2cbc619a175445c1e204c2981a65a874530e590c
[linux-2.6-microblaze.git] / drivers / infiniband / hw / hfi1 / chip.c
1 /*
2  * Copyright(c) 2015 - 2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68
69 #define NUM_IB_PORTS 1
70
71 uint kdeth_qp;
72 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
73 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
74
75 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
76 module_param(num_vls, uint, S_IRUGO);
77 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
78
79 /*
80  * Default time to aggregate two 10K packets from the idle state
81  * (timer not running). The timer starts at the end of the first packet,
82  * so only the time for one 10K packet and header plus a bit extra is needed.
83  * 10 * 1024 + 64 header byte = 10304 byte
84  * 10304 byte / 12.5 GB/s = 824.32ns
85  */
86 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
87 module_param(rcv_intr_timeout, uint, S_IRUGO);
88 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
89
90 uint rcv_intr_count = 16; /* same as qib */
91 module_param(rcv_intr_count, uint, S_IRUGO);
92 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
93
94 ushort link_crc_mask = SUPPORTED_CRCS;
95 module_param(link_crc_mask, ushort, S_IRUGO);
96 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
97
98 uint loopback;
99 module_param_named(loopback, loopback, uint, S_IRUGO);
100 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
101
102 /* Other driver tunables */
103 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
104 static ushort crc_14b_sideband = 1;
105 static uint use_flr = 1;
106 uint quick_linkup; /* skip LNI */
107
108 struct flag_table {
109         u64 flag;       /* the flag */
110         char *str;      /* description string */
111         u16 extra;      /* extra information */
112         u16 unused0;
113         u32 unused1;
114 };
115
116 /* str must be a string constant */
117 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
118 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
119
120 /* Send Error Consequences */
121 #define SEC_WRITE_DROPPED       0x1
122 #define SEC_PACKET_DROPPED      0x2
123 #define SEC_SC_HALTED           0x4     /* per-context only */
124 #define SEC_SPC_FREEZE          0x8     /* per-HFI only */
125
126 #define DEFAULT_KRCVQS            2
127 #define MIN_KERNEL_KCTXTS         2
128 #define FIRST_KERNEL_KCTXT        1
129
130 /*
131  * RSM instance allocation
132  *   0 - Verbs
133  *   1 - User Fecn Handling
134  *   2 - Vnic
135  */
136 #define RSM_INS_VERBS             0
137 #define RSM_INS_FECN              1
138 #define RSM_INS_VNIC              2
139
140 /* Bit offset into the GUID which carries HFI id information */
141 #define GUID_HFI_INDEX_SHIFT     39
142
143 /* extract the emulation revision */
144 #define emulator_rev(dd) ((dd)->irev >> 8)
145 /* parallel and serial emulation versions are 3 and 4 respectively */
146 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
147 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
148
149 /* RSM fields for Verbs */
150 /* packet type */
151 #define IB_PACKET_TYPE         2ull
152 #define QW_SHIFT               6ull
153 /* QPN[7..1] */
154 #define QPN_WIDTH              7ull
155
156 /* LRH.BTH: QW 0, OFFSET 48 - for match */
157 #define LRH_BTH_QW             0ull
158 #define LRH_BTH_BIT_OFFSET     48ull
159 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
160 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
161 #define LRH_BTH_SELECT
162 #define LRH_BTH_MASK           3ull
163 #define LRH_BTH_VALUE          2ull
164
165 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
166 #define LRH_SC_QW              0ull
167 #define LRH_SC_BIT_OFFSET      56ull
168 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
169 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
170 #define LRH_SC_MASK            128ull
171 #define LRH_SC_VALUE           0ull
172
173 /* SC[n..0] QW 0, OFFSET 60 - for select */
174 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
175
176 /* QPN[m+n:1] QW 1, OFFSET 1 */
177 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
178
179 /* RSM fields for Vnic */
180 /* L2_TYPE: QW 0, OFFSET 61 - for match */
181 #define L2_TYPE_QW             0ull
182 #define L2_TYPE_BIT_OFFSET     61ull
183 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
184 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
185 #define L2_TYPE_MASK           3ull
186 #define L2_16B_VALUE           2ull
187
188 /* L4_TYPE QW 1, OFFSET 0 - for match */
189 #define L4_TYPE_QW              1ull
190 #define L4_TYPE_BIT_OFFSET      0ull
191 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
192 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
193 #define L4_16B_TYPE_MASK        0xFFull
194 #define L4_16B_ETH_VALUE        0x78ull
195
196 /* 16B VESWID - for select */
197 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
198 /* 16B ENTROPY - for select */
199 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
200
201 /* defines to build power on SC2VL table */
202 #define SC2VL_VAL( \
203         num, \
204         sc0, sc0val, \
205         sc1, sc1val, \
206         sc2, sc2val, \
207         sc3, sc3val, \
208         sc4, sc4val, \
209         sc5, sc5val, \
210         sc6, sc6val, \
211         sc7, sc7val) \
212 ( \
213         ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
214         ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
215         ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
216         ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
217         ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
218         ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
219         ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
220         ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
221 )
222
223 #define DC_SC_VL_VAL( \
224         range, \
225         e0, e0val, \
226         e1, e1val, \
227         e2, e2val, \
228         e3, e3val, \
229         e4, e4val, \
230         e5, e5val, \
231         e6, e6val, \
232         e7, e7val, \
233         e8, e8val, \
234         e9, e9val, \
235         e10, e10val, \
236         e11, e11val, \
237         e12, e12val, \
238         e13, e13val, \
239         e14, e14val, \
240         e15, e15val) \
241 ( \
242         ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
243         ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
244         ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
245         ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
246         ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
247         ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
248         ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
249         ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
250         ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
251         ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
252         ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
253         ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
254         ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
255         ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
256         ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
257         ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
258 )
259
260 /* all CceStatus sub-block freeze bits */
261 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
262                         | CCE_STATUS_RXE_FROZE_SMASK \
263                         | CCE_STATUS_TXE_FROZE_SMASK \
264                         | CCE_STATUS_TXE_PIO_FROZE_SMASK)
265 /* all CceStatus sub-block TXE pause bits */
266 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
267                         | CCE_STATUS_TXE_PAUSED_SMASK \
268                         | CCE_STATUS_SDMA_PAUSED_SMASK)
269 /* all CceStatus sub-block RXE pause bits */
270 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
271
272 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
273 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
274
275 /*
276  * CCE Error flags.
277  */
278 static struct flag_table cce_err_status_flags[] = {
279 /* 0*/  FLAG_ENTRY0("CceCsrParityErr",
280                 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
281 /* 1*/  FLAG_ENTRY0("CceCsrReadBadAddrErr",
282                 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
283 /* 2*/  FLAG_ENTRY0("CceCsrWriteBadAddrErr",
284                 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
285 /* 3*/  FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
286                 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
287 /* 4*/  FLAG_ENTRY0("CceTrgtAccessErr",
288                 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
289 /* 5*/  FLAG_ENTRY0("CceRspdDataParityErr",
290                 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
291 /* 6*/  FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
292                 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
293 /* 7*/  FLAG_ENTRY0("CceCsrCfgBusParityErr",
294                 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
295 /* 8*/  FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
296                 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
297 /* 9*/  FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
298             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
299 /*10*/  FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
300             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
301 /*11*/  FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
302             CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
303 /*12*/  FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
304                 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
305 /*13*/  FLAG_ENTRY0("PcicRetryMemCorErr",
306                 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
307 /*14*/  FLAG_ENTRY0("PcicRetryMemCorErr",
308                 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
309 /*15*/  FLAG_ENTRY0("PcicPostHdQCorErr",
310                 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
311 /*16*/  FLAG_ENTRY0("PcicPostHdQCorErr",
312                 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
313 /*17*/  FLAG_ENTRY0("PcicPostHdQCorErr",
314                 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
315 /*18*/  FLAG_ENTRY0("PcicCplDatQCorErr",
316                 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
317 /*19*/  FLAG_ENTRY0("PcicNPostHQParityErr",
318                 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
319 /*20*/  FLAG_ENTRY0("PcicNPostDatQParityErr",
320                 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
321 /*21*/  FLAG_ENTRY0("PcicRetryMemUncErr",
322                 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
323 /*22*/  FLAG_ENTRY0("PcicRetrySotMemUncErr",
324                 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
325 /*23*/  FLAG_ENTRY0("PcicPostHdQUncErr",
326                 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
327 /*24*/  FLAG_ENTRY0("PcicPostDatQUncErr",
328                 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
329 /*25*/  FLAG_ENTRY0("PcicCplHdQUncErr",
330                 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
331 /*26*/  FLAG_ENTRY0("PcicCplDatQUncErr",
332                 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
333 /*27*/  FLAG_ENTRY0("PcicTransmitFrontParityErr",
334                 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
335 /*28*/  FLAG_ENTRY0("PcicTransmitBackParityErr",
336                 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
337 /*29*/  FLAG_ENTRY0("PcicReceiveParityErr",
338                 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
339 /*30*/  FLAG_ENTRY0("CceTrgtCplTimeoutErr",
340                 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
341 /*31*/  FLAG_ENTRY0("LATriggered",
342                 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
343 /*32*/  FLAG_ENTRY0("CceSegReadBadAddrErr",
344                 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
345 /*33*/  FLAG_ENTRY0("CceSegWriteBadAddrErr",
346                 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
347 /*34*/  FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
348                 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
349 /*35*/  FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
350                 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
351 /*36*/  FLAG_ENTRY0("CceMsixTableCorErr",
352                 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
353 /*37*/  FLAG_ENTRY0("CceMsixTableUncErr",
354                 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
355 /*38*/  FLAG_ENTRY0("CceIntMapCorErr",
356                 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
357 /*39*/  FLAG_ENTRY0("CceIntMapUncErr",
358                 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
359 /*40*/  FLAG_ENTRY0("CceMsixCsrParityErr",
360                 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
361 /*41-63 reserved*/
362 };
363
364 /*
365  * Misc Error flags
366  */
367 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
368 static struct flag_table misc_err_status_flags[] = {
369 /* 0*/  FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
370 /* 1*/  FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
371 /* 2*/  FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
372 /* 3*/  FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
373 /* 4*/  FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
374 /* 5*/  FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
375 /* 6*/  FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
376 /* 7*/  FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
377 /* 8*/  FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
378 /* 9*/  FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
379 /*10*/  FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
380 /*11*/  FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
381 /*12*/  FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
382 };
383
384 /*
385  * TXE PIO Error flags and consequences
386  */
387 static struct flag_table pio_err_status_flags[] = {
388 /* 0*/  FLAG_ENTRY("PioWriteBadCtxt",
389         SEC_WRITE_DROPPED,
390         SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
391 /* 1*/  FLAG_ENTRY("PioWriteAddrParity",
392         SEC_SPC_FREEZE,
393         SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
394 /* 2*/  FLAG_ENTRY("PioCsrParity",
395         SEC_SPC_FREEZE,
396         SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
397 /* 3*/  FLAG_ENTRY("PioSbMemFifo0",
398         SEC_SPC_FREEZE,
399         SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
400 /* 4*/  FLAG_ENTRY("PioSbMemFifo1",
401         SEC_SPC_FREEZE,
402         SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
403 /* 5*/  FLAG_ENTRY("PioPccFifoParity",
404         SEC_SPC_FREEZE,
405         SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
406 /* 6*/  FLAG_ENTRY("PioPecFifoParity",
407         SEC_SPC_FREEZE,
408         SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
409 /* 7*/  FLAG_ENTRY("PioSbrdctlCrrelParity",
410         SEC_SPC_FREEZE,
411         SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
412 /* 8*/  FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
413         SEC_SPC_FREEZE,
414         SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
415 /* 9*/  FLAG_ENTRY("PioPktEvictFifoParityErr",
416         SEC_SPC_FREEZE,
417         SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
418 /*10*/  FLAG_ENTRY("PioSmPktResetParity",
419         SEC_SPC_FREEZE,
420         SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
421 /*11*/  FLAG_ENTRY("PioVlLenMemBank0Unc",
422         SEC_SPC_FREEZE,
423         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
424 /*12*/  FLAG_ENTRY("PioVlLenMemBank1Unc",
425         SEC_SPC_FREEZE,
426         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
427 /*13*/  FLAG_ENTRY("PioVlLenMemBank0Cor",
428         0,
429         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
430 /*14*/  FLAG_ENTRY("PioVlLenMemBank1Cor",
431         0,
432         SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
433 /*15*/  FLAG_ENTRY("PioCreditRetFifoParity",
434         SEC_SPC_FREEZE,
435         SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
436 /*16*/  FLAG_ENTRY("PioPpmcPblFifo",
437         SEC_SPC_FREEZE,
438         SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
439 /*17*/  FLAG_ENTRY("PioInitSmIn",
440         0,
441         SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
442 /*18*/  FLAG_ENTRY("PioPktEvictSmOrArbSm",
443         SEC_SPC_FREEZE,
444         SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
445 /*19*/  FLAG_ENTRY("PioHostAddrMemUnc",
446         SEC_SPC_FREEZE,
447         SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
448 /*20*/  FLAG_ENTRY("PioHostAddrMemCor",
449         0,
450         SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
451 /*21*/  FLAG_ENTRY("PioWriteDataParity",
452         SEC_SPC_FREEZE,
453         SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
454 /*22*/  FLAG_ENTRY("PioStateMachine",
455         SEC_SPC_FREEZE,
456         SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
457 /*23*/  FLAG_ENTRY("PioWriteQwValidParity",
458         SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
459         SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
460 /*24*/  FLAG_ENTRY("PioBlockQwCountParity",
461         SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
462         SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
463 /*25*/  FLAG_ENTRY("PioVlfVlLenParity",
464         SEC_SPC_FREEZE,
465         SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
466 /*26*/  FLAG_ENTRY("PioVlfSopParity",
467         SEC_SPC_FREEZE,
468         SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
469 /*27*/  FLAG_ENTRY("PioVlFifoParity",
470         SEC_SPC_FREEZE,
471         SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
472 /*28*/  FLAG_ENTRY("PioPpmcBqcMemParity",
473         SEC_SPC_FREEZE,
474         SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
475 /*29*/  FLAG_ENTRY("PioPpmcSopLen",
476         SEC_SPC_FREEZE,
477         SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
478 /*30-31 reserved*/
479 /*32*/  FLAG_ENTRY("PioCurrentFreeCntParity",
480         SEC_SPC_FREEZE,
481         SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
482 /*33*/  FLAG_ENTRY("PioLastReturnedCntParity",
483         SEC_SPC_FREEZE,
484         SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
485 /*34*/  FLAG_ENTRY("PioPccSopHeadParity",
486         SEC_SPC_FREEZE,
487         SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
488 /*35*/  FLAG_ENTRY("PioPecSopHeadParityErr",
489         SEC_SPC_FREEZE,
490         SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
491 /*36-63 reserved*/
492 };
493
494 /* TXE PIO errors that cause an SPC freeze */
495 #define ALL_PIO_FREEZE_ERR \
496         (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
497         | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
498         | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
499         | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
500         | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
501         | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
502         | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
503         | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
504         | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
505         | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
506         | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
507         | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
508         | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
509         | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
510         | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
511         | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
512         | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
513         | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
514         | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
515         | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
516         | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
517         | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
518         | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
519         | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
520         | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
521         | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
522         | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
523         | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
524         | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
525
526 /*
527  * TXE SDMA Error flags
528  */
529 static struct flag_table sdma_err_status_flags[] = {
530 /* 0*/  FLAG_ENTRY0("SDmaRpyTagErr",
531                 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
532 /* 1*/  FLAG_ENTRY0("SDmaCsrParityErr",
533                 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
534 /* 2*/  FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
535                 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
536 /* 3*/  FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
537                 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
538 /*04-63 reserved*/
539 };
540
541 /* TXE SDMA errors that cause an SPC freeze */
542 #define ALL_SDMA_FREEZE_ERR  \
543                 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
544                 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
545                 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
546
547 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
548 #define PORT_DISCARD_EGRESS_ERRS \
549         (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
550         | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
551         | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
552
553 /*
554  * TXE Egress Error flags
555  */
556 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
557 static struct flag_table egress_err_status_flags[] = {
558 /* 0*/  FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
559 /* 1*/  FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
560 /* 2 reserved */
561 /* 3*/  FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
562                 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
563 /* 4*/  FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
564 /* 5*/  FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
565 /* 6 reserved */
566 /* 7*/  FLAG_ENTRY0("TxPioLaunchIntfParityErr",
567                 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
568 /* 8*/  FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
569                 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
570 /* 9-10 reserved */
571 /*11*/  FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
572                 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
573 /*12*/  FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
574 /*13*/  FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
575 /*14*/  FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
576 /*15*/  FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
577 /*16*/  FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
578                 SEES(TX_SDMA0_DISALLOWED_PACKET)),
579 /*17*/  FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
580                 SEES(TX_SDMA1_DISALLOWED_PACKET)),
581 /*18*/  FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
582                 SEES(TX_SDMA2_DISALLOWED_PACKET)),
583 /*19*/  FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
584                 SEES(TX_SDMA3_DISALLOWED_PACKET)),
585 /*20*/  FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
586                 SEES(TX_SDMA4_DISALLOWED_PACKET)),
587 /*21*/  FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
588                 SEES(TX_SDMA5_DISALLOWED_PACKET)),
589 /*22*/  FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
590                 SEES(TX_SDMA6_DISALLOWED_PACKET)),
591 /*23*/  FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
592                 SEES(TX_SDMA7_DISALLOWED_PACKET)),
593 /*24*/  FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
594                 SEES(TX_SDMA8_DISALLOWED_PACKET)),
595 /*25*/  FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
596                 SEES(TX_SDMA9_DISALLOWED_PACKET)),
597 /*26*/  FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
598                 SEES(TX_SDMA10_DISALLOWED_PACKET)),
599 /*27*/  FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
600                 SEES(TX_SDMA11_DISALLOWED_PACKET)),
601 /*28*/  FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
602                 SEES(TX_SDMA12_DISALLOWED_PACKET)),
603 /*29*/  FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
604                 SEES(TX_SDMA13_DISALLOWED_PACKET)),
605 /*30*/  FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
606                 SEES(TX_SDMA14_DISALLOWED_PACKET)),
607 /*31*/  FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
608                 SEES(TX_SDMA15_DISALLOWED_PACKET)),
609 /*32*/  FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
610                 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
611 /*33*/  FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
612                 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
613 /*34*/  FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
614                 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
615 /*35*/  FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
616                 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
617 /*36*/  FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
618                 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
619 /*37*/  FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
620                 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
621 /*38*/  FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
622                 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
623 /*39*/  FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
624                 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
625 /*40*/  FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
626                 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
627 /*41*/  FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
628 /*42*/  FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
629 /*43*/  FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
630 /*44*/  FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
631 /*45*/  FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
632 /*46*/  FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
633 /*47*/  FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
634 /*48*/  FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
635 /*49*/  FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
636 /*50*/  FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
637 /*51*/  FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
638 /*52*/  FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
639 /*53*/  FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
640 /*54*/  FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
641 /*55*/  FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
642 /*56*/  FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
643 /*57*/  FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
644 /*58*/  FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
645 /*59*/  FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
646 /*60*/  FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
647 /*61*/  FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
648 /*62*/  FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
649                 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
650 /*63*/  FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
651                 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
652 };
653
654 /*
655  * TXE Egress Error Info flags
656  */
657 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
658 static struct flag_table egress_err_info_flags[] = {
659 /* 0*/  FLAG_ENTRY0("Reserved", 0ull),
660 /* 1*/  FLAG_ENTRY0("VLErr", SEEI(VL)),
661 /* 2*/  FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
662 /* 3*/  FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
663 /* 4*/  FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
664 /* 5*/  FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
665 /* 6*/  FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
666 /* 7*/  FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
667 /* 8*/  FLAG_ENTRY0("RawErr", SEEI(RAW)),
668 /* 9*/  FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
669 /*10*/  FLAG_ENTRY0("GRHErr", SEEI(GRH)),
670 /*11*/  FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
671 /*12*/  FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
672 /*13*/  FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
673 /*14*/  FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
674 /*15*/  FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
675 /*16*/  FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
676 /*17*/  FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
677 /*18*/  FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
678 /*19*/  FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
679 /*20*/  FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
680 /*21*/  FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
681 };
682
683 /* TXE Egress errors that cause an SPC freeze */
684 #define ALL_TXE_EGRESS_FREEZE_ERR \
685         (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
686         | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
687         | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
688         | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
689         | SEES(TX_LAUNCH_CSR_PARITY) \
690         | SEES(TX_SBRD_CTL_CSR_PARITY) \
691         | SEES(TX_CONFIG_PARITY) \
692         | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
693         | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
694         | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
695         | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
696         | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
697         | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
698         | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
699         | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
700         | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
701         | SEES(TX_CREDIT_RETURN_PARITY))
702
703 /*
704  * TXE Send error flags
705  */
706 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
707 static struct flag_table send_err_status_flags[] = {
708 /* 0*/  FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
709 /* 1*/  FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
710 /* 2*/  FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
711 };
712
713 /*
714  * TXE Send Context Error flags and consequences
715  */
716 static struct flag_table sc_err_status_flags[] = {
717 /* 0*/  FLAG_ENTRY("InconsistentSop",
718                 SEC_PACKET_DROPPED | SEC_SC_HALTED,
719                 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
720 /* 1*/  FLAG_ENTRY("DisallowedPacket",
721                 SEC_PACKET_DROPPED | SEC_SC_HALTED,
722                 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
723 /* 2*/  FLAG_ENTRY("WriteCrossesBoundary",
724                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
725                 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
726 /* 3*/  FLAG_ENTRY("WriteOverflow",
727                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
728                 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
729 /* 4*/  FLAG_ENTRY("WriteOutOfBounds",
730                 SEC_WRITE_DROPPED | SEC_SC_HALTED,
731                 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
732 /* 5-63 reserved*/
733 };
734
735 /*
736  * RXE Receive Error flags
737  */
738 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
739 static struct flag_table rxe_err_status_flags[] = {
740 /* 0*/  FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
741 /* 1*/  FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
742 /* 2*/  FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
743 /* 3*/  FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
744 /* 4*/  FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
745 /* 5*/  FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
746 /* 6*/  FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
747 /* 7*/  FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
748 /* 8*/  FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
749 /* 9*/  FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
750 /*10*/  FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
751 /*11*/  FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
752 /*12*/  FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
753 /*13*/  FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
754 /*14*/  FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
755 /*15*/  FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
756 /*16*/  FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
757                 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
758 /*17*/  FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
759 /*18*/  FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
760 /*19*/  FLAG_ENTRY0("RxRbufBlockListReadUncErr",
761                 RXES(RBUF_BLOCK_LIST_READ_UNC)),
762 /*20*/  FLAG_ENTRY0("RxRbufBlockListReadCorErr",
763                 RXES(RBUF_BLOCK_LIST_READ_COR)),
764 /*21*/  FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
765                 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
766 /*22*/  FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
767                 RXES(RBUF_CSR_QENT_CNT_PARITY)),
768 /*23*/  FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
769                 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
770 /*24*/  FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
771                 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
772 /*25*/  FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
773 /*26*/  FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
774 /*27*/  FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
775                 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
776 /*28*/  FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
777 /*29*/  FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
778 /*30*/  FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
779 /*31*/  FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
780 /*32*/  FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
781 /*33*/  FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
782 /*34*/  FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
783 /*35*/  FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
784                 RXES(RBUF_FL_INITDONE_PARITY)),
785 /*36*/  FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
786                 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
787 /*37*/  FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
788 /*38*/  FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
789 /*39*/  FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
790 /*40*/  FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
791                 RXES(LOOKUP_DES_PART1_UNC_COR)),
792 /*41*/  FLAG_ENTRY0("RxLookupDesPart2ParityErr",
793                 RXES(LOOKUP_DES_PART2_PARITY)),
794 /*42*/  FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
795 /*43*/  FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
796 /*44*/  FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
797 /*45*/  FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
798 /*46*/  FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
799 /*47*/  FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
800 /*48*/  FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
801 /*49*/  FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
802 /*50*/  FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
803 /*51*/  FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
804 /*52*/  FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
805 /*53*/  FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
806 /*54*/  FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
807 /*55*/  FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
808 /*56*/  FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
809 /*57*/  FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
810 /*58*/  FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
811 /*59*/  FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
812 /*60*/  FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
813 /*61*/  FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
814 /*62*/  FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
815 /*63*/  FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
816 };
817
818 /* RXE errors that will trigger an SPC freeze */
819 #define ALL_RXE_FREEZE_ERR  \
820         (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
821         | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
822         | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
823         | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
824         | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
825         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
826         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
827         | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
828         | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
829         | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
830         | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
831         | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
832         | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
833         | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
834         | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
835         | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
836         | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
837         | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
838         | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
839         | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
840         | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
841         | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
842         | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
843         | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
844         | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
845         | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
846         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
847         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
848         | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
849         | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
850         | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
851         | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
852         | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
853         | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
854         | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
855         | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
856         | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
857         | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
858         | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
859         | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
860         | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
861         | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
862         | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
863         | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
864
865 #define RXE_FREEZE_ABORT_MASK \
866         (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
867         RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
868         RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
869
870 /*
871  * DCC Error Flags
872  */
873 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
874 static struct flag_table dcc_err_flags[] = {
875         FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
876         FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
877         FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
878         FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
879         FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
880         FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
881         FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
882         FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
883         FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
884         FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
885         FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
886         FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
887         FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
888         FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
889         FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
890         FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
891         FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
892         FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
893         FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
894         FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
895         FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
896         FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
897         FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
898         FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
899         FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
900         FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
901         FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
902         FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
903         FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
904         FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
905         FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
906         FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
907         FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
908         FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
909         FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
910         FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
911         FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
912         FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
913         FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
914         FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
915         FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
916         FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
917         FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
918         FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
919         FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
920         FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
921 };
922
923 /*
924  * LCB error flags
925  */
926 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
927 static struct flag_table lcb_err_flags[] = {
928 /* 0*/  FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
929 /* 1*/  FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
930 /* 2*/  FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
931 /* 3*/  FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
932                 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
933 /* 4*/  FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
934 /* 5*/  FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
935 /* 6*/  FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
936 /* 7*/  FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
937 /* 8*/  FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
938 /* 9*/  FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
939 /*10*/  FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
940 /*11*/  FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
941 /*12*/  FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
942 /*13*/  FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
943                 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
944 /*14*/  FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
945 /*15*/  FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
946 /*16*/  FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
947 /*17*/  FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
948 /*18*/  FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
949 /*19*/  FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
950                 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
951 /*20*/  FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
952 /*21*/  FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
953 /*22*/  FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
954 /*23*/  FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
955 /*24*/  FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
956 /*25*/  FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
957 /*26*/  FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
958                 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
959 /*27*/  FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
960 /*28*/  FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
961                 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
962 /*29*/  FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
963                 LCBE(REDUNDANT_FLIT_PARITY_ERR))
964 };
965
966 /*
967  * DC8051 Error Flags
968  */
969 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
970 static struct flag_table dc8051_err_flags[] = {
971         FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
972         FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
973         FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
974         FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
975         FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
976         FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
977         FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
978         FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
979         FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
980                     D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
981         FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
982 };
983
984 /*
985  * DC8051 Information Error flags
986  *
987  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
988  */
989 static struct flag_table dc8051_info_err_flags[] = {
990         FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
991         FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
992         FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
993         FLAG_ENTRY0("Serdes internal loopback failure",
994                     FAILED_SERDES_INTERNAL_LOOPBACK),
995         FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
996         FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
997         FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
998         FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
999         FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
1000         FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1001         FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1002         FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1003         FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1004         FLAG_ENTRY0("External Device Request Timeout",
1005                     EXTERNAL_DEVICE_REQ_TIMEOUT),
1006 };
1007
1008 /*
1009  * DC8051 Information Host Information flags
1010  *
1011  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1012  */
1013 static struct flag_table dc8051_info_host_msg_flags[] = {
1014         FLAG_ENTRY0("Host request done", 0x0001),
1015         FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1016         FLAG_ENTRY0("BC SMA message", 0x0004),
1017         FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1018         FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1019         FLAG_ENTRY0("External device config request", 0x0020),
1020         FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1021         FLAG_ENTRY0("LinkUp achieved", 0x0080),
1022         FLAG_ENTRY0("Link going down", 0x0100),
1023         FLAG_ENTRY0("Link width downgraded", 0x0200),
1024 };
1025
1026 static u32 encoded_size(u32 size);
1027 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1028 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1029 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1030                                u8 *continuous);
1031 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1032                                   u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1033 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1034                                       u8 *remote_tx_rate, u16 *link_widths);
1035 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
1036                                      u8 *flag_bits, u16 *link_widths);
1037 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1038                                   u8 *device_rev);
1039 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
1040 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1041 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1042                             u8 *tx_polarity_inversion,
1043                             u8 *rx_polarity_inversion, u8 *max_rate);
1044 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1045                                 unsigned int context, u64 err_status);
1046 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1047 static void handle_dcc_err(struct hfi1_devdata *dd,
1048                            unsigned int context, u64 err_status);
1049 static void handle_lcb_err(struct hfi1_devdata *dd,
1050                            unsigned int context, u64 err_status);
1051 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1058 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1059 static void set_partition_keys(struct hfi1_pportdata *ppd);
1060 static const char *link_state_name(u32 state);
1061 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1062                                           u32 state);
1063 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1064                            u64 *out_data);
1065 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1066 static int thermal_init(struct hfi1_devdata *dd);
1067
1068 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1069 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1070                                   int msecs);
1071 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1072 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1073 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1074                                    int msecs);
1075 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1076 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1077 static void handle_temp_err(struct hfi1_devdata *dd);
1078 static void dc_shutdown(struct hfi1_devdata *dd);
1079 static void dc_start(struct hfi1_devdata *dd);
1080 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1081                            unsigned int *np);
1082 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1083 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1084 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1085
1086 /*
1087  * Error interrupt table entry.  This is used as input to the interrupt
1088  * "clear down" routine used for all second tier error interrupt register.
1089  * Second tier interrupt registers have a single bit representing them
1090  * in the top-level CceIntStatus.
1091  */
1092 struct err_reg_info {
1093         u32 status;             /* status CSR offset */
1094         u32 clear;              /* clear CSR offset */
1095         u32 mask;               /* mask CSR offset */
1096         void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1097         const char *desc;
1098 };
1099
1100 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1101 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1102 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1103
1104 /*
1105  * Helpers for building HFI and DC error interrupt table entries.  Different
1106  * helpers are needed because of inconsistent register names.
1107  */
1108 #define EE(reg, handler, desc) \
1109         { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1110                 handler, desc }
1111 #define DC_EE1(reg, handler, desc) \
1112         { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1113 #define DC_EE2(reg, handler, desc) \
1114         { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1115
1116 /*
1117  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1118  * another register containing more information.
1119  */
1120 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1121 /* 0*/  EE(CCE_ERR,             handle_cce_err,    "CceErr"),
1122 /* 1*/  EE(RCV_ERR,             handle_rxe_err,    "RxeErr"),
1123 /* 2*/  EE(MISC_ERR,    handle_misc_err,   "MiscErr"),
1124 /* 3*/  { 0, 0, 0, NULL }, /* reserved */
1125 /* 4*/  EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1126 /* 5*/  EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1127 /* 6*/  EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1128 /* 7*/  EE(SEND_ERR,    handle_txe_err,    "TxeErr")
1129         /* the rest are reserved */
1130 };
1131
1132 /*
1133  * Index into the Various section of the interrupt sources
1134  * corresponding to the Critical Temperature interrupt.
1135  */
1136 #define TCRIT_INT_SOURCE 4
1137
1138 /*
1139  * SDMA error interrupt entry - refers to another register containing more
1140  * information.
1141  */
1142 static const struct err_reg_info sdma_eng_err =
1143         EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1144
1145 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1146 /* 0*/  { 0, 0, 0, NULL }, /* PbcInt */
1147 /* 1*/  { 0, 0, 0, NULL }, /* GpioAssertInt */
1148 /* 2*/  EE(ASIC_QSFP1,  handle_qsfp_int,        "QSFP1"),
1149 /* 3*/  EE(ASIC_QSFP2,  handle_qsfp_int,        "QSFP2"),
1150 /* 4*/  { 0, 0, 0, NULL }, /* TCritInt */
1151         /* rest are reserved */
1152 };
1153
1154 /*
1155  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1156  * register can not be derived from the MTU value because 10K is not
1157  * a power of 2. Therefore, we need a constant. Everything else can
1158  * be calculated.
1159  */
1160 #define DCC_CFG_PORT_MTU_CAP_10240 7
1161
1162 /*
1163  * Table of the DC grouping of error interrupts.  Each entry refers to
1164  * another register containing more information.
1165  */
1166 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1167 /* 0*/  DC_EE1(DCC_ERR,         handle_dcc_err,        "DCC Err"),
1168 /* 1*/  DC_EE2(DC_LCB_ERR,      handle_lcb_err,        "LCB Err"),
1169 /* 2*/  DC_EE2(DC_DC8051_ERR,   handle_8051_interrupt, "DC8051 Interrupt"),
1170 /* 3*/  /* dc_lbm_int - special, see is_dc_int() */
1171         /* the rest are reserved */
1172 };
1173
1174 struct cntr_entry {
1175         /*
1176          * counter name
1177          */
1178         char *name;
1179
1180         /*
1181          * csr to read for name (if applicable)
1182          */
1183         u64 csr;
1184
1185         /*
1186          * offset into dd or ppd to store the counter's value
1187          */
1188         int offset;
1189
1190         /*
1191          * flags
1192          */
1193         u8 flags;
1194
1195         /*
1196          * accessor for stat element, context either dd or ppd
1197          */
1198         u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1199                        int mode, u64 data);
1200 };
1201
1202 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1203 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1204
1205 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1206 { \
1207         name, \
1208         csr, \
1209         offset, \
1210         flags, \
1211         accessor \
1212 }
1213
1214 /* 32bit RXE */
1215 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1216 CNTR_ELEM(#name, \
1217           (counter * 8 + RCV_COUNTER_ARRAY32), \
1218           0, flags | CNTR_32BIT, \
1219           port_access_u32_csr)
1220
1221 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1222 CNTR_ELEM(#name, \
1223           (counter * 8 + RCV_COUNTER_ARRAY32), \
1224           0, flags | CNTR_32BIT, \
1225           dev_access_u32_csr)
1226
1227 /* 64bit RXE */
1228 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1229 CNTR_ELEM(#name, \
1230           (counter * 8 + RCV_COUNTER_ARRAY64), \
1231           0, flags, \
1232           port_access_u64_csr)
1233
1234 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1235 CNTR_ELEM(#name, \
1236           (counter * 8 + RCV_COUNTER_ARRAY64), \
1237           0, flags, \
1238           dev_access_u64_csr)
1239
1240 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1241 #define OVR_ELM(ctx) \
1242 CNTR_ELEM("RcvHdrOvr" #ctx, \
1243           (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1244           0, CNTR_NORMAL, port_access_u64_csr)
1245
1246 /* 32bit TXE */
1247 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1248 CNTR_ELEM(#name, \
1249           (counter * 8 + SEND_COUNTER_ARRAY32), \
1250           0, flags | CNTR_32BIT, \
1251           port_access_u32_csr)
1252
1253 /* 64bit TXE */
1254 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1255 CNTR_ELEM(#name, \
1256           (counter * 8 + SEND_COUNTER_ARRAY64), \
1257           0, flags, \
1258           port_access_u64_csr)
1259
1260 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1261 CNTR_ELEM(#name,\
1262           counter * 8 + SEND_COUNTER_ARRAY64, \
1263           0, \
1264           flags, \
1265           dev_access_u64_csr)
1266
1267 /* CCE */
1268 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1269 CNTR_ELEM(#name, \
1270           (counter * 8 + CCE_COUNTER_ARRAY32), \
1271           0, flags | CNTR_32BIT, \
1272           dev_access_u32_csr)
1273
1274 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1275 CNTR_ELEM(#name, \
1276           (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1277           0, flags | CNTR_32BIT, \
1278           dev_access_u32_csr)
1279
1280 /* DC */
1281 #define DC_PERF_CNTR(name, counter, flags) \
1282 CNTR_ELEM(#name, \
1283           counter, \
1284           0, \
1285           flags, \
1286           dev_access_u64_csr)
1287
1288 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1289 CNTR_ELEM(#name, \
1290           counter, \
1291           0, \
1292           flags, \
1293           dc_access_lcb_cntr)
1294
1295 /* ibp counters */
1296 #define SW_IBP_CNTR(name, cntr) \
1297 CNTR_ELEM(#name, \
1298           0, \
1299           0, \
1300           CNTR_SYNTH, \
1301           access_ibp_##cntr)
1302
1303 /**
1304  * hfi_addr_from_offset - return addr for readq/writeq
1305  * @dd - the dd device
1306  * @offset - the offset of the CSR within bar0
1307  *
1308  * This routine selects the appropriate base address
1309  * based on the indicated offset.
1310  */
1311 static inline void __iomem *hfi1_addr_from_offset(
1312         const struct hfi1_devdata *dd,
1313         u32 offset)
1314 {
1315         if (offset >= dd->base2_start)
1316                 return dd->kregbase2 + (offset - dd->base2_start);
1317         return dd->kregbase1 + offset;
1318 }
1319
1320 /**
1321  * read_csr - read CSR at the indicated offset
1322  * @dd - the dd device
1323  * @offset - the offset of the CSR within bar0
1324  *
1325  * Return: the value read or all FF's if there
1326  * is no mapping
1327  */
1328 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1329 {
1330         if (dd->flags & HFI1_PRESENT)
1331                 return readq(hfi1_addr_from_offset(dd, offset));
1332         return -1;
1333 }
1334
1335 /**
1336  * write_csr - write CSR at the indicated offset
1337  * @dd - the dd device
1338  * @offset - the offset of the CSR within bar0
1339  * @value - value to write
1340  */
1341 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1342 {
1343         if (dd->flags & HFI1_PRESENT) {
1344                 void __iomem *base = hfi1_addr_from_offset(dd, offset);
1345
1346                 /* avoid write to RcvArray */
1347                 if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1348                         return;
1349                 writeq(value, base);
1350         }
1351 }
1352
1353 /**
1354  * get_csr_addr - return te iomem address for offset
1355  * @dd - the dd device
1356  * @offset - the offset of the CSR within bar0
1357  *
1358  * Return: The iomem address to use in subsequent
1359  * writeq/readq operations.
1360  */
1361 void __iomem *get_csr_addr(
1362         const struct hfi1_devdata *dd,
1363         u32 offset)
1364 {
1365         if (dd->flags & HFI1_PRESENT)
1366                 return hfi1_addr_from_offset(dd, offset);
1367         return NULL;
1368 }
1369
1370 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1371                                  int mode, u64 value)
1372 {
1373         u64 ret;
1374
1375         if (mode == CNTR_MODE_R) {
1376                 ret = read_csr(dd, csr);
1377         } else if (mode == CNTR_MODE_W) {
1378                 write_csr(dd, csr, value);
1379                 ret = value;
1380         } else {
1381                 dd_dev_err(dd, "Invalid cntr register access mode");
1382                 return 0;
1383         }
1384
1385         hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1386         return ret;
1387 }
1388
1389 /* Dev Access */
1390 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1391                               void *context, int vl, int mode, u64 data)
1392 {
1393         struct hfi1_devdata *dd = context;
1394         u64 csr = entry->csr;
1395
1396         if (entry->flags & CNTR_SDMA) {
1397                 if (vl == CNTR_INVALID_VL)
1398                         return 0;
1399                 csr += 0x100 * vl;
1400         } else {
1401                 if (vl != CNTR_INVALID_VL)
1402                         return 0;
1403         }
1404         return read_write_csr(dd, csr, mode, data);
1405 }
1406
1407 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1408                               void *context, int idx, int mode, u64 data)
1409 {
1410         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1411
1412         if (dd->per_sdma && idx < dd->num_sdma)
1413                 return dd->per_sdma[idx].err_cnt;
1414         return 0;
1415 }
1416
1417 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1418                               void *context, int idx, int mode, u64 data)
1419 {
1420         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1421
1422         if (dd->per_sdma && idx < dd->num_sdma)
1423                 return dd->per_sdma[idx].sdma_int_cnt;
1424         return 0;
1425 }
1426
1427 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1428                                    void *context, int idx, int mode, u64 data)
1429 {
1430         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1431
1432         if (dd->per_sdma && idx < dd->num_sdma)
1433                 return dd->per_sdma[idx].idle_int_cnt;
1434         return 0;
1435 }
1436
1437 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1438                                        void *context, int idx, int mode,
1439                                        u64 data)
1440 {
1441         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1442
1443         if (dd->per_sdma && idx < dd->num_sdma)
1444                 return dd->per_sdma[idx].progress_int_cnt;
1445         return 0;
1446 }
1447
1448 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1449                               int vl, int mode, u64 data)
1450 {
1451         struct hfi1_devdata *dd = context;
1452
1453         u64 val = 0;
1454         u64 csr = entry->csr;
1455
1456         if (entry->flags & CNTR_VL) {
1457                 if (vl == CNTR_INVALID_VL)
1458                         return 0;
1459                 csr += 8 * vl;
1460         } else {
1461                 if (vl != CNTR_INVALID_VL)
1462                         return 0;
1463         }
1464
1465         val = read_write_csr(dd, csr, mode, data);
1466         return val;
1467 }
1468
1469 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1470                               int vl, int mode, u64 data)
1471 {
1472         struct hfi1_devdata *dd = context;
1473         u32 csr = entry->csr;
1474         int ret = 0;
1475
1476         if (vl != CNTR_INVALID_VL)
1477                 return 0;
1478         if (mode == CNTR_MODE_R)
1479                 ret = read_lcb_csr(dd, csr, &data);
1480         else if (mode == CNTR_MODE_W)
1481                 ret = write_lcb_csr(dd, csr, data);
1482
1483         if (ret) {
1484                 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1485                 return 0;
1486         }
1487
1488         hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1489         return data;
1490 }
1491
1492 /* Port Access */
1493 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1494                                int vl, int mode, u64 data)
1495 {
1496         struct hfi1_pportdata *ppd = context;
1497
1498         if (vl != CNTR_INVALID_VL)
1499                 return 0;
1500         return read_write_csr(ppd->dd, entry->csr, mode, data);
1501 }
1502
1503 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1504                                void *context, int vl, int mode, u64 data)
1505 {
1506         struct hfi1_pportdata *ppd = context;
1507         u64 val;
1508         u64 csr = entry->csr;
1509
1510         if (entry->flags & CNTR_VL) {
1511                 if (vl == CNTR_INVALID_VL)
1512                         return 0;
1513                 csr += 8 * vl;
1514         } else {
1515                 if (vl != CNTR_INVALID_VL)
1516                         return 0;
1517         }
1518         val = read_write_csr(ppd->dd, csr, mode, data);
1519         return val;
1520 }
1521
1522 /* Software defined */
1523 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1524                                 u64 data)
1525 {
1526         u64 ret;
1527
1528         if (mode == CNTR_MODE_R) {
1529                 ret = *cntr;
1530         } else if (mode == CNTR_MODE_W) {
1531                 *cntr = data;
1532                 ret = data;
1533         } else {
1534                 dd_dev_err(dd, "Invalid cntr sw access mode");
1535                 return 0;
1536         }
1537
1538         hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1539
1540         return ret;
1541 }
1542
1543 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1544                                  int vl, int mode, u64 data)
1545 {
1546         struct hfi1_pportdata *ppd = context;
1547
1548         if (vl != CNTR_INVALID_VL)
1549                 return 0;
1550         return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1551 }
1552
1553 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1554                                  int vl, int mode, u64 data)
1555 {
1556         struct hfi1_pportdata *ppd = context;
1557
1558         if (vl != CNTR_INVALID_VL)
1559                 return 0;
1560         return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1561 }
1562
1563 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1564                                        void *context, int vl, int mode,
1565                                        u64 data)
1566 {
1567         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1568
1569         if (vl != CNTR_INVALID_VL)
1570                 return 0;
1571         return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1572 }
1573
1574 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1575                                    void *context, int vl, int mode, u64 data)
1576 {
1577         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1578         u64 zero = 0;
1579         u64 *counter;
1580
1581         if (vl == CNTR_INVALID_VL)
1582                 counter = &ppd->port_xmit_discards;
1583         else if (vl >= 0 && vl < C_VL_COUNT)
1584                 counter = &ppd->port_xmit_discards_vl[vl];
1585         else
1586                 counter = &zero;
1587
1588         return read_write_sw(ppd->dd, counter, mode, data);
1589 }
1590
1591 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1592                                        void *context, int vl, int mode,
1593                                        u64 data)
1594 {
1595         struct hfi1_pportdata *ppd = context;
1596
1597         if (vl != CNTR_INVALID_VL)
1598                 return 0;
1599
1600         return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1601                              mode, data);
1602 }
1603
1604 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1605                                       void *context, int vl, int mode, u64 data)
1606 {
1607         struct hfi1_pportdata *ppd = context;
1608
1609         if (vl != CNTR_INVALID_VL)
1610                 return 0;
1611
1612         return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1613                              mode, data);
1614 }
1615
1616 u64 get_all_cpu_total(u64 __percpu *cntr)
1617 {
1618         int cpu;
1619         u64 counter = 0;
1620
1621         for_each_possible_cpu(cpu)
1622                 counter += *per_cpu_ptr(cntr, cpu);
1623         return counter;
1624 }
1625
1626 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1627                           u64 __percpu *cntr,
1628                           int vl, int mode, u64 data)
1629 {
1630         u64 ret = 0;
1631
1632         if (vl != CNTR_INVALID_VL)
1633                 return 0;
1634
1635         if (mode == CNTR_MODE_R) {
1636                 ret = get_all_cpu_total(cntr) - *z_val;
1637         } else if (mode == CNTR_MODE_W) {
1638                 /* A write can only zero the counter */
1639                 if (data == 0)
1640                         *z_val = get_all_cpu_total(cntr);
1641                 else
1642                         dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1643         } else {
1644                 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1645                 return 0;
1646         }
1647
1648         return ret;
1649 }
1650
1651 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1652                               void *context, int vl, int mode, u64 data)
1653 {
1654         struct hfi1_devdata *dd = context;
1655
1656         return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1657                               mode, data);
1658 }
1659
1660 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1661                                    void *context, int vl, int mode, u64 data)
1662 {
1663         struct hfi1_devdata *dd = context;
1664
1665         return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1666                               mode, data);
1667 }
1668
1669 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1670                               void *context, int vl, int mode, u64 data)
1671 {
1672         struct hfi1_devdata *dd = context;
1673
1674         return dd->verbs_dev.n_piowait;
1675 }
1676
1677 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1678                                void *context, int vl, int mode, u64 data)
1679 {
1680         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1681
1682         return dd->verbs_dev.n_piodrain;
1683 }
1684
1685 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1686                               void *context, int vl, int mode, u64 data)
1687 {
1688         struct hfi1_devdata *dd = context;
1689
1690         return dd->verbs_dev.n_txwait;
1691 }
1692
1693 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1694                                void *context, int vl, int mode, u64 data)
1695 {
1696         struct hfi1_devdata *dd = context;
1697
1698         return dd->verbs_dev.n_kmem_wait;
1699 }
1700
1701 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1702                                    void *context, int vl, int mode, u64 data)
1703 {
1704         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1705
1706         return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1707                               mode, data);
1708 }
1709
1710 /* Software counters for the error status bits within MISC_ERR_STATUS */
1711 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1712                                              void *context, int vl, int mode,
1713                                              u64 data)
1714 {
1715         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1716
1717         return dd->misc_err_status_cnt[12];
1718 }
1719
1720 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1721                                           void *context, int vl, int mode,
1722                                           u64 data)
1723 {
1724         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1725
1726         return dd->misc_err_status_cnt[11];
1727 }
1728
1729 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1730                                                void *context, int vl, int mode,
1731                                                u64 data)
1732 {
1733         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1734
1735         return dd->misc_err_status_cnt[10];
1736 }
1737
1738 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1739                                                  void *context, int vl,
1740                                                  int mode, u64 data)
1741 {
1742         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1743
1744         return dd->misc_err_status_cnt[9];
1745 }
1746
1747 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1748                                            void *context, int vl, int mode,
1749                                            u64 data)
1750 {
1751         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1752
1753         return dd->misc_err_status_cnt[8];
1754 }
1755
1756 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1757                                 const struct cntr_entry *entry,
1758                                 void *context, int vl, int mode, u64 data)
1759 {
1760         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1761
1762         return dd->misc_err_status_cnt[7];
1763 }
1764
1765 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1766                                                 void *context, int vl,
1767                                                 int mode, u64 data)
1768 {
1769         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1770
1771         return dd->misc_err_status_cnt[6];
1772 }
1773
1774 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1775                                               void *context, int vl, int mode,
1776                                               u64 data)
1777 {
1778         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1779
1780         return dd->misc_err_status_cnt[5];
1781 }
1782
1783 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1784                                             void *context, int vl, int mode,
1785                                             u64 data)
1786 {
1787         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1788
1789         return dd->misc_err_status_cnt[4];
1790 }
1791
1792 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1793                                                  void *context, int vl,
1794                                                  int mode, u64 data)
1795 {
1796         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1797
1798         return dd->misc_err_status_cnt[3];
1799 }
1800
1801 static u64 access_misc_csr_write_bad_addr_err_cnt(
1802                                 const struct cntr_entry *entry,
1803                                 void *context, int vl, int mode, u64 data)
1804 {
1805         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1806
1807         return dd->misc_err_status_cnt[2];
1808 }
1809
1810 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1811                                                  void *context, int vl,
1812                                                  int mode, u64 data)
1813 {
1814         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1815
1816         return dd->misc_err_status_cnt[1];
1817 }
1818
1819 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1820                                           void *context, int vl, int mode,
1821                                           u64 data)
1822 {
1823         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1824
1825         return dd->misc_err_status_cnt[0];
1826 }
1827
1828 /*
1829  * Software counter for the aggregate of
1830  * individual CceErrStatus counters
1831  */
1832 static u64 access_sw_cce_err_status_aggregated_cnt(
1833                                 const struct cntr_entry *entry,
1834                                 void *context, int vl, int mode, u64 data)
1835 {
1836         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1837
1838         return dd->sw_cce_err_status_aggregate;
1839 }
1840
1841 /*
1842  * Software counters corresponding to each of the
1843  * error status bits within CceErrStatus
1844  */
1845 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1846                                               void *context, int vl, int mode,
1847                                               u64 data)
1848 {
1849         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1850
1851         return dd->cce_err_status_cnt[40];
1852 }
1853
1854 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1855                                           void *context, int vl, int mode,
1856                                           u64 data)
1857 {
1858         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1859
1860         return dd->cce_err_status_cnt[39];
1861 }
1862
1863 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1864                                           void *context, int vl, int mode,
1865                                           u64 data)
1866 {
1867         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1868
1869         return dd->cce_err_status_cnt[38];
1870 }
1871
1872 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1873                                              void *context, int vl, int mode,
1874                                              u64 data)
1875 {
1876         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1877
1878         return dd->cce_err_status_cnt[37];
1879 }
1880
1881 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1882                                              void *context, int vl, int mode,
1883                                              u64 data)
1884 {
1885         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1886
1887         return dd->cce_err_status_cnt[36];
1888 }
1889
1890 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1891                                 const struct cntr_entry *entry,
1892                                 void *context, int vl, int mode, u64 data)
1893 {
1894         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1895
1896         return dd->cce_err_status_cnt[35];
1897 }
1898
1899 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1900                                 const struct cntr_entry *entry,
1901                                 void *context, int vl, int mode, u64 data)
1902 {
1903         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1904
1905         return dd->cce_err_status_cnt[34];
1906 }
1907
1908 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1909                                                  void *context, int vl,
1910                                                  int mode, u64 data)
1911 {
1912         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1913
1914         return dd->cce_err_status_cnt[33];
1915 }
1916
1917 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1918                                                 void *context, int vl, int mode,
1919                                                 u64 data)
1920 {
1921         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1922
1923         return dd->cce_err_status_cnt[32];
1924 }
1925
1926 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1927                                    void *context, int vl, int mode, u64 data)
1928 {
1929         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1930
1931         return dd->cce_err_status_cnt[31];
1932 }
1933
1934 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1935                                                void *context, int vl, int mode,
1936                                                u64 data)
1937 {
1938         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1939
1940         return dd->cce_err_status_cnt[30];
1941 }
1942
1943 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1944                                               void *context, int vl, int mode,
1945                                               u64 data)
1946 {
1947         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1948
1949         return dd->cce_err_status_cnt[29];
1950 }
1951
1952 static u64 access_pcic_transmit_back_parity_err_cnt(
1953                                 const struct cntr_entry *entry,
1954                                 void *context, int vl, int mode, u64 data)
1955 {
1956         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1957
1958         return dd->cce_err_status_cnt[28];
1959 }
1960
1961 static u64 access_pcic_transmit_front_parity_err_cnt(
1962                                 const struct cntr_entry *entry,
1963                                 void *context, int vl, int mode, u64 data)
1964 {
1965         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1966
1967         return dd->cce_err_status_cnt[27];
1968 }
1969
1970 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1971                                              void *context, int vl, int mode,
1972                                              u64 data)
1973 {
1974         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1975
1976         return dd->cce_err_status_cnt[26];
1977 }
1978
1979 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1980                                             void *context, int vl, int mode,
1981                                             u64 data)
1982 {
1983         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1984
1985         return dd->cce_err_status_cnt[25];
1986 }
1987
1988 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1989                                               void *context, int vl, int mode,
1990                                               u64 data)
1991 {
1992         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1993
1994         return dd->cce_err_status_cnt[24];
1995 }
1996
1997 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1998                                              void *context, int vl, int mode,
1999                                              u64 data)
2000 {
2001         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2002
2003         return dd->cce_err_status_cnt[23];
2004 }
2005
2006 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2007                                                  void *context, int vl,
2008                                                  int mode, u64 data)
2009 {
2010         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2011
2012         return dd->cce_err_status_cnt[22];
2013 }
2014
2015 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2016                                          void *context, int vl, int mode,
2017                                          u64 data)
2018 {
2019         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2020
2021         return dd->cce_err_status_cnt[21];
2022 }
2023
2024 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2025                                 const struct cntr_entry *entry,
2026                                 void *context, int vl, int mode, u64 data)
2027 {
2028         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2029
2030         return dd->cce_err_status_cnt[20];
2031 }
2032
2033 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2034                                                  void *context, int vl,
2035                                                  int mode, u64 data)
2036 {
2037         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2038
2039         return dd->cce_err_status_cnt[19];
2040 }
2041
2042 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2043                                              void *context, int vl, int mode,
2044                                              u64 data)
2045 {
2046         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2047
2048         return dd->cce_err_status_cnt[18];
2049 }
2050
2051 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2052                                             void *context, int vl, int mode,
2053                                             u64 data)
2054 {
2055         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2056
2057         return dd->cce_err_status_cnt[17];
2058 }
2059
2060 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2061                                               void *context, int vl, int mode,
2062                                               u64 data)
2063 {
2064         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2065
2066         return dd->cce_err_status_cnt[16];
2067 }
2068
2069 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2070                                              void *context, int vl, int mode,
2071                                              u64 data)
2072 {
2073         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2074
2075         return dd->cce_err_status_cnt[15];
2076 }
2077
2078 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2079                                                  void *context, int vl,
2080                                                  int mode, u64 data)
2081 {
2082         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2083
2084         return dd->cce_err_status_cnt[14];
2085 }
2086
2087 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2088                                              void *context, int vl, int mode,
2089                                              u64 data)
2090 {
2091         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2092
