drm/etnaviv: Implement mmap as GEM object function
[linux-2.6-microblaze.git] / drivers / hwmon / lm85.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
4  *          monitoring
5  * Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
6  * Copyright (c) 2002, 2003  Philip Pokorny <ppokorny@penguincomputing.com>
7  * Copyright (c) 2003        Margit Schubert-While <margitsw@t-online.de>
8  * Copyright (c) 2004        Justin Thiessen <jthiessen@penguincomputing.com>
9  * Copyright (C) 2007--2014  Jean Delvare <jdelvare@suse.de>
10  *
11  * Chip details at            <http://www.national.com/ds/LM/LM85.pdf>
12  */
13
14 #include <linux/module.h>
15 #include <linux/of_device.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/jiffies.h>
19 #include <linux/i2c.h>
20 #include <linux/hwmon.h>
21 #include <linux/hwmon-vid.h>
22 #include <linux/hwmon-sysfs.h>
23 #include <linux/err.h>
24 #include <linux/mutex.h>
25 #include <linux/util_macros.h>
26
27 /* Addresses to scan */
28 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
29
30 enum chips {
31         lm85, lm96000,
32         adm1027, adt7463, adt7468,
33         emc6d100, emc6d102, emc6d103, emc6d103s
34 };
35
36 /* The LM85 registers */
37
38 #define LM85_REG_IN(nr)                 (0x20 + (nr))
39 #define LM85_REG_IN_MIN(nr)             (0x44 + (nr) * 2)
40 #define LM85_REG_IN_MAX(nr)             (0x45 + (nr) * 2)
41
42 #define LM85_REG_TEMP(nr)               (0x25 + (nr))
43 #define LM85_REG_TEMP_MIN(nr)           (0x4e + (nr) * 2)
44 #define LM85_REG_TEMP_MAX(nr)           (0x4f + (nr) * 2)
45
46 /* Fan speeds are LSB, MSB (2 bytes) */
47 #define LM85_REG_FAN(nr)                (0x28 + (nr) * 2)
48 #define LM85_REG_FAN_MIN(nr)            (0x54 + (nr) * 2)
49
50 #define LM85_REG_PWM(nr)                (0x30 + (nr))
51
52 #define LM85_REG_COMPANY                0x3e
53 #define LM85_REG_VERSTEP                0x3f
54
55 #define ADT7468_REG_CFG5                0x7c
56 #define ADT7468_OFF64                   (1 << 0)
57 #define ADT7468_HFPWM                   (1 << 1)
58 #define IS_ADT7468_OFF64(data)          \
59         ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
60 #define IS_ADT7468_HFPWM(data)          \
61         ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
62
63 /* These are the recognized values for the above regs */
64 #define LM85_COMPANY_NATIONAL           0x01
65 #define LM85_COMPANY_ANALOG_DEV         0x41
66 #define LM85_COMPANY_SMSC               0x5c
67 #define LM85_VERSTEP_LM85C              0x60
68 #define LM85_VERSTEP_LM85B              0x62
69 #define LM85_VERSTEP_LM96000_1          0x68
70 #define LM85_VERSTEP_LM96000_2          0x69
71 #define LM85_VERSTEP_ADM1027            0x60
72 #define LM85_VERSTEP_ADT7463            0x62
73 #define LM85_VERSTEP_ADT7463C           0x6A
74 #define LM85_VERSTEP_ADT7468_1          0x71
75 #define LM85_VERSTEP_ADT7468_2          0x72
76 #define LM85_VERSTEP_EMC6D100_A0        0x60
77 #define LM85_VERSTEP_EMC6D100_A1        0x61
78 #define LM85_VERSTEP_EMC6D102           0x65
79 #define LM85_VERSTEP_EMC6D103_A0        0x68
80 #define LM85_VERSTEP_EMC6D103_A1        0x69
81 #define LM85_VERSTEP_EMC6D103S          0x6A    /* Also known as EMC6D103:A2 */
82
83 #define LM85_REG_CONFIG                 0x40
84
85 #define LM85_REG_ALARM1                 0x41
86 #define LM85_REG_ALARM2                 0x42
87
88 #define LM85_REG_VID                    0x43
89
90 /* Automated FAN control */
91 #define LM85_REG_AFAN_CONFIG(nr)        (0x5c + (nr))
92 #define LM85_REG_AFAN_RANGE(nr)         (0x5f + (nr))
93 #define LM85_REG_AFAN_SPIKE1            0x62
94 #define LM85_REG_AFAN_MINPWM(nr)        (0x64 + (nr))
95 #define LM85_REG_AFAN_LIMIT(nr)         (0x67 + (nr))
96 #define LM85_REG_AFAN_CRITICAL(nr)      (0x6a + (nr))
97 #define LM85_REG_AFAN_HYST1             0x6d
98 #define LM85_REG_AFAN_HYST2             0x6e
99
100 #define ADM1027_REG_EXTEND_ADC1         0x76
101 #define ADM1027_REG_EXTEND_ADC2         0x77
102
103 #define EMC6D100_REG_ALARM3             0x7d
104 /* IN5, IN6 and IN7 */
105 #define EMC6D100_REG_IN(nr)             (0x70 + ((nr) - 5))
106 #define EMC6D100_REG_IN_MIN(nr)         (0x73 + ((nr) - 5) * 2)
107 #define EMC6D100_REG_IN_MAX(nr)         (0x74 + ((nr) - 5) * 2)
108 #define EMC6D102_REG_EXTEND_ADC1        0x85
109 #define EMC6D102_REG_EXTEND_ADC2        0x86
110 #define EMC6D102_REG_EXTEND_ADC3        0x87
111 #define EMC6D102_REG_EXTEND_ADC4        0x88
112
113 /*
114  * Conversions. Rounding and limit checking is only done on the TO_REG
115  * variants. Note that you should be a bit careful with which arguments
116  * these macros are called: arguments may be evaluated more than once.
117  */
118
119 /* IN are scaled according to built-in resistors */
120 static const int lm85_scaling[] = {  /* .001 Volts */
121         2500, 2250, 3300, 5000, 12000,
122         3300, 1500, 1800 /*EMC6D100*/
123 };
124 #define SCALE(val, from, to)    (((val) * (to) + ((from) / 2)) / (from))
125
126 #define INS_TO_REG(n, val)      \
127                 SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \
128                       lm85_scaling[n], 192)
129
130 #define INSEXT_FROM_REG(n, val, ext)    \
131                 SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
132
133 #define INS_FROM_REG(n, val)    SCALE((val), 192, lm85_scaling[n])
134
135 /* FAN speed is measured using 90kHz clock */
136 static inline u16 FAN_TO_REG(unsigned long val)
137 {
138         if (!val)
139                 return 0xffff;
140         return clamp_val(5400000 / val, 1, 0xfffe);
141 }
142 #define FAN_FROM_REG(val)       ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
143                                  5400000 / (val))
144
145 /* Temperature is reported in .001 degC increments */
146 #define TEMP_TO_REG(val)        \
147                 DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
148 #define TEMPEXT_FROM_REG(val, ext)      \
149                 SCALE(((val) << 4) + (ext), 16, 1000)
150 #define TEMP_FROM_REG(val)      ((val) * 1000)
151
152 #define PWM_TO_REG(val)                 clamp_val(val, 0, 255)
153 #define PWM_FROM_REG(val)               (val)
154
155 /*
156  * ZONEs have the following parameters:
157  *    Limit (low) temp,           1. degC
158  *    Hysteresis (below limit),   1. degC (0-15)
159  *    Range of speed control,     .1 degC (2-80)
160  *    Critical (high) temp,       1. degC
161  *
162  * FAN PWMs have the following parameters:
163  *    Reference Zone,                 1, 2, 3, etc.
164  *    Spinup time,                    .05 sec
165  *    PWM value at limit/low temp,    1 count
166  *    PWM Frequency,                  1. Hz
167  *    PWM is Min or OFF below limit,  flag
168  *    Invert PWM output,              flag
169  *
170  * Some chips filter the temp, others the fan.
