RDMA/efa: Rate limit admin queue error prints
[linux-2.6-microblaze.git] / drivers / infiniband / hw / efa / efa_com.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-2-Clause
2 /*
3  * Copyright 2018-2019 Amazon.com, Inc. or its affiliates. All rights reserved.
4  */
5
6 #include "efa_com.h"
7 #include "efa_regs_defs.h"
8
9 #define ADMIN_CMD_TIMEOUT_US 30000000 /* usecs */
10
11 #define EFA_REG_READ_TIMEOUT_US 50000 /* usecs */
12 #define EFA_MMIO_READ_INVALID 0xffffffff
13
14 #define EFA_POLL_INTERVAL_MS 100 /* msecs */
15
16 #define EFA_ASYNC_QUEUE_DEPTH 16
17 #define EFA_ADMIN_QUEUE_DEPTH 32
18
19 #define MIN_EFA_VER\
20         ((EFA_ADMIN_API_VERSION_MAJOR << EFA_REGS_VERSION_MAJOR_VERSION_SHIFT) | \
21          (EFA_ADMIN_API_VERSION_MINOR & EFA_REGS_VERSION_MINOR_VERSION_MASK))
22
23 #define EFA_CTRL_MAJOR          0
24 #define EFA_CTRL_MINOR          0
25 #define EFA_CTRL_SUB_MINOR      1
26
27 #define MIN_EFA_CTRL_VER \
28         (((EFA_CTRL_MAJOR) << \
29         (EFA_REGS_CONTROLLER_VERSION_MAJOR_VERSION_SHIFT)) | \
30         ((EFA_CTRL_MINOR) << \
31         (EFA_REGS_CONTROLLER_VERSION_MINOR_VERSION_SHIFT)) | \
32         (EFA_CTRL_SUB_MINOR))
33
34 #define EFA_DMA_ADDR_TO_UINT32_LOW(x)   ((u32)((u64)(x)))
35 #define EFA_DMA_ADDR_TO_UINT32_HIGH(x)  ((u32)(((u64)(x)) >> 32))
36
37 #define EFA_REGS_ADMIN_INTR_MASK 1
38
39 enum efa_cmd_status {
40         EFA_CMD_SUBMITTED,
41         EFA_CMD_COMPLETED,
42 };
43
44 struct efa_comp_ctx {
45         struct completion wait_event;
46         struct efa_admin_acq_entry *user_cqe;
47         u32 comp_size;
48         enum efa_cmd_status status;
49         /* status from the device */
50         u8 comp_status;
51         u8 cmd_opcode;
52         u8 occupied;
53 };
54
55 static const char *efa_com_cmd_str(u8 cmd)
56 {
57 #define EFA_CMD_STR_CASE(_cmd) case EFA_ADMIN_##_cmd: return #_cmd
58
59         switch (cmd) {
60         EFA_CMD_STR_CASE(CREATE_QP);
61         EFA_CMD_STR_CASE(MODIFY_QP);
62         EFA_CMD_STR_CASE(QUERY_QP);
63         EFA_CMD_STR_CASE(DESTROY_QP);
64         EFA_CMD_STR_CASE(CREATE_AH);
65         EFA_CMD_STR_CASE(DESTROY_AH);
66         EFA_CMD_STR_CASE(REG_MR);
67         EFA_CMD_STR_CASE(DEREG_MR);
68         EFA_CMD_STR_CASE(CREATE_CQ);
69         EFA_CMD_STR_CASE(DESTROY_CQ);
70         EFA_CMD_STR_CASE(GET_FEATURE);
71         EFA_CMD_STR_CASE(SET_FEATURE);
72         EFA_CMD_STR_CASE(GET_STATS);
73         EFA_CMD_STR_CASE(ALLOC_PD);
74         EFA_CMD_STR_CASE(DEALLOC_PD);
75         EFA_CMD_STR_CASE(ALLOC_UAR);
76         EFA_CMD_STR_CASE(DEALLOC_UAR);
77         default: return "unknown command opcode";
78         }
79 #undef EFA_CMD_STR_CASE
80 }
81
82 static u32 efa_com_reg_read32(struct efa_com_dev *edev, u16 offset)
83 {
84         struct efa_com_mmio_read *mmio_read = &edev->mmio_read;
85         struct efa_admin_mmio_req_read_less_resp *read_resp;
86         unsigned long exp_time;
87         u32 mmio_read_reg;
88         u32 err;
89
90         read_resp = mmio_read->read_resp;
91
92         spin_lock(&mmio_read->lock);
93         mmio_read->seq_num++;
94
95         /* trash DMA req_id to identify when hardware is done */
96         read_resp->req_id = mmio_read->seq_num + 0x9aL;
97         mmio_read_reg = (offset << EFA_REGS_MMIO_REG_READ_REG_OFF_SHIFT) &
98                         EFA_REGS_MMIO_REG_READ_REG_OFF_MASK;
99         mmio_read_reg |= mmio_read->seq_num &
100                          EFA_REGS_MMIO_REG_READ_REQ_ID_MASK;
101
102         writel(mmio_read_reg, edev->reg_bar + EFA_REGS_MMIO_REG_READ_OFF);
103
104         exp_time = jiffies + usecs_to_jiffies(mmio_read->mmio_read_timeout);
105         do {
106                 if (READ_ONCE(read_resp->req_id) == mmio_read->seq_num)
107                         break;
108                 udelay(1);
109         } while (time_is_after_jiffies(exp_time));
110
111         if (read_resp->req_id != mmio_read->seq_num) {
112                 ibdev_err_ratelimited(
113                         edev->efa_dev,
114                         "Reading register timed out. expected: req id[%u] offset[%#x] actual: req id[%u] offset[%#x]\n",
115                         mmio_read->seq_num, offset, read_resp->req_id,
116                         read_resp->reg_off);
117                 err = EFA_MMIO_READ_INVALID;
118                 goto out;
119         }
120
121         if (read_resp->reg_off != offset) {
122                 ibdev_err_ratelimited(
123                         edev->efa_dev,
124                         "Reading register failed: wrong offset provided\n");
125                 err = EFA_MMIO_READ_INVALID;
126                 goto out;
127         }
128
129         err = read_resp->reg_val;
130 out:
131         spin_unlock(&mmio_read->lock);
132         return err;
133 }
134
135 static int efa_com_admin_init_sq(struct efa_com_dev *edev)
136 {
137         struct efa_com_admin_queue *aq = &edev->aq;
138         struct efa_com_admin_sq *sq = &aq->sq;
139         u16 size = aq->depth * sizeof(*sq->entries);
140         u32 addr_high;
141         u32 addr_low;
142         u32 aq_caps;
143
144         sq->entries =
145                 dma_alloc_coherent(aq->dmadev, size, &sq->dma_addr, GFP_KERNEL);