2093         return dd->cce_err_status_cnt[13];
2094 }
2095
2096 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2097                                 const struct cntr_entry *entry,
2098                                 void *context, int vl, int mode, u64 data)
2099 {
2100         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2101
2102         return dd->cce_err_status_cnt[12];
2103 }
2104
2105 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2106                                 const struct cntr_entry *entry,
2107                                 void *context, int vl, int mode, u64 data)
2108 {
2109         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2110
2111         return dd->cce_err_status_cnt[11];
2112 }
2113
2114 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2115                                 const struct cntr_entry *entry,
2116                                 void *context, int vl, int mode, u64 data)
2117 {
2118         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2119
2120         return dd->cce_err_status_cnt[10];
2121 }
2122
2123 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2124                                 const struct cntr_entry *entry,
2125                                 void *context, int vl, int mode, u64 data)
2126 {
2127         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2128
2129         return dd->cce_err_status_cnt[9];
2130 }
2131
2132 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2133                                 const struct cntr_entry *entry,
2134                                 void *context, int vl, int mode, u64 data)
2135 {
2136         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2137
2138         return dd->cce_err_status_cnt[8];
2139 }
2140
2141 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2142                                                  void *context, int vl,
2143                                                  int mode, u64 data)
2144 {
2145         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2146
2147         return dd->cce_err_status_cnt[7];
2148 }
2149
2150 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2151                                 const struct cntr_entry *entry,
2152                                 void *context, int vl, int mode, u64 data)
2153 {
2154         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2155
2156         return dd->cce_err_status_cnt[6];
2157 }
2158
2159 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2160                                                void *context, int vl, int mode,
2161                                                u64 data)
2162 {
2163         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2164
2165         return dd->cce_err_status_cnt[5];
2166 }
2167
2168 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2169                                           void *context, int vl, int mode,
2170                                           u64 data)
2171 {
2172         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2173
2174         return dd->cce_err_status_cnt[4];
2175 }
2176
2177 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2178                                 const struct cntr_entry *entry,
2179                                 void *context, int vl, int mode, u64 data)
2180 {
2181         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2182
2183         return dd->cce_err_status_cnt[3];
2184 }
2185
2186 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2187                                                  void *context, int vl,
2188                                                  int mode, u64 data)
2189 {
2190         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2191
2192         return dd->cce_err_status_cnt[2];
2193 }
2194
2195 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2196                                                 void *context, int vl,
2197                                                 int mode, u64 data)
2198 {
2199         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2200
2201         return dd->cce_err_status_cnt[1];
2202 }
2203
2204 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2205                                          void *context, int vl, int mode,
2206                                          u64 data)
2207 {
2208         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2209
2210         return dd->cce_err_status_cnt[0];
2211 }
2212
2213 /*
2214  * Software counters corresponding to each of the
2215  * error status bits within RcvErrStatus
2216  */
2217 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2218                                         void *context, int vl, int mode,
2219                                         u64 data)
2220 {
2221         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2222
2223         return dd->rcv_err_status_cnt[63];
2224 }
2225
2226 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2227                                                 void *context, int vl,
2228                                                 int mode, u64 data)
2229 {
2230         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2231
2232         return dd->rcv_err_status_cnt[62];
2233 }
2234
2235 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2236                                                void *context, int vl, int mode,
2237                                                u64 data)
2238 {
2239         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2240
2241         return dd->rcv_err_status_cnt[61];
2242 }
2243
2244 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2245                                          void *context, int vl, int mode,
2246                                          u64 data)
2247 {
2248         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2249
2250         return dd->rcv_err_status_cnt[60];
2251 }
2252
2253 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2254                                                  void *context, int vl,
2255                                                  int mode, u64 data)
2256 {
2257         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2258
2259         return dd->rcv_err_status_cnt[59];
2260 }
2261
2262 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2263                                                  void *context, int vl,
2264                                                  int mode, u64 data)
2265 {
2266         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2267
2268         return dd->rcv_err_status_cnt[58];
2269 }
2270
2271 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2272                                             void *context, int vl, int mode,
2273                                             u64 data)
2274 {
2275         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2276
2277         return dd->rcv_err_status_cnt[57];
2278 }
2279
2280 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2281                                            void *context, int vl, int mode,
2282                                            u64 data)
2283 {
2284         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2285
2286         return dd->rcv_err_status_cnt[56];
2287 }
2288
2289 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2290                                            void *context, int vl, int mode,
2291                                            u64 data)
2292 {
2293         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2294
2295         return dd->rcv_err_status_cnt[55];
2296 }
2297
2298 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2299                                 const struct cntr_entry *entry,
2300                                 void *context, int vl, int mode, u64 data)
2301 {
2302         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2303
2304         return dd->rcv_err_status_cnt[54];
2305 }
2306
2307 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2308                                 const struct cntr_entry *entry,
2309                                 void *context, int vl, int mode, u64 data)
2310 {
2311         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2312
2313         return dd->rcv_err_status_cnt[53];
2314 }
2315
2316 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2317                                                  void *context, int vl,
2318                                                  int mode, u64 data)
2319 {
2320         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2321
2322         return dd->rcv_err_status_cnt[52];
2323 }
2324
2325 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2326                                                  void *context, int vl,
2327                                                  int mode, u64 data)
2328 {
2329         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2330
2331         return dd->rcv_err_status_cnt[51];
2332 }
2333
2334 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2335                                                  void *context, int vl,
2336                                                  int mode, u64 data)
2337 {
2338         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2339
2340         return dd->rcv_err_status_cnt[50];
2341 }
2342
2343 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2344                                                  void *context, int vl,
2345                                                  int mode, u64 data)
2346 {
2347         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2348
2349         return dd->rcv_err_status_cnt[49];
2350 }
2351
2352 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2353                                                  void *context, int vl,
2354                                                  int mode, u64 data)
2355 {
2356         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2357
2358         return dd->rcv_err_status_cnt[48];
2359 }
2360
2361 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2362                                                  void *context, int vl,
2363                                                  int mode, u64 data)
2364 {
2365         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2366
2367         return dd->rcv_err_status_cnt[47];
2368 }
2369
2370 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2371                                          void *context, int vl, int mode,
2372                                          u64 data)
2373 {
2374         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2375
2376         return dd->rcv_err_status_cnt[46];
2377 }
2378
2379 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2380                                 const struct cntr_entry *entry,
2381                                 void *context, int vl, int mode, u64 data)
2382 {
2383         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2384
2385         return dd->rcv_err_status_cnt[45];
2386 }
2387
2388 static u64 access_rx_lookup_csr_parity_err_cnt(
2389                                 const struct cntr_entry *entry,
2390                                 void *context, int vl, int mode, u64 data)
2391 {
2392         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2393
2394         return dd->rcv_err_status_cnt[44];
2395 }
2396
2397 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2398                                 const struct cntr_entry *entry,
2399                                 void *context, int vl, int mode, u64 data)
2400 {
2401         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2402
2403         return dd->rcv_err_status_cnt[43];
2404 }
2405
2406 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2407                                 const struct cntr_entry *entry,
2408                                 void *context, int vl, int mode, u64 data)
2409 {
2410         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2411
2412         return dd->rcv_err_status_cnt[42];
2413 }
2414
2415 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2416                                 const struct cntr_entry *entry,
2417                                 void *context, int vl, int mode, u64 data)
2418 {
2419         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2420
2421         return dd->rcv_err_status_cnt[41];
2422 }
2423
2424 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2425                                 const struct cntr_entry *entry,
2426                                 void *context, int vl, int mode, u64 data)
2427 {
2428         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2429
2430         return dd->rcv_err_status_cnt[40];
2431 }
2432
2433 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2434                                 const struct cntr_entry *entry,
2435                                 void *context, int vl, int mode, u64 data)
2436 {
2437         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2438
2439         return dd->rcv_err_status_cnt[39];
2440 }
2441
2442 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2443                                 const struct cntr_entry *entry,
2444                                 void *context, int vl, int mode, u64 data)
2445 {
2446         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2447
2448         return dd->rcv_err_status_cnt[38];
2449 }
2450
2451 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2452                                 const struct cntr_entry *entry,
2453                                 void *context, int vl, int mode, u64 data)
2454 {
2455         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2456
2457         return dd->rcv_err_status_cnt[37];
2458 }
2459
2460 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2461                                 const struct cntr_entry *entry,
2462                                 void *context, int vl, int mode, u64 data)
2463 {
2464         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2465
2466         return dd->rcv_err_status_cnt[36];
2467 }
2468
2469 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2470                                 const struct cntr_entry *entry,
2471                                 void *context, int vl, int mode, u64 data)
2472 {
2473         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2474
2475         return dd->rcv_err_status_cnt[35];
2476 }
2477
2478 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2479                                 const struct cntr_entry *entry,
2480                                 void *context, int vl, int mode, u64 data)
2481 {
2482         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2483
2484         return dd->rcv_err_status_cnt[34];
2485 }
2486
2487 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2488                                 const struct cntr_entry *entry,
2489                                 void *context, int vl, int mode, u64 data)
2490 {
2491         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2492
2493         return dd->rcv_err_status_cnt[33];
2494 }
2495
2496 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2497                                         void *context, int vl, int mode,
2498                                         u64 data)
2499 {
2500         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2501
2502         return dd->rcv_err_status_cnt[32];
2503 }
2504
2505 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2506                                        void *context, int vl, int mode,
2507                                        u64 data)
2508 {
2509         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2510
2511         return dd->rcv_err_status_cnt[31];
2512 }
2513
2514 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2515                                           void *context, int vl, int mode,
2516                                           u64 data)
2517 {
2518         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2519
2520         return dd->rcv_err_status_cnt[30];
2521 }
2522
2523 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2524                                              void *context, int vl, int mode,
2525                                              u64 data)
2526 {
2527         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2528
2529         return dd->rcv_err_status_cnt[29];
2530 }
2531
2532 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2533                                                  void *context, int vl,
2534                                                  int mode, u64 data)
2535 {
2536         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2537
2538         return dd->rcv_err_status_cnt[28];
2539 }
2540
2541 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2542                                 const struct cntr_entry *entry,
2543                                 void *context, int vl, int mode, u64 data)
2544 {
2545         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2546
2547         return dd->rcv_err_status_cnt[27];
2548 }
2549
2550 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2551                                 const struct cntr_entry *entry,
2552                                 void *context, int vl, int mode, u64 data)
2553 {
2554         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2555
2556         return dd->rcv_err_status_cnt[26];
2557 }
2558
2559 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2560                                 const struct cntr_entry *entry,
2561                                 void *context, int vl, int mode, u64 data)
2562 {
2563         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2564
2565         return dd->rcv_err_status_cnt[25];
2566 }
2567
2568 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2569                                 const struct cntr_entry *entry,
2570                                 void *context, int vl, int mode, u64 data)
2571 {
2572         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2573
2574         return dd->rcv_err_status_cnt[24];
2575 }
2576
2577 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2578                                 const struct cntr_entry *entry,
2579                                 void *context, int vl, int mode, u64 data)
2580 {
2581         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2582
2583         return dd->rcv_err_status_cnt[23];
2584 }
2585
2586 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2587                                 const struct cntr_entry *entry,
2588                                 void *context, int vl, int mode, u64 data)
2589 {
2590         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2591
2592         return dd->rcv_err_status_cnt[22];
2593 }
2594
2595 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2596                                 const struct cntr_entry *entry,
2597                                 void *context, int vl, int mode, u64 data)
2598 {
2599         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2600
2601         return dd->rcv_err_status_cnt[21];
2602 }
2603
2604 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2605                                 const struct cntr_entry *entry,
2606                                 void *context, int vl, int mode, u64 data)
2607 {
2608         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2609
2610         return dd->rcv_err_status_cnt[20];
2611 }
2612
2613 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2614                                 const struct cntr_entry *entry,
2615                                 void *context, int vl, int mode, u64 data)
2616 {
2617         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2618
2619         return dd->rcv_err_status_cnt[19];
2620 }
2621
2622 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2623                                                  void *context, int vl,
2624                                                  int mode, u64 data)
2625 {
2626         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2627
2628         return dd->rcv_err_status_cnt[18];
2629 }
2630
2631 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2632                                                  void *context, int vl,
2633                                                  int mode, u64 data)
2634 {
2635         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2636
2637         return dd->rcv_err_status_cnt[17];
2638 }
2639
2640 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2641                                 const struct cntr_entry *entry,
2642                                 void *context, int vl, int mode, u64 data)
2643 {
2644         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2645
2646         return dd->rcv_err_status_cnt[16];
2647 }
2648
2649 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2650                                 const struct cntr_entry *entry,
2651                                 void *context, int vl, int mode, u64 data)
2652 {
2653         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2654
2655         return dd->rcv_err_status_cnt[15];
2656 }
2657
2658 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2659                                                 void *context, int vl,
2660                                                 int mode, u64 data)
2661 {
2662         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2663
2664         return dd->rcv_err_status_cnt[14];
2665 }
2666
2667 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2668                                                 void *context, int vl,
2669                                                 int mode, u64 data)
2670 {
2671         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2672
2673         return dd->rcv_err_status_cnt[13];
2674 }
2675
2676 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2677                                               void *context, int vl, int mode,
2678                                               u64 data)
2679 {
2680         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2681
2682         return dd->rcv_err_status_cnt[12];
2683 }
2684
2685 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2686                                           void *context, int vl, int mode,
2687                                           u64 data)
2688 {
2689         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2690
2691         return dd->rcv_err_status_cnt[11];
2692 }
2693
2694 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2695                                           void *context, int vl, int mode,
2696                                           u64 data)
2697 {
2698         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2699
2700         return dd->rcv_err_status_cnt[10];
2701 }
2702
2703 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2704                                                void *context, int vl, int mode,
2705                                                u64 data)
2706 {
2707         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2708
2709         return dd->rcv_err_status_cnt[9];
2710 }
2711
2712 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2713                                             void *context, int vl, int mode,
2714                                             u64 data)
2715 {
2716         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2717
2718         return dd->rcv_err_status_cnt[8];
2719 }
2720
2721 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2722                                 const struct cntr_entry *entry,
2723                                 void *context, int vl, int mode, u64 data)
2724 {
2725         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2726
2727         return dd->rcv_err_status_cnt[7];
2728 }
2729
2730 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2731                                 const struct cntr_entry *entry,
2732                                 void *context, int vl, int mode, u64 data)
2733 {
2734         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2735
2736         return dd->rcv_err_status_cnt[6];
2737 }
2738
2739 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2740                                           void *context, int vl, int mode,
2741                                           u64 data)
2742 {
2743         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2744
2745         return dd->rcv_err_status_cnt[5];
2746 }
2747
2748 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2749                                           void *context, int vl, int mode,
2750                                           u64 data)
2751 {
2752         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2753
2754         return dd->rcv_err_status_cnt[4];
2755 }
2756
2757 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2758                                          void *context, int vl, int mode,
2759                                          u64 data)
2760 {
2761         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2762
2763         return dd->rcv_err_status_cnt[3];
2764 }
2765
2766 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2767                                          void *context, int vl, int mode,
2768                                          u64 data)
2769 {
2770         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2771
2772         return dd->rcv_err_status_cnt[2];
2773 }
2774
2775 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2776                                             void *context, int vl, int mode,
2777                                             u64 data)
2778 {
2779         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2780
2781         return dd->rcv_err_status_cnt[1];
2782 }
2783
2784 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2785                                          void *context, int vl, int mode,
2786                                          u64 data)
2787 {
2788         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2789
2790         return dd->rcv_err_status_cnt[0];
2791 }
2792
2793 /*
2794  * Software counters corresponding to each of the
2795  * error status bits within SendPioErrStatus
2796  */
2797 static u64 access_pio_pec_sop_head_parity_err_cnt(
2798                                 const struct cntr_entry *entry,
2799                                 void *context, int vl, int mode, u64 data)
2800 {
2801         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2802
2803         return dd->send_pio_err_status_cnt[35];
2804 }
2805
2806 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2807                                 const struct cntr_entry *entry,
2808                                 void *context, int vl, int mode, u64 data)
2809 {
2810         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2811
2812         return dd->send_pio_err_status_cnt[34];
2813 }
2814
2815 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2816                                 const struct cntr_entry *entry,
2817                                 void *context, int vl, int mode, u64 data)
2818 {
2819         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2820
2821         return dd->send_pio_err_status_cnt[33];
2822 }
2823
2824 static u64 access_pio_current_free_cnt_parity_err_cnt(
2825                                 const struct cntr_entry *entry,
2826                                 void *context, int vl, int mode, u64 data)
2827 {
2828         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2829
2830         return dd->send_pio_err_status_cnt[32];
2831 }
2832
2833 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2834                                           void *context, int vl, int mode,
2835                                           u64 data)
2836 {
2837         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2838
2839         return dd->send_pio_err_status_cnt[31];
2840 }
2841
2842 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2843                                           void *context, int vl, int mode,
2844                                           u64 data)
2845 {
2846         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2847
2848         return dd->send_pio_err_status_cnt[30];
2849 }
2850
2851 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2852                                            void *context, int vl, int mode,
2853                                            u64 data)
2854 {
2855         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2856
2857         return dd->send_pio_err_status_cnt[29];
2858 }
2859
2860 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2861                                 const struct cntr_entry *entry,
2862                                 void *context, int vl, int mode, u64 data)
2863 {
2864         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2865
2866         return dd->send_pio_err_status_cnt[28];
2867 }
2868
2869 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2870                                              void *context, int vl, int mode,
2871                                              u64 data)
2872 {
2873         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2874
2875         return dd->send_pio_err_status_cnt[27];
2876 }
2877
2878 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2879                                              void *context, int vl, int mode,
2880                                              u64 data)
2881 {
2882         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2883
2884         return dd->send_pio_err_status_cnt[26];
2885 }
2886
2887 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2888                                                 void *context, int vl,
2889                                                 int mode, u64 data)
2890 {
2891         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2892
2893         return dd->send_pio_err_status_cnt[25];
2894 }
2895
2896 static u64 access_pio_block_qw_count_parity_err_cnt(
2897                                 const struct cntr_entry *entry,
2898                                 void *context, int vl, int mode, u64 data)
2899 {
2900         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2901
2902         return dd->send_pio_err_status_cnt[24];
2903 }
2904
2905 static u64 access_pio_write_qw_valid_parity_err_cnt(
2906                                 const struct cntr_entry *entry,
2907                                 void *context, int vl, int mode, u64 data)
2908 {
2909         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2910
2911         return dd->send_pio_err_status_cnt[23];
2912 }
2913
2914 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2915                                             void *context, int vl, int mode,
2916                                             u64 data)
2917 {
2918         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2919
2920         return dd->send_pio_err_status_cnt[22];
2921 }
2922
2923 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2924                                                 void *context, int vl,
2925                                                 int mode, u64 data)
2926 {
2927         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2928
2929         return dd->send_pio_err_status_cnt[21];
2930 }
2931
2932 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2933                                                 void *context, int vl,
2934                                                 int mode, u64 data)
2935 {
2936         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2937
2938         return dd->send_pio_err_status_cnt[20];
2939 }
2940
2941 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2942                                                 void *context, int vl,
2943                                                 int mode, u64 data)
2944 {
2945         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2946
2947         return dd->send_pio_err_status_cnt[19];
2948 }
2949
2950 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2951                                 const struct cntr_entry *entry,
2952                                 void *context, int vl, int mode, u64 data)
2953 {
2954         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2955
2956         return dd->send_pio_err_status_cnt[18];
2957 }
2958
2959 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2960                                          void *context, int vl, int mode,
2961                                          u64 data)
2962 {
2963         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2964
2965         return dd->send_pio_err_status_cnt[17];
2966 }
2967
2968 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2969                                             void *context, int vl, int mode,
2970                                             u64 data)
2971 {
2972         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2973
2974         return dd->send_pio_err_status_cnt[16];
2975 }
2976
2977 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2978                                 const struct cntr_entry *entry,
2979                                 void *context, int vl, int mode, u64 data)
2980 {
2981         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2982
2983         return dd->send_pio_err_status_cnt[15];
2984 }
2985
2986 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2987                                 const struct cntr_entry *entry,
2988                                 void *context, int vl, int mode, u64 data)
2989 {
2990         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2991
2992         return dd->send_pio_err_status_cnt[14];
2993 }
2994
2995 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2996                                 const struct cntr_entry *entry,
2997                                 void *context, int vl, int mode, u64 data)
2998 {
2999         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3000
3001         return dd->send_pio_err_status_cnt[13];
3002 }
3003
3004 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3005                                 const struct cntr_entry *entry,
3006                                 void *context, int vl, int mode, u64 data)
3007 {
3008         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3009
3010         return dd->send_pio_err_status_cnt[12];
3011 }
3012
3013 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3014                                 const struct cntr_entry *entry,
3015                                 void *context, int vl, int mode, u64 data)
3016 {
3017         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3018
3019         return dd->send_pio_err_status_cnt[11];
3020 }
3021
3022 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3023                                 const struct cntr_entry *entry,
3024                                 void *context, int vl, int mode, u64 data)
3025 {
3026         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3027
3028         return dd->send_pio_err_status_cnt[10];
3029 }
3030
3031 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3032                                 const struct cntr_entry *entry,
3033                                 void *context, int vl, int mode, u64 data)
3034 {
3035         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3036
3037         return dd->send_pio_err_status_cnt[9];
3038 }
3039
3040 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3041                                 const struct cntr_entry *entry,
3042                                 void *context, int vl, int mode, u64 data)
3043 {
3044         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3045
3046         return dd->send_pio_err_status_cnt[8];
3047 }
3048
3049 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3050                                 const struct cntr_entry *entry,
3051                                 void *context, int vl, int mode, u64 data)
3052 {
3053         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3054
3055         return dd->send_pio_err_status_cnt[7];
3056 }
3057
3058 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3059                                               void *context, int vl, int mode,
3060                                               u64 data)
3061 {
3062         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3063
3064         return dd->send_pio_err_status_cnt[6];
3065 }
3066
3067 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3068                                               void *context, int vl, int mode,
3069                                               u64 data)
3070 {
3071         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3072
3073         return dd->send_pio_err_status_cnt[5];
3074 }
3075
3076 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3077                                            void *context, int vl, int mode,
3078                                            u64 data)
3079 {
3080         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3081
3082         return dd->send_pio_err_status_cnt[4];
3083 }
3084
3085 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3086                                            void *context, int vl, int mode,
3087                                            u64 data)
3088 {
3089         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3090
3091         return dd->send_pio_err_status_cnt[3];
3092 }
3093
3094 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3095                                          void *context, int vl, int mode,
3096                                          u64 data)
3097 {
3098         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3099
3100         return dd->send_pio_err_status_cnt[2];
3101 }
3102
3103 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3104                                                 void *context, int vl,
3105                                                 int mode, u64 data)
3106 {
3107         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3108
3109         return dd->send_pio_err_status_cnt[1];
3110 }
3111
3112 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3113                                              void *context, int vl, int mode,
3114                                              u64 data)
3115 {
3116         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3117
3118         return dd->send_pio_err_status_cnt[0];
3119 }
3120
3121 /*
3122  * Software counters corresponding to each of the
3123  * error status bits within SendDmaErrStatus
3124  */
3125 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3126                                 const struct cntr_entry *entry,
3127                                 void *context, int vl, int mode, u64 data)
3128 {
3129         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3130
3131         return dd->send_dma_err_status_cnt[3];
3132 }
3133
3134 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3135                                 const struct cntr_entry *entry,
3136                                 void *context, int vl, int mode, u64 data)
3137 {
3138         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3139
3140         return dd->send_dma_err_status_cnt[2];
3141 }
3142
3143 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3144                                           void *context, int vl, int mode,
3145                                           u64 data)
3146 {
3147         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3148
3149         return dd->send_dma_err_status_cnt[1];
3150 }
3151
3152 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3153                                        void *context, int vl, int mode,
3154                                        u64 data)
3155 {
3156         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3157
3158         return dd->send_dma_err_status_cnt[0];
3159 }
3160
3161 /*
3162  * Software counters corresponding to each of the
3163  * error status bits within SendEgressErrStatus
3164  */
3165 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3166                                 const struct cntr_entry *entry,
3167                                 void *context, int vl, int mode, u64 data)
3168 {
3169         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3170
3171         return dd->send_egress_err_status_cnt[63];
3172 }
3173
3174 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3175                                 const struct cntr_entry *entry,
3176                                 void *context, int vl, int mode, u64 data)
3177 {
3178         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3179
3180         return dd->send_egress_err_status_cnt[62];
3181 }
3182
3183 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3184                                              void *context, int vl, int mode,
3185                                              u64 data)
3186 {
3187         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3188
3189         return dd->send_egress_err_status_cnt[61];
3190 }
3191
3192 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3193                                                  void *context, int vl,
3194                                                  int mode, u64 data)
3195 {
3196         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3197
3198         return dd->send_egress_err_status_cnt[60];
3199 }
3200
3201 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3202                                 const struct cntr_entry *entry,
3203                                 void *context, int vl, int mode, u64 data)
3204 {
3205         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3206
3207         return dd->send_egress_err_status_cnt[59];
3208 }
3209
3210 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3211                                         void *context, int vl, int mode,
3212                                         u64 data)
3213 {
3214         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3215
3216         return dd->send_egress_err_status_cnt[58];
3217 }
3218
3219 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3220                                             void *context, int vl, int mode,
3221                                             u64 data)
3222 {
3223         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3224
3225         return dd->send_egress_err_status_cnt[57];
3226 }
3227
3228 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3229                                               void *context, int vl, int mode,
3230                                               u64 data)
3231 {
3232         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3233
3234         return dd->send_egress_err_status_cnt[56];
3235 }
3236
3237 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3238                                               void *context, int vl, int mode,
3239                                               u64 data)
3240 {
3241         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3242
3243         return dd->send_egress_err_status_cnt[55];
3244 }
3245
3246 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3247                                               void *context, int vl, int mode,
3248                                               u64 data)
3249 {
3250         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3251
3252         return dd->send_egress_err_status_cnt[54];
3253 }
3254
3255 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3256                                               void *context, int vl, int mode,
3257                                               u64 data)
3258 {
3259         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3260
3261         return dd->send_egress_err_status_cnt[53];
3262 }
3263
3264 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3265                                               void *context, int vl, int mode,
3266                                               u64 data)
3267 {
3268         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3269
3270         return dd->send_egress_err_status_cnt[52];
3271 }
3272
3273 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3274                                               void *context, int vl, int mode,
3275                                               u64 data)
3276 {
3277         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3278
3279         return dd->send_egress_err_status_cnt[51];
3280 }
3281
3282 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3283                                               void *context, int vl, int mode,
3284                                               u64 data)
3285 {
3286         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3287
3288         return dd->send_egress_err_status_cnt[50];
3289 }
3290
3291 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3292                                               void *context, int vl, int mode,
3293                                               u64 data)
3294 {
3295         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3296
3297         return dd->send_egress_err_status_cnt[49];
3298 }
3299
3300 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3301                                               void *context, int vl, int mode,
3302                                               u64 data)
3303 {
3304         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3305
3306         return dd->send_egress_err_status_cnt[48];
3307 }
3308
3309 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3310                                               void *context, int vl, int mode,
3311                                               u64 data)
3312 {
3313         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3314
3315         return dd->send_egress_err_status_cnt[47];
3316 }
3317
3318 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3319                                             void *context, int vl, int mode,
3320                                             u64 data)
3321 {
3322         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3323
3324         return dd->send_egress_err_status_cnt[46];
3325 }
3326
3327 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3328                                              void *context, int vl, int mode,
3329                                              u64 data)
3330 {
3331         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3332
3333         return dd->send_egress_err_status_cnt[45];
3334 }
3335
3336 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3337                                                  void *context, int vl,
3338                                                  int mode, u64 data)
3339 {
3340         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3341
3342         return dd->send_egress_err_status_cnt[44];
3343 }
3344
3345 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3346                                 const struct cntr_entry *entry,
3347                                 void *context, int vl, int mode, u64 data)
3348 {
3349         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3350
3351         return dd->send_egress_err_status_cnt[43];
3352 }
3353
3354 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3355                                         void *context, int vl, int mode,
3356                                         u64 data)
3357 {
3358         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3359
3360         return dd->send_egress_err_status_cnt[42];
3361 }
3362
3363 static u64 access_tx_credit_return_partiy_err_cnt(
3364                                 const struct cntr_entry *entry,
3365                                 void *context, int vl, int mode, u64 data)
3366 {
3367         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3368
3369         return dd->send_egress_err_status_cnt[41];
3370 }
3371
3372 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3373                                 const struct cntr_entry *entry,
3374                                 void *context, int vl, int mode, u64 data)
3375 {
3376         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3377
3378         return dd->send_egress_err_status_cnt[40];
3379 }
3380
3381 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3382                                 const struct cntr_entry *entry,
3383                                 void *context, int vl, int mode, u64 data)
3384 {
3385         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3386
3387         return dd->send_egress_err_status_cnt[39];
3388 }
3389
3390 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3391                                 const struct cntr_entry *entry,
3392                                 void *context, int vl, int mode, u64 data)
3393 {
3394         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3395
3396         return dd->send_egress_err_status_cnt[38];
3397 }
3398
3399 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3400                                 const struct cntr_entry *entry,
3401                                 void *context, int vl, int mode, u64 data)
3402 {
3403         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3404
3405         return dd->send_egress_err_status_cnt[37];
3406 }
3407
3408 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3409                                 const struct cntr_entry *entry,
3410                                 void *context, int vl, int mode, u64 data)
3411 {
3412         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3413
3414         return dd->send_egress_err_status_cnt[36];
3415 }
3416
3417 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3418                                 const struct cntr_entry *entry,
3419                                 void *context, int vl, int mode, u64 data)
3420 {
3421         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3422
3423         return dd->send_egress_err_status_cnt[35];
3424 }
3425
3426 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3427                                 const struct cntr_entry *entry,
3428                                 void *context, int vl, int mode, u64 data)
3429 {
3430         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3431
3432         return dd->send_egress_err_status_cnt[34];
3433 }
3434
3435 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3436                                 const struct cntr_entry *entry,
3437                                 void *context, int vl, int mode, u64 data)
3438 {
3439         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3440
3441         return dd->send_egress_err_status_cnt[33];
3442 }
3443
3444 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3445                                 const struct cntr_entry *entry,
3446                                 void *context, int vl, int mode, u64 data)
3447 {
3448         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3449
3450         return dd->send_egress_err_status_cnt[32];
3451 }
3452
3453 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3454                                 const struct cntr_entry *entry,
3455                                 void *context, int vl, int mode, u64 data)
3456 {
3457         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3458
3459         return dd->send_egress_err_status_cnt[31];
3460 }
3461
3462 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3463                                 const struct cntr_entry *entry,
3464                                 void *context, int vl, int mode, u64 data)
3465 {
3466         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3467
3468         return dd->send_egress_err_status_cnt[30];
3469 }
3470
3471 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3472                                 const struct cntr_entry *entry,
3473                                 void *context, int vl, int mode, u64 data)
3474 {
3475         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3476
3477         return dd->send_egress_err_status_cnt[29];
3478 }
3479
3480 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3481                                 const struct cntr_entry *entry,
3482                                 void *context, int vl, int mode, u64 data)
3483 {
3484         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3485
3486         return dd->send_egress_err_status_cnt[28];
3487 }
3488
3489 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3490                                 const struct cntr_entry *entry,
3491                                 void *context, int vl, int mode, u64 data)
3492 {
3493         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3494
3495         return dd->send_egress_err_status_cnt[27];
3496 }
3497
3498 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3499                                 const struct cntr_entry *entry,
3500                                 void *context, int vl, int mode, u64 data)
3501 {
3502         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3503
3504         return dd->send_egress_err_status_cnt[26];
3505 }
3506
3507 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3508                                 const struct cntr_entry *entry,
3509                                 void *context, int vl, int mode, u64 data)
3510 {
3511         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3512
3513         return dd->send_egress_err_status_cnt[25];
3514 }
3515
3516 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3517                                 const struct cntr_entry *entry,
3518                                 void *context, int vl, int mode, u64 data)
3519 {
3520         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3521
3522         return dd->send_egress_err_status_cnt[24];
3523 }
3524
3525 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3526                                 const struct cntr_entry *entry,
3527                                 void *context, int vl, int mode, u64 data)
3528 {
3529         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3530
3531         return dd->send_egress_err_status_cnt[23];
3532 }
3533
3534 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3535                                 const struct cntr_entry *entry,
3536                                 void *context, int vl, int mode, u64 data)
3537 {
3538         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3539
3540         return dd->send_egress_err_status_cnt[22];
3541 }
3542
3543 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3544                                 const struct cntr_entry *entry,
3545                                 void *context, int vl, int mode, u64 data)
3546 {
3547         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3548
3549         return dd->send_egress_err_status_cnt[21];
3550 }
3551
3552 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3553                                 const struct cntr_entry *entry,
3554                                 void *context, int vl, int mode, u64 data)
3555 {
3556         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3557
3558         return dd->send_egress_err_status_cnt[20];
3559 }
3560
3561 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3562                                 const struct cntr_entry *entry,
3563                                 void *context, int vl, int mode, u64 data)
3564 {
3565         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3566
3567         return dd->send_egress_err_status_cnt[19];
3568 }
3569
3570 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3571                                 const struct cntr_entry *entry,
3572                                 void *context, int vl, int mode, u64 data)
3573 {
3574         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3575
3576         return dd->send_egress_err_status_cnt[18];
3577 }
3578
3579 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3580                                 const struct cntr_entry *entry,
3581                                 void *context, int vl, int mode, u64 data)
3582 {
3583         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3584
3585         return dd->send_egress_err_status_cnt[17];
3586 }
3587
3588 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3589                                 const struct cntr_entry *entry,
3590                                 void *context, int vl, int mode, u64 data)
3591 {
3592         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3593
3594         return dd->send_egress_err_status_cnt[16];
3595 }
3596
3597 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3598                                            void *context, int vl, int mode,
3599                                            u64 data)
3600 {
3601         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3602
3603         return dd->send_egress_err_status_cnt[15];
3604 }
3605
3606 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3607                                                  void *context, int vl,
3608                                                  int mode, u64 data)
3609 {
3610         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3611
3612         return dd->send_egress_err_status_cnt[14];
3613 }
3614
3615 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3616                                                void *context, int vl, int mode,
3617                                                u64 data)
3618 {
3619         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3620
3621         return dd->send_egress_err_status_cnt[13];
3622 }
3623
3624 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3625                                         void *context, int vl, int mode,
3626                                         u64 data)
3627 {
3628         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3629
3630         return dd->send_egress_err_status_cnt[12];
3631 }
3632
3633 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3634                                 const struct cntr_entry *entry,
3635                                 void *context, int vl, int mode, u64 data)
3636 {
3637         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3638
3639         return dd->send_egress_err_status_cnt[11];
3640 }
3641
3642 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3643                                              void *context, int vl, int mode,
3644                                              u64 data)
3645 {
3646         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3647
3648         return dd->send_egress_err_status_cnt[10];
3649 }
3650
3651 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3652                                             void *context, int vl, int mode,
3653                                             u64 data)
3654 {
3655         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3656
3657         return dd->send_egress_err_status_cnt[9];
3658 }
3659
3660 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3661                                 const struct cntr_entry *entry,
3662                                 void *context, int vl, int mode, u64 data)
3663 {
3664         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3665
3666         return dd->send_egress_err_status_cnt[8];
3667 }
3668
3669 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3670                                 const struct cntr_entry *entry,
3671                                 void *context, int vl, int mode, u64 data)
3672 {
3673         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3674
3675         return dd->send_egress_err_status_cnt[7];
3676 }
3677
3678 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3679                                             void *context, int vl, int mode,
3680                                             u64 data)
3681 {
3682         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3683
3684         return dd->send_egress_err_status_cnt[6];
3685 }
3686
3687 static u64 access_tx_incorrect_link_state_err_cnt(
3688                                 const struct cntr_entry *entry,
3689                                 void *context, int vl, int mode, u64 data)
3690 {
3691         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3692
3693         return dd->send_egress_err_status_cnt[5];
3694 }
3695
3696 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3697                                       void *context, int vl, int mode,
3698                                       u64 data)
3699 {
3700         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3701
3702         return dd->send_egress_err_status_cnt[4];
3703 }
3704
3705 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3706                                 const struct cntr_entry *entry,
3707                                 void *context, int vl, int mode, u64 data)
3708 {
3709         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3710
3711         return dd->send_egress_err_status_cnt[3];
3712 }
3713
3714 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3715                                             void *context, int vl, int mode,
3716                                             u64 data)
3717 {
3718         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3719
3720         return dd->send_egress_err_status_cnt[2];
3721 }
3722
3723 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3724                                 const struct cntr_entry *entry,
3725                                 void *context, int vl, int mode, u64 data)
3726 {
3727         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3728
3729         return dd->send_egress_err_status_cnt[1];
3730 }
3731
3732 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3733                                 const struct cntr_entry *entry,
3734                                 void *context, int vl, int mode, u64 data)
3735 {
3736         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3737
3738         return dd->send_egress_err_status_cnt[0];
3739 }
3740
3741 /*
3742  * Software counters corresponding to each of the
3743  * error status bits within SendErrStatus
3744  */
3745 static u64 access_send_csr_write_bad_addr_err_cnt(
3746                                 const struct cntr_entry *entry,
3747                                 void *context, int vl, int mode, u64 data)
3748 {
3749         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3750
3751         return dd->send_err_status_cnt[2];
3752 }
3753
3754 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3755                                                  void *context, int vl,
3756                                                  int mode, u64 data)
3757 {
3758         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3759
3760         return dd->send_err_status_cnt[1];
3761 }
3762
3763 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3764                                       void *context, int vl, int mode,
3765                                       u64 data)
3766 {
3767         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3768
3769         return dd->send_err_status_cnt[0];
3770 }
3771
3772 /*
3773  * Software counters corresponding to each of the
3774  * error status bits within SendCtxtErrStatus
3775  */
3776 static u64 access_pio_write_out_of_bounds_err_cnt(
3777                                 const struct cntr_entry *entry,
3778                                 void *context, int vl, int mode, u64 data)
3779 {
3780         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3781
3782         return dd->sw_ctxt_err_status_cnt[4];
3783 }
3784
3785 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3786                                              void *context, int vl, int mode,
3787                                              u64 data)
3788 {
3789         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3790
3791         return dd->sw_ctxt_err_status_cnt[3];
3792 }
3793
3794 static u64 access_pio_write_crosses_boundary_err_cnt(
3795                                 const struct cntr_entry *entry,
3796                                 void *context, int vl, int mode, u64 data)
3797 {
3798         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3799
3800         return dd->sw_ctxt_err_status_cnt[2];
3801 }
3802
3803 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3804                                                 void *context, int vl,
3805                                                 int mode, u64 data)
3806 {
3807         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3808
3809         return dd->sw_ctxt_err_status_cnt[1];
3810 }
3811
3812 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3813                                                void *context, int vl, int mode,
3814                                                u64 data)
3815 {
3816         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3817
3818         return dd->sw_ctxt_err_status_cnt[0];
3819 }
3820
3821 /*
3822  * Software counters corresponding to each of the
3823  * error status bits within SendDmaEngErrStatus
3824  */
3825 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3826                                 const struct cntr_entry *entry,
3827                                 void *context, int vl, int mode, u64 data)
3828 {
3829         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3830
3831         return dd->sw_send_dma_eng_err_status_cnt[23];
3832 }
3833
3834 static u64 access_sdma_header_storage_cor_err_cnt(
3835                                 const struct cntr_entry *entry,
3836                                 void *context, int vl, int mode, u64 data)
3837 {
3838         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3839
3840         return dd->sw_send_dma_eng_err_status_cnt[22];
3841 }
3842
3843 static u64 access_sdma_packet_tracking_cor_err_cnt(
3844                                 const struct cntr_entry *entry,
3845                                 void *context, int vl, int mode, u64 data)
3846 {
3847         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3848
3849         return dd->sw_send_dma_eng_err_status_cnt[21];
3850 }
3851
3852 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3853                                             void *context, int vl, int mode,
3854                                             u64 data)
3855 {
3856         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3857
3858         return dd->sw_send_dma_eng_err_status_cnt[20];
3859 }
3860
3861 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3862                                               void *context, int vl, int mode,
3863                                               u64 data)
3864 {
3865         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3866
3867         return dd->sw_send_dma_eng_err_status_cnt[19];
3868 }
3869
3870 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3871                                 const struct cntr_entry *entry,
3872                                 void *context, int vl, int mode, u64 data)
3873 {
3874         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3875
3876         return dd->sw_send_dma_eng_err_status_cnt[18];
3877 }
3878
3879 static u64 access_sdma_header_storage_unc_err_cnt(
3880                                 const struct cntr_entry *entry,
3881                                 void *context, int vl, int mode, u64 data)
3882 {
3883         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3884
3885         return dd->sw_send_dma_eng_err_status_cnt[17];
3886 }
3887
3888 static u64 access_sdma_packet_tracking_unc_err_cnt(
3889                                 const struct cntr_entry *entry,
3890                                 void *context, int vl, int mode, u64 data)
3891 {
3892         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3893
3894         return dd->sw_send_dma_eng_err_status_cnt[16];
3895 }
3896
3897 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3898                                             void *context, int vl, int mode,
3899                                             u64 data)
3900 {
3901         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3902
3903         return dd->sw_send_dma_eng_err_status_cnt[15];
3904 }
3905
3906 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3907                                               void *context, int vl, int mode,
3908                                               u64 data)
3909 {
3910         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3911
3912         return dd->sw_send_dma_eng_err_status_cnt[14];
3913 }
3914
3915 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3916                                        void *context, int vl, int mode,
3917                                        u64 data)
3918 {
3919         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3920
3921         return dd->sw_send_dma_eng_err_status_cnt[13];
3922 }
3923
3924 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3925                                              void *context, int vl, int mode,
3926                                              u64 data)
3927 {
3928         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3929
3930         return dd->sw_send_dma_eng_err_status_cnt[12];
3931 }
3932
3933 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3934                                               void *context, int vl, int mode,
3935                                               u64 data)
3936 {
3937         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3938
3939         return dd->sw_send_dma_eng_err_status_cnt[11];
3940 }
3941
3942 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3943                                              void *context, int vl, int mode,
3944                                              u64 data)
3945 {
3946         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3947
3948         return dd->sw_send_dma_eng_err_status_cnt[10];
3949 }
3950
3951 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3952                                           void *context, int vl, int mode,
3953                                           u64 data)
3954 {
3955         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3956
3957         return dd->sw_send_dma_eng_err_status_cnt[9];
3958 }
3959
3960 static u64 access_sdma_packet_desc_overflow_err_cnt(
3961                                 const struct cntr_entry *entry,
3962                                 void *context, int vl, int mode, u64 data)
3963 {
3964         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3965
3966         return dd->sw_send_dma_eng_err_status_cnt[8];
3967 }
3968
3969 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3970                                                void *context, int vl,
3971                                                int mode, u64 data)
3972 {
3973         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3974
3975         return dd->sw_send_dma_eng_err_status_cnt[7];
3976 }
3977
3978 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3979                                     void *context, int vl, int mode, u64 data)
3980 {
3981         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3982
3983         return dd->sw_send_dma_eng_err_status_cnt[6];
3984 }
3985
3986 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3987                                         void *context, int vl, int mode,
3988                                         u64 data)
3989 {
3990         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3991
3992         return dd->sw_send_dma_eng_err_status_cnt[5];
3993 }
3994
3995 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3996                                           void *context, int vl, int mode,
3997                                           u64 data)
3998 {
3999         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4000
4001         return dd->sw_send_dma_eng_err_status_cnt[4];
4002 }
4003
4004 static u64 access_sdma_tail_out_of_bounds_err_cnt(
4005                                 const struct cntr_entry *entry,
4006                                 void *context, int vl, int mode, u64 data)
4007 {
4008         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4009
4010         return dd->sw_send_dma_eng_err_status_cnt[3];
4011 }
4012
4013 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4014                                         void *context, int vl, int mode,
4015                                         u64 data)
4016 {
4017         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4018
4019         return dd->sw_send_dma_eng_err_status_cnt[2];
4020 }
4021
4022 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4023                                             void *context, int vl, int mode,
4024                                             u64 data)
4025 {
4026         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4027
4028         return dd->sw_send_dma_eng_err_status_cnt[1];
4029 }
4030
4031 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4032                                         void *context, int vl, int mode,
4033                                         u64 data)
4034 {
4035         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4036
4037         return dd->sw_send_dma_eng_err_status_cnt[0];
4038 }
4039
4040 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4041                                  void *context, int vl, int mode,
4042                                  u64 data)
4043 {
4044         struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4045
4046         u64 val = 0;
4047         u64 csr = entry->csr;
4048
4049         val = read_write_csr(dd, csr, mode, data);
4050         if (mode == CNTR_MODE_R) {
4051                 val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4052                         CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4053         } else if (mode == CNTR_MODE_W) {
4054                 dd->sw_rcv_bypass_packet_errors = 0;
4055         } else {
4056                 dd_dev_err(dd, "Invalid cntr register access mode");
4057                 return 0;
4058         }
4059         return val;
4060 }
4061
4062 #define def_access_sw_cpu(cntr) \
4063 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,               \
4064                               void *context, int vl, int mode, u64 data)      \
4065 {                                                                             \
4066         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;        \
4067         return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,       \
4068                               ppd->ibport_data.rvp.cntr, vl,                  \
4069                               mode, data);                                    \
4070 }
4071
4072 def_access_sw_cpu(rc_acks);
4073 def_access_sw_cpu(rc_qacks);
4074 def_access_sw_cpu(rc_delayed_comp);
4075
4076 #define def_access_ibp_counter(cntr) \
4077 static u64 access_ibp_##cntr(const struct cntr_entry *entry,                  \
4078                                 void *context, int vl, int mode, u64 data)    \
4079 {                                                                             \
4080         struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;        \
4081                                                                               \
4082         if (vl != CNTR_INVALID_VL)                                            \
4083                 return 0;                                                     \
4084                                                                               \
4085         return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,        \
4086                              mode, data);                                     \
4087 }
4088
4089 def_access_ibp_counter(loop_pkts);
4090 def_access_ibp_counter(rc_resends);
4091 def_access_ibp_counter(rnr_naks);
4092 def_access_ibp_counter(other_naks);
4093 def_access_ibp_counter(rc_timeouts);
4094 def_access_ibp_counter(pkt_drops);
4095 def_access_ibp_counter(dmawait);
4096 def_access_ibp_counter(rc_seqnak);
4097 def_access_ibp_counter(rc_dupreq);
4098 def_access_ibp_counter(rdma_seq);
4099 def_access_ibp_counter(unaligned);
4100 def_access_ibp_counter(seq_naks);
4101
4102 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4103 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4104 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4105                         CNTR_NORMAL),
4106 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4107                         CNTR_NORMAL),
4108 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4109                         RCV_TID_FLOW_GEN_MISMATCH_CNT,
4110                         CNTR_NORMAL),
4111 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4112                         CNTR_NORMAL),
4113 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4114                         RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4115 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4116                         CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4117 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4118                         CNTR_NORMAL),
4119 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4120                         CNTR_NORMAL),
4121 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4122                         CNTR_NORMAL),
4123 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4124                         CNTR_NORMAL),
4125 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4126                         CNTR_NORMAL),
4127 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4128                         CNTR_NORMAL),
4129 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4130                         CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
4131 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4132                         CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4133 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4134                               CNTR_SYNTH),
4135 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4136                             access_dc_rcv_err_cnt),
4137 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4138                                  CNTR_SYNTH),
4139 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4140                                   CNTR_SYNTH),
4141 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4142                                   CNTR_SYNTH),
4143 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4144                                    DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4145 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4146                                   DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4147                                   CNTR_SYNTH),
4148 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4149                                 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4150 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4151                                CNTR_SYNTH),
4152 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4153                               CNTR_SYNTH),
4154 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4155                                CNTR_SYNTH),
4156 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4157                                  CNTR_SYNTH),
4158 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4159                                 CNTR_SYNTH),
4160 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4161                                 CNTR_SYNTH),
4162 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4163                                CNTR_SYNTH),
4164 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4165                                  CNTR_SYNTH | CNTR_VL),
4166 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4167                                 CNTR_SYNTH | CNTR_VL),
4168 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4169 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4170                                  CNTR_SYNTH | CNTR_VL),
4171 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4172 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4173                                  CNTR_SYNTH | CNTR_VL),
4174 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4175                               CNTR_SYNTH),
4176 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4177                                  CNTR_SYNTH | CNTR_VL),
4178 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4179                                 CNTR_SYNTH),
4180 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4181                                    CNTR_SYNTH | CNTR_VL),
4182 [C_DC_TOTAL_CRC] =
4183         DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4184                          CNTR_SYNTH),
4185 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4186                                   CNTR_SYNTH),
4187 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4188                                   CNTR_SYNTH),
4189 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4190                                   CNTR_SYNTH),
4191 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4192                                   CNTR_SYNTH),
4193 [C_DC_CRC_MULT_LN] =
4194         DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4195                          CNTR_SYNTH),
4196 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4197                                     CNTR_SYNTH),
4198 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4199                                     CNTR_SYNTH),
4200 [C_DC_SEQ_CRC_CNT] =
4201         DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4202                          CNTR_SYNTH),
4203 [C_DC_ESC0_ONLY_CNT] =
4204         DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4205                          CNTR_SYNTH),
4206 [C_DC_ESC0_PLUS1_CNT] =
4207         DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4208                          CNTR_SYNTH),
4209 [C_DC_ESC0_PLUS2_CNT] =
4210         DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4211                          CNTR_SYNTH),
4212 [C_DC_REINIT_FROM_PEER_CNT] =
4213         DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4214                          CNTR_SYNTH),
4215 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4216                                   CNTR_SYNTH),
4217 [C_DC_MISC_FLG_CNT] =
4218         DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4219                          CNTR_SYNTH),
4220 [C_DC_PRF_GOOD_LTP_CNT] =
4221         DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4222 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4223         DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4224                          CNTR_SYNTH),
4225 [C_DC_PRF_RX_FLIT_CNT] =
4226         DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4227 [C_DC_PRF_TX_FLIT_CNT] =
4228         DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4229 [C_DC_PRF_CLK_CNTR] =
4230         DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4231 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4232         DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4233 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4234         DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4235                          CNTR_SYNTH),
4236 [C_DC_PG_STS_TX_SBE_CNT] =
4237         DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4238 [C_DC_PG_STS_TX_MBE_CNT] =
4239         DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4240                          CNTR_SYNTH),
4241 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4242                             access_sw_cpu_intr),
4243 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4244                             access_sw_cpu_rcv_limit),
4245 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4246                             access_sw_vtx_wait),
4247 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4248                             access_sw_pio_wait),
4249 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4250                             access_sw_pio_drain),
4251 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4252                             access_sw_kmem_wait),
4253 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4254                             access_sw_send_schedule),
4255 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4256                                       SEND_DMA_DESC_FETCHED_CNT, 0,
4257                                       CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4258                                       dev_access_u32_csr),
4259 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4260                              CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4261                              access_sde_int_cnt),
4262 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4263                              CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4264                              access_sde_err_cnt),
4265 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4266                                   CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4267                                   access_sde_idle_int_cnt),
4268 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4269                                       CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4270                                       access_sde_progress_int_cnt),
4271 /* MISC_ERR_STATUS */
4272 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4273                                 CNTR_NORMAL,
4274                                 access_misc_pll_lock_fail_err_cnt),
4275 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4276                                 CNTR_NORMAL,
4277                                 access_misc_mbist_fail_err_cnt),
4278 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4279                                 CNTR_NORMAL,
4280                                 access_misc_invalid_eep_cmd_err_cnt),
4281 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4282                                 CNTR_NORMAL,
4283                                 access_misc_efuse_done_parity_err_cnt),
4284 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4285                                 CNTR_NORMAL,
4286                                 access_misc_efuse_write_err_cnt),
4287 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4288                                 0, CNTR_NORMAL,
4289                                 access_misc_efuse_read_bad_addr_err_cnt),
4290 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4291                                 CNTR_NORMAL,
4292                                 access_misc_efuse_csr_parity_err_cnt),
4293 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4294                                 CNTR_NORMAL,
4295                                 access_misc_fw_auth_failed_err_cnt),
4296 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4297                                 CNTR_NORMAL,
4298                                 access_misc_key_mismatch_err_cnt),
4299 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4300                                 CNTR_NORMAL,
4301                                 access_misc_sbus_write_failed_err_cnt),
4302 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4303                                 CNTR_NORMAL,
4304                                 access_misc_csr_write_bad_addr_err_cnt),
