Merge tag 'drm-next-2019-05-16' of git://anongit.freedesktop.org/drm/drm
[linux-2.6-microblaze.git] / drivers / hwmon / lm85.c
1 /*
2  * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
3  *          monitoring
4  * Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
5  * Copyright (c) 2002, 2003  Philip Pokorny <ppokorny@penguincomputing.com>
6  * Copyright (c) 2003        Margit Schubert-While <margitsw@t-online.de>
7  * Copyright (c) 2004        Justin Thiessen <jthiessen@penguincomputing.com>
8  * Copyright (C) 2007--2014  Jean Delvare <jdelvare@suse.de>
9  *
10  * Chip details at            <http://www.national.com/ds/LM/LM85.pdf>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25  */
26
27 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/jiffies.h>
32 #include <linux/i2c.h>
33 #include <linux/hwmon.h>
34 #include <linux/hwmon-vid.h>
35 #include <linux/hwmon-sysfs.h>
36 #include <linux/err.h>
37 #include <linux/mutex.h>
38 #include <linux/util_macros.h>
39
40 /* Addresses to scan */
41 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
42
43 enum chips {
44         lm85, lm96000,
45         adm1027, adt7463, adt7468,
46         emc6d100, emc6d102, emc6d103, emc6d103s
47 };
48
49 /* The LM85 registers */
50
51 #define LM85_REG_IN(nr)                 (0x20 + (nr))
52 #define LM85_REG_IN_MIN(nr)             (0x44 + (nr) * 2)
53 #define LM85_REG_IN_MAX(nr)             (0x45 + (nr) * 2)
54
55 #define LM85_REG_TEMP(nr)               (0x25 + (nr))
56 #define LM85_REG_TEMP_MIN(nr)           (0x4e + (nr) * 2)
57 #define LM85_REG_TEMP_MAX(nr)           (0x4f + (nr) * 2)
58
59 /* Fan speeds are LSB, MSB (2 bytes) */
60 #define LM85_REG_FAN(nr)                (0x28 + (nr) * 2)
61 #define LM85_REG_FAN_MIN(nr)            (0x54 + (nr) * 2)
62
63 #define LM85_REG_PWM(nr)                (0x30 + (nr))
64
65 #define LM85_REG_COMPANY                0x3e
66 #define LM85_REG_VERSTEP                0x3f
67
68 #define ADT7468_REG_CFG5                0x7c
69 #define ADT7468_OFF64                   (1 << 0)
70 #define ADT7468_HFPWM                   (1 << 1)
71 #define IS_ADT7468_OFF64(data)          \
72         ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
73 #define IS_ADT7468_HFPWM(data)          \
74         ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
75
76 /* These are the recognized values for the above regs */
77 #define LM85_COMPANY_NATIONAL           0x01
78 #define LM85_COMPANY_ANALOG_DEV         0x41
79 #define LM85_COMPANY_SMSC               0x5c
80 #define LM85_VERSTEP_LM85C              0x60
81 #define LM85_VERSTEP_LM85B              0x62
82 #define LM85_VERSTEP_LM96000_1          0x68
83 #define LM85_VERSTEP_LM96000_2          0x69
84 #define LM85_VERSTEP_ADM1027            0x60
85 #define LM85_VERSTEP_ADT7463            0x62
86 #define LM85_VERSTEP_ADT7463C           0x6A
87 #define LM85_VERSTEP_ADT7468_1          0x71
88 #define LM85_VERSTEP_ADT7468_2          0x72
89 #define LM85_VERSTEP_EMC6D100_A0        0x60
90 #define LM85_VERSTEP_EMC6D100_A1        0x61
91 #define LM85_VERSTEP_EMC6D102           0x65
92 #define LM85_VERSTEP_EMC6D103_A0        0x68
93 #define LM85_VERSTEP_EMC6D103_A1        0x69
94 #define LM85_VERSTEP_EMC6D103S          0x6A    /* Also known as EMC6D103:A2 */
95
96 #define LM85_REG_CONFIG                 0x40
97
98 #define LM85_REG_ALARM1                 0x41
99 #define LM85_REG_ALARM2                 0x42
100
101 #define LM85_REG_VID                    0x43