171  *    Filter constant (or disabled)   .1 seconds
172  */
173
174 /* These are the zone temperature range encodings in .001 degree C */
175 static const int lm85_range_map[] = {
176         2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
177         13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
178 };
179
180 static int RANGE_TO_REG(long range)
181 {
182         return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
183 }
184 #define RANGE_FROM_REG(val)     lm85_range_map[(val) & 0x0f]
185
186 /* These are the PWM frequency encodings */
187 static const int lm85_freq_map[] = { /* 1 Hz */
188         10, 15, 23, 30, 38, 47, 61, 94
189 };
190
191 static const int lm96000_freq_map[] = { /* 1 Hz */
192         10, 15, 23, 30, 38, 47, 61, 94,
193         22500, 24000, 25700, 25700, 27700, 27700, 30000, 30000
194 };
195
196 static const int adm1027_freq_map[] = { /* 1 Hz */
197         11, 15, 22, 29, 35, 44, 59, 88
198 };
199
200 static int FREQ_TO_REG(const int *map,
201                        unsigned int map_size, unsigned long freq)
202 {
203         return find_closest(freq, map, map_size);
204 }
205
206 static int FREQ_FROM_REG(const int *map, unsigned int map_size, u8 reg)
207 {
208         return map[reg % map_size];
209 }
210
211 /*
212  * Since we can't use strings, I'm abusing these numbers
213  *   to stand in for the following meanings:
214  *      1 -- PWM responds to Zone 1
215  *      2 -- PWM responds to Zone 2
216  *      3 -- PWM responds to Zone 3
217  *     23 -- PWM responds to the higher temp of Zone 2 or 3
218  *    123 -- PWM responds to highest of Zone 1, 2, or 3
219  *      0 -- PWM is always at 0% (ie, off)
220  *     -1 -- PWM is always at 100%
221  *     -2 -- PWM responds to manual control
222  */
223
224 static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
225 #define ZONE_FROM_REG(val)      lm85_zone_map[(val) >> 5]
226
227 static int ZONE_TO_REG(int zone)
228 {
229         int i;
230
231         for (i = 0; i <= 7; ++i)
232                 if (zone == lm85_zone_map[i])
233                         break;
234         if (i > 7)   /* Not found. */
235                 i = 3;  /* Always 100% */
236         return i << 5;
237 }
238
239 #define HYST_TO_REG(val)        clamp_val(((val) + 500) / 1000, 0, 15)
240 #define HYST_FROM_REG(val)      ((val) * 1000)
241
242 /*
243  * Chip sampling rates
244  *
245  * Some sensors are not updated more frequently than once per second
246  *    so it doesn't make sense to read them more often than that.
247  *    We cache the results and return the saved data if the driver
248  *    is called again before a second has elapsed.
249  *
250  * Also, there is significant configuration data for this chip
251  *    given the automatic PWM fan control that is possible.  There
252  *    are about 47 bytes of config data to only 22 bytes of actual
253  *    readings.  So, we keep the config data up to date in the cache
254  *    when it is written and only sample it once every 1 *minute*
255  */
256 #define LM85_DATA_INTERVAL  (HZ + HZ / 2)
257 #define LM85_CONFIG_INTERVAL  (1 * 60 * HZ)
258
259 /*
260  * LM85 can automatically adjust fan speeds based on temperature
261  * This structure encapsulates an entire Zone config.  There are
262  * three zones (one for each temperature input) on the lm85
263  */
264 struct lm85_zone {
265         s8 limit;       /* Low temp limit */
266         u8 hyst;        /* Low limit hysteresis. (0-15) */
267         u8 range;       /* Temp range, encoded */
268         s8 critical;    /* "All fans ON" temp limit */
269         u8 max_desired; /*
270                          * Actual "max" temperature specified.  Preserved
271                          * to prevent "drift" as other autofan control
272                          * values change.
273                          */
274 };
275
276 struct lm85_autofan {
277         u8 config;      /* Register value */
278         u8 min_pwm;     /* Minimum PWM value, encoded */
279         u8 min_off;     /* Min PWM or OFF below "limit", flag */
280 };
281
282 /*
283  * For each registered chip, we need to keep some data in memory.
284  * The structure is dynamically allocated.
285  */
286 struct lm85_data {
287         struct i2c_client *client;
288         const struct attribute_group *groups[6];
289         const int *freq_map;
290         unsigned int freq_map_size;
291
292         enum chips type;
293
294         bool has_vid5;  /* true if VID5 is configured for ADT7463 or ADT7468 */
295
296         struct mutex update_lock;
297         int valid;              /* !=0 if following fields are valid */
298         unsigned long last_reading;     /* In jiffies */
299         unsigned long last_config;      /* In jiffies */
300
301         u8 in[8];               /* Register value */
302         u8 in_max[8];           /* Register value */
303         u8 in_min[8];           /* Register value */
304         s8 temp[3];             /* Register value */
305         s8 temp_min[3];         /* Register value */
306         s8 temp_max[3];         /* Register value */
307         u16 fan[4];             /* Register value */
308         u16 fan_min[4];         /* Register value */
309         u8 pwm[3];              /* Register value */
310         u8 pwm_freq[3];         /* Register encoding */
311         u8 temp_ext[3];         /* Decoded values */
312         u8 in_ext[8];           /* Decoded values */
313         u8 vid;                 /* Register value */
314         u8 vrm;                 /* VRM version */
315         u32 alarms;             /* Register encoding, combined */
316         u8 cfg5;                /* Config Register 5 on ADT7468 */
317         struct lm85_autofan autofan[3];
318         struct lm85_zone zone[3];
319 };
320
321 static int lm85_read_value(struct i2c_client *client, u8 reg)
322 {
323         int res;
324
325         /* What size location is it? */
326         switch (reg) {
327         case LM85_REG_FAN(0):  /* Read WORD data */
328         case LM85_REG_FAN(1):
329         case LM85_REG_FAN(2):
330         case LM85_REG_FAN(3):
331         case LM85_REG_FAN_MIN(0):
332         case LM85_REG_FAN_MIN(1):
333         case LM85_REG_FAN_MIN(2):
334         case LM85_REG_FAN_MIN(3):
335         case LM85_REG_ALARM1:   /* Read both bytes at once */
336                 res = i2c_smbus_read_byte_data(client, reg) & 0xff;
337                 res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
338                 break;
339         default:        /* Read BYTE data */
340                 res = i2c_smbus_read_byte_data(client, reg);
341                 break;
342         }
343
344         return res;
345 }
346
347 static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
348 {
349         switch (reg) {
350         case LM85_REG_FAN(0):  /* Write WORD data */
351         case LM85_REG_FAN(1):
352         case LM85_REG_FAN(2):
353         case LM85_REG_FAN(3):
354         case LM85_REG_FAN_MIN(0):
355         case LM85_REG_FAN_MIN(1):
356         case LM85_REG_FAN_MIN(2):
357         case LM85_REG_FAN_MIN(3):
358         /* NOTE: ALARM is read only, so not included here */
359                 i2c_smbus_write_byte_data(client, reg, value & 0xff);
360                 i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
361                 break;
362         default:        /* Write BYTE data */
363                 i2c_smbus_write_byte_data(client, reg, value);
364                 break;
365         }
366 }
367
368 static struct lm85_data *lm85_update_device(struct device *dev)
369 {
370         struct lm85_data *data = dev_get_drvdata(dev);
371         struct i2c_client *client = data->client;
372         int i;
373
374         mutex_lock(&data->update_lock);
375
376         if (!data->valid ||
377              time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
378                 /* Things that change quickly */
379                 dev_dbg(&client->dev, "Reading sensor values\n");
380
381                 /*
382                  * Have to read extended bits first to "freeze" the
383                  * more significant bits that are read later.
384                  * There are 2 additional resolution bits per channel and we
385                  * have room for 4, so we shift them to the left.