4305 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4306                                 CNTR_NORMAL,
4307                                 access_misc_csr_read_bad_addr_err_cnt),
4308 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4309                                 CNTR_NORMAL,
4310                                 access_misc_csr_parity_err_cnt),
4311 /* CceErrStatus */
4312 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4313                                 CNTR_NORMAL,
4314                                 access_sw_cce_err_status_aggregated_cnt),
4315 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4316                                 CNTR_NORMAL,
4317                                 access_cce_msix_csr_parity_err_cnt),
4318 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4319                                 CNTR_NORMAL,
4320                                 access_cce_int_map_unc_err_cnt),
4321 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4322                                 CNTR_NORMAL,
4323                                 access_cce_int_map_cor_err_cnt),
4324 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4325                                 CNTR_NORMAL,
4326                                 access_cce_msix_table_unc_err_cnt),
4327 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4328                                 CNTR_NORMAL,
4329                                 access_cce_msix_table_cor_err_cnt),
4330 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4331                                 0, CNTR_NORMAL,
4332                                 access_cce_rxdma_conv_fifo_parity_err_cnt),
4333 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4334                                 0, CNTR_NORMAL,
4335                                 access_cce_rcpl_async_fifo_parity_err_cnt),
4336 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4337                                 CNTR_NORMAL,
4338                                 access_cce_seg_write_bad_addr_err_cnt),
4339 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4340                                 CNTR_NORMAL,
4341                                 access_cce_seg_read_bad_addr_err_cnt),
4342 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4343                                 CNTR_NORMAL,
4344                                 access_la_triggered_cnt),
4345 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4346                                 CNTR_NORMAL,
4347                                 access_cce_trgt_cpl_timeout_err_cnt),
4348 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4349                                 CNTR_NORMAL,
4350                                 access_pcic_receive_parity_err_cnt),
4351 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4352                                 CNTR_NORMAL,
4353                                 access_pcic_transmit_back_parity_err_cnt),
4354 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4355                                 0, CNTR_NORMAL,
4356                                 access_pcic_transmit_front_parity_err_cnt),
4357 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4358                                 CNTR_NORMAL,
4359                                 access_pcic_cpl_dat_q_unc_err_cnt),
4360 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4361                                 CNTR_NORMAL,
4362                                 access_pcic_cpl_hd_q_unc_err_cnt),
4363 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4364                                 CNTR_NORMAL,
4365                                 access_pcic_post_dat_q_unc_err_cnt),
4366 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4367                                 CNTR_NORMAL,
4368                                 access_pcic_post_hd_q_unc_err_cnt),
4369 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4370                                 CNTR_NORMAL,
4371                                 access_pcic_retry_sot_mem_unc_err_cnt),
4372 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4373                                 CNTR_NORMAL,
4374                                 access_pcic_retry_mem_unc_err),
4375 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4376                                 CNTR_NORMAL,
4377                                 access_pcic_n_post_dat_q_parity_err_cnt),
4378 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4379                                 CNTR_NORMAL,
4380                                 access_pcic_n_post_h_q_parity_err_cnt),
4381 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4382                                 CNTR_NORMAL,
4383                                 access_pcic_cpl_dat_q_cor_err_cnt),
4384 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4385                                 CNTR_NORMAL,
4386                                 access_pcic_cpl_hd_q_cor_err_cnt),
4387 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4388                                 CNTR_NORMAL,
4389                                 access_pcic_post_dat_q_cor_err_cnt),
4390 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4391                                 CNTR_NORMAL,
4392                                 access_pcic_post_hd_q_cor_err_cnt),
4393 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4394                                 CNTR_NORMAL,
4395                                 access_pcic_retry_sot_mem_cor_err_cnt),
4396 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4397                                 CNTR_NORMAL,
4398                                 access_pcic_retry_mem_cor_err_cnt),
4399 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4400                                 "CceCli1AsyncFifoDbgParityError", 0, 0,
4401                                 CNTR_NORMAL,
4402                                 access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4403 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4404                                 "CceCli1AsyncFifoRxdmaParityError", 0, 0,
4405                                 CNTR_NORMAL,
4406                                 access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4407                                 ),
4408 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4409                         "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4410                         CNTR_NORMAL,
4411                         access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4412 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4413                         "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4414                         CNTR_NORMAL,
4415                         access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4416 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4417                         0, CNTR_NORMAL,
4418                         access_cce_cli2_async_fifo_parity_err_cnt),
4419 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4420                         CNTR_NORMAL,
4421                         access_cce_csr_cfg_bus_parity_err_cnt),
4422 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4423                         0, CNTR_NORMAL,
4424                         access_cce_cli0_async_fifo_parity_err_cnt),
4425 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4426                         CNTR_NORMAL,
4427                         access_cce_rspd_data_parity_err_cnt),
4428 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4429                         CNTR_NORMAL,
4430                         access_cce_trgt_access_err_cnt),
4431 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4432                         0, CNTR_NORMAL,
4433                         access_cce_trgt_async_fifo_parity_err_cnt),
4434 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4435                         CNTR_NORMAL,
4436                         access_cce_csr_write_bad_addr_err_cnt),
4437 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4438                         CNTR_NORMAL,
4439                         access_cce_csr_read_bad_addr_err_cnt),
4440 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4441                         CNTR_NORMAL,
4442                         access_ccs_csr_parity_err_cnt),
4443
4444 /* RcvErrStatus */
4445 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4446                         CNTR_NORMAL,
4447                         access_rx_csr_parity_err_cnt),
4448 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4449                         CNTR_NORMAL,
4450                         access_rx_csr_write_bad_addr_err_cnt),
4451 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4452                         CNTR_NORMAL,
4453                         access_rx_csr_read_bad_addr_err_cnt),
4454 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4455                         CNTR_NORMAL,
4456                         access_rx_dma_csr_unc_err_cnt),
4457 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4458                         CNTR_NORMAL,
4459                         access_rx_dma_dq_fsm_encoding_err_cnt),
4460 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4461                         CNTR_NORMAL,
4462                         access_rx_dma_eq_fsm_encoding_err_cnt),
4463 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4464                         CNTR_NORMAL,
4465                         access_rx_dma_csr_parity_err_cnt),
4466 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4467                         CNTR_NORMAL,
4468                         access_rx_rbuf_data_cor_err_cnt),
4469 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4470                         CNTR_NORMAL,
4471                         access_rx_rbuf_data_unc_err_cnt),
4472 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4473                         CNTR_NORMAL,
4474                         access_rx_dma_data_fifo_rd_cor_err_cnt),
4475 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4476                         CNTR_NORMAL,
4477                         access_rx_dma_data_fifo_rd_unc_err_cnt),
4478 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4479                         CNTR_NORMAL,
4480                         access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4481 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4482                         CNTR_NORMAL,
4483                         access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4484 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4485                         CNTR_NORMAL,
4486                         access_rx_rbuf_desc_part2_cor_err_cnt),
4487 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4488                         CNTR_NORMAL,
4489                         access_rx_rbuf_desc_part2_unc_err_cnt),
4490 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4491                         CNTR_NORMAL,
4492                         access_rx_rbuf_desc_part1_cor_err_cnt),
4493 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4494                         CNTR_NORMAL,
4495                         access_rx_rbuf_desc_part1_unc_err_cnt),
4496 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4497                         CNTR_NORMAL,
4498                         access_rx_hq_intr_fsm_err_cnt),
4499 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4500                         CNTR_NORMAL,
4501                         access_rx_hq_intr_csr_parity_err_cnt),
4502 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4503                         CNTR_NORMAL,
4504                         access_rx_lookup_csr_parity_err_cnt),
4505 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4506                         CNTR_NORMAL,
4507                         access_rx_lookup_rcv_array_cor_err_cnt),
4508 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4509                         CNTR_NORMAL,
4510                         access_rx_lookup_rcv_array_unc_err_cnt),
4511 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4512                         0, CNTR_NORMAL,
4513                         access_rx_lookup_des_part2_parity_err_cnt),
4514 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4515                         0, CNTR_NORMAL,
4516                         access_rx_lookup_des_part1_unc_cor_err_cnt),
4517 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4518                         CNTR_NORMAL,
4519                         access_rx_lookup_des_part1_unc_err_cnt),
4520 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4521                         CNTR_NORMAL,
4522                         access_rx_rbuf_next_free_buf_cor_err_cnt),
4523 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4524                         CNTR_NORMAL,
4525                         access_rx_rbuf_next_free_buf_unc_err_cnt),
4526 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4527                         "RxRbufFlInitWrAddrParityErr", 0, 0,
4528                         CNTR_NORMAL,
4529                         access_rbuf_fl_init_wr_addr_parity_err_cnt),
4530 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4531                         0, CNTR_NORMAL,
4532                         access_rx_rbuf_fl_initdone_parity_err_cnt),
4533 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4534                         0, CNTR_NORMAL,
4535                         access_rx_rbuf_fl_write_addr_parity_err_cnt),
4536 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4537                         CNTR_NORMAL,
4538                         access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4539 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4540                         CNTR_NORMAL,
4541                         access_rx_rbuf_empty_err_cnt),
4542 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4543                         CNTR_NORMAL,
4544                         access_rx_rbuf_full_err_cnt),
4545 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4546                         CNTR_NORMAL,
4547                         access_rbuf_bad_lookup_err_cnt),
4548 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4549                         CNTR_NORMAL,
4550                         access_rbuf_ctx_id_parity_err_cnt),
4551 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4552                         CNTR_NORMAL,
4553                         access_rbuf_csr_qeopdw_parity_err_cnt),
4554 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4555                         "RxRbufCsrQNumOfPktParityErr", 0, 0,
4556                         CNTR_NORMAL,
4557                         access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4558 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4559                         "RxRbufCsrQTlPtrParityErr", 0, 0,
4560                         CNTR_NORMAL,
4561                         access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4562 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4563                         0, CNTR_NORMAL,
4564                         access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4565 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4566                         0, CNTR_NORMAL,
4567                         access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4568 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4569                         0, 0, CNTR_NORMAL,
4570                         access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4571 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4572                         0, CNTR_NORMAL,
4573                         access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4574 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4575                         "RxRbufCsrQHeadBufNumParityErr", 0, 0,
4576                         CNTR_NORMAL,
4577                         access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4578 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4579                         0, CNTR_NORMAL,
4580                         access_rx_rbuf_block_list_read_cor_err_cnt),
4581 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4582                         0, CNTR_NORMAL,
4583                         access_rx_rbuf_block_list_read_unc_err_cnt),
4584 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4585                         CNTR_NORMAL,
4586                         access_rx_rbuf_lookup_des_cor_err_cnt),
4587 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4588                         CNTR_NORMAL,
4589                         access_rx_rbuf_lookup_des_unc_err_cnt),
4590 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4591                         "RxRbufLookupDesRegUncCorErr", 0, 0,
4592                         CNTR_NORMAL,
4593                         access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4594 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4595                         CNTR_NORMAL,
4596                         access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4597 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4598                         CNTR_NORMAL,
4599                         access_rx_rbuf_free_list_cor_err_cnt),
4600 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4601                         CNTR_NORMAL,
4602                         access_rx_rbuf_free_list_unc_err_cnt),
4603 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4604                         CNTR_NORMAL,
4605                         access_rx_rcv_fsm_encoding_err_cnt),
4606 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4607                         CNTR_NORMAL,
4608                         access_rx_dma_flag_cor_err_cnt),
4609 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4610                         CNTR_NORMAL,
4611                         access_rx_dma_flag_unc_err_cnt),
4612 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4613                         CNTR_NORMAL,
4614                         access_rx_dc_sop_eop_parity_err_cnt),
4615 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4616                         CNTR_NORMAL,
4617                         access_rx_rcv_csr_parity_err_cnt),
4618 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4619                         CNTR_NORMAL,
4620                         access_rx_rcv_qp_map_table_cor_err_cnt),
4621 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4622                         CNTR_NORMAL,
4623                         access_rx_rcv_qp_map_table_unc_err_cnt),
4624 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4625                         CNTR_NORMAL,
4626                         access_rx_rcv_data_cor_err_cnt),
4627 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4628                         CNTR_NORMAL,
4629                         access_rx_rcv_data_unc_err_cnt),
4630 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4631                         CNTR_NORMAL,
4632                         access_rx_rcv_hdr_cor_err_cnt),
4633 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4634                         CNTR_NORMAL,
4635                         access_rx_rcv_hdr_unc_err_cnt),
4636 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4637                         CNTR_NORMAL,
4638                         access_rx_dc_intf_parity_err_cnt),
4639 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4640                         CNTR_NORMAL,
4641                         access_rx_dma_csr_cor_err_cnt),
4642 /* SendPioErrStatus */
4643 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4644                         CNTR_NORMAL,
4645                         access_pio_pec_sop_head_parity_err_cnt),
4646 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4647                         CNTR_NORMAL,
4648                         access_pio_pcc_sop_head_parity_err_cnt),
4649 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4650                         0, 0, CNTR_NORMAL,
4651                         access_pio_last_returned_cnt_parity_err_cnt),
4652 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4653                         0, CNTR_NORMAL,
4654                         access_pio_current_free_cnt_parity_err_cnt),
4655 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4656                         CNTR_NORMAL,
4657                         access_pio_reserved_31_err_cnt),
4658 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4659                         CNTR_NORMAL,
4660                         access_pio_reserved_30_err_cnt),
4661 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4662                         CNTR_NORMAL,
4663                         access_pio_ppmc_sop_len_err_cnt),
4664 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4665                         CNTR_NORMAL,
4666                         access_pio_ppmc_bqc_mem_parity_err_cnt),
4667 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4668                         CNTR_NORMAL,
4669                         access_pio_vl_fifo_parity_err_cnt),
4670 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4671                         CNTR_NORMAL,
4672                         access_pio_vlf_sop_parity_err_cnt),
4673 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4674                         CNTR_NORMAL,
4675                         access_pio_vlf_v1_len_parity_err_cnt),
4676 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4677                         CNTR_NORMAL,
4678                         access_pio_block_qw_count_parity_err_cnt),
4679 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4680                         CNTR_NORMAL,
4681                         access_pio_write_qw_valid_parity_err_cnt),
4682 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4683                         CNTR_NORMAL,
4684                         access_pio_state_machine_err_cnt),
4685 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4686                         CNTR_NORMAL,
4687                         access_pio_write_data_parity_err_cnt),
4688 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4689                         CNTR_NORMAL,
4690                         access_pio_host_addr_mem_cor_err_cnt),
4691 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4692                         CNTR_NORMAL,
4693                         access_pio_host_addr_mem_unc_err_cnt),
4694 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4695                         CNTR_NORMAL,
4696                         access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4697 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4698                         CNTR_NORMAL,
4699                         access_pio_init_sm_in_err_cnt),
4700 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4701                         CNTR_NORMAL,
4702                         access_pio_ppmc_pbl_fifo_err_cnt),
4703 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4704                         0, CNTR_NORMAL,
4705                         access_pio_credit_ret_fifo_parity_err_cnt),
4706 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4707                         CNTR_NORMAL,
4708                         access_pio_v1_len_mem_bank1_cor_err_cnt),
4709 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4710                         CNTR_NORMAL,
4711                         access_pio_v1_len_mem_bank0_cor_err_cnt),
4712 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4713                         CNTR_NORMAL,
4714                         access_pio_v1_len_mem_bank1_unc_err_cnt),
4715 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4716                         CNTR_NORMAL,
4717                         access_pio_v1_len_mem_bank0_unc_err_cnt),
4718 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4719                         CNTR_NORMAL,
4720                         access_pio_sm_pkt_reset_parity_err_cnt),
4721 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4722                         CNTR_NORMAL,
4723                         access_pio_pkt_evict_fifo_parity_err_cnt),
4724 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4725                         "PioSbrdctrlCrrelFifoParityErr", 0, 0,
4726                         CNTR_NORMAL,
4727                         access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4728 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4729                         CNTR_NORMAL,
4730                         access_pio_sbrdctl_crrel_parity_err_cnt),
4731 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4732                         CNTR_NORMAL,
4733                         access_pio_pec_fifo_parity_err_cnt),
4734 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4735                         CNTR_NORMAL,
4736                         access_pio_pcc_fifo_parity_err_cnt),
4737 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4738                         CNTR_NORMAL,
4739                         access_pio_sb_mem_fifo1_err_cnt),
4740 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4741                         CNTR_NORMAL,
4742                         access_pio_sb_mem_fifo0_err_cnt),
4743 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4744                         CNTR_NORMAL,
4745                         access_pio_csr_parity_err_cnt),
4746 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4747                         CNTR_NORMAL,
4748                         access_pio_write_addr_parity_err_cnt),
4749 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4750                         CNTR_NORMAL,
4751                         access_pio_write_bad_ctxt_err_cnt),
4752 /* SendDmaErrStatus */
4753 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4754                         0, CNTR_NORMAL,
4755                         access_sdma_pcie_req_tracking_cor_err_cnt),
4756 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4757                         0, CNTR_NORMAL,
4758                         access_sdma_pcie_req_tracking_unc_err_cnt),
4759 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4760                         CNTR_NORMAL,
4761                         access_sdma_csr_parity_err_cnt),
4762 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4763                         CNTR_NORMAL,
4764                         access_sdma_rpy_tag_err_cnt),
4765 /* SendEgressErrStatus */
4766 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4767                         CNTR_NORMAL,
4768                         access_tx_read_pio_memory_csr_unc_err_cnt),
4769 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4770                         0, CNTR_NORMAL,
4771                         access_tx_read_sdma_memory_csr_err_cnt),
4772 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4773                         CNTR_NORMAL,
4774                         access_tx_egress_fifo_cor_err_cnt),
4775 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4776                         CNTR_NORMAL,
4777                         access_tx_read_pio_memory_cor_err_cnt),
4778 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4779                         CNTR_NORMAL,
4780                         access_tx_read_sdma_memory_cor_err_cnt),
4781 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4782                         CNTR_NORMAL,
4783                         access_tx_sb_hdr_cor_err_cnt),
4784 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4785                         CNTR_NORMAL,
4786                         access_tx_credit_overrun_err_cnt),
4787 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4788                         CNTR_NORMAL,
4789                         access_tx_launch_fifo8_cor_err_cnt),
4790 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4791                         CNTR_NORMAL,
4792                         access_tx_launch_fifo7_cor_err_cnt),
4793 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4794                         CNTR_NORMAL,
4795                         access_tx_launch_fifo6_cor_err_cnt),
4796 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4797                         CNTR_NORMAL,
4798                         access_tx_launch_fifo5_cor_err_cnt),
4799 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4800                         CNTR_NORMAL,
4801                         access_tx_launch_fifo4_cor_err_cnt),
4802 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4803                         CNTR_NORMAL,
4804                         access_tx_launch_fifo3_cor_err_cnt),
4805 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4806                         CNTR_NORMAL,
4807                         access_tx_launch_fifo2_cor_err_cnt),
4808 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4809                         CNTR_NORMAL,
4810                         access_tx_launch_fifo1_cor_err_cnt),
4811 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4812                         CNTR_NORMAL,
4813                         access_tx_launch_fifo0_cor_err_cnt),
4814 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4815                         CNTR_NORMAL,
4816                         access_tx_credit_return_vl_err_cnt),
4817 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4818                         CNTR_NORMAL,
4819                         access_tx_hcrc_insertion_err_cnt),
4820 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4821                         CNTR_NORMAL,
4822                         access_tx_egress_fifo_unc_err_cnt),
4823 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4824                         CNTR_NORMAL,
4825                         access_tx_read_pio_memory_unc_err_cnt),
4826 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4827                         CNTR_NORMAL,
4828                         access_tx_read_sdma_memory_unc_err_cnt),
4829 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4830                         CNTR_NORMAL,
4831                         access_tx_sb_hdr_unc_err_cnt),
4832 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4833                         CNTR_NORMAL,
4834                         access_tx_credit_return_partiy_err_cnt),
4835 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4836                         0, 0, CNTR_NORMAL,
4837                         access_tx_launch_fifo8_unc_or_parity_err_cnt),
4838 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4839                         0, 0, CNTR_NORMAL,
4840                         access_tx_launch_fifo7_unc_or_parity_err_cnt),
4841 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4842                         0, 0, CNTR_NORMAL,
4843                         access_tx_launch_fifo6_unc_or_parity_err_cnt),
4844 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4845                         0, 0, CNTR_NORMAL,
4846                         access_tx_launch_fifo5_unc_or_parity_err_cnt),
4847 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4848                         0, 0, CNTR_NORMAL,
4849                         access_tx_launch_fifo4_unc_or_parity_err_cnt),
4850 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4851                         0, 0, CNTR_NORMAL,
4852                         access_tx_launch_fifo3_unc_or_parity_err_cnt),
4853 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4854                         0, 0, CNTR_NORMAL,
4855                         access_tx_launch_fifo2_unc_or_parity_err_cnt),
4856 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4857                         0, 0, CNTR_NORMAL,
4858                         access_tx_launch_fifo1_unc_or_parity_err_cnt),
4859 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4860                         0, 0, CNTR_NORMAL,
4861                         access_tx_launch_fifo0_unc_or_parity_err_cnt),
4862 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4863                         0, 0, CNTR_NORMAL,
4864                         access_tx_sdma15_disallowed_packet_err_cnt),
4865 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4866                         0, 0, CNTR_NORMAL,
4867                         access_tx_sdma14_disallowed_packet_err_cnt),
4868 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4869                         0, 0, CNTR_NORMAL,
4870                         access_tx_sdma13_disallowed_packet_err_cnt),
4871 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4872                         0, 0, CNTR_NORMAL,
4873                         access_tx_sdma12_disallowed_packet_err_cnt),
4874 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4875                         0, 0, CNTR_NORMAL,
4876                         access_tx_sdma11_disallowed_packet_err_cnt),
4877 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4878                         0, 0, CNTR_NORMAL,
4879                         access_tx_sdma10_disallowed_packet_err_cnt),
4880 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4881                         0, 0, CNTR_NORMAL,
4882                         access_tx_sdma9_disallowed_packet_err_cnt),
4883 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4884                         0, 0, CNTR_NORMAL,
4885                         access_tx_sdma8_disallowed_packet_err_cnt),
4886 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4887                         0, 0, CNTR_NORMAL,
4888                         access_tx_sdma7_disallowed_packet_err_cnt),
4889 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4890                         0, 0, CNTR_NORMAL,
4891                         access_tx_sdma6_disallowed_packet_err_cnt),
4892 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4893                         0, 0, CNTR_NORMAL,
4894                         access_tx_sdma5_disallowed_packet_err_cnt),
4895 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4896                         0, 0, CNTR_NORMAL,
4897                         access_tx_sdma4_disallowed_packet_err_cnt),
4898 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4899                         0, 0, CNTR_NORMAL,
4900                         access_tx_sdma3_disallowed_packet_err_cnt),
4901 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4902                         0, 0, CNTR_NORMAL,
4903                         access_tx_sdma2_disallowed_packet_err_cnt),
4904 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4905                         0, 0, CNTR_NORMAL,
4906                         access_tx_sdma1_disallowed_packet_err_cnt),
4907 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4908                         0, 0, CNTR_NORMAL,
4909                         access_tx_sdma0_disallowed_packet_err_cnt),
4910 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4911                         CNTR_NORMAL,
4912                         access_tx_config_parity_err_cnt),
4913 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4914                         CNTR_NORMAL,
4915                         access_tx_sbrd_ctl_csr_parity_err_cnt),
4916 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4917                         CNTR_NORMAL,
4918                         access_tx_launch_csr_parity_err_cnt),
4919 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4920                         CNTR_NORMAL,
4921                         access_tx_illegal_vl_err_cnt),
4922 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4923                         "TxSbrdCtlStateMachineParityErr", 0, 0,
4924                         CNTR_NORMAL,
4925                         access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4926 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4927                         CNTR_NORMAL,
4928                         access_egress_reserved_10_err_cnt),
4929 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4930                         CNTR_NORMAL,
4931                         access_egress_reserved_9_err_cnt),
4932 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4933                         0, 0, CNTR_NORMAL,
4934                         access_tx_sdma_launch_intf_parity_err_cnt),
4935 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4936                         CNTR_NORMAL,
4937                         access_tx_pio_launch_intf_parity_err_cnt),
4938 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4939                         CNTR_NORMAL,
4940                         access_egress_reserved_6_err_cnt),
4941 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4942                         CNTR_NORMAL,
4943                         access_tx_incorrect_link_state_err_cnt),
4944 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4945                         CNTR_NORMAL,
4946                         access_tx_linkdown_err_cnt),
4947 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4948                         "EgressFifoUnderrunOrParityErr", 0, 0,
4949                         CNTR_NORMAL,
4950                         access_tx_egress_fifi_underrun_or_parity_err_cnt),
4951 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4952                         CNTR_NORMAL,
4953                         access_egress_reserved_2_err_cnt),
4954 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4955                         CNTR_NORMAL,
4956                         access_tx_pkt_integrity_mem_unc_err_cnt),
4957 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4958                         CNTR_NORMAL,
4959                         access_tx_pkt_integrity_mem_cor_err_cnt),
4960 /* SendErrStatus */
4961 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4962                         CNTR_NORMAL,
4963                         access_send_csr_write_bad_addr_err_cnt),
4964 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4965                         CNTR_NORMAL,
4966                         access_send_csr_read_bad_addr_err_cnt),
4967 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4968                         CNTR_NORMAL,
4969                         access_send_csr_parity_cnt),
4970 /* SendCtxtErrStatus */
4971 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4972                         CNTR_NORMAL,
4973                         access_pio_write_out_of_bounds_err_cnt),
4974 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4975                         CNTR_NORMAL,
4976                         access_pio_write_overflow_err_cnt),
4977 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4978                         0, 0, CNTR_NORMAL,
4979                         access_pio_write_crosses_boundary_err_cnt),
4980 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4981                         CNTR_NORMAL,
4982                         access_pio_disallowed_packet_err_cnt),
4983 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4984                         CNTR_NORMAL,
4985                         access_pio_inconsistent_sop_err_cnt),
4986 /* SendDmaEngErrStatus */
4987 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4988                         0, 0, CNTR_NORMAL,
4989                         access_sdma_header_request_fifo_cor_err_cnt),
4990 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4991                         CNTR_NORMAL,
4992                         access_sdma_header_storage_cor_err_cnt),
4993 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4994                         CNTR_NORMAL,
4995                         access_sdma_packet_tracking_cor_err_cnt),
4996 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4997                         CNTR_NORMAL,
4998                         access_sdma_assembly_cor_err_cnt),
4999 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5000                         CNTR_NORMAL,
5001                         access_sdma_desc_table_cor_err_cnt),
5002 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5003                         0, 0, CNTR_NORMAL,
5004                         access_sdma_header_request_fifo_unc_err_cnt),
5005 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5006                         CNTR_NORMAL,
5007                         access_sdma_header_storage_unc_err_cnt),
5008 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5009                         CNTR_NORMAL,
5010                         access_sdma_packet_tracking_unc_err_cnt),
5011 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5012                         CNTR_NORMAL,
5013                         access_sdma_assembly_unc_err_cnt),
5014 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5015                         CNTR_NORMAL,
5016                         access_sdma_desc_table_unc_err_cnt),
5017 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5018                         CNTR_NORMAL,
5019                         access_sdma_timeout_err_cnt),
5020 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5021                         CNTR_NORMAL,
5022                         access_sdma_header_length_err_cnt),
5023 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5024                         CNTR_NORMAL,
5025                         access_sdma_header_address_err_cnt),
5026 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5027                         CNTR_NORMAL,
5028                         access_sdma_header_select_err_cnt),
5029 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5030                         CNTR_NORMAL,
5031                         access_sdma_reserved_9_err_cnt),
5032 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5033                         CNTR_NORMAL,
5034                         access_sdma_packet_desc_overflow_err_cnt),
5035 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5036                         CNTR_NORMAL,
5037                         access_sdma_length_mismatch_err_cnt),
5038 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5039                         CNTR_NORMAL,
5040                         access_sdma_halt_err_cnt),
5041 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5042                         CNTR_NORMAL,
5043                         access_sdma_mem_read_err_cnt),
5044 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5045                         CNTR_NORMAL,
5046                         access_sdma_first_desc_err_cnt),
5047 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5048                         CNTR_NORMAL,
5049                         access_sdma_tail_out_of_bounds_err_cnt),
5050 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5051                         CNTR_NORMAL,
5052                         access_sdma_too_long_err_cnt),
5053 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5054                         CNTR_NORMAL,
5055                         access_sdma_gen_mismatch_err_cnt),
5056 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5057                         CNTR_NORMAL,
5058                         access_sdma_wrong_dw_err_cnt),
5059 };
5060
5061 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5062 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5063                         CNTR_NORMAL),
5064 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5065                         CNTR_NORMAL),
5066 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5067                         CNTR_NORMAL),
5068 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5069                         CNTR_NORMAL),
5070 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5071                         CNTR_NORMAL),
5072 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5073                         CNTR_NORMAL),
5074 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5075                         CNTR_NORMAL),
5076 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5077 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5078 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5079 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5080                                       CNTR_SYNTH | CNTR_VL),
5081 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5082                                      CNTR_SYNTH | CNTR_VL),
5083 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5084                                       CNTR_SYNTH | CNTR_VL),
5085 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5086 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5087 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5088                              access_sw_link_dn_cnt),
5089 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5090                            access_sw_link_up_cnt),
5091 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5092                                  access_sw_unknown_frame_cnt),
5093 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5094                              access_sw_xmit_discards),
5095 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5096                                 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5097                                 access_sw_xmit_discards),
5098 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5099                                  access_xmit_constraint_errs),
5100 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5101                                 access_rcv_constraint_errs),
5102 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5103 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5104 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5105 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5106 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5107 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5108 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5109 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5110 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5111 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5112 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5113 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5114 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5115                                access_sw_cpu_rc_acks),
5116 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5117                                 access_sw_cpu_rc_qacks),
5118 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5119                                        access_sw_cpu_rc_delayed_comp),
5120 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5121 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5122 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5123 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5124 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5125 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5126 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5127 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5128 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5129 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5130 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5131 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5132 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5133 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5134 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5135 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5136 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5137 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5138 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5139 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5140 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5141 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5142 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5143 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5144 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5145 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5146 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5147 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5148 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5149 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5150 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5151 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5152 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5153 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5154 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5155 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5156 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5157 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5158 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5159 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5160 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5161 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5162 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5163 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5164 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5165 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5166 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5167 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5168 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5169 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5170 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5171 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5172 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5173 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5174 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5175 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5176 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5177 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5178 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5179 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5180 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5181 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5182 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5183 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5184 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5185 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5186 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5187 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5188 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5189 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5190 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5191 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5192 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5193 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5194 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5195 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5196 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5197 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5198 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5199 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5200 };
5201
5202 /* ======================================================================== */
5203
5204 /* return true if this is chip revision revision a */
5205 int is_ax(struct hfi1_devdata *dd)
5206 {
5207         u8 chip_rev_minor =
5208                 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5209                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
5210         return (chip_rev_minor & 0xf0) == 0;
5211 }
5212
5213 /* return true if this is chip revision revision b */
5214 int is_bx(struct hfi1_devdata *dd)
5215 {
5216         u8 chip_rev_minor =
5217                 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5218                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
5219         return (chip_rev_minor & 0xF0) == 0x10;
5220 }
5221
5222 /*
5223  * Append string s to buffer buf.  Arguments curp and len are the current
5224  * position and remaining length, respectively.
5225  *
5226  * return 0 on success, 1 on out of room
5227  */
5228 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5229 {
5230         char *p = *curp;
5231         int len = *lenp;
5232         int result = 0; /* success */
5233         char c;
5234
5235         /* add a comma, if first in the buffer */
5236         if (p != buf) {
5237                 if (len == 0) {
5238                         result = 1; /* out of room */
5239                         goto done;
5240                 }
5241                 *p++ = ',';
5242                 len--;
5243         }
5244
5245         /* copy the string */
5246         while ((c = *s++) != 0) {
5247                 if (len == 0) {
5248                         result = 1; /* out of room */
5249                         goto done;
5250                 }
5251                 *p++ = c;
5252                 len--;
5253         }
5254
5255 done:
5256         /* write return values */
5257         *curp = p;
5258         *lenp = len;
5259
5260         return result;
5261 }
5262
5263 /*
5264  * Using the given flag table, print a comma separated string into
5265  * the buffer.  End in '*' if the buffer is too short.
5266  */
5267 static char *flag_string(char *buf, int buf_len, u64 flags,
5268                          struct flag_table *table, int table_size)
5269 {
5270         char extra[32];
5271         char *p = buf;
5272         int len = buf_len;
5273         int no_room = 0;
5274         int i;
5275
5276         /* make sure there is at least 2 so we can form "*" */
5277         if (len < 2)
5278                 return "";
5279
5280         len--;  /* leave room for a nul */
5281         for (i = 0; i < table_size; i++) {
5282                 if (flags & table[i].flag) {
5283                         no_room = append_str(buf, &p, &len, table[i].str);
5284                         if (no_room)
5285                                 break;
5286                         flags &= ~table[i].flag;
5287                 }
5288         }
5289
5290         /* any undocumented bits left? */
5291         if (!no_room && flags) {
5292                 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5293                 no_room = append_str(buf, &p, &len, extra);
5294         }
5295
5296         /* add * if ran out of room */
5297         if (no_room) {
5298                 /* may need to back up to add space for a '*' */
5299                 if (len == 0)
5300                         --p;
5301                 *p++ = '*';
5302         }
5303
5304         /* add final nul - space already allocated above */
5305         *p = 0;
5306         return buf;
5307 }
5308
5309 /* first 8 CCE error interrupt source names */
5310 static const char * const cce_misc_names[] = {
5311         "CceErrInt",            /* 0 */
5312         "RxeErrInt",            /* 1 */
5313         "MiscErrInt",           /* 2 */
5314         "Reserved3",            /* 3 */
5315         "PioErrInt",            /* 4 */
5316         "SDmaErrInt",           /* 5 */
5317         "EgressErrInt",         /* 6 */
5318         "TxeErrInt"             /* 7 */
5319 };
5320
5321 /*
5322  * Return the miscellaneous error interrupt name.
5323  */
5324 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5325 {
5326         if (source < ARRAY_SIZE(cce_misc_names))
5327                 strncpy(buf, cce_misc_names[source], bsize);
5328         else
5329                 snprintf(buf, bsize, "Reserved%u",
5330                          source + IS_GENERAL_ERR_START);
5331
5332         return buf;
5333 }
5334
5335 /*
5336  * Return the SDMA engine error interrupt name.
5337  */
5338 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5339 {
5340         snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5341         return buf;
5342 }
5343
5344 /*
5345  * Return the send context error interrupt name.
5346  */
5347 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5348 {
5349         snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5350         return buf;
5351 }
5352
5353 static const char * const various_names[] = {
5354         "PbcInt",
5355         "GpioAssertInt",
5356         "Qsfp1Int",
5357         "Qsfp2Int",
5358         "TCritInt"
5359 };
5360
5361 /*
5362  * Return the various interrupt name.
5363  */
5364 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5365 {
5366         if (source < ARRAY_SIZE(various_names))
5367                 strncpy(buf, various_names[source], bsize);
5368         else
5369                 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5370         return buf;
5371 }
5372
5373 /*
5374  * Return the DC interrupt name.
5375  */
5376 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5377 {
5378         static const char * const dc_int_names[] = {
5379                 "common",
5380                 "lcb",
5381                 "8051",
5382                 "lbm"   /* local block merge */
5383         };
5384
5385         if (source < ARRAY_SIZE(dc_int_names))
5386                 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5387         else
5388                 snprintf(buf, bsize, "DCInt%u", source);
5389         return buf;
5390 }
5391
5392 static const char * const sdma_int_names[] = {
5393         "SDmaInt",
5394         "SdmaIdleInt",
5395         "SdmaProgressInt",
5396 };
5397
5398 /*
5399  * Return the SDMA engine interrupt name.
5400  */
5401 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5402 {
5403         /* what interrupt */
5404         unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5405         /* which engine */
5406         unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5407
5408         if (likely(what < 3))
5409                 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5410         else
5411                 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5412         return buf;
5413 }
5414
5415 /*
5416  * Return the receive available interrupt name.
5417  */
5418 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5419 {
5420         snprintf(buf, bsize, "RcvAvailInt%u", source);
5421         return buf;
5422 }
5423
5424 /*
5425  * Return the receive urgent interrupt name.
5426  */
5427 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5428 {
5429         snprintf(buf, bsize, "RcvUrgentInt%u", source);
5430         return buf;
5431 }
5432
5433 /*
5434  * Return the send credit interrupt name.
5435  */
5436 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5437 {
5438         snprintf(buf, bsize, "SendCreditInt%u", source);
5439         return buf;
5440 }
5441
5442 /*
5443  * Return the reserved interrupt name.
5444  */
5445 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5446 {
5447         snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5448         return buf;
5449 }
5450
5451 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5452 {
5453         return flag_string(buf, buf_len, flags,
5454                            cce_err_status_flags,
5455                            ARRAY_SIZE(cce_err_status_flags));
5456 }
5457
5458 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5459 {
5460         return flag_string(buf, buf_len, flags,
5461                            rxe_err_status_flags,
5462                            ARRAY_SIZE(rxe_err_status_flags));
5463 }
5464
5465 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5466 {
5467         return flag_string(buf, buf_len, flags, misc_err_status_flags,
5468                            ARRAY_SIZE(misc_err_status_flags));
5469 }
5470
5471 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5472 {
5473         return flag_string(buf, buf_len, flags,
5474                            pio_err_status_flags,
5475                            ARRAY_SIZE(pio_err_status_flags));
5476 }
5477
5478 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5479 {
5480         return flag_string(buf, buf_len, flags,
5481                            sdma_err_status_flags,
5482                            ARRAY_SIZE(sdma_err_status_flags));
5483 }
5484
5485 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5486 {
5487         return flag_string(buf, buf_len, flags,
5488                            egress_err_status_flags,
5489                            ARRAY_SIZE(egress_err_status_flags));
5490 }
5491
5492 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5493 {
5494         return flag_string(buf, buf_len, flags,
5495                            egress_err_info_flags,
5496                            ARRAY_SIZE(egress_err_info_flags));
5497 }
5498
5499 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5500 {
5501         return flag_string(buf, buf_len, flags,
5502                            send_err_status_flags,
5503                            ARRAY_SIZE(send_err_status_flags));
5504 }
5505
5506 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5507 {
5508         char buf[96];
5509         int i = 0;
5510
5511         /*
5512          * For most these errors, there is nothing that can be done except
5513          * report or record it.
5514          */
5515         dd_dev_info(dd, "CCE Error: %s\n",
5516                     cce_err_status_string(buf, sizeof(buf), reg));
5517
5518         if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5519             is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5520                 /* this error requires a manual drop into SPC freeze mode */
5521                 /* then a fix up */
5522                 start_freeze_handling(dd->pport, FREEZE_SELF);
5523         }
5524
5525         for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5526                 if (reg & (1ull << i)) {
5527                         incr_cntr64(&dd->cce_err_status_cnt[i]);
5528                         /* maintain a counter over all cce_err_status errors */
5529                         incr_cntr64(&dd->sw_cce_err_status_aggregate);
5530                 }
5531         }
5532 }
5533
5534 /*
5535  * Check counters for receive errors that do not have an interrupt
5536  * associated with them.
5537  */
5538 #define RCVERR_CHECK_TIME 10
5539 static void update_rcverr_timer(unsigned long opaque)
5540 {
5541         struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5542         struct hfi1_pportdata *ppd = dd->pport;
5543         u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5544
5545         if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5546             ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5547                 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5548                 set_link_down_reason(
5549                 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5550                 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5551                 queue_work(ppd->link_wq, &ppd->link_bounce_work);
5552         }
5553         dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5554
5555         mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5556 }
5557
5558 static int init_rcverr(struct hfi1_devdata *dd)
5559 {
5560         setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
5561         /* Assume the hardware counter has been reset */
5562         dd->rcv_ovfl_cnt = 0;
5563         return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5564 }
5565
5566 static void free_rcverr(struct hfi1_devdata *dd)
5567 {
5568         if (dd->rcverr_timer.data)
5569                 del_timer_sync(&dd->rcverr_timer);
5570         dd->rcverr_timer.data = 0;
5571 }
5572
5573 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5574 {
5575         char buf[96];
5576         int i = 0;
5577
5578         dd_dev_info(dd, "Receive Error: %s\n",
5579                     rxe_err_status_string(buf, sizeof(buf), reg));
5580
5581         if (reg & ALL_RXE_FREEZE_ERR) {
5582                 int flags = 0;
5583
5584                 /*
5585                  * Freeze mode recovery is disabled for the errors
5586                  * in RXE_FREEZE_ABORT_MASK
5587                  */
5588                 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5589                         flags = FREEZE_ABORT;
5590
5591                 start_freeze_handling(dd->pport, flags);
5592         }
5593
5594         for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5595                 if (reg & (1ull << i))
5596                         incr_cntr64(&dd->rcv_err_status_cnt[i]);
5597         }
5598 }
5599
5600 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5601 {
5602         char buf[96];
5603         int i = 0;
5604
5605         dd_dev_info(dd, "Misc Error: %s",
5606                     misc_err_status_string(buf, sizeof(buf), reg));
5607         for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5608                 if (reg & (1ull << i))
5609                         incr_cntr64(&dd->misc_err_status_cnt[i]);
5610         }
5611 }
5612
5613 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5614 {
5615         char buf[96];
5616         int i = 0;
5617
5618         dd_dev_info(dd, "PIO Error: %s\n",
5619                     pio_err_status_string(buf, sizeof(buf), reg));
5620
5621         if (reg & ALL_PIO_FREEZE_ERR)
5622                 start_freeze_handling(dd->pport, 0);
5623
5624         for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5625                 if (reg & (1ull << i))
5626                         incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5627         }
5628 }
5629
5630 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5631 {
5632         char buf[96];
5633         int i = 0;
5634
5635         dd_dev_info(dd, "SDMA Error: %s\n",
5636                     sdma_err_status_string(buf, sizeof(buf), reg));
5637
5638         if (reg & ALL_SDMA_FREEZE_ERR)
5639                 start_freeze_handling(dd->pport, 0);
5640
5641         for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5642                 if (reg & (1ull << i))
5643                         incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5644         }
5645 }
5646
5647 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5648 {
5649         incr_cntr64(&ppd->port_xmit_discards);
5650 }
5651
5652 static void count_port_inactive(struct hfi1_devdata *dd)
5653 {
5654         __count_port_discards(dd->pport);
5655 }
5656
5657 /*
5658  * We have had a "disallowed packet" error during egress. Determine the
5659  * integrity check which failed, and update relevant error counter, etc.
5660  *
5661  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5662  * bit of state per integrity check, and so we can miss the reason for an
5663  * egress error if more than one packet fails the same integrity check
5664  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5665  */
5666 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5667                                         int vl)
5668 {
5669         struct hfi1_pportdata *ppd = dd->pport;
5670         u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5671         u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5672         char buf[96];
5673
5674         /* clear down all observed info as quickly as possible after read */
5675         write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5676
5677         dd_dev_info(dd,
5678                     "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5679                     info, egress_err_info_string(buf, sizeof(buf), info), src);
5680
5681         /* Eventually add other counters for each bit */
5682         if (info & PORT_DISCARD_EGRESS_ERRS) {
5683                 int weight, i;
5684
5685                 /*
5686                  * Count all applicable bits as individual errors and
5687                  * attribute them to the packet that triggered this handler.
5688                  * This may not be completely accurate due to limitations
5689                  * on the available hardware error information.  There is
5690                  * a single information register and any number of error
5691                  * packets may have occurred and contributed to it before
5692                  * this routine is called.  This means that:
5693                  * a) If multiple packets with the same error occur before
5694                  *    this routine is called, earlier packets are missed.
5695                  *    There is only a single bit for each error type.
5696                  * b) Errors may not be attributed to the correct VL.
5697                  *    The driver is attributing all bits in the info register
5698                  *    to the packet that triggered this call, but bits
5699                  *    could be an accumulation of different packets with
5700                  *    different VLs.
5701                  * c) A single error packet may have multiple counts attached
5702                  *    to it.  There is no way for the driver to know if
5703                  *    multiple bits set in the info register are due to a
5704                  *    single packet or multiple packets.  The driver assumes
5705                  *    multiple packets.
5706                  */
5707                 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5708                 for (i = 0; i < weight; i++) {
5709                         __count_port_discards(ppd);
5710                         if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5711                                 incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5712                         else if (vl == 15)
5713                                 incr_cntr64(&ppd->port_xmit_discards_vl
5714                                             [C_VL_15]);
5715                 }
5716         }
5717 }
5718
5719 /*
5720  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5721  * register. Does it represent a 'port inactive' error?
5722  */
5723 static inline int port_inactive_err(u64 posn)
5724 {
5725         return (posn >= SEES(TX_LINKDOWN) &&
5726                 posn <= SEES(TX_INCORRECT_LINK_STATE));
5727 }
5728
5729 /*
5730  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5731  * register. Does it represent a 'disallowed packet' error?
5732  */
5733 static inline int disallowed_pkt_err(int posn)
5734 {
5735         return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5736                 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5737 }
5738
5739 /*
5740  * Input value is a bit position of one of the SDMA engine disallowed
5741  * packet errors.  Return which engine.  Use of this must be guarded by
5742  * disallowed_pkt_err().
5743  */
5744 static inline int disallowed_pkt_engine(int posn)
5745 {
5746         return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5747 }
5748
5749 /*
5750  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5751  * be done.
5752  */
5753 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5754 {
5755         struct sdma_vl_map *m;
5756         int vl;
5757
5758         /* range check */
5759         if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5760                 return -1;
5761
5762         rcu_read_lock();
5763         m = rcu_dereference(dd->sdma_map);
5764         vl = m->engine_to_vl[engine];
5765         rcu_read_unlock();
5766
5767         return vl;
5768 }
5769
5770 /*
5771  * Translate the send context (sofware index) into a VL.  Return -1 if the
5772  * translation cannot be done.
5773  */
5774 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5775 {
5776         struct send_context_info *sci;
5777         struct send_context *sc;
5778         int i;
5779
5780         sci = &dd->send_contexts[sw_index];
5781
5782         /* there is no information for user (PSM) and ack contexts */
5783         if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5784                 return -1;
5785
5786         sc = sci->sc;
5787         if (!sc)
5788                 return -1;
5789         if (dd->vld[15].sc == sc)
5790                 return 15;
5791         for (i = 0; i < num_vls; i++)
5792                 if (dd->vld[i].sc == sc)
5793                         return i;
5794
5795         return -1;
5796 }
5797
5798 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5799 {
5800         u64 reg_copy = reg, handled = 0;
5801         char buf[96];
5802         int i = 0;
5803
5804         if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5805                 start_freeze_handling(dd->pport, 0);
5806         else if (is_ax(dd) &&
5807                  (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5808                  (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5809                 start_freeze_handling(dd->pport, 0);
5810
5811         while (reg_copy) {
5812                 int posn = fls64(reg_copy);
5813                 /* fls64() returns a 1-based offset, we want it zero based */
5814                 int shift = posn - 1;
5815                 u64 mask = 1ULL << shift;
5816
5817                 if (port_inactive_err(shift)) {
5818                         count_port_inactive(dd);
5819                         handled |= mask;
5820                 } else if (disallowed_pkt_err(shift)) {
5821                         int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5822
5823                         handle_send_egress_err_info(dd, vl);
5824                         handled |= mask;
5825                 }
5826                 reg_copy &= ~mask;
5827         }
5828
5829         reg &= ~handled;
5830
5831         if (reg)
5832                 dd_dev_info(dd, "Egress Error: %s\n",
5833                             egress_err_status_string(buf, sizeof(buf), reg));
5834
5835         for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5836                 if (reg & (1ull << i))
5837                         incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5838         }
5839 }
5840
5841 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5842 {
5843         char buf[96];
5844         int i = 0;
5845
5846         dd_dev_info(dd, "Send Error: %s\n",
5847                     send_err_status_string(buf, sizeof(buf), reg));
5848
5849         for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5850                 if (reg & (1ull << i))
5851                         incr_cntr64(&dd->send_err_status_cnt[i]);
5852         }
5853 }
5854
5855 /*
5856  * The maximum number of times the error clear down will loop before
5857  * blocking a repeating error.  This value is arbitrary.
5858  */
5859 #define MAX_CLEAR_COUNT 20
5860
5861 /*
5862  * Clear and handle an error register.  All error interrupts are funneled
5863  * through here to have a central location to correctly handle single-
5864  * or multi-shot errors.
5865  *
5866  * For non per-context registers, call this routine with a context value
5867  * of 0 so the per-context offset is zero.
5868  *
5869  * If the handler loops too many times, assume that something is wrong
5870  * and can't be fixed, so mask the error bits.
5871  */
5872 static void interrupt_clear_down(struct hfi1_devdata *dd,
5873                                  u32 context,
5874                                  const struct err_reg_info *eri)
5875 {
5876         u64 reg;
5877         u32 count;
5878
5879         /* read in a loop until no more errors are seen */
5880         count = 0;
5881         while (1) {
5882                 reg = read_kctxt_csr(dd, context, eri->status);
5883                 if (reg == 0)
5884                         break;
5885                 write_kctxt_csr(dd, context, eri->clear, reg);
5886                 if (likely(eri->handler))
5887                         eri->handler(dd, context, reg);
5888                 count++;
5889                 if (count > MAX_CLEAR_COUNT) {
5890                         u64 mask;
5891
5892                         dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5893                                    eri->desc, reg);
5894                         /*
5895                          * Read-modify-write so any other masked bits
5896                          * remain masked.
5897                          */
5898                         mask = read_kctxt_csr(dd, context, eri->mask);
5899                         mask &= ~reg;
5900                         write_kctxt_csr(dd, context, eri->mask, mask);
5901                         break;
5902                 }
5903         }
5904 }
5905
5906 /*
5907  * CCE block "misc" interrupt.  Source is < 16.
5908  */
5909 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5910 {
5911         const struct err_reg_info *eri = &misc_errs[source];
5912
5913         if (eri->handler) {
5914                 interrupt_clear_down(dd, 0, eri);
5915         } else {
5916                 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5917                            source);
5918         }
5919 }
5920
5921 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5922 {
5923         return flag_string(buf, buf_len, flags,
5924                            sc_err_status_flags,
5925                            ARRAY_SIZE(sc_err_status_flags));
5926 }
5927
5928 /*
5929  * Send context error interrupt.  Source (hw_context) is < 160.
5930  *
5931  * All send context errors cause the send context to halt.  The normal
5932  * clear-down mechanism cannot be used because we cannot clear the
5933  * error bits until several other long-running items are done first.
5934  * This is OK because with the context halted, nothing else is going
5935  * to happen on it anyway.
5936  */
5937 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5938                                 unsigned int hw_context)
5939 {
5940         struct send_context_info *sci;
5941         struct send_context *sc;
5942         char flags[96];
5943         u64 status;
5944         u32 sw_index;
5945         int i = 0;
5946
5947         sw_index = dd->hw_to_sw[hw_context];
5948         if (sw_index >= dd->num_send_contexts) {
5949                 dd_dev_err(dd,
5950                            "out of range sw index %u for send context %u\n",
5951                            sw_index, hw_context);
5952                 return;
5953         }
5954         sci = &dd->send_contexts[sw_index];
5955         sc = sci->sc;
5956         if (!sc) {
5957                 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5958                            sw_index, hw_context);
5959                 return;
5960         }
5961
5962         /* tell the software that a halt has begun */
5963         sc_stop(sc, SCF_HALTED);
5964
5965         status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5966
5967         dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5968                     send_context_err_status_string(flags, sizeof(flags),
5969                                                    status));
5970
5971         if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5972                 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5973
5974         /*
5975          * Automatically restart halted kernel contexts out of interrupt
5976          * context.  User contexts must ask the driver to restart the context.
5977          */
5978         if (sc->type != SC_USER)
5979                 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5980
5981         /*
5982          * Update the counters for the corresponding status bits.
5983          * Note that these particular counters are aggregated over all
5984          * 160 contexts.
5985          */
5986         for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5987                 if (status & (1ull << i))
5988                         incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5989         }
5990 }
5991
5992 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5993                                 unsigned int source, u64 status)
5994 {
5995         struct sdma_engine *sde;
5996         int i = 0;
5997
5998         sde = &dd->per_sdma[source];
5999 #ifdef CONFIG_SDMA_VERBOSITY
6000         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6001                    slashstrip(__FILE__), __LINE__, __func__);
6002         dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6003                    sde->this_idx, source, (unsigned long long)status);
6004 #endif
6005         sde->err_cnt++;
6006         sdma_engine_error(sde, status);
6007
6008         /*
6009         * Update the counters for the corresponding status bits.
6010         * Note that these particular counters are aggregated over
6011         * all 16 DMA engines.
6012         */
6013         for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6014                 if (status & (1ull << i))
6015                         incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6016         }
6017 }
6018
6019 /*
6020  * CCE block SDMA error interrupt.  Source is < 16.
6021  */
6022 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6023 {
6024 #ifdef CONFIG_SDMA_VERBOSITY
6025         struct sdma_engine *sde = &dd->per_sdma[source];
6026
6027         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6028                    slashstrip(__FILE__), __LINE__, __func__);
6029         dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6030                    source);
6031         sdma_dumpstate(sde);
6032 #endif
6033         interrupt_clear_down(dd, source, &sdma_eng_err);
6034 }
6035
6036 /*
6037  * CCE block "various" interrupt.  Source is < 8.
6038  */
6039 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6040 {
6041         const struct err_reg_info *eri = &various_err[source];
6042
6043         /*
6044          * TCritInt cannot go through interrupt_clear_down()
6045          * because it is not a second tier interrupt. The handler
6046          * should be called directly.
6047          */
6048         if (source == TCRIT_INT_SOURCE)
6049                 handle_temp_err(dd);
6050         else if (eri->handler)
6051                 interrupt_clear_down(dd, 0, eri);
6052         else
6053                 dd_dev_info(dd,
6054                             "%s: Unimplemented/reserved interrupt %d\n",
6055                             __func__, source);
6056 }
6057
6058 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6059 {
6060         /* src_ctx is always zero */
6061         struct hfi1_pportdata *ppd = dd->pport;
6062         unsigned long flags;
6063         u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6064
6065         if (reg & QSFP_HFI0_MODPRST_N) {
6066                 if (!qsfp_mod_present(ppd)) {
6067                         dd_dev_info(dd, "%s: QSFP module removed\n",
6068                                     __func__);
6069
6070                         ppd->driver_link_ready = 0;
6071                         /*
6072                          * Cable removed, reset all our information about the
6073                          * cache and cable capabilities
6074                          */
6075
6076                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6077                         /*
6078                          * We don't set cache_refresh_required here as we expect
6079                          * an interrupt when a cable is inserted
6080                          */
6081                         ppd->qsfp_info.cache_valid = 0;
6082                         ppd->qsfp_info.reset_needed = 0;
6083                         ppd->qsfp_info.limiting_active = 0;
6084                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6085                                                flags);
6086                         /* Invert the ModPresent pin now to detect plug-in */
6087                         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6088                                   ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6089
6090                         if ((ppd->offline_disabled_reason >
6091                           HFI1_ODR_MASK(
6092                           OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6093                           (ppd->offline_disabled_reason ==
6094                           HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6095                                 ppd->offline_disabled_reason =
6096                                 HFI1_ODR_MASK(
6097                                 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6098
6099                         if (ppd->host_link_state == HLS_DN_POLL) {
6100                                 /*
6101                                  * The link is still in POLL. This means
6102                                  * that the normal link down processing
6103                                  * will not happen. We have to do it here
6104                                  * before turning the DC off.
6105                                  */
6106                                 queue_work(ppd->link_wq, &ppd->link_down_work);
6107                         }
6108                 } else {
6109                         dd_dev_info(dd, "%s: QSFP module inserted\n",
6110                                     __func__);
6111
6112                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6113                         ppd->qsfp_info.cache_valid = 0;
6114                         ppd->qsfp_info.cache_refresh_required = 1;
6115                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6116                                                flags);
6117
6118                         /*
6119                          * Stop inversion of ModPresent pin to detect
6120                          * removal of the cable
6121                          */
6122                         qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6123                         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6124                                   ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6125
6126                         ppd->offline_disabled_reason =
6127                                 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6128                 }
6129         }
6130
6131         if (reg & QSFP_HFI0_INT_N) {
6132                 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6133                             __func__);
6134                 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6135                 ppd->qsfp_info.check_interrupt_flags = 1;
6136                 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6137         }
6138
6139         /* Schedule the QSFP work only if there is a cable attached. */
6140         if (qsfp_mod_present(ppd))
6141                 queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6142 }
6143
6144 static int request_host_lcb_access(struct hfi1_devdata *dd)
6145 {
6146         int ret;
6147
6148         ret = do_8051_command(dd, HCMD_MISC,
6149                               (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6150                               LOAD_DATA_FIELD_ID_SHIFT, NULL);
6151         if (ret != HCMD_SUCCESS) {
6152                 dd_dev_err(dd, "%s: command failed with error %d\n",
6153                            __func__, ret);
6154         }
6155         return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6156 }
6157
6158 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6159 {
6160         int ret;
6161
6162         ret = do_8051_command(dd, HCMD_MISC,
6163                               (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6164                               LOAD_DATA_FIELD_ID_SHIFT, NULL);
6165         if (ret != HCMD_SUCCESS) {
6166                 dd_dev_err(dd, "%s: command failed with error %d\n",
6167                            __func__, ret);
6168         }
6169         return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6170 }
6171
6172 /*
6173  * Set the LCB selector - allow host access.  The DCC selector always
6174  * points to the host.
6175  */
6176 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6177 {
6178         write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6179                   DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6180                   DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6181 }
6182
6183 /*
6184  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6185  * points to the host.
6186  */
6187 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6188 {
6189         write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6190                   DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6191 }
6192
6193 /*
6194  * Acquire LCB access from the 8051.  If the host already has access,
6195  * just increment a counter.  Otherwise, inform the 8051 that the
6196  * host is taking access.