146         if (!sq->entries)
147                 return -ENOMEM;
148
149         spin_lock_init(&sq->lock);
150
151         sq->cc = 0;
152         sq->pc = 0;
153         sq->phase = 1;
154
155         sq->db_addr = (u32 __iomem *)(edev->reg_bar + EFA_REGS_AQ_PROD_DB_OFF);
156
157         addr_high = EFA_DMA_ADDR_TO_UINT32_HIGH(sq->dma_addr);
158         addr_low = EFA_DMA_ADDR_TO_UINT32_LOW(sq->dma_addr);
159
160         writel(addr_low, edev->reg_bar + EFA_REGS_AQ_BASE_LO_OFF);
161         writel(addr_high, edev->reg_bar + EFA_REGS_AQ_BASE_HI_OFF);
162
163         aq_caps = aq->depth & EFA_REGS_AQ_CAPS_AQ_DEPTH_MASK;
164         aq_caps |= (sizeof(struct efa_admin_aq_entry) <<
165                         EFA_REGS_AQ_CAPS_AQ_ENTRY_SIZE_SHIFT) &
166                         EFA_REGS_AQ_CAPS_AQ_ENTRY_SIZE_MASK;
167
168         writel(aq_caps, edev->reg_bar + EFA_REGS_AQ_CAPS_OFF);
169
170         return 0;
171 }
172
173 static int efa_com_admin_init_cq(struct efa_com_dev *edev)
174 {
175         struct efa_com_admin_queue *aq = &edev->aq;
176         struct efa_com_admin_cq *cq = &aq->cq;
177         u16 size = aq->depth * sizeof(*cq->entries);
178         u32 addr_high;
179         u32 addr_low;
180         u32 acq_caps;
181
182         cq->entries =
183                 dma_alloc_coherent(aq->dmadev, size, &cq->dma_addr, GFP_KERNEL);
184         if (!cq->entries)
185                 return -ENOMEM;
186
187         spin_lock_init(&cq->lock);
188
189         cq->cc = 0;
190         cq->phase = 1;
191
192         addr_high = EFA_DMA_ADDR_TO_UINT32_HIGH(cq->dma_addr);
193         addr_low = EFA_DMA_ADDR_TO_UINT32_LOW(cq->dma_addr);
194
195         writel(addr_low, edev->reg_bar + EFA_REGS_ACQ_BASE_LO_OFF);
196         writel(addr_high, edev->reg_bar + EFA_REGS_ACQ_BASE_HI_OFF);
197
198         acq_caps = aq->depth & EFA_REGS_ACQ_CAPS_ACQ_DEPTH_MASK;
199         acq_caps |= (sizeof(struct efa_admin_acq_entry) <<
200                         EFA_REGS_ACQ_CAPS_ACQ_ENTRY_SIZE_SHIFT) &
201                         EFA_REGS_ACQ_CAPS_ACQ_ENTRY_SIZE_MASK;
202         acq_caps |= (aq->msix_vector_idx <<
203                         EFA_REGS_ACQ_CAPS_ACQ_MSIX_VECTOR_SHIFT) &
204                         EFA_REGS_ACQ_CAPS_ACQ_MSIX_VECTOR_MASK;
205
206         writel(acq_caps, edev->reg_bar + EFA_REGS_ACQ_CAPS_OFF);
207
208         return 0;
209 }
210
211 static int efa_com_admin_init_aenq(struct efa_com_dev *edev,
212                                    struct efa_aenq_handlers *aenq_handlers)
213 {
214         struct efa_com_aenq *aenq = &edev->aenq;
215         u32 addr_low, addr_high, aenq_caps;
216         u16 size;
217
218         if (!aenq_handlers) {
219                 ibdev_err(edev->efa_dev, "aenq handlers pointer is NULL\n");
220                 return -EINVAL;
221         }
222
223         size = EFA_ASYNC_QUEUE_DEPTH * sizeof(*aenq->entries);
224         aenq->entries = dma_alloc_coherent(edev->dmadev, size, &aenq->dma_addr,
225                                            GFP_KERNEL);
226         if (!aenq->entries)
227                 return -ENOMEM;
228
229         aenq->aenq_handlers = aenq_handlers;
230         aenq->depth = EFA_ASYNC_QUEUE_DEPTH;
231         aenq->cc = 0;
232         aenq->phase = 1;
233
234         addr_low = EFA_DMA_ADDR_TO_UINT32_LOW(aenq->dma_addr);
235         addr_high = EFA_DMA_ADDR_TO_UINT32_HIGH(aenq->dma_addr);
236
237         writel(addr_low, edev->reg_bar + EFA_REGS_AENQ_BASE_LO_OFF);
238         writel(addr_high, edev->reg_bar + EFA_REGS_AENQ_BASE_HI_OFF);
239
240         aenq_caps = aenq->depth & EFA_REGS_AENQ_CAPS_AENQ_DEPTH_MASK;
241         aenq_caps |= (sizeof(struct efa_admin_aenq_entry) <<
242                 EFA_REGS_AENQ_CAPS_AENQ_ENTRY_SIZE_SHIFT) &
243                 EFA_REGS_AENQ_CAPS_AENQ_ENTRY_SIZE_MASK;
244         aenq_caps |= (aenq->msix_vector_idx
245                       << EFA_REGS_AENQ_CAPS_AENQ_MSIX_VECTOR_SHIFT) &
246                      EFA_REGS_AENQ_CAPS_AENQ_MSIX_VECTOR_MASK;
247         writel(aenq_caps, edev->reg_bar + EFA_REGS_AENQ_CAPS_OFF);
248
249         /*
250          * Init cons_db to mark that all entries in the queue
251          * are initially available
252          */
253         writel(edev->aenq.cc, edev->reg_bar + EFA_REGS_AENQ_CONS_DB_OFF);
254
255         return 0;
256 }
257
258 /* ID to be used with efa_com_get_comp_ctx */
259 static u16 efa_com_alloc_ctx_id(struct efa_com_admin_queue *aq)
260 {
261         u16 ctx_id;
262
263         spin_lock(&aq->comp_ctx_lock);
264         ctx_id = aq->comp_ctx_pool[aq->comp_ctx_pool_next];
265         aq->comp_ctx_pool_next++;
266         spin_unlock(&aq->comp_ctx_lock);
267
268         return ctx_id;
269 }
270
271 static void efa_com_dealloc_ctx_id(struct efa_com_admin_queue *aq,
272                                    u16 ctx_id)
273 {
274         spin_lock(&aq->comp_ctx_lock);
275         aq->comp_ctx_pool_next--;
276         aq->comp_ctx_pool[aq->comp_ctx_pool_next] = ctx_id;
277         spin_unlock(&aq->comp_ctx_lock);
278 }
279
280 static inline void efa_com_put_comp_ctx(struct efa_com_admin_queue *aq,
281                                         struct efa_comp_ctx *comp_ctx)
282 {
