Merge branch 'for-5.14/dax' into libnvdimm-fixes
[linux-2.6-microblaze.git] / drivers / infiniband / hw / bnxt_re / qplib_res.c
1 /*
2  * Broadcom NetXtreme-E RoCE driver.
3  *
4  * Copyright (c) 2016 - 2017, Broadcom. All rights reserved.  The term
5  * Broadcom refers to Broadcom Limited and/or its subsidiaries.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * BSD license below:
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  *
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in
21  *    the documentation and/or other materials provided with the
22  *    distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
31  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
33  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
34  * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  *
36  * Description: QPLib resource manager
37  */
38
39 #define dev_fmt(fmt) "QPLIB: " fmt
40
41 #include <linux/spinlock.h>
42 #include <linux/pci.h>
43 #include <linux/interrupt.h>
44 #include <linux/inetdevice.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/if_vlan.h>
47 #include <linux/vmalloc.h>
48 #include <rdma/ib_verbs.h>
49 #include <rdma/ib_umem.h>
50
51 #include "roce_hsi.h"
52 #include "qplib_res.h"
53 #include "qplib_sp.h"
54 #include "qplib_rcfw.h"
55
56 static void bnxt_qplib_free_stats_ctx(struct pci_dev *pdev,
57                                       struct bnxt_qplib_stats *stats);
58 static int bnxt_qplib_alloc_stats_ctx(struct pci_dev *pdev,
59                                       struct bnxt_qplib_stats *stats);
60
61 /* PBL */
62 static void __free_pbl(struct bnxt_qplib_res *res, struct bnxt_qplib_pbl *pbl,
63                        bool is_umem)
64 {
65         struct pci_dev *pdev = res->pdev;
66         int i;
67
68         if (!is_umem) {
69                 for (i = 0; i < pbl->pg_count; i++) {
70                         if (pbl->pg_arr[i])
71                                 dma_free_coherent(&pdev->dev, pbl->pg_size,
72                                                   (void *)((unsigned long)
73                                                    pbl->pg_arr[i] &
74                                                   PAGE_MASK),
75                                                   pbl->pg_map_arr[i]);
76                         else
77                                 dev_warn(&pdev->dev,
78                                          "PBL free pg_arr[%d] empty?!\n", i);
79                         pbl->pg_arr[i] = NULL;
80                 }
81         }
82         vfree(pbl->pg_arr);
83         pbl->pg_arr = NULL;
84         vfree(pbl->pg_map_arr);
85         pbl->pg_map_arr = NULL;
86         pbl->pg_count = 0;
87         pbl->pg_size = 0;
88 }
89
90 static void bnxt_qplib_fill_user_dma_pages(struct bnxt_qplib_pbl *pbl,
91                                            struct bnxt_qplib_sg_info *sginfo)
92 {
93         struct ib_block_iter biter;
94         int i = 0;
95
96         rdma_umem_for_each_dma_block(sginfo->umem, &biter, sginfo->pgsize) {
97                 pbl->pg_map_arr[i] = rdma_block_iter_dma_address(&biter);
98                 pbl->pg_arr[i] = NULL;
99                 pbl->pg_count++;
100                 i++;
101         }
102 }
103
104 static int __alloc_pbl(struct bnxt_qplib_res *res,
105                        struct bnxt_qplib_pbl *pbl,
106                        struct bnxt_qplib_sg_info *sginfo)
107 {
108         struct pci_dev *pdev = res->pdev;
109         bool is_umem = false;
110         u32 pages;
111         int i;
112
113         if (sginfo->nopte)
114                 return 0;
115         if (sginfo->umem)
116                 pages = ib_umem_num_dma_blocks(sginfo->umem, sginfo->pgsize);
117         else
118                 pages = sginfo->npages;
119         /* page ptr arrays */
120         pbl->pg_arr = vmalloc(pages * sizeof(void *));
121         if (!pbl->pg_arr)
122                 return -ENOMEM;
123
124         pbl->pg_map_arr = vmalloc(pages * sizeof(dma_addr_t));
125         if (!pbl->pg_map_arr) {
126                 vfree(pbl->pg_arr);
127                 pbl->pg_arr = NULL;
128                 return -ENOMEM;
129         }
130         pbl->pg_count = 0;
131         pbl->pg_size = sginfo->pgsize;