102
103 /* Automated FAN control */
104 #define LM85_REG_AFAN_CONFIG(nr)        (0x5c + (nr))
105 #define LM85_REG_AFAN_RANGE(nr)         (0x5f + (nr))
106 #define LM85_REG_AFAN_SPIKE1            0x62
107 #define LM85_REG_AFAN_MINPWM(nr)        (0x64 + (nr))
108 #define LM85_REG_AFAN_LIMIT(nr)         (0x67 + (nr))
109 #define LM85_REG_AFAN_CRITICAL(nr)      (0x6a + (nr))
110 #define LM85_REG_AFAN_HYST1             0x6d
111 #define LM85_REG_AFAN_HYST2             0x6e
112
113 #define ADM1027_REG_EXTEND_ADC1         0x76
114 #define ADM1027_REG_EXTEND_ADC2         0x77
115
116 #define EMC6D100_REG_ALARM3             0x7d
117 /* IN5, IN6 and IN7 */
118 #define EMC6D100_REG_IN(nr)             (0x70 + ((nr) - 5))
119 #define EMC6D100_REG_IN_MIN(nr)         (0x73 + ((nr) - 5) * 2)
120 #define EMC6D100_REG_IN_MAX(nr)         (0x74 + ((nr) - 5) * 2)
121 #define EMC6D102_REG_EXTEND_ADC1        0x85
122 #define EMC6D102_REG_EXTEND_ADC2        0x86
123 #define EMC6D102_REG_EXTEND_ADC3        0x87
124 #define EMC6D102_REG_EXTEND_ADC4        0x88
125
126 /*
127  * Conversions. Rounding and limit checking is only done on the TO_REG
128  * variants. Note that you should be a bit careful with which arguments
129  * these macros are called: arguments may be evaluated more than once.
130  */
131
132 /* IN are scaled according to built-in resistors */
133 static const int lm85_scaling[] = {  /* .001 Volts */
134         2500, 2250, 3300, 5000, 12000,
135         3300, 1500, 1800 /*EMC6D100*/
136 };
137 #define SCALE(val, from, to)    (((val) * (to) + ((from) / 2)) / (from))
138
139 #define INS_TO_REG(n, val)      \
140                 SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \
141                       lm85_scaling[n], 192)
142
143 #define INSEXT_FROM_REG(n, val, ext)    \
144                 SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
145
146 #define INS_FROM_REG(n, val)    SCALE((val), 192, lm85_scaling[n])
147
148 /* FAN speed is measured using 90kHz clock */
149 static inline u16 FAN_TO_REG(unsigned long val)
150 {
151         if (!val)
152                 return 0xffff;
153         return clamp_val(5400000 / val, 1, 0xfffe);
154 }
155 #define FAN_FROM_REG(val)       ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
156                                  5400000 / (val))
157
158 /* Temperature is reported in .001 degC increments */
159 #define TEMP_TO_REG(val)        \
160                 DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
161 #define TEMPEXT_FROM_REG(val, ext)      \
162                 SCALE(((val) << 4) + (ext), 16, 1000)
163 #define TEMP_FROM_REG(val)      ((val) * 1000)
164
165 #define PWM_TO_REG(val)                 clamp_val(val, 0, 255)
166 #define PWM_FROM_REG(val)               (val)
167
168 /*
169  * ZONEs have the following parameters:
170  *    Limit (low) temp,           1. degC
171  *    Hysteresis (below limit),   1. degC (0-15)
172  *    Range of speed control,     .1 degC (2-80)
173  *    Critical (high) temp,       1. degC
174  *
175  * FAN PWMs have the following parameters:
176  *    Reference Zone,                 1, 2, 3, etc.
177  *    Spinup time,                    .05 sec
178  *    PWM value at limit/low temp,    1 count
179  *    PWM Frequency,                  1. Hz
180  *    PWM is Min or OFF below limit,  flag
181  *    Invert PWM output,              flag
182  *
183  * Some chips filter the temp, others the fan.