283         u16 cmd_id = comp_ctx->user_cqe->acq_common_descriptor.command &
284                      EFA_ADMIN_ACQ_COMMON_DESC_COMMAND_ID_MASK;
285         u16 ctx_id = cmd_id & (aq->depth - 1);
286
287         ibdev_dbg(aq->efa_dev, "Put completion command_id %#x\n", cmd_id);
288         comp_ctx->occupied = 0;
289         efa_com_dealloc_ctx_id(aq, ctx_id);
290 }
291
292 static struct efa_comp_ctx *efa_com_get_comp_ctx(struct efa_com_admin_queue *aq,
293                                                  u16 cmd_id, bool capture)
294 {
295         u16 ctx_id = cmd_id & (aq->depth - 1);
296
297         if (aq->comp_ctx[ctx_id].occupied && capture) {
298                 ibdev_err_ratelimited(
299                         aq->efa_dev,
300                         "Completion context for command_id %#x is occupied\n",
301                         cmd_id);
302                 return NULL;
303         }
304
305         if (capture) {
306                 aq->comp_ctx[ctx_id].occupied = 1;
307                 ibdev_dbg(aq->efa_dev,
308                           "Take completion ctxt for command_id %#x\n", cmd_id);
309         }
310
311         return &aq->comp_ctx[ctx_id];
312 }
313
314 static struct efa_comp_ctx *__efa_com_submit_admin_cmd(struct efa_com_admin_queue *aq,
315                                                        struct efa_admin_aq_entry *cmd,
316                                                        size_t cmd_size_in_bytes,
317                                                        struct efa_admin_acq_entry *comp,
318                                                        size_t comp_size_in_bytes)
319 {
320         struct efa_comp_ctx *comp_ctx;
321         u16 queue_size_mask;
322         u16 cmd_id;
323         u16 ctx_id;
324         u16 pi;
325
326         queue_size_mask = aq->depth - 1;
327         pi = aq->sq.pc & queue_size_mask;
328
329         ctx_id = efa_com_alloc_ctx_id(aq);
330
331         /* cmd_id LSBs are the ctx_id and MSBs are entropy bits from pc */
332         cmd_id = ctx_id & queue_size_mask;
333         cmd_id |= aq->sq.pc & ~queue_size_mask;
334         cmd_id &= EFA_ADMIN_AQ_COMMON_DESC_COMMAND_ID_MASK;
335
336         cmd->aq_common_descriptor.command_id = cmd_id;
337         cmd->aq_common_descriptor.flags |= aq->sq.phase &
338                 EFA_ADMIN_AQ_COMMON_DESC_PHASE_MASK;
339
340         comp_ctx = efa_com_get_comp_ctx(aq, cmd_id, true);
341         if (!comp_ctx) {
342                 efa_com_dealloc_ctx_id(aq, ctx_id);
343                 return ERR_PTR(-EINVAL);
344         }
345
346         comp_ctx->status = EFA_CMD_SUBMITTED;
347         comp_ctx->comp_size = comp_size_in_bytes;
348         comp_ctx->user_cqe = comp;
349         comp_ctx->cmd_opcode = cmd->aq_common_descriptor.opcode;
350
351         reinit_completion(&comp_ctx->wait_event);
352
353         memcpy(&aq->sq.entries[pi], cmd, cmd_size_in_bytes);
354
355         aq->sq.pc++;
356         atomic64_inc(&aq->stats.submitted_cmd);
357
358         if ((aq->sq.pc & queue_size_mask) == 0)
359                 aq->sq.phase = !aq->sq.phase;
360
361         /* barrier not needed in case of writel */
362         writel(aq->sq.pc, aq->sq.db_addr);
363
364         return comp_ctx;
365 }
366
367 static inline int efa_com_init_comp_ctxt(struct efa_com_admin_queue *aq)
368 {
369         size_t pool_size = aq->depth * sizeof(*aq->comp_ctx_pool);
370         size_t size = aq->depth * sizeof(struct efa_comp_ctx);
371         struct efa_comp_ctx *comp_ctx;
372         u16 i;
373
374         aq->comp_ctx = devm_kzalloc(aq->dmadev, size, GFP_KERNEL);
375         aq->comp_ctx_pool = devm_kzalloc(aq->dmadev, pool_size, GFP_KERNEL);
376         if (!aq->comp_ctx || !aq->comp_ctx_pool) {
377                 devm_kfree(aq->dmadev, aq->comp_ctx_pool);
378                 devm_kfree(aq->dmadev, aq->comp_ctx);
379                 return -ENOMEM;
380         }
381
382         for (i = 0; i < aq->depth; i++) {
383                 comp_ctx = efa_com_get_comp_ctx(aq, i, false);
384                 if (comp_ctx)
385                         init_completion(&comp_ctx->wait_event);
386
387                 aq->comp_ctx_pool[i] = i;
388         }
389
390         spin_lock_init(&aq->comp_ctx_lock);
391
392         aq->comp_ctx_pool_next = 0;
393
394         return 0;
395 }
396
397 static struct efa_comp_ctx *efa_com_submit_admin_cmd(struct efa_com_admin_queue *aq,
398                                                      struct efa_admin_aq_entry *cmd,
399                                                      size_t cmd_size_in_bytes,
400                                                      struct efa_admin_acq_entry *comp,
401                                                      size_t comp_size_in_bytes)
402 {
403         struct efa_comp_ctx *comp_ctx;
404
405         spin_lock(&aq->sq.lock);
406         if (!test_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state)) {
407                 ibdev_err_ratelimited(aq->efa_dev, "Admin queue is closed\n");
408                 spin_unlock(&aq->sq.lock);
409                 return ERR_PTR(-ENODEV);
410         }
411
412         comp_ctx = __efa_com_submit_admin_cmd(aq, cmd, cmd_size_in_bytes, comp,
413                                               comp_size_in_bytes);
