) {
3084                 if (type == SDMA_MAP_NONE) {
3085                         __sdma_txclean(dd, tx);
3086                         return -EINVAL;
3087                 }
3088
3089                 if (type == SDMA_MAP_PAGE) {
3090                         kvaddr = kmap_local_page(page);
3091                         kvaddr += offset;
3092                 } else if (WARN_ON(!kvaddr)) {
3093                         __sdma_txclean(dd, tx);
3094                         return -EINVAL;
3095                 }
3096
3097                 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3098                 tx->coalesce_idx += len;
3099                 if (type == SDMA_MAP_PAGE)
3100                         kunmap_local(kvaddr);
3101
3102                 /* If there is more data, return */
3103                 if (tx->tlen - tx->coalesce_idx)
3104                         return 0;
3105
3106                 /* Whole packet is received; add any padding */
3107                 pad_len = tx->packet_len & (sizeof(u32) - 1);
3108                 if (pad_len) {
3109                         pad_len = sizeof(u32) - pad_len;
3110                         memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3111                         /* padding is taken care of for coalescing case */
3112                         tx->packet_len += pad_len;
3113                         tx->tlen += pad_len;
3114                 }
3115
3116                 /* dma map the coalesce buffer */
3117                 addr = dma_map_single(&dd->pcidev->dev,
3118                                       tx->coalesce_buf,
3119                                       tx->tlen,
3120                                       DMA_TO_DEVICE);
3121
3122                 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3123                         __sdma_txclean(dd, tx);
3124                         return -ENOSPC;
3125                 }
3126
3127                 /* Add descriptor for coalesce buffer */
3128                 tx->desc_limit = MAX_DESC;
3129                 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3130                                          addr, tx->tlen);
3131         }
3132
3133         return 1;
3134 }
3135
3136 /* Update sdes when the lmc changes */
3137 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3138 {
3139         struct sdma_engine *sde;
3140         int i;
3141         u64 sreg;
3142
3143         sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3144                 SD(CHECK_SLID_MASK_SHIFT)) |
3145                 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3146                 SD(CHECK_SLID_VALUE_SHIFT));
3147
3148         for (i = 0; i < dd->num_sdma; i++) {
3149                 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3150                           i, (u32)sreg);
3151                 sde = &dd->per_sdma[i];
3152                 write_sde_csr(sde, SD(CHECK_SLID), sreg);
3153         }
3154 }
3155
3156 /* tx not dword sized - pad */
3157 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3158 {
3159         int rval = 0;
3160
3161         tx->num_desc++;
3162         if ((unlikely(tx->num_desc == tx->desc_limit))) {
3163                 rval = _extend_sdma_tx_descs(dd, tx);
3164                 if (rval) {
3165                         __sdma_txclean(dd, tx);
3166                         return rval;
3167                 }
3168         }
3169         /* finish the one just added */
3170         make_tx_sdma_desc(
3171                 tx,
3172                 SDMA_MAP_NONE,
3173                 dd->sdma_pad_phys,
3174                 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3175         _sdma_close_tx(dd, tx);
3176         return rval;
3177 }
3178
3179 /*
3180  * Add ahg to the sdma_txreq
3181  *
3182  * The logic will consume up to 3
3183  * descriptors at the beginning of
3184  * sdma_txreq.
3185  */
3186 void _sdma_txreq_ahgadd(
3187         struct sdma_txreq *tx,
3188         u8 num_ahg,
3189         u8 ahg_entry,
3190         u32 *ahg,
3191         u8 ahg_hlen)
3192 {
3193         u32 i, shift = 0, desc = 0;
3194         u8 mode;
3195
3196         WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3197         /* compute mode */
3198         if (num_ahg == 1)
3199                 mode = SDMA_AHG_APPLY_UPDATE1;
3200         else if (num_ahg <= 5)
3201                 mode = SDMA_AHG_APPLY_UPDATE2;
3202         else
3203                 mode = SDMA_AHG_APPLY_UPDATE3;
3204         tx->num_desc++;
3205         /* initialize to consumed descriptors to zero */
3206         switch (mode) {
3207         case SDMA_AHG_APPLY_UPDATE3:
3208                 tx->num_desc++;
3209                 tx->descs[2].qw[0] = 0;
3210                 tx->descs[2].qw[1] = 0;
3211                 fallthrough;
3212         case SDMA_AHG_APPLY_UPDATE2:
3213                 tx->num_desc++;
3214                 tx->descs[1].qw[0] = 0;
3215                 tx->descs[1].qw[1] = 0;
3216                 break;
3217         }
3218         ahg_hlen >>= 2;
3219         tx->descs[0].qw[1] |=
3220                 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3221                         << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3222                 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3223                         << SDMA_DESC1_HEADER_DWS_SHIFT) |
3224                 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3225                         << SDMA_DESC1_HEADER_MODE_SHIFT) |
3226                 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3227                         << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3228         for (i = 0; i < (num_ahg - 1); i++) {