386                  */
387                 if (data->type == adm1027 || data->type == adt7463 ||
388                     data->type == adt7468) {
389                         int ext1 = lm85_read_value(client,
390                                                    ADM1027_REG_EXTEND_ADC1);
391                         int ext2 =  lm85_read_value(client,
392                                                     ADM1027_REG_EXTEND_ADC2);
393                         int val = (ext1 << 8) + ext2;
394
395                         for (i = 0; i <= 4; i++)
396                                 data->in_ext[i] =
397                                         ((val >> (i * 2)) & 0x03) << 2;
398
399                         for (i = 0; i <= 2; i++)
400                                 data->temp_ext[i] =
401                                         (val >> ((i + 4) * 2)) & 0x0c;
402                 }
403
404                 data->vid = lm85_read_value(client, LM85_REG_VID);
405
406                 for (i = 0; i <= 3; ++i) {
407                         data->in[i] =
408                             lm85_read_value(client, LM85_REG_IN(i));
409                         data->fan[i] =
410                             lm85_read_value(client, LM85_REG_FAN(i));
411                 }
412
413                 if (!data->has_vid5)
414                         data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
415
416                 if (data->type == adt7468)
417                         data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
418
419                 for (i = 0; i <= 2; ++i) {
420                         data->temp[i] =
421                             lm85_read_value(client, LM85_REG_TEMP(i));
422                         data->pwm[i] =
423                             lm85_read_value(client, LM85_REG_PWM(i));
424
425                         if (IS_ADT7468_OFF64(data))
426                                 data->temp[i] -= 64;
427                 }
428
429                 data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
430
431                 if (data->type == emc6d100) {
432                         /* Three more voltage sensors */
433                         for (i = 5; i <= 7; ++i) {
434                                 data->in[i] = lm85_read_value(client,
435                                                         EMC6D100_REG_IN(i));
436                         }
437                         /* More alarm bits */
438                         data->alarms |= lm85_read_value(client,
439                                                 EMC6D100_REG_ALARM3) << 16;
440                 } else if (data->type == emc6d102 || data->type == emc6d103 ||
441                            data->type == emc6d103s) {
442                         /*
443                          * Have to read LSB bits after the MSB ones because
444                          * the reading of the MSB bits has frozen the
445                          * LSBs (backward from the ADM1027).
446                          */
447                         int ext1 = lm85_read_value(client,
448                                                    EMC6D102_REG_EXTEND_ADC1);
449                         int ext2 = lm85_read_value(client,
450                                                    EMC6D102_REG_EXTEND_ADC2);
451                         int ext3 = lm85_read_value(client,
452                                                    EMC6D102_REG_EXTEND_ADC3);
453                         int ext4 = lm85_read_value(client,
454                                                    EMC6D102_REG_EXTEND_ADC4);
455                         data->in_ext[0] = ext3 & 0x0f;
456                         data->in_ext[1] = ext4 & 0x0f;
457                         data->in_ext[2] = ext4 >> 4;
458                         data->in_ext[3] = ext3 >> 4;
459                         data->in_ext[4] = ext2 >> 4;
460
461                         data->temp_ext[0] = ext1 & 0x0f;
462                         data->temp_ext[1] = ext2 & 0x0f;
463                         data->temp_ext[2] = ext1 >> 4;
464                 }
465
466                 data->last_reading = jiffies;
467         }  /* last_reading */
468
469         if (!data->valid ||
470              time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
471                 /* Things that don't change often */
472                 dev_dbg(&client->dev, "Reading config values\n");
473
474                 for (i = 0; i <= 3; ++i) {
475                         data->in_min[i] =
476                             lm85_read_value(client, LM85_REG_IN_MIN(i));
477                         data->in_max[i] =
478                             lm85_read_value(client, LM85_REG_IN_MAX(i));
479                         data->fan_min[i] =
480                             lm85_read_value(client, LM85_REG_FAN_MIN(i));
481                 }
482
483                 if (!data->has_vid5)  {
484                         data->in_min[4] = lm85_read_value(client,
485                                           LM85_REG_IN_MIN(4));
486                         data->in_max[4] = lm85_read_value(client,
487                                           LM85_REG_IN_MAX(4));
488                 }
489
490                 if (data->type == emc6d100) {
491                         for (i = 5; i <= 7; ++i) {
492                                 data->in_min[i] = lm85_read_value(client,
493                                                 EMC6D100_REG_IN_MIN(i));
494                                 data->in_max[i] = lm85_read_value(client,
495                                                 EMC6D100_REG_IN_MAX(i));
496                         }
497                 }
498
499                 for (i = 0; i <= 2; ++i) {
500                         int val;
501
502                         data->temp_min[i] =
503                             lm85_read_value(client, LM85_REG_TEMP_MIN(i));
504                         data->temp_max[i] =
505                             lm85_read_value(client, LM85_REG_TEMP_MAX(i));
506
507                         data->autofan[i].config =
508                             lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
509                         val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
510                         data->pwm_freq[i] = val % data->freq_map_size;
511                         data->zone[i].range = val >> 4;
512                         data->autofan[i].min_pwm =
513                             lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
514                         data->zone[i].limit =
515                             lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
516                         data->zone[i].critical =
517                             lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
518
519                         if (IS_ADT7468_OFF64(data)) {
520                                 data->temp_min[i] -= 64;
521                                 data->temp_max[i] -= 64;
522                                 data->zone[i].limit -= 64;
523                                 data->zone[i].critical -= 64;
524                         }
525                 }
526
527                 if (data->type != emc6d103s) {
528                         i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
529                         data->autofan[0].min_off = (i & 0x20) != 0;
530                         data->autofan[1].min_off = (i & 0x40) != 0;
531                         data->autofan[2].min_off = (i & 0x80) != 0;
532
533                         i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
534                         data->zone[0].hyst = i >> 4;
535                         data->zone[1].hyst = i & 0x0f;
536
537                         i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
538                         data->zone[2].hyst = i >> 4;
539                 }
540
541                 data->last_config = jiffies;
542         }  /* last_config */
543
544         data->valid = 1;
545
546         mutex_unlock(&data->update_lock);
547
548         return data;
549 }
550
551 /* 4 Fans */
552 static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
553                         char *buf)
554 {
555         int nr = to_sensor_dev_attr(attr)->index;
556         struct lm85_data *data = lm85_update_device(dev);
557         return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
558 }
559
560 static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
561                             char *buf)
562 {
563         int nr = to_sensor_dev_attr(attr)->index;
564         struct lm85_data *data = lm85_update_device(dev);
565         return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
566 }
567
568 static ssize_t fan_min_store(struct device *dev,
569                              struct device_attribute *attr, const char *buf,