6197  *
6198  * Returns:
6199  *      0 on success
6200  *      -EBUSY if the 8051 has control and cannot be disturbed
6201  *      -errno if unable to acquire access from the 8051
6202  */
6203 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6204 {
6205         struct hfi1_pportdata *ppd = dd->pport;
6206         int ret = 0;
6207
6208         /*
6209          * Use the host link state lock so the operation of this routine
6210          * { link state check, selector change, count increment } can occur
6211          * as a unit against a link state change.  Otherwise there is a
6212          * race between the state change and the count increment.
6213          */
6214         if (sleep_ok) {
6215                 mutex_lock(&ppd->hls_lock);
6216         } else {
6217                 while (!mutex_trylock(&ppd->hls_lock))
6218                         udelay(1);
6219         }
6220
6221         /* this access is valid only when the link is up */
6222         if (ppd->host_link_state & HLS_DOWN) {
6223                 dd_dev_info(dd, "%s: link state %s not up\n",
6224                             __func__, link_state_name(ppd->host_link_state));
6225                 ret = -EBUSY;
6226                 goto done;
6227         }
6228
6229         if (dd->lcb_access_count == 0) {
6230                 ret = request_host_lcb_access(dd);
6231                 if (ret) {
6232                         dd_dev_err(dd,
6233                                    "%s: unable to acquire LCB access, err %d\n",
6234                                    __func__, ret);
6235                         goto done;
6236                 }
6237                 set_host_lcb_access(dd);
6238         }
6239         dd->lcb_access_count++;
6240 done:
6241         mutex_unlock(&ppd->hls_lock);
6242         return ret;
6243 }
6244
6245 /*
6246  * Release LCB access by decrementing the use count.  If the count is moving
6247  * from 1 to 0, inform 8051 that it has control back.
6248  *
6249  * Returns:
6250  *      0 on success
6251  *      -errno if unable to release access to the 8051
6252  */
6253 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6254 {
6255         int ret = 0;
6256
6257         /*
6258          * Use the host link state lock because the acquire needed it.
6259          * Here, we only need to keep { selector change, count decrement }
6260          * as a unit.
6261          */
6262         if (sleep_ok) {
6263                 mutex_lock(&dd->pport->hls_lock);
6264         } else {
6265                 while (!mutex_trylock(&dd->pport->hls_lock))
6266                         udelay(1);
6267         }
6268
6269         if (dd->lcb_access_count == 0) {
6270                 dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6271                            __func__);
6272                 goto done;
6273         }
6274
6275         if (dd->lcb_access_count == 1) {
6276                 set_8051_lcb_access(dd);
6277                 ret = request_8051_lcb_access(dd);
6278                 if (ret) {
6279                         dd_dev_err(dd,
6280                                    "%s: unable to release LCB access, err %d\n",
6281                                    __func__, ret);
6282                         /* restore host access if the grant didn't work */
6283                         set_host_lcb_access(dd);
6284                         goto done;
6285                 }
6286         }
6287         dd->lcb_access_count--;
6288 done:
6289         mutex_unlock(&dd->pport->hls_lock);
6290         return ret;
6291 }
6292
6293 /*
6294  * Initialize LCB access variables and state.  Called during driver load,
6295  * after most of the initialization is finished.
6296  *
6297  * The DC default is LCB access on for the host.  The driver defaults to
6298  * leaving access to the 8051.  Assign access now - this constrains the call
6299  * to this routine to be after all LCB set-up is done.  In particular, after
6300  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6301  */
6302 static void init_lcb_access(struct hfi1_devdata *dd)
6303 {
6304         dd->lcb_access_count = 0;
6305 }
6306
6307 /*
6308  * Write a response back to a 8051 request.
6309  */
6310 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6311 {
6312         write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6313                   DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6314                   (u64)return_code <<
6315                   DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6316                   (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6317 }
6318
6319 /*
6320  * Handle host requests from the 8051.
6321  */
6322 static void handle_8051_request(struct hfi1_pportdata *ppd)
6323 {
6324         struct hfi1_devdata *dd = ppd->dd;
6325         u64 reg;
6326         u16 data = 0;
6327         u8 type;
6328
6329         reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6330         if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6331                 return; /* no request */
6332
6333         /* zero out COMPLETED so the response is seen */
6334         write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6335
6336         /* extract request details */
6337         type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6338                         & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6339         data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6340                         & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6341
6342         switch (type) {
6343         case HREQ_LOAD_CONFIG:
6344         case HREQ_SAVE_CONFIG:
6345         case HREQ_READ_CONFIG:
6346         case HREQ_SET_TX_EQ_ABS:
6347         case HREQ_SET_TX_EQ_REL:
6348         case HREQ_ENABLE:
6349                 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6350                             type);
6351                 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6352                 break;
6353         case HREQ_CONFIG_DONE:
6354                 hreq_response(dd, HREQ_SUCCESS, 0);
6355                 break;
6356
6357         case HREQ_INTERFACE_TEST:
6358                 hreq_response(dd, HREQ_SUCCESS, data);
6359                 break;
6360         default:
6361                 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6362                 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6363                 break;
6364         }
6365 }
6366
6367 /*
6368  * Set up allocation unit vaulue.
6369  */
6370 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6371 {
6372         u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6373
6374         /* do not modify other values in the register */
6375         reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6376         reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6377         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6378 }
6379
6380 /*
6381  * Set up initial VL15 credits of the remote.  Assumes the rest of
6382  * the CM credit registers are zero from a previous global or credit reset.
6383  * Shared limit for VL15 will always be 0.
6384  */
6385 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6386 {
6387         u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6388
6389         /* set initial values for total and shared credit limit */
6390         reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6391                  SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6392
6393         /*
6394          * Set total limit to be equal to VL15 credits.
6395          * Leave shared limit at 0.
6396          */
6397         reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6398         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6399
6400         write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6401                   << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6402 }
6403
6404 /*
6405  * Zero all credit details from the previous connection and
6406  * reset the CM manager's internal counters.
6407  */
6408 void reset_link_credits(struct hfi1_devdata *dd)
6409 {
6410         int i;
6411
6412         /* remove all previous VL credit limits */
6413         for (i = 0; i < TXE_NUM_DATA_VL; i++)
6414                 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6415         write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6416         write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6417         /* reset the CM block */
6418         pio_send_control(dd, PSC_CM_RESET);
6419         /* reset cached value */
6420         dd->vl15buf_cached = 0;
6421 }
6422
6423 /* convert a vCU to a CU */
6424 static u32 vcu_to_cu(u8 vcu)
6425 {
6426         return 1 << vcu;
6427 }
6428
6429 /* convert a CU to a vCU */
6430 static u8 cu_to_vcu(u32 cu)
6431 {
6432         return ilog2(cu);
6433 }
6434
6435 /* convert a vAU to an AU */
6436 static u32 vau_to_au(u8 vau)
6437 {
6438         return 8 * (1 << vau);
6439 }
6440
6441 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6442 {
6443         ppd->sm_trap_qp = 0x0;
6444         ppd->sa_qp = 0x1;
6445 }
6446
6447 /*
6448  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6449  */
6450 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6451 {
6452         u64 reg;
6453
6454         /* clear lcb run: LCB_CFG_RUN.EN = 0 */
6455         write_csr(dd, DC_LCB_CFG_RUN, 0);
6456         /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6457         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6458                   1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6459         /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6460         dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6461         reg = read_csr(dd, DCC_CFG_RESET);
6462         write_csr(dd, DCC_CFG_RESET, reg |
6463                   (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6464                   (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6465         (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6466         if (!abort) {
6467                 udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6468                 write_csr(dd, DCC_CFG_RESET, reg);
6469                 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6470         }
6471 }
6472
6473 /*
6474  * This routine should be called after the link has been transitioned to
6475  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6476  * reset).
6477  *
6478  * The expectation is that the caller of this routine would have taken
6479  * care of properly transitioning the link into the correct state.
6480  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6481  *       before calling this function.
6482  */
6483 static void _dc_shutdown(struct hfi1_devdata *dd)
6484 {
6485         lockdep_assert_held(&dd->dc8051_lock);
6486
6487         if (dd->dc_shutdown)
6488                 return;
6489
6490         dd->dc_shutdown = 1;
6491         /* Shutdown the LCB */
6492         lcb_shutdown(dd, 1);
6493         /*
6494          * Going to OFFLINE would have causes the 8051 to put the
6495          * SerDes into reset already. Just need to shut down the 8051,
6496          * itself.
6497          */
6498         write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6499 }
6500
6501 static void dc_shutdown(struct hfi1_devdata *dd)
6502 {
6503         mutex_lock(&dd->dc8051_lock);
6504         _dc_shutdown(dd);
6505         mutex_unlock(&dd->dc8051_lock);
6506 }
6507
6508 /*
6509  * Calling this after the DC has been brought out of reset should not
6510  * do any damage.
6511  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6512  *       before calling this function.
6513  */
6514 static void _dc_start(struct hfi1_devdata *dd)
6515 {
6516         lockdep_assert_held(&dd->dc8051_lock);
6517
6518         if (!dd->dc_shutdown)
6519                 return;
6520
6521         /* Take the 8051 out of reset */
6522         write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6523         /* Wait until 8051 is ready */
6524         if (wait_fm_ready(dd, TIMEOUT_8051_START))
6525                 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6526                            __func__);
6527
6528         /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6529         write_csr(dd, DCC_CFG_RESET, 0x10);
6530         /* lcb_shutdown() with abort=1 does not restore these */
6531         write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6532         dd->dc_shutdown = 0;
6533 }
6534
6535 static void dc_start(struct hfi1_devdata *dd)
6536 {
6537         mutex_lock(&dd->dc8051_lock);
6538         _dc_start(dd);
6539         mutex_unlock(&dd->dc8051_lock);
6540 }
6541
6542 /*
6543  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6544  */
6545 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6546 {
6547         u64 rx_radr, tx_radr;
6548         u32 version;
6549
6550         if (dd->icode != ICODE_FPGA_EMULATION)
6551                 return;
6552
6553         /*
6554          * These LCB defaults on emulator _s are good, nothing to do here:
6555          *      LCB_CFG_TX_FIFOS_RADR
6556          *      LCB_CFG_RX_FIFOS_RADR
6557          *      LCB_CFG_LN_DCLK
6558          *      LCB_CFG_IGNORE_LOST_RCLK
6559          */
6560         if (is_emulator_s(dd))
6561                 return;
6562         /* else this is _p */
6563
6564         version = emulator_rev(dd);
6565         if (!is_ax(dd))
6566                 version = 0x2d; /* all B0 use 0x2d or higher settings */
6567
6568         if (version <= 0x12) {
6569                 /* release 0x12 and below */
6570
6571                 /*
6572                  * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6573                  * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6574                  * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6575                  */
6576                 rx_radr =
6577                       0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6578                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6579                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6580                 /*
6581                  * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6582                  * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6583                  */
6584                 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6585         } else if (version <= 0x18) {
6586                 /* release 0x13 up to 0x18 */
6587                 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6588                 rx_radr =
6589                       0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6590                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6591                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6592                 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6593         } else if (version == 0x19) {
6594                 /* release 0x19 */
6595                 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6596                 rx_radr =
6597                       0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6598                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6599                     | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6600                 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6601         } else if (version == 0x1a) {
6602                 /* release 0x1a */
6603                 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6604                 rx_radr =
6605                       0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6606                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6607                     | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6608                 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6609                 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6610         } else {
6611                 /* release 0x1b and higher */
6612                 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6613                 rx_radr =
6614                       0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6615                     | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6616                     | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6617                 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6618         }
6619
6620         write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6621         /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6622         write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6623                   DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6624         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6625 }
6626
6627 /*
6628  * Handle a SMA idle message
6629  *
6630  * This is a work-queue function outside of the interrupt.
6631  */
6632 void handle_sma_message(struct work_struct *work)
6633 {
6634         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6635                                                         sma_message_work);
6636         struct hfi1_devdata *dd = ppd->dd;
6637         u64 msg;
6638         int ret;
6639
6640         /*
6641          * msg is bytes 1-4 of the 40-bit idle message - the command code
6642          * is stripped off
6643          */
6644         ret = read_idle_sma(dd, &msg);
6645         if (ret)
6646                 return;
6647         dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6648         /*
6649          * React to the SMA message.  Byte[1] (0 for us) is the command.
6650          */
6651         switch (msg & 0xff) {
6652         case SMA_IDLE_ARM:
6653                 /*
6654                  * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6655                  * State Transitions
6656                  *
6657                  * Only expected in INIT or ARMED, discard otherwise.
6658                  */
6659                 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6660                         ppd->neighbor_normal = 1;
6661                 break;
6662         case SMA_IDLE_ACTIVE:
6663                 /*
6664                  * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6665                  * State Transitions
6666                  *
6667                  * Can activate the node.  Discard otherwise.
6668                  */
6669                 if (ppd->host_link_state == HLS_UP_ARMED &&
6670                     ppd->is_active_optimize_enabled) {
6671                         ppd->neighbor_normal = 1;
6672                         ret = set_link_state(ppd, HLS_UP_ACTIVE);
6673                         if (ret)
6674                                 dd_dev_err(
6675                                         dd,
6676                                         "%s: received Active SMA idle message, couldn't set link to Active\n",
6677                                         __func__);
6678                 }
6679                 break;
6680         default:
6681                 dd_dev_err(dd,
6682                            "%s: received unexpected SMA idle message 0x%llx\n",
6683                            __func__, msg);
6684                 break;
6685         }
6686 }
6687
6688 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6689 {
6690         u64 rcvctrl;
6691         unsigned long flags;
6692
6693         spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6694         rcvctrl = read_csr(dd, RCV_CTRL);
6695         rcvctrl |= add;
6696         rcvctrl &= ~clear;
6697         write_csr(dd, RCV_CTRL, rcvctrl);
6698         spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6699 }
6700
6701 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6702 {
6703         adjust_rcvctrl(dd, add, 0);
6704 }
6705
6706 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6707 {
6708         adjust_rcvctrl(dd, 0, clear);
6709 }
6710
6711 /*
6712  * Called from all interrupt handlers to start handling an SPC freeze.
6713  */
6714 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6715 {
6716         struct hfi1_devdata *dd = ppd->dd;
6717         struct send_context *sc;
6718         int i;
6719
6720         if (flags & FREEZE_SELF)
6721                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6722
6723         /* enter frozen mode */
6724         dd->flags |= HFI1_FROZEN;
6725
6726         /* notify all SDMA engines that they are going into a freeze */
6727         sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6728
6729         /* do halt pre-handling on all enabled send contexts */
6730         for (i = 0; i < dd->num_send_contexts; i++) {
6731                 sc = dd->send_contexts[i].sc;
6732                 if (sc && (sc->flags & SCF_ENABLED))
6733                         sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6734         }
6735
6736         /* Send context are frozen. Notify user space */
6737         hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6738
6739         if (flags & FREEZE_ABORT) {
6740                 dd_dev_err(dd,
6741                            "Aborted freeze recovery. Please REBOOT system\n");
6742                 return;
6743         }
6744         /* queue non-interrupt handler */
6745         queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6746 }
6747
6748 /*
6749  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6750  * depending on the "freeze" parameter.
6751  *
6752  * No need to return an error if it times out, our only option
6753  * is to proceed anyway.
6754  */
6755 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6756 {
6757         unsigned long timeout;
6758         u64 reg;
6759
6760         timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6761         while (1) {
6762                 reg = read_csr(dd, CCE_STATUS);
6763                 if (freeze) {
6764                         /* waiting until all indicators are set */
6765                         if ((reg & ALL_FROZE) == ALL_FROZE)
6766                                 return; /* all done */
6767                 } else {
6768                         /* waiting until all indicators are clear */
6769                         if ((reg & ALL_FROZE) == 0)
6770                                 return; /* all done */
6771                 }
6772
6773                 if (time_after(jiffies, timeout)) {
6774                         dd_dev_err(dd,
6775                                    "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6776                                    freeze ? "" : "un", reg & ALL_FROZE,
6777                                    freeze ? ALL_FROZE : 0ull);
6778                         return;
6779                 }
6780                 usleep_range(80, 120);
6781         }
6782 }
6783
6784 /*
6785  * Do all freeze handling for the RXE block.
6786  */
6787 static void rxe_freeze(struct hfi1_devdata *dd)
6788 {
6789         int i;
6790         struct hfi1_ctxtdata *rcd;
6791
6792         /* disable port */
6793         clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6794
6795         /* disable all receive contexts */
6796         for (i = 0; i < dd->num_rcv_contexts; i++) {
6797                 rcd = hfi1_rcd_get_by_index(dd, i);
6798                 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6799                 hfi1_rcd_put(rcd);
6800         }
6801 }
6802
6803 /*
6804  * Unfreeze handling for the RXE block - kernel contexts only.
6805  * This will also enable the port.  User contexts will do unfreeze
6806  * handling on a per-context basis as they call into the driver.
6807  *
6808  */
6809 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6810 {
6811         u32 rcvmask;
6812         u16 i;
6813         struct hfi1_ctxtdata *rcd;
6814
6815         /* enable all kernel contexts */
6816         for (i = 0; i < dd->num_rcv_contexts; i++) {
6817                 rcd = hfi1_rcd_get_by_index(dd, i);
6818
6819                 /* Ensure all non-user contexts(including vnic) are enabled */
6820                 if (!rcd || !rcd->sc || (rcd->sc->type == SC_USER)) {
6821                         hfi1_rcd_put(rcd);
6822                         continue;
6823                 }
6824                 rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6825                 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6826                 rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
6827                         HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6828                 hfi1_rcvctrl(dd, rcvmask, rcd);
6829                 hfi1_rcd_put(rcd);
6830         }
6831
6832         /* enable port */
6833         add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6834 }
6835
6836 /*
6837  * Non-interrupt SPC freeze handling.
6838  *
6839  * This is a work-queue function outside of the triggering interrupt.
6840  */
6841 void handle_freeze(struct work_struct *work)
6842 {
6843         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6844                                                                 freeze_work);
6845         struct hfi1_devdata *dd = ppd->dd;
6846
6847         /* wait for freeze indicators on all affected blocks */
6848         wait_for_freeze_status(dd, 1);
6849
6850         /* SPC is now frozen */
6851
6852         /* do send PIO freeze steps */
6853         pio_freeze(dd);
6854
6855         /* do send DMA freeze steps */
6856         sdma_freeze(dd);
6857
6858         /* do send egress freeze steps - nothing to do */
6859
6860         /* do receive freeze steps */
6861         rxe_freeze(dd);
6862
6863         /*
6864          * Unfreeze the hardware - clear the freeze, wait for each
6865          * block's frozen bit to clear, then clear the frozen flag.
6866          */
6867         write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6868         wait_for_freeze_status(dd, 0);
6869
6870         if (is_ax(dd)) {
6871                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6872                 wait_for_freeze_status(dd, 1);
6873                 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6874                 wait_for_freeze_status(dd, 0);
6875         }
6876
6877         /* do send PIO unfreeze steps for kernel contexts */
6878         pio_kernel_unfreeze(dd);
6879
6880         /* do send DMA unfreeze steps */
6881         sdma_unfreeze(dd);
6882
6883         /* do send egress unfreeze steps - nothing to do */
6884
6885         /* do receive unfreeze steps for kernel contexts */
6886         rxe_kernel_unfreeze(dd);
6887
6888         /*
6889          * The unfreeze procedure touches global device registers when
6890          * it disables and re-enables RXE. Mark the device unfrozen
6891          * after all that is done so other parts of the driver waiting
6892          * for the device to unfreeze don't do things out of order.
6893          *
6894          * The above implies that the meaning of HFI1_FROZEN flag is
6895          * "Device has gone into freeze mode and freeze mode handling
6896          * is still in progress."
6897          *
6898          * The flag will be removed when freeze mode processing has
6899          * completed.
6900          */
6901         dd->flags &= ~HFI1_FROZEN;
6902         wake_up(&dd->event_queue);
6903
6904         /* no longer frozen */
6905 }
6906
6907 /*
6908  * Handle a link up interrupt from the 8051.
6909  *
6910  * This is a work-queue function outside of the interrupt.
6911  */
6912 void handle_link_up(struct work_struct *work)
6913 {
6914         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6915                                                   link_up_work);
6916         struct hfi1_devdata *dd = ppd->dd;
6917
6918         set_link_state(ppd, HLS_UP_INIT);
6919
6920         /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6921         read_ltp_rtt(dd);
6922         /*
6923          * OPA specifies that certain counters are cleared on a transition
6924          * to link up, so do that.
6925          */
6926         clear_linkup_counters(dd);
6927         /*
6928          * And (re)set link up default values.
6929          */
6930         set_linkup_defaults(ppd);
6931
6932         /*
6933          * Set VL15 credits. Use cached value from verify cap interrupt.
6934          * In case of quick linkup or simulator, vl15 value will be set by
6935          * handle_linkup_change. VerifyCap interrupt handler will not be
6936          * called in those scenarios.
6937          */
6938         if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6939                 set_up_vl15(dd, dd->vl15buf_cached);
6940
6941         /* enforce link speed enabled */
6942         if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6943                 /* oops - current speed is not enabled, bounce */
6944                 dd_dev_err(dd,
6945                            "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6946                            ppd->link_speed_active, ppd->link_speed_enabled);
6947                 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6948                                      OPA_LINKDOWN_REASON_SPEED_POLICY);
6949                 set_link_state(ppd, HLS_DN_OFFLINE);
6950                 start_link(ppd);
6951         }
6952 }
6953
6954 /*
6955  * Several pieces of LNI information were cached for SMA in ppd.
6956  * Reset these on link down
6957  */
6958 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6959 {
6960         ppd->neighbor_guid = 0;
6961         ppd->neighbor_port_number = 0;
6962         ppd->neighbor_type = 0;
6963         ppd->neighbor_fm_security = 0;
6964 }
6965
6966 static const char * const link_down_reason_strs[] = {
6967         [OPA_LINKDOWN_REASON_NONE] = "None",
6968         [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
6969         [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
6970         [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
6971         [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
6972         [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
6973         [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
6974         [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
6975         [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
6976         [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
6977         [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
6978         [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
6979         [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
6980         [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
6981         [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
6982         [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
6983         [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
6984         [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
6985         [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
6986         [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
6987         [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
6988         [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
6989         [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
6990         [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
6991         [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
6992         [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
6993         [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
6994         [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
6995         [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
6996         [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
6997         [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
6998         [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
6999         [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7000                                         "Excessive buffer overrun",
7001         [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7002         [OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7003         [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7004         [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7005         [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7006         [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7007         [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7008         [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7009                                         "Local media not installed",
7010         [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7011         [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7012         [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7013                                         "End to end not installed",
7014         [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7015         [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7016         [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7017         [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7018         [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7019         [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7020 };
7021
7022 /* return the neighbor link down reason string */
7023 static const char *link_down_reason_str(u8 reason)
7024 {
7025         const char *str = NULL;
7026
7027         if (reason < ARRAY_SIZE(link_down_reason_strs))
7028                 str = link_down_reason_strs[reason];
7029         if (!str)
7030                 str = "(invalid)";
7031
7032         return str;
7033 }
7034
7035 /*
7036  * Handle a link down interrupt from the 8051.
7037  *
7038  * This is a work-queue function outside of the interrupt.
7039  */
7040 void handle_link_down(struct work_struct *work)
7041 {
7042         u8 lcl_reason, neigh_reason = 0;
7043         u8 link_down_reason;
7044         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7045                                                   link_down_work);
7046         int was_up;
7047         static const char ldr_str[] = "Link down reason: ";
7048
7049         if ((ppd->host_link_state &
7050              (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7051              ppd->port_type == PORT_TYPE_FIXED)
7052                 ppd->offline_disabled_reason =
7053                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7054
7055         /* Go offline first, then deal with reading/writing through 8051 */
7056         was_up = !!(ppd->host_link_state & HLS_UP);
7057         set_link_state(ppd, HLS_DN_OFFLINE);
7058         xchg(&ppd->is_link_down_queued, 0);
7059
7060         if (was_up) {
7061                 lcl_reason = 0;
7062                 /* link down reason is only valid if the link was up */
7063                 read_link_down_reason(ppd->dd, &link_down_reason);
7064                 switch (link_down_reason) {
7065                 case LDR_LINK_TRANSFER_ACTIVE_LOW:
7066                         /* the link went down, no idle message reason */
7067                         dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7068                                     ldr_str);
7069                         break;
7070                 case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7071                         /*
7072                          * The neighbor reason is only valid if an idle message
7073                          * was received for it.
7074                          */
7075                         read_planned_down_reason_code(ppd->dd, &neigh_reason);
7076                         dd_dev_info(ppd->dd,
7077                                     "%sNeighbor link down message %d, %s\n",
7078                                     ldr_str, neigh_reason,
7079                                     link_down_reason_str(neigh_reason));
7080                         break;
7081                 case LDR_RECEIVED_HOST_OFFLINE_REQ:
7082                         dd_dev_info(ppd->dd,
7083                                     "%sHost requested link to go offline\n",
7084                                     ldr_str);
7085                         break;
7086                 default:
7087                         dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7088                                     ldr_str, link_down_reason);
7089                         break;
7090                 }
7091
7092                 /*
7093                  * If no reason, assume peer-initiated but missed
7094                  * LinkGoingDown idle flits.
7095                  */
7096                 if (neigh_reason == 0)
7097                         lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7098         } else {
7099                 /* went down while polling or going up */
7100                 lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7101         }
7102
7103         set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7104
7105         /* inform the SMA when the link transitions from up to down */
7106         if (was_up && ppd->local_link_down_reason.sma == 0 &&
7107             ppd->neigh_link_down_reason.sma == 0) {
7108                 ppd->local_link_down_reason.sma =
7109                                         ppd->local_link_down_reason.latest;
7110                 ppd->neigh_link_down_reason.sma =
7111                                         ppd->neigh_link_down_reason.latest;
7112         }
7113
7114         reset_neighbor_info(ppd);
7115
7116         /* disable the port */
7117         clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7118
7119         /*
7120          * If there is no cable attached, turn the DC off. Otherwise,
7121          * start the link bring up.
7122          */
7123         if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7124                 dc_shutdown(ppd->dd);
7125         else
7126                 start_link(ppd);
7127 }
7128
7129 void handle_link_bounce(struct work_struct *work)
7130 {
7131         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7132                                                         link_bounce_work);
7133
7134         /*
7135          * Only do something if the link is currently up.
7136          */
7137         if (ppd->host_link_state & HLS_UP) {
7138                 set_link_state(ppd, HLS_DN_OFFLINE);
7139                 start_link(ppd);
7140         } else {
7141                 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7142                             __func__, link_state_name(ppd->host_link_state));
7143         }
7144 }
7145
7146 /*
7147  * Mask conversion: Capability exchange to Port LTP.  The capability
7148  * exchange has an implicit 16b CRC that is mandatory.
7149  */
7150 static int cap_to_port_ltp(int cap)
7151 {
7152         int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7153
7154         if (cap & CAP_CRC_14B)
7155                 port_ltp |= PORT_LTP_CRC_MODE_14;
7156         if (cap & CAP_CRC_48B)
7157                 port_ltp |= PORT_LTP_CRC_MODE_48;
7158         if (cap & CAP_CRC_12B_16B_PER_LANE)
7159                 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7160
7161         return port_ltp;
7162 }
7163
7164 /*
7165  * Convert an OPA Port LTP mask to capability mask
7166  */
7167 int port_ltp_to_cap(int port_ltp)
7168 {
7169         int cap_mask = 0;
7170
7171         if (port_ltp & PORT_LTP_CRC_MODE_14)
7172                 cap_mask |= CAP_CRC_14B;
7173         if (port_ltp & PORT_LTP_CRC_MODE_48)
7174                 cap_mask |= CAP_CRC_48B;
7175         if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7176                 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7177
7178         return cap_mask;
7179 }
7180
7181 /*
7182  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7183  */
7184 static int lcb_to_port_ltp(int lcb_crc)
7185 {
7186         int port_ltp = 0;
7187
7188         if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7189                 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7190         else if (lcb_crc == LCB_CRC_48B)
7191                 port_ltp = PORT_LTP_CRC_MODE_48;
7192         else if (lcb_crc == LCB_CRC_14B)
7193                 port_ltp = PORT_LTP_CRC_MODE_14;
7194         else
7195                 port_ltp = PORT_LTP_CRC_MODE_16;
7196
7197         return port_ltp;
7198 }
7199
7200 /*
7201  * Our neighbor has indicated that we are allowed to act as a fabric
7202  * manager, so place the full management partition key in the second
7203  * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
7204  * that we should already have the limited management partition key in
7205  * array element 1, and also that the port is not yet up when
7206  * add_full_mgmt_pkey() is invoked.
7207  */
7208 static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7209 {
7210         struct hfi1_devdata *dd = ppd->dd;
7211
7212         /* Sanity check - ppd->pkeys[2] should be 0, or already initialized */
7213         if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
7214                 dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
7215                             __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
7216         ppd->pkeys[2] = FULL_MGMT_P_KEY;
7217         (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7218         hfi1_event_pkey_change(ppd->dd, ppd->port);
7219 }
7220
7221 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7222 {
7223         if (ppd->pkeys[2] != 0) {
7224                 ppd->pkeys[2] = 0;
7225                 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7226                 hfi1_event_pkey_change(ppd->dd, ppd->port);
7227         }
7228 }
7229
7230 /*
7231  * Convert the given link width to the OPA link width bitmask.
7232  */
7233 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7234 {
7235         switch (width) {
7236         case 0:
7237                 /*
7238                  * Simulator and quick linkup do not set the width.
7239                  * Just set it to 4x without complaint.
7240                  */
7241                 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7242                         return OPA_LINK_WIDTH_4X;
7243                 return 0; /* no lanes up */
7244         case 1: return OPA_LINK_WIDTH_1X;
7245         case 2: return OPA_LINK_WIDTH_2X;
7246         case 3: return OPA_LINK_WIDTH_3X;
7247         default:
7248                 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7249                             __func__, width);
7250                 /* fall through */
7251         case 4: return OPA_LINK_WIDTH_4X;
7252         }
7253 }
7254
7255 /*
7256  * Do a population count on the bottom nibble.
7257  */
7258 static const u8 bit_counts[16] = {
7259         0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7260 };
7261
7262 static inline u8 nibble_to_count(u8 nibble)
7263 {
7264         return bit_counts[nibble & 0xf];
7265 }
7266
7267 /*
7268  * Read the active lane information from the 8051 registers and return
7269  * their widths.
7270  *
7271  * Active lane information is found in these 8051 registers:
7272  *      enable_lane_tx
7273  *      enable_lane_rx
7274  */
7275 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7276                             u16 *rx_width)
7277 {
7278         u16 tx, rx;
7279         u8 enable_lane_rx;
7280         u8 enable_lane_tx;
7281         u8 tx_polarity_inversion;
7282         u8 rx_polarity_inversion;
7283         u8 max_rate;
7284
7285         /* read the active lanes */
7286         read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7287                          &rx_polarity_inversion, &max_rate);
7288         read_local_lni(dd, &enable_lane_rx);
7289
7290         /* convert to counts */
7291         tx = nibble_to_count(enable_lane_tx);
7292         rx = nibble_to_count(enable_lane_rx);
7293
7294         /*
7295          * Set link_speed_active here, overriding what was set in
7296          * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7297          * set the max_rate field in handle_verify_cap until v0.19.
7298          */
7299         if ((dd->icode == ICODE_RTL_SILICON) &&
7300             (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7301                 /* max_rate: 0 = 12.5G, 1 = 25G */
7302                 switch (max_rate) {
7303                 case 0:
7304                         dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7305                         break;
7306                 default:
7307                         dd_dev_err(dd,
7308                                    "%s: unexpected max rate %d, using 25Gb\n",
7309                                    __func__, (int)max_rate);
7310                         /* fall through */
7311                 case 1:
7312                         dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7313                         break;
7314                 }
7315         }
7316
7317         dd_dev_info(dd,
7318                     "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7319                     enable_lane_tx, tx, enable_lane_rx, rx);
7320         *tx_width = link_width_to_bits(dd, tx);
7321         *rx_width = link_width_to_bits(dd, rx);
7322 }
7323
7324 /*
7325  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7326  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7327  * after link up.  I.e. look elsewhere for downgrade information.
7328  *
7329  * Bits are:
7330  *      + bits [7:4] contain the number of active transmitters
7331  *      + bits [3:0] contain the number of active receivers
7332  * These are numbers 1 through 4 and can be different values if the
7333  * link is asymmetric.
7334  *
7335  * verify_cap_local_fm_link_width[0] retains its original value.
7336  */
7337 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7338                               u16 *rx_width)
7339 {
7340         u16 widths, tx, rx;
7341         u8 misc_bits, local_flags;
7342         u16 active_tx, active_rx;
7343
7344         read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7345         tx = widths >> 12;
7346         rx = (widths >> 8) & 0xf;
7347
7348         *tx_width = link_width_to_bits(dd, tx);
7349         *rx_width = link_width_to_bits(dd, rx);
7350
7351         /* print the active widths */
7352         get_link_widths(dd, &active_tx, &active_rx);
7353 }
7354
7355 /*
7356  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7357  * hardware information when the link first comes up.
7358  *
7359  * The link width is not available until after VerifyCap.AllFramesReceived
7360  * (the trigger for handle_verify_cap), so this is outside that routine
7361  * and should be called when the 8051 signals linkup.
7362  */
7363 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7364 {
7365         u16 tx_width, rx_width;
7366
7367         /* get end-of-LNI link widths */
7368         get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7369
7370         /* use tx_width as the link is supposed to be symmetric on link up */
7371         ppd->link_width_active = tx_width;
7372         /* link width downgrade active (LWD.A) starts out matching LW.A */
7373         ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7374         ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7375         /* per OPA spec, on link up LWD.E resets to LWD.S */
7376         ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7377         /* cache the active egress rate (units {10^6 bits/sec]) */
7378         ppd->current_egress_rate = active_egress_rate(ppd);
7379 }
7380
7381 /*
7382  * Handle a verify capabilities interrupt from the 8051.
7383  *
7384  * This is a work-queue function outside of the interrupt.
7385  */
7386 void handle_verify_cap(struct work_struct *work)
7387 {
7388         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7389                                                                 link_vc_work);
7390         struct hfi1_devdata *dd = ppd->dd;
7391         u64 reg;
7392         u8 power_management;
7393         u8 continuous;
7394         u8 vcu;
7395         u8 vau;
7396         u8 z;
7397         u16 vl15buf;
7398         u16 link_widths;
7399         u16 crc_mask;
7400         u16 crc_val;
7401         u16 device_id;
7402         u16 active_tx, active_rx;
7403         u8 partner_supported_crc;
7404         u8 remote_tx_rate;
7405         u8 device_rev;
7406
7407         set_link_state(ppd, HLS_VERIFY_CAP);
7408
7409         lcb_shutdown(dd, 0);
7410         adjust_lcb_for_fpga_serdes(dd);
7411
7412         read_vc_remote_phy(dd, &power_management, &continuous);
7413         read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7414                               &partner_supported_crc);
7415         read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7416         read_remote_device_id(dd, &device_id, &device_rev);
7417         /*
7418          * And the 'MgmtAllowed' information, which is exchanged during
7419          * LNI, is also be available at this point.
7420          */
7421         read_mgmt_allowed(dd, &ppd->mgmt_allowed);
7422         /* print the active widths */
7423         get_link_widths(dd, &active_tx, &active_rx);
7424         dd_dev_info(dd,
7425                     "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7426                     (int)power_management, (int)continuous);
7427         dd_dev_info(dd,
7428                     "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7429                     (int)vau, (int)z, (int)vcu, (int)vl15buf,
7430                     (int)partner_supported_crc);
7431         dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7432                     (u32)remote_tx_rate, (u32)link_widths);
7433         dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7434                     (u32)device_id, (u32)device_rev);
7435         /*
7436          * The peer vAU value just read is the peer receiver value.  HFI does
7437          * not support a transmit vAU of 0 (AU == 8).  We advertised that
7438          * with Z=1 in the fabric capabilities sent to the peer.  The peer
7439          * will see our Z=1, and, if it advertised a vAU of 0, will move its
7440          * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7441          * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7442          * subject to the Z value exception.
7443          */
7444         if (vau == 0)
7445                 vau = 1;
7446         set_up_vau(dd, vau);
7447
7448         /*
7449          * Set VL15 credits to 0 in global credit register. Cache remote VL15
7450          * credits value and wait for link-up interrupt ot set it.
7451          */
7452         set_up_vl15(dd, 0);
7453         dd->vl15buf_cached = vl15buf;
7454
7455         /* set up the LCB CRC mode */
7456         crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7457
7458         /* order is important: use the lowest bit in common */
7459         if (crc_mask & CAP_CRC_14B)
7460                 crc_val = LCB_CRC_14B;
7461         else if (crc_mask & CAP_CRC_48B)
7462                 crc_val = LCB_CRC_48B;
7463         else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7464                 crc_val = LCB_CRC_12B_16B_PER_LANE;
7465         else
7466                 crc_val = LCB_CRC_16B;
7467
7468         dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7469         write_csr(dd, DC_LCB_CFG_CRC_MODE,
7470                   (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7471
7472         /* set (14b only) or clear sideband credit */
7473         reg = read_csr(dd, SEND_CM_CTRL);
7474         if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7475                 write_csr(dd, SEND_CM_CTRL,
7476                           reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7477         } else {
7478                 write_csr(dd, SEND_CM_CTRL,
7479                           reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7480         }
7481
7482         ppd->link_speed_active = 0;     /* invalid value */
7483         if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7484                 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7485                 switch (remote_tx_rate) {
7486                 case 0:
7487                         ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7488                         break;
7489                 case 1:
7490                         ppd->link_speed_active = OPA_LINK_SPEED_25G;
7491                         break;
7492                 }
7493         } else {
7494                 /* actual rate is highest bit of the ANDed rates */
7495                 u8 rate = remote_tx_rate & ppd->local_tx_rate;
7496
7497                 if (rate & 2)
7498                         ppd->link_speed_active = OPA_LINK_SPEED_25G;
7499                 else if (rate & 1)
7500                         ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7501         }
7502         if (ppd->link_speed_active == 0) {
7503                 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7504                            __func__, (int)remote_tx_rate);
7505                 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7506         }
7507
7508         /*
7509          * Cache the values of the supported, enabled, and active
7510          * LTP CRC modes to return in 'portinfo' queries. But the bit
7511          * flags that are returned in the portinfo query differ from
7512          * what's in the link_crc_mask, crc_sizes, and crc_val
7513          * variables. Convert these here.
7514          */
7515         ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7516                 /* supported crc modes */
7517         ppd->port_ltp_crc_mode |=
7518                 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7519                 /* enabled crc modes */
7520         ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7521                 /* active crc mode */
7522
7523         /* set up the remote credit return table */
7524         assign_remote_cm_au_table(dd, vcu);
7525
7526         /*
7527          * The LCB is reset on entry to handle_verify_cap(), so this must
7528          * be applied on every link up.
7529          *
7530          * Adjust LCB error kill enable to kill the link if
7531          * these RBUF errors are seen:
7532          *      REPLAY_BUF_MBE_SMASK
7533          *      FLIT_INPUT_BUF_MBE_SMASK
7534          */
7535         if (is_ax(dd)) {                        /* fixed in B0 */
7536                 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7537                 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7538                         | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7539                 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7540         }
7541
7542         /* pull LCB fifos out of reset - all fifo clocks must be stable */
7543         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7544
7545         /* give 8051 access to the LCB CSRs */
7546         write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7547         set_8051_lcb_access(dd);
7548
7549         if (ppd->mgmt_allowed)
7550                 add_full_mgmt_pkey(ppd);
7551
7552         /* tell the 8051 to go to LinkUp */
7553         set_link_state(ppd, HLS_GOING_UP);
7554 }
7555
7556 /*
7557  * Apply the link width downgrade enabled policy against the current active
7558  * link widths.
7559  *
7560  * Called when the enabled policy changes or the active link widths change.
7561  */
7562 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7563 {
7564         int do_bounce = 0;
7565         int tries;
7566         u16 lwde;
7567         u16 tx, rx;
7568
7569         /* use the hls lock to avoid a race with actual link up */
7570         tries = 0;
7571 retry:
7572         mutex_lock(&ppd->hls_lock);
7573         /* only apply if the link is up */
7574         if (ppd->host_link_state & HLS_DOWN) {
7575                 /* still going up..wait and retry */
7576                 if (ppd->host_link_state & HLS_GOING_UP) {
7577                         if (++tries < 1000) {
7578                                 mutex_unlock(&ppd->hls_lock);
7579                                 usleep_range(100, 120); /* arbitrary */
7580                                 goto retry;
7581                         }
7582                         dd_dev_err(ppd->dd,
7583                                    "%s: giving up waiting for link state change\n",
7584                                    __func__);
7585                 }
7586                 goto done;
7587         }
7588
7589         lwde = ppd->link_width_downgrade_enabled;
7590
7591         if (refresh_widths) {
7592                 get_link_widths(ppd->dd, &tx, &rx);
7593                 ppd->link_width_downgrade_tx_active = tx;
7594                 ppd->link_width_downgrade_rx_active = rx;
7595         }
7596
7597         if (ppd->link_width_downgrade_tx_active == 0 ||
7598             ppd->link_width_downgrade_rx_active == 0) {
7599                 /* the 8051 reported a dead link as a downgrade */
7600                 dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7601         } else if (lwde == 0) {
7602                 /* downgrade is disabled */
7603
7604                 /* bounce if not at starting active width */
7605                 if ((ppd->link_width_active !=
7606                      ppd->link_width_downgrade_tx_active) ||
7607                     (ppd->link_width_active !=
7608                      ppd->link_width_downgrade_rx_active)) {
7609                         dd_dev_err(ppd->dd,
7610                                    "Link downgrade is disabled and link has downgraded, downing link\n");
7611                         dd_dev_err(ppd->dd,
7612                                    "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7613                                    ppd->link_width_active,
7614                                    ppd->link_width_downgrade_tx_active,
7615                                    ppd->link_width_downgrade_rx_active);
7616                         do_bounce = 1;
7617                 }
7618         } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7619                    (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7620                 /* Tx or Rx is outside the enabled policy */
7621                 dd_dev_err(ppd->dd,
7622                            "Link is outside of downgrade allowed, downing link\n");
7623                 dd_dev_err(ppd->dd,
7624                            "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7625                            lwde, ppd->link_width_downgrade_tx_active,
7626                            ppd->link_width_downgrade_rx_active);
7627                 do_bounce = 1;
7628         }
7629
7630 done:
7631         mutex_unlock(&ppd->hls_lock);
7632
7633         if (do_bounce) {
7634                 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7635                                      OPA_LINKDOWN_REASON_WIDTH_POLICY);
7636                 set_link_state(ppd, HLS_DN_OFFLINE);
7637                 start_link(ppd);
7638         }
7639 }
7640
7641 /*
7642  * Handle a link downgrade interrupt from the 8051.
7643  *
7644  * This is a work-queue function outside of the interrupt.
7645  */
7646 void handle_link_downgrade(struct work_struct *work)
7647 {
7648         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7649                                                         link_downgrade_work);
7650
7651         dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7652         apply_link_downgrade_policy(ppd, 1);
7653 }
7654
7655 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7656 {
7657         return flag_string(buf, buf_len, flags, dcc_err_flags,
7658                 ARRAY_SIZE(dcc_err_flags));
7659 }
7660
7661 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7662 {
7663         return flag_string(buf, buf_len, flags, lcb_err_flags,
7664                 ARRAY_SIZE(lcb_err_flags));
7665 }
7666
7667 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7668 {
7669         return flag_string(buf, buf_len, flags, dc8051_err_flags,
7670                 ARRAY_SIZE(dc8051_err_flags));
7671 }
7672
7673 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7674 {
7675         return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7676                 ARRAY_SIZE(dc8051_info_err_flags));
7677 }
7678
7679 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7680 {
7681         return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7682                 ARRAY_SIZE(dc8051_info_host_msg_flags));
7683 }
7684
7685 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7686 {
7687         struct hfi1_pportdata *ppd = dd->pport;
7688         u64 info, err, host_msg;
7689         int queue_link_down = 0;
7690         char buf[96];
7691
7692         /* look at the flags */
7693         if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7694                 /* 8051 information set by firmware */
7695                 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7696                 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7697                 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7698                         & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7699                 host_msg = (info >>
7700                         DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7701                         & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7702
7703                 /*
7704                  * Handle error flags.
7705                  */
7706                 if (err & FAILED_LNI) {
7707                         /*
7708                          * LNI error indications are cleared by the 8051
7709                          * only when starting polling.  Only pay attention
7710                          * to them when in the states that occur during
7711                          * LNI.
7712                          */
7713                         if (ppd->host_link_state
7714                             & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7715                                 queue_link_down = 1;
7716                                 dd_dev_info(dd, "Link error: %s\n",
7717                                             dc8051_info_err_string(buf,
7718                                                                    sizeof(buf),
7719                                                                    err &
7720                                                                    FAILED_LNI));
7721                         }
7722                         err &= ~(u64)FAILED_LNI;
7723                 }
7724                 /* unknown frames can happen durning LNI, just count */
7725                 if (err & UNKNOWN_FRAME) {
7726                         ppd->unknown_frame_count++;
7727                         err &= ~(u64)UNKNOWN_FRAME;
7728                 }
7729                 if (err) {
7730                         /* report remaining errors, but do not do anything */
7731                         dd_dev_err(dd, "8051 info error: %s\n",
7732                                    dc8051_info_err_string(buf, sizeof(buf),
7733                                                           err));
7734                 }
7735
7736                 /*
7737                  * Handle host message flags.
7738                  */
7739                 if (host_msg & HOST_REQ_DONE) {
7740                         /*
7741                          * Presently, the driver does a busy wait for
7742                          * host requests to complete.  This is only an
7743                          * informational message.
7744                          * NOTE: The 8051 clears the host message
7745                          * information *on the next 8051 command*.
7746                          * Therefore, when linkup is achieved,
7747                          * this flag will still be set.
7748                          */
7749                         host_msg &= ~(u64)HOST_REQ_DONE;
7750                 }
7751                 if (host_msg & BC_SMA_MSG) {
7752                         queue_work(ppd->link_wq, &ppd->sma_message_work);
7753                         host_msg &= ~(u64)BC_SMA_MSG;
7754                 }
7755                 if (host_msg & LINKUP_ACHIEVED) {
7756                         dd_dev_info(dd, "8051: Link up\n");
7757                         queue_work(ppd->link_wq, &ppd->link_up_work);
7758                         host_msg &= ~(u64)LINKUP_ACHIEVED;
7759                 }
7760                 if (host_msg & EXT_DEVICE_CFG_REQ) {
7761                         handle_8051_request(ppd);
7762                         host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7763                 }
7764                 if (host_msg & VERIFY_CAP_FRAME) {
7765                         queue_work(ppd->link_wq, &ppd->link_vc_work);
7766                         host_msg &= ~(u64)VERIFY_CAP_FRAME;
7767                 }
7768                 if (host_msg & LINK_GOING_DOWN) {
7769                         const char *extra = "";
7770                         /* no downgrade action needed if going down */
7771                         if (host_msg & LINK_WIDTH_DOWNGRADED) {
7772                                 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7773                                 extra = " (ignoring downgrade)";
7774                         }
7775                         dd_dev_info(dd, "8051: Link down%s\n", extra);
7776                         queue_link_down = 1;
7777                         host_msg &= ~(u64)LINK_GOING_DOWN;
7778                 }
7779                 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7780                         queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7781                         host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7782                 }
7783                 if (host_msg) {
7784                         /* report remaining messages, but do not do anything */
7785                         dd_dev_info(dd, "8051 info host message: %s\n",
7786                                     dc8051_info_host_msg_string(buf,
7787                                                                 sizeof(buf),
7788                                                                 host_msg));
7789                 }
7790
7791                 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7792         }
7793         if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7794                 /*
7795                  * Lost the 8051 heartbeat.  If this happens, we
7796                  * receive constant interrupts about it.  Disable
7797                  * the interrupt after the first.
7798                  */
7799                 dd_dev_err(dd, "Lost 8051 heartbeat\n");
7800                 write_csr(dd, DC_DC8051_ERR_EN,
7801                           read_csr(dd, DC_DC8051_ERR_EN) &
7802                           ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7803
7804                 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7805         }
7806         if (reg) {
7807                 /* report the error, but do not do anything */
7808                 dd_dev_err(dd, "8051 error: %s\n",
7809                            dc8051_err_string(buf, sizeof(buf), reg));
7810         }
7811
7812         if (queue_link_down) {
7813                 /*
7814                  * if the link is already going down or disabled, do not
7815                  * queue another. If there's a link down entry already
7816                  * queued, don't queue another one.
7817                  */
7818                 if ((ppd->host_link_state &
7819                     (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7820                     ppd->link_enabled == 0) {
7821                         dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7822                                     __func__, ppd->host_link_state,
7823                                     ppd->link_enabled);
7824                 } else {
7825                         if (xchg(&ppd->is_link_down_queued, 1) == 1)
7826                                 dd_dev_info(dd,
7827                                             "%s: link down request already queued\n",
7828                                             __func__);
7829                         else
7830                                 queue_work(ppd->link_wq, &ppd->link_down_work);
7831                 }
7832         }
7833 }
7834
7835 static const char * const fm_config_txt[] = {
7836 [0] =
7837         "BadHeadDist: Distance violation between two head flits",
7838 [1] =
7839         "BadTailDist: Distance violation between two tail flits",
7840 [2] =
7841         "BadCtrlDist: Distance violation between two credit control flits",
7842 [3] =
7843         "BadCrdAck: Credits return for unsupported VL",
7844 [4] =
7845         "UnsupportedVLMarker: Received VL Marker",
7846 [5] =
7847         "BadPreempt: Exceeded the preemption nesting level",
7848 [6] =
7849         "BadControlFlit: Received unsupported control flit",
7850 /* no 7 */
7851 [8] =
7852         "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7853 };
7854
7855 static const char * const port_rcv_txt[] = {
7856 [1] =
7857         "BadPktLen: Illegal PktLen",
7858 [2] =
7859         "PktLenTooLong: Packet longer than PktLen",
7860 [3] =
7861         "PktLenTooShort: Packet shorter than PktLen",
7862 [4] =
7863         "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7864 [5] =
7865         "BadDLID: Illegal DLID (0, doesn't match HFI)",
7866 [6] =
7867         "BadL2: Illegal L2 opcode",
7868 [7] =
7869         "BadSC: Unsupported SC",
7870 [9] =
7871         "BadRC: Illegal RC",
7872 [11] =
7873         "PreemptError: Preempting with same VL",
7874 [12] =
7875         "PreemptVL15: Preempting a VL15 packet",
7876 };
7877
7878 #define OPA_LDR_FMCONFIG_OFFSET 16
7879 #define OPA_LDR_PORTRCV_OFFSET 0
7880 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7881 {
7882         u64 info, hdr0, hdr1;
7883         const char *extra;
7884         char buf[96];
7885         struct hfi1_pportdata *ppd = dd->pport;
7886         u8 lcl_reason = 0;
7887         int do_bounce = 0;
7888
7889         if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7890                 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7891                         info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7892                         dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7893                         /* set status bit */
7894                         dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7895                 }
7896                 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7897         }
7898
7899         if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7900                 struct hfi1_pportdata *ppd = dd->pport;
7901                 /* this counter saturates at (2^32) - 1 */
7902                 if (ppd->link_downed < (u32)UINT_MAX)
7903                         ppd->link_downed++;
7904                 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7905         }
7906
7907         if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7908                 u8 reason_valid = 1;
7909
7910                 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7911                 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7912                         dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7913                         /* set status bit */
7914                         dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7915                 }
7916                 switch (info) {
7917                 case 0:
7918                 case 1:
7919                 case 2:
7920                 case 3:
7921                 case 4:
7922                 case 5:
7923                 case 6:
7924                         extra = fm_config_txt[info];
7925                         break;
7926                 case 8:
7927                         extra = fm_config_txt[info];
7928                         if (ppd->port_error_action &
7929                             OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7930                                 do_bounce = 1;
7931                                 /*
7932                                  * lcl_reason cannot be derived from info
7933                                  * for this error
7934                                  */
7935                                 lcl_reason =
7936                                   OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7937                         }
7938                         break;
7939                 default:
7940                         reason_valid = 0;
7941                         snprintf(buf, sizeof(buf), "reserved%lld", info);
7942                         extra = buf;
7943                         break;
7944                 }
7945
7946                 if (reason_valid && !do_bounce) {
7947                         do_bounce = ppd->port_error_action &
7948                                         (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7949                         lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7950                 }
7951
7952                 /* just report this */
7953                 dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7954                                         extra);
7955                 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7956         }
7957
7958         if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7959                 u8 reason_valid = 1;
7960
7961                 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7962                 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7963                 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7964                 if (!(dd->err_info_rcvport.status_and_code &
7965                       OPA_EI_STATUS_SMASK)) {
7966                         dd->err_info_rcvport.status_and_code =
7967                                 info & OPA_EI_CODE_SMASK;
7968                         /* set status bit */
7969                         dd->err_info_rcvport.status_and_code |=
7970                                 OPA_EI_STATUS_SMASK;
7971                         /*
7972                          * save first 2 flits in the packet that caused
7973                          * the error
7974                          */
7975                         dd->err_info_rcvport.packet_flit1 = hdr0;
7976                         dd->err_info_rcvport.packet_flit2 = hdr1;
7977                 }
7978                 switch (info) {
7979                 case 1:
7980                 case 2:
7981                 case 3:
7982                 case 4:
7983                 case 5:
7984                 case 6:
7985                 case 7:
7986                 case 9:
7987                 case 11:
7988                 case 12:
7989                         extra = port_rcv_txt[info];
7990                         break;
7991                 default:
7992                         reason_valid = 0;
7993                         snprintf(buf, sizeof(buf), "reserved%lld", info);
7994                         extra = buf;
7995                         break;
7996                 }
7997
7998                 if (reason_valid && !do_bounce) {
7999                         do_bounce = ppd->port_error_action &
8000                                         (1 << (OPA_LDR_PORTRCV_OFFSET + info));
8001                         lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8002                 }
8003
8004                 /* just report this */
8005                 dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8006                                         "               hdr0 0x%llx, hdr1 0x%llx\n",
8007                                         extra, hdr0, hdr1);
8008
8009                 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8010         }
8011
8012         if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8013                 /* informative only */
8014                 dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8015                 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8016         }
8017         if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8018                 /* informative only */
8019                 dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8020                 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8021         }
8022
8023         if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8024                 reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8025
8026         /* report any remaining errors */
8027         if (reg)
8028                 dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8029                                         dcc_err_string(buf, sizeof(buf), reg));
8030
8031         if (lcl_reason == 0)
8032                 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8033
8034         if (do_bounce) {
8035                 dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8036                                         __func__);
8037                 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8038                 queue_work(ppd->link_wq, &ppd->link_bounce_work);
8039         }
8040 }
8041
8042 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8043 {
8044         char buf[96];
8045
8046         dd_dev_info(dd, "LCB Error: %s\n",
8047                     lcb_err_string(buf, sizeof(buf), reg));
8048 }
8049
8050 /*
8051  * CCE block DC interrupt.  Source is < 8.
8052  */
8053 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8054 {
8055         const struct err_reg_info *eri = &dc_errs[source];
8056
8057         if (eri->handler) {
8058                 interrupt_clear_down(dd, 0, eri);
8059         } else if (source == 3 /* dc_lbm_int */) {
8060                 /*
8061                  * This indicates that a parity error has occurred on the
8062                  * address/control lines presented to the LBM.  The error
8063                  * is a single pulse, there is no associated error flag,
8064                  * and it is non-maskable.  This is because if a parity
8065                  * error occurs on the request the request is dropped.