132
133         if (!sginfo->umem) {
134                 for (i = 0; i < pages; i++) {
135                         pbl->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
136                                                             pbl->pg_size,
137                                                             &pbl->pg_map_arr[i],
138                                                             GFP_KERNEL);
139                         if (!pbl->pg_arr[i])
140                                 goto fail;
141                         pbl->pg_count++;
142                 }
143         } else {
144                 is_umem = true;
145                 bnxt_qplib_fill_user_dma_pages(pbl, sginfo);
146         }
147
148         return 0;
149 fail:
150         __free_pbl(res, pbl, is_umem);
151         return -ENOMEM;
152 }
153
154 /* HWQ */
155 void bnxt_qplib_free_hwq(struct bnxt_qplib_res *res,
156                          struct bnxt_qplib_hwq *hwq)
157 {
158         int i;
159
160         if (!hwq->max_elements)
161                 return;
162         if (hwq->level >= PBL_LVL_MAX)
163                 return;
164
165         for (i = 0; i < hwq->level + 1; i++) {
166                 if (i == hwq->level)
167                         __free_pbl(res, &hwq->pbl[i], hwq->is_user);
168                 else
169                         __free_pbl(res, &hwq->pbl[i], false);
170         }
171
172         hwq->level = PBL_LVL_MAX;
173         hwq->max_elements = 0;
174         hwq->element_size = 0;
175         hwq->prod = 0;
176         hwq->cons = 0;
177         hwq->cp_bit = 0;
178 }
179
180 /* All HWQs are power of 2 in size */
181
182 int bnxt_qplib_alloc_init_hwq(struct bnxt_qplib_hwq *hwq,
183                               struct bnxt_qplib_hwq_attr *hwq_attr)
184 {
185         u32 npages, aux_slots, pg_size, aux_pages = 0, aux_size = 0;
186         struct bnxt_qplib_sg_info sginfo = {};
187         u32 depth, stride, npbl, npde;
188         dma_addr_t *src_phys_ptr, **dst_virt_ptr;
189         struct bnxt_qplib_res *res;
190         struct pci_dev *pdev;
191         int i, rc, lvl;
192
193         res = hwq_attr->res;
194         pdev = res->pdev;
195         pg_size = hwq_attr->sginfo->pgsize;
196         hwq->level = PBL_LVL_MAX;
197
198         depth = roundup_pow_of_two(hwq_attr->depth);
199         stride = roundup_pow_of_two(hwq_attr->stride);
200         if (hwq_attr->aux_depth) {
201                 aux_slots = hwq_attr->aux_depth;
202                 aux_size = roundup_pow_of_two(hwq_attr->aux_stride);
203                 aux_pages = (aux_slots * aux_size) / pg_size;
204                 if ((aux_slots * aux_size) % pg_size)
205                         aux_pages++;
206         }
207
208         if (!hwq_attr->sginfo->umem) {
209                 hwq->is_user = false;
210                 npages = (depth * stride) / pg_size + aux_pages;
211                 if ((depth * stride) % pg_size)
212                         npages++;
213                 if (!npages)
214                         return -EINVAL;
215                 hwq_attr->sginfo->npages = npages;
216         } else {
217                 unsigned long sginfo_num_pages = ib_umem_num_dma_blocks(
218                         hwq_attr->sginfo->umem, hwq_attr->sginfo->pgsize);
219
220                 hwq->is_user = true;
221                 npages = sginfo_num_pages;
222                 npages = (npages * PAGE_SIZE) /
223                           BIT_ULL(hwq_attr->sginfo->pgshft);
224                 if ((sginfo_num_pages * PAGE_SIZE) %
225                      BIT_ULL(hwq_attr->sginfo->pgshft))
226                         if (!npages)
227                                 npages++;
228         }
229
230         if (npages == MAX_PBL_LVL_0_PGS) {
231                 /* This request is Level 0, map PTE */
232                 rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], hwq_attr->sginfo);
233                 if (rc)
234                         goto fail;
235                 hwq->level = PBL_LVL_0;
236         }
237
238         if (npages > MAX_PBL_LVL_0_PGS) {
239                 if (npages > MAX_PBL_LVL_1_PGS) {
240                         u32 flag = (hwq_attr->type == HWQ_TYPE_L2_CMPL) ?