570                              size_t count)
571 {
572         int nr = to_sensor_dev_attr(attr)->index;
573         struct lm85_data *data = dev_get_drvdata(dev);
574         struct i2c_client *client = data->client;
575         unsigned long val;
576         int err;
577
578         err = kstrtoul(buf, 10, &val);
579         if (err)
580                 return err;
581
582         mutex_lock(&data->update_lock);
583         data->fan_min[nr] = FAN_TO_REG(val);
584         lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
585         mutex_unlock(&data->update_lock);
586         return count;
587 }
588
589 static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
590 static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
591 static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
592 static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
593 static SENSOR_DEVICE_ATTR_RO(fan3_input, fan, 2);
594 static SENSOR_DEVICE_ATTR_RW(fan3_min, fan_min, 2);
595 static SENSOR_DEVICE_ATTR_RO(fan4_input, fan, 3);
596 static SENSOR_DEVICE_ATTR_RW(fan4_min, fan_min, 3);
597
598 /* vid, vrm, alarms */
599
600 static ssize_t cpu0_vid_show(struct device *dev,
601                              struct device_attribute *attr, char *buf)
602 {
603         struct lm85_data *data = lm85_update_device(dev);
604         int vid;
605
606         if (data->has_vid5) {
607                 /* 6-pin VID (VRM 10) */
608                 vid = vid_from_reg(data->vid & 0x3f, data->vrm);
609         } else {
610                 /* 5-pin VID (VRM 9) */
611                 vid = vid_from_reg(data->vid & 0x1f, data->vrm);
612         }
613
614         return sprintf(buf, "%d\n", vid);
615 }
616
617 static DEVICE_ATTR_RO(cpu0_vid);
618
619 static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
620                         char *buf)
621 {
622         struct lm85_data *data = dev_get_drvdata(dev);
623         return sprintf(buf, "%ld\n", (long) data->vrm);
624 }
625
626 static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
627                          const char *buf, size_t count)
628 {
629         struct lm85_data *data = dev_get_drvdata(dev);
630         unsigned long val;
631         int err;
632
633         err = kstrtoul(buf, 10, &val);
634         if (err)
635                 return err;
636
637         if (val > 255)
638                 return -EINVAL;
639
640         data->vrm = val;
641         return count;
642 }
643
644 static DEVICE_ATTR_RW(vrm);
645
646 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
647                            char *buf)
648 {
649         struct lm85_data *data = lm85_update_device(dev);
650         return sprintf(buf, "%u\n", data->alarms);
651 }
652
653 static DEVICE_ATTR_RO(alarms);
654
655 static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
656                           char *buf)
657 {
658         int nr = to_sensor_dev_attr(attr)->index;
659         struct lm85_data *data = lm85_update_device(dev);
660         return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
661 }
662
663 static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
664 static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
665 static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
666 static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
667 static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8);
668 static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 18);
669 static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, 16);
670 static SENSOR_DEVICE_ATTR_RO(in7_alarm, alarm, 17);
671 static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4);
672 static SENSOR_DEVICE_ATTR_RO(temp1_fault, alarm, 14);
673 static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 5);
674 static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 6);
675 static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 15);
676 static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 10);
677 static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 11);
678 static SENSOR_DEVICE_ATTR_RO(fan3_alarm, alarm, 12);
679 static SENSOR_DEVICE_ATTR_RO(fan4_alarm, alarm, 13);
680
681 /* pwm */
682
683 static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
684                         char *buf)
685 {
686         int nr = to_sensor_dev_attr(attr)->index;
687         struct lm85_data *data = lm85_update_device(dev);
688         return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
689 }
690
691 static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
692                          const char *buf, size_t count)
693 {
694         int nr = to_sensor_dev_attr(attr)->index;
695         struct lm85_data *data = dev_get_drvdata(dev);
696         struct i2c_client *client = data->client;
697         unsigned long val;
698         int err;
699
700         err = kstrtoul(buf, 10, &val);
701         if (err)
702                 return err;
703
704         mutex_lock(&data->update_lock);
705         data->pwm[nr] = PWM_TO_REG(val);
706         lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
707         mutex_unlock(&data->update_lock);
708         return count;
709 }
710
711 static ssize_t pwm_enable_show(struct device *dev,
712                                struct device_attribute *attr, char *buf)
713 {
714         int nr = to_sensor_dev_attr(attr)->index;
715         struct lm85_data *data = lm85_update_device(dev);
716         int pwm_zone, enable;
717
718         pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
719         switch (pwm_zone) {
720         case -1:        /* PWM is always at 100% */
721                 enable = 0;
722                 break;
723         case 0:         /* PWM is always at 0% */
724         case -2:        /* PWM responds to manual control */
725                 enable = 1;
726                 break;
727         default:        /* PWM in automatic mode */
728                 enable = 2;
729         }
730         return sprintf(buf, "%d\n", enable);
731 }
732
733 static ssize_t pwm_enable_store(struct device *dev,
734                                 struct device_attribute *attr,
735                                 const char *buf, size_t count)
736 {
737         int nr = to_sensor_dev_attr(attr)->index;
738         struct lm85_data *data = dev_get_drvdata(dev);
739         struct i2c_client *client = data->client;
740         u8 config;
741         unsigned long val;
742         int err;
743
744         err = kstrtoul(buf, 10, &val);
745         if (err)
746                 return err;
747
748         switch (val) {
749         case 0:
750                 config = 3;
751                 break;
752         case 1:
753                 config = 7;
754                 break;
755         case 2:
756                 /*
757                  * Here we have to choose arbitrarily one of the 5 possible
758                  * configurations; I go for the safest
759                  */
760                 config = 6;
761                 break;
762         default:
763                 return -EINVAL;
764         }
765
766         mutex_lock(&data->update_lock);
767         data->autofan[nr].config = lm85_read_value(client,
768                 LM85_REG_AFAN_CONFIG(nr));
769         data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
770                 | (config << 5);
771         lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
772                 data->autofan[nr].config);
773         mutex_unlock(&data->update_lock);
774         return count;
775 }
776
777 static ssize_t pwm_freq_show(struct device *dev,
778                              struct device_attribute *attr, char *buf)
779 {
780         int nr = to_sensor_dev_attr(attr)->index;
781         struct lm85_data *data = lm85_update_device(dev);
782         int freq;
783
784         if (IS_ADT7468_HFPWM(data))
785                 freq = 22500;
786         else
787                 freq = FREQ_FROM_REG(data->freq_map, data->freq_map_size,
788                                      data->pwm_freq[nr]);
789
790         return sprintf(buf, "%d\n", freq);
791 }
792
793 static ssize_t pwm_freq_store(struct device *dev,
794                               struct device_attribute *attr, const char *buf,
795                               size_t count)
796 {
797         int nr = to_sensor_dev_attr(attr)->index;
798         struct lm85_data *data = dev_get_drvdata(dev);
799         struct i2c_client *client = data->client;
800         unsigned long val;
801         int err;
802
803         err = kstrtoul(buf, 10, &val);
804         if (err)
805                 return err;
806
807         mutex_lock(&data->update_lock);
808         /*
809          * The ADT7468 has a special high-frequency PWM output mode,
810          * where all PWM outputs are driven by a 22.5 kHz clock.
811          * This might confuse the user, but there's not much we can do.