414         spin_unlock(&aq->sq.lock);
415         if (IS_ERR(comp_ctx))
416                 clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state);
417
418         return comp_ctx;
419 }
420
421 static void efa_com_handle_single_admin_completion(struct efa_com_admin_queue *aq,
422                                                    struct efa_admin_acq_entry *cqe)
423 {
424         struct efa_comp_ctx *comp_ctx;
425         u16 cmd_id;
426
427         cmd_id = cqe->acq_common_descriptor.command &
428                  EFA_ADMIN_ACQ_COMMON_DESC_COMMAND_ID_MASK;
429
430         comp_ctx = efa_com_get_comp_ctx(aq, cmd_id, false);
431         if (!comp_ctx) {
432                 ibdev_err(aq->efa_dev,
433                           "comp_ctx is NULL. Changing the admin queue running state\n");
434                 clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state);
435                 return;
436         }
437
438         comp_ctx->status = EFA_CMD_COMPLETED;
439         comp_ctx->comp_status = cqe->acq_common_descriptor.status;
440         if (comp_ctx->user_cqe)
441                 memcpy(comp_ctx->user_cqe, cqe, comp_ctx->comp_size);
442
443         if (!test_bit(EFA_AQ_STATE_POLLING_BIT, &aq->state))
444                 complete(&comp_ctx->wait_event);
445 }
446
447 static void efa_com_handle_admin_completion(struct efa_com_admin_queue *aq)
448 {
449         struct efa_admin_acq_entry *cqe;
450         u16 queue_size_mask;
451         u16 comp_num = 0;
452         u8 phase;
453         u16 ci;
454
455         queue_size_mask = aq->depth - 1;
456
457         ci = aq->cq.cc & queue_size_mask;
458         phase = aq->cq.phase;
459
460         cqe = &aq->cq.entries[ci];
461
462         /* Go over all the completions */
463         while ((READ_ONCE(cqe->acq_common_descriptor.flags) &
464                 EFA_ADMIN_ACQ_COMMON_DESC_PHASE_MASK) == phase) {
465                 /*
466                  * Do not read the rest of the completion entry before the
467                  * phase bit was validated
468                  */
469                 dma_rmb();
470                 efa_com_handle_single_admin_completion(aq, cqe);
471
472                 ci++;
473                 comp_num++;
474                 if (ci == aq->depth) {
475                         ci = 0;
476                         phase = !phase;
477                 }
478
479                 cqe = &aq->cq.entries[ci];
480         }
481
482         aq->cq.cc += comp_num;
483         aq->cq.phase = phase;
484         aq->sq.cc += comp_num;
485         atomic64_add(comp_num, &aq->stats.completed_cmd);
486 }
487
488 static int efa_com_comp_status_to_errno(u8 comp_status)
489 {
490         switch (comp_status) {
491         case EFA_ADMIN_SUCCESS:
492                 return 0;
493         case EFA_ADMIN_RESOURCE_ALLOCATION_FAILURE:
494                 return -ENOMEM;
495         case EFA_ADMIN_UNSUPPORTED_OPCODE:
496                 return -EOPNOTSUPP;
497         case EFA_ADMIN_BAD_OPCODE:
498         case EFA_ADMIN_MALFORMED_REQUEST:
499         case EFA_ADMIN_ILLEGAL_PARAMETER:
500         case EFA_ADMIN_UNKNOWN_ERROR:
501                 return -EINVAL;
502         default:
503                 return -EINVAL;
504         }
505 }
506
507 static int efa_com_wait_and_process_admin_cq_polling(struct efa_comp_ctx *comp_ctx,
508                                                      struct efa_com_admin_queue *aq)
509 {
510         unsigned long timeout;
511         unsigned long flags;
512         int err;
513
514         timeout = jiffies + usecs_to_jiffies(aq->completion_timeout);
515
516         while (1) {
517                 spin_lock_irqsave(&aq->cq.lock, flags);
518                 efa_com_handle_admin_completion(aq);
519                 spin_unlock_irqrestore(&aq->cq.lock, flags);
520
521                 if (comp_ctx->status != EFA_CMD_SUBMITTED)
522                         break;
523
524                 if (time_is_before_jiffies(timeout)) {
525                         ibdev_err_ratelimited(
526                                 aq->efa_dev,
527                                 "Wait for completion (polling) timeout\n");
528                         /* EFA didn't have any completion */
529                         atomic64_inc(&aq->stats.no_completion);
530
531                         clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state);
532                         err = -ETIME;
533                         goto out;
534                 }
535
536                 msleep(aq->poll_interval);
537         }
538
539         err = efa_com_comp_status_to_errno(comp_ctx->comp_status);
540 out:
541         efa_com_put_comp_ctx(aq, comp_ctx);
542         return err;
543 }
544
545 static int efa_com_wait_and_process_admin_cq_interrupts(struct efa_comp_ctx *comp_ctx,
546                                                         struct efa_com_admin_queue *aq)
547 {
548         unsigned long flags;
549         int err;
550
551         wait_for_completion_timeout(&comp_ctx->wait_event,
552                                     usecs_to_jiffies(aq->completion_timeout));
553
554         /*
555          * In case the command wasn't completed find out the root cause.