241                                     0 : PTU_PTE_VALID;
242                         /* 2 levels of indirection */
243                         npbl = npages >> MAX_PBL_LVL_1_PGS_SHIFT;
244                         if (npages % BIT(MAX_PBL_LVL_1_PGS_SHIFT))
245                                 npbl++;
246                         npde = npbl >> MAX_PDL_LVL_SHIFT;
247                         if (npbl % BIT(MAX_PDL_LVL_SHIFT))
248                                 npde++;
249                         /* Alloc PDE pages */
250                         sginfo.pgsize = npde * pg_size;
251                         sginfo.npages = 1;
252                         rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], &sginfo);
253
254                         /* Alloc PBL pages */
255                         sginfo.npages = npbl;
256                         sginfo.pgsize = PAGE_SIZE;
257                         rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_1], &sginfo);
258                         if (rc)
259                                 goto fail;
260                         /* Fill PDL with PBL page pointers */
261                         dst_virt_ptr =
262                                 (dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr;
263                         src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr;
264                         if (hwq_attr->type == HWQ_TYPE_MR) {
265                         /* For MR it is expected that we supply only 1 contigous
266                          * page i.e only 1 entry in the PDL that will contain
267                          * all the PBLs for the user supplied memory region
268                          */
269                                 for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count;
270                                      i++)
271                                         dst_virt_ptr[0][i] = src_phys_ptr[i] |
272                                                 flag;
273                         } else {
274                                 for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count;
275                                      i++)
276                                         dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
277                                                 src_phys_ptr[i] |
278                                                 PTU_PDE_VALID;
279                         }
280                         /* Alloc or init PTEs */
281                         rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_2],
282                                          hwq_attr->sginfo);
283                         if (rc)
284                                 goto fail;
285                         hwq->level = PBL_LVL_2;
286                         if (hwq_attr->sginfo->nopte)
287                                 goto done;
288                         /* Fill PBLs with PTE pointers */
289                         dst_virt_ptr =
290                                 (dma_addr_t **)hwq->pbl[PBL_LVL_1].pg_arr;
291                         src_phys_ptr = hwq->pbl[PBL_LVL_2].pg_map_arr;
292                         for (i = 0; i < hwq->pbl[PBL_LVL_2].pg_count; i++) {
293                                 dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
294                                         src_phys_ptr[i] | PTU_PTE_VALID;
295                         }
296                         if (hwq_attr->type == HWQ_TYPE_QUEUE) {
297                                 /* Find the last pg of the size */
298                                 i = hwq->pbl[PBL_LVL_2].pg_count;
299                                 dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |=
300                                                                   PTU_PTE_LAST;
301                                 if (i > 1)
302                                         dst_virt_ptr[PTR_PG(i - 2)]
303                                                     [PTR_IDX(i - 2)] |=
304                                                     PTU_PTE_NEXT_TO_LAST;
305                         }
306                 } else { /* pages < 512 npbl = 1, npde = 0 */
307                         u32 flag = (hwq_attr->type == HWQ_TYPE_L2_CMPL) ?
308                                     0 : PTU_PTE_VALID;
309
310                         /* 1 level of indirection */
311                         npbl = npages >> MAX_PBL_LVL_1_PGS_SHIFT;
312                         if (npages % BIT(MAX_PBL_LVL_1_PGS_SHIFT))
313                                 npbl++;
314                         sginfo.npages = npbl;
315                         sginfo.pgsize = PAGE_SIZE;
316                         /* Alloc PBL page */
317                         rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], &sginfo);
318                         if (rc)
319                                 goto fail;
320                         /* Alloc or init  PTEs */
321                         rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_1],
322                                          hwq_attr->sginfo);
323                         if (rc)
324                                 goto fail;
325                         hwq->level = PBL_LVL_1;
326                         if (hwq_attr->sginfo->nopte)
327                                 goto done;
328                         /* Fill PBL with PTE pointers */
329                         dst_virt_ptr =
330                                 (dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr;
331                         src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr;
332                         for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count; i++)
333                                 dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
334                                         src_phys_ptr[i] | flag;
335                         if (hwq_attr->type == HWQ_TYPE_QUEUE) {
336                                 /* Find the last pg of the size */
337                                 i = hwq->pbl[PBL_LVL_1].pg_count;
338                                 dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |=