812          */
813         if (data->type == adt7468 && val >= 11300) {    /* High freq. mode */
814                 data->cfg5 &= ~ADT7468_HFPWM;
815                 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
816         } else {                                        /* Low freq. mode */
817                 data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
818                                                  data->freq_map_size, val);
819                 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
820                                  (data->zone[nr].range << 4)
821                                  | data->pwm_freq[nr]);
822                 if (data->type == adt7468) {
823                         data->cfg5 |= ADT7468_HFPWM;
824                         lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
825                 }
826         }
827         mutex_unlock(&data->update_lock);
828         return count;
829 }
830
831 static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
832 static SENSOR_DEVICE_ATTR_RW(pwm1_enable, pwm_enable, 0);
833 static SENSOR_DEVICE_ATTR_RW(pwm1_freq, pwm_freq, 0);
834 static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
835 static SENSOR_DEVICE_ATTR_RW(pwm2_enable, pwm_enable, 1);
836 static SENSOR_DEVICE_ATTR_RW(pwm2_freq, pwm_freq, 1);
837 static SENSOR_DEVICE_ATTR_RW(pwm3, pwm, 2);
838 static SENSOR_DEVICE_ATTR_RW(pwm3_enable, pwm_enable, 2);
839 static SENSOR_DEVICE_ATTR_RW(pwm3_freq, pwm_freq, 2);
840
841 /* Voltages */
842
843 static ssize_t in_show(struct device *dev, struct device_attribute *attr,
844                        char *buf)
845 {
846         int nr = to_sensor_dev_attr(attr)->index;
847         struct lm85_data *data = lm85_update_device(dev);
848         return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
849                                                     data->in_ext[nr]));
850 }
851
852 static ssize_t in_min_show(struct device *dev, struct device_attribute *attr,
853                            char *buf)
854 {
855         int nr = to_sensor_dev_attr(attr)->index;
856         struct lm85_data *data = lm85_update_device(dev);
857         return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
858 }
859
860 static ssize_t in_min_store(struct device *dev, struct device_attribute *attr,
861                             const char *buf, size_t count)
862 {
863         int nr = to_sensor_dev_attr(attr)->index;
864         struct lm85_data *data = dev_get_drvdata(dev);
865         struct i2c_client *client = data->client;
866         long val;
867         int err;
868
869         err = kstrtol(buf, 10, &val);
870         if (err)
871                 return err;
872
873         mutex_lock(&data->update_lock);
874         data->in_min[nr] = INS_TO_REG(nr, val);
875         lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
876         mutex_unlock(&data->update_lock);
877         return count;
878 }
879
880 static ssize_t in_max_show(struct device *dev, struct device_attribute *attr,
881                            char *buf)
882 {
883         int nr = to_sensor_dev_attr(attr)->index;
884         struct lm85_data *data = lm85_update_device(dev);
885         return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
886 }
887
888 static ssize_t in_max_store(struct device *dev, struct device_attribute *attr,
889                             const char *buf, size_t count)
890 {
891         int nr = to_sensor_dev_attr(attr)->index;
892         struct lm85_data *data = dev_get_drvdata(dev);
893         struct i2c_client *client = data->client;
894         long val;
895         int err;
896
897         err = kstrtol(buf, 10, &val);
898         if (err)
899                 return err;
900
901         mutex_lock(&data->update_lock);
902         data->in_max[nr] = INS_TO_REG(nr, val);
903         lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
904         mutex_unlock(&data->update_lock);
905         return count;
906 }
907
908 static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0);
909 static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0);
910 static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0);
911 static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1);
912 static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1);
913 static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1);
914 static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2);
915 static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2);
916 static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2);
917 static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3);
918 static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3);
919 static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3);
920 static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4);
921 static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4);
922 static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4);
923 static SENSOR_DEVICE_ATTR_RO(in5_input, in, 5);
924 static SENSOR_DEVICE_ATTR_RW(in5_min, in_min, 5);
925 static SENSOR_DEVICE_ATTR_RW(in5_max, in_max, 5);
926 static SENSOR_DEVICE_ATTR_RO(in6_input, in, 6);
927 static SENSOR_DEVICE_ATTR_RW(in6_min, in_min, 6);
928 static SENSOR_DEVICE_ATTR_RW(in6_max, in_max, 6);
929 static SENSOR_DEVICE_ATTR_RO(in7_input, in, 7);
930 static SENSOR_DEVICE_ATTR_RW(in7_min, in_min, 7);
931 static SENSOR_DEVICE_ATTR_RW(in7_max, in_max, 7);
932
933 /* Temps */
934
935 static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
936                          char *buf)
937 {
938         int nr = to_sensor_dev_attr(attr)->index;
939         struct lm85_data *data = lm85_update_device(dev);
940         return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
941                                                      data->temp_ext[nr]));
942 }
943
944 static ssize_t temp_min_show(struct device *dev,
945                              struct device_attribute *attr, char *buf)
946 {
947         int nr = to_sensor_dev_attr(attr)->index;
948         struct lm85_data *data = lm85_update_device(dev);
949         return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
950 }
951
952 static ssize_t temp_min_store(struct device *dev,
953                               struct device_attribute *attr, const char *buf,
954                               size_t count)
955 {
956         int nr = to_sensor_dev_attr(attr)->index;
957         struct lm85_data *data = dev_get_drvdata(dev);
958         struct i2c_client *client = data->client;
959         long val;
960         int err;
961
962         err = kstrtol(buf, 10, &val);
963         if (err)
964                 return err;
965
966         if (IS_ADT7468_OFF64(data))
967                 val += 64;
968
969         mutex_lock(&data->update_lock);
970         data->temp_min[nr] = TEMP_TO_REG(val);
971         lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
972         mutex_unlock(&data->update_lock);
973         return count;
974 }
975
976 static ssize_t temp_max_show(struct device *dev,
977                              struct device_attribute *attr, char *buf)
978 {
979         int nr = to_sensor_dev_attr(attr)->index;
980         struct lm85_data *data = lm85_update_device(dev);
981         return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
982 }
983
984 static ssize_t temp_max_store(struct device *dev,
985                               struct device_attribute *attr, const char *buf,
986                               size_t count)
987 {
988         int nr = to_sensor_dev_attr(attr)->index;
989         struct lm85_data *data = dev_get_drvdata(dev);
990         struct i2c_client *client = data->client;
991         long val;
992         int err;
993
994         err = kstrtol(buf, 10, &val);
995         if (err)
996                 return err;
997
998         if (IS_ADT7468_OFF64(data))
999                 val += 64;
1000
1001         mutex_lock(&data->update_lock);
1002         data->temp_max[nr] = TEMP_TO_REG(val);
1003         lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
1004         mutex_unlock(&data->update_lock);
1005         return count;
1006 }
1007
1008 static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
1009 static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
1010 static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
1011 static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
1012 static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
1013 static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
1014 static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
1015 static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
1016 static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
1017
1018 /* Automatic PWM control */
1019
1020 static ssize_t pwm_auto_channels_show(struct device *dev,
1021                                       struct device_attribute *attr,
1022                                       char *buf)
1023 {
1024         int nr = to_sensor_dev_attr(attr)->index;
1025         struct lm85_data *data = lm85_update_device(dev);
1026         return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
1027 }
1028
1029 static ssize_t pwm_auto_channels_store(struct device *dev,
1030                                        struct device_attribute *attr,