556          * There might be 2 kinds of errors
557          * 1) No completion (timeout reached)
558          * 2) There is completion but the device didn't get any msi-x interrupt.
559          */
560         if (comp_ctx->status == EFA_CMD_SUBMITTED) {
561                 spin_lock_irqsave(&aq->cq.lock, flags);
562                 efa_com_handle_admin_completion(aq);
563                 spin_unlock_irqrestore(&aq->cq.lock, flags);
564
565                 atomic64_inc(&aq->stats.no_completion);
566
567                 if (comp_ctx->status == EFA_CMD_COMPLETED)
568                         ibdev_err_ratelimited(
569                                 aq->efa_dev,
570                                 "The device sent a completion but the driver didn't receive any MSI-X interrupt for admin cmd %s(%d) status %d (ctx: 0x%p, sq producer: %d, sq consumer: %d, cq consumer: %d)\n",
571                                 efa_com_cmd_str(comp_ctx->cmd_opcode),
572                                 comp_ctx->cmd_opcode, comp_ctx->status,
573                                 comp_ctx, aq->sq.pc, aq->sq.cc, aq->cq.cc);
574                 else
575                         ibdev_err_ratelimited(
576                                 aq->efa_dev,
577                                 "The device didn't send any completion for admin cmd %s(%d) status %d (ctx 0x%p, sq producer: %d, sq consumer: %d, cq consumer: %d)\n",
578                                 efa_com_cmd_str(comp_ctx->cmd_opcode),
579                                 comp_ctx->cmd_opcode, comp_ctx->status,
580                                 comp_ctx, aq->sq.pc, aq->sq.cc, aq->cq.cc);
581
582                 clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state);
583                 err = -ETIME;
584                 goto out;
585         }
586
587         err = efa_com_comp_status_to_errno(comp_ctx->comp_status);
588 out:
589         efa_com_put_comp_ctx(aq, comp_ctx);
590         return err;
591 }
592
593 /*
594  * There are two types to wait for completion.
595  * Polling mode - wait until the completion is available.
596  * Async mode - wait on wait queue until the completion is ready
597  * (or the timeout expired).
598  * It is expected that the IRQ called efa_com_handle_admin_completion
599  * to mark the completions.
600  */
601 static int efa_com_wait_and_process_admin_cq(struct efa_comp_ctx *comp_ctx,
602                                              struct efa_com_admin_queue *aq)
603 {
604         if (test_bit(EFA_AQ_STATE_POLLING_BIT, &aq->state))
605                 return efa_com_wait_and_process_admin_cq_polling(comp_ctx, aq);
606
607         return efa_com_wait_and_process_admin_cq_interrupts(comp_ctx, aq);
608 }
609
610 /**
611  * efa_com_cmd_exec - Execute admin command
612  * @aq: admin queue.
613  * @cmd: the admin command to execute.
614  * @cmd_size: the command size.
615  * @comp: command completion return entry.
616  * @comp_size: command completion size.
617  * Submit an admin command and then wait until the device will return a
618  * completion.
619  * The completion will be copied into comp.
620  *
621  * @return - 0 on success, negative value on failure.
622  */
623 int efa_com_cmd_exec(struct efa_com_admin_queue *aq,
624                      struct efa_admin_aq_entry *cmd,
625                      size_t cmd_size,
626                      struct efa_admin_acq_entry *comp,
627                      size_t comp_size)
628 {
629         struct efa_comp_ctx *comp_ctx;
630         int err;
631
632         might_sleep();
633
634         /* In case of queue FULL */
635         down(&aq->avail_cmds);
636
637         ibdev_dbg(aq->efa_dev, "%s (opcode %d)\n",
638                   efa_com_cmd_str(cmd->aq_common_descriptor.opcode),
639                   cmd->aq_common_descriptor.opcode);
640         comp_ctx = efa_com_submit_admin_cmd(aq, cmd, cmd_size, comp, comp_size);
641         if (IS_ERR(comp_ctx)) {
642                 ibdev_err_ratelimited(
643                         aq->efa_dev,
644                         "Failed to submit command %s (opcode %u) err %ld\n",
645                         efa_com_cmd_str(cmd->aq_common_descriptor.opcode),
646                         cmd->aq_common_descriptor.opcode, PTR_ERR(comp_ctx));
647
648                 up(&aq->avail_cmds);
649                 return PTR_ERR(comp_ctx);
650         }
651
652         err = efa_com_wait_and_process_admin_cq(comp_ctx, aq);
653         if (err)
654                 ibdev_err_ratelimited(
655                         aq->efa_dev,
656                         "Failed to process command %s (opcode %u) comp_status %d err %d\n",
657                         efa_com_cmd_str(cmd->aq_common_descriptor.opcode),
658                         cmd->aq_common_descriptor.opcode, comp_ctx->comp_status,
659                         err);
660
661         up(&aq->avail_cmds);
662
663         return err;
664 }
665
666 /**
667  * efa_com_admin_destroy - Destroy the admin and the async events queues.