8066                  * This should never occur, but it is nice to know if it
8067                  * ever does.
8068                  */
8069                 dd_dev_err(dd, "Parity error in DC LBM block\n");
8070         } else {
8071                 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8072         }
8073 }
8074
8075 /*
8076  * TX block send credit interrupt.  Source is < 160.
8077  */
8078 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8079 {
8080         sc_group_release_update(dd, source);
8081 }
8082
8083 /*
8084  * TX block SDMA interrupt.  Source is < 48.
8085  *
8086  * SDMA interrupts are grouped by type:
8087  *
8088  *       0 -  N-1 = SDma
8089  *       N - 2N-1 = SDmaProgress
8090  *      2N - 3N-1 = SDmaIdle
8091  */
8092 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8093 {
8094         /* what interrupt */
8095         unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8096         /* which engine */
8097         unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8098
8099 #ifdef CONFIG_SDMA_VERBOSITY
8100         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8101                    slashstrip(__FILE__), __LINE__, __func__);
8102         sdma_dumpstate(&dd->per_sdma[which]);
8103 #endif
8104
8105         if (likely(what < 3 && which < dd->num_sdma)) {
8106                 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8107         } else {
8108                 /* should not happen */
8109                 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8110         }
8111 }
8112
8113 /*
8114  * RX block receive available interrupt.  Source is < 160.
8115  */
8116 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8117 {
8118         struct hfi1_ctxtdata *rcd;
8119         char *err_detail;
8120
8121         if (likely(source < dd->num_rcv_contexts)) {
8122                 rcd = hfi1_rcd_get_by_index(dd, source);
8123                 if (rcd) {
8124                         /* Check for non-user contexts, including vnic */
8125                         if ((source < dd->first_dyn_alloc_ctxt) ||
8126                             (rcd->sc && (rcd->sc->type == SC_KERNEL)))
8127                                 rcd->do_interrupt(rcd, 0);
8128                         else
8129                                 handle_user_interrupt(rcd);
8130
8131                         hfi1_rcd_put(rcd);
8132                         return; /* OK */
8133                 }
8134                 /* received an interrupt, but no rcd */
8135                 err_detail = "dataless";
8136         } else {
8137                 /* received an interrupt, but are not using that context */
8138                 err_detail = "out of range";
8139         }
8140         dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8141                    err_detail, source);
8142 }
8143
8144 /*
8145  * RX block receive urgent interrupt.  Source is < 160.
8146  */
8147 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8148 {
8149         struct hfi1_ctxtdata *rcd;
8150         char *err_detail;
8151
8152         if (likely(source < dd->num_rcv_contexts)) {
8153                 rcd = hfi1_rcd_get_by_index(dd, source);
8154                 if (rcd) {
8155                         /* only pay attention to user urgent interrupts */
8156                         if ((source >= dd->first_dyn_alloc_ctxt) &&
8157                             (!rcd->sc || (rcd->sc->type == SC_USER)))
8158                                 handle_user_interrupt(rcd);
8159
8160                         hfi1_rcd_put(rcd);
8161                         return; /* OK */
8162                 }
8163                 /* received an interrupt, but no rcd */
8164                 err_detail = "dataless";
8165         } else {
8166                 /* received an interrupt, but are not using that context */
8167                 err_detail = "out of range";
8168         }
8169         dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8170                    err_detail, source);
8171 }
8172
8173 /*
8174  * Reserved range interrupt.  Should not be called in normal operation.
8175  */
8176 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8177 {
8178         char name[64];
8179
8180         dd_dev_err(dd, "unexpected %s interrupt\n",
8181                    is_reserved_name(name, sizeof(name), source));
8182 }
8183
8184 static const struct is_table is_table[] = {
8185 /*
8186  * start                 end
8187  *                              name func               interrupt func
8188  */
8189 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8190                                 is_misc_err_name,       is_misc_err_int },
8191 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8192                                 is_sdma_eng_err_name,   is_sdma_eng_err_int },
8193 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8194                                 is_sendctxt_err_name,   is_sendctxt_err_int },
8195 { IS_SDMA_START,             IS_SDMA_END,
8196                                 is_sdma_eng_name,       is_sdma_eng_int },
8197 { IS_VARIOUS_START,          IS_VARIOUS_END,
8198                                 is_various_name,        is_various_int },
8199 { IS_DC_START,       IS_DC_END,
8200                                 is_dc_name,             is_dc_int },
8201 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8202                                 is_rcv_avail_name,      is_rcv_avail_int },
8203 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8204                                 is_rcv_urgent_name,     is_rcv_urgent_int },
8205 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8206                                 is_send_credit_name,    is_send_credit_int},
8207 { IS_RESERVED_START,     IS_RESERVED_END,
8208                                 is_reserved_name,       is_reserved_int},
8209 };
8210
8211 /*
8212  * Interrupt source interrupt - called when the given source has an interrupt.
8213  * Source is a bit index into an array of 64-bit integers.
8214  */
8215 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8216 {
8217         const struct is_table *entry;
8218
8219         /* avoids a double compare by walking the table in-order */
8220         for (entry = &is_table[0]; entry->is_name; entry++) {
8221                 if (source < entry->end) {
8222                         trace_hfi1_interrupt(dd, entry, source);
8223                         entry->is_int(dd, source - entry->start);
8224                         return;
8225                 }
8226         }
8227         /* fell off the end */
8228         dd_dev_err(dd, "invalid interrupt source %u\n", source);
8229 }
8230
8231 /*
8232  * General interrupt handler.  This is able to correctly handle
8233  * all interrupts in case INTx is used.
8234  */
8235 static irqreturn_t general_interrupt(int irq, void *data)
8236 {
8237         struct hfi1_devdata *dd = data;
8238         u64 regs[CCE_NUM_INT_CSRS];
8239         u32 bit;
8240         int i;
8241
8242         this_cpu_inc(*dd->int_counter);
8243
8244         /* phase 1: scan and clear all handled interrupts */
8245         for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8246                 if (dd->gi_mask[i] == 0) {
8247                         regs[i] = 0;    /* used later */
8248                         continue;
8249                 }
8250                 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8251                                 dd->gi_mask[i];
8252                 /* only clear if anything is set */
8253                 if (regs[i])
8254                         write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8255         }
8256
8257         /* phase 2: call the appropriate handler */
8258         for_each_set_bit(bit, (unsigned long *)&regs[0],
8259                          CCE_NUM_INT_CSRS * 64) {
8260                 is_interrupt(dd, bit);
8261         }
8262
8263         return IRQ_HANDLED;
8264 }
8265
8266 static irqreturn_t sdma_interrupt(int irq, void *data)
8267 {
8268         struct sdma_engine *sde = data;
8269         struct hfi1_devdata *dd = sde->dd;
8270         u64 status;
8271
8272 #ifdef CONFIG_SDMA_VERBOSITY
8273         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8274                    slashstrip(__FILE__), __LINE__, __func__);
8275         sdma_dumpstate(sde);
8276 #endif
8277
8278         this_cpu_inc(*dd->int_counter);
8279
8280         /* This read_csr is really bad in the hot path */
8281         status = read_csr(dd,
8282                           CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8283                           & sde->imask;
8284         if (likely(status)) {
8285                 /* clear the interrupt(s) */
8286                 write_csr(dd,
8287                           CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8288                           status);
8289
8290                 /* handle the interrupt(s) */
8291                 sdma_engine_interrupt(sde, status);
8292         } else {
8293                 dd_dev_err_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8294                                        sde->this_idx);
8295         }
8296         return IRQ_HANDLED;
8297 }
8298
8299 /*
8300  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8301  * to insure that the write completed.  This does NOT guarantee that
8302  * queued DMA writes to memory from the chip are pushed.
8303  */
8304 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8305 {
8306         struct hfi1_devdata *dd = rcd->dd;
8307         u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8308
8309         mmiowb();       /* make sure everything before is written */
8310         write_csr(dd, addr, rcd->imask);
8311         /* force the above write on the chip and get a value back */
8312         (void)read_csr(dd, addr);
8313 }
8314
8315 /* force the receive interrupt */
8316 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8317 {
8318         write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8319 }
8320
8321 /*
8322  * Return non-zero if a packet is present.
8323  *
8324  * This routine is called when rechecking for packets after the RcvAvail
8325  * interrupt has been cleared down.  First, do a quick check of memory for
8326  * a packet present.  If not found, use an expensive CSR read of the context
8327  * tail to determine the actual tail.  The CSR read is necessary because there
8328  * is no method to push pending DMAs to memory other than an interrupt and we
8329  * are trying to determine if we need to force an interrupt.
8330  */
8331 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8332 {
8333         u32 tail;
8334         int present;
8335
8336         if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
8337                 present = (rcd->seq_cnt ==
8338                                 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8339         else /* is RDMA rtail */
8340                 present = (rcd->head != get_rcvhdrtail(rcd));
8341
8342         if (present)
8343                 return 1;
8344
8345         /* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8346         tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8347         return rcd->head != tail;
8348 }
8349
8350 /*
8351  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8352  * This routine will try to handle packets immediately (latency), but if
8353  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8354  * chip receive interrupt is *not* cleared down until this or the thread (if
8355  * invoked) is finished.  The intent is to avoid extra interrupts while we
8356  * are processing packets anyway.
8357  */
8358 static irqreturn_t receive_context_interrupt(int irq, void *data)
8359 {
8360         struct hfi1_ctxtdata *rcd = data;
8361         struct hfi1_devdata *dd = rcd->dd;
8362         int disposition;
8363         int present;
8364
8365         trace_hfi1_receive_interrupt(dd, rcd);
8366         this_cpu_inc(*dd->int_counter);
8367         aspm_ctx_disable(rcd);
8368
8369         /* receive interrupt remains blocked while processing packets */
8370         disposition = rcd->do_interrupt(rcd, 0);
8371
8372         /*
8373          * Too many packets were seen while processing packets in this
8374          * IRQ handler.  Invoke the handler thread.  The receive interrupt
8375          * remains blocked.
8376          */
8377         if (disposition == RCV_PKT_LIMIT)
8378                 return IRQ_WAKE_THREAD;
8379
8380         /*
8381          * The packet processor detected no more packets.  Clear the receive
8382          * interrupt and recheck for a packet packet that may have arrived
8383          * after the previous check and interrupt clear.  If a packet arrived,
8384          * force another interrupt.
8385          */
8386         clear_recv_intr(rcd);
8387         present = check_packet_present(rcd);
8388         if (present)
8389                 force_recv_intr(rcd);
8390
8391         return IRQ_HANDLED;
8392 }
8393
8394 /*
8395  * Receive packet thread handler.  This expects to be invoked with the
8396  * receive interrupt still blocked.
8397  */
8398 static irqreturn_t receive_context_thread(int irq, void *data)
8399 {
8400         struct hfi1_ctxtdata *rcd = data;
8401         int present;
8402
8403         /* receive interrupt is still blocked from the IRQ handler */
8404         (void)rcd->do_interrupt(rcd, 1);
8405
8406         /*
8407          * The packet processor will only return if it detected no more
8408          * packets.  Hold IRQs here so we can safely clear the interrupt and
8409          * recheck for a packet that may have arrived after the previous
8410          * check and the interrupt clear.  If a packet arrived, force another
8411          * interrupt.
8412          */
8413         local_irq_disable();
8414         clear_recv_intr(rcd);
8415         present = check_packet_present(rcd);
8416         if (present)
8417                 force_recv_intr(rcd);
8418         local_irq_enable();
8419
8420         return IRQ_HANDLED;
8421 }
8422
8423 /* ========================================================================= */
8424
8425 u32 read_physical_state(struct hfi1_devdata *dd)
8426 {
8427         u64 reg;
8428
8429         reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8430         return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8431                                 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
8432 }
8433
8434 u32 read_logical_state(struct hfi1_devdata *dd)
8435 {
8436         u64 reg;
8437
8438         reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8439         return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8440                                 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8441 }
8442
8443 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8444 {
8445         u64 reg;
8446
8447         reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8448         /* clear current state, set new state */
8449         reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8450         reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8451         write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8452 }
8453
8454 /*
8455  * Use the 8051 to read a LCB CSR.
8456  */
8457 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8458 {
8459         u32 regno;
8460         int ret;
8461
8462         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8463                 if (acquire_lcb_access(dd, 0) == 0) {
8464                         *data = read_csr(dd, addr);
8465                         release_lcb_access(dd, 0);
8466                         return 0;
8467                 }
8468                 return -EBUSY;
8469         }
8470
8471         /* register is an index of LCB registers: (offset - base) / 8 */
8472         regno = (addr - DC_LCB_CFG_RUN) >> 3;
8473         ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8474         if (ret != HCMD_SUCCESS)
8475                 return -EBUSY;
8476         return 0;
8477 }
8478
8479 /*
8480  * Provide a cache for some of the LCB registers in case the LCB is
8481  * unavailable.
8482  * (The LCB is unavailable in certain link states, for example.)
8483  */
8484 struct lcb_datum {
8485         u32 off;
8486         u64 val;
8487 };
8488
8489 static struct lcb_datum lcb_cache[] = {
8490         { DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8491         { DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8492         { DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8493 };
8494
8495 static void update_lcb_cache(struct hfi1_devdata *dd)
8496 {
8497         int i;
8498         int ret;
8499         u64 val;
8500
8501         for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8502                 ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8503
8504                 /* Update if we get good data */
8505                 if (likely(ret != -EBUSY))
8506                         lcb_cache[i].val = val;
8507         }
8508 }
8509
8510 static int read_lcb_cache(u32 off, u64 *val)
8511 {
8512         int i;
8513
8514         for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8515                 if (lcb_cache[i].off == off) {
8516                         *val = lcb_cache[i].val;
8517                         return 0;
8518                 }
8519         }
8520
8521         pr_warn("%s bad offset 0x%x\n", __func__, off);
8522         return -1;
8523 }
8524
8525 /*
8526  * Read an LCB CSR.  Access may not be in host control, so check.
8527  * Return 0 on success, -EBUSY on failure.
8528  */
8529 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8530 {
8531         struct hfi1_pportdata *ppd = dd->pport;
8532
8533         /* if up, go through the 8051 for the value */
8534         if (ppd->host_link_state & HLS_UP)
8535                 return read_lcb_via_8051(dd, addr, data);
8536         /* if going up or down, check the cache, otherwise, no access */
8537         if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8538                 if (read_lcb_cache(addr, data))
8539                         return -EBUSY;
8540                 return 0;
8541         }
8542
8543         /* otherwise, host has access */
8544         *data = read_csr(dd, addr);
8545         return 0;
8546 }
8547
8548 /*
8549  * Use the 8051 to write a LCB CSR.
8550  */
8551 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8552 {
8553         u32 regno;
8554         int ret;
8555
8556         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8557             (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8558                 if (acquire_lcb_access(dd, 0) == 0) {
8559                         write_csr(dd, addr, data);
8560                         release_lcb_access(dd, 0);
8561                         return 0;
8562                 }
8563                 return -EBUSY;
8564         }
8565
8566         /* register is an index of LCB registers: (offset - base) / 8 */
8567         regno = (addr - DC_LCB_CFG_RUN) >> 3;
8568         ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8569         if (ret != HCMD_SUCCESS)
8570                 return -EBUSY;
8571         return 0;
8572 }
8573
8574 /*
8575  * Write an LCB CSR.  Access may not be in host control, so check.
8576  * Return 0 on success, -EBUSY on failure.
8577  */
8578 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8579 {
8580         struct hfi1_pportdata *ppd = dd->pport;
8581
8582         /* if up, go through the 8051 for the value */
8583         if (ppd->host_link_state & HLS_UP)
8584                 return write_lcb_via_8051(dd, addr, data);
8585         /* if going up or down, no access */
8586         if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8587                 return -EBUSY;
8588         /* otherwise, host has access */
8589         write_csr(dd, addr, data);
8590         return 0;
8591 }
8592
8593 /*
8594  * Returns:
8595  *      < 0 = Linux error, not able to get access
8596  *      > 0 = 8051 command RETURN_CODE
8597  */
8598 static int do_8051_command(
8599         struct hfi1_devdata *dd,
8600         u32 type,
8601         u64 in_data,
8602         u64 *out_data)
8603 {
8604         u64 reg, completed;
8605         int return_code;
8606         unsigned long timeout;
8607
8608         hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8609
8610         mutex_lock(&dd->dc8051_lock);
8611
8612         /* We can't send any commands to the 8051 if it's in reset */
8613         if (dd->dc_shutdown) {
8614                 return_code = -ENODEV;
8615                 goto fail;
8616         }
8617
8618         /*
8619          * If an 8051 host command timed out previously, then the 8051 is
8620          * stuck.
8621          *
8622          * On first timeout, attempt to reset and restart the entire DC
8623          * block (including 8051). (Is this too big of a hammer?)
8624          *
8625          * If the 8051 times out a second time, the reset did not bring it
8626          * back to healthy life. In that case, fail any subsequent commands.
8627          */
8628         if (dd->dc8051_timed_out) {
8629                 if (dd->dc8051_timed_out > 1) {
8630                         dd_dev_err(dd,
8631                                    "Previous 8051 host command timed out, skipping command %u\n",
8632                                    type);
8633                         return_code = -ENXIO;
8634                         goto fail;
8635                 }
8636                 _dc_shutdown(dd);
8637                 _dc_start(dd);
8638         }
8639
8640         /*
8641          * If there is no timeout, then the 8051 command interface is
8642          * waiting for a command.
8643          */
8644
8645         /*
8646          * When writing a LCB CSR, out_data contains the full value to
8647          * to be written, while in_data contains the relative LCB
8648          * address in 7:0.  Do the work here, rather than the caller,
8649          * of distrubting the write data to where it needs to go:
8650          *
8651          * Write data
8652          *   39:00 -> in_data[47:8]
8653          *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8654          *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8655          */
8656         if (type == HCMD_WRITE_LCB_CSR) {
8657                 in_data |= ((*out_data) & 0xffffffffffull) << 8;
8658                 /* must preserve COMPLETED - it is tied to hardware */
8659                 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8660                 reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8661                 reg |= ((((*out_data) >> 40) & 0xff) <<
8662                                 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8663                       | ((((*out_data) >> 48) & 0xffff) <<
8664                                 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8665                 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8666         }
8667
8668         /*
8669          * Do two writes: the first to stabilize the type and req_data, the
8670          * second to activate.
8671          */
8672         reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8673                         << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8674                 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8675                         << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8676         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8677         reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8678         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8679
8680         /* wait for completion, alternate: interrupt */
8681         timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8682         while (1) {
8683                 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8684                 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8685                 if (completed)
8686                         break;
8687                 if (time_after(jiffies, timeout)) {
8688                         dd->dc8051_timed_out++;
8689                         dd_dev_err(dd, "8051 host command %u timeout\n", type);
8690                         if (out_data)
8691                                 *out_data = 0;
8692                         return_code = -ETIMEDOUT;
8693                         goto fail;
8694                 }
8695                 udelay(2);
8696         }
8697
8698         if (out_data) {
8699                 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8700                                 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8701                 if (type == HCMD_READ_LCB_CSR) {
8702                         /* top 16 bits are in a different register */
8703                         *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8704                                 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8705                                 << (48
8706                                     - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8707                 }
8708         }
8709         return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8710                                 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8711         dd->dc8051_timed_out = 0;
8712         /*
8713          * Clear command for next user.
8714          */
8715         write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8716
8717 fail:
8718         mutex_unlock(&dd->dc8051_lock);
8719         return return_code;
8720 }
8721
8722 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8723 {
8724         return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8725 }
8726
8727 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8728                      u8 lane_id, u32 config_data)
8729 {
8730         u64 data;
8731         int ret;
8732
8733         data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8734                 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8735                 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
8736         ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8737         if (ret != HCMD_SUCCESS) {
8738                 dd_dev_err(dd,
8739                            "load 8051 config: field id %d, lane %d, err %d\n",
8740                            (int)field_id, (int)lane_id, ret);
8741         }
8742         return ret;
8743 }
8744
8745 /*
8746  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8747  * set the result, even on error.
8748  * Return 0 on success, -errno on failure
8749  */
8750 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8751                      u32 *result)
8752 {
8753         u64 big_data;
8754         u32 addr;
8755         int ret;
8756
8757         /* address start depends on the lane_id */
8758         if (lane_id < 4)
8759                 addr = (4 * NUM_GENERAL_FIELDS)
8760                         + (lane_id * 4 * NUM_LANE_FIELDS);
8761         else
8762                 addr = 0;
8763         addr += field_id * 4;
8764
8765         /* read is in 8-byte chunks, hardware will truncate the address down */
8766         ret = read_8051_data(dd, addr, 8, &big_data);
8767
8768         if (ret == 0) {
8769                 /* extract the 4 bytes we want */
8770                 if (addr & 0x4)
8771                         *result = (u32)(big_data >> 32);
8772                 else
8773                         *result = (u32)big_data;
8774         } else {
8775                 *result = 0;
8776                 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8777                            __func__, lane_id, field_id);
8778         }
8779
8780         return ret;
8781 }
8782
8783 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8784                               u8 continuous)
8785 {
8786         u32 frame;
8787
8788         frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8789                 | power_management << POWER_MANAGEMENT_SHIFT;
8790         return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8791                                 GENERAL_CONFIG, frame);
8792 }
8793
8794 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8795                                  u16 vl15buf, u8 crc_sizes)
8796 {
8797         u32 frame;
8798
8799         frame = (u32)vau << VAU_SHIFT
8800                 | (u32)z << Z_SHIFT
8801                 | (u32)vcu << VCU_SHIFT
8802                 | (u32)vl15buf << VL15BUF_SHIFT
8803                 | (u32)crc_sizes << CRC_SIZES_SHIFT;
8804         return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8805                                 GENERAL_CONFIG, frame);
8806 }
8807
8808 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8809                                      u8 *flag_bits, u16 *link_widths)
8810 {
8811         u32 frame;
8812
8813         read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8814                          &frame);
8815         *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8816         *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8817         *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8818 }
8819
8820 static int write_vc_local_link_width(struct hfi1_devdata *dd,
8821                                      u8 misc_bits,
8822                                      u8 flag_bits,
8823                                      u16 link_widths)
8824 {
8825         u32 frame;
8826
8827         frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8828                 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8829                 | (u32)link_widths << LINK_WIDTH_SHIFT;
8830         return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8831                      frame);
8832 }
8833
8834 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8835                                  u8 device_rev)
8836 {
8837         u32 frame;
8838
8839         frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8840                 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8841         return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8842 }
8843
8844 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8845                                   u8 *device_rev)
8846 {
8847         u32 frame;
8848
8849         read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8850         *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8851         *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8852                         & REMOTE_DEVICE_REV_MASK;
8853 }
8854
8855 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8856 {
8857         u32 frame;
8858         u32 mask;
8859
8860         mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8861         read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8862         /* Clear, then set field */
8863         frame &= ~mask;
8864         frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8865         return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8866                                 frame);
8867 }
8868
8869 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8870                       u8 *ver_patch)
8871 {
8872         u32 frame;
8873
8874         read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8875         *ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8876                 STS_FM_VERSION_MAJOR_MASK;
8877         *ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8878                 STS_FM_VERSION_MINOR_MASK;
8879
8880         read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8881         *ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8882                 STS_FM_VERSION_PATCH_MASK;
8883 }
8884
8885 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8886                                u8 *continuous)
8887 {
8888         u32 frame;
8889
8890         read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8891         *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8892                                         & POWER_MANAGEMENT_MASK;
8893         *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8894                                         & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8895 }
8896
8897 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8898                                   u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8899 {
8900         u32 frame;
8901
8902         read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8903         *vau = (frame >> VAU_SHIFT) & VAU_MASK;
8904         *z = (frame >> Z_SHIFT) & Z_MASK;
8905         *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8906         *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8907         *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8908 }
8909
8910 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8911                                       u8 *remote_tx_rate,
8912                                       u16 *link_widths)
8913 {
8914         u32 frame;
8915
8916         read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8917                          &frame);
8918         *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8919                                 & REMOTE_TX_RATE_MASK;
8920         *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8921 }
8922
8923 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8924 {
8925         u32 frame;
8926
8927         read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8928         *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8929 }
8930
8931 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8932 {
8933         u32 frame;
8934
8935         read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8936         *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8937 }
8938
8939 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8940 {
8941         read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8942 }
8943
8944 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8945 {
8946         read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8947 }
8948
8949 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8950 {
8951         u32 frame;
8952         int ret;
8953
8954         *link_quality = 0;
8955         if (dd->pport->host_link_state & HLS_UP) {
8956                 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8957                                        &frame);
8958                 if (ret == 0)
8959                         *link_quality = (frame >> LINK_QUALITY_SHIFT)
8960                                                 & LINK_QUALITY_MASK;
8961         }
8962 }
8963
8964 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8965 {
8966         u32 frame;
8967
8968         read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8969         *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8970 }
8971
8972 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
8973 {
8974         u32 frame;
8975
8976         read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
8977         *ldr = (frame & 0xff);
8978 }
8979
8980 static int read_tx_settings(struct hfi1_devdata *dd,
8981                             u8 *enable_lane_tx,
8982                             u8 *tx_polarity_inversion,
8983                             u8 *rx_polarity_inversion,
8984                             u8 *max_rate)
8985 {
8986         u32 frame;
8987         int ret;
8988
8989         ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8990         *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8991                                 & ENABLE_LANE_TX_MASK;
8992         *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
8993                                 & TX_POLARITY_INVERSION_MASK;
8994         *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
8995                                 & RX_POLARITY_INVERSION_MASK;
8996         *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
8997         return ret;
8998 }
8999
9000 static int write_tx_settings(struct hfi1_devdata *dd,
9001                              u8 enable_lane_tx,
9002                              u8 tx_polarity_inversion,
9003                              u8 rx_polarity_inversion,
9004                              u8 max_rate)
9005 {
9006         u32 frame;
9007
9008         /* no need to mask, all variable sizes match field widths */
9009         frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9010                 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9011                 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9012                 | max_rate << MAX_RATE_SHIFT;
9013         return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9014 }
9015
9016 /*
9017  * Read an idle LCB message.
9018  *
9019  * Returns 0 on success, -EINVAL on error
9020  */
9021 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9022 {
9023         int ret;
9024
9025         ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9026         if (ret != HCMD_SUCCESS) {
9027                 dd_dev_err(dd, "read idle message: type %d, err %d\n",
9028                            (u32)type, ret);
9029                 return -EINVAL;
9030         }
9031         dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9032         /* return only the payload as we already know the type */
9033         *data_out >>= IDLE_PAYLOAD_SHIFT;
9034         return 0;
9035 }
9036
9037 /*
9038  * Read an idle SMA message.  To be done in response to a notification from
9039  * the 8051.
9040  *
9041  * Returns 0 on success, -EINVAL on error
9042  */
9043 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9044 {
9045         return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9046                                  data);
9047 }
9048
9049 /*
9050  * Send an idle LCB message.
9051  *
9052  * Returns 0 on success, -EINVAL on error
9053  */
9054 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9055 {
9056         int ret;
9057
9058         dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9059         ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9060         if (ret != HCMD_SUCCESS) {
9061                 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9062                            data, ret);
9063                 return -EINVAL;
9064         }
9065         return 0;
9066 }
9067
9068 /*
9069  * Send an idle SMA message.
9070  *
9071  * Returns 0 on success, -EINVAL on error
9072  */
9073 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9074 {
9075         u64 data;
9076
9077         data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9078                 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9079         return send_idle_message(dd, data);
9080 }
9081
9082 /*
9083  * Initialize the LCB then do a quick link up.  This may or may not be
9084  * in loopback.
9085  *
9086  * return 0 on success, -errno on error
9087  */
9088 static int do_quick_linkup(struct hfi1_devdata *dd)
9089 {
9090         int ret;
9091
9092         lcb_shutdown(dd, 0);
9093
9094         if (loopback) {
9095                 /* LCB_CFG_LOOPBACK.VAL = 2 */
9096                 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
9097                 write_csr(dd, DC_LCB_CFG_LOOPBACK,
9098                           IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9099                 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9100         }
9101
9102         /* start the LCBs */
9103         /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9104         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9105
9106         /* simulator only loopback steps */
9107         if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9108                 /* LCB_CFG_RUN.EN = 1 */
9109                 write_csr(dd, DC_LCB_CFG_RUN,
9110                           1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9111
9112                 ret = wait_link_transfer_active(dd, 10);
9113                 if (ret)
9114                         return ret;
9115
9116                 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9117                           1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9118         }
9119
9120         if (!loopback) {
9121                 /*
9122                  * When doing quick linkup and not in loopback, both
9123                  * sides must be done with LCB set-up before either
9124                  * starts the quick linkup.  Put a delay here so that
9125                  * both sides can be started and have a chance to be
9126                  * done with LCB set up before resuming.
9127                  */
9128                 dd_dev_err(dd,
9129                            "Pausing for peer to be finished with LCB set up\n");
9130                 msleep(5000);
9131                 dd_dev_err(dd, "Continuing with quick linkup\n");
9132         }
9133
9134         write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9135         set_8051_lcb_access(dd);
9136
9137         /*
9138          * State "quick" LinkUp request sets the physical link state to
9139          * LinkUp without a verify capability sequence.
9140          * This state is in simulator v37 and later.
9141          */
9142         ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9143         if (ret != HCMD_SUCCESS) {
9144                 dd_dev_err(dd,
9145                            "%s: set physical link state to quick LinkUp failed with return %d\n",
9146                            __func__, ret);
9147
9148                 set_host_lcb_access(dd);
9149                 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9150
9151                 if (ret >= 0)
9152                         ret = -EINVAL;
9153                 return ret;
9154         }
9155
9156         return 0; /* success */
9157 }
9158
9159 /*
9160  * Set the SerDes to internal loopback mode.
9161  * Returns 0 on success, -errno on error.
9162  */
9163 static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
9164 {
9165         int ret;
9166
9167         ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
9168         if (ret == HCMD_SUCCESS)
9169                 return 0;
9170         dd_dev_err(dd,
9171                    "Set physical link state to SerDes Loopback failed with return %d\n",
9172                    ret);
9173         if (ret >= 0)
9174                 ret = -EINVAL;
9175         return ret;
9176 }
9177
9178 /*
9179  * Do all special steps to set up loopback.
9180  */
9181 static int init_loopback(struct hfi1_devdata *dd)
9182 {
9183         dd_dev_info(dd, "Entering loopback mode\n");
9184
9185         /* all loopbacks should disable self GUID check */
9186         write_csr(dd, DC_DC8051_CFG_MODE,
9187                   (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9188
9189         /*
9190          * The simulator has only one loopback option - LCB.  Switch
9191          * to that option, which includes quick link up.
9192          *
9193          * Accept all valid loopback values.
9194          */
9195         if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9196             (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9197              loopback == LOOPBACK_CABLE)) {
9198                 loopback = LOOPBACK_LCB;
9199                 quick_linkup = 1;
9200                 return 0;
9201         }
9202
9203         /* handle serdes loopback */
9204         if (loopback == LOOPBACK_SERDES) {
9205                 /* internal serdes loopack needs quick linkup on RTL */
9206                 if (dd->icode == ICODE_RTL_SILICON)
9207                         quick_linkup = 1;
9208                 return set_serdes_loopback_mode(dd);
9209         }
9210
9211         /* LCB loopback - handled at poll time */
9212         if (loopback == LOOPBACK_LCB) {
9213                 quick_linkup = 1; /* LCB is always quick linkup */
9214
9215                 /* not supported in emulation due to emulation RTL changes */
9216                 if (dd->icode == ICODE_FPGA_EMULATION) {
9217                         dd_dev_err(dd,
9218                                    "LCB loopback not supported in emulation\n");
9219                         return -EINVAL;
9220                 }
9221                 return 0;
9222         }
9223
9224         /* external cable loopback requires no extra steps */
9225         if (loopback == LOOPBACK_CABLE)
9226                 return 0;
9227
9228         dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9229         return -EINVAL;
9230 }
9231
9232 /*
9233  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9234  * used in the Verify Capability link width attribute.
9235  */
9236 static u16 opa_to_vc_link_widths(u16 opa_widths)
9237 {
9238         int i;
9239         u16 result = 0;
9240
9241         static const struct link_bits {
9242                 u16 from;
9243                 u16 to;
9244         } opa_link_xlate[] = {
9245                 { OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9246                 { OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9247                 { OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9248                 { OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9249         };
9250
9251         for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9252                 if (opa_widths & opa_link_xlate[i].from)
9253                         result |= opa_link_xlate[i].to;
9254         }
9255         return result;
9256 }
9257
9258 /*
9259  * Set link attributes before moving to polling.
9260  */
9261 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9262 {
9263         struct hfi1_devdata *dd = ppd->dd;
9264         u8 enable_lane_tx;
9265         u8 tx_polarity_inversion;
9266         u8 rx_polarity_inversion;
9267         int ret;
9268
9269         /* reset our fabric serdes to clear any lingering problems */
9270         fabric_serdes_reset(dd);
9271
9272         /* set the local tx rate - need to read-modify-write */
9273         ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9274                                &rx_polarity_inversion, &ppd->local_tx_rate);
9275         if (ret)
9276                 goto set_local_link_attributes_fail;
9277
9278         if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9279                 /* set the tx rate to the fastest enabled */
9280                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9281                         ppd->local_tx_rate = 1;
9282                 else
9283                         ppd->local_tx_rate = 0;
9284         } else {
9285                 /* set the tx rate to all enabled */
9286                 ppd->local_tx_rate = 0;
9287                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9288                         ppd->local_tx_rate |= 2;
9289                 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9290                         ppd->local_tx_rate |= 1;
9291         }
9292
9293         enable_lane_tx = 0xF; /* enable all four lanes */
9294         ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9295                                 rx_polarity_inversion, ppd->local_tx_rate);
9296         if (ret != HCMD_SUCCESS)
9297                 goto set_local_link_attributes_fail;
9298
9299         /*
9300          * DC supports continuous updates.
9301          */
9302         ret = write_vc_local_phy(dd,
9303                                  0 /* no power management */,
9304                                  1 /* continuous updates */);
9305         if (ret != HCMD_SUCCESS)
9306                 goto set_local_link_attributes_fail;
9307
9308         /* z=1 in the next call: AU of 0 is not supported by the hardware */
9309         ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9310                                     ppd->port_crc_mode_enabled);
9311         if (ret != HCMD_SUCCESS)
9312                 goto set_local_link_attributes_fail;
9313
9314         ret = write_vc_local_link_width(dd, 0, 0,
9315                                         opa_to_vc_link_widths(
9316                                                 ppd->link_width_enabled));
9317         if (ret != HCMD_SUCCESS)
9318                 goto set_local_link_attributes_fail;
9319
9320         /* let peer know who we are */
9321         ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9322         if (ret == HCMD_SUCCESS)
9323                 return 0;
9324
9325 set_local_link_attributes_fail:
9326         dd_dev_err(dd,
9327                    "Failed to set local link attributes, return 0x%x\n",
9328                    ret);
9329         return ret;
9330 }
9331
9332 /*
9333  * Call this to start the link.
9334  * Do not do anything if the link is disabled.
9335  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9336  */
9337 int start_link(struct hfi1_pportdata *ppd)
9338 {
9339         /*
9340          * Tune the SerDes to a ballpark setting for optimal signal and bit
9341          * error rate.  Needs to be done before starting the link.
9342          */
9343         tune_serdes(ppd);
9344
9345         if (!ppd->driver_link_ready) {
9346                 dd_dev_info(ppd->dd,
9347                             "%s: stopping link start because driver is not ready\n",
9348                             __func__);
9349                 return 0;
9350         }
9351
9352         /*
9353          * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9354          * pkey table can be configured properly if the HFI unit is connected
9355          * to switch port with MgmtAllowed=NO
9356          */
9357         clear_full_mgmt_pkey(ppd);
9358
9359         return set_link_state(ppd, HLS_DN_POLL);
9360 }
9361
9362 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9363 {
9364         struct hfi1_devdata *dd = ppd->dd;
9365         u64 mask;
9366         unsigned long timeout;
9367
9368         /*
9369          * Some QSFP cables have a quirk that asserts the IntN line as a side
9370          * effect of power up on plug-in. We ignore this false positive
9371          * interrupt until the module has finished powering up by waiting for
9372          * a minimum timeout of the module inrush initialization time of
9373          * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9374          * module have stabilized.
9375          */
9376         msleep(500);
9377
9378         /*
9379          * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9380          */
9381         timeout = jiffies + msecs_to_jiffies(2000);
9382         while (1) {
9383                 mask = read_csr(dd, dd->hfi1_id ?
9384                                 ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9385                 if (!(mask & QSFP_HFI0_INT_N))
9386                         break;
9387                 if (time_after(jiffies, timeout)) {
9388                         dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9389                                     __func__);
9390                         break;
9391                 }
9392                 udelay(2);
9393         }
9394 }
9395
9396 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9397 {
9398         struct hfi1_devdata *dd = ppd->dd;
9399         u64 mask;
9400
9401         mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9402         if (enable) {
9403                 /*
9404                  * Clear the status register to avoid an immediate interrupt
9405                  * when we re-enable the IntN pin
9406                  */
9407                 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9408                           QSFP_HFI0_INT_N);
9409                 mask |= (u64)QSFP_HFI0_INT_N;
9410         } else {
9411                 mask &= ~(u64)QSFP_HFI0_INT_N;
9412         }
9413         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9414 }
9415
9416 void reset_qsfp(struct hfi1_pportdata *ppd)
9417 {
9418         struct hfi1_devdata *dd = ppd->dd;
9419         u64 mask, qsfp_mask;
9420
9421         /* Disable INT_N from triggering QSFP interrupts */
9422         set_qsfp_int_n(ppd, 0);
9423
9424         /* Reset the QSFP */
9425         mask = (u64)QSFP_HFI0_RESET_N;
9426
9427         qsfp_mask = read_csr(dd,
9428                              dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9429         qsfp_mask &= ~mask;
9430         write_csr(dd,
9431                   dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9432
9433         udelay(10);
9434
9435         qsfp_mask |= mask;
9436         write_csr(dd,
9437                   dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9438
9439         wait_for_qsfp_init(ppd);
9440
9441         /*
9442          * Allow INT_N to trigger the QSFP interrupt to watch
9443          * for alarms and warnings
9444          */
9445         set_qsfp_int_n(ppd, 1);
9446 }
9447
9448 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9449                                         u8 *qsfp_interrupt_status)
9450 {
9451         struct hfi1_devdata *dd = ppd->dd;
9452
9453         if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9454             (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9455                 dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9456                            __func__);
9457
9458         if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9459             (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9460                 dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9461                            __func__);
9462
9463         /*
9464          * The remaining alarms/warnings don't matter if the link is down.
9465          */
9466         if (ppd->host_link_state & HLS_DOWN)
9467                 return 0;
9468
9469         if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9470             (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9471                 dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9472                            __func__);
9473
9474         if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9475             (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9476                 dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9477                            __func__);
9478
9479         /* Byte 2 is vendor specific */
9480
9481         if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9482             (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9483                 dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9484                            __func__);
9485
9486         if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9487             (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9488                 dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9489                            __func__);
9490
9491         if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9492             (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9493                 dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9494                            __func__);
9495
9496         if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9497             (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9498                 dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9499                            __func__);
9500
9501         if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9502             (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9503                 dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9504                            __func__);
9505
9506         if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9507             (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9508                 dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9509                            __func__);
9510
9511         if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9512             (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9513                 dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9514                            __func__);
9515
9516         if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9517             (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9518                 dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9519                            __func__);
9520
9521         if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9522             (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9523                 dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9524                            __func__);
9525
9526         if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9527             (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9528                 dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9529                            __func__);
9530
9531         if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9532             (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9533                 dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9534                            __func__);
9535
9536         if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9537             (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9538                 dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9539                            __func__);
9540
9541         /* Bytes 9-10 and 11-12 are reserved */
9542         /* Bytes 13-15 are vendor specific */
9543
9544         return 0;
9545 }
9546
9547 /* This routine will only be scheduled if the QSFP module present is asserted */
9548 void qsfp_event(struct work_struct *work)
9549 {
9550         struct qsfp_data *qd;
9551         struct hfi1_pportdata *ppd;
9552         struct hfi1_devdata *dd;
9553
9554         qd = container_of(work, struct qsfp_data, qsfp_work);
9555         ppd = qd->ppd;
9556         dd = ppd->dd;
9557
9558         /* Sanity check */
9559         if (!qsfp_mod_present(ppd))
9560                 return;
9561
9562         if (ppd->host_link_state == HLS_DN_DISABLE) {
9563                 dd_dev_info(ppd->dd,
9564                             "%s: stopping link start because link is disabled\n",
9565                             __func__);
9566                 return;
9567         }
9568
9569         /*
9570          * Turn DC back on after cable has been re-inserted. Up until
9571          * now, the DC has been in reset to save power.
9572          */
9573         dc_start(dd);
9574
9575         if (qd->cache_refresh_required) {
9576                 set_qsfp_int_n(ppd, 0);
9577
9578                 wait_for_qsfp_init(ppd);
9579
9580                 /*
9581                  * Allow INT_N to trigger the QSFP interrupt to watch
9582                  * for alarms and warnings
9583                  */
9584                 set_qsfp_int_n(ppd, 1);
9585
9586                 start_link(ppd);
9587         }
9588
9589         if (qd->check_interrupt_flags) {
9590                 u8 qsfp_interrupt_status[16] = {0,};
9591
9592                 if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9593                                   &qsfp_interrupt_status[0], 16) != 16) {
9594                         dd_dev_info(dd,
9595                                     "%s: Failed to read status of QSFP module\n",
9596                                     __func__);
9597                 } else {
9598                         unsigned long flags;
9599
9600                         handle_qsfp_error_conditions(
9601                                         ppd, qsfp_interrupt_status);
9602                         spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9603                         ppd->qsfp_info.check_interrupt_flags = 0;
9604                         spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9605                                                flags);
9606                 }
9607         }
9608 }
9609
9610 static void init_qsfp_int(struct hfi1_devdata *dd)
9611 {
9612         struct hfi1_pportdata *ppd = dd->pport;
9613         u64 qsfp_mask, cce_int_mask;
9614         const int qsfp1_int_smask = QSFP1_INT % 64;
9615         const int qsfp2_int_smask = QSFP2_INT % 64;
9616
9617         /*
9618          * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9619          * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9620          * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9621          * the index of the appropriate CSR in the CCEIntMask CSR array
9622          */
9623         cce_int_mask = read_csr(dd, CCE_INT_MASK +
9624                                 (8 * (QSFP1_INT / 64)));
9625         if (dd->hfi1_id) {
9626                 cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9627                 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9628                           cce_int_mask);
9629         } else {
9630                 cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9631                 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9632                           cce_int_mask);
9633         }
9634
9635         qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9636         /* Clear current status to avoid spurious interrupts */
9637         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9638                   qsfp_mask);
9639         write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9640                   qsfp_mask);
9641
9642         set_qsfp_int_n(ppd, 0);
9643
9644         /* Handle active low nature of INT_N and MODPRST_N pins */
9645         if (qsfp_mod_present(ppd))
9646                 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9647         write_csr(dd,
9648                   dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9649                   qsfp_mask);
9650 }
9651
9652 /*
9653  * Do a one-time initialize of the LCB block.
9654  */
9655 static void init_lcb(struct hfi1_devdata *dd)
9656 {
9657         /* simulator does not correctly handle LCB cclk loopback, skip */
9658         if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9659                 return;
9660
9661         /* the DC has been reset earlier in the driver load */
9662
9663         /* set LCB for cclk loopback on the port */
9664         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9665         write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9666         write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9667         write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9668         write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9669         write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9670         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9671 }
9672
9673 /*
9674  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9675  * on error.
9676  */
9677 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9678 {
9679         int ret;
9680         u8 status;
9681
9682         /*
9683          * Report success if not a QSFP or, if it is a QSFP, but the cable is
9684          * not present
9685          */
9686         if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9687                 return 0;
9688
9689         /* read byte 2, the status byte */
9690         ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9691         if (ret < 0)
9692                 return ret;
9693         if (ret != 1)
9694                 return -EIO;
9695
9696         return 0; /* success */
9697 }
9698
9699 /*
9700  * Values for QSFP retry.
9701  *
9702  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9703  * arrived at from experience on a large cluster.
9704  */
9705 #define MAX_QSFP_RETRIES 20
9706 #define QSFP_RETRY_WAIT 500 /* msec */
9707
9708 /*
9709  * Try a QSFP read.  If it fails, schedule a retry for later.
9710  * Called on first link activation after driver load.
9711  */
9712 static void try_start_link(struct hfi1_pportdata *ppd)
9713 {
9714         if (test_qsfp_read(ppd)) {
9715                 /* read failed */
9716                 if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9717                         dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9718                         return;
9719                 }
9720                 dd_dev_info(ppd->dd,
9721                             "QSFP not responding, waiting and retrying %d\n",
9722                             (int)ppd->qsfp_retry_count);
9723                 ppd->qsfp_retry_count++;
9724                 queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9725                                    msecs_to_jiffies(QSFP_RETRY_WAIT));
9726                 return;
9727         }
9728         ppd->qsfp_retry_count = 0;
9729
9730         start_link(ppd);
9731 }
9732
9733 /*
9734  * Workqueue function to start the link after a delay.
9735  */
9736 void handle_start_link(struct work_struct *work)
9737 {
9738         struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9739                                                   start_link_work.work);
9740         try_start_link(ppd);
9741 }
9742
9743 int bringup_serdes(struct hfi1_pportdata *ppd)
9744 {
9745         struct hfi1_devdata *dd = ppd->dd;
9746         u64 guid;
9747         int ret;
9748
9749         if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9750                 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9751
9752         guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9753         if (!guid) {
9754                 if (dd->base_guid)
9755                         guid = dd->base_guid + ppd->port - 1;
9756                 ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9757         }
9758
9759         /* Set linkinit_reason on power up per OPA spec */
9760         ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9761
9762         /* one-time init of the LCB */
9763         init_lcb(dd);
9764
9765         if (loopback) {
9766                 ret = init_loopback(dd);
9767                 if (ret < 0)
9768                         return ret;
9769         }
9770
9771         get_port_type(ppd);
9772         if (ppd->port_type == PORT_TYPE_QSFP) {
9773                 set_qsfp_int_n(ppd, 0);
9774                 wait_for_qsfp_init(ppd);
9775                 set_qsfp_int_n(ppd, 1);
9776         }
9777
9778         try_start_link(ppd);
9779         return 0;
9780 }
9781
9782 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9783 {
9784         struct hfi1_devdata *dd = ppd->dd;
9785
9786         /*
9787          * Shut down the link and keep it down.   First turn off that the
9788          * driver wants to allow the link to be up (driver_link_ready).
9789          * Then make sure the link is not automatically restarted
9790          * (link_enabled).  Cancel any pending restart.  And finally
9791          * go offline.
9792          */
9793         ppd->driver_link_ready = 0;
9794         ppd->link_enabled = 0;
9795
9796         ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9797         flush_delayed_work(&ppd->start_link_work);
9798         cancel_delayed_work_sync(&ppd->start_link_work);
9799
9800         ppd->offline_disabled_reason =
9801                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
9802         set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
9803                              OPA_LINKDOWN_REASON_SMA_DISABLED);
9804         set_link_state(ppd, HLS_DN_OFFLINE);
9805
9806         /* disable the port */
9807         clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9808 }
9809
9810 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9811 {
9812         struct hfi1_pportdata *ppd;
9813         int i;
9814
9815         ppd = (struct hfi1_pportdata *)(dd + 1);
9816         for (i = 0; i < dd->num_pports; i++, ppd++) {
9817                 ppd->ibport_data.rvp.rc_acks = NULL;
9818                 ppd->ibport_data.rvp.rc_qacks = NULL;
9819                 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9820                 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9821                 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9822                 if (!ppd->ibport_data.rvp.rc_acks ||
9823                     !ppd->ibport_data.rvp.rc_delayed_comp ||
9824                     !ppd->ibport_data.rvp.rc_qacks)
9825                         return -ENOMEM;
9826         }
9827
9828         return 0;
9829 }
9830
9831 /*
9832  * index is the index into the receive array
9833  */
9834 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9835                   u32 type, unsigned long pa, u16 order)
9836 {
9837         u64 reg;
9838
9839         if (!(dd->flags & HFI1_PRESENT))
9840                 goto done;
9841
9842         if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9843                 pa = 0;
9844                 order = 0;
9845         } else if (type > PT_INVALID) {
9846                 dd_dev_err(dd,
9847                            "unexpected receive array type %u for index %u, not handled\n",
9848                            type, index);
9849                 goto done;
9850         }
9851         trace_hfi1_put_tid(dd, index, type, pa, order);
9852
9853 #define RT_ADDR_SHIFT 12        /* 4KB kernel address boundary */
9854         reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9855                 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9856                 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9857                                         << RCV_ARRAY_RT_ADDR_SHIFT;
9858         trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9859         writeq(reg, dd->rcvarray_wc + (index * 8));
9860
9861         if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9862                 /*
9863                  * Eager entries are written and flushed
9864                  *
9865                  * Expected entries are flushed every 4 writes
9866                  */
9867                 flush_wc();
9868 done:
9869         return;
9870 }
9871
9872 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9873 {
9874         struct hfi1_devdata *dd = rcd->dd;
9875         u32 i;
9876
9877         /* this could be optimized */
9878         for (i = rcd->eager_base; i < rcd->eager_base +
9879                      rcd->egrbufs.alloced; i++)
9880                 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9881
9882         for (i = rcd->expected_base;
9883                         i < rcd->expected_base + rcd->expected_count; i++)
9884                 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9885 }
9886
9887 static const char * const ib_cfg_name_strings[] = {
9888         "HFI1_IB_CFG_LIDLMC",
9889         "HFI1_IB_CFG_LWID_DG_ENB",
9890         "HFI1_IB_CFG_LWID_ENB",
9891         "HFI1_IB_CFG_LWID",
9892         "HFI1_IB_CFG_SPD_ENB",
9893         "HFI1_IB_CFG_SPD",
9894         "HFI1_IB_CFG_RXPOL_ENB",
9895         "HFI1_IB_CFG_LREV_ENB",
9896         "HFI1_IB_CFG_LINKLATENCY",
9897         "HFI1_IB_CFG_HRTBT",
9898         "HFI1_IB_CFG_OP_VLS",
9899         "HFI1_IB_CFG_VL_HIGH_CAP",
9900         "HFI1_IB_CFG_VL_LOW_CAP",
9901         "HFI1_IB_CFG_OVERRUN_THRESH",
9902         "HFI1_IB_CFG_PHYERR_THRESH",
9903         "HFI1_IB_CFG_LINKDEFAULT",
9904         "HFI1_IB_CFG_PKEYS",
9905         "HFI1_IB_CFG_MTU",
9906         "HFI1_IB_CFG_LSTATE",
9907         "HFI1_IB_CFG_VL_HIGH_LIMIT",
9908         "HFI1_IB_CFG_PMA_TICKS",
9909         "HFI1_IB_CFG_PORT"
9910 };
9911
9912 static const char *ib_cfg_name(int which)
9913 {
9914         if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9915                 return "invalid";
9916         return ib_cfg_name_strings[which];
9917 }
9918
9919 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9920 {
9921         struct hfi1_devdata *dd = ppd->dd;
9922         int val = 0;
9923
9924         switch (which) {
9925         case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9926                 val = ppd->link_width_enabled;
9927                 break;
9928         case HFI1_IB_CFG_LWID: /* currently active Link-width */
9929                 val = ppd->link_width_active;
9930                 break;
9931         case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9932                 val = ppd->link_speed_enabled;
9933                 break;
9934         case HFI1_IB_CFG_SPD: /* current Link speed */
9935                 val = ppd->link_speed_active;
9936                 break;
9937
9938         case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9939         case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9940         case HFI1_IB_CFG_LINKLATENCY:
9941                 goto unimplemented;
9942
9943         case HFI1_IB_CFG_OP_VLS:
9944                 val = ppd->vls_operational;
9945                 break;
9946         case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9947                 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9948                 break;
9949         case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9950                 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9951                 break;
9952         case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9953                 val = ppd->overrun_threshold;
9954                 break;
9955         case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9956                 val = ppd->phy_error_threshold;
9957                 break;
9958         case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9959                 val = dd->link_default;
9960                 break;
9961
9962         case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9963         case HFI1_IB_CFG_PMA_TICKS:
9964         default:
9965 unimplemented:
9966                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9967                         dd_dev_info(
9968                                 dd,
9969                                 "%s: which %s: not implemented\n",
9970                                 __func__,
9971                                 ib_cfg_name(which));
9972                 break;
9973         }
9974
9975         return val;
9976 }
9977
9978 /*
9979  * The largest MAD packet size.
9980  */
9981 #define MAX_MAD_PACKET 2048
9982
9983 /*
9984  * Return the maximum header bytes that can go on the _wire_
9985  * for this device. This count includes the ICRC which is
9986  * not part of the packet held in memory but it is appended
9987  * by the HW.
9988  * This is dependent on the device's receive header entry size.
9989  * HFI allows this to be set per-receive context, but the
9990  * driver presently enforces a global value.
9991  */
9992 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
9993 {
9994         /*
9995          * The maximum non-payload (MTU) bytes in LRH.PktLen are
9996          * the Receive Header Entry Size minus the PBC (or RHF) size
9997          * plus one DW for the ICRC appended by HW.
9998          *
9999          * dd->rcd[0].rcvhdrqentsize is in DW.
10000          * We use rcd[0] as all context will have the same value. Also,
10001          * the first kernel context would have been allocated by now so
10002          * we are guaranteed a valid value.
10003          */
10004         return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10005 }
10006
10007 /*
10008  * Set Send Length
10009  * @ppd - per port data
10010  *
10011  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10012  * registers compare against LRH.PktLen, so use the max bytes included
10013  * in the LRH.
10014  *
10015  * This routine changes all VL values except VL15, which it maintains at
10016  * the same value.
10017  */
10018 static void set_send_length(struct hfi1_pportdata *ppd)
10019 {
10020         struct hfi1_devdata *dd = ppd->dd;
10021         u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10022         u32 maxvlmtu = dd->vld[15].mtu;
10023         u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10024                               & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10025                 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10026         int i, j;
10027         u32 thres;
10028
10029         for (i = 0; i < ppd->vls_supported; i++) {
10030                 if (dd->vld[i].mtu > maxvlmtu)
10031                         maxvlmtu = dd->vld[i].mtu;
10032                 if (i <= 3)
10033                         len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10034                                  & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10035                                 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10036                 else
10037                         len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10038                                  & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10039                                 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10040         }
10041         write_csr(dd, SEND_LEN_CHECK0, len1);
10042         write_csr(dd, SEND_LEN_CHECK1, len2);
10043         /* adjust kernel credit return thresholds based on new MTUs */
10044         /* all kernel receive contexts have the same hdrqentsize */
10045         for (i = 0; i < ppd->vls_supported; i++) {
10046                 thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10047                             sc_mtu_to_threshold(dd->vld[i].sc,
10048                                                 dd->vld[i].mtu,
10049                                                 dd->rcd[0]->rcvhdrqentsize));
10050                 for (j = 0; j < INIT_SC_PER_VL; j++)
10051                         sc_set_cr_threshold(
10052                                         pio_select_send_context_vl(dd, j, i),
10053                                             thres);
10054         }
10055         thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10056                     sc_mtu_to_threshold(dd->vld[15].sc,
10057                                         dd->vld[15].mtu,
10058                                         dd->rcd[0]->rcvhdrqentsize));
10059         sc_set_cr_threshold(dd->vld[15].sc, thres);
10060
10061         /* Adjust maximum MTU for the port in DC */
10062         dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10063                 (ilog2(maxvlmtu >> 8) + 1);
10064         len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10065         len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10066         len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10067                 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10068         write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10069 }
10070
10071 static void set_lidlmc(struct hfi1_pportdata *ppd)
10072 {
10073         int i;
10074         u64 sreg = 0;
10075         struct hfi1_devdata *dd = ppd->dd;
10076         u32 mask = ~((1U << ppd->lmc) - 1);
10077         u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10078         u32 lid;
10079
10080         /*
10081          * Program 0 in CSR if port lid is extended. This prevents
10082          * 9B packets being sent out for large lids.