339                                                                   PTU_PTE_LAST;
340                                 if (i > 1)
341                                         dst_virt_ptr[PTR_PG(i - 2)]
342                                                     [PTR_IDX(i - 2)] |=
343                                                     PTU_PTE_NEXT_TO_LAST;
344                         }
345                 }
346         }
347 done:
348         hwq->prod = 0;
349         hwq->cons = 0;
350         hwq->pdev = pdev;
351         hwq->depth = hwq_attr->depth;
352         hwq->max_elements = depth;
353         hwq->element_size = stride;
354         hwq->qe_ppg = pg_size / stride;
355         /* For direct access to the elements */
356         lvl = hwq->level;
357         if (hwq_attr->sginfo->nopte && hwq->level)
358                 lvl = hwq->level - 1;
359         hwq->pbl_ptr = hwq->pbl[lvl].pg_arr;
360         hwq->pbl_dma_ptr = hwq->pbl[lvl].pg_map_arr;
361         spin_lock_init(&hwq->lock);
362
363         return 0;
364 fail:
365         bnxt_qplib_free_hwq(res, hwq);
366         return -ENOMEM;
367 }
368
369 /* Context Tables */
370 void bnxt_qplib_free_ctx(struct bnxt_qplib_res *res,
371                          struct bnxt_qplib_ctx *ctx)
372 {
373         int i;
374
375         bnxt_qplib_free_hwq(res, &ctx->qpc_tbl);
376         bnxt_qplib_free_hwq(res, &ctx->mrw_tbl);
377         bnxt_qplib_free_hwq(res, &ctx->srqc_tbl);
378         bnxt_qplib_free_hwq(res, &ctx->cq_tbl);
379         bnxt_qplib_free_hwq(res, &ctx->tim_tbl);
380         for (i = 0; i < MAX_TQM_ALLOC_REQ; i++)
381                 bnxt_qplib_free_hwq(res, &ctx->tqm_ctx.qtbl[i]);
382         /* restore original pde level before destroy */
383         ctx->tqm_ctx.pde.level = ctx->tqm_ctx.pde_level;
384         bnxt_qplib_free_hwq(res, &ctx->tqm_ctx.pde);
385         bnxt_qplib_free_stats_ctx(res->pdev, &ctx->stats);
386 }
387
388 static int bnxt_qplib_alloc_tqm_rings(struct bnxt_qplib_res *res,
389                                       struct bnxt_qplib_ctx *ctx)
390 {
391         struct bnxt_qplib_hwq_attr hwq_attr = {};
392         struct bnxt_qplib_sg_info sginfo = {};
393         struct bnxt_qplib_tqm_ctx *tqmctx;
394         int rc = 0;
395         int i;
396
397         tqmctx = &ctx->tqm_ctx;
398
399         sginfo.pgsize = PAGE_SIZE;
400         sginfo.pgshft = PAGE_SHIFT;
401         hwq_attr.sginfo = &sginfo;
402         hwq_attr.res = res;
403         hwq_attr.type = HWQ_TYPE_CTX;
404         hwq_attr.depth = 512;
405         hwq_attr.stride = sizeof(u64);
406         /* Alloc pdl buffer */
407         rc = bnxt_qplib_alloc_init_hwq(&tqmctx->pde, &hwq_attr);
408         if (rc)
409                 goto out;
410         /* Save original pdl level */
411         tqmctx->pde_level = tqmctx->pde.level;
412
413         hwq_attr.stride = 1;
414         for (i = 0; i < MAX_TQM_ALLOC_REQ; i++) {
415                 if (!tqmctx->qcount[i])
416                         continue;
417                 hwq_attr.depth = ctx->qpc_count * tqmctx->qcount[i];
418                 rc = bnxt_qplib_alloc_init_hwq(&tqmctx->qtbl[i], &hwq_attr);
419                 if (rc)
420                         goto out;
421         }
422 out:
423         return rc;
424 }
425
426 static void bnxt_qplib_map_tqm_pgtbl(struct bnxt_qplib_tqm_ctx *ctx)
427 {
428         struct bnxt_qplib_hwq *tbl;
429         dma_addr_t *dma_ptr;
430         __le64 **pbl_ptr, *ptr;
431         int i, j, k;
432         int fnz_idx = -1;
433         int pg_count;
434
435         pbl_ptr = (__le64 **)ctx->pde.pbl_ptr;
436
437         for (i = 0, j = 0; i < MAX_TQM_ALLOC_REQ;
438              i++, j += MAX_TQM_ALLOC_BLK_SIZE) {
439                 tbl = &ctx->qtbl[i];
440                 if (!tbl->max_elements)
441                         continue;
442                 if (fnz_idx == -1)
443                         fnz_idx = i; /* first non-zero index */
444                 switch (tbl->level) {
445                 case PBL_LVL_2:
446                         pg_count = tbl->pbl[PBL_LVL_1].pg_count;
447                         for (k = 0; k < pg_count; k++) {
448                                 ptr = &pbl_ptr[PTR_PG(j + k)][PTR_IDX(j + k)];
449                                 dma_ptr = &tbl->pbl[PBL_LVL_1].pg_map_arr[k];
450                                 *ptr = cpu_to_le64(*dma_ptr | PTU_PTE_VALID);
451                         }
452                         break;
453                 case PBL_LVL_1:
454                 case PBL_LVL_0:
455                 default:
456                         ptr = &pbl_ptr[PTR_PG(j)][PTR_IDX(j)];
457                         *ptr = cpu_to_le64(tbl->pbl[PBL_LVL_0].pg_map_arr[0] |
458                                            PTU_PTE_VALID);
459                         break;
460                 }
461         }
462         if (fnz_idx == -1)
463                 fnz_idx = 0;
464         /* update pde level as per page table programming */
465         ctx->pde.level = (ctx->qtbl[fnz_idx].level == PBL_LVL_2) ? PBL_LVL_2 :
466                           ctx->qtbl[fnz_idx].level + 1;
467 }
468
469 static int bnxt_qplib_setup_tqm_rings(struct bnxt_qplib_res *res,
470                                       struct bnxt_qplib_ctx *ctx)
471 {
472         int rc = 0;
473
474         rc = bnxt_qplib_alloc_tqm_rings(res, ctx);
475         if (rc)
476                 goto fail;
477
478         bnxt_qplib_map_tqm_pgtbl(&ctx->tqm_ctx);
479 fail:
480         return rc;
481 }
482
483 /*
484  * Routine: bnxt_qplib_alloc_ctx
485  * Description:
486  *     Context tables are memories which are used by the chip fw.
487  *     The 6 tables defined are:
488  *             QPC ctx - holds QP states
489  *             MRW ctx - holds memory region and window
490  *             SRQ ctx - holds shared RQ states
491  *             CQ ctx - holds completion queue states
492  *             TQM ctx - holds Tx Queue Manager context
493  *             TIM ctx - holds timer context
494  *     Depending on the size of the tbl requested, either a 1 Page Buffer List
495  *     or a 1-to-2-stage indirection Page Directory List + 1 PBL is used
496  *     instead.