668  * @edev: EFA communication layer struct
669  */
670 void efa_com_admin_destroy(struct efa_com_dev *edev)
671 {
672         struct efa_com_admin_queue *aq = &edev->aq;
673         struct efa_com_aenq *aenq = &edev->aenq;
674         struct efa_com_admin_cq *cq = &aq->cq;
675         struct efa_com_admin_sq *sq = &aq->sq;
676         u16 size;
677
678         clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state);
679
680         devm_kfree(edev->dmadev, aq->comp_ctx_pool);
681         devm_kfree(edev->dmadev, aq->comp_ctx);
682
683         size = aq->depth * sizeof(*sq->entries);
684         dma_free_coherent(edev->dmadev, size, sq->entries, sq->dma_addr);
685
686         size = aq->depth * sizeof(*cq->entries);
687         dma_free_coherent(edev->dmadev, size, cq->entries, cq->dma_addr);
688
689         size = aenq->depth * sizeof(*aenq->entries);
690         dma_free_coherent(edev->dmadev, size, aenq->entries, aenq->dma_addr);
691 }
692
693 /**
694  * efa_com_set_admin_polling_mode - Set the admin completion queue polling mode
695  * @edev: EFA communication layer struct
696  * @polling: Enable/Disable polling mode
697  *
698  * Set the admin completion mode.
699  */
700 void efa_com_set_admin_polling_mode(struct efa_com_dev *edev, bool polling)
701 {
702         u32 mask_value = 0;
703
704         if (polling)
705                 mask_value = EFA_REGS_ADMIN_INTR_MASK;
706
707         writel(mask_value, edev->reg_bar + EFA_REGS_INTR_MASK_OFF);
708         if (polling)
709                 set_bit(EFA_AQ_STATE_POLLING_BIT, &edev->aq.state);
710         else
711                 clear_bit(EFA_AQ_STATE_POLLING_BIT, &edev->aq.state);
712 }
713
714 static void efa_com_stats_init(struct efa_com_dev *edev)
715 {
716         atomic64_t *s = (atomic64_t *)&edev->aq.stats;
717         int i;
718
719         for (i = 0; i < sizeof(edev->aq.stats) / sizeof(*s); i++, s++)
720                 atomic64_set(s, 0);
721 }
722
723 /**
724  * efa_com_admin_init - Init the admin and the async queues
725  * @edev: EFA communication layer struct
726  * @aenq_handlers: Those handlers to be called upon event.
727  *
728  * Initialize the admin submission and completion queues.
729  * Initialize the asynchronous events notification queues.
730  *
731  * @return - 0 on success, negative value on failure.
732  */
733 int efa_com_admin_init(struct efa_com_dev *edev,
734                        struct efa_aenq_handlers *aenq_handlers)
735 {
736         struct efa_com_admin_queue *aq = &edev->aq;
737         u32 timeout;
738         u32 dev_sts;
739         u32 cap;
740         int err;
741
742         dev_sts = efa_com_reg_read32(edev, EFA_REGS_DEV_STS_OFF);
743         if (!(dev_sts & EFA_REGS_DEV_STS_READY_MASK)) {
744                 ibdev_err(edev->efa_dev,
745                           "Device isn't ready, abort com init %#x\n", dev_sts);
746                 return -ENODEV;
747         }
748
749         aq->depth = EFA_ADMIN_QUEUE_DEPTH;
750
751         aq->dmadev = edev->dmadev;
752         aq->efa_dev = edev->efa_dev;
753         set_bit(EFA_AQ_STATE_POLLING_BIT, &aq->state);
754
755         sema_init(&aq->avail_cmds, aq->depth);
756
757         efa_com_stats_init(edev);
758
759         err = efa_com_init_comp_ctxt(aq);
760         if (err)
761                 return err;
762
763         err = efa_com_admin_init_sq(edev);
764         if (err)
765                 goto err_destroy_comp_ctxt;
766
767         err = efa_com_admin_init_cq(edev);
768         if (err)
769                 goto err_destroy_sq;
770
771         efa_com_set_admin_polling_mode(edev, false);
772
773         err = efa_com_admin_init_aenq(edev, aenq_handlers);
774         if (err)
775                 goto err_destroy_cq;
776
777         cap = efa_com_reg_read32(edev, EFA_REGS_CAPS_OFF);
778         timeout = (cap & EFA_REGS_CAPS_ADMIN_CMD_TO_MASK) >>
779                   EFA_REGS_CAPS_ADMIN_CMD_TO_SHIFT;
780         if (timeout)
781                 /* the resolution of timeout reg is 100ms */
782                 aq->completion_timeout = timeout * 100000;
783         else
784                 aq->completion_timeout = ADMIN_CMD_TIMEOUT_US;
785
786         aq->poll_interval = EFA_POLL_INTERVAL_MS;
787
788         set_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state);
789
790         return 0;
791
792 err_destroy_cq:
793         dma_free_coherent(edev->dmadev, aq->depth * sizeof(*aq->cq.entries),
794                           aq->cq.entries, aq->cq.dma_addr);
795 err_destroy_sq:
796         dma_free_coherent(edev->dmadev, aq->depth * sizeof(*aq->sq.entries),
797                           aq->sq.entries, aq->sq.dma_addr);
798 err_destroy_comp_ctxt:
799         devm_kfree(edev->dmadev, aq->comp_ctx);
800
801         return err;
802 }
803
804 /**
805  * efa_com_admin_q_comp_intr_handler - admin queue interrupt handler
806  * @edev: EFA communication layer struct
807  *
808  * This method goes over the admin completion queue and wakes up
809  * all the pending threads that wait on the commands wait event.
810  *
811  * @note: Should be called after MSI-X interrupt.
812  */
813 void efa_com_admin_q_comp_intr_handler(struct efa_com_dev *edev)
814 {
815         unsigned long flags;
816
817         spin_lock_irqsave(&edev->aq.cq.lock, flags);
818         efa_com_handle_admin_completion(&edev->aq);
819         spin_unlock_irqrestore(&edev->aq.cq.lock, flags);
820 }
821
822 /*
823  * efa_handle_specific_aenq_event:
824  * return the handler that is relevant to the specific event group
825  */
826 static efa_aenq_handler efa_com_get_specific_aenq_cb(struct efa_com_dev *edev,
827                                                      u16 group)
828 {
829         struct efa_aenq_handlers *aenq_handlers = edev->aenq.aenq_handlers;
830
831         if (group < EFA_MAX_HANDLERS && aenq_handlers->handlers[group])
832                 return aenq_handlers->handlers[group];
833
834         return aenq_handlers->unimplemented_handler;
835 }
836
837 /**
838  * efa_com_aenq_intr_handler - AENQ interrupt handler
839  * @edev: EFA communication layer struct
840  * @data: Data of interrupt handler.