1031                                        const char *buf, size_t count)
1032 {
1033         int nr = to_sensor_dev_attr(attr)->index;
1034         struct lm85_data *data = dev_get_drvdata(dev);
1035         struct i2c_client *client = data->client;
1036         long val;
1037         int err;
1038
1039         err = kstrtol(buf, 10, &val);
1040         if (err)
1041                 return err;
1042
1043         mutex_lock(&data->update_lock);
1044         data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
1045                 | ZONE_TO_REG(val);
1046         lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
1047                 data->autofan[nr].config);
1048         mutex_unlock(&data->update_lock);
1049         return count;
1050 }
1051
1052 static ssize_t pwm_auto_pwm_min_show(struct device *dev,
1053                                      struct device_attribute *attr, char *buf)
1054 {
1055         int nr = to_sensor_dev_attr(attr)->index;
1056         struct lm85_data *data = lm85_update_device(dev);
1057         return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
1058 }
1059
1060 static ssize_t pwm_auto_pwm_min_store(struct device *dev,
1061                                       struct device_attribute *attr,
1062                                       const char *buf, size_t count)
1063 {
1064         int nr = to_sensor_dev_attr(attr)->index;
1065         struct lm85_data *data = dev_get_drvdata(dev);
1066         struct i2c_client *client = data->client;
1067         unsigned long val;
1068         int err;
1069
1070         err = kstrtoul(buf, 10, &val);
1071         if (err)
1072                 return err;
1073
1074         mutex_lock(&data->update_lock);
1075         data->autofan[nr].min_pwm = PWM_TO_REG(val);
1076         lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
1077                 data->autofan[nr].min_pwm);
1078         mutex_unlock(&data->update_lock);
1079         return count;
1080 }
1081
1082 static ssize_t pwm_auto_pwm_minctl_show(struct device *dev,
1083                                         struct device_attribute *attr,
1084                                         char *buf)
1085 {
1086         int nr = to_sensor_dev_attr(attr)->index;
1087         struct lm85_data *data = lm85_update_device(dev);
1088         return sprintf(buf, "%d\n", data->autofan[nr].min_off);
1089 }
1090
1091 static ssize_t pwm_auto_pwm_minctl_store(struct device *dev,
1092                                          struct device_attribute *attr,
1093                                          const char *buf, size_t count)
1094 {
1095         int nr = to_sensor_dev_attr(attr)->index;
1096         struct lm85_data *data = dev_get_drvdata(dev);
1097         struct i2c_client *client = data->client;
1098         u8 tmp;
1099         long val;
1100         int err;
1101
1102         err = kstrtol(buf, 10, &val);
1103         if (err)
1104                 return err;
1105
1106         mutex_lock(&data->update_lock);
1107         data->autofan[nr].min_off = val;
1108         tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1109         tmp &= ~(0x20 << nr);
1110         if (data->autofan[nr].min_off)
1111                 tmp |= 0x20 << nr;
1112         lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
1113         mutex_unlock(&data->update_lock);
1114         return count;
1115 }
1116
1117 static SENSOR_DEVICE_ATTR_RW(pwm1_auto_channels, pwm_auto_channels, 0);
1118 static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_min, pwm_auto_pwm_min, 0);
1119 static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_minctl, pwm_auto_pwm_minctl, 0);
1120 static SENSOR_DEVICE_ATTR_RW(pwm2_auto_channels, pwm_auto_channels, 1);
1121 static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_min, pwm_auto_pwm_min, 1);
1122 static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_minctl, pwm_auto_pwm_minctl, 1);
1123 static SENSOR_DEVICE_ATTR_RW(pwm3_auto_channels, pwm_auto_channels, 2);
1124 static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_min, pwm_auto_pwm_min, 2);
1125 static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_minctl, pwm_auto_pwm_minctl, 2);
1126
1127 /* Temperature settings for automatic PWM control */
1128
1129 static ssize_t temp_auto_temp_off_show(struct device *dev,
1130                                        struct device_attribute *attr,
1131                                        char *buf)
1132 {
1133         int nr = to_sensor_dev_attr(attr)->index;
1134         struct lm85_data *data = lm85_update_device(dev);
1135         return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
1136                 HYST_FROM_REG(data->zone[nr].hyst));
1137 }
1138
1139 static ssize_t temp_auto_temp_off_store(struct device *dev,
1140                                         struct device_attribute *attr,
1141                                         const char *buf, size_t count)
1142 {
1143         int nr = to_sensor_dev_attr(attr)->index;
1144         struct lm85_data *data = dev_get_drvdata(dev);
1145         struct i2c_client *client = data->client;
1146         int min;
1147         long val;
1148         int err;
1149
1150         err = kstrtol(buf, 10, &val);
1151         if (err)
1152                 return err;
1153
1154         mutex_lock(&data->update_lock);
1155         min = TEMP_FROM_REG(data->zone[nr].limit);
1156         data->zone[nr].hyst = HYST_TO_REG(min - val);
1157         if (nr == 0 || nr == 1) {
1158                 lm85_write_value(client, LM85_REG_AFAN_HYST1,
1159                         (data->zone[0].hyst << 4)
1160                         | data->zone[1].hyst);
1161         } else {
1162                 lm85_write_value(client, LM85_REG_AFAN_HYST2,
1163                         (data->zone[2].hyst << 4));
1164         }
1165         mutex_unlock(&data->update_lock);
1166         return count;
1167 }
1168
1169 static ssize_t temp_auto_temp_min_show(struct device *dev,
1170                                        struct device_attribute *attr,
1171                                        char *buf)
1172 {
1173         int nr = to_sensor_dev_attr(attr)->index;
1174         struct lm85_data *data = lm85_update_device(dev);
1175         return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
1176 }
1177
1178 static ssize_t temp_auto_temp_min_store(struct device *dev,
1179                                         struct device_attribute *attr,
1180                                         const char *buf, size_t count)
1181 {
1182         int nr = to_sensor_dev_attr(attr)->index;
1183         struct lm85_data *data = dev_get_drvdata(dev);
1184         struct i2c_client *client = data->client;
1185         long val;
1186         int err;
1187
1188         err = kstrtol(buf, 10, &val);
1189         if (err)
1190                 return err;
1191
1192         mutex_lock(&data->update_lock);
1193         data->zone[nr].limit = TEMP_TO_REG(val);
1194         lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1195                 data->zone[nr].limit);
1196
1197 /* Update temp_auto_max and temp_auto_range */
1198         data->zone[nr].range = RANGE_TO_REG(
1199                 TEMP_FROM_REG(data->zone[nr].max_desired) -
1200                 TEMP_FROM_REG(data->zone[nr].limit));
1201         lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1202                 ((data->zone[nr].range & 0x0f) << 4)
1203                 | data->pwm_freq[nr]);
1204
1205         mutex_unlock(&data->update_lock);
1206         return count;
1207 }
1208
1209 static ssize_t temp_auto_temp_max_show(struct device *dev,
1210                                        struct device_attribute *attr,
1211                                        char *buf)
1212 {
1213         int nr = to_sensor_dev_attr(attr)->index;
1214         struct lm85_data *data = lm85_update_device(dev);
1215         return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1216                 RANGE_FROM_REG(data->zone[nr].range));
1217 }
1218
1219 static ssize_t temp_auto_temp_max_store(struct device *dev,
1220                                         struct device_attribute *attr,
1221                                         const char *buf, size_t count)
1222 {
1223         int nr = to_sensor_dev_attr(attr)->index;
1224         struct lm85_data *data = dev_get_drvdata(dev);
1225         struct i2c_client *client = data->client;
1226         int min;
1227         long val;
1228         int err;
1229
1230         err = kstrtol(buf, 10, &val);
1231         if (err)
1232                 return err;
1233
1234         mutex_lock(&data->update_lock);
1235         min = TEMP_FROM_REG(data->zone[nr].limit);
1236         data->zone[nr].max_desired = TEMP_TO_REG(val);
1237         data->zone[nr].range = RANGE_TO_REG(
1238                 val - min);
1239         lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1240                 ((data->zone[nr].range & 0x0f) << 4)
1241                 | data->pwm_freq[nr]);
1242         mutex_unlock(&data->update_lock);
1243         return count;
1244 }
1245
1246 static ssize_t temp_auto_temp_crit_show(struct device *dev,
1247                                         struct device_attribute *attr,
1248                                         char *buf)
1249 {
1250         int nr = to_sensor_dev_attr(attr)->index;