497  *     Table might be employed as follows:
498  *             For 0      < ctx size <= 1 PAGE, 0 level of ind is used
499  *             For 1 PAGE < ctx size <= 512 entries size, 1 level of ind is used
500  *             For 512    < ctx size <= MAX, 2 levels of ind is used
501  * Returns:
502  *     0 if success, else -ERRORS
503  */
504 int bnxt_qplib_alloc_ctx(struct bnxt_qplib_res *res,
505                          struct bnxt_qplib_ctx *ctx,
506                          bool virt_fn, bool is_p5)
507 {
508         struct bnxt_qplib_hwq_attr hwq_attr = {};
509         struct bnxt_qplib_sg_info sginfo = {};
510         int rc = 0;
511
512         if (virt_fn || is_p5)
513                 goto stats_alloc;
514
515         /* QPC Tables */
516         sginfo.pgsize = PAGE_SIZE;
517         sginfo.pgshft = PAGE_SHIFT;
518         hwq_attr.sginfo = &sginfo;
519
520         hwq_attr.res = res;
521         hwq_attr.depth = ctx->qpc_count;
522         hwq_attr.stride = BNXT_QPLIB_MAX_QP_CTX_ENTRY_SIZE;
523         hwq_attr.type = HWQ_TYPE_CTX;
524         rc = bnxt_qplib_alloc_init_hwq(&ctx->qpc_tbl, &hwq_attr);
525         if (rc)
526                 goto fail;
527
528         /* MRW Tables */
529         hwq_attr.depth = ctx->mrw_count;
530         hwq_attr.stride = BNXT_QPLIB_MAX_MRW_CTX_ENTRY_SIZE;
531         rc = bnxt_qplib_alloc_init_hwq(&ctx->mrw_tbl, &hwq_attr);
532         if (rc)
533                 goto fail;
534
535         /* SRQ Tables */
536         hwq_attr.depth = ctx->srqc_count;
537         hwq_attr.stride = BNXT_QPLIB_MAX_SRQ_CTX_ENTRY_SIZE;
538         rc = bnxt_qplib_alloc_init_hwq(&ctx->srqc_tbl, &hwq_attr);
539         if (rc)
540                 goto fail;
541
542         /* CQ Tables */
543         hwq_attr.depth = ctx->cq_count;
544         hwq_attr.stride = BNXT_QPLIB_MAX_CQ_CTX_ENTRY_SIZE;
545         rc = bnxt_qplib_alloc_init_hwq(&ctx->cq_tbl, &hwq_attr);
546         if (rc)
547                 goto fail;
548
549         /* TQM Buffer */
550         rc = bnxt_qplib_setup_tqm_rings(res, ctx);
551         if (rc)
552                 goto fail;
553         /* TIM Buffer */
554         ctx->tim_tbl.max_elements = ctx->qpc_count * 16;
555         hwq_attr.depth = ctx->qpc_count * 16;
556         hwq_attr.stride = 1;
557         rc = bnxt_qplib_alloc_init_hwq(&ctx->tim_tbl, &hwq_attr);
558         if (rc)
559                 goto fail;
560 stats_alloc:
561         /* Stats */
562         rc = bnxt_qplib_alloc_stats_ctx(res->pdev, &ctx->stats);
563         if (rc)
564                 goto fail;
565
566         return 0;
567
568 fail:
569         bnxt_qplib_free_ctx(res, ctx);
570         return rc;
571 }
572
573 /* GUID */
574 void bnxt_qplib_get_guid(u8 *dev_addr, u8 *guid)
575 {
576         u8 mac[ETH_ALEN];
577
578         /* MAC-48 to EUI-64 mapping */
579         memcpy(mac, dev_addr, ETH_ALEN);
580         guid[0] = mac[0] ^ 2;
581         guid[1] = mac[1];
582         guid[2] = mac[2];
583         guid[3] = 0xff;
584         guid[4] = 0xfe;
585         guid[5] = mac[3];
586         guid[6] = mac[4];
587         guid[7] = mac[5];
588 }
589
590 static void bnxt_qplib_free_sgid_tbl(struct bnxt_qplib_res *res,
591                                      struct bnxt_qplib_sgid_tbl *sgid_tbl)
592 {
593         kfree(sgid_tbl->tbl);
594         kfree(sgid_tbl->hw_id);
595         kfree(sgid_tbl->ctx);
596         kfree(sgid_tbl->vlan);
597         sgid_tbl->tbl = NULL;
598         sgid_tbl->hw_id = NULL;
599         sgid_tbl->ctx = NULL;
600         sgid_tbl->vlan = NULL;
601         sgid_tbl->max = 0;
602         sgid_tbl->active = 0;
603 }
604
605 static int bnxt_qplib_alloc_sgid_tbl(struct bnxt_qplib_res *res,
606                                      struct bnxt_qplib_sgid_tbl *sgid_tbl,
607                                      u16 max)
608 {
609         sgid_tbl->tbl = kcalloc(max, sizeof(*sgid_tbl->tbl), GFP_KERNEL);
610         if (!sgid_tbl->tbl)
611                 return -ENOMEM;
612
613         sgid_tbl->hw_id = kcalloc(max, sizeof(u16), GFP_KERNEL);
614         if (!sgid_tbl->hw_id)
615                 goto out_free1;
616