3229                 if (!shift && !(i & 2))
3230                         desc++;
3231                 tx->descs[desc].qw[!!(i & 2)] |=
3232                         (((u64)ahg[i + 1])
3233                                 << shift);
3234                 shift = (shift + 32) & 63;
3235         }
3236 }
3237
3238 /**
3239  * sdma_ahg_alloc - allocate an AHG entry
3240  * @sde: engine to allocate from
3241  *
3242  * Return:
3243  * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3244  * -ENOSPC if an entry is not available
3245  */
3246 int sdma_ahg_alloc(struct sdma_engine *sde)
3247 {
3248         int nr;
3249         int oldbit;
3250
3251         if (!sde) {
3252                 trace_hfi1_ahg_allocate(sde, -EINVAL);
3253                 return -EINVAL;
3254         }
3255         while (1) {
3256                 nr = ffz(READ_ONCE(sde->ahg_bits));
3257                 if (nr > 31) {
3258                         trace_hfi1_ahg_allocate(sde, -ENOSPC);
3259                         return -ENOSPC;
3260                 }
3261                 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3262                 if (!oldbit)
3263                         break;
3264                 cpu_relax();
3265         }
3266         trace_hfi1_ahg_allocate(sde, nr);
3267         return nr;
3268 }
3269
3270 /**
3271  * sdma_ahg_free - free an AHG entry
3272  * @sde: engine to return AHG entry
3273  * @ahg_index: index to free
3274  *
3275  * This routine frees the indicate AHG entry.
3276  */
3277 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3278 {
3279         if (!sde)
3280                 return;
3281         trace_hfi1_ahg_deallocate(sde, ahg_index);
3282         if (ahg_index < 0 || ahg_index > 31)
3283                 return;
3284         clear_bit(ahg_index, &sde->ahg_bits);
3285 }
3286
3287 /*
3288  * SPC freeze handling for SDMA engines.  Called when the driver knows
3289  * the SPC is going into a freeze but before the freeze is fully
3290  * settled.  Generally an error interrupt.
3291  *
3292  * This event will pull the engine out of running so no more entries can be
3293  * added to the engine's queue.
3294  */
3295 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3296 {
3297         int i;
3298         enum sdma_events event = link_down ? sdma_event_e85_link_down :
3299                                              sdma_event_e80_hw_freeze;
3300
3301         /* set up the wait but do not wait here */
3302         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3303
3304         /* tell all engines to stop running and wait */
3305         for (i = 0; i < dd->num_sdma; i++)
3306                 sdma_process_event(&dd->per_sdma[i], event);
3307
3308         /* sdma_freeze() will wait for all engines to have stopped */
3309 }
3310
3311 /*
3312  * SPC freeze handling for SDMA engines.  Called when the driver knows
3313  * the SPC is fully frozen.
3314  */
3315 void sdma_freeze(struct hfi1_devdata *dd)
3316 {
3317         int i;
3318         int ret;
3319
3320         /*
3321          * Make sure all engines have moved out of the running state before
3322          * continuing.
3323          */
3324         ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3325                                        atomic_read(&dd->sdma_unfreeze_count) <=
3326                                        0);
3327         /* interrupted or count is negative, then unloading - just exit */
3328         if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3329                 return;
3330
3331         /* set up the count for the next wait */
3332         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3333
3334         /* tell all engines that the SPC is frozen, they can start cleaning */
3335         for (i = 0; i < dd->num_sdma; i++)
3336                 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3337
3338         /*
3339          * Wait for everyone to finish software clean before exiting.  The
3340          * software clean will read engine CSRs, so must be completed before
3341          * the next step, which will clear the engine CSRs.
3342          */
3343         (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3344                                 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3345         /* no need to check results - done no matter what */
3346 }
3347
3348 /*
3349  * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
3350  *
3351  * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
3352  * that is left is a software clean.  We could do it after the SPC is fully
3353  * frozen, but then we'd have to add another state to wait for the unfreeze.
3354  * Instead, just defer the software clean until the unfreeze step.
3355  */
3356 void sdma_unfreeze(struct hfi1_devdata *dd)
3357 {
3358         int i;
3359
3360         /* tell all engines start freeze clean up */
3361         for (i = 0; i < dd->num_sdma; i++)
3362                 sdma_process_event(&dd->per_sdma[i],
3363                                    sdma_event_e82_hw_unfreeze);
3364 }
3365
3366 /**
3367  * _sdma_engine_progress_schedule() - schedule progress on engine
3368  * @sde: sdma_engine to schedule progress
3369  *
3370  */
3371 void _sdma_engine_progress_schedule(
3372         struct sdma_engine *sde)
3373 {
3374         trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3375         /* assume we have selected a good cpu */
3376         write_csr(sde->dd,
3377                   CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3378                   sde->progress_mask);
3379 }