1251         struct lm85_data *data = lm85_update_device(dev);
1252         return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1253 }
1254
1255 static ssize_t temp_auto_temp_crit_store(struct device *dev,
1256                                          struct device_attribute *attr,
1257                                          const char *buf, size_t count)
1258 {
1259         int nr = to_sensor_dev_attr(attr)->index;
1260         struct lm85_data *data = dev_get_drvdata(dev);
1261         struct i2c_client *client = data->client;
1262         long val;
1263         int err;
1264
1265         err = kstrtol(buf, 10, &val);
1266         if (err)
1267                 return err;
1268
1269         mutex_lock(&data->update_lock);
1270         data->zone[nr].critical = TEMP_TO_REG(val);
1271         lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1272                 data->zone[nr].critical);
1273         mutex_unlock(&data->update_lock);
1274         return count;
1275 }
1276
1277 static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_off, temp_auto_temp_off, 0);
1278 static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_min, temp_auto_temp_min, 0);
1279 static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_max, temp_auto_temp_max, 0);
1280 static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_crit, temp_auto_temp_crit, 0);
1281 static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_off, temp_auto_temp_off, 1);
1282 static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_min, temp_auto_temp_min, 1);
1283 static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_max, temp_auto_temp_max, 1);
1284 static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_crit, temp_auto_temp_crit, 1);
1285 static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_off, temp_auto_temp_off, 2);
1286 static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_min, temp_auto_temp_min, 2);
1287 static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_max, temp_auto_temp_max, 2);
1288 static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_crit, temp_auto_temp_crit, 2);
1289
1290 static struct attribute *lm85_attributes[] = {
1291         &sensor_dev_attr_fan1_input.dev_attr.attr,
1292         &sensor_dev_attr_fan2_input.dev_attr.attr,
1293         &sensor_dev_attr_fan3_input.dev_attr.attr,
1294         &sensor_dev_attr_fan4_input.dev_attr.attr,
1295         &sensor_dev_attr_fan1_min.dev_attr.attr,
1296         &sensor_dev_attr_fan2_min.dev_attr.attr,
1297         &sensor_dev_attr_fan3_min.dev_attr.attr,
1298         &sensor_dev_attr_fan4_min.dev_attr.attr,
1299         &sensor_dev_attr_fan1_alarm.dev_attr.attr,
1300         &sensor_dev_attr_fan2_alarm.dev_attr.attr,
1301         &sensor_dev_attr_fan3_alarm.dev_attr.attr,
1302         &sensor_dev_attr_fan4_alarm.dev_attr.attr,
1303
1304         &sensor_dev_attr_pwm1.dev_attr.attr,
1305         &sensor_dev_attr_pwm2.dev_attr.attr,
1306         &sensor_dev_attr_pwm3.dev_attr.attr,
1307         &sensor_dev_attr_pwm1_enable.dev_attr.attr,
1308         &sensor_dev_attr_pwm2_enable.dev_attr.attr,
1309         &sensor_dev_attr_pwm3_enable.dev_attr.attr,
1310         &sensor_dev_attr_pwm1_freq.dev_attr.attr,
1311         &sensor_dev_attr_pwm2_freq.dev_attr.attr,
1312         &sensor_dev_attr_pwm3_freq.dev_attr.attr,
1313
1314         &sensor_dev_attr_in0_input.dev_attr.attr,
1315         &sensor_dev_attr_in1_input.dev_attr.attr,
1316         &sensor_dev_attr_in2_input.dev_attr.attr,
1317         &sensor_dev_attr_in3_input.dev_attr.attr,
1318         &sensor_dev_attr_in0_min.dev_attr.attr,
1319         &sensor_dev_attr_in1_min.dev_attr.attr,
1320         &sensor_dev_attr_in2_min.dev_attr.attr,
1321         &sensor_dev_attr_in3_min.dev_attr.attr,
1322         &sensor_dev_attr_in0_max.dev_attr.attr,
1323         &sensor_dev_attr_in1_max.dev_attr.attr,
1324         &sensor_dev_attr_in2_max.dev_attr.attr,
1325         &sensor_dev_attr_in3_max.dev_attr.attr,
1326         &sensor_dev_attr_in0_alarm.dev_attr.attr,
1327         &sensor_dev_attr_in1_alarm.dev_attr.attr,
1328         &sensor_dev_attr_in2_alarm.dev_attr.attr,
1329         &sensor_dev_attr_in3_alarm.dev_attr.attr,
1330
1331         &sensor_dev_attr_temp1_input.dev_attr.attr,
1332         &sensor_dev_attr_temp2_input.dev_attr.attr,
1333         &sensor_dev_attr_temp3_input.dev_attr.attr,
1334         &sensor_dev_attr_temp1_min.dev_attr.attr,
1335         &sensor_dev_attr_temp2_min.dev_attr.attr,
1336         &sensor_dev_attr_temp3_min.dev_attr.attr,
1337         &sensor_dev_attr_temp1_max.dev_attr.attr,
1338         &sensor_dev_attr_temp2_max.dev_attr.attr,
1339         &sensor_dev_attr_temp3_max.dev_attr.attr,
1340         &sensor_dev_attr_temp1_alarm.dev_attr.attr,
1341         &sensor_dev_attr_temp2_alarm.dev_attr.attr,
1342         &sensor_dev_attr_temp3_alarm.dev_attr.attr,
1343         &sensor_dev_attr_temp1_fault.dev_attr.attr,
1344         &sensor_dev_attr_temp3_fault.dev_attr.attr,
1345
1346         &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1347         &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1348         &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1349         &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1350         &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1351         &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1352
1353         &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1354         &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1355         &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1356         &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1357         &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1358         &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1359         &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1360         &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1361         &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1362
1363         &dev_attr_vrm.attr,
1364         &dev_attr_cpu0_vid.attr,
1365         &dev_attr_alarms.attr,
1366         NULL
1367 };
1368
1369 static const struct attribute_group lm85_group = {
1370         .attrs = lm85_attributes,
1371 };
1372
1373 static struct attribute *lm85_attributes_minctl[] = {
1374         &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1375         &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1376         &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1377         NULL
1378 };
1379
1380 static const struct attribute_group lm85_group_minctl = {
1381         .attrs = lm85_attributes_minctl,
1382 };
1383
1384 static struct attribute *lm85_attributes_temp_off[] = {
1385         &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1386         &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1387         &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1388         NULL
1389 };
1390
1391 static const struct attribute_group lm85_group_temp_off = {
1392         .attrs = lm85_attributes_temp_off,
1393 };
1394
1395 static struct attribute *lm85_attributes_in4[] = {
1396         &sensor_dev_attr_in4_input.dev_attr.attr,
1397         &sensor_dev_attr_in4_min.dev_attr.attr,
1398         &sensor_dev_attr_in4_max.dev_attr.attr,
1399         &sensor_dev_attr_in4_alarm.dev_attr.attr,
1400         NULL
1401 };
1402
1403 static const struct attribute_group lm85_group_in4 = {
1404         .attrs = lm85_attributes_in4,
1405 };
1406
1407 static struct attribute *lm85_attributes_in567[] = {
1408         &sensor_dev_attr_in5_input.dev_attr.attr,
1409         &sensor_dev_attr_in6_input.dev_attr.attr,
1410         &sensor_dev_attr_in7_input.dev_attr.attr,
1411         &sensor_dev_attr_in5_min.dev_attr.attr,
1412         &sensor_dev_attr_in6_min.dev_attr.attr,
1413         &sensor_dev_attr_in7_min.dev_attr.attr,
1414         &sensor_dev_attr_in5_max.dev_attr.attr,
1415         &sensor_dev_attr_in6_max.dev_attr.attr,
1416         &sensor_dev_attr_in7_max.dev_attr.attr,
1417         &sensor_dev_attr_in5_alarm.dev_attr.attr,
1418         &sensor_dev_attr_in6_alarm.dev_attr.attr,
1419         &sensor_dev_attr_in7_alarm.dev_attr.attr,
1420         NULL
1421 };
1422
1423 static const struct attribute_group lm85_group_in567 = {
1424         .attrs = lm85_attributes_in567,
1425 };
1426
1427 static void lm85_init_client(struct i2c_client *client)
1428 {
1429         int value;
1430
1431         /* Start monitoring if needed */
1432         value = lm85_read_value(client, LM85_REG_CONFIG);
1433         if (!(value & 0x01)) {
1434                 dev_info(&client->dev, "Starting monitoring\n");
1435                 lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1436         }
1437
1438         /* Warn about unusual configuration bits */
1439         if (value & 0x02)
1440                 dev_warn(&client->dev, "Device configuration is locked\n");
1441         if (!(value & 0x04))
1442                 dev_warn(&client->dev, "Device is not ready\n");
1443 }
1444
1445 static int lm85_is_fake(struct i2c_client *client)
1446 {
1447         /*
1448          * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1449          * emulate the former except that it has no hardware monitoring function
1450          * so the readings are always 0.