10083          */
10084         lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10085         c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10086                 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10087         c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10088                         << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10089               ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10090                         << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10091         write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10092
10093         /*
10094          * Iterate over all the send contexts and set their SLID check
10095          */
10096         sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10097                         SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10098                (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10099                         SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10100
10101         for (i = 0; i < dd->chip_send_contexts; i++) {
10102                 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10103                           i, (u32)sreg);
10104                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10105         }
10106
10107         /* Now we have to do the same thing for the sdma engines */
10108         sdma_update_lmc(dd, mask, lid);
10109 }
10110
10111 static const char *state_completed_string(u32 completed)
10112 {
10113         static const char * const state_completed[] = {
10114                 "EstablishComm",
10115                 "OptimizeEQ",
10116                 "VerifyCap"
10117         };
10118
10119         if (completed < ARRAY_SIZE(state_completed))
10120                 return state_completed[completed];
10121
10122         return "unknown";
10123 }
10124
10125 static const char all_lanes_dead_timeout_expired[] =
10126         "All lanes were inactive â€“ was the interconnect media removed?";
10127 static const char tx_out_of_policy[] =
10128         "Passing lanes on local port do not meet the local link width policy";
10129 static const char no_state_complete[] =
10130         "State timeout occurred before link partner completed the state";
10131 static const char * const state_complete_reasons[] = {
10132         [0x00] = "Reason unknown",
10133         [0x01] = "Link was halted by driver, refer to LinkDownReason",
10134         [0x02] = "Link partner reported failure",
10135         [0x10] = "Unable to achieve frame sync on any lane",
10136         [0x11] =
10137           "Unable to find a common bit rate with the link partner",
10138         [0x12] =
10139           "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10140         [0x13] =
10141           "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10142         [0x14] = no_state_complete,
10143         [0x15] =
10144           "State timeout occurred before link partner identified equalization presets",
10145         [0x16] =
10146           "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10147         [0x17] = tx_out_of_policy,
10148         [0x20] = all_lanes_dead_timeout_expired,
10149         [0x21] =
10150           "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10151         [0x22] = no_state_complete,
10152         [0x23] =
10153           "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10154         [0x24] = tx_out_of_policy,
10155         [0x30] = all_lanes_dead_timeout_expired,
10156         [0x31] =
10157           "State timeout occurred waiting for host to process received frames",
10158         [0x32] = no_state_complete,
10159         [0x33] =
10160           "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10161         [0x34] = tx_out_of_policy,
10162         [0x35] = "Negotiated link width is mutually exclusive",
10163         [0x36] =
10164           "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10165         [0x37] = "Unable to resolve secure data exchange",
10166 };
10167
10168 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10169                                                      u32 code)
10170 {
10171         const char *str = NULL;
10172
10173         if (code < ARRAY_SIZE(state_complete_reasons))
10174                 str = state_complete_reasons[code];
10175
10176         if (str)
10177                 return str;
10178         return "Reserved";
10179 }
10180
10181 /* describe the given last state complete frame */
10182 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10183                                   const char *prefix)
10184 {
10185         struct hfi1_devdata *dd = ppd->dd;
10186         u32 success;
10187         u32 state;
10188         u32 reason;
10189         u32 lanes;
10190
10191         /*
10192          * Decode frame:
10193          *  [ 0: 0] - success
10194          *  [ 3: 1] - state
10195          *  [ 7: 4] - next state timeout
10196          *  [15: 8] - reason code
10197          *  [31:16] - lanes
10198          */
10199         success = frame & 0x1;
10200         state = (frame >> 1) & 0x7;
10201         reason = (frame >> 8) & 0xff;
10202         lanes = (frame >> 16) & 0xffff;
10203
10204         dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10205                    prefix, frame);
10206         dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10207                    state_completed_string(state), state);
10208         dd_dev_err(dd, "    state successfully completed: %s\n",
10209                    success ? "yes" : "no");
10210         dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10211                    reason, state_complete_reason_code_string(ppd, reason));
10212         dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10213 }
10214
10215 /*
10216  * Read the last state complete frames and explain them.  This routine
10217  * expects to be called if the link went down during link negotiation
10218  * and initialization (LNI).  That is, anywhere between polling and link up.
10219  */
10220 static void check_lni_states(struct hfi1_pportdata *ppd)
10221 {
10222         u32 last_local_state;
10223         u32 last_remote_state;
10224
10225         read_last_local_state(ppd->dd, &last_local_state);
10226         read_last_remote_state(ppd->dd, &last_remote_state);
10227
10228         /*
10229          * Don't report anything if there is nothing to report.  A value of
10230          * 0 means the link was taken down while polling and there was no
10231          * training in-process.
10232          */
10233         if (last_local_state == 0 && last_remote_state == 0)
10234                 return;
10235
10236         decode_state_complete(ppd, last_local_state, "transmitted");
10237         decode_state_complete(ppd, last_remote_state, "received");
10238 }
10239
10240 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10241 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10242 {
10243         u64 reg;
10244         unsigned long timeout;
10245
10246         /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10247         timeout = jiffies + msecs_to_jiffies(wait_ms);
10248         while (1) {
10249                 reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10250                 if (reg)
10251                         break;
10252                 if (time_after(jiffies, timeout)) {
10253                         dd_dev_err(dd,
10254                                    "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10255                         return -ETIMEDOUT;
10256                 }
10257                 udelay(2);
10258         }
10259         return 0;
10260 }
10261
10262 /* called when the logical link state is not down as it should be */
10263 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10264 {
10265         struct hfi1_devdata *dd = ppd->dd;
10266
10267         /*
10268          * Bring link up in LCB loopback
10269          */
10270         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10271         write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10272                   DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10273
10274         write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10275         write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10276         write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10277         write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10278
10279         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10280         (void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10281         udelay(3);
10282         write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10283         write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10284
10285         wait_link_transfer_active(dd, 100);
10286
10287         /*
10288          * Bring the link down again.
10289          */
10290         write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10291         write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10292         write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10293
10294         /* adjust ppd->statusp, if needed */
10295         update_statusp(ppd, IB_PORT_DOWN);
10296
10297         dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10298 }
10299
10300 /*
10301  * Helper for set_link_state().  Do not call except from that routine.
10302  * Expects ppd->hls_mutex to be held.
10303  *
10304  * @rem_reason value to be sent to the neighbor
10305  *
10306  * LinkDownReasons only set if transition succeeds.
10307  */
10308 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10309 {
10310         struct hfi1_devdata *dd = ppd->dd;
10311         u32 previous_state;
10312         int ret;
10313
10314         update_lcb_cache(dd);
10315
10316         previous_state = ppd->host_link_state;
10317         ppd->host_link_state = HLS_GOING_OFFLINE;
10318
10319         /* start offline transition */
10320         ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10321
10322         if (ret != HCMD_SUCCESS) {
10323                 dd_dev_err(dd,
10324                            "Failed to transition to Offline link state, return %d\n",
10325                            ret);
10326                 return -EINVAL;
10327         }
10328         if (ppd->offline_disabled_reason ==
10329                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10330                 ppd->offline_disabled_reason =
10331                 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10332
10333         /*
10334          * Wait for offline transition. It can take a while for
10335          * the link to go down.
10336          */
10337         ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 10000);
10338         if (ret < 0)
10339                 return ret;
10340
10341         /*
10342          * Now in charge of LCB - must be after the physical state is
10343          * offline.quiet and before host_link_state is changed.
10344          */
10345         set_host_lcb_access(dd);
10346         write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10347
10348         /* make sure the logical state is also down */
10349         ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10350         if (ret)
10351                 force_logical_link_state_down(ppd);
10352
10353         ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10354
10355         if (ppd->port_type == PORT_TYPE_QSFP &&
10356             ppd->qsfp_info.limiting_active &&
10357             qsfp_mod_present(ppd)) {
10358                 int ret;
10359
10360                 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10361                 if (ret == 0) {
10362                         set_qsfp_tx(ppd, 0);
10363                         release_chip_resource(dd, qsfp_resource(dd));
10364                 } else {
10365                         /* not fatal, but should warn */
10366                         dd_dev_err(dd,
10367                                    "Unable to acquire lock to turn off QSFP TX\n");
10368                 }
10369         }
10370
10371         /*
10372          * The LNI has a mandatory wait time after the physical state
10373          * moves to Offline.Quiet.  The wait time may be different
10374          * depending on how the link went down.  The 8051 firmware
10375          * will observe the needed wait time and only move to ready
10376          * when that is completed.  The largest of the quiet timeouts
10377          * is 6s, so wait that long and then at least 0.5s more for
10378          * other transitions, and another 0.5s for a buffer.
10379          */
10380         ret = wait_fm_ready(dd, 7000);
10381         if (ret) {
10382                 dd_dev_err(dd,
10383                            "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10384                 /* state is really offline, so make it so */
10385                 ppd->host_link_state = HLS_DN_OFFLINE;
10386                 return ret;
10387         }
10388
10389         /*
10390          * The state is now offline and the 8051 is ready to accept host
10391          * requests.
10392          *      - change our state
10393          *      - notify others if we were previously in a linkup state
10394          */
10395         ppd->host_link_state = HLS_DN_OFFLINE;
10396         if (previous_state & HLS_UP) {
10397                 /* went down while link was up */
10398                 handle_linkup_change(dd, 0);
10399         } else if (previous_state
10400                         & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10401                 /* went down while attempting link up */
10402                 check_lni_states(ppd);
10403         }
10404
10405         /* the active link width (downgrade) is 0 on link down */
10406         ppd->link_width_active = 0;
10407         ppd->link_width_downgrade_tx_active = 0;
10408         ppd->link_width_downgrade_rx_active = 0;
10409         ppd->current_egress_rate = 0;
10410         return 0;
10411 }
10412
10413 /* return the link state name */
10414 static const char *link_state_name(u32 state)
10415 {
10416         const char *name;
10417         int n = ilog2(state);
10418         static const char * const names[] = {
10419                 [__HLS_UP_INIT_BP]       = "INIT",
10420                 [__HLS_UP_ARMED_BP]      = "ARMED",
10421                 [__HLS_UP_ACTIVE_BP]     = "ACTIVE",
10422                 [__HLS_DN_DOWNDEF_BP]    = "DOWNDEF",
10423                 [__HLS_DN_POLL_BP]       = "POLL",
10424                 [__HLS_DN_DISABLE_BP]    = "DISABLE",
10425                 [__HLS_DN_OFFLINE_BP]    = "OFFLINE",
10426                 [__HLS_VERIFY_CAP_BP]    = "VERIFY_CAP",
10427                 [__HLS_GOING_UP_BP]      = "GOING_UP",
10428                 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10429                 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10430         };
10431
10432         name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10433         return name ? name : "unknown";
10434 }
10435
10436 /* return the link state reason name */
10437 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10438 {
10439         if (state == HLS_UP_INIT) {
10440                 switch (ppd->linkinit_reason) {
10441                 case OPA_LINKINIT_REASON_LINKUP:
10442                         return "(LINKUP)";
10443                 case OPA_LINKINIT_REASON_FLAPPING:
10444                         return "(FLAPPING)";
10445                 case OPA_LINKINIT_OUTSIDE_POLICY:
10446                         return "(OUTSIDE_POLICY)";
10447                 case OPA_LINKINIT_QUARANTINED:
10448                         return "(QUARANTINED)";
10449                 case OPA_LINKINIT_INSUFIC_CAPABILITY:
10450                         return "(INSUFIC_CAPABILITY)";
10451                 default:
10452                         break;
10453                 }
10454         }
10455         return "";
10456 }
10457
10458 /*
10459  * driver_pstate - convert the driver's notion of a port's
10460  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10461  * Return -1 (converted to a u32) to indicate error.
10462  */
10463 u32 driver_pstate(struct hfi1_pportdata *ppd)
10464 {
10465         switch (ppd->host_link_state) {
10466         case HLS_UP_INIT:
10467         case HLS_UP_ARMED:
10468         case HLS_UP_ACTIVE:
10469                 return IB_PORTPHYSSTATE_LINKUP;
10470         case HLS_DN_POLL:
10471                 return IB_PORTPHYSSTATE_POLLING;
10472         case HLS_DN_DISABLE:
10473                 return IB_PORTPHYSSTATE_DISABLED;
10474         case HLS_DN_OFFLINE:
10475                 return OPA_PORTPHYSSTATE_OFFLINE;
10476         case HLS_VERIFY_CAP:
10477                 return IB_PORTPHYSSTATE_POLLING;
10478         case HLS_GOING_UP:
10479                 return IB_PORTPHYSSTATE_POLLING;
10480         case HLS_GOING_OFFLINE:
10481                 return OPA_PORTPHYSSTATE_OFFLINE;
10482         case HLS_LINK_COOLDOWN:
10483                 return OPA_PORTPHYSSTATE_OFFLINE;
10484         case HLS_DN_DOWNDEF:
10485         default:
10486                 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10487                            ppd->host_link_state);
10488                 return  -1;
10489         }
10490 }
10491
10492 /*
10493  * driver_lstate - convert the driver's notion of a port's
10494  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10495  * (converted to a u32) to indicate error.
10496  */
10497 u32 driver_lstate(struct hfi1_pportdata *ppd)
10498 {
10499         if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10500                 return IB_PORT_DOWN;
10501
10502         switch (ppd->host_link_state & HLS_UP) {
10503         case HLS_UP_INIT:
10504                 return IB_PORT_INIT;
10505         case HLS_UP_ARMED:
10506                 return IB_PORT_ARMED;
10507         case HLS_UP_ACTIVE:
10508                 return IB_PORT_ACTIVE;
10509         default:
10510                 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10511                            ppd->host_link_state);
10512         return -1;
10513         }
10514 }
10515
10516 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10517                           u8 neigh_reason, u8 rem_reason)
10518 {
10519         if (ppd->local_link_down_reason.latest == 0 &&
10520             ppd->neigh_link_down_reason.latest == 0) {
10521                 ppd->local_link_down_reason.latest = lcl_reason;
10522                 ppd->neigh_link_down_reason.latest = neigh_reason;
10523                 ppd->remote_link_down_reason = rem_reason;
10524         }
10525 }
10526
10527 /*
10528  * Verify if BCT for data VLs is non-zero.
10529  */
10530 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10531 {
10532         return !!ppd->actual_vls_operational;
10533 }
10534
10535 /*
10536  * Change the physical and/or logical link state.
10537  *
10538  * Do not call this routine while inside an interrupt.  It contains
10539  * calls to routines that can take multiple seconds to finish.
10540  *
10541  * Returns 0 on success, -errno on failure.
10542  */
10543 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10544 {
10545         struct hfi1_devdata *dd = ppd->dd;
10546         struct ib_event event = {.device = NULL};
10547         int ret1, ret = 0;
10548         int orig_new_state, poll_bounce;
10549
10550         mutex_lock(&ppd->hls_lock);
10551
10552         orig_new_state = state;
10553         if (state == HLS_DN_DOWNDEF)
10554                 state = dd->link_default;
10555
10556         /* interpret poll -> poll as a link bounce */
10557         poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10558                       state == HLS_DN_POLL;
10559
10560         dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10561                     link_state_name(ppd->host_link_state),
10562                     link_state_name(orig_new_state),
10563                     poll_bounce ? "(bounce) " : "",
10564                     link_state_reason_name(ppd, state));
10565
10566         /*
10567          * If we're going to a (HLS_*) link state that implies the logical
10568          * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10569          * reset is_sm_config_started to 0.
10570          */
10571         if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10572                 ppd->is_sm_config_started = 0;
10573
10574         /*
10575          * Do nothing if the states match.  Let a poll to poll link bounce
10576          * go through.
10577          */
10578         if (ppd->host_link_state == state && !poll_bounce)
10579                 goto done;
10580
10581         switch (state) {
10582         case HLS_UP_INIT:
10583                 if (ppd->host_link_state == HLS_DN_POLL &&
10584                     (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10585                         /*
10586                          * Quick link up jumps from polling to here.
10587                          *
10588                          * Whether in normal or loopback mode, the
10589                          * simulator jumps from polling to link up.
10590                          * Accept that here.
10591                          */
10592                         /* OK */
10593                 } else if (ppd->host_link_state != HLS_GOING_UP) {
10594                         goto unexpected;
10595                 }
10596
10597                 /*
10598                  * Wait for Link_Up physical state.
10599                  * Physical and Logical states should already be
10600                  * be transitioned to LinkUp and LinkInit respectively.
10601                  */
10602                 ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10603                 if (ret) {
10604                         dd_dev_err(dd,
10605                                    "%s: physical state did not change to LINK-UP\n",
10606                                    __func__);
10607                         break;
10608                 }
10609
10610                 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10611                 if (ret) {
10612                         dd_dev_err(dd,
10613                                    "%s: logical state did not change to INIT\n",
10614                                    __func__);
10615                         break;
10616                 }
10617
10618                 /* clear old transient LINKINIT_REASON code */
10619                 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10620                         ppd->linkinit_reason =
10621                                 OPA_LINKINIT_REASON_LINKUP;
10622
10623                 /* enable the port */
10624                 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10625
10626                 handle_linkup_change(dd, 1);
10627                 ppd->host_link_state = HLS_UP_INIT;
10628                 break;
10629         case HLS_UP_ARMED:
10630                 if (ppd->host_link_state != HLS_UP_INIT)
10631                         goto unexpected;
10632
10633                 if (!data_vls_operational(ppd)) {
10634                         dd_dev_err(dd,
10635                                    "%s: data VLs not operational\n", __func__);
10636                         ret = -EINVAL;
10637                         break;
10638                 }
10639
10640                 set_logical_state(dd, LSTATE_ARMED);
10641                 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10642                 if (ret) {
10643                         dd_dev_err(dd,
10644                                    "%s: logical state did not change to ARMED\n",
10645                                    __func__);
10646                         break;
10647                 }
10648                 ppd->host_link_state = HLS_UP_ARMED;
10649                 /*
10650                  * The simulator does not currently implement SMA messages,
10651                  * so neighbor_normal is not set.  Set it here when we first
10652                  * move to Armed.
10653                  */
10654                 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10655                         ppd->neighbor_normal = 1;
10656                 break;
10657         case HLS_UP_ACTIVE:
10658                 if (ppd->host_link_state != HLS_UP_ARMED)
10659                         goto unexpected;
10660
10661                 set_logical_state(dd, LSTATE_ACTIVE);
10662                 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10663                 if (ret) {
10664                         dd_dev_err(dd,
10665                                    "%s: logical state did not change to ACTIVE\n",
10666                                    __func__);
10667                 } else {
10668                         /* tell all engines to go running */
10669                         sdma_all_running(dd);
10670                         ppd->host_link_state = HLS_UP_ACTIVE;
10671
10672                         /* Signal the IB layer that the port has went active */
10673                         event.device = &dd->verbs_dev.rdi.ibdev;
10674                         event.element.port_num = ppd->port;
10675                         event.event = IB_EVENT_PORT_ACTIVE;
10676                 }
10677                 break;
10678         case HLS_DN_POLL:
10679                 if ((ppd->host_link_state == HLS_DN_DISABLE ||
10680                      ppd->host_link_state == HLS_DN_OFFLINE) &&
10681                     dd->dc_shutdown)
10682                         dc_start(dd);
10683                 /* Hand LED control to the DC */
10684                 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10685
10686                 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10687                         u8 tmp = ppd->link_enabled;
10688
10689                         ret = goto_offline(ppd, ppd->remote_link_down_reason);
10690                         if (ret) {
10691                                 ppd->link_enabled = tmp;
10692                                 break;
10693                         }
10694                         ppd->remote_link_down_reason = 0;
10695
10696                         if (ppd->driver_link_ready)
10697                                 ppd->link_enabled = 1;
10698                 }
10699
10700                 set_all_slowpath(ppd->dd);
10701                 ret = set_local_link_attributes(ppd);
10702                 if (ret)
10703                         break;
10704
10705                 ppd->port_error_action = 0;
10706                 ppd->host_link_state = HLS_DN_POLL;
10707
10708                 if (quick_linkup) {
10709                         /* quick linkup does not go into polling */
10710                         ret = do_quick_linkup(dd);
10711                 } else {
10712                         ret1 = set_physical_link_state(dd, PLS_POLLING);
10713                         if (ret1 != HCMD_SUCCESS) {
10714                                 dd_dev_err(dd,
10715                                            "Failed to transition to Polling link state, return 0x%x\n",
10716                                            ret1);
10717                                 ret = -EINVAL;
10718                         }
10719                 }
10720                 ppd->offline_disabled_reason =
10721                         HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10722                 /*
10723                  * If an error occurred above, go back to offline.  The
10724                  * caller may reschedule another attempt.
10725                  */
10726                 if (ret)
10727                         goto_offline(ppd, 0);
10728                 else
10729                         log_physical_state(ppd, PLS_POLLING);
10730                 break;
10731         case HLS_DN_DISABLE:
10732                 /* link is disabled */
10733                 ppd->link_enabled = 0;
10734
10735                 /* allow any state to transition to disabled */
10736
10737                 /* must transition to offline first */
10738                 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10739                         ret = goto_offline(ppd, ppd->remote_link_down_reason);
10740                         if (ret)
10741                                 break;
10742                         ppd->remote_link_down_reason = 0;
10743                 }
10744
10745                 if (!dd->dc_shutdown) {
10746                         ret1 = set_physical_link_state(dd, PLS_DISABLED);
10747                         if (ret1 != HCMD_SUCCESS) {
10748                                 dd_dev_err(dd,
10749                                            "Failed to transition to Disabled link state, return 0x%x\n",
10750                                            ret1);
10751                                 ret = -EINVAL;
10752                                 break;
10753                         }
10754                         ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10755                         if (ret) {
10756                                 dd_dev_err(dd,
10757                                            "%s: physical state did not change to DISABLED\n",
10758                                            __func__);
10759                                 break;
10760                         }
10761                         dc_shutdown(dd);
10762                 }
10763                 ppd->host_link_state = HLS_DN_DISABLE;
10764                 break;
10765         case HLS_DN_OFFLINE:
10766                 if (ppd->host_link_state == HLS_DN_DISABLE)
10767                         dc_start(dd);
10768
10769                 /* allow any state to transition to offline */
10770                 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10771                 if (!ret)
10772                         ppd->remote_link_down_reason = 0;
10773                 break;
10774         case HLS_VERIFY_CAP:
10775                 if (ppd->host_link_state != HLS_DN_POLL)
10776                         goto unexpected;
10777                 ppd->host_link_state = HLS_VERIFY_CAP;
10778                 log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10779                 break;
10780         case HLS_GOING_UP:
10781                 if (ppd->host_link_state != HLS_VERIFY_CAP)
10782                         goto unexpected;
10783
10784                 ret1 = set_physical_link_state(dd, PLS_LINKUP);
10785                 if (ret1 != HCMD_SUCCESS) {
10786                         dd_dev_err(dd,
10787                                    "Failed to transition to link up state, return 0x%x\n",
10788                                    ret1);
10789                         ret = -EINVAL;
10790                         break;
10791                 }
10792                 ppd->host_link_state = HLS_GOING_UP;
10793                 break;
10794
10795         case HLS_GOING_OFFLINE:         /* transient within goto_offline() */
10796         case HLS_LINK_COOLDOWN:         /* transient within goto_offline() */
10797         default:
10798                 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10799                             __func__, state);
10800                 ret = -EINVAL;
10801                 break;
10802         }
10803
10804         goto done;
10805
10806 unexpected:
10807         dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10808                    __func__, link_state_name(ppd->host_link_state),
10809                    link_state_name(state));
10810         ret = -EINVAL;
10811
10812 done:
10813         mutex_unlock(&ppd->hls_lock);
10814
10815         if (event.device)
10816                 ib_dispatch_event(&event);
10817
10818         return ret;
10819 }
10820
10821 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10822 {
10823         u64 reg;
10824         int ret = 0;
10825
10826         switch (which) {
10827         case HFI1_IB_CFG_LIDLMC:
10828                 set_lidlmc(ppd);
10829                 break;
10830         case HFI1_IB_CFG_VL_HIGH_LIMIT:
10831                 /*
10832                  * The VL Arbitrator high limit is sent in units of 4k
10833                  * bytes, while HFI stores it in units of 64 bytes.
10834                  */
10835                 val *= 4096 / 64;
10836                 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10837                         << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10838                 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10839                 break;
10840         case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10841                 /* HFI only supports POLL as the default link down state */
10842                 if (val != HLS_DN_POLL)
10843                         ret = -EINVAL;
10844                 break;
10845         case HFI1_IB_CFG_OP_VLS:
10846                 if (ppd->vls_operational != val) {
10847                         ppd->vls_operational = val;
10848                         if (!ppd->port)
10849                                 ret = -EINVAL;
10850                 }
10851                 break;
10852         /*
10853          * For link width, link width downgrade, and speed enable, always AND
10854          * the setting with what is actually supported.  This has two benefits.
10855          * First, enabled can't have unsupported values, no matter what the
10856          * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10857          * "fill in with your supported value" have all the bits in the
10858          * field set, so simply ANDing with supported has the desired result.
10859          */
10860         case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10861                 ppd->link_width_enabled = val & ppd->link_width_supported;
10862                 break;
10863         case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10864                 ppd->link_width_downgrade_enabled =
10865                                 val & ppd->link_width_downgrade_supported;
10866                 break;
10867         case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10868                 ppd->link_speed_enabled = val & ppd->link_speed_supported;
10869                 break;
10870         case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10871                 /*
10872                  * HFI does not follow IB specs, save this value
10873                  * so we can report it, if asked.
10874                  */
10875                 ppd->overrun_threshold = val;
10876                 break;
10877         case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10878                 /*
10879                  * HFI does not follow IB specs, save this value
10880                  * so we can report it, if asked.
10881                  */
10882                 ppd->phy_error_threshold = val;
10883                 break;
10884
10885         case HFI1_IB_CFG_MTU:
10886                 set_send_length(ppd);
10887                 break;
10888
10889         case HFI1_IB_CFG_PKEYS:
10890                 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10891                         set_partition_keys(ppd);
10892                 break;
10893
10894         default:
10895                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10896                         dd_dev_info(ppd->dd,
10897                                     "%s: which %s, val 0x%x: not implemented\n",
10898                                     __func__, ib_cfg_name(which), val);
10899                 break;
10900         }
10901         return ret;
10902 }
10903
10904 /* begin functions related to vl arbitration table caching */
10905 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10906 {
10907         int i;
10908
10909         BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10910                         VL_ARB_LOW_PRIO_TABLE_SIZE);
10911         BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10912                         VL_ARB_HIGH_PRIO_TABLE_SIZE);
10913
10914         /*
10915          * Note that we always return values directly from the
10916          * 'vl_arb_cache' (and do no CSR reads) in response to a
10917          * 'Get(VLArbTable)'. This is obviously correct after a
10918          * 'Set(VLArbTable)', since the cache will then be up to
10919          * date. But it's also correct prior to any 'Set(VLArbTable)'
10920          * since then both the cache, and the relevant h/w registers
10921          * will be zeroed.
10922          */
10923
10924         for (i = 0; i < MAX_PRIO_TABLE; i++)
10925                 spin_lock_init(&ppd->vl_arb_cache[i].lock);
10926 }
10927
10928 /*
10929  * vl_arb_lock_cache
10930  *
10931  * All other vl_arb_* functions should be called only after locking
10932  * the cache.
10933  */
10934 static inline struct vl_arb_cache *
10935 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10936 {
10937         if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10938                 return NULL;
10939         spin_lock(&ppd->vl_arb_cache[idx].lock);
10940         return &ppd->vl_arb_cache[idx];
10941 }
10942
10943 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10944 {
10945         spin_unlock(&ppd->vl_arb_cache[idx].lock);
10946 }
10947
10948 static void vl_arb_get_cache(struct vl_arb_cache *cache,
10949                              struct ib_vl_weight_elem *vl)
10950 {
10951         memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10952 }
10953
10954 static void vl_arb_set_cache(struct vl_arb_cache *cache,
10955                              struct ib_vl_weight_elem *vl)
10956 {
10957         memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10958 }
10959
10960 static int vl_arb_match_cache(struct vl_arb_cache *cache,
10961                               struct ib_vl_weight_elem *vl)
10962 {
10963         return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10964 }
10965
10966 /* end functions related to vl arbitration table caching */
10967
10968 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10969                           u32 size, struct ib_vl_weight_elem *vl)
10970 {
10971         struct hfi1_devdata *dd = ppd->dd;
10972         u64 reg;
10973         unsigned int i, is_up = 0;
10974         int drain, ret = 0;
10975
10976         mutex_lock(&ppd->hls_lock);
10977
10978         if (ppd->host_link_state & HLS_UP)
10979                 is_up = 1;
10980
10981         drain = !is_ax(dd) && is_up;
10982
10983         if (drain)
10984                 /*
10985                  * Before adjusting VL arbitration weights, empty per-VL
10986                  * FIFOs, otherwise a packet whose VL weight is being
10987                  * set to 0 could get stuck in a FIFO with no chance to
10988                  * egress.
10989                  */
10990                 ret = stop_drain_data_vls(dd);
10991
10992         if (ret) {
10993                 dd_dev_err(
10994                         dd,
10995                         "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
10996                         __func__);
10997                 goto err;
10998         }
10999
11000         for (i = 0; i < size; i++, vl++) {
11001                 /*
11002                  * NOTE: The low priority shift and mask are used here, but
11003                  * they are the same for both the low and high registers.
11004                  */
11005                 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11006                                 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11007                       | (((u64)vl->weight
11008                                 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11009                                 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11010                 write_csr(dd, target + (i * 8), reg);
11011         }
11012         pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11013
11014         if (drain)
11015                 open_fill_data_vls(dd); /* reopen all VLs */
11016
11017 err:
11018         mutex_unlock(&ppd->hls_lock);
11019
11020         return ret;
11021 }
11022
11023 /*
11024  * Read one credit merge VL register.
11025  */
11026 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11027                            struct vl_limit *vll)
11028 {
11029         u64 reg = read_csr(dd, csr);
11030
11031         vll->dedicated = cpu_to_be16(
11032                 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11033                 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11034         vll->shared = cpu_to_be16(
11035                 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11036                 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11037 }
11038
11039 /*
11040  * Read the current credit merge limits.
11041  */
11042 static int get_buffer_control(struct hfi1_devdata *dd,
11043                               struct buffer_control *bc, u16 *overall_limit)
11044 {
11045         u64 reg;
11046         int i;
11047
11048         /* not all entries are filled in */
11049         memset(bc, 0, sizeof(*bc));
11050
11051         /* OPA and HFI have a 1-1 mapping */
11052         for (i = 0; i < TXE_NUM_DATA_VL; i++)
11053                 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11054
11055         /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11056         read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11057
11058         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11059         bc->overall_shared_limit = cpu_to_be16(
11060                 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11061                 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11062         if (overall_limit)
11063                 *overall_limit = (reg
11064                         >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11065                         & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11066         return sizeof(struct buffer_control);
11067 }
11068
11069 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11070 {
11071         u64 reg;
11072         int i;
11073
11074         /* each register contains 16 SC->VLnt mappings, 4 bits each */
11075         reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11076         for (i = 0; i < sizeof(u64); i++) {
11077                 u8 byte = *(((u8 *)&reg) + i);
11078
11079                 dp->vlnt[2 * i] = byte & 0xf;
11080                 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11081         }
11082
11083         reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11084         for (i = 0; i < sizeof(u64); i++) {
11085                 u8 byte = *(((u8 *)&reg) + i);
11086
11087                 dp->vlnt[16 + (2 * i)] = byte & 0xf;
11088                 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11089         }
11090         return sizeof(struct sc2vlnt);
11091 }
11092
11093 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11094                               struct ib_vl_weight_elem *vl)
11095 {
11096         unsigned int i;
11097
11098         for (i = 0; i < nelems; i++, vl++) {
11099                 vl->vl = 0xf;
11100                 vl->weight = 0;
11101         }
11102 }
11103
11104 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11105 {
11106         write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11107                   DC_SC_VL_VAL(15_0,
11108                                0, dp->vlnt[0] & 0xf,
11109                                1, dp->vlnt[1] & 0xf,
11110                                2, dp->vlnt[2] & 0xf,
11111                                3, dp->vlnt[3] & 0xf,
11112                                4, dp->vlnt[4] & 0xf,
11113                                5, dp->vlnt[5] & 0xf,
11114                                6, dp->vlnt[6] & 0xf,
11115                                7, dp->vlnt[7] & 0xf,
11116                                8, dp->vlnt[8] & 0xf,
11117                                9, dp->vlnt[9] & 0xf,
11118                                10, dp->vlnt[10] & 0xf,
11119                                11, dp->vlnt[11] & 0xf,
11120                                12, dp->vlnt[12] & 0xf,
11121                                13, dp->vlnt[13] & 0xf,
11122                                14, dp->vlnt[14] & 0xf,
11123                                15, dp->vlnt[15] & 0xf));
11124         write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11125                   DC_SC_VL_VAL(31_16,
11126                                16, dp->vlnt[16] & 0xf,
11127                                17, dp->vlnt[17] & 0xf,
11128                                18, dp->vlnt[18] & 0xf,
11129                                19, dp->vlnt[19] & 0xf,
11130                                20, dp->vlnt[20] & 0xf,
11131                                21, dp->vlnt[21] & 0xf,
11132                                22, dp->vlnt[22] & 0xf,
11133                                23, dp->vlnt[23] & 0xf,
11134                                24, dp->vlnt[24] & 0xf,
11135                                25, dp->vlnt[25] & 0xf,
11136                                26, dp->vlnt[26] & 0xf,
11137                                27, dp->vlnt[27] & 0xf,
11138                                28, dp->vlnt[28] & 0xf,
11139                                29, dp->vlnt[29] & 0xf,
11140                                30, dp->vlnt[30] & 0xf,
11141                                31, dp->vlnt[31] & 0xf));
11142 }
11143
11144 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11145                         u16 limit)
11146 {
11147         if (limit != 0)
11148                 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11149                             what, (int)limit, idx);
11150 }
11151
11152 /* change only the shared limit portion of SendCmGLobalCredit */
11153 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11154 {
11155         u64 reg;
11156
11157         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11158         reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11159         reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11160         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11161 }
11162
11163 /* change only the total credit limit portion of SendCmGLobalCredit */
11164 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11165 {
11166         u64 reg;
11167
11168         reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11169         reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11170         reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11171         write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11172 }
11173
11174 /* set the given per-VL shared limit */
11175 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11176 {
11177         u64 reg;
11178         u32 addr;
11179
11180         if (vl < TXE_NUM_DATA_VL)
11181                 addr = SEND_CM_CREDIT_VL + (8 * vl);
11182         else
11183                 addr = SEND_CM_CREDIT_VL15;
11184
11185         reg = read_csr(dd, addr);
11186         reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11187         reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11188         write_csr(dd, addr, reg);
11189 }
11190
11191 /* set the given per-VL dedicated limit */
11192 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11193 {
11194         u64 reg;
11195         u32 addr;
11196
11197         if (vl < TXE_NUM_DATA_VL)
11198                 addr = SEND_CM_CREDIT_VL + (8 * vl);
11199         else
11200                 addr = SEND_CM_CREDIT_VL15;
11201
11202         reg = read_csr(dd, addr);
11203         reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11204         reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11205         write_csr(dd, addr, reg);
11206 }
11207
11208 /* spin until the given per-VL status mask bits clear */
11209 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11210                                      const char *which)
11211 {
11212         unsigned long timeout;
11213         u64 reg;
11214
11215         timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11216         while (1) {
11217                 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11218
11219                 if (reg == 0)
11220                         return; /* success */
11221                 if (time_after(jiffies, timeout))
11222                         break;          /* timed out */
11223                 udelay(1);
11224         }
11225
11226         dd_dev_err(dd,
11227                    "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11228                    which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11229         /*
11230          * If this occurs, it is likely there was a credit loss on the link.
11231          * The only recovery from that is a link bounce.
11232          */
11233         dd_dev_err(dd,
11234                    "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11235 }
11236
11237 /*
11238  * The number of credits on the VLs may be changed while everything
11239  * is "live", but the following algorithm must be followed due to
11240  * how the hardware is actually implemented.  In particular,
11241  * Return_Credit_Status[] is the only correct status check.
11242  *
11243  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11244  *     set Global_Shared_Credit_Limit = 0
11245  *     use_all_vl = 1
11246  * mask0 = all VLs that are changing either dedicated or shared limits
11247  * set Shared_Limit[mask0] = 0
11248  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11249  * if (changing any dedicated limit)
11250  *     mask1 = all VLs that are lowering dedicated limits
11251  *     lower Dedicated_Limit[mask1]
11252  *     spin until Return_Credit_Status[mask1] == 0
11253  *     raise Dedicated_Limits
11254  * raise Shared_Limits
11255  * raise Global_Shared_Credit_Limit
11256  *
11257  * lower = if the new limit is lower, set the limit to the new value
11258  * raise = if the new limit is higher than the current value (may be changed
11259  *      earlier in the algorithm), set the new limit to the new value
11260  */
11261 int set_buffer_control(struct hfi1_pportdata *ppd,
11262                        struct buffer_control *new_bc)
11263 {
11264         struct hfi1_devdata *dd = ppd->dd;
11265         u64 changing_mask, ld_mask, stat_mask;
11266         int change_count;
11267         int i, use_all_mask;
11268         int this_shared_changing;
11269         int vl_count = 0, ret;
11270         /*
11271          * A0: add the variable any_shared_limit_changing below and in the
11272          * algorithm above.  If removing A0 support, it can be removed.
11273          */
11274         int any_shared_limit_changing;
11275         struct buffer_control cur_bc;
11276         u8 changing[OPA_MAX_VLS];
11277         u8 lowering_dedicated[OPA_MAX_VLS];
11278         u16 cur_total;
11279         u32 new_total = 0;
11280         const u64 all_mask =
11281         SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11282          | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11283          | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11284          | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11285          | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11286          | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11287          | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11288          | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11289          | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11290
11291 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11292 #define NUM_USABLE_VLS 16       /* look at VL15 and less */
11293
11294         /* find the new total credits, do sanity check on unused VLs */
11295         for (i = 0; i < OPA_MAX_VLS; i++) {
11296                 if (valid_vl(i)) {
11297                         new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11298                         continue;
11299                 }
11300                 nonzero_msg(dd, i, "dedicated",
11301                             be16_to_cpu(new_bc->vl[i].dedicated));
11302                 nonzero_msg(dd, i, "shared",
11303                             be16_to_cpu(new_bc->vl[i].shared));
11304                 new_bc->vl[i].dedicated = 0;
11305                 new_bc->vl[i].shared = 0;
11306         }
11307         new_total += be16_to_cpu(new_bc->overall_shared_limit);
11308
11309         /* fetch the current values */
11310         get_buffer_control(dd, &cur_bc, &cur_total);
11311
11312         /*
11313          * Create the masks we will use.
11314          */
11315         memset(changing, 0, sizeof(changing));
11316         memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11317         /*
11318          * NOTE: Assumes that the individual VL bits are adjacent and in
11319          * increasing order
11320          */
11321         stat_mask =
11322                 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11323         changing_mask = 0;
11324         ld_mask = 0;
11325         change_count = 0;
11326         any_shared_limit_changing = 0;
11327         for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11328                 if (!valid_vl(i))
11329                         continue;
11330                 this_shared_changing = new_bc->vl[i].shared
11331                                                 != cur_bc.vl[i].shared;
11332                 if (this_shared_changing)
11333                         any_shared_limit_changing = 1;
11334                 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11335                     this_shared_changing) {
11336                         changing[i] = 1;
11337                         changing_mask |= stat_mask;
11338                         change_count++;
11339                 }
11340                 if (be16_to_cpu(new_bc->vl[i].dedicated) <
11341                                         be16_to_cpu(cur_bc.vl[i].dedicated)) {
11342                         lowering_dedicated[i] = 1;
11343                         ld_mask |= stat_mask;
11344                 }
11345         }
11346
11347         /* bracket the credit change with a total adjustment */
11348         if (new_total > cur_total)
11349                 set_global_limit(dd, new_total);
11350
11351         /*
11352          * Start the credit change algorithm.
11353          */
11354         use_all_mask = 0;
11355         if ((be16_to_cpu(new_bc->overall_shared_limit) <
11356              be16_to_cpu(cur_bc.overall_shared_limit)) ||
11357             (is_ax(dd) && any_shared_limit_changing)) {
11358                 set_global_shared(dd, 0);
11359                 cur_bc.overall_shared_limit = 0;
11360                 use_all_mask = 1;
11361         }
11362
11363         for (i = 0; i < NUM_USABLE_VLS; i++) {
11364                 if (!valid_vl(i))
11365                         continue;
11366
11367                 if (changing[i]) {
11368                         set_vl_shared(dd, i, 0);
11369                         cur_bc.vl[i].shared = 0;
11370                 }
11371         }
11372
11373         wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11374                                  "shared");
11375
11376         if (change_count > 0) {
11377                 for (i = 0; i < NUM_USABLE_VLS; i++) {
11378                         if (!valid_vl(i))
11379                                 continue;
11380
11381                         if (lowering_dedicated[i]) {
11382                                 set_vl_dedicated(dd, i,
11383                                                  be16_to_cpu(new_bc->
11384                                                              vl[i].dedicated));
11385                                 cur_bc.vl[i].dedicated =
11386                                                 new_bc->vl[i].dedicated;
11387                         }
11388                 }
11389
11390                 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11391
11392                 /* now raise all dedicated that are going up */
11393                 for (i = 0; i < NUM_USABLE_VLS; i++) {
11394                         if (!valid_vl(i))
11395                                 continue;
11396
11397                         if (be16_to_cpu(new_bc->vl[i].dedicated) >
11398                                         be16_to_cpu(cur_bc.vl[i].dedicated))
11399                                 set_vl_dedicated(dd, i,
11400                                                  be16_to_cpu(new_bc->
11401                                                              vl[i].dedicated));
11402                 }
11403         }
11404
11405         /* next raise all shared that are going up */
11406         for (i = 0; i < NUM_USABLE_VLS; i++) {
11407                 if (!valid_vl(i))
11408                         continue;
11409
11410                 if (be16_to_cpu(new_bc->vl[i].shared) >
11411                                 be16_to_cpu(cur_bc.vl[i].shared))
11412                         set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11413         }
11414
11415         /* finally raise the global shared */
11416         if (be16_to_cpu(new_bc->overall_shared_limit) >
11417             be16_to_cpu(cur_bc.overall_shared_limit))
11418                 set_global_shared(dd,
11419                                   be16_to_cpu(new_bc->overall_shared_limit));
11420
11421         /* bracket the credit change with a total adjustment */
11422         if (new_total < cur_total)
11423                 set_global_limit(dd, new_total);
11424
11425         /*
11426          * Determine the actual number of operational VLS using the number of
11427          * dedicated and shared credits for each VL.
11428          */
11429         if (change_count > 0) {
11430                 for (i = 0; i < TXE_NUM_DATA_VL; i++)
11431                         if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11432                             be16_to_cpu(new_bc->vl[i].shared) > 0)
11433                                 vl_count++;
11434                 ppd->actual_vls_operational = vl_count;
11435                 ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11436                                     ppd->actual_vls_operational :
11437                                     ppd->vls_operational,
11438                                     NULL);
11439                 if (ret == 0)
11440                         ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11441                                            ppd->actual_vls_operational :
11442                                            ppd->vls_operational, NULL);
11443                 if (ret)
11444                         return ret;
11445         }
11446         return 0;
11447 }
11448
11449 /*
11450  * Read the given fabric manager table. Return the size of the
11451  * table (in bytes) on success, and a negative error code on
11452  * failure.
11453  */
11454 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11455
11456 {
11457         int size;
11458         struct vl_arb_cache *vlc;
11459
11460         switch (which) {
11461         case FM_TBL_VL_HIGH_ARB:
11462                 size = 256;
11463                 /*
11464                  * OPA specifies 128 elements (of 2 bytes each), though
11465                  * HFI supports only 16 elements in h/w.
11466                  */
11467                 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11468                 vl_arb_get_cache(vlc, t);
11469                 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11470                 break;
11471         case FM_TBL_VL_LOW_ARB:
11472                 size = 256;
11473                 /*
11474                  * OPA specifies 128 elements (of 2 bytes each), though
11475                  * HFI supports only 16 elements in h/w.
11476                  */
11477                 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11478                 vl_arb_get_cache(vlc, t);
11479                 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11480                 break;
11481         case FM_TBL_BUFFER_CONTROL:
11482                 size = get_buffer_control(ppd->dd, t, NULL);
11483                 break;
11484         case FM_TBL_SC2VLNT:
11485                 size = get_sc2vlnt(ppd->dd, t);
11486                 break;
11487         case FM_TBL_VL_PREEMPT_ELEMS:
11488                 size = 256;
11489                 /* OPA specifies 128 elements, of 2 bytes each */
11490                 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11491                 break;
11492         case FM_TBL_VL_PREEMPT_MATRIX:
11493                 size = 256;
11494                 /*
11495                  * OPA specifies that this is the same size as the VL
11496                  * arbitration tables (i.e., 256 bytes).
11497                  */
11498                 break;
11499         default:
11500                 return -EINVAL;
11501         }
11502         return size;
11503 }
11504
11505 /*
11506  * Write the given fabric manager table.
11507  */
11508 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11509 {
11510         int ret = 0;
11511         struct vl_arb_cache *vlc;
11512
11513         switch (which) {
11514         case FM_TBL_VL_HIGH_ARB:
11515                 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11516                 if (vl_arb_match_cache(vlc, t)) {
11517                         vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11518                         break;
11519                 }
11520                 vl_arb_set_cache(vlc, t);
11521                 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11522                 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11523                                      VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11524                 break;
11525         case FM_TBL_VL_LOW_ARB:
11526                 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11527                 if (vl_arb_match_cache(vlc, t)) {
11528                         vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11529                         break;
11530                 }
11531                 vl_arb_set_cache(vlc, t);
11532                 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11533                 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11534                                      VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11535                 break;
11536         case FM_TBL_BUFFER_CONTROL:
11537                 ret = set_buffer_control(ppd, t);
11538                 break;
11539         case FM_TBL_SC2VLNT:
11540                 set_sc2vlnt(ppd->dd, t);
11541                 break;
11542         default:
11543                 ret = -EINVAL;
11544         }
11545         return ret;
11546 }
11547
11548 /*
11549  * Disable all data VLs.
11550  *
11551  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11552  */
11553 static int disable_data_vls(struct hfi1_devdata *dd)
11554 {
11555         if (is_ax(dd))
11556                 return 1;
11557
11558         pio_send_control(dd, PSC_DATA_VL_DISABLE);
11559
11560         return 0;
11561 }
11562
11563 /*
11564  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11565  * Just re-enables all data VLs (the "fill" part happens
11566  * automatically - the name was chosen for symmetry with
11567  * stop_drain_data_vls()).
11568  *
11569  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11570  */
11571 int open_fill_data_vls(struct hfi1_devdata *dd)
11572 {
11573         if (is_ax(dd))
11574                 return 1;
11575
11576         pio_send_control(dd, PSC_DATA_VL_ENABLE);
11577
11578         return 0;
11579 }
11580
11581 /*
11582  * drain_data_vls() - assumes that disable_data_vls() has been called,
11583  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11584  * engines to drop to 0.
11585  */
11586 static void drain_data_vls(struct hfi1_devdata *dd)
11587 {
11588         sc_wait(dd);
11589         sdma_wait(dd);
11590         pause_for_credit_return(dd);
11591 }
11592
11593 /*
11594  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11595  *
11596  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11597  * meant to be used like this:
11598  *
11599  * stop_drain_data_vls(dd);
11600  * // do things with per-VL resources
11601  * open_fill_data_vls(dd);
11602  */
11603 int stop_drain_data_vls(struct hfi1_devdata *dd)
11604 {
11605         int ret;
11606
11607         ret = disable_data_vls(dd);
11608         if (ret == 0)
11609                 drain_data_vls(dd);
11610
11611         return ret;
11612 }
11613
11614 /*
11615  * Convert a nanosecond time to a cclock count.  No matter how slow
11616  * the cclock, a non-zero ns will always have a non-zero result.
11617  */
11618 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11619 {
11620         u32 cclocks;
11621
11622         if (dd->icode == ICODE_FPGA_EMULATION)
11623                 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11624         else  /* simulation pretends to be ASIC */
11625                 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11626         if (ns && !cclocks)     /* if ns nonzero, must be at least 1 */
11627                 cclocks = 1;
11628         return cclocks;
11629 }
11630
11631 /*
11632  * Convert a cclock count to nanoseconds. Not matter how slow
11633  * the cclock, a non-zero cclocks will always have a non-zero result.
11634  */
11635 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11636 {
11637         u32 ns;
11638
11639         if (dd->icode == ICODE_FPGA_EMULATION)
11640                 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11641         else  /* simulation pretends to be ASIC */
11642                 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11643         if (cclocks && !ns)
11644                 ns = 1;
11645         return ns;
11646 }
11647
11648 /*
11649  * Dynamically adjust the receive interrupt timeout for a context based on
11650  * incoming packet rate.
11651  *
11652  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11653  */
11654 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11655 {
11656         struct hfi1_devdata *dd = rcd->dd;
11657         u32 timeout = rcd->rcvavail_timeout;
11658
11659         /*
11660          * This algorithm doubles or halves the timeout depending on whether
11661          * the number of packets received in this interrupt were less than or
11662          * greater equal the interrupt count.
11663          *
11664          * The calculations below do not allow a steady state to be achieved.
11665          * Only at the endpoints it is possible to have an unchanging
11666          * timeout.
11667          */
11668         if (npkts < rcv_intr_count) {
11669                 /*
11670                  * Not enough packets arrived before the timeout, adjust
11671                  * timeout downward.
11672                  */
11673                 if (timeout < 2) /* already at minimum? */
11674                         return;
11675                 timeout >>= 1;
11676         } else {
11677                 /*
11678                  * More than enough packets arrived before the timeout, adjust
11679                  * timeout upward.
11680                  */
11681                 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11682                         return;
11683                 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11684         }
11685
11686         rcd->rcvavail_timeout = timeout;
11687         /*
11688          * timeout cannot be larger than rcv_intr_timeout_csr which has already
11689          * been verified to be in range
11690          */
11691         write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11692                         (u64)timeout <<
11693                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11694 }
11695
11696 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11697                     u32 intr_adjust, u32 npkts)
11698 {
11699         struct hfi1_devdata *dd = rcd->dd;
11700         u64 reg;
11701         u32 ctxt = rcd->ctxt;
11702
11703         /*
11704          * Need to write timeout register before updating RcvHdrHead to ensure
11705          * that a new value is used when the HW decides to restart counting.
11706          */
11707         if (intr_adjust)
11708                 adjust_rcv_timeout(rcd, npkts);
11709         if (updegr) {
11710                 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11711                         << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11712                 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11713         }
11714         mmiowb();
11715         reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11716                 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11717                         << RCV_HDR_HEAD_HEAD_SHIFT);
11718         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11719         mmiowb();
11720 }
11721
11722 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11723 {
11724         u32 head, tail;
11725
11726         head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11727                 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11728
11729         if (rcd->rcvhdrtail_kvaddr)
11730                 tail = get_rcvhdrtail(rcd);
11731         else
11732                 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11733
11734         return head == tail;
11735 }
11736
11737 /*
11738  * Context Control and Receive Array encoding for buffer size:
11739  *      0x0 invalid
11740  *      0x1   4 KB
11741  *      0x2   8 KB
11742  *      0x3  16 KB
11743  *      0x4  32 KB
11744  *      0x5  64 KB
11745  *      0x6 128 KB
11746  *      0x7 256 KB
11747  *      0x8 512 KB (Receive Array only)
11748  *      0x9   1 MB (Receive Array only)
11749  *      0xa   2 MB (Receive Array only)
11750  *
11751  *      0xB-0xF - reserved (Receive Array only)
11752  *
11753  *
11754  * This routine assumes that the value has already been sanity checked.
11755  */
11756 static u32 encoded_size(u32 size)
11757 {
11758         switch (size) {
11759         case   4 * 1024: return 0x1;
11760         case   8 * 1024: return 0x2;
11761         case  16 * 1024: return 0x3;
11762         case  32 * 1024: return 0x4;
11763         case  64 * 1024: return 0x5;
11764         case 128 * 1024: return 0x6;
11765         case 256 * 1024: return 0x7;
11766         case 512 * 1024: return 0x8;
11767         case   1 * 1024 * 1024: return 0x9;
11768         case   2 * 1024 * 1024: return 0xa;
11769         }
11770         return 0x1;     /* if invalid, go with the minimum size */
11771 }
11772
11773 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11774                   struct hfi1_ctxtdata *rcd)
11775 {
11776         u64 rcvctrl, reg;
11777         int did_enable = 0;
11778         u16 ctxt;
11779
11780         if (!rcd)
11781                 return;
11782
11783         ctxt = rcd->ctxt;
11784
11785         hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11786
11787         rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11788         /* if the context already enabled, don't do the extra steps */
11789         if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11790             !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11791                 /* reset the tail and hdr addresses, and sequence count */
11792                 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11793                                 rcd->rcvhdrq_dma);
11794                 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
11795                         write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11796                                         rcd->rcvhdrqtailaddr_dma);
11797                 rcd->seq_cnt = 1;
11798
11799                 /* reset the cached receive header queue head value */
11800                 rcd->head = 0;
11801
11802                 /*
11803                  * Zero the receive header queue so we don't get false
11804                  * positives when checking the sequence number.  The
11805                  * sequence numbers could land exactly on the same spot.
11806                  * E.g. a rcd restart before the receive header wrapped.
11807                  */
11808                 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11809
11810                 /* starting timeout */
11811                 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11812
11813                 /* enable the context */
11814                 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11815
11816                 /* clean the egr buffer size first */
11817                 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11818                 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11819                                 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11820                                         << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11821
11822                 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11823                 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11824                 did_enable = 1;
11825
11826                 /* zero RcvEgrIndexHead */
11827                 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11828
11829                 /* set eager count and base index */
11830                 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11831                         & RCV_EGR_CTRL_EGR_CNT_MASK)
11832                        << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11833                         (((rcd->eager_base >> RCV_SHIFT)
11834                           & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11835                          << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11836                 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11837
11838                 /*
11839                  * Set TID (expected) count and base index.
11840                  * rcd->expected_count is set to individual RcvArray entries,
11841                  * not pairs, and the CSR takes a pair-count in groups of
11842                  * four, so divide by 8.