184  *    Filter constant (or disabled)   .1 seconds
185  */
186
187 /* These are the zone temperature range encodings in .001 degree C */
188 static const int lm85_range_map[] = {
189         2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
190         13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
191 };
192
193 static int RANGE_TO_REG(long range)
194 {
195         return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
196 }
197 #define RANGE_FROM_REG(val)     lm85_range_map[(val) & 0x0f]
198
199 /* These are the PWM frequency encodings */
200 static const int lm85_freq_map[] = { /* 1 Hz */
201         10, 15, 23, 30, 38, 47, 61, 94
202 };
203
204 static const int lm96000_freq_map[] = { /* 1 Hz */
205         10, 15, 23, 30, 38, 47, 61, 94,
206         22500, 24000, 25700, 25700, 27700, 27700, 30000, 30000
207 };
208
209 static const int adm1027_freq_map[] = { /* 1 Hz */
210         11, 15, 22, 29, 35, 44, 59, 88
211 };
212
213 static int FREQ_TO_REG(const int *map,
214                        unsigned int map_size, unsigned long freq)
215 {
216         return find_closest(freq, map, map_size);
217 }
218
219 static int FREQ_FROM_REG(const int *map, unsigned int map_size, u8 reg)
220 {
221         return map[reg % map_size];
222 }
223
224 /*
225  * Since we can't use strings, I'm abusing these numbers
226  *   to stand in for the following meanings:
227  *      1 -- PWM responds to Zone 1
228  *      2 -- PWM responds to Zone 2
229  *      3 -- PWM responds to Zone 3
230  *     23 -- PWM responds to the higher temp of Zone 2 or 3
231  *    123 -- PWM responds to highest of Zone 1, 2, or 3
232  *      0 -- PWM is always at 0% (ie, off)
233  *     -1 -- PWM is always at 100%
234  *     -2 -- PWM responds to manual control
235  */
236
237 static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
238 #define ZONE_FROM_REG(val)      lm85_zone_map[(val) >> 5]
239
240 static int ZONE_TO_REG(int zone)
241 {
242         int i;
243
244         for (i = 0; i <= 7; ++i)
245                 if (zone == lm85_zone_map[i])
246                         break;
247         if (i > 7)   /* Not found. */
248                 i = 3;  /* Always 100% */
249         return i << 5;
250 }
251
252 #define HYST_TO_REG(val)        clamp_val(((val) + 500) / 1000, 0, 15)
253 #define HYST_FROM_REG(val)      ((val) * 1000)
254
255 /*
256  * Chip sampling rates
257  *
258  * Some sensors are not updated more frequently than once per second
259  *    so it doesn't make sense to read them more often than that.
260  *    We cache the results and return the saved data if the driver
261  *    is called again before a second has elapsed.
262  *
263  * Also, there is significant configuration data for this chip
264  *    given the automatic PWM fan control that is possible.  There
265  *    are about 47 bytes of config data to only 22 bytes of actual
266  *    readings.  So, we keep the config data up to date in the cache
267  *    when it is written and only sample it once every 1 *minute*
268  */
269 #define LM85_DATA_INTERVAL  (HZ + HZ / 2)
270 #define LM85_CONFIG_INTERVAL  (1 * 60 * HZ)
271
272 /*
273  * LM85 can automatically adjust fan speeds based on temperature
274  * This structure encapsulates an entire Zone config.  There are
275  * three zones (one for each temperature input) on the lm85
276  */
277 struct lm85_zone {
278         s8 limit;       /* Low temp limit */
279         u8 hyst;        /* Low limit hysteresis. (0-15) */
280         u8 range;       /* Temp range, encoded */
281         s8 critical;    /* "All fans ON" temp limit */
282         u8 max_desired; /*
283                          * Actual "max" temperature specified.  Preserved
284                          * to prevent "drift" as other autofan control
285                          * values change.
286                          */
287 };
288
289 struct lm85_autofan {
290         u8 config;      /* Register value */
291         u8 min_pwm;     /* Minimum PWM value, encoded */
292         u8 min_off;     /* Min PWM or OFF below "limit", flag */
293 };
294
295 /*
296  * For each registered chip, we need to keep some data in memory.
297  * The structure is dynamically allocated.