841  *
842  * Go over the async event notification queue and call the proper aenq handler.
843  */
844 void efa_com_aenq_intr_handler(struct efa_com_dev *edev, void *data)
845 {
846         struct efa_admin_aenq_common_desc *aenq_common;
847         struct efa_com_aenq *aenq = &edev->aenq;
848         struct efa_admin_aenq_entry *aenq_e;
849         efa_aenq_handler handler_cb;
850         u32 processed = 0;
851         u8 phase;
852         u32 ci;
853
854         ci = aenq->cc & (aenq->depth - 1);
855         phase = aenq->phase;
856         aenq_e = &aenq->entries[ci]; /* Get first entry */
857         aenq_common = &aenq_e->aenq_common_desc;
858
859         /* Go over all the events */
860         while ((READ_ONCE(aenq_common->flags) &
861                 EFA_ADMIN_AENQ_COMMON_DESC_PHASE_MASK) == phase) {
862                 /*
863                  * Do not read the rest of the completion entry before the
864                  * phase bit was validated
865                  */
866                 dma_rmb();
867
868                 /* Handle specific event*/
869                 handler_cb = efa_com_get_specific_aenq_cb(edev,
870                                                           aenq_common->group);
871                 handler_cb(data, aenq_e); /* call the actual event handler*/
872
873                 /* Get next event entry */
874                 ci++;
875                 processed++;
876
877                 if (ci == aenq->depth) {
878                         ci = 0;
879                         phase = !phase;
880                 }
881                 aenq_e = &aenq->entries[ci];
882                 aenq_common = &aenq_e->aenq_common_desc;
883         }
884
885         aenq->cc += processed;
886         aenq->phase = phase;
887
888         /* Don't update aenq doorbell if there weren't any processed events */
889         if (!processed)
890                 return;
891
892         /* barrier not needed in case of writel */
893         writel(aenq->cc, edev->reg_bar + EFA_REGS_AENQ_CONS_DB_OFF);
894 }
895
896 static void efa_com_mmio_reg_read_resp_addr_init(struct efa_com_dev *edev)
897 {
898         struct efa_com_mmio_read *mmio_read = &edev->mmio_read;
899         u32 addr_high;
900         u32 addr_low;
901
902         /* dma_addr_bits is unknown at this point */
903         addr_high = (mmio_read->read_resp_dma_addr >> 32) & GENMASK(31, 0);
904         addr_low = mmio_read->read_resp_dma_addr & GENMASK(31, 0);
905
906         writel(addr_high, edev->reg_bar + EFA_REGS_MMIO_RESP_HI_OFF);
907         writel(addr_low, edev->reg_bar + EFA_REGS_MMIO_RESP_LO_OFF);
908 }
909
910 int efa_com_mmio_reg_read_init(struct efa_com_dev *edev)
911 {
912         struct efa_com_mmio_read *mmio_read = &edev->mmio_read;
913
914         spin_lock_init(&mmio_read->lock);
915         mmio_read->read_resp =
916                 dma_alloc_coherent(edev->dmadev, sizeof(*mmio_read->read_resp),
917                                    &mmio_read->read_resp_dma_addr, GFP_KERNEL);
918         if (!mmio_read->read_resp)
919                 return -ENOMEM;
920
921         efa_com_mmio_reg_read_resp_addr_init(edev);
922
923         mmio_read->read_resp->req_id = 0;
924         mmio_read->seq_num = 0;
925         mmio_read->mmio_read_timeout = EFA_REG_READ_TIMEOUT_US;
926
927         return 0;
928 }
929
930 void efa_com_mmio_reg_read_destroy(struct efa_com_dev *edev)
931 {
932         struct efa_com_mmio_read *mmio_read = &edev->mmio_read;
933
934         dma_free_coherent(edev->dmadev, sizeof(*mmio_read->read_resp),
935                           mmio_read->read_resp, mmio_read->read_resp_dma_addr);
936 }
937
938 int efa_com_validate_version(struct efa_com_dev *edev)
939 {
940         u32 ctrl_ver_masked;
941         u32 ctrl_ver;
942         u32 ver;
943
944         /*
945          * Make sure the EFA version and the controller version are at least
946          * as the driver expects
947          */
948         ver = efa_com_reg_read32(edev, EFA_REGS_VERSION_OFF);
949         ctrl_ver = efa_com_reg_read32(edev,
950                                       EFA_REGS_CONTROLLER_VERSION_OFF);
951
952         ibdev_dbg(edev->efa_dev, "efa device version: %d.%d\n",
953                   (ver & EFA_REGS_VERSION_MAJOR_VERSION_MASK) >>
954                           EFA_REGS_VERSION_MAJOR_VERSION_SHIFT,
955                   ver & EFA_REGS_VERSION_MINOR_VERSION_MASK);
956
957         if (ver < MIN_EFA_VER) {
958                 ibdev_err(edev->efa_dev,
959                           "EFA version is lower than the minimal version the driver supports\n");
960                 return -EOPNOTSUPP;
961         }
962
963         ibdev_dbg(edev->efa_dev,
964                   "efa controller version: %d.%d.%d implementation version %d\n",
965                   (ctrl_ver & EFA_REGS_CONTROLLER_VERSION_MAJOR_VERSION_MASK) >>
966                           EFA_REGS_CONTROLLER_VERSION_MAJOR_VERSION_SHIFT,
967                   (ctrl_ver & EFA_REGS_CONTROLLER_VERSION_MINOR_VERSION_MASK) >>
968                           EFA_REGS_CONTROLLER_VERSION_MINOR_VERSION_SHIFT,
969                   (ctrl_ver & EFA_REGS_CONTROLLER_VERSION_SUBMINOR_VERSION_MASK),
970                   (ctrl_ver & EFA_REGS_CONTROLLER_VERSION_IMPL_ID_MASK) >>
971                           EFA_REGS_CONTROLLER_VERSION_IMPL_ID_SHIFT);
972
973         ctrl_ver_masked =
974                 (ctrl_ver & EFA_REGS_CONTROLLER_VERSION_MAJOR_VERSION_MASK) |
975                 (ctrl_ver & EFA_REGS_CONTROLLER_VERSION_MINOR_VERSION_MASK) |
976                 (ctrl_ver & EFA_REGS_CONTROLLER_VERSION_SUBMINOR_VERSION_MASK);
977
978         /* Validate the ctrl version without the implementation ID */
979         if (ctrl_ver_masked < MIN_EFA_CTRL_VER) {
980                 ibdev_err(edev->efa_dev,
981                           "EFA ctrl version is lower than the minimal ctrl version the driver supports\n");
982                 return -EOPNOTSUPP;
983         }
984
985         return 0;
986 }
987
988 /**
989  * efa_com_get_dma_width - Retrieve physical dma address width the device
990  * supports.