617         sgid_tbl->ctx = kcalloc(max, sizeof(void *), GFP_KERNEL);
618         if (!sgid_tbl->ctx)
619                 goto out_free2;
620
621         sgid_tbl->vlan = kcalloc(max, sizeof(u8), GFP_KERNEL);
622         if (!sgid_tbl->vlan)
623                 goto out_free3;
624
625         sgid_tbl->max = max;
626         return 0;
627 out_free3:
628         kfree(sgid_tbl->ctx);
629         sgid_tbl->ctx = NULL;
630 out_free2:
631         kfree(sgid_tbl->hw_id);
632         sgid_tbl->hw_id = NULL;
633 out_free1:
634         kfree(sgid_tbl->tbl);
635         sgid_tbl->tbl = NULL;
636         return -ENOMEM;
637 };
638
639 static void bnxt_qplib_cleanup_sgid_tbl(struct bnxt_qplib_res *res,
640                                         struct bnxt_qplib_sgid_tbl *sgid_tbl)
641 {
642         int i;
643
644         for (i = 0; i < sgid_tbl->max; i++) {
645                 if (memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero,
646                            sizeof(bnxt_qplib_gid_zero)))
647                         bnxt_qplib_del_sgid(sgid_tbl, &sgid_tbl->tbl[i].gid,
648                                             sgid_tbl->tbl[i].vlan_id, true);
649         }
650         memset(sgid_tbl->tbl, 0, sizeof(*sgid_tbl->tbl) * sgid_tbl->max);
651         memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max);
652         memset(sgid_tbl->vlan, 0, sizeof(u8) * sgid_tbl->max);
653         sgid_tbl->active = 0;
654 }
655
656 static void bnxt_qplib_init_sgid_tbl(struct bnxt_qplib_sgid_tbl *sgid_tbl,
657                                      struct net_device *netdev)
658 {
659         u32 i;
660
661         for (i = 0; i < sgid_tbl->max; i++)
662                 sgid_tbl->tbl[i].vlan_id = 0xffff;
663
664         memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max);
665 }
666
667 static void bnxt_qplib_free_pkey_tbl(struct bnxt_qplib_res *res,
668                                      struct bnxt_qplib_pkey_tbl *pkey_tbl)
669 {
670         if (!pkey_tbl->tbl)
671                 dev_dbg(&res->pdev->dev, "PKEY tbl not present\n");
672         else
673                 kfree(pkey_tbl->tbl);
674
675         pkey_tbl->tbl = NULL;
676         pkey_tbl->max = 0;
677         pkey_tbl->active = 0;
678 }
679
680 static int bnxt_qplib_alloc_pkey_tbl(struct bnxt_qplib_res *res,
681                                      struct bnxt_qplib_pkey_tbl *pkey_tbl,
682                                      u16 max)
683 {
684         pkey_tbl->tbl = kcalloc(max, sizeof(u16), GFP_KERNEL);
685         if (!pkey_tbl->tbl)
686                 return -ENOMEM;
687
688         pkey_tbl->max = max;
689         return 0;
690 };
691
692 /* PDs */
693 int bnxt_qplib_alloc_pd(struct bnxt_qplib_pd_tbl *pdt, struct bnxt_qplib_pd *pd)
694 {
695         u32 bit_num;
696
697         bit_num = find_first_bit(pdt->tbl, pdt->max);
698         if (bit_num == pdt->max)
699                 return -ENOMEM;
700
701         /* Found unused PD */
702         clear_bit(bit_num, pdt->tbl);
703         pd->id = bit_num;
704         return 0;
705 }
706
707 int bnxt_qplib_dealloc_pd(struct bnxt_qplib_res *res,
708                           struct bnxt_qplib_pd_tbl *pdt,
709                           struct bnxt_qplib_pd *pd)
710 {
711         if (test_and_set_bit(pd->id, pdt->tbl)) {
712                 dev_warn(&res->pdev->dev, "Freeing an unused PD? pdn = %d\n",
713                          pd->id);
714                 return -EINVAL;
715         }
716         pd->id = 0;
717         return 0;
718 }
719
720 static void bnxt_qplib_free_pd_tbl(struct bnxt_qplib_pd_tbl *pdt)
721 {
722         kfree(pdt->tbl);
723         pdt->tbl = NULL;
724         pdt->max = 0;
725 }
726
727 static int bnxt_qplib_alloc_pd_tbl(struct bnxt_qplib_res *res,
728                                    struct bnxt_qplib_pd_tbl *pdt,
729                                    u32 max)
730 {
731         u32 bytes;
732
733         bytes = max >> 3;
734         if (!bytes)
735                 bytes = 1;
736         pdt->tbl = kmalloc(bytes, GFP_KERNEL);
737         if (!pdt->tbl)
738                 return -ENOMEM;
739
740         pdt->max = max;
741         memset((u8 *)pdt->tbl, 0xFF, bytes);
742