298  */
299 struct lm85_data {
300         struct i2c_client *client;
301         const struct attribute_group *groups[6];
302         const int *freq_map;
303         unsigned int freq_map_size;
304
305         enum chips type;
306
307         bool has_vid5;  /* true if VID5 is configured for ADT7463 or ADT7468 */
308
309         struct mutex update_lock;
310         int valid;              /* !=0 if following fields are valid */
311         unsigned long last_reading;     /* In jiffies */
312         unsigned long last_config;      /* In jiffies */
313
314         u8 in[8];               /* Register value */
315         u8 in_max[8];           /* Register value */
316         u8 in_min[8];           /* Register value */
317         s8 temp[3];             /* Register value */
318         s8 temp_min[3];         /* Register value */
319         s8 temp_max[3];         /* Register value */
320         u16 fan[4];             /* Register value */
321         u16 fan_min[4];         /* Register value */
322         u8 pwm[3];              /* Register value */
323         u8 pwm_freq[3];         /* Register encoding */
324         u8 temp_ext[3];         /* Decoded values */
325         u8 in_ext[8];           /* Decoded values */
326         u8 vid;                 /* Register value */
327         u8 vrm;                 /* VRM version */
328         u32 alarms;             /* Register encoding, combined */
329         u8 cfg5;                /* Config Register 5 on ADT7468 */
330         struct lm85_autofan autofan[3];
331         struct lm85_zone zone[3];
332 };
333
334 static int lm85_read_value(struct i2c_client *client, u8 reg)
335 {
336         int res;
337
338         /* What size location is it? */
339         switch (reg) {
340         case LM85_REG_FAN(0):  /* Read WORD data */
341         case LM85_REG_FAN(1):
342         case LM85_REG_FAN(2):
343         case LM85_REG_FAN(3):
344         case LM85_REG_FAN_MIN(0):
345         case LM85_REG_FAN_MIN(1):
346         case LM85_REG_FAN_MIN(2):
347         case LM85_REG_FAN_MIN(3):
348         case LM85_REG_ALARM1:   /* Read both bytes at once */
349                 res = i2c_smbus_read_byte_data(client, reg) & 0xff;
350                 res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
351                 break;
352         default:        /* Read BYTE data */
353                 res = i2c_smbus_read_byte_data(client, reg);
354                 break;
355         }
356
357         return res;
358 }
359
360 static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
361 {
362         switch (reg) {
363         case LM85_REG_FAN(0):  /* Write WORD data */
364         case LM85_REG_FAN(1):
365         case LM85_REG_FAN(2):
366         case LM85_REG_FAN(3):
367         case LM85_REG_FAN_MIN(0):
368         case LM85_REG_FAN_MIN(1):
369         case LM85_REG_FAN_MIN(2):
370         case LM85_REG_FAN_MIN(3):
371         /* NOTE: ALARM is read only, so not included here */
372                 i2c_smbus_write_byte_data(client, reg, value & 0xff);
373                 i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
374                 break;
375         default:        /* Write BYTE data */
376                 i2c_smbus_write_byte_data(client, reg, value);
377                 break;
378         }
379 }
380
381 static struct lm85_data *lm85_update_device(struct device *dev)
382 {
383         struct lm85_data *data = dev_get_drvdata(dev);
384         struct i2c_client *client = data->client;
385         int i;
386
387         mutex_lock(&data->update_lock);
388
389         if (!data->valid ||
390              time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
391                 /* Things that change quickly */
392                 dev_dbg(&client->dev, "Reading sensor values\n");
393
394                 /*
395                  * Have to read extended bits first to "freeze" the
396                  * more significant bits that are read later.
397                  * There are 2 additional resolution bits per channel and we
398                  * have room for 4, so we shift them to the left.
399                  */
400                 if (data->type == adm1027 || data->type == adt7463 ||
401                     data->type == adt7468) {
402                         int ext1 = lm85_read_value(client,
403                                                    ADM1027_REG_EXTEND_ADC1);
404                         int ext2 =  lm85_read_value(client,
405                                                     ADM1027_REG_EXTEND_ADC2);
406                         int val = (ext1 << 8) + ext2;
407
408                         for (i = 0; i <= 4; i++)
409                                 data->in_ext[i] =
410                                         ((val >> (i * 2)) & 0x03) << 2;
411
412                         for (i = 0; i <= 2; i++)
413                                 data->temp_ext[i] =
414                                         (val >> ((i + 4) * 2)) & 0x0c;
415                 }
416
417                 data->vid = lm85_read_value(client, LM85_REG_VID);
418
419                 for (i = 0; i <= 3; ++i) {
420                         data->in[i] =
421                             lm85_read_value(client, LM85_REG_IN(i));
422                         data->fan[i] =
423                             lm85_read_value(client, LM85_REG_FAN(i));
424                 }
425
426                 if (!data->has_vid5)
427                         data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
428
429                 if (data->type == adt7468)
430                         data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
431
432                 for (i = 0; i <= 2; ++i) {
433                         data->temp[i] =
434                             lm85_read_value(client, LM85_REG_TEMP(i));
435                         data->pwm[i] =
436                             lm85_read_value(client, LM85_REG_PWM(i));
437
438                         if (IS_ADT7468_OFF64(data))
439                                 data->temp[i] -= 64;
440                 }
441
442                 data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
443
444                 if (data->type == emc6d100) {
445                         /* Three more voltage sensors */
446                         for (i = 5; i <= 7; ++i) {
447                                 data->in[i] = lm85_read_value(client,
448                                                         EMC6D100_REG_IN(i));
449                         }
450                         /* More alarm bits */
451                         data->alarms |= lm85_read_value(client,
452                                                 EMC6D100_REG_ALARM3) << 16;
453                 } else if (data->type == emc6d102 || data->type == emc6d103 ||
454                            data->type == emc6d103s) {
455                         /*
456                          * Have to read LSB bits after the MSB ones because
457                          * the reading of the MSB bits has frozen the
458                          * LSBs (backward from the ADM1027).