991  * @edev: EFA communication layer struct
992  *
993  * Retrieve the maximum physical address bits the device can handle.
994  *
995  * @return: > 0 on Success and negative value otherwise.
996  */
997 int efa_com_get_dma_width(struct efa_com_dev *edev)
998 {
999         u32 caps = efa_com_reg_read32(edev, EFA_REGS_CAPS_OFF);
1000         int width;
1001
1002         width = (caps & EFA_REGS_CAPS_DMA_ADDR_WIDTH_MASK) >>
1003                 EFA_REGS_CAPS_DMA_ADDR_WIDTH_SHIFT;
1004
1005         ibdev_dbg(edev->efa_dev, "DMA width: %d\n", width);
1006
1007         if (width < 32 || width > 64) {
1008                 ibdev_err(edev->efa_dev, "DMA width illegal value: %d\n", width);
1009                 return -EINVAL;
1010         }
1011
1012         edev->dma_addr_bits = width;
1013
1014         return width;
1015 }
1016
1017 static int wait_for_reset_state(struct efa_com_dev *edev, u32 timeout,
1018                                 u16 exp_state)
1019 {
1020         u32 val, i;
1021
1022         for (i = 0; i < timeout; i++) {
1023                 val = efa_com_reg_read32(edev, EFA_REGS_DEV_STS_OFF);
1024
1025                 if ((val & EFA_REGS_DEV_STS_RESET_IN_PROGRESS_MASK) ==
1026                     exp_state)
1027                         return 0;
1028
1029                 ibdev_dbg(edev->efa_dev, "Reset indication val %d\n", val);
1030                 msleep(EFA_POLL_INTERVAL_MS);
1031         }
1032
1033         return -ETIME;
1034 }
1035
1036 /**
1037  * efa_com_dev_reset - Perform device FLR to the device.
1038  * @edev: EFA communication layer struct
1039  * @reset_reason: Specify what is the trigger for the reset in case of an error.
1040  *
1041  * @return - 0 on success, negative value on failure.
1042  */
1043 int efa_com_dev_reset(struct efa_com_dev *edev,
1044                       enum efa_regs_reset_reason_types reset_reason)
1045 {
1046         u32 stat, timeout, cap, reset_val;
1047         int err;
1048
1049         stat = efa_com_reg_read32(edev, EFA_REGS_DEV_STS_OFF);
1050         cap = efa_com_reg_read32(edev, EFA_REGS_CAPS_OFF);
1051
1052         if (!(stat & EFA_REGS_DEV_STS_READY_MASK)) {
1053                 ibdev_err(edev->efa_dev,
1054                           "Device isn't ready, can't reset device\n");
1055                 return -EINVAL;
1056         }
1057
1058         timeout = (cap & EFA_REGS_CAPS_RESET_TIMEOUT_MASK) >>
1059                   EFA_REGS_CAPS_RESET_TIMEOUT_SHIFT;
1060         if (!timeout) {
1061                 ibdev_err(edev->efa_dev, "Invalid timeout value\n");
1062                 return -EINVAL;
1063         }
1064
1065         /* start reset */
1066         reset_val = EFA_REGS_DEV_CTL_DEV_RESET_MASK;
1067         reset_val |= (reset_reason << EFA_REGS_DEV_CTL_RESET_REASON_SHIFT) &
1068                      EFA_REGS_DEV_CTL_RESET_REASON_MASK;
1069         writel(reset_val, edev->reg_bar + EFA_REGS_DEV_CTL_OFF);
1070
1071         /* reset clears the mmio readless address, restore it */
1072         efa_com_mmio_reg_read_resp_addr_init(edev);
1073
1074         err = wait_for_reset_state(edev, timeout,
1075                                    EFA_REGS_DEV_STS_RESET_IN_PROGRESS_MASK);
1076         if (err) {
1077                 ibdev_err(edev->efa_dev, "Reset indication didn't turn on\n");
1078                 return err;
1079         }
1080
1081         /* reset done */
1082         writel(0, edev->reg_bar + EFA_REGS_DEV_CTL_OFF);
1083         err = wait_for_reset_state(edev, timeout, 0);
1084         if (err) {
1085                 ibdev_err(edev->efa_dev, "Reset indication didn't turn off\n");
1086                 return err;
1087         }
1088
1089         timeout = (cap & EFA_REGS_CAPS_ADMIN_CMD_TO_MASK) >>
1090                   EFA_REGS_CAPS_ADMIN_CMD_TO_SHIFT;
1091         if (timeout)
1092                 /* the resolution of timeout reg is 100ms */
1093                 edev->aq.completion_timeout = timeout * 100000;
1094         else
1095                 edev->aq.completion_timeout = ADMIN_CMD_TIMEOUT_US;
1096
1097         return 0;
1098 }