743         return 0;
744 }
745
746 /* DPIs */
747 int bnxt_qplib_alloc_dpi(struct bnxt_qplib_dpi_tbl *dpit,
748                          struct bnxt_qplib_dpi     *dpi,
749                          void                      *app)
750 {
751         u32 bit_num;
752
753         bit_num = find_first_bit(dpit->tbl, dpit->max);
754         if (bit_num == dpit->max)
755                 return -ENOMEM;
756
757         /* Found unused DPI */
758         clear_bit(bit_num, dpit->tbl);
759         dpit->app_tbl[bit_num] = app;
760
761         dpi->dpi = bit_num;
762         dpi->dbr = dpit->dbr_bar_reg_iomem + (bit_num * PAGE_SIZE);
763         dpi->umdbr = dpit->unmapped_dbr + (bit_num * PAGE_SIZE);
764
765         return 0;
766 }
767
768 int bnxt_qplib_dealloc_dpi(struct bnxt_qplib_res *res,
769                            struct bnxt_qplib_dpi_tbl *dpit,
770                            struct bnxt_qplib_dpi     *dpi)
771 {
772         if (dpi->dpi >= dpit->max) {
773                 dev_warn(&res->pdev->dev, "Invalid DPI? dpi = %d\n", dpi->dpi);
774                 return -EINVAL;
775         }
776         if (test_and_set_bit(dpi->dpi, dpit->tbl)) {
777                 dev_warn(&res->pdev->dev, "Freeing an unused DPI? dpi = %d\n",
778                          dpi->dpi);
779                 return -EINVAL;
780         }
781         if (dpit->app_tbl)
782                 dpit->app_tbl[dpi->dpi] = NULL;
783         memset(dpi, 0, sizeof(*dpi));
784
785         return 0;
786 }
787
788 static void bnxt_qplib_free_dpi_tbl(struct bnxt_qplib_res     *res,
789                                     struct bnxt_qplib_dpi_tbl *dpit)
790 {
791         kfree(dpit->tbl);
792         kfree(dpit->app_tbl);
793         if (dpit->dbr_bar_reg_iomem)
794                 pci_iounmap(res->pdev, dpit->dbr_bar_reg_iomem);
795         memset(dpit, 0, sizeof(*dpit));
796 }
797
798 static int bnxt_qplib_alloc_dpi_tbl(struct bnxt_qplib_res     *res,
799                                     struct bnxt_qplib_dpi_tbl *dpit,
800                                     u32                       dbr_offset)
801 {
802         u32 dbr_bar_reg = RCFW_DBR_PCI_BAR_REGION;
803         resource_size_t bar_reg_base;
804         u32 dbr_len, bytes;
805
806         if (dpit->dbr_bar_reg_iomem) {
807                 dev_err(&res->pdev->dev, "DBR BAR region %d already mapped\n",
808                         dbr_bar_reg);
809                 return -EALREADY;
810         }
811
812         bar_reg_base = pci_resource_start(res->pdev, dbr_bar_reg);
813         if (!bar_reg_base) {
814                 dev_err(&res->pdev->dev, "BAR region %d resc start failed\n",
815                         dbr_bar_reg);
816                 return -ENOMEM;
817         }
818
819         dbr_len = pci_resource_len(res->pdev, dbr_bar_reg) - dbr_offset;
820         if (!dbr_len || ((dbr_len & (PAGE_SIZE - 1)) != 0)) {
821                 dev_err(&res->pdev->dev, "Invalid DBR length %d\n", dbr_len);
822                 return -ENOMEM;
823         }
824
825         dpit->dbr_bar_reg_iomem = ioremap(bar_reg_base + dbr_offset,
826                                                   dbr_len);
827         if (!dpit->dbr_bar_reg_iomem) {
828                 dev_err(&res->pdev->dev,
829                         "FP: DBR BAR region %d mapping failed\n", dbr_bar_reg);
830                 return -ENOMEM;
831         }
832
833         dpit->unmapped_dbr = bar_reg_base + dbr_offset;
834         dpit->max = dbr_len / PAGE_SIZE;
835
836         dpit->app_tbl = kcalloc(dpit->max, sizeof(void *), GFP_KERNEL);
837         if (!dpit->app_tbl)
838                 goto unmap_io;
839
840         bytes = dpit->max >> 3;
841         if (!bytes)
842                 bytes = 1;
843
844         dpit->tbl = kmalloc(bytes, GFP_KERNEL);
845         if (!dpit->tbl) {
846                 kfree(dpit->app_tbl);
847                 dpit->app_tbl = NULL;
848                 goto unmap_io;
849         }
850
851         memset((u8 *)dpit->tbl, 0xFF, bytes);
852
853         return 0;
854
855 unmap_io:
856         pci_iounmap(res->pdev, dpit->dbr_bar_reg_iomem);
857         dpit->dbr_bar_reg_iomem = NULL;