459                          */
460                         int ext1 = lm85_read_value(client,
461                                                    EMC6D102_REG_EXTEND_ADC1);
462                         int ext2 = lm85_read_value(client,
463                                                    EMC6D102_REG_EXTEND_ADC2);
464                         int ext3 = lm85_read_value(client,
465                                                    EMC6D102_REG_EXTEND_ADC3);
466                         int ext4 = lm85_read_value(client,
467                                                    EMC6D102_REG_EXTEND_ADC4);
468                         data->in_ext[0] = ext3 & 0x0f;
469                         data->in_ext[1] = ext4 & 0x0f;
470                         data->in_ext[2] = ext4 >> 4;
471                         data->in_ext[3] = ext3 >> 4;
472                         data->in_ext[4] = ext2 >> 4;
473
474                         data->temp_ext[0] = ext1 & 0x0f;
475                         data->temp_ext[1] = ext2 & 0x0f;
476                         data->temp_ext[2] = ext1 >> 4;
477                 }
478
479                 data->last_reading = jiffies;
480         }  /* last_reading */
481
482         if (!data->valid ||
483              time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
484                 /* Things that don't change often */
485                 dev_dbg(&client->dev, "Reading config values\n");
486
487                 for (i = 0; i <= 3; ++i) {
488                         data->in_min[i] =
489                             lm85_read_value(client, LM85_REG_IN_MIN(i));
490                         data->in_max[i] =
491                             lm85_read_value(client, LM85_REG_IN_MAX(i));
492                         data->fan_min[i] =
493                             lm85_read_value(client, LM85_REG_FAN_MIN(i));
494                 }
495
496                 if (!data->has_vid5)  {
497                         data->in_min[4] = lm85_read_value(client,
498                                           LM85_REG_IN_MIN(4));
499                         data->in_max[4] = lm85_read_value(client,
500                                           LM85_REG_IN_MAX(4));
501                 }
502
503                 if (data->type == emc6d100) {
504                         for (i = 5; i <= 7; ++i) {
505                                 data->in_min[i] = lm85_read_value(client,
506                                                 EMC6D100_REG_IN_MIN(i));
507                                 data->in_max[i] = lm85_read_value(client,
508                                                 EMC6D100_REG_IN_MAX(i));
509                         }
510                 }
511
512                 for (i = 0; i <= 2; ++i) {
513                         int val;
514
515                         data->temp_min[i] =
516                             lm85_read_value(client, LM85_REG_TEMP_MIN(i));
517                         data->temp_max[i] =
518                             lm85_read_value(client, LM85_REG_TEMP_MAX(i));
519
520                         data->autofan[i].config =
521                             lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
522                         val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
523                         data->pwm_freq[i] = val % data->freq_map_size;
524                         data->zone[i].range = val >> 4;
525                         data->autofan[i].min_pwm =
526                             lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
527                         data->zone[i].limit =
528                             lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
529                         data->zone[i].critical =
530                             lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
531
532                         if (IS_ADT7468_OFF64(data)) {
533                                 data->temp_min[i] -= 64;
534                                 data->temp_max[i] -= 64;
535                                 data->zone[i].limit -= 64;
536                                 data->zone[i].critical -= 64;
537                         }
538                 }
539
540                 if (data->type != emc6d103s) {
541                         i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
542                         data->autofan[0].min_off = (i & 0x20) != 0;
543                         data->autofan[1].min_off = (i & 0x40) != 0;
544                         data->autofan[2].min_off = (i & 0x80) != 0;
545
546                         i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
547                         data->zone[0].hyst = i >> 4;
548                         data->zone[1].hyst = i & 0x0f;
549
550                         i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
551                         data->zone[2].hyst = i >> 4;
552                 }
553
554                 data->last_config = jiffies;