1451          */
1452         int i;
1453         u8 in_temp, fan;
1454
1455         for (i = 0; i < 8; i++) {
1456                 in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1457                 fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1458                 if (in_temp != 0x00 || fan != 0xff)
1459                         return 0;
1460         }
1461
1462         return 1;
1463 }
1464
1465 /* Return 0 if detection is successful, -ENODEV otherwise */
1466 static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1467 {
1468         struct i2c_adapter *adapter = client->adapter;
1469         int address = client->addr;
1470         const char *type_name = NULL;
1471         int company, verstep;
1472
1473         if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1474                 /* We need to be able to do byte I/O */
1475                 return -ENODEV;
1476         }
1477
1478         /* Determine the chip type */
1479         company = lm85_read_value(client, LM85_REG_COMPANY);
1480         verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1481
1482         dev_dbg(&adapter->dev,
1483                 "Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1484                 address, company, verstep);
1485
1486         if (company == LM85_COMPANY_NATIONAL) {
1487                 switch (verstep) {
1488                 case LM85_VERSTEP_LM85C:
1489                         type_name = "lm85c";
1490                         break;
1491                 case LM85_VERSTEP_LM85B:
1492                         type_name = "lm85b";
1493                         break;
1494                 case LM85_VERSTEP_LM96000_1:
1495                 case LM85_VERSTEP_LM96000_2:
1496                         /* Check for Winbond WPCD377I */
1497                         if (lm85_is_fake(client)) {
1498                                 dev_dbg(&adapter->dev,
1499                                         "Found Winbond WPCD377I, ignoring\n");
1500                                 return -ENODEV;
1501                         }
1502                         type_name = "lm96000";
1503                         break;
1504                 }
1505         } else if (company == LM85_COMPANY_ANALOG_DEV) {
1506                 switch (verstep) {
1507                 case LM85_VERSTEP_ADM1027:
1508                         type_name = "adm1027";
1509                         break;
1510                 case LM85_VERSTEP_ADT7463:
1511                 case LM85_VERSTEP_ADT7463C:
1512                         type_name = "adt7463";
1513                         break;
1514                 case LM85_VERSTEP_ADT7468_1:
1515                 case LM85_VERSTEP_ADT7468_2:
1516                         type_name = "adt7468";
1517                         break;
1518                 }
1519         } else if (company == LM85_COMPANY_SMSC) {
1520                 switch (verstep) {
1521                 case LM85_VERSTEP_EMC6D100_A0:
1522                 case LM85_VERSTEP_EMC6D100_A1:
1523                         /* Note: we can't tell a '100 from a '101 */
1524                         type_name = "emc6d100";
1525                         break;
1526                 case LM85_VERSTEP_EMC6D102:
1527                         type_name = "emc6d102";
1528                         break;
1529                 case LM85_VERSTEP_EMC6D103_A0:
1530                 case LM85_VERSTEP_EMC6D103_A1:
1531                         type_name = "emc6d103";
1532                         break;
1533                 case LM85_VERSTEP_EMC6D103S:
1534                         type_name = "emc6d103s";
1535                         break;
1536                 }
1537         }
1538
1539         if (!type_name)
1540                 return -ENODEV;
1541
1542         strlcpy(info->type, type_name, I2C_NAME_SIZE);
1543
1544         return 0;
1545 }
1546
1547 static const struct i2c_device_id lm85_id[];
1548
1549 static int lm85_probe(struct i2c_client *client)
1550 {
1551         struct device *dev = &client->dev;
1552         struct device *hwmon_dev;
1553         struct lm85_data *data;
1554         int idx = 0;
1555
1556         data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
1557         if (!data)
1558                 return -ENOMEM;
1559
1560         data->client = client;
1561         if (client->dev.of_node)
1562                 data->type = (enum chips)of_device_get_match_data(&client->dev);
1563         else
1564                 data->type = i2c_match_id(lm85_id, client)->driver_data;
1565         mutex_init(&data->update_lock);
1566
1567         /* Fill in the chip specific driver values */
1568         switch (data->type) {
1569         case adm1027:
1570         case adt7463:
1571         case adt7468:
1572         case emc6d100:
1573         case emc6d102:
1574         case emc6d103:
1575         case emc6d103s:
1576                 data->freq_map = adm1027_freq_map;
1577                 data->freq_map_size = ARRAY_SIZE(adm1027_freq_map);
1578                 break;
1579         case lm96000:
1580                 data->freq_map = lm96000_freq_map;
1581                 data->freq_map_size = ARRAY_SIZE(lm96000_freq_map);
1582                 break;
1583         default:
1584                 data->freq_map = lm85_freq_map;
1585                 data->freq_map_size = ARRAY_SIZE(lm85_freq_map);
1586         }
1587
1588         /* Set the VRM version */
1589         data->vrm = vid_which_vrm();
1590
1591         /* Initialize the LM85 chip */
1592         lm85_init_client(client);
1593
1594         /* sysfs hooks */
1595         data->groups[idx++] = &lm85_group;
1596
1597         /* minctl and temp_off exist on all chips except emc6d103s */
1598         if (data->type != emc6d103s) {
1599                 data->groups[idx++] = &lm85_group_minctl;
1600                 data->groups[idx++] = &lm85_group_temp_off;
1601         }
1602
1603         /*
1604          * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1605          * as a sixth digital VID input rather than an analog input.
1606          */
1607         if (data->type == adt7463 || data->type == adt7468) {
1608                 u8 vid = lm85_read_value(client, LM85_REG_VID);
1609                 if (vid & 0x80)
1610                         data->has_vid5 = true;
1611         }
1612
1613         if (!data->has_vid5)
1614                 data->groups[idx++] = &lm85_group_in4;
1615
1616         /* The EMC6D100 has 3 additional voltage inputs */
1617         if (data->type == emc6d100)
1618                 data->groups[idx++] = &lm85_group_in567;
1619
1620         hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1621                                                            data, data->groups);
1622         return PTR_ERR_OR_ZERO(hwmon_dev);
1623 }
1624
1625 static const struct i2c_device_id lm85_id[] = {
1626         { "adm1027", adm1027 },
1627         { "adt7463", adt7463 },
1628         { "adt7468", adt7468 },
1629         { "lm85", lm85 },
1630         { "lm85b", lm85 },
1631         { "lm85c", lm85 },
1632         { "lm96000", lm96000 },
1633         { "emc6d100", emc6d100 },
1634         { "emc6d101", emc6d100 },
1635         { "emc6d102", emc6d102 },
1636         { "emc6d103", emc6d103 },
1637         { "emc6d103s", emc6d103s },
1638         { }
1639 };
1640 MODULE_DEVICE_TABLE(i2c, lm85_id);
1641
1642 static const struct of_device_id __maybe_unused lm85_of_match[] = {
1643         {
1644                 .compatible = "adi,adm1027",
1645                 .data = (void *)adm1027
1646         },
1647         {
1648                 .compatible = "adi,adt7463",
1649                 .data = (void *)adt7463
1650         },
1651         {
1652                 .compatible = "adi,adt7468",
1653                 .data = (void *)adt7468
1654         },
1655         {
1656                 .compatible = "national,lm85",
1657                 .data = (void *)lm85
1658         },
1659         {
1660                 .compatible = "national,lm85b",
1661                 .data = (void *)lm85
1662         },
1663         {
1664                 .compatible = "national,lm85c",
1665                 .data = (void *)lm85
1666         },
1667         {
1668                 .compatible = "ti,lm96000",
1669                 .data = (void *)lm96000
1670         },
1671         {
1672                 .compatible = "smsc,emc6d100",
1673                 .data = (void *)emc6d100
1674         },
1675         {
1676                 .compatible = "smsc,emc6d101",
1677                 .data = (void *)emc6d100
1678         },
1679         {
1680                 .compatible = "smsc,emc6d102",
1681                 .data = (void *)emc6d102
1682         },
1683         {
1684                 .compatible = "smsc,emc6d103",
1685                 .data = (void *)emc6d103
1686         },
1687         {
1688                 .compatible = "smsc,emc6d103s",
1689                 .data = (void *)emc6d103s
1690         },
1691         { },
1692 };
1693 MODULE_DEVICE_TABLE(of, lm85_of_match);
1694
1695 static struct i2c_driver lm85_driver = {
1696         .class          = I2C_CLASS_HWMON,
1697         .driver = {
1698                 .name   = "lm85",
1699                 .of_match_table = of_match_ptr(lm85_of_match),
1700         },
1701         .probe_new      = lm85_probe,
1702         .id_table       = lm85_id,
1703         .detect         = lm85_detect,
1704         .address_list   = normal_i2c,
1705 };
1706
1707 module_i2c_driver(lm85_driver);
1708
1709 MODULE_LICENSE("GPL");
1710 MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1711         "Margit Schubert-While <margitsw@t-online.de>, "
1712         "Justin Thiessen <jthiessen@penguincomputing.com>");
1713 MODULE_DESCRIPTION("LM85-B, LM85-C driver");