858         return -ENOMEM;
859 }
860
861 /* PKEYs */
862 static void bnxt_qplib_cleanup_pkey_tbl(struct bnxt_qplib_pkey_tbl *pkey_tbl)
863 {
864         memset(pkey_tbl->tbl, 0, sizeof(u16) * pkey_tbl->max);
865         pkey_tbl->active = 0;
866 }
867
868 static void bnxt_qplib_init_pkey_tbl(struct bnxt_qplib_res *res,
869                                      struct bnxt_qplib_pkey_tbl *pkey_tbl)
870 {
871         u16 pkey = 0xFFFF;
872
873         memset(pkey_tbl->tbl, 0, sizeof(u16) * pkey_tbl->max);
874
875         /* pkey default = 0xFFFF */
876         bnxt_qplib_add_pkey(res, pkey_tbl, &pkey, false);
877 }
878
879 /* Stats */
880 static void bnxt_qplib_free_stats_ctx(struct pci_dev *pdev,
881                                       struct bnxt_qplib_stats *stats)
882 {
883         if (stats->dma) {
884                 dma_free_coherent(&pdev->dev, stats->size,
885                                   stats->dma, stats->dma_map);
886         }
887         memset(stats, 0, sizeof(*stats));
888         stats->fw_id = -1;
889 }
890
891 static int bnxt_qplib_alloc_stats_ctx(struct pci_dev *pdev,
892                                       struct bnxt_qplib_stats *stats)
893 {
894         memset(stats, 0, sizeof(*stats));
895         stats->fw_id = -1;
896         /* 128 byte aligned context memory is required only for 57500.
897          * However making this unconditional, it does not harm previous
898          * generation.
899          */
900         stats->size = ALIGN(sizeof(struct ctx_hw_stats), 128);
901         stats->dma = dma_alloc_coherent(&pdev->dev, stats->size,
902                                         &stats->dma_map, GFP_KERNEL);
903         if (!stats->dma) {
904                 dev_err(&pdev->dev, "Stats DMA allocation failed\n");
905                 return -ENOMEM;
906         }
907         return 0;
908 }
909
910 void bnxt_qplib_cleanup_res(struct bnxt_qplib_res *res)
911 {
912         bnxt_qplib_cleanup_pkey_tbl(&res->pkey_tbl);
913         bnxt_qplib_cleanup_sgid_tbl(res, &res->sgid_tbl);
914 }
915
916 int bnxt_qplib_init_res(struct bnxt_qplib_res *res)
917 {
918         bnxt_qplib_init_sgid_tbl(&res->sgid_tbl, res->netdev);
919         bnxt_qplib_init_pkey_tbl(res, &res->pkey_tbl);
920
921         return 0;
922 }
923
924 void bnxt_qplib_free_res(struct bnxt_qplib_res *res)
925 {
926         bnxt_qplib_free_pkey_tbl(res, &res->pkey_tbl);
927         bnxt_qplib_free_sgid_tbl(res, &res->sgid_tbl);
928         bnxt_qplib_free_pd_tbl(&res->pd_tbl);
929         bnxt_qplib_free_dpi_tbl(res, &res->dpi_tbl);
930 }
931
932 int bnxt_qplib_alloc_res(struct bnxt_qplib_res *res, struct pci_dev *pdev,
933                          struct net_device *netdev,
934                          struct bnxt_qplib_dev_attr *dev_attr)
935 {
936         int rc = 0;
937
938         res->pdev = pdev;
939         res->netdev = netdev;
940
941         rc = bnxt_qplib_alloc_sgid_tbl(res, &res->sgid_tbl, dev_attr->max_sgid);
942         if (rc)
943                 goto fail;
944
945         rc = bnxt_qplib_alloc_pkey_tbl(res, &res->pkey_tbl, dev_attr->max_pkey);
946         if (rc)
947                 goto fail;
948
949         rc = bnxt_qplib_alloc_pd_tbl(res, &res->pd_tbl, dev_attr->max_pd);
950         if (rc)
951                 goto fail;
952
953         rc = bnxt_qplib_alloc_dpi_tbl(res, &res->dpi_tbl, dev_attr->l2_db_size);
954         if (rc)
955                 goto fail;
956
957         return 0;
958 fail:
959         bnxt_qplib_free_res(res);
960         return rc;
961 }
962
963 int bnxt_qplib_determine_atomics(struct pci_dev *dev)
964 {
965         int comp;
966         u16 ctl2;
967
968         comp = pci_enable_atomic_ops_to_root(dev,
969                                              PCI_EXP_DEVCAP2_ATOMIC_COMP32);
970         if (comp)
971                 return -EOPNOTSUPP;
972         comp = pci_enable_atomic_ops_to_root(dev,
973                                              PCI_EXP_DEVCAP2_ATOMIC_COMP64);
974         if (comp)
975                 return -EOPNOTSUPP;
976         pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctl2);
977         return !(ctl2 & PCI_EXP_DEVCTL2_ATOMIC_REQ);
978 }