555         }  /* last_config */
556
557         data->valid = 1;
558
559         mutex_unlock(&data->update_lock);
560
561         return data;
562 }
563
564 /* 4 Fans */
565 static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
566                         char *buf)
567 {
568         int nr = to_sensor_dev_attr(attr)->index;
569         struct lm85_data *data = lm85_update_device(dev);
570         return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
571 }
572
573 static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
574                             char *buf)
575 {
576         int nr = to_sensor_dev_attr(attr)->index;
577         struct lm85_data *data = lm85_update_device(dev);
578         return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
579 }
580
581 static ssize_t fan_min_store(struct device *dev,
582                              struct device_attribute *attr, const char *buf,
583                              size_t count)
584 {
585         int nr = to_sensor_dev_attr(attr)->index;
586         struct lm85_data *data = dev_get_drvdata(dev);
587         struct i2c_client *client = data->client;
588         unsigned long val;
589         int err;
590
591         err = kstrtoul(buf, 10, &val);
592         if (err)
593                 return err;
594
595         mutex_lock(&data->update_lock);
596         data->fan_min[nr] = FAN_TO_REG(val);
597         lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
598         mutex_unlock(&data->update_lock);
599         return count;
600 }
601
602 static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
603 static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
604 static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
605 static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
606 static SENSOR_DEVICE_ATTR_RO(fan3_input, fan, 2);
607 static SENSOR_DEVICE_ATTR_RW(fan3_min, fan_min, 2);
608 static SENSOR_DEVICE_ATTR_RO(fan4_input, fan, 3);
609 static SENSOR_DEVICE_ATTR_RW(fan4_min, fan_min, 3);
610
611 /* vid, vrm, alarms */
612
613 static ssize_t cpu0_vid_show(struct device *dev,
614                              struct device_attribute *attr, char *buf)
615 {
616         struct lm85_data *data = lm85_update_device(dev);
617         int vid;
618
619         if (data->has_vid5) {
620                 /* 6-pin VID (VRM 10) */
621                 vid = vid_from_reg(data->vid & 0x3f, data->vrm);
622         } else {
623                 /* 5-pin VID (VRM 9) */
624                 vid = vid_from_reg(data->vid & 0x1f, data->vrm);
625         }
626
627         return sprintf(buf, "%d\n", vid);
628 }
629
630 static DEVICE_ATTR_RO(cpu0_vid);
631
632 static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
633                         char *buf)
634 {
635         struct lm85_data *data = dev_get_drvdata(dev);
636         return sprintf(buf, "%ld\n", (long) data->vrm);
637 }
638
639 static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
640                          const char *buf, size_t count)
641 {
642         struct lm85_data *data = dev_get_drvdata(dev);
643         unsigned long val;
644         int err;
645
646         err = kstrtoul(buf, 10, &val);
647         if (err)
648                 return err;
649
650         if (val > 255)
651                 return -EINVAL;
652
653         data->vrm = val;
654         return count;
655 }
656
657 static DEVICE_ATTR_RW(vrm);
658
659 static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
660                            char *buf)
661 {
662         struct lm85_data *data = lm85_update_device(dev);
663         return sprintf(buf, "%u\n", data->alarms);
664 }
665
666 static DEVICE_ATTR_RO(alarms);
667
668 static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
669                           char *buf)
670 {
671         int nr = to_sensor_dev_attr(attr)->index;
672         struct lm85_data *data = lm85_update_device(dev);
673         return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
674 }
675
676 static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
677 static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
678 static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
679 static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
680 static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8);
681 static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 18);
682 static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, 16);
683 static SENSOR_DEVICE_ATTR_RO(in7_alarm, alarm, 17);
684 static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4);
685 static SENSOR_DEVICE_ATTR_RO(temp1_fault, alarm, 14);
686 static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 5);
687 static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 6);
688 static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 15);
689 static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 10);