11843                  */
11844                 reg = (((rcd->expected_count >> RCV_SHIFT)
11845                                         & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11846                                 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11847                       (((rcd->expected_base >> RCV_SHIFT)
11848                                         & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11849                                 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11850                 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11851                 if (ctxt == HFI1_CTRL_CTXT)
11852                         write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11853         }
11854         if (op & HFI1_RCVCTRL_CTXT_DIS) {
11855                 write_csr(dd, RCV_VL15, 0);
11856                 /*
11857                  * When receive context is being disabled turn on tail
11858                  * update with a dummy tail address and then disable
11859                  * receive context.
11860                  */
11861                 if (dd->rcvhdrtail_dummy_dma) {
11862                         write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11863                                         dd->rcvhdrtail_dummy_dma);
11864                         /* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11865                         rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11866                 }
11867
11868                 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11869         }
11870         if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11871                 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11872         if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11873                 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11874         if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_dma)
11875                 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11876         if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11877                 /* See comment on RcvCtxtCtrl.TailUpd above */
11878                 if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11879                         rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11880         }
11881         if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11882                 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11883         if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11884                 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11885         if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11886                 /*
11887                  * In one-packet-per-eager mode, the size comes from
11888                  * the RcvArray entry.
11889                  */
11890                 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11891                 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11892         }
11893         if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11894                 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11895         if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11896                 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11897         if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11898                 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11899         if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11900                 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11901         if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11902                 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11903         rcd->rcvctrl = rcvctrl;
11904         hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11905         write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11906
11907         /* work around sticky RcvCtxtStatus.BlockedRHQFull */
11908         if (did_enable &&
11909             (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11910                 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11911                 if (reg != 0) {
11912                         dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11913                                     ctxt, reg);
11914                         read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11915                         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11916                         write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11917                         read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11918                         reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11919                         dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11920                                     ctxt, reg, reg == 0 ? "not" : "still");
11921                 }
11922         }
11923
11924         if (did_enable) {
11925                 /*
11926                  * The interrupt timeout and count must be set after
11927                  * the context is enabled to take effect.
11928                  */
11929                 /* set interrupt timeout */
11930                 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11931                                 (u64)rcd->rcvavail_timeout <<
11932                                 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11933
11934                 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11935                 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11936                 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11937         }
11938
11939         if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11940                 /*
11941                  * If the context has been disabled and the Tail Update has
11942                  * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11943                  * so it doesn't contain an address that is invalid.
11944                  */
11945                 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11946                                 dd->rcvhdrtail_dummy_dma);
11947 }
11948
11949 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
11950 {
11951         int ret;
11952         u64 val = 0;
11953
11954         if (namep) {
11955                 ret = dd->cntrnameslen;
11956                 *namep = dd->cntrnames;
11957         } else {
11958                 const struct cntr_entry *entry;
11959                 int i, j;
11960
11961                 ret = (dd->ndevcntrs) * sizeof(u64);
11962
11963                 /* Get the start of the block of counters */
11964                 *cntrp = dd->cntrs;
11965
11966                 /*
11967                  * Now go and fill in each counter in the block.
11968                  */
11969                 for (i = 0; i < DEV_CNTR_LAST; i++) {
11970                         entry = &dev_cntrs[i];
11971                         hfi1_cdbg(CNTR, "reading %s", entry->name);
11972                         if (entry->flags & CNTR_DISABLED) {
11973                                 /* Nothing */
11974                                 hfi1_cdbg(CNTR, "\tDisabled\n");
11975                         } else {
11976                                 if (entry->flags & CNTR_VL) {
11977                                         hfi1_cdbg(CNTR, "\tPer VL\n");
11978                                         for (j = 0; j < C_VL_COUNT; j++) {
11979                                                 val = entry->rw_cntr(entry,
11980                                                                   dd, j,
11981                                                                   CNTR_MODE_R,
11982                                                                   0);
11983                                                 hfi1_cdbg(
11984                                                    CNTR,
11985                                                    "\t\tRead 0x%llx for %d\n",
11986                                                    val, j);
11987                                                 dd->cntrs[entry->offset + j] =
11988                                                                             val;
11989                                         }
11990                                 } else if (entry->flags & CNTR_SDMA) {
11991                                         hfi1_cdbg(CNTR,
11992                                                   "\t Per SDMA Engine\n");
11993                                         for (j = 0; j < dd->chip_sdma_engines;
11994                                              j++) {
11995                                                 val =
11996                                                 entry->rw_cntr(entry, dd, j,
11997                                                                CNTR_MODE_R, 0);
11998                                                 hfi1_cdbg(CNTR,
11999                                                           "\t\tRead 0x%llx for %d\n",
12000                                                           val, j);
12001                                                 dd->cntrs[entry->offset + j] =
12002                                                                         val;
12003                                         }
12004                                 } else {
12005                                         val = entry->rw_cntr(entry, dd,
12006                                                         CNTR_INVALID_VL,
12007                                                         CNTR_MODE_R, 0);
12008                                         dd->cntrs[entry->offset] = val;
12009                                         hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12010                                 }
12011                         }
12012                 }
12013         }
12014         return ret;
12015 }
12016
12017 /*
12018  * Used by sysfs to create files for hfi stats to read
12019  */
12020 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12021 {
12022         int ret;
12023         u64 val = 0;
12024
12025         if (namep) {
12026                 ret = ppd->dd->portcntrnameslen;
12027                 *namep = ppd->dd->portcntrnames;
12028         } else {
12029                 const struct cntr_entry *entry;
12030                 int i, j;
12031
12032                 ret = ppd->dd->nportcntrs * sizeof(u64);
12033                 *cntrp = ppd->cntrs;
12034
12035                 for (i = 0; i < PORT_CNTR_LAST; i++) {
12036                         entry = &port_cntrs[i];
12037                         hfi1_cdbg(CNTR, "reading %s", entry->name);
12038                         if (entry->flags & CNTR_DISABLED) {
12039                                 /* Nothing */
12040                                 hfi1_cdbg(CNTR, "\tDisabled\n");
12041                                 continue;
12042                         }
12043
12044                         if (entry->flags & CNTR_VL) {
12045                                 hfi1_cdbg(CNTR, "\tPer VL");
12046                                 for (j = 0; j < C_VL_COUNT; j++) {
12047                                         val = entry->rw_cntr(entry, ppd, j,
12048                                                                CNTR_MODE_R,
12049                                                                0);
12050                                         hfi1_cdbg(
12051                                            CNTR,
12052                                            "\t\tRead 0x%llx for %d",
12053                                            val, j);
12054                                         ppd->cntrs[entry->offset + j] = val;
12055                                 }
12056                         } else {
12057                                 val = entry->rw_cntr(entry, ppd,
12058                                                        CNTR_INVALID_VL,
12059                                                        CNTR_MODE_R,
12060                                                        0);
12061                                 ppd->cntrs[entry->offset] = val;
12062                                 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12063                         }
12064                 }
12065         }
12066         return ret;
12067 }
12068
12069 static void free_cntrs(struct hfi1_devdata *dd)
12070 {
12071         struct hfi1_pportdata *ppd;
12072         int i;
12073
12074         if (dd->synth_stats_timer.data)
12075                 del_timer_sync(&dd->synth_stats_timer);
12076         dd->synth_stats_timer.data = 0;
12077         ppd = (struct hfi1_pportdata *)(dd + 1);
12078         for (i = 0; i < dd->num_pports; i++, ppd++) {
12079                 kfree(ppd->cntrs);
12080                 kfree(ppd->scntrs);
12081                 free_percpu(ppd->ibport_data.rvp.rc_acks);
12082                 free_percpu(ppd->ibport_data.rvp.rc_qacks);
12083                 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12084                 ppd->cntrs = NULL;
12085                 ppd->scntrs = NULL;
12086                 ppd->ibport_data.rvp.rc_acks = NULL;
12087                 ppd->ibport_data.rvp.rc_qacks = NULL;
12088                 ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12089         }
12090         kfree(dd->portcntrnames);
12091         dd->portcntrnames = NULL;
12092         kfree(dd->cntrs);
12093         dd->cntrs = NULL;
12094         kfree(dd->scntrs);
12095         dd->scntrs = NULL;
12096         kfree(dd->cntrnames);
12097         dd->cntrnames = NULL;
12098         if (dd->update_cntr_wq) {
12099                 destroy_workqueue(dd->update_cntr_wq);
12100                 dd->update_cntr_wq = NULL;
12101         }
12102 }
12103
12104 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12105                               u64 *psval, void *context, int vl)
12106 {
12107         u64 val;
12108         u64 sval = *psval;
12109
12110         if (entry->flags & CNTR_DISABLED) {
12111                 dd_dev_err(dd, "Counter %s not enabled", entry->name);
12112                 return 0;
12113         }
12114
12115         hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12116
12117         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12118
12119         /* If its a synthetic counter there is more work we need to do */
12120         if (entry->flags & CNTR_SYNTH) {
12121                 if (sval == CNTR_MAX) {
12122                         /* No need to read already saturated */
12123                         return CNTR_MAX;
12124                 }
12125
12126                 if (entry->flags & CNTR_32BIT) {
12127                         /* 32bit counters can wrap multiple times */
12128                         u64 upper = sval >> 32;
12129                         u64 lower = (sval << 32) >> 32;
12130
12131                         if (lower > val) { /* hw wrapped */
12132                                 if (upper == CNTR_32BIT_MAX)
12133                                         val = CNTR_MAX;
12134                                 else
12135                                         upper++;
12136                         }
12137
12138                         if (val != CNTR_MAX)
12139                                 val = (upper << 32) | val;
12140
12141                 } else {
12142                         /* If we rolled we are saturated */
12143                         if ((val < sval) || (val > CNTR_MAX))
12144                                 val = CNTR_MAX;
12145                 }
12146         }
12147
12148         *psval = val;
12149
12150         hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12151
12152         return val;
12153 }
12154
12155 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12156                                struct cntr_entry *entry,
12157                                u64 *psval, void *context, int vl, u64 data)
12158 {
12159         u64 val;
12160
12161         if (entry->flags & CNTR_DISABLED) {
12162                 dd_dev_err(dd, "Counter %s not enabled", entry->name);
12163                 return 0;
12164         }
12165
12166         hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12167
12168         if (entry->flags & CNTR_SYNTH) {
12169                 *psval = data;
12170                 if (entry->flags & CNTR_32BIT) {
12171                         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12172                                              (data << 32) >> 32);
12173                         val = data; /* return the full 64bit value */
12174                 } else {
12175                         val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12176                                              data);
12177                 }
12178         } else {
12179                 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12180         }
12181
12182         *psval = val;
12183
12184         hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12185
12186         return val;
12187 }
12188
12189 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12190 {
12191         struct cntr_entry *entry;
12192         u64 *sval;
12193
12194         entry = &dev_cntrs[index];
12195         sval = dd->scntrs + entry->offset;
12196
12197         if (vl != CNTR_INVALID_VL)
12198                 sval += vl;
12199
12200         return read_dev_port_cntr(dd, entry, sval, dd, vl);
12201 }
12202
12203 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12204 {
12205         struct cntr_entry *entry;
12206         u64 *sval;
12207
12208         entry = &dev_cntrs[index];
12209         sval = dd->scntrs + entry->offset;
12210
12211         if (vl != CNTR_INVALID_VL)
12212                 sval += vl;
12213
12214         return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12215 }
12216
12217 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12218 {
12219         struct cntr_entry *entry;
12220         u64 *sval;
12221
12222         entry = &port_cntrs[index];
12223         sval = ppd->scntrs + entry->offset;
12224
12225         if (vl != CNTR_INVALID_VL)
12226                 sval += vl;
12227
12228         if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12229             (index <= C_RCV_HDR_OVF_LAST)) {
12230                 /* We do not want to bother for disabled contexts */
12231                 return 0;
12232         }
12233
12234         return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12235 }
12236
12237 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12238 {
12239         struct cntr_entry *entry;
12240         u64 *sval;
12241
12242         entry = &port_cntrs[index];
12243         sval = ppd->scntrs + entry->offset;
12244
12245         if (vl != CNTR_INVALID_VL)
12246                 sval += vl;
12247
12248         if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12249             (index <= C_RCV_HDR_OVF_LAST)) {
12250                 /* We do not want to bother for disabled contexts */
12251                 return 0;
12252         }
12253
12254         return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12255 }
12256
12257 static void do_update_synth_timer(struct work_struct *work)
12258 {
12259         u64 cur_tx;
12260         u64 cur_rx;
12261         u64 total_flits;
12262         u8 update = 0;
12263         int i, j, vl;
12264         struct hfi1_pportdata *ppd;
12265         struct cntr_entry *entry;
12266         struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12267                                                update_cntr_work);
12268
12269         /*
12270          * Rather than keep beating on the CSRs pick a minimal set that we can
12271          * check to watch for potential roll over. We can do this by looking at
12272          * the number of flits sent/recv. If the total flits exceeds 32bits then
12273          * we have to iterate all the counters and update.
12274          */
12275         entry = &dev_cntrs[C_DC_RCV_FLITS];
12276         cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12277
12278         entry = &dev_cntrs[C_DC_XMIT_FLITS];
12279         cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12280
12281         hfi1_cdbg(
12282             CNTR,
12283             "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12284             dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12285
12286         if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12287                 /*
12288                  * May not be strictly necessary to update but it won't hurt and
12289                  * simplifies the logic here.
12290                  */
12291                 update = 1;
12292                 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12293                           dd->unit);
12294         } else {
12295                 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12296                 hfi1_cdbg(CNTR,
12297                           "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12298                           total_flits, (u64)CNTR_32BIT_MAX);
12299                 if (total_flits >= CNTR_32BIT_MAX) {
12300                         hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12301                                   dd->unit);
12302                         update = 1;
12303                 }
12304         }
12305
12306         if (update) {
12307                 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12308                 for (i = 0; i < DEV_CNTR_LAST; i++) {
12309                         entry = &dev_cntrs[i];
12310                         if (entry->flags & CNTR_VL) {
12311                                 for (vl = 0; vl < C_VL_COUNT; vl++)
12312                                         read_dev_cntr(dd, i, vl);
12313                         } else {
12314                                 read_dev_cntr(dd, i, CNTR_INVALID_VL);
12315                         }
12316                 }
12317                 ppd = (struct hfi1_pportdata *)(dd + 1);
12318                 for (i = 0; i < dd->num_pports; i++, ppd++) {
12319                         for (j = 0; j < PORT_CNTR_LAST; j++) {
12320                                 entry = &port_cntrs[j];
12321                                 if (entry->flags & CNTR_VL) {
12322                                         for (vl = 0; vl < C_VL_COUNT; vl++)
12323                                                 read_port_cntr(ppd, j, vl);
12324                                 } else {
12325                                         read_port_cntr(ppd, j, CNTR_INVALID_VL);
12326                                 }
12327                         }
12328                 }
12329
12330                 /*
12331                  * We want the value in the register. The goal is to keep track
12332                  * of the number of "ticks" not the counter value. In other
12333                  * words if the register rolls we want to notice it and go ahead
12334                  * and force an update.
12335                  */
12336                 entry = &dev_cntrs[C_DC_XMIT_FLITS];
12337                 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12338                                                 CNTR_MODE_R, 0);
12339
12340                 entry = &dev_cntrs[C_DC_RCV_FLITS];
12341                 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12342                                                 CNTR_MODE_R, 0);
12343
12344                 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12345                           dd->unit, dd->last_tx, dd->last_rx);
12346
12347         } else {
12348                 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12349         }
12350 }
12351
12352 static void update_synth_timer(unsigned long opaque)
12353 {
12354         struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
12355
12356         queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12357         mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12358 }
12359
12360 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12361 static int init_cntrs(struct hfi1_devdata *dd)
12362 {
12363         int i, rcv_ctxts, j;
12364         size_t sz;
12365         char *p;
12366         char name[C_MAX_NAME];
12367         struct hfi1_pportdata *ppd;
12368         const char *bit_type_32 = ",32";
12369         const int bit_type_32_sz = strlen(bit_type_32);
12370
12371         /* set up the stats timer; the add_timer is done at the end */
12372         setup_timer(&dd->synth_stats_timer, update_synth_timer,
12373                     (unsigned long)dd);
12374
12375         /***********************/
12376         /* per device counters */
12377         /***********************/
12378
12379         /* size names and determine how many we have*/
12380         dd->ndevcntrs = 0;
12381         sz = 0;
12382
12383         for (i = 0; i < DEV_CNTR_LAST; i++) {
12384                 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12385                         hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12386                         continue;
12387                 }
12388
12389                 if (dev_cntrs[i].flags & CNTR_VL) {
12390                         dev_cntrs[i].offset = dd->ndevcntrs;
12391                         for (j = 0; j < C_VL_COUNT; j++) {
12392                                 snprintf(name, C_MAX_NAME, "%s%d",
12393                                          dev_cntrs[i].name, vl_from_idx(j));
12394                                 sz += strlen(name);
12395                                 /* Add ",32" for 32-bit counters */
12396                                 if (dev_cntrs[i].flags & CNTR_32BIT)
12397                                         sz += bit_type_32_sz;
12398                                 sz++;
12399                                 dd->ndevcntrs++;
12400                         }
12401                 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12402                         dev_cntrs[i].offset = dd->ndevcntrs;
12403                         for (j = 0; j < dd->chip_sdma_engines; j++) {
12404                                 snprintf(name, C_MAX_NAME, "%s%d",
12405                                          dev_cntrs[i].name, j);
12406                                 sz += strlen(name);
12407                                 /* Add ",32" for 32-bit counters */
12408                                 if (dev_cntrs[i].flags & CNTR_32BIT)
12409                                         sz += bit_type_32_sz;
12410                                 sz++;
12411                                 dd->ndevcntrs++;
12412                         }
12413                 } else {
12414                         /* +1 for newline. */
12415                         sz += strlen(dev_cntrs[i].name) + 1;
12416                         /* Add ",32" for 32-bit counters */
12417                         if (dev_cntrs[i].flags & CNTR_32BIT)
12418                                 sz += bit_type_32_sz;
12419                         dev_cntrs[i].offset = dd->ndevcntrs;
12420                         dd->ndevcntrs++;
12421                 }
12422         }
12423
12424         /* allocate space for the counter values */
12425         dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12426         if (!dd->cntrs)
12427                 goto bail;
12428
12429         dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12430         if (!dd->scntrs)
12431                 goto bail;
12432
12433         /* allocate space for the counter names */
12434         dd->cntrnameslen = sz;
12435         dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12436         if (!dd->cntrnames)
12437                 goto bail;
12438
12439         /* fill in the names */
12440         for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12441                 if (dev_cntrs[i].flags & CNTR_DISABLED) {
12442                         /* Nothing */
12443                 } else if (dev_cntrs[i].flags & CNTR_VL) {
12444                         for (j = 0; j < C_VL_COUNT; j++) {
12445                                 snprintf(name, C_MAX_NAME, "%s%d",
12446                                          dev_cntrs[i].name,
12447                                          vl_from_idx(j));
12448                                 memcpy(p, name, strlen(name));
12449                                 p += strlen(name);
12450
12451                                 /* Counter is 32 bits */
12452                                 if (dev_cntrs[i].flags & CNTR_32BIT) {
12453                                         memcpy(p, bit_type_32, bit_type_32_sz);
12454                                         p += bit_type_32_sz;
12455                                 }
12456
12457                                 *p++ = '\n';
12458                         }
12459                 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
12460                         for (j = 0; j < dd->chip_sdma_engines; j++) {
12461                                 snprintf(name, C_MAX_NAME, "%s%d",
12462                                          dev_cntrs[i].name, j);
12463                                 memcpy(p, name, strlen(name));
12464                                 p += strlen(name);
12465
12466                                 /* Counter is 32 bits */
12467                                 if (dev_cntrs[i].flags & CNTR_32BIT) {
12468                                         memcpy(p, bit_type_32, bit_type_32_sz);
12469                                         p += bit_type_32_sz;
12470                                 }
12471
12472                                 *p++ = '\n';
12473                         }
12474                 } else {
12475                         memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12476                         p += strlen(dev_cntrs[i].name);
12477
12478                         /* Counter is 32 bits */
12479                         if (dev_cntrs[i].flags & CNTR_32BIT) {
12480                                 memcpy(p, bit_type_32, bit_type_32_sz);
12481                                 p += bit_type_32_sz;
12482                         }
12483
12484                         *p++ = '\n';
12485                 }
12486         }
12487
12488         /*********************/
12489         /* per port counters */
12490         /*********************/
12491
12492         /*
12493          * Go through the counters for the overflows and disable the ones we
12494          * don't need. This varies based on platform so we need to do it
12495          * dynamically here.
12496          */
12497         rcv_ctxts = dd->num_rcv_contexts;
12498         for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12499              i <= C_RCV_HDR_OVF_LAST; i++) {
12500                 port_cntrs[i].flags |= CNTR_DISABLED;
12501         }
12502
12503         /* size port counter names and determine how many we have*/
12504         sz = 0;
12505         dd->nportcntrs = 0;
12506         for (i = 0; i < PORT_CNTR_LAST; i++) {
12507                 if (port_cntrs[i].flags & CNTR_DISABLED) {
12508                         hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12509                         continue;
12510                 }
12511
12512                 if (port_cntrs[i].flags & CNTR_VL) {
12513                         port_cntrs[i].offset = dd->nportcntrs;
12514                         for (j = 0; j < C_VL_COUNT; j++) {
12515                                 snprintf(name, C_MAX_NAME, "%s%d",
12516                                          port_cntrs[i].name, vl_from_idx(j));
12517                                 sz += strlen(name);
12518                                 /* Add ",32" for 32-bit counters */
12519                                 if (port_cntrs[i].flags & CNTR_32BIT)
12520                                         sz += bit_type_32_sz;
12521                                 sz++;
12522                                 dd->nportcntrs++;
12523                         }
12524                 } else {
12525                         /* +1 for newline */
12526                         sz += strlen(port_cntrs[i].name) + 1;
12527                         /* Add ",32" for 32-bit counters */
12528                         if (port_cntrs[i].flags & CNTR_32BIT)
12529                                 sz += bit_type_32_sz;
12530                         port_cntrs[i].offset = dd->nportcntrs;
12531                         dd->nportcntrs++;
12532                 }
12533         }
12534
12535         /* allocate space for the counter names */
12536         dd->portcntrnameslen = sz;
12537         dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12538         if (!dd->portcntrnames)
12539                 goto bail;
12540
12541         /* fill in port cntr names */
12542         for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12543                 if (port_cntrs[i].flags & CNTR_DISABLED)
12544                         continue;
12545
12546                 if (port_cntrs[i].flags & CNTR_VL) {
12547                         for (j = 0; j < C_VL_COUNT; j++) {
12548                                 snprintf(name, C_MAX_NAME, "%s%d",
12549                                          port_cntrs[i].name, vl_from_idx(j));
12550                                 memcpy(p, name, strlen(name));
12551                                 p += strlen(name);
12552
12553                                 /* Counter is 32 bits */
12554                                 if (port_cntrs[i].flags & CNTR_32BIT) {
12555                                         memcpy(p, bit_type_32, bit_type_32_sz);
12556                                         p += bit_type_32_sz;
12557                                 }
12558
12559                                 *p++ = '\n';
12560                         }
12561                 } else {
12562                         memcpy(p, port_cntrs[i].name,
12563                                strlen(port_cntrs[i].name));
12564                         p += strlen(port_cntrs[i].name);
12565
12566                         /* Counter is 32 bits */
12567                         if (port_cntrs[i].flags & CNTR_32BIT) {
12568                                 memcpy(p, bit_type_32, bit_type_32_sz);
12569                                 p += bit_type_32_sz;
12570                         }
12571
12572                         *p++ = '\n';
12573                 }
12574         }
12575
12576         /* allocate per port storage for counter values */
12577         ppd = (struct hfi1_pportdata *)(dd + 1);
12578         for (i = 0; i < dd->num_pports; i++, ppd++) {
12579                 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12580                 if (!ppd->cntrs)
12581                         goto bail;
12582
12583                 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12584                 if (!ppd->scntrs)
12585                         goto bail;
12586         }
12587
12588         /* CPU counters need to be allocated and zeroed */
12589         if (init_cpu_counters(dd))
12590                 goto bail;
12591
12592         dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12593                                                      WQ_MEM_RECLAIM, dd->unit);
12594         if (!dd->update_cntr_wq)
12595                 goto bail;
12596
12597         INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12598
12599         mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12600         return 0;
12601 bail:
12602         free_cntrs(dd);
12603         return -ENOMEM;
12604 }
12605
12606 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12607 {
12608         switch (chip_lstate) {
12609         default:
12610                 dd_dev_err(dd,
12611                            "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12612                            chip_lstate);
12613                 /* fall through */
12614         case LSTATE_DOWN:
12615                 return IB_PORT_DOWN;
12616         case LSTATE_INIT:
12617                 return IB_PORT_INIT;
12618         case LSTATE_ARMED:
12619                 return IB_PORT_ARMED;
12620         case LSTATE_ACTIVE:
12621                 return IB_PORT_ACTIVE;
12622         }
12623 }
12624
12625 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12626 {
12627         /* look at the HFI meta-states only */
12628         switch (chip_pstate & 0xf0) {
12629         default:
12630                 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12631                            chip_pstate);
12632                 /* fall through */
12633         case PLS_DISABLED:
12634                 return IB_PORTPHYSSTATE_DISABLED;
12635         case PLS_OFFLINE:
12636                 return OPA_PORTPHYSSTATE_OFFLINE;
12637         case PLS_POLLING:
12638                 return IB_PORTPHYSSTATE_POLLING;
12639         case PLS_CONFIGPHY:
12640                 return IB_PORTPHYSSTATE_TRAINING;
12641         case PLS_LINKUP:
12642                 return IB_PORTPHYSSTATE_LINKUP;
12643         case PLS_PHYTEST:
12644                 return IB_PORTPHYSSTATE_PHY_TEST;
12645         }
12646 }
12647
12648 /* return the OPA port logical state name */
12649 const char *opa_lstate_name(u32 lstate)
12650 {
12651         static const char * const port_logical_names[] = {
12652                 "PORT_NOP",
12653                 "PORT_DOWN",
12654                 "PORT_INIT",
12655                 "PORT_ARMED",
12656                 "PORT_ACTIVE",
12657                 "PORT_ACTIVE_DEFER",
12658         };
12659         if (lstate < ARRAY_SIZE(port_logical_names))
12660                 return port_logical_names[lstate];
12661         return "unknown";
12662 }
12663
12664 /* return the OPA port physical state name */
12665 const char *opa_pstate_name(u32 pstate)
12666 {
12667         static const char * const port_physical_names[] = {
12668                 "PHYS_NOP",
12669                 "reserved1",
12670                 "PHYS_POLL",
12671                 "PHYS_DISABLED",
12672                 "PHYS_TRAINING",
12673                 "PHYS_LINKUP",
12674                 "PHYS_LINK_ERR_RECOVER",
12675                 "PHYS_PHY_TEST",
12676                 "reserved8",
12677                 "PHYS_OFFLINE",
12678                 "PHYS_GANGED",
12679                 "PHYS_TEST",
12680         };
12681         if (pstate < ARRAY_SIZE(port_physical_names))
12682                 return port_physical_names[pstate];
12683         return "unknown";
12684 }
12685
12686 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12687 {
12688         /*
12689          * Set port status flags in the page mapped into userspace
12690          * memory. Do it here to ensure a reliable state - this is
12691          * the only function called by all state handling code.
12692          * Always set the flags due to the fact that the cache value
12693          * might have been changed explicitly outside of this
12694          * function.
12695          */
12696         if (ppd->statusp) {
12697                 switch (state) {
12698                 case IB_PORT_DOWN:
12699                 case IB_PORT_INIT:
12700                         *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12701                                            HFI1_STATUS_IB_READY);
12702                         break;
12703                 case IB_PORT_ARMED:
12704                         *ppd->statusp |= HFI1_STATUS_IB_CONF;
12705                         break;
12706                 case IB_PORT_ACTIVE:
12707                         *ppd->statusp |= HFI1_STATUS_IB_READY;
12708                         break;
12709                 }
12710         }
12711 }
12712
12713 /*
12714  * wait_logical_linkstate - wait for an IB link state change to occur
12715  * @ppd: port device
12716  * @state: the state to wait for
12717  * @msecs: the number of milliseconds to wait
12718  *
12719  * Wait up to msecs milliseconds for IB link state change to occur.
12720  * For now, take the easy polling route.
12721  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12722  */
12723 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12724                                   int msecs)
12725 {
12726         unsigned long timeout;
12727         u32 new_state;
12728
12729         timeout = jiffies + msecs_to_jiffies(msecs);
12730         while (1) {
12731                 new_state = chip_to_opa_lstate(ppd->dd,
12732                                                read_logical_state(ppd->dd));
12733                 if (new_state == state)
12734                         break;
12735                 if (time_after(jiffies, timeout)) {
12736                         dd_dev_err(ppd->dd,
12737                                    "timeout waiting for link state 0x%x\n",
12738                                    state);
12739                         return -ETIMEDOUT;
12740                 }
12741                 msleep(20);
12742         }
12743
12744         update_statusp(ppd, state);
12745         dd_dev_info(ppd->dd,
12746                     "logical state changed to %s (0x%x)\n",
12747                     opa_lstate_name(state),
12748                     state);
12749         return 0;
12750 }
12751
12752 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12753 {
12754         u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
12755
12756         dd_dev_info(ppd->dd,
12757                     "physical state changed to %s (0x%x), phy 0x%x\n",
12758                     opa_pstate_name(ib_pstate), ib_pstate, state);
12759 }
12760
12761 /*
12762  * Read the physical hardware link state and check if it matches host
12763  * drivers anticipated state.
12764  */
12765 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
12766 {
12767         u32 read_state = read_physical_state(ppd->dd);
12768
12769         if (read_state == state) {
12770                 log_state_transition(ppd, state);
12771         } else {
12772                 dd_dev_err(ppd->dd,
12773                            "anticipated phy link state 0x%x, read 0x%x\n",
12774                            state, read_state);
12775         }
12776 }
12777
12778 /*
12779  * wait_physical_linkstate - wait for an physical link state change to occur
12780  * @ppd: port device
12781  * @state: the state to wait for
12782  * @msecs: the number of milliseconds to wait
12783  *
12784  * Wait up to msecs milliseconds for physical link state change to occur.
12785  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12786  */
12787 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12788                                    int msecs)
12789 {
12790         u32 read_state;
12791         unsigned long timeout;
12792
12793         timeout = jiffies + msecs_to_jiffies(msecs);
12794         while (1) {
12795                 read_state = read_physical_state(ppd->dd);
12796                 if (read_state == state)
12797                         break;
12798                 if (time_after(jiffies, timeout)) {
12799                         dd_dev_err(ppd->dd,
12800                                    "timeout waiting for phy link state 0x%x\n",
12801                                    state);
12802                         return -ETIMEDOUT;
12803                 }
12804                 usleep_range(1950, 2050); /* sleep 2ms-ish */
12805         }
12806
12807         log_state_transition(ppd, state);
12808         return 0;
12809 }
12810
12811 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12812 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12813
12814 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12815 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12816
12817 void hfi1_init_ctxt(struct send_context *sc)
12818 {
12819         if (sc) {
12820                 struct hfi1_devdata *dd = sc->dd;
12821                 u64 reg;
12822                 u8 set = (sc->type == SC_USER ?
12823                           HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12824                           HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12825                 reg = read_kctxt_csr(dd, sc->hw_context,
12826                                      SEND_CTXT_CHECK_ENABLE);
12827                 if (set)
12828                         CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12829                 else
12830                         SET_STATIC_RATE_CONTROL_SMASK(reg);
12831                 write_kctxt_csr(dd, sc->hw_context,
12832                                 SEND_CTXT_CHECK_ENABLE, reg);
12833         }
12834 }
12835
12836 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12837 {
12838         int ret = 0;
12839         u64 reg;
12840
12841         if (dd->icode != ICODE_RTL_SILICON) {
12842                 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12843                         dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12844                                     __func__);
12845                 return -EINVAL;
12846         }
12847         reg = read_csr(dd, ASIC_STS_THERM);
12848         temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12849                       ASIC_STS_THERM_CURR_TEMP_MASK);
12850         temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12851                         ASIC_STS_THERM_LO_TEMP_MASK);
12852         temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12853                         ASIC_STS_THERM_HI_TEMP_MASK);
12854         temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12855                           ASIC_STS_THERM_CRIT_TEMP_MASK);
12856         /* triggers is a 3-bit value - 1 bit per trigger. */
12857         temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12858
12859         return ret;
12860 }
12861
12862 /* ========================================================================= */
12863
12864 /*
12865  * Enable/disable chip from delivering interrupts.
12866  */
12867 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12868 {
12869         int i;
12870
12871         /*
12872          * In HFI, the mask needs to be 1 to allow interrupts.
12873          */
12874         if (enable) {
12875                 /* enable all interrupts */
12876                 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12877                         write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
12878
12879                 init_qsfp_int(dd);
12880         } else {
12881                 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12882                         write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
12883         }
12884 }
12885
12886 /*
12887  * Clear all interrupt sources on the chip.
12888  */
12889 static void clear_all_interrupts(struct hfi1_devdata *dd)
12890 {
12891         int i;
12892
12893         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12894                 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
12895
12896         write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12897         write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12898         write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12899         write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12900         write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12901         write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12902         write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12903         for (i = 0; i < dd->chip_send_contexts; i++)
12904                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12905         for (i = 0; i < dd->chip_sdma_engines; i++)
12906                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12907
12908         write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12909         write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12910         write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12911 }
12912
12913 /* Move to pcie.c? */
12914 static void disable_intx(struct pci_dev *pdev)
12915 {
12916         pci_intx(pdev, 0);
12917 }
12918
12919 static void clean_up_interrupts(struct hfi1_devdata *dd)
12920 {
12921         int i;
12922
12923         /* remove irqs - must happen before disabling/turning off */
12924         if (dd->num_msix_entries) {
12925                 /* MSI-X */
12926                 struct hfi1_msix_entry *me = dd->msix_entries;
12927
12928                 for (i = 0; i < dd->num_msix_entries; i++, me++) {
12929                         if (!me->arg) /* => no irq, no affinity */
12930                                 continue;
12931                         hfi1_put_irq_affinity(dd, me);
12932                         pci_free_irq(dd->pcidev, i, me->arg);
12933                 }
12934
12935                 /* clean structures */
12936                 kfree(dd->msix_entries);
12937                 dd->msix_entries = NULL;
12938                 dd->num_msix_entries = 0;
12939         } else {
12940                 /* INTx */
12941                 if (dd->requested_intx_irq) {
12942                         pci_free_irq(dd->pcidev, 0, dd);
12943                         dd->requested_intx_irq = 0;
12944                 }
12945                 disable_intx(dd->pcidev);
12946         }
12947
12948         pci_free_irq_vectors(dd->pcidev);
12949 }
12950
12951 /*
12952  * Remap the interrupt source from the general handler to the given MSI-X
12953  * interrupt.
12954  */
12955 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
12956 {
12957         u64 reg;
12958         int m, n;
12959
12960         /* clear from the handled mask of the general interrupt */
12961         m = isrc / 64;
12962         n = isrc % 64;
12963         if (likely(m < CCE_NUM_INT_CSRS)) {
12964                 dd->gi_mask[m] &= ~((u64)1 << n);
12965         } else {
12966                 dd_dev_err(dd, "remap interrupt err\n");
12967                 return;
12968         }
12969
12970         /* direct the chip source to the given MSI-X interrupt */
12971         m = isrc / 8;
12972         n = isrc % 8;
12973         reg = read_csr(dd, CCE_INT_MAP + (8 * m));
12974         reg &= ~((u64)0xff << (8 * n));
12975         reg |= ((u64)msix_intr & 0xff) << (8 * n);
12976         write_csr(dd, CCE_INT_MAP + (8 * m), reg);
12977 }
12978
12979 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
12980                                   int engine, int msix_intr)
12981 {
12982         /*
12983          * SDMA engine interrupt sources grouped by type, rather than
12984          * engine.  Per-engine interrupts are as follows:
12985          *      SDMA
12986          *      SDMAProgress
12987          *      SDMAIdle
12988          */
12989         remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
12990                    msix_intr);
12991         remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
12992                    msix_intr);
12993         remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
12994                    msix_intr);
12995 }
12996
12997 static int request_intx_irq(struct hfi1_devdata *dd)
12998 {
12999         int ret;
13000
13001         ret = pci_request_irq(dd->pcidev, 0, general_interrupt, NULL, dd,
13002                               DRIVER_NAME "_%d", dd->unit);
13003         if (ret)
13004                 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
13005                            ret);
13006         else
13007                 dd->requested_intx_irq = 1;
13008         return ret;
13009 }
13010
13011 static int request_msix_irqs(struct hfi1_devdata *dd)
13012 {
13013         int first_general, last_general;
13014         int first_sdma, last_sdma;
13015         int first_rx, last_rx;
13016         int i, ret = 0;
13017
13018         /* calculate the ranges we are going to use */
13019         first_general = 0;
13020         last_general = first_general + 1;
13021         first_sdma = last_general;
13022         last_sdma = first_sdma + dd->num_sdma;
13023         first_rx = last_sdma;
13024         last_rx = first_rx + dd->n_krcv_queues + HFI1_NUM_VNIC_CTXT;
13025
13026         /* VNIC MSIx interrupts get mapped when VNIC contexts are created */
13027         dd->first_dyn_msix_idx = first_rx + dd->n_krcv_queues;
13028
13029         /*
13030          * Sanity check - the code expects all SDMA chip source
13031          * interrupts to be in the same CSR, starting at bit 0.  Verify
13032          * that this is true by checking the bit location of the start.
13033          */
13034         BUILD_BUG_ON(IS_SDMA_START % 64);
13035
13036         for (i = 0; i < dd->num_msix_entries; i++) {
13037                 struct hfi1_msix_entry *me = &dd->msix_entries[i];
13038                 const char *err_info;
13039                 irq_handler_t handler;
13040                 irq_handler_t thread = NULL;
13041                 void *arg = NULL;
13042                 int idx;
13043                 struct hfi1_ctxtdata *rcd = NULL;
13044                 struct sdma_engine *sde = NULL;
13045                 char name[MAX_NAME_SIZE];
13046
13047                 /* obtain the arguments to pci_request_irq */
13048                 if (first_general <= i && i < last_general) {
13049                         idx = i - first_general;
13050                         handler = general_interrupt;
13051                         arg = dd;
13052                         snprintf(name, sizeof(name),
13053                                  DRIVER_NAME "_%d", dd->unit);
13054                         err_info = "general";
13055                         me->type = IRQ_GENERAL;
13056                 } else if (first_sdma <= i && i < last_sdma) {
13057                         idx = i - first_sdma;
13058                         sde = &dd->per_sdma[idx];
13059                         handler = sdma_interrupt;
13060                         arg = sde;
13061                         snprintf(name, sizeof(name),
13062                                  DRIVER_NAME "_%d sdma%d", dd->unit, idx);
13063                         err_info = "sdma";
13064                         remap_sdma_interrupts(dd, idx, i);
13065                         me->type = IRQ_SDMA;
13066                 } else if (first_rx <= i && i < last_rx) {
13067                         idx = i - first_rx;
13068                         rcd = hfi1_rcd_get_by_index(dd, idx);
13069                         if (rcd) {
13070                                 /*
13071                                  * Set the interrupt register and mask for this
13072                                  * context's interrupt.
13073                                  */
13074                                 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13075                                 rcd->imask = ((u64)1) <<
13076                                           ((IS_RCVAVAIL_START + idx) % 64);
13077                                 handler = receive_context_interrupt;
13078                                 thread = receive_context_thread;
13079                                 arg = rcd;
13080                                 snprintf(name, sizeof(name),
13081                                          DRIVER_NAME "_%d kctxt%d",
13082                                          dd->unit, idx);
13083                                 err_info = "receive context";
13084                                 remap_intr(dd, IS_RCVAVAIL_START + idx, i);
13085                                 me->type = IRQ_RCVCTXT;
13086                                 rcd->msix_intr = i;
13087                                 hfi1_rcd_put(rcd);
13088                         }
13089                 } else {
13090                         /* not in our expected range - complain, then
13091                          * ignore it
13092                          */
13093                         dd_dev_err(dd,
13094                                    "Unexpected extra MSI-X interrupt %d\n", i);
13095                         continue;
13096                 }
13097                 /* no argument, no interrupt */
13098                 if (!arg)
13099                         continue;
13100                 /* make sure the name is terminated */
13101                 name[sizeof(name) - 1] = 0;
13102                 me->irq = pci_irq_vector(dd->pcidev, i);
13103                 ret = pci_request_irq(dd->pcidev, i, handler, thread, arg,
13104                                       name);
13105                 if (ret) {
13106                         dd_dev_err(dd,
13107                                    "unable to allocate %s interrupt, irq %d, index %d, err %d\n",
13108                                    err_info, me->irq, idx, ret);
13109                         return ret;
13110                 }
13111                 /*
13112                  * assign arg after pci_request_irq call, so it will be
13113                  * cleaned up
13114                  */
13115                 me->arg = arg;
13116
13117                 ret = hfi1_get_irq_affinity(dd, me);
13118                 if (ret)
13119                         dd_dev_err(dd, "unable to pin IRQ %d\n", ret);
13120         }
13121
13122         return ret;
13123 }
13124
13125 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd)
13126 {
13127         int i;
13128
13129         if (!dd->num_msix_entries) {
13130                 synchronize_irq(pci_irq_vector(dd->pcidev, 0));
13131                 return;
13132         }
13133
13134         for (i = 0; i < dd->vnic.num_ctxt; i++) {
13135                 struct hfi1_ctxtdata *rcd = dd->vnic.ctxt[i];
13136                 struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13137
13138                 synchronize_irq(me->irq);
13139         }
13140 }
13141
13142 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13143 {
13144         struct hfi1_devdata *dd = rcd->dd;
13145         struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13146
13147         if (!me->arg) /* => no irq, no affinity */
13148                 return;
13149
13150         hfi1_put_irq_affinity(dd, me);
13151         pci_free_irq(dd->pcidev, rcd->msix_intr, me->arg);
13152
13153         me->arg = NULL;
13154 }
13155
13156 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13157 {
13158         struct hfi1_devdata *dd = rcd->dd;
13159         struct hfi1_msix_entry *me;
13160         int idx = rcd->ctxt;
13161         void *arg = rcd;
13162         int ret;
13163
13164         rcd->msix_intr = dd->vnic.msix_idx++;
13165         me = &dd->msix_entries[rcd->msix_intr];
13166
13167         /*
13168          * Set the interrupt register and mask for this
13169          * context's interrupt.
13170          */
13171         rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13172         rcd->imask = ((u64)1) <<
13173                   ((IS_RCVAVAIL_START + idx) % 64);
13174         me->type = IRQ_RCVCTXT;
13175         me->irq = pci_irq_vector(dd->pcidev, rcd->msix_intr);
13176         remap_intr(dd, IS_RCVAVAIL_START + idx, rcd->msix_intr);
13177
13178         ret = pci_request_irq(dd->pcidev, rcd->msix_intr,
13179                               receive_context_interrupt,
13180                               receive_context_thread, arg,
13181                               DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
13182         if (ret) {
13183                 dd_dev_err(dd, "vnic irq request (irq %d, idx %d) fail %d\n",
13184                            me->irq, idx, ret);
13185                 return;
13186         }
13187         /*
13188          * assign arg after pci_request_irq call, so it will be
13189          * cleaned up
13190          */
13191         me->arg = arg;
13192
13193         ret = hfi1_get_irq_affinity(dd, me);
13194         if (ret) {
13195                 dd_dev_err(dd,
13196                            "unable to pin IRQ %d\n", ret);
13197                 pci_free_irq(dd->pcidev, rcd->msix_intr, me->arg);
13198         }
13199 }
13200
13201 /*
13202  * Set the general handler to accept all interrupts, remap all
13203  * chip interrupts back to MSI-X 0.
13204  */
13205 static void reset_interrupts(struct hfi1_devdata *dd)
13206 {
13207         int i;
13208
13209         /* all interrupts handled by the general handler */
13210         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13211                 dd->gi_mask[i] = ~(u64)0;
13212
13213         /* all chip interrupts map to MSI-X 0 */
13214         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13215                 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13216 }
13217
13218 static int set_up_interrupts(struct hfi1_devdata *dd)
13219 {
13220         u32 total;
13221         int ret, request;
13222         int single_interrupt = 0; /* we expect to have all the interrupts */
13223
13224         /*
13225          * Interrupt count:
13226          *      1 general, "slow path" interrupt (includes the SDMA engines
13227          *              slow source, SDMACleanupDone)
13228          *      N interrupts - one per used SDMA engine
13229          *      M interrupt - one per kernel receive context
13230          */
13231         total = 1 + dd->num_sdma + dd->n_krcv_queues + HFI1_NUM_VNIC_CTXT;
13232
13233         /* ask for MSI-X interrupts */
13234         request = request_msix(dd, total);
13235         if (request < 0) {
13236                 ret = request;
13237                 goto fail;
13238         } else if (request == 0) {
13239                 /* using INTx */
13240                 /* dd->num_msix_entries already zero */
13241                 single_interrupt = 1;
13242                 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
13243         } else if (request < total) {
13244                 /* using MSI-X, with reduced interrupts */
13245                 dd_dev_err(dd, "reduced interrupt found, wanted %u, got %u\n",
13246                            total, request);
13247                 ret = -EINVAL;
13248                 goto fail;
13249         } else {
13250                 dd->msix_entries = kcalloc(total, sizeof(*dd->msix_entries),
13251                                            GFP_KERNEL);
13252                 if (!dd->msix_entries) {
13253                         ret = -ENOMEM;
13254                         goto fail;
13255                 }
13256                 /* using MSI-X */
13257                 dd->num_msix_entries = total;
13258                 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
13259         }
13260
13261         /* mask all interrupts */
13262         set_intr_state(dd, 0);
13263         /* clear all pending interrupts */
13264         clear_all_interrupts(dd);
13265
13266         /* reset general handler mask, chip MSI-X mappings */
13267         reset_interrupts(dd);
13268
13269         if (single_interrupt)
13270                 ret = request_intx_irq(dd);
13271         else
13272                 ret = request_msix_irqs(dd);
13273         if (ret)
13274                 goto fail;
13275
13276         return 0;
13277
13278 fail:
13279         clean_up_interrupts(dd);
13280         return ret;
13281 }
13282
13283 /*
13284  * Set up context values in dd.  Sets:
13285  *
13286  *      num_rcv_contexts - number of contexts being used
13287  *      n_krcv_queues - number of kernel contexts
13288  *      first_dyn_alloc_ctxt - first dynamically allocated context
13289  *                             in array of contexts
13290  *      freectxts  - number of free user contexts
13291  *      num_send_contexts - number of PIO send contexts being used
13292  */
13293 static int set_up_context_variables(struct hfi1_devdata *dd)
13294 {
13295         unsigned long num_kernel_contexts;
13296         int total_contexts;
13297         int ret;
13298         unsigned ngroups;
13299         int qos_rmt_count;
13300         int user_rmt_reduced;
13301
13302         /*
13303          * Kernel receive contexts:
13304          * - Context 0 - control context (VL15/multicast/error)
13305          * - Context 1 - first kernel context
13306          * - Context 2 - second kernel context
13307          * ...
13308          */
13309         if (n_krcvqs)
13310                 /*
13311                  * n_krcvqs is the sum of module parameter kernel receive
13312                  * contexts, krcvqs[].  It does not include the control
13313                  * context, so add that.
13314                  */
13315                 num_kernel_contexts = n_krcvqs + 1;
13316         else
13317                 num_kernel_contexts = DEFAULT_KRCVQS + 1;
13318         /*
13319          * Every kernel receive context needs an ACK send context.
13320          * one send context is allocated for each VL{0-7} and VL15
13321          */
13322         if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
13323                 dd_dev_err(dd,
13324                            "Reducing # kernel rcv contexts to: %d, from %lu\n",
13325                            (int)(dd->chip_send_contexts - num_vls - 1),
13326                            num_kernel_contexts);
13327                 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
13328         }
13329         /*
13330          * User contexts:
13331          *      - default to 1 user context per real (non-HT) CPU core if
13332          *        num_user_contexts is negative
13333          */
13334         if (num_user_contexts < 0)
13335                 num_user_contexts =
13336                         cpumask_weight(&node_affinity.real_cpu_mask);
13337
13338         total_contexts = num_kernel_contexts + num_user_contexts;
13339
13340         /*
13341          * Adjust the counts given a global max.
13342          */
13343         if (total_contexts > dd->chip_rcv_contexts) {
13344                 dd_dev_err(dd,
13345                            "Reducing # user receive contexts to: %d, from %d\n",
13346                            (int)(dd->chip_rcv_contexts - num_kernel_contexts),
13347                            (int)num_user_contexts);
13348                 num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
13349                 /* recalculate */
13350                 total_contexts = num_kernel_contexts + num_user_contexts;
13351         }
13352
13353         /* each user context requires an entry in the RMT */
13354         qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
13355         if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) {
13356                 user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13357                 dd_dev_err(dd,
13358                            "RMT size is reducing the number of user receive contexts from %d to %d\n",
13359                            (int)num_user_contexts,
13360                            user_rmt_reduced);
13361                 /* recalculate */
13362                 num_user_contexts = user_rmt_reduced;
13363                 total_contexts = num_kernel_contexts + num_user_contexts;
13364         }
13365
13366         /* Accommodate VNIC contexts */
13367         if ((total_contexts + HFI1_NUM_VNIC_CTXT) <= dd->chip_rcv_contexts)
13368                 total_contexts += HFI1_NUM_VNIC_CTXT;
13369
13370         /* the first N are kernel contexts, the rest are user/vnic contexts */
13371         dd->num_rcv_contexts = total_contexts;
13372         dd->n_krcv_queues = num_kernel_contexts;
13373         dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13374         dd->num_user_contexts = num_user_contexts;
13375         dd->freectxts = num_user_contexts;
13376         dd_dev_info(dd,
13377                     "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
13378                     (int)dd->chip_rcv_contexts,
13379                     (int)dd->num_rcv_contexts,
13380                     (int)dd->n_krcv_queues,
13381                     (int)dd->num_rcv_contexts - dd->n_krcv_queues);
13382
13383         /*
13384          * Receive array allocation:
13385          *   All RcvArray entries are divided into groups of 8. This
13386          *   is required by the hardware and will speed up writes to
13387          *   consecutive entries by using write-combining of the entire
13388          *   cacheline.
13389          *
13390          *   The number of groups are evenly divided among all contexts.
13391          *   any left over groups will be given to the first N user
13392          *   contexts.
13393          */
13394         dd->rcv_entries.group_size = RCV_INCREMENT;
13395         ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
13396         dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13397         dd->rcv_entries.nctxt_extra = ngroups -
13398                 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13399         dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13400                     dd->rcv_entries.ngroups,
13401                     dd->rcv_entries.nctxt_extra);
13402         if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13403             MAX_EAGER_ENTRIES * 2) {
13404                 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13405                         dd->rcv_entries.group_size;
13406                 dd_dev_info(dd,
13407                             "RcvArray group count too high, change to %u\n",
13408                             dd->rcv_entries.ngroups);
13409                 dd->rcv_entries.nctxt_extra = 0;
13410         }
13411         /*
13412          * PIO send contexts
13413          */
13414         ret = init_sc_pools_and_sizes(dd);
13415         if (ret >= 0) { /* success */
13416                 dd->num_send_contexts = ret;
13417                 dd_dev_info(
13418                         dd,
13419                         "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13420                         dd->chip_send_contexts,
13421                         dd->num_send_contexts,
13422                         dd->sc_sizes[SC_KERNEL].count,
13423                         dd->sc_sizes[SC_ACK].count,
13424                         dd->sc_sizes[SC_USER].count,
13425                         dd->sc_sizes[SC_VL15].count);
13426                 ret = 0;        /* success */
13427         }
13428
13429         return ret;
13430 }
13431
13432 /*
13433  * Set the device/port partition key table. The MAD code
13434  * will ensure that, at least, the partial management
13435  * partition key is present in the table.
13436  */
13437 static void set_partition_keys(struct hfi1_pportdata *ppd)
13438 {
13439         struct hfi1_devdata *dd = ppd->dd;
13440         u64 reg = 0;
13441         int i;
13442
13443         dd_dev_info(dd, "Setting partition keys\n");
13444         for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13445                 reg |= (ppd->pkeys[i] &
13446                         RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13447                         ((i % 4) *
13448                          RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13449                 /* Each register holds 4 PKey values. */
13450                 if ((i % 4) == 3) {
13451                         write_csr(dd, RCV_PARTITION_KEY +
13452                                   ((i - 3) * 2), reg);
13453                         reg = 0;
13454                 }
13455         }
13456
13457         /* Always enable HW pkeys check when pkeys table is set */
13458         add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13459 }
13460
13461 /*
13462  * These CSRs and memories are uninitialized on reset and must be
13463  * written before reading to set the ECC/parity bits.
13464  *
13465  * NOTE: All user context CSRs that are not mmaped write-only
13466  * (e.g. the TID flows) must be initialized even if the driver never
13467  * reads them.