690 static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 11);
691 static SENSOR_DEVICE_ATTR_RO(fan3_alarm, alarm, 12);
692 static SENSOR_DEVICE_ATTR_RO(fan4_alarm, alarm, 13);
693
694 /* pwm */
695
696 static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
697                         char *buf)
698 {
699         int nr = to_sensor_dev_attr(attr)->index;
700         struct lm85_data *data = lm85_update_device(dev);
701         return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
702 }
703
704 static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
705                          const char *buf, size_t count)
706 {
707         int nr = to_sensor_dev_attr(attr)->index;
708         struct lm85_data *data = dev_get_drvdata(dev);
709         struct i2c_client *client = data->client;
710         unsigned long val;
711         int err;
712
713         err = kstrtoul(buf, 10, &val);
714         if (err)
715                 return err;
716
717         mutex_lock(&data->update_lock);
718         data->pwm[nr] = PWM_TO_REG(val);
719         lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
720         mutex_unlock(&data->update_lock);
721         return count;
722 }
723
724 static ssize_t pwm_enable_show(struct device *dev,
725                                struct device_attribute *attr, char *buf)
726 {
727         int nr = to_sensor_dev_attr(attr)->index;
728         struct lm85_data *data = lm85_update_device(dev);
729         int pwm_zone, enable;
730
731         pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
732         switch (pwm_zone) {
733         case -1:        /* PWM is always at 100% */
734                 enable = 0;
735                 break;
736         case 0:         /* PWM is always at 0% */
737         case -2:        /* PWM responds to manual control */
738                 enable = 1;
739                 break;
740         default:        /* PWM in automatic mode */
741                 enable = 2;
742         }
743         return sprintf(buf, "%d\n", enable);
744 }
745
746 static ssize_t pwm_enable_store(struct device *dev,
747                                 struct device_attribute *attr,
748                                 const char *buf, size_t count)
749 {
750         int nr = to_sensor_dev_attr(attr)->index;
751         struct lm85_data *data = dev_get_drvdata(dev);
752         struct i2c_client *client = data->client;
753         u8 config;
754         unsigned long val;
755         int err;
756
757         err = kstrtoul(buf, 10, &val);
758         if (err)
759                 return err;
760
761         switch (val) {
762         case 0:
763                 config = 3;
764                 break;
765         case 1:
766                 config = 7;
767                 break;
768         case 2:
769                 /*
770                  * Here we have to choose arbitrarily one of the 5 possible
771                  * configurations; I go for the safest
772                  */
773                 config = 6;
774                 break;
775         default:
776                 return -EINVAL;
777         }
778
779         mutex_lock(&data->update_lock);
780         data->autofan[nr].config = lm85_read_value(client,
781                 LM85_REG_AFAN_CONFIG(nr));
782         data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
783                 | (config << 5);
784         lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
785                 data->autofan[nr].config);
786         mutex_unlock(&data->update_lock);
787         return count;
788 }
789
790 static ssize_t pwm_freq_show(struct device *dev,
791                              struct device_attribute *attr, char *buf)
792 {
793         int nr = to_sensor_dev_attr(attr)->index;
794         struct lm85_data *data = lm85_update_device(dev);
795         int freq;
796
797         if (IS_ADT7468_HFPWM(data))
798                 freq = 22500;
799         else
800                 freq = FREQ_FROM_REG(data->freq_map, data->freq_map_size,
801                                      data->pwm_freq[nr]);
802
803         return sprintf(buf, "%d\n", freq);
804 }
805
806 static ssize_t pwm_freq_store(struct device *dev,
807                               struct device_attribute *attr, const char *buf,
808                               size_t count)
809 {
810         int nr = to_sensor_dev_attr(attr)->index;
811         struct lm85_data *data = dev_get_drvdata(dev);
812         struct i2c_client *client = data->client;
813         unsigned long val;
814         int err;
815
816         err = kstrtoul(buf, 10, &val);
817         if (err)
818                 return err;
819
820         mutex_lock(&data->update_lock);
821         /*
822          * The ADT7468 has a special high-frequency PWM output mode,
823          * where all PWM outputs are driven by a 22.5 kHz clock.
824          * This might confuse the user, but there's not much we can do.