13468  */
13469 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13470 {
13471         int i, j;
13472
13473         /* CceIntMap */
13474         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13475                 write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13476
13477         /* SendCtxtCreditReturnAddr */
13478         for (i = 0; i < dd->chip_send_contexts; i++)
13479                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13480
13481         /* PIO Send buffers */
13482         /* SDMA Send buffers */
13483         /*
13484          * These are not normally read, and (presently) have no method
13485          * to be read, so are not pre-initialized
13486          */
13487
13488         /* RcvHdrAddr */
13489         /* RcvHdrTailAddr */
13490         /* RcvTidFlowTable */
13491         for (i = 0; i < dd->chip_rcv_contexts; i++) {
13492                 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13493                 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13494                 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13495                         write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13496         }
13497
13498         /* RcvArray */
13499         for (i = 0; i < dd->chip_rcv_array_count; i++)
13500                 hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13501
13502         /* RcvQPMapTable */
13503         for (i = 0; i < 32; i++)
13504                 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13505 }
13506
13507 /*
13508  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13509  */
13510 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13511                              u64 ctrl_bits)
13512 {
13513         unsigned long timeout;
13514         u64 reg;
13515
13516         /* is the condition present? */
13517         reg = read_csr(dd, CCE_STATUS);
13518         if ((reg & status_bits) == 0)
13519                 return;
13520
13521         /* clear the condition */
13522         write_csr(dd, CCE_CTRL, ctrl_bits);
13523
13524         /* wait for the condition to clear */
13525         timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13526         while (1) {
13527                 reg = read_csr(dd, CCE_STATUS);
13528                 if ((reg & status_bits) == 0)
13529                         return;
13530                 if (time_after(jiffies, timeout)) {
13531                         dd_dev_err(dd,
13532                                    "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13533                                    status_bits, reg & status_bits);
13534                         return;
13535                 }
13536                 udelay(1);
13537         }
13538 }
13539
13540 /* set CCE CSRs to chip reset defaults */
13541 static void reset_cce_csrs(struct hfi1_devdata *dd)
13542 {
13543         int i;
13544
13545         /* CCE_REVISION read-only */
13546         /* CCE_REVISION2 read-only */
13547         /* CCE_CTRL - bits clear automatically */
13548         /* CCE_STATUS read-only, use CceCtrl to clear */
13549         clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13550         clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13551         clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13552         for (i = 0; i < CCE_NUM_SCRATCH; i++)
13553                 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13554         /* CCE_ERR_STATUS read-only */
13555         write_csr(dd, CCE_ERR_MASK, 0);
13556         write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13557         /* CCE_ERR_FORCE leave alone */
13558         for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13559                 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13560         write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13561         /* CCE_PCIE_CTRL leave alone */
13562         for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13563                 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13564                 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13565                           CCE_MSIX_TABLE_UPPER_RESETCSR);
13566         }
13567         for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13568                 /* CCE_MSIX_PBA read-only */
13569                 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13570                 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13571         }
13572         for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13573                 write_csr(dd, CCE_INT_MAP, 0);
13574         for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13575                 /* CCE_INT_STATUS read-only */
13576                 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13577                 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13578                 /* CCE_INT_FORCE leave alone */
13579                 /* CCE_INT_BLOCKED read-only */
13580         }
13581         for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13582                 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13583 }
13584
13585 /* set MISC CSRs to chip reset defaults */
13586 static void reset_misc_csrs(struct hfi1_devdata *dd)
13587 {
13588         int i;
13589
13590         for (i = 0; i < 32; i++) {
13591                 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13592                 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13593                 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13594         }
13595         /*
13596          * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13597          * only be written 128-byte chunks
13598          */
13599         /* init RSA engine to clear lingering errors */
13600         write_csr(dd, MISC_CFG_RSA_CMD, 1);
13601         write_csr(dd, MISC_CFG_RSA_MU, 0);
13602         write_csr(dd, MISC_CFG_FW_CTRL, 0);
13603         /* MISC_STS_8051_DIGEST read-only */
13604         /* MISC_STS_SBM_DIGEST read-only */
13605         /* MISC_STS_PCIE_DIGEST read-only */
13606         /* MISC_STS_FAB_DIGEST read-only */
13607         /* MISC_ERR_STATUS read-only */
13608         write_csr(dd, MISC_ERR_MASK, 0);
13609         write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13610         /* MISC_ERR_FORCE leave alone */
13611 }
13612
13613 /* set TXE CSRs to chip reset defaults */
13614 static void reset_txe_csrs(struct hfi1_devdata *dd)
13615 {
13616         int i;
13617
13618         /*
13619          * TXE Kernel CSRs
13620          */
13621         write_csr(dd, SEND_CTRL, 0);
13622         __cm_reset(dd, 0);      /* reset CM internal state */
13623         /* SEND_CONTEXTS read-only */
13624         /* SEND_DMA_ENGINES read-only */
13625         /* SEND_PIO_MEM_SIZE read-only */
13626         /* SEND_DMA_MEM_SIZE read-only */
13627         write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13628         pio_reset_all(dd);      /* SEND_PIO_INIT_CTXT */
13629         /* SEND_PIO_ERR_STATUS read-only */
13630         write_csr(dd, SEND_PIO_ERR_MASK, 0);
13631         write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13632         /* SEND_PIO_ERR_FORCE leave alone */
13633         /* SEND_DMA_ERR_STATUS read-only */
13634         write_csr(dd, SEND_DMA_ERR_MASK, 0);
13635         write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13636         /* SEND_DMA_ERR_FORCE leave alone */
13637         /* SEND_EGRESS_ERR_STATUS read-only */
13638         write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13639         write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13640         /* SEND_EGRESS_ERR_FORCE leave alone */
13641         write_csr(dd, SEND_BTH_QP, 0);
13642         write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13643         write_csr(dd, SEND_SC2VLT0, 0);
13644         write_csr(dd, SEND_SC2VLT1, 0);
13645         write_csr(dd, SEND_SC2VLT2, 0);
13646         write_csr(dd, SEND_SC2VLT3, 0);
13647         write_csr(dd, SEND_LEN_CHECK0, 0);
13648         write_csr(dd, SEND_LEN_CHECK1, 0);
13649         /* SEND_ERR_STATUS read-only */
13650         write_csr(dd, SEND_ERR_MASK, 0);
13651         write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13652         /* SEND_ERR_FORCE read-only */
13653         for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13654                 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13655         for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13656                 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13657         for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13658                 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13659         for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13660                 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13661         for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13662                 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13663         write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13664         write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13665         /* SEND_CM_CREDIT_USED_STATUS read-only */
13666         write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13667         write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13668         write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13669         write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13670         write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13671         for (i = 0; i < TXE_NUM_DATA_VL; i++)
13672                 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13673         write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13674         /* SEND_CM_CREDIT_USED_VL read-only */
13675         /* SEND_CM_CREDIT_USED_VL15 read-only */
13676         /* SEND_EGRESS_CTXT_STATUS read-only */
13677         /* SEND_EGRESS_SEND_DMA_STATUS read-only */
13678         write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13679         /* SEND_EGRESS_ERR_INFO read-only */
13680         /* SEND_EGRESS_ERR_SOURCE read-only */
13681
13682         /*
13683          * TXE Per-Context CSRs
13684          */
13685         for (i = 0; i < dd->chip_send_contexts; i++) {
13686                 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13687                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13688                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13689                 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13690                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13691                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13692                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13693                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13694                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13695                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13696                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13697                 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13698         }
13699
13700         /*
13701          * TXE Per-SDMA CSRs
13702          */
13703         for (i = 0; i < dd->chip_sdma_engines; i++) {
13704                 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13705                 /* SEND_DMA_STATUS read-only */
13706                 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13707                 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13708                 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13709                 /* SEND_DMA_HEAD read-only */
13710                 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13711                 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13712                 /* SEND_DMA_IDLE_CNT read-only */
13713                 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13714                 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13715                 /* SEND_DMA_DESC_FETCHED_CNT read-only */
13716                 /* SEND_DMA_ENG_ERR_STATUS read-only */
13717                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13718                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13719                 /* SEND_DMA_ENG_ERR_FORCE leave alone */
13720                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13721                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13722                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13723                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13724                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13725                 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13726                 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13727         }
13728 }
13729
13730 /*
13731  * Expect on entry:
13732  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13733  */
13734 static void init_rbufs(struct hfi1_devdata *dd)
13735 {
13736         u64 reg;
13737         int count;
13738
13739         /*
13740          * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13741          * clear.
13742          */
13743         count = 0;
13744         while (1) {
13745                 reg = read_csr(dd, RCV_STATUS);
13746                 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13747                             | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13748                         break;
13749                 /*
13750                  * Give up after 1ms - maximum wait time.
13751                  *
13752                  * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13753                  * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13754                  *      136 KB / (66% * 250MB/s) = 844us
13755                  */
13756                 if (count++ > 500) {
13757                         dd_dev_err(dd,
13758                                    "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13759                                    __func__, reg);
13760                         break;
13761                 }
13762                 udelay(2); /* do not busy-wait the CSR */
13763         }
13764
13765         /* start the init - expect RcvCtrl to be 0 */
13766         write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13767
13768         /*
13769          * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13770          * period after the write before RcvStatus.RxRbufInitDone is valid.
13771          * The delay in the first run through the loop below is sufficient and
13772          * required before the first read of RcvStatus.RxRbufInintDone.
13773          */
13774         read_csr(dd, RCV_CTRL);
13775
13776         /* wait for the init to finish */
13777         count = 0;
13778         while (1) {
13779                 /* delay is required first time through - see above */
13780                 udelay(2); /* do not busy-wait the CSR */
13781                 reg = read_csr(dd, RCV_STATUS);
13782                 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13783                         break;
13784
13785                 /* give up after 100us - slowest possible at 33MHz is 73us */
13786                 if (count++ > 50) {
13787                         dd_dev_err(dd,
13788                                    "%s: RcvStatus.RxRbufInit not set, continuing\n",
13789                                    __func__);
13790                         break;
13791                 }
13792         }
13793 }
13794
13795 /* set RXE CSRs to chip reset defaults */
13796 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13797 {
13798         int i, j;
13799
13800         /*
13801          * RXE Kernel CSRs
13802          */
13803         write_csr(dd, RCV_CTRL, 0);
13804         init_rbufs(dd);
13805         /* RCV_STATUS read-only */
13806         /* RCV_CONTEXTS read-only */
13807         /* RCV_ARRAY_CNT read-only */
13808         /* RCV_BUF_SIZE read-only */
13809         write_csr(dd, RCV_BTH_QP, 0);
13810         write_csr(dd, RCV_MULTICAST, 0);
13811         write_csr(dd, RCV_BYPASS, 0);
13812         write_csr(dd, RCV_VL15, 0);
13813         /* this is a clear-down */
13814         write_csr(dd, RCV_ERR_INFO,
13815                   RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13816         /* RCV_ERR_STATUS read-only */
13817         write_csr(dd, RCV_ERR_MASK, 0);
13818         write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13819         /* RCV_ERR_FORCE leave alone */
13820         for (i = 0; i < 32; i++)
13821                 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13822         for (i = 0; i < 4; i++)
13823                 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13824         for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13825                 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13826         for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13827                 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13828         for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13829                 clear_rsm_rule(dd, i);
13830         for (i = 0; i < 32; i++)
13831                 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13832
13833         /*
13834          * RXE Kernel and User Per-Context CSRs
13835          */
13836         for (i = 0; i < dd->chip_rcv_contexts; i++) {
13837                 /* kernel */
13838                 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13839                 /* RCV_CTXT_STATUS read-only */
13840                 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13841                 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13842                 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13843                 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13844                 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13845                 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13846                 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13847                 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13848                 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13849                 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13850
13851                 /* user */
13852                 /* RCV_HDR_TAIL read-only */
13853                 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13854                 /* RCV_EGR_INDEX_TAIL read-only */
13855                 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13856                 /* RCV_EGR_OFFSET_TAIL read-only */
13857                 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13858                         write_uctxt_csr(dd, i,
13859                                         RCV_TID_FLOW_TABLE + (8 * j), 0);
13860                 }
13861         }
13862 }
13863
13864 /*
13865  * Set sc2vl tables.
13866  *
13867  * They power on to zeros, so to avoid send context errors
13868  * they need to be set:
13869  *
13870  * SC 0-7 -> VL 0-7 (respectively)
13871  * SC 15  -> VL 15
13872  * otherwise
13873  *        -> VL 0
13874  */
13875 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13876 {
13877         int i;
13878         /* init per architecture spec, constrained by hardware capability */
13879
13880         /* HFI maps sent packets */
13881         write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13882                 0,
13883                 0, 0, 1, 1,
13884                 2, 2, 3, 3,
13885                 4, 4, 5, 5,
13886                 6, 6, 7, 7));
13887         write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13888                 1,
13889                 8, 0, 9, 0,
13890                 10, 0, 11, 0,
13891                 12, 0, 13, 0,
13892                 14, 0, 15, 15));
13893         write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13894                 2,
13895                 16, 0, 17, 0,
13896                 18, 0, 19, 0,
13897                 20, 0, 21, 0,
13898                 22, 0, 23, 0));
13899         write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13900                 3,
13901                 24, 0, 25, 0,
13902                 26, 0, 27, 0,
13903                 28, 0, 29, 0,
13904                 30, 0, 31, 0));
13905
13906         /* DC maps received packets */
13907         write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13908                 15_0,
13909                 0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
13910                 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13911         write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13912                 31_16,
13913                 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13914                 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13915
13916         /* initialize the cached sc2vl values consistently with h/w */
13917         for (i = 0; i < 32; i++) {
13918                 if (i < 8 || i == 15)
13919                         *((u8 *)(dd->sc2vl) + i) = (u8)i;
13920                 else
13921                         *((u8 *)(dd->sc2vl) + i) = 0;
13922         }
13923 }
13924
13925 /*
13926  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
13927  * depend on the chip going through a power-on reset - a driver may be loaded
13928  * and unloaded many times.
13929  *
13930  * Do not write any CSR values to the chip in this routine - there may be
13931  * a reset following the (possible) FLR in this routine.
13932  *
13933  */
13934 static int init_chip(struct hfi1_devdata *dd)
13935 {
13936         int i;
13937         int ret = 0;
13938
13939         /*
13940          * Put the HFI CSRs in a known state.
13941          * Combine this with a DC reset.
13942          *
13943          * Stop the device from doing anything while we do a
13944          * reset.  We know there are no other active users of
13945          * the device since we are now in charge.  Turn off
13946          * off all outbound and inbound traffic and make sure
13947          * the device does not generate any interrupts.
13948          */
13949
13950         /* disable send contexts and SDMA engines */
13951         write_csr(dd, SEND_CTRL, 0);
13952         for (i = 0; i < dd->chip_send_contexts; i++)
13953                 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13954         for (i = 0; i < dd->chip_sdma_engines; i++)
13955                 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13956         /* disable port (turn off RXE inbound traffic) and contexts */
13957         write_csr(dd, RCV_CTRL, 0);
13958         for (i = 0; i < dd->chip_rcv_contexts; i++)
13959                 write_csr(dd, RCV_CTXT_CTRL, 0);
13960         /* mask all interrupt sources */
13961         for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13962                 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13963
13964         /*
13965          * DC Reset: do a full DC reset before the register clear.
13966          * A recommended length of time to hold is one CSR read,
13967          * so reread the CceDcCtrl.  Then, hold the DC in reset
13968          * across the clear.
13969          */
13970         write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
13971         (void)read_csr(dd, CCE_DC_CTRL);
13972
13973         if (use_flr) {
13974                 /*
13975                  * A FLR will reset the SPC core and part of the PCIe.
13976                  * The parts that need to be restored have already been
13977                  * saved.
13978                  */
13979                 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13980
13981                 /* do the FLR, the DC reset will remain */
13982                 pcie_flr(dd->pcidev);
13983
13984                 /* restore command and BARs */
13985                 ret = restore_pci_variables(dd);
13986                 if (ret) {
13987                         dd_dev_err(dd, "%s: Could not restore PCI variables\n",
13988                                    __func__);
13989                         return ret;
13990                 }
13991
13992                 if (is_ax(dd)) {
13993                         dd_dev_info(dd, "Resetting CSRs with FLR\n");
13994                         pcie_flr(dd->pcidev);
13995                         ret = restore_pci_variables(dd);
13996                         if (ret) {
13997                                 dd_dev_err(dd, "%s: Could not restore PCI variables\n",
13998                                            __func__);
13999                                 return ret;
14000                         }
14001                 }
14002         } else {
14003                 dd_dev_info(dd, "Resetting CSRs with writes\n");
14004                 reset_cce_csrs(dd);
14005                 reset_txe_csrs(dd);
14006                 reset_rxe_csrs(dd);
14007                 reset_misc_csrs(dd);
14008         }
14009         /* clear the DC reset */
14010         write_csr(dd, CCE_DC_CTRL, 0);
14011
14012         /* Set the LED off */
14013         setextled(dd, 0);
14014
14015         /*
14016          * Clear the QSFP reset.
14017          * An FLR enforces a 0 on all out pins. The driver does not touch
14018          * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
14019          * anything plugged constantly in reset, if it pays attention
14020          * to RESET_N.
14021          * Prime examples of this are optical cables. Set all pins high.
14022          * I2CCLK and I2CDAT will change per direction, and INT_N and
14023          * MODPRS_N are input only and their value is ignored.
14024          */
14025         write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14026         write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
14027         init_chip_resources(dd);
14028         return ret;
14029 }
14030
14031 static void init_early_variables(struct hfi1_devdata *dd)
14032 {
14033         int i;
14034
14035         /* assign link credit variables */
14036         dd->vau = CM_VAU;
14037         dd->link_credits = CM_GLOBAL_CREDITS;
14038         if (is_ax(dd))
14039                 dd->link_credits--;
14040         dd->vcu = cu_to_vcu(hfi1_cu);
14041         /* enough room for 8 MAD packets plus header - 17K */
14042         dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14043         if (dd->vl15_init > dd->link_credits)
14044                 dd->vl15_init = dd->link_credits;
14045
14046         write_uninitialized_csrs_and_memories(dd);
14047
14048         if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14049                 for (i = 0; i < dd->num_pports; i++) {
14050                         struct hfi1_pportdata *ppd = &dd->pport[i];
14051
14052                         set_partition_keys(ppd);
14053                 }
14054         init_sc2vl_tables(dd);
14055 }
14056
14057 static void init_kdeth_qp(struct hfi1_devdata *dd)
14058 {
14059         /* user changed the KDETH_QP */
14060         if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
14061                 /* out of range or illegal value */
14062                 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
14063                 kdeth_qp = 0;
14064         }
14065         if (kdeth_qp == 0)      /* not set, or failed range check */
14066                 kdeth_qp = DEFAULT_KDETH_QP;
14067
14068         write_csr(dd, SEND_BTH_QP,
14069                   (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
14070                   SEND_BTH_QP_KDETH_QP_SHIFT);
14071
14072         write_csr(dd, RCV_BTH_QP,
14073                   (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
14074                   RCV_BTH_QP_KDETH_QP_SHIFT);
14075 }
14076
14077 /**
14078  * init_qpmap_table
14079  * @dd - device data
14080  * @first_ctxt - first context
14081  * @last_ctxt - first context
14082  *
14083  * This return sets the qpn mapping table that
14084  * is indexed by qpn[8:1].
14085  *
14086  * The routine will round robin the 256 settings
14087  * from first_ctxt to last_ctxt.
14088  *
14089  * The first/last looks ahead to having specialized
14090  * receive contexts for mgmt and bypass.  Normal
14091  * verbs traffic will assumed to be on a range
14092  * of receive contexts.
14093  */
14094 static void init_qpmap_table(struct hfi1_devdata *dd,
14095                              u32 first_ctxt,
14096                              u32 last_ctxt)
14097 {
14098         u64 reg = 0;
14099         u64 regno = RCV_QP_MAP_TABLE;
14100         int i;
14101         u64 ctxt = first_ctxt;
14102
14103         for (i = 0; i < 256; i++) {
14104                 reg |= ctxt << (8 * (i % 8));
14105                 ctxt++;
14106                 if (ctxt > last_ctxt)
14107                         ctxt = first_ctxt;
14108                 if (i % 8 == 7) {
14109                         write_csr(dd, regno, reg);
14110                         reg = 0;
14111                         regno += 8;
14112                 }
14113         }
14114
14115         add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14116                         | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14117 }
14118
14119 struct rsm_map_table {
14120         u64 map[NUM_MAP_REGS];
14121         unsigned int used;
14122 };
14123
14124 struct rsm_rule_data {
14125         u8 offset;
14126         u8 pkt_type;
14127         u32 field1_off;
14128         u32 field2_off;
14129         u32 index1_off;
14130         u32 index1_width;
14131         u32 index2_off;
14132         u32 index2_width;
14133         u32 mask1;
14134         u32 value1;
14135         u32 mask2;
14136         u32 value2;
14137 };
14138
14139 /*
14140  * Return an initialized RMT map table for users to fill in.  OK if it
14141  * returns NULL, indicating no table.
14142  */
14143 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14144 {
14145         struct rsm_map_table *rmt;
14146         u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14147
14148         rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14149         if (rmt) {
14150                 memset(rmt->map, rxcontext, sizeof(rmt->map));
14151                 rmt->used = 0;
14152         }
14153
14154         return rmt;
14155 }
14156
14157 /*
14158  * Write the final RMT map table to the chip and free the table.  OK if
14159  * table is NULL.
14160  */
14161 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14162                                    struct rsm_map_table *rmt)
14163 {
14164         int i;
14165
14166         if (rmt) {
14167                 /* write table to chip */
14168                 for (i = 0; i < NUM_MAP_REGS; i++)
14169                         write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14170
14171                 /* enable RSM */
14172                 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14173         }
14174 }
14175
14176 /*
14177  * Add a receive side mapping rule.
14178  */
14179 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14180                          struct rsm_rule_data *rrd)
14181 {
14182         write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14183                   (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14184                   1ull << rule_index | /* enable bit */
14185                   (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14186         write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14187                   (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14188                   (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14189                   (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14190                   (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14191                   (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14192                   (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14193         write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14194                   (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14195                   (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14196                   (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14197                   (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14198 }
14199
14200 /*
14201  * Clear a receive side mapping rule.
14202  */
14203 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14204 {
14205         write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14206         write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14207         write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14208 }
14209
14210 /* return the number of RSM map table entries that will be used for QOS */
14211 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14212                            unsigned int *np)
14213 {
14214         int i;
14215         unsigned int m, n;
14216         u8 max_by_vl = 0;
14217
14218         /* is QOS active at all? */
14219         if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14220             num_vls == 1 ||
14221             krcvqsset <= 1)
14222                 goto no_qos;
14223
14224         /* determine bits for qpn */
14225         for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14226                 if (krcvqs[i] > max_by_vl)
14227                         max_by_vl = krcvqs[i];
14228         if (max_by_vl > 32)
14229                 goto no_qos;
14230         m = ilog2(__roundup_pow_of_two(max_by_vl));
14231
14232         /* determine bits for vl */
14233         n = ilog2(__roundup_pow_of_two(num_vls));
14234
14235         /* reject if too much is used */
14236         if ((m + n) > 7)
14237                 goto no_qos;
14238
14239         if (mp)
14240                 *mp = m;
14241         if (np)
14242                 *np = n;
14243
14244         return 1 << (m + n);
14245
14246 no_qos:
14247         if (mp)
14248                 *mp = 0;
14249         if (np)
14250                 *np = 0;
14251         return 0;
14252 }
14253
14254 /**
14255  * init_qos - init RX qos
14256  * @dd - device data
14257  * @rmt - RSM map table
14258  *
14259  * This routine initializes Rule 0 and the RSM map table to implement
14260  * quality of service (qos).
14261  *
14262  * If all of the limit tests succeed, qos is applied based on the array
14263  * interpretation of krcvqs where entry 0 is VL0.
14264  *
14265  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14266  * feed both the RSM map table and the single rule.
14267  */
14268 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14269 {
14270         struct rsm_rule_data rrd;
14271         unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14272         unsigned int rmt_entries;
14273         u64 reg;
14274
14275         if (!rmt)
14276                 goto bail;
14277         rmt_entries = qos_rmt_entries(dd, &m, &n);
14278         if (rmt_entries == 0)
14279                 goto bail;
14280         qpns_per_vl = 1 << m;
14281
14282         /* enough room in the map table? */
14283         rmt_entries = 1 << (m + n);
14284         if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14285                 goto bail;
14286
14287         /* add qos entries to the the RSM map table */
14288         for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14289                 unsigned tctxt;
14290
14291                 for (qpn = 0, tctxt = ctxt;
14292                      krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14293                         unsigned idx, regoff, regidx;
14294
14295                         /* generate the index the hardware will produce */
14296                         idx = rmt->used + ((qpn << n) ^ i);
14297                         regoff = (idx % 8) * 8;
14298                         regidx = idx / 8;
14299                         /* replace default with context number */
14300                         reg = rmt->map[regidx];
14301                         reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14302                                 << regoff);
14303                         reg |= (u64)(tctxt++) << regoff;
14304                         rmt->map[regidx] = reg;
14305                         if (tctxt == ctxt + krcvqs[i])
14306                                 tctxt = ctxt;
14307                 }
14308                 ctxt += krcvqs[i];
14309         }
14310
14311         rrd.offset = rmt->used;
14312         rrd.pkt_type = 2;
14313         rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14314         rrd.field2_off = LRH_SC_MATCH_OFFSET;
14315         rrd.index1_off = LRH_SC_SELECT_OFFSET;
14316         rrd.index1_width = n;
14317         rrd.index2_off = QPN_SELECT_OFFSET;
14318         rrd.index2_width = m + n;
14319         rrd.mask1 = LRH_BTH_MASK;
14320         rrd.value1 = LRH_BTH_VALUE;
14321         rrd.mask2 = LRH_SC_MASK;
14322         rrd.value2 = LRH_SC_VALUE;
14323
14324         /* add rule 0 */
14325         add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14326
14327         /* mark RSM map entries as used */
14328         rmt->used += rmt_entries;
14329         /* map everything else to the mcast/err/vl15 context */
14330         init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14331         dd->qos_shift = n + 1;
14332         return;
14333 bail:
14334         dd->qos_shift = 1;
14335         init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14336 }
14337
14338 static void init_user_fecn_handling(struct hfi1_devdata *dd,
14339                                     struct rsm_map_table *rmt)
14340 {
14341         struct rsm_rule_data rrd;
14342         u64 reg;
14343         int i, idx, regoff, regidx;
14344         u8 offset;
14345
14346         /* there needs to be enough room in the map table */
14347         if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
14348                 dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
14349                 return;
14350         }
14351
14352         /*
14353          * RSM will extract the destination context as an index into the
14354          * map table.  The destination contexts are a sequential block
14355          * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive).
14356          * Map entries are accessed as offset + extracted value.  Adjust
14357          * the added offset so this sequence can be placed anywhere in
14358          * the table - as long as the entries themselves do not wrap.
14359          * There are only enough bits in offset for the table size, so
14360          * start with that to allow for a "negative" offset.
14361          */
14362         offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
14363                                                 (int)dd->first_dyn_alloc_ctxt);
14364
14365         for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used;
14366                                 i < dd->num_rcv_contexts; i++, idx++) {
14367                 /* replace with identity mapping */
14368                 regoff = (idx % 8) * 8;
14369                 regidx = idx / 8;
14370                 reg = rmt->map[regidx];
14371                 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14372                 reg |= (u64)i << regoff;
14373                 rmt->map[regidx] = reg;
14374         }
14375
14376         /*
14377          * For RSM intercept of Expected FECN packets:
14378          * o packet type 0 - expected
14379          * o match on F (bit 95), using select/match 1, and
14380          * o match on SH (bit 133), using select/match 2.
14381          *
14382          * Use index 1 to extract the 8-bit receive context from DestQP
14383          * (start at bit 64).  Use that as the RSM map table index.
14384          */
14385         rrd.offset = offset;
14386         rrd.pkt_type = 0;
14387         rrd.field1_off = 95;
14388         rrd.field2_off = 133;
14389         rrd.index1_off = 64;
14390         rrd.index1_width = 8;
14391         rrd.index2_off = 0;
14392         rrd.index2_width = 0;
14393         rrd.mask1 = 1;
14394         rrd.value1 = 1;
14395         rrd.mask2 = 1;
14396         rrd.value2 = 1;
14397
14398         /* add rule 1 */
14399         add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14400
14401         rmt->used += dd->num_user_contexts;
14402 }
14403
14404 /* Initialize RSM for VNIC */
14405 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14406 {
14407         u8 i, j;
14408         u8 ctx_id = 0;
14409         u64 reg;
14410         u32 regoff;
14411         struct rsm_rule_data rrd;
14412
14413         if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14414                 dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14415                            dd->vnic.rmt_start);
14416                 return;
14417         }
14418
14419         dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14420                 dd->vnic.rmt_start,
14421                 dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14422
14423         /* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14424         regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14425         reg = read_csr(dd, regoff);
14426         for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14427                 /* Update map register with vnic context */
14428                 j = (dd->vnic.rmt_start + i) % 8;
14429                 reg &= ~(0xffllu << (j * 8));
14430                 reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14431                 /* Wrap up vnic ctx index */
14432                 ctx_id %= dd->vnic.num_ctxt;
14433                 /* Write back map register */
14434                 if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14435                         dev_dbg(&(dd)->pcidev->dev,
14436                                 "Vnic rsm map reg[%d] =0x%llx\n",
14437                                 regoff - RCV_RSM_MAP_TABLE, reg);
14438
14439                         write_csr(dd, regoff, reg);
14440                         regoff += 8;
14441                         if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14442                                 reg = read_csr(dd, regoff);
14443                 }
14444         }
14445
14446         /* Add rule for vnic */
14447         rrd.offset = dd->vnic.rmt_start;
14448         rrd.pkt_type = 4;
14449         /* Match 16B packets */
14450         rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14451         rrd.mask1 = L2_TYPE_MASK;
14452         rrd.value1 = L2_16B_VALUE;
14453         /* Match ETH L4 packets */
14454         rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14455         rrd.mask2 = L4_16B_TYPE_MASK;
14456         rrd.value2 = L4_16B_ETH_VALUE;
14457         /* Calc context from veswid and entropy */
14458         rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14459         rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14460         rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14461         rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14462         add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14463
14464         /* Enable RSM if not already enabled */
14465         add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14466 }
14467
14468 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14469 {
14470         clear_rsm_rule(dd, RSM_INS_VNIC);
14471
14472         /* Disable RSM if used only by vnic */
14473         if (dd->vnic.rmt_start == 0)
14474                 clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14475 }
14476
14477 static void init_rxe(struct hfi1_devdata *dd)
14478 {
14479         struct rsm_map_table *rmt;
14480         u64 val;
14481
14482         /* enable all receive errors */
14483         write_csr(dd, RCV_ERR_MASK, ~0ull);
14484
14485         rmt = alloc_rsm_map_table(dd);
14486         /* set up QOS, including the QPN map table */
14487         init_qos(dd, rmt);
14488         init_user_fecn_handling(dd, rmt);
14489         complete_rsm_map_table(dd, rmt);
14490         /* record number of used rsm map entries for vnic */
14491         dd->vnic.rmt_start = rmt->used;
14492         kfree(rmt);
14493
14494         /*
14495          * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14496          * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14497          * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14498          * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14499          * Max_PayLoad_Size set to its minimum of 128.
14500          *
14501          * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14502          * (64 bytes).  Max_Payload_Size is possibly modified upward in
14503          * tune_pcie_caps() which is called after this routine.
14504          */
14505
14506         /* Have 16 bytes (4DW) of bypass header available in header queue */
14507         val = read_csr(dd, RCV_BYPASS);
14508         val |= (4ull << 16);
14509         write_csr(dd, RCV_BYPASS, val);
14510 }
14511
14512 static void init_other(struct hfi1_devdata *dd)
14513 {
14514         /* enable all CCE errors */
14515         write_csr(dd, CCE_ERR_MASK, ~0ull);
14516         /* enable *some* Misc errors */
14517         write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14518         /* enable all DC errors, except LCB */
14519         write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14520         write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14521 }
14522
14523 /*
14524  * Fill out the given AU table using the given CU.  A CU is defined in terms
14525  * AUs.  The table is a an encoding: given the index, how many AUs does that
14526  * represent?
14527  *
14528  * NOTE: Assumes that the register layout is the same for the
14529  * local and remote tables.
14530  */
14531 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14532                                u32 csr0to3, u32 csr4to7)
14533 {
14534         write_csr(dd, csr0to3,
14535                   0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14536                   1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14537                   2ull * cu <<
14538                   SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14539                   4ull * cu <<
14540                   SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14541         write_csr(dd, csr4to7,
14542                   8ull * cu <<
14543                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14544                   16ull * cu <<
14545                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14546                   32ull * cu <<
14547                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14548                   64ull * cu <<
14549                   SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14550 }
14551
14552 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14553 {
14554         assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14555                            SEND_CM_LOCAL_AU_TABLE4_TO7);
14556 }
14557
14558 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14559 {
14560         assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14561                            SEND_CM_REMOTE_AU_TABLE4_TO7);
14562 }
14563
14564 static void init_txe(struct hfi1_devdata *dd)
14565 {
14566         int i;
14567
14568         /* enable all PIO, SDMA, general, and Egress errors */
14569         write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14570         write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14571         write_csr(dd, SEND_ERR_MASK, ~0ull);
14572         write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14573
14574         /* enable all per-context and per-SDMA engine errors */
14575         for (i = 0; i < dd->chip_send_contexts; i++)
14576                 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14577         for (i = 0; i < dd->chip_sdma_engines; i++)
14578                 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14579
14580         /* set the local CU to AU mapping */
14581         assign_local_cm_au_table(dd, dd->vcu);
14582
14583         /*
14584          * Set reasonable default for Credit Return Timer
14585          * Don't set on Simulator - causes it to choke.
14586          */
14587         if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14588                 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14589 }
14590
14591 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14592                        u16 jkey)
14593 {
14594         u8 hw_ctxt;
14595         u64 reg;
14596
14597         if (!rcd || !rcd->sc)
14598                 return -EINVAL;
14599
14600         hw_ctxt = rcd->sc->hw_context;
14601         reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14602                 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14603                  SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14604         /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14605         if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14606                 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14607         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14608         /*
14609          * Enable send-side J_KEY integrity check, unless this is A0 h/w
14610          */
14611         if (!is_ax(dd)) {
14612                 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14613                 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14614                 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14615         }
14616
14617         /* Enable J_KEY check on receive context. */
14618         reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14619                 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14620                  RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14621         write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14622
14623         return 0;
14624 }
14625
14626 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14627 {
14628         u8 hw_ctxt;
14629         u64 reg;
14630
14631         if (!rcd || !rcd->sc)
14632                 return -EINVAL;
14633
14634         hw_ctxt = rcd->sc->hw_context;
14635         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14636         /*
14637          * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14638          * This check would not have been enabled for A0 h/w, see
14639          * set_ctxt_jkey().
14640          */
14641         if (!is_ax(dd)) {
14642                 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14643                 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14644                 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14645         }
14646         /* Turn off the J_KEY on the receive side */
14647         write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14648
14649         return 0;
14650 }
14651
14652 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14653                        u16 pkey)
14654 {
14655         u8 hw_ctxt;
14656         u64 reg;
14657
14658         if (!rcd || !rcd->sc)
14659                 return -EINVAL;
14660
14661         hw_ctxt = rcd->sc->hw_context;
14662         reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14663                 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14664         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14665         reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14666         reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14667         reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14668         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14669
14670         return 0;
14671 }
14672
14673 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14674 {
14675         u8 hw_ctxt;
14676         u64 reg;
14677
14678         if (!ctxt || !ctxt->sc)
14679                 return -EINVAL;
14680
14681         hw_ctxt = ctxt->sc->hw_context;
14682         reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14683         reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14684         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14685         write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14686
14687         return 0;
14688 }
14689
14690 /*
14691  * Start doing the clean up the the chip. Our clean up happens in multiple
14692  * stages and this is just the first.
14693  */
14694 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14695 {
14696         aspm_exit(dd);
14697         free_cntrs(dd);
14698         free_rcverr(dd);
14699         clean_up_interrupts(dd);
14700         finish_chip_resources(dd);
14701 }
14702
14703 #define HFI_BASE_GUID(dev) \
14704         ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14705
14706 /*
14707  * Information can be shared between the two HFIs on the same ASIC
14708  * in the same OS.  This function finds the peer device and sets
14709  * up a shared structure.
14710  */
14711 static int init_asic_data(struct hfi1_devdata *dd)
14712 {
14713         unsigned long flags;
14714         struct hfi1_devdata *tmp, *peer = NULL;
14715         struct hfi1_asic_data *asic_data;
14716         int ret = 0;
14717
14718         /* pre-allocate the asic structure in case we are the first device */
14719         asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14720         if (!asic_data)
14721                 return -ENOMEM;
14722
14723         spin_lock_irqsave(&hfi1_devs_lock, flags);
14724         /* Find our peer device */
14725         list_for_each_entry(tmp, &hfi1_dev_list, list) {
14726                 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14727                     dd->unit != tmp->unit) {
14728                         peer = tmp;
14729                         break;
14730                 }
14731         }
14732
14733         if (peer) {
14734                 /* use already allocated structure */
14735                 dd->asic_data = peer->asic_data;
14736                 kfree(asic_data);
14737         } else {
14738                 dd->asic_data = asic_data;
14739                 mutex_init(&dd->asic_data->asic_resource_mutex);
14740         }
14741         dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14742         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14743
14744         /* first one through - set up i2c devices */
14745         if (!peer)
14746                 ret = set_up_i2c(dd, dd->asic_data);
14747
14748         return ret;
14749 }
14750
14751 /*
14752  * Set dd->boardname.  Use a generic name if a name is not returned from
14753  * EFI variable space.
14754  *
14755  * Return 0 on success, -ENOMEM if space could not be allocated.
14756  */
14757 static int obtain_boardname(struct hfi1_devdata *dd)
14758 {
14759         /* generic board description */
14760         const char generic[] =
14761                 "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14762         unsigned long size;
14763         int ret;
14764
14765         ret = read_hfi1_efi_var(dd, "description", &size,
14766                                 (void **)&dd->boardname);
14767         if (ret) {
14768                 dd_dev_info(dd, "Board description not found\n");
14769                 /* use generic description */
14770                 dd->boardname = kstrdup(generic, GFP_KERNEL);
14771                 if (!dd->boardname)
14772                         return -ENOMEM;
14773         }
14774         return 0;
14775 }
14776
14777 /*
14778  * Check the interrupt registers to make sure that they are mapped correctly.
14779  * It is intended to help user identify any mismapping by VMM when the driver
14780  * is running in a VM. This function should only be called before interrupt
14781  * is set up properly.
14782  *
14783  * Return 0 on success, -EINVAL on failure.
14784  */
14785 static int check_int_registers(struct hfi1_devdata *dd)
14786 {
14787         u64 reg;
14788         u64 all_bits = ~(u64)0;
14789         u64 mask;
14790
14791         /* Clear CceIntMask[0] to avoid raising any interrupts */
14792         mask = read_csr(dd, CCE_INT_MASK);
14793         write_csr(dd, CCE_INT_MASK, 0ull);
14794         reg = read_csr(dd, CCE_INT_MASK);
14795         if (reg)
14796                 goto err_exit;
14797
14798         /* Clear all interrupt status bits */
14799         write_csr(dd, CCE_INT_CLEAR, all_bits);
14800         reg = read_csr(dd, CCE_INT_STATUS);
14801         if (reg)
14802                 goto err_exit;
14803
14804         /* Set all interrupt status bits */
14805         write_csr(dd, CCE_INT_FORCE, all_bits);
14806         reg = read_csr(dd, CCE_INT_STATUS);
14807         if (reg != all_bits)
14808                 goto err_exit;
14809
14810         /* Restore the interrupt mask */
14811         write_csr(dd, CCE_INT_CLEAR, all_bits);
14812         write_csr(dd, CCE_INT_MASK, mask);
14813
14814         return 0;
14815 err_exit:
14816         write_csr(dd, CCE_INT_MASK, mask);
14817         dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14818         return -EINVAL;
14819 }
14820
14821 /**
14822  * Allocate and initialize the device structure for the hfi.
14823  * @dev: the pci_dev for hfi1_ib device
14824  * @ent: pci_device_id struct for this dev
14825  *
14826  * Also allocates, initializes, and returns the devdata struct for this
14827  * device instance
14828  *
14829  * This is global, and is called directly at init to set up the
14830  * chip-specific function pointers for later use.
14831  */
14832 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
14833                                   const struct pci_device_id *ent)
14834 {
14835         struct hfi1_devdata *dd;
14836         struct hfi1_pportdata *ppd;
14837         u64 reg;
14838         int i, ret;
14839         static const char * const inames[] = { /* implementation names */
14840                 "RTL silicon",
14841                 "RTL VCS simulation",
14842                 "RTL FPGA emulation",
14843                 "Functional simulator"
14844         };
14845         struct pci_dev *parent = pdev->bus->self;
14846
14847         dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14848                                 sizeof(struct hfi1_pportdata));
14849         if (IS_ERR(dd))
14850                 goto bail;
14851         ppd = dd->pport;
14852         for (i = 0; i < dd->num_pports; i++, ppd++) {
14853                 int vl;
14854                 /* init common fields */
14855                 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14856                 /* DC supports 4 link widths */
14857                 ppd->link_width_supported =
14858                         OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14859                         OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14860                 ppd->link_width_downgrade_supported =
14861                         ppd->link_width_supported;
14862                 /* start out enabling only 4X */
14863                 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14864                 ppd->link_width_downgrade_enabled =
14865                                         ppd->link_width_downgrade_supported;
14866                 /* link width active is 0 when link is down */
14867                 /* link width downgrade active is 0 when link is down */
14868
14869                 if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14870                     num_vls > HFI1_MAX_VLS_SUPPORTED) {
14871                         hfi1_early_err(&pdev->dev,
14872                                        "Invalid num_vls %u, using %u VLs\n",
14873                                     num_vls, HFI1_MAX_VLS_SUPPORTED);
14874                         num_vls = HFI1_MAX_VLS_SUPPORTED;
14875                 }
14876                 ppd->vls_supported = num_vls;
14877                 ppd->vls_operational = ppd->vls_supported;
14878                 /* Set the default MTU. */
14879                 for (vl = 0; vl < num_vls; vl++)
14880                         dd->vld[vl].mtu = hfi1_max_mtu;
14881                 dd->vld[15].mtu = MAX_MAD_PACKET;
14882                 /*
14883                  * Set the initial values to reasonable default, will be set
14884                  * for real when link is up.
14885                  */
14886                 ppd->overrun_threshold = 0x4;
14887                 ppd->phy_error_threshold = 0xf;
14888                 ppd->port_crc_mode_enabled = link_crc_mask;
14889                 /* initialize supported LTP CRC mode */
14890                 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14891                 /* initialize enabled LTP CRC mode */
14892                 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14893                 /* start in offline */
14894                 ppd->host_link_state = HLS_DN_OFFLINE;
14895                 init_vl_arb_caches(ppd);
14896         }
14897
14898         dd->link_default = HLS_DN_POLL;
14899
14900         /*
14901          * Do remaining PCIe setup and save PCIe values in dd.
14902          * Any error printing is already done by the init code.
14903          * On return, we have the chip mapped.
14904          */
14905         ret = hfi1_pcie_ddinit(dd, pdev);
14906         if (ret < 0)
14907                 goto bail_free;
14908
14909         /* Save PCI space registers to rewrite after device reset */
14910         ret = save_pci_variables(dd);
14911         if (ret < 0)
14912                 goto bail_cleanup;
14913
14914         /* verify that reads actually work, save revision for reset check */
14915         dd->revision = read_csr(dd, CCE_REVISION);
14916         if (dd->revision == ~(u64)0) {
14917                 dd_dev_err(dd, "cannot read chip CSRs\n");
14918                 ret = -EINVAL;
14919                 goto bail_cleanup;
14920         }
14921         dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14922                         & CCE_REVISION_CHIP_REV_MAJOR_MASK;
14923         dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14924                         & CCE_REVISION_CHIP_REV_MINOR_MASK;
14925
14926         /*
14927          * Check interrupt registers mapping if the driver has no access to
14928          * the upstream component. In this case, it is likely that the driver
14929          * is running in a VM.
14930          */
14931         if (!parent) {
14932                 ret = check_int_registers(dd);
14933                 if (ret)
14934                         goto bail_cleanup;
14935         }
14936
14937         /*
14938          * obtain the hardware ID - NOT related to unit, which is a
14939          * software enumeration
14940          */
14941         reg = read_csr(dd, CCE_REVISION2);
14942         dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14943                                         & CCE_REVISION2_HFI_ID_MASK;
14944         /* the variable size will remove unwanted bits */
14945         dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14946         dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14947         dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
14948                     dd->icode < ARRAY_SIZE(inames) ?
14949                     inames[dd->icode] : "unknown", (int)dd->irev);
14950
14951         /* speeds the hardware can support */
14952         dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14953         /* speeds allowed to run at */
14954         dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14955         /* give a reasonable active value, will be set on link up */
14956         dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14957
14958         dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
14959         dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
14960         dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
14961         dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
14962         dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
14963         /* fix up link widths for emulation _p */
14964         ppd = dd->pport;
14965         if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14966                 ppd->link_width_supported =
14967                         ppd->link_width_enabled =
14968                         ppd->link_width_downgrade_supported =
14969                         ppd->link_width_downgrade_enabled =
14970                                 OPA_LINK_WIDTH_1X;
14971         }
14972         /* insure num_vls isn't larger than number of sdma engines */
14973         if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
14974                 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
14975                            num_vls, dd->chip_sdma_engines);
14976                 num_vls = dd->chip_sdma_engines;
14977                 ppd->vls_supported = dd->chip_sdma_engines;
14978                 ppd->vls_operational = ppd->vls_supported;
14979         }
14980
14981         /*
14982          * Convert the ns parameter to the 64 * cclocks used in the CSR.
14983          * Limit the max if larger than the field holds.  If timeout is
14984          * non-zero, then the calculated field will be at least 1.
14985          *
14986          * Must be after icode is set up - the cclock rate depends
14987          * on knowing the hardware being used.
14988          */
14989         dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
14990         if (dd->rcv_intr_timeout_csr >
14991                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
14992                 dd->rcv_intr_timeout_csr =
14993                         RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
14994         else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
14995                 dd->rcv_intr_timeout_csr = 1;
14996
14997         /* needs to be done before we look for the peer device */
14998         read_guid(dd);
14999
15000         /* set up shared ASIC data with peer device */
15001         ret = init_asic_data(dd);
15002         if (ret)
15003                 goto bail_cleanup;
15004
15005         /* obtain chip sizes, reset chip CSRs */
15006         ret = init_chip(dd);
15007         if (ret)
15008                 goto bail_cleanup;
15009
15010         /* read in the PCIe link speed information */
15011         ret = pcie_speeds(dd);
15012         if (ret)
15013                 goto bail_cleanup;
15014
15015         /* call before get_platform_config(), after init_chip_resources() */
15016         ret = eprom_init(dd);
15017         if (ret)
15018                 goto bail_free_rcverr;
15019
15020         /* Needs to be called before hfi1_firmware_init */
15021         get_platform_config(dd);
15022
15023         /* read in firmware */
15024         ret = hfi1_firmware_init(dd);
15025         if (ret)
15026                 goto bail_cleanup;
15027
15028         /*
15029          * In general, the PCIe Gen3 transition must occur after the
15030          * chip has been idled (so it won't initiate any PCIe transactions
15031          * e.g. an interrupt) and before the driver changes any registers
15032          * (the transition will reset the registers).
15033          *
15034          * In particular, place this call after:
15035          * - init_chip()     - the chip will not initiate any PCIe transactions
15036          * - pcie_speeds()   - reads the current link speed
15037          * - hfi1_firmware_init() - the needed firmware is ready to be
15038          *                          downloaded
15039          */
15040         ret = do_pcie_gen3_transition(dd);
15041         if (ret)
15042                 goto bail_cleanup;
15043
15044         /* start setting dd values and adjusting CSRs */
15045         init_early_variables(dd);
15046
15047         parse_platform_config(dd);
15048
15049         ret = obtain_boardname(dd);
15050         if (ret)
15051                 goto bail_cleanup;
15052
15053         snprintf(dd->boardversion, BOARD_VERS_MAX,
15054                  "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15055                  HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15056                  (u32)dd->majrev,
15057                  (u32)dd->minrev,
15058                  (dd->revision >> CCE_REVISION_SW_SHIFT)
15059                     & CCE_REVISION_SW_MASK);
15060
15061         ret = set_up_context_variables(dd);
15062         if (ret)
15063                 goto bail_cleanup;
15064
15065         /* set initial RXE CSRs */
15066         init_rxe(dd);
15067         /* set initial TXE CSRs */
15068         init_txe(dd);
15069         /* set initial non-RXE, non-TXE CSRs */
15070         init_other(dd);
15071         /* set up KDETH QP prefix in both RX and TX CSRs */
15072         init_kdeth_qp(dd);
15073
15074         ret = hfi1_dev_affinity_init(dd);
15075         if (ret)
15076                 goto bail_cleanup;
15077
15078         /* send contexts must be set up before receive contexts */
15079         ret = init_send_contexts(dd);
15080         if (ret)
15081                 goto bail_cleanup;
15082
15083         ret = hfi1_create_kctxts(dd);
15084         if (ret)
15085                 goto bail_cleanup;
15086
15087         /*
15088          * Initialize aspm, to be done after gen3 transition and setting up
15089          * contexts and before enabling interrupts
15090          */
15091         aspm_init(dd);
15092
15093         dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
15094         /*
15095          * rcd[0] is guaranteed to be valid by this point. Also, all
15096          * context are using the same value, as per the module parameter.
15097          */
15098         dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
15099
15100         ret = init_pervl_scs(dd);
15101         if (ret)
15102                 goto bail_cleanup;
15103
15104         /* sdma init */
15105         for (i = 0; i < dd->num_pports; ++i) {
15106                 ret = sdma_init(dd, i);
15107                 if (ret)
15108                         goto bail_cleanup;
15109         }
15110
15111         /* use contexts created by hfi1_create_kctxts */
15112         ret = set_up_interrupts(dd);
15113         if (ret)
15114                 goto bail_cleanup;
15115
15116         /* set up LCB access - must be after set_up_interrupts() */
15117         init_lcb_access(dd);
15118
15119         /*
15120          * Serial number is created from the base guid:
15121          * [27:24] = base guid [38:35]
15122          * [23: 0] = base guid [23: 0]
15123          */
15124         snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15125                  (dd->base_guid & 0xFFFFFF) |
15126                      ((dd->base_guid >> 11) & 0xF000000));
15127
15128         dd->oui1 = dd->base_guid >> 56 & 0xFF;
15129         dd->oui2 = dd->base_guid >> 48 & 0xFF;
15130         dd->oui3 = dd->base_guid >> 40 & 0xFF;
15131
15132         ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15133         if (ret)
15134                 goto bail_clear_intr;
15135
15136         thermal_init(dd);
15137
15138         ret = init_cntrs(dd);
15139         if (ret)
15140                 goto bail_clear_intr;
15141
15142         ret = init_rcverr(dd);
15143         if (ret)
15144                 goto bail_free_cntrs;
15145
15146         init_completion(&dd->user_comp);
15147
15148         /* The user refcount starts with one to inidicate an active device */
15149         atomic_set(&dd->user_refcount, 1);
15150
15151         goto bail;
15152
15153 bail_free_rcverr:
15154         free_rcverr(dd);
15155 bail_free_cntrs:
15156         free_cntrs(dd);
15157 bail_clear_intr:
15158         clean_up_interrupts(dd);
15159 bail_cleanup:
15160         hfi1_pcie_ddcleanup(dd);
15161 bail_free:
15162         hfi1_free_devdata(dd);
15163         dd = ERR_PTR(ret);
15164 bail:
15165         return dd;
15166 }
15167
15168 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15169                         u32 dw_len)
15170 {
15171         u32 delta_cycles;
15172         u32 current_egress_rate = ppd->current_egress_rate;
15173         /* rates here are in units of 10^6 bits/sec */
15174
15175         if (desired_egress_rate == -1)
15176                 return 0; /* shouldn't happen */
15177
15178         if (desired_egress_rate >= current_egress_rate)
15179                 return 0; /* we can't help go faster, only slower */
15180
15181         delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15182                         egress_cycles(dw_len * 4, current_egress_rate);
15183
15184         return (u16)delta_cycles;
15185 }
15186
15187 /**
15188  * create_pbc - build a pbc for transmission
15189  * @flags: special case flags or-ed in built pbc
15190  * @srate: static rate
15191  * @vl: vl
15192  * @dwlen: dword length (header words + data words + pbc words)
15193  *
15194  * Create a PBC with the given flags, rate, VL, and length.
15195  *
15196  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15197  * for verbs, which does not use this PSM feature.  The lone other caller
15198  * is for the diagnostic interface which calls this if the user does not
15199  * supply their own PBC.
15200  */
15201 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15202                u32 dw_len)
15203 {
15204         u64 pbc, delay = 0;
15205
15206         if (unlikely(srate_mbs))
15207                 delay = delay_cycles(ppd, srate_mbs, dw_len);
15208
15209         pbc = flags
15210                 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15211                 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15212                 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15213                 | (dw_len & PBC_LENGTH_DWS_MASK)
15214                         << PBC_LENGTH_DWS_SHIFT;
15215
15216         return pbc;
15217 }
15218
15219 #define SBUS_THERMAL    0x4f
15220 #define SBUS_THERM_MONITOR_MODE 0x1
15221
15222 #define THERM_FAILURE(dev, ret, reason) \
15223         dd_dev_err((dd),                                                \
15224                    "Thermal sensor initialization failed: %s (%d)\n",   \
15225                    (reason), (ret))
15226
15227 /*
15228  * Initialize the thermal sensor.
15229  *
15230  * After initialization, enable polling of thermal sensor through
15231  * SBus interface. In order for this to work, the SBus Master
15232  * firmware has to be loaded due to the fact that the HW polling
15233  * logic uses SBus interrupts, which are not supported with
15234  * default firmware. Otherwise, no data will be returned through
15235  * the ASIC_STS_THERM CSR.
15236  */
15237 static int thermal_init(struct hfi1_devdata *dd)
15238 {
15239         int ret = 0;
15240
15241         if (dd->icode != ICODE_RTL_SILICON ||
15242             check_chip_resource(dd, CR_THERM_INIT, NULL))
15243                 return ret;
15244
15245         ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15246         if (ret) {
15247                 THERM_FAILURE(dd, ret, "Acquire SBus");
15248                 return ret;
15249         }
15250
15251         dd_dev_info(dd, "Initializing thermal sensor\n");
15252         /* Disable polling of thermal readings */
15253         write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15254         msleep(100);
15255         /* Thermal Sensor Initialization */
15256         /*    Step 1: Reset the Thermal SBus Receiver */
15257         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15258                                 RESET_SBUS_RECEIVER, 0);
15259         if (ret) {
15260                 THERM_FAILURE(dd, ret, "Bus Reset");
15261                 goto done;
15262         }
15263         /*    Step 2: Set Reset bit in Thermal block */
15264         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15265                                 WRITE_SBUS_RECEIVER, 0x1);
15266         if (ret) {
15267                 THERM_FAILURE(dd, ret, "Therm Block Reset");
15268                 goto done;
15269         }
15270         /*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15271         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15272                                 WRITE_SBUS_RECEIVER, 0x32);
15273         if (ret) {
15274                 THERM_FAILURE(dd, ret, "Write Clock Div");
15275                 goto done;
15276         }
15277         /*    Step 4: Select temperature mode */
15278         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15279                                 WRITE_SBUS_RECEIVER,
15280                                 SBUS_THERM_MONITOR_MODE);
15281         if (ret) {
15282                 THERM_FAILURE(dd, ret, "Write Mode Sel");
15283                 goto done;
15284         }
15285         /*    Step 5: De-assert block reset and start conversion */
15286         ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15287                                 WRITE_SBUS_RECEIVER, 0x2);
15288         if (ret) {
15289                 THERM_FAILURE(dd, ret, "Write Reset Deassert");
15290                 goto done;
15291         }
15292         /*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15293         msleep(22);
15294
15295         /* Enable polling of thermal readings */
15296         write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15297
15298         /* Set initialized flag */
15299         ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15300         if (ret)
15301                 THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15302
15303 done:
15304         release_chip_resource(dd, CR_SBUS);
15305         return ret;
15306 }
15307
15308 static void handle_temp_err(struct hfi1_devdata *dd)
15309 {
15310         struct hfi1_pportdata *ppd = &dd->pport[0];
15311         /*
15312          * Thermal Critical Interrupt
15313          * Put the device into forced freeze mode, take link down to
15314          * offline, and put DC into reset.
15315          */
15316         dd_dev_emerg(dd,
15317                      "Critical temperature reached! Forcing device into freeze mode!\n");
15318         dd->flags |= HFI1_FORCED_FREEZE;
15319         start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15320         /*
15321          * Shut DC down as much and as quickly as possible.
15322          *
15323          * Step 1: Take the link down to OFFLINE. This will cause the
15324          *         8051 to put the Serdes in reset. However, we don't want to
15325          *         go through the entire link state machine since we want to
15326          *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15327          *         but rather an attempt to save the chip.
15328          *         Code below is almost the same as quiet_serdes() but avoids
15329          *         all the extra work and the sleeps.
15330          */
15331         ppd->driver_link_ready = 0;
15332         ppd->link_enabled = 0;
15333         set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15334                                 PLS_OFFLINE);
15335         /*
15336          * Step 2: Shutdown LCB and 8051
15337          *         After shutdown, do not restore DC_CFG_RESET value.
15338          */
15339         dc_shutdown(dd);
15340 }