825          */
826         if (data->type == adt7468 && val >= 11300) {    /* High freq. mode */
827                 data->cfg5 &= ~ADT7468_HFPWM;
828                 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
829         } else {                                        /* Low freq. mode */
830                 data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
831                                                  data->freq_map_size, val);
832                 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
833                                  (data->zone[nr].range << 4)
834                                  | data->pwm_freq[nr]);
835                 if (data->type == adt7468) {
836                         data->cfg5 |= ADT7468_HFPWM;
837                         lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
838                 }
839         }
840         mutex_unlock(&data->update_lock);
841         return count;
842 }
843
844 static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
845 static SENSOR_DEVICE_ATTR_RW(pwm1_enable, pwm_enable, 0);
846 static SENSOR_DEVICE_ATTR_RW(pwm1_freq, pwm_freq, 0);
847 static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
848 static SENSOR_DEVICE_ATTR_RW(pwm2_enable, pwm_enable, 1);
849 static SENSOR_DEVICE_ATTR_RW(pwm2_freq, pwm_freq, 1);
850 static SENSOR_DEVICE_ATTR_RW(pwm3, pwm, 2);
851 static SENSOR_DEVICE_ATTR_RW(pwm3_enable, pwm_enable, 2);
852 static SENSOR_DEVICE_ATTR_RW(pwm3_freq, pwm_freq, 2);
853
854 /* Voltages */
855
856 static ssize_t in_show(struct device *dev, struct device_attribute *attr,
857                        char *buf)
858 {
859         int nr = to_sensor_dev_attr(attr)->index;
860         struct lm85_data *data = lm85_update_device(dev);
861         return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
862                                                     data->in_ext[nr]));
863 }
864
865 static ssize_t in_min_show(struct device *dev, struct device_attribute *attr,
866                            char *buf)
867 {
868         int nr = to_sensor_dev_attr(attr)->index;
869         struct lm85_data *data = lm85_update_device(dev);
870         return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
871 }
872
873 static ssize_t in_min_store(struct device *dev, struct device_attribute *attr,
874                             const char *buf, size_t count)
875 {
876         int nr = to_sensor_dev_attr(attr)->index;
877         struct lm85_data *data = dev_get_drvdata(dev);
878         struct i2c_client *client = data->client;
879         long val;
880         int err;
881
882         err = kstrtol(buf, 10, &val);
883         if (err)
884                 return err;
885
886         mutex_lock(&data->update_lock);
887         data->in_min[nr] = INS_TO_REG(nr, val);
888         lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
889         mutex_unlock(&data->update_lock);
890         return count;
891 }
892
893 static ssize_t in_max_show(struct device *dev, struct device_attribute *attr,
894                            char *buf)
895 {
896         int nr = to_sensor_dev_attr(attr)->index;
897         struct lm85_data *data = lm85_update_device(dev);
898         return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
899 }
900
901 static ssize_t in_max_store(struct device *dev, struct device_attribute *attr,
902                             const char *buf, size_t count)
903 {
904         int nr = to_sensor_dev_attr(attr)->index;
905         struct lm85_data *data = dev_get_drvdata(dev);
906         struct i2c_client *client = data->client;
907         long val;
908         int err;
909
910         err = kstrtol(buf, 10, &val);
911         if (err)
912                 return err;
913
914         mutex_lock(&data->update_lock);
915         data->in_max[nr] = INS_TO_REG(nr, val);
916         lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
917         mutex_unlock(&data->update_lock);
918         return count;
919 }
920
921 static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0);
922 static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0);
923 static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0);
924 static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1);
925 static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1);
926 static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1);
927 static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2);
928 static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2);
929 static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2);
930 static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3);
931 static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3);
932 static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3);
933 static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4);
934 static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4);
935 static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4);
936 static SENSOR_DEVICE_ATTR_RO(in5_input, in, 5);
937 static SENSOR_DEVICE_ATTR_RW(in5_min, in_min, 5);
938 static SENSOR_DEVICE_ATTR_RW(in5_max, in_max, 5);
939 static SENSOR_DEVICE_ATTR_RO(in6_input, in, 6);
940 static SENSOR_DEVICE_ATTR_RW(in6_min, in_min, 6);
941 static SENSOR_DEVICE_ATTR_RW(in6_max, in_max, 6);
942 static SENSOR_DEVICE_ATTR_RO(in7_input, in, 7);
943 static SENSOR_DEVICE_ATTR_RW(in7_min, in_min, 7);
944 static SENSOR_DEVICE_ATTR_RW(in7_max, in_max, 7);
945
946 /* Temps */
947
948 static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
949                          char *buf)
950 {
951         int nr = to_sensor_dev_attr(attr)->index;
952         struct lm85_data *data = lm85_update_device(dev);
953         return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
954                                                      data->temp_ext[nr]));
955 }
956
957 static ssize_t temp_min_show(struct device *dev,
958                              struct device_attribute *attr, char *buf)
959 {
960         int nr = to_sensor_dev_attr(attr)->index;
961         struct lm85_data *data = lm85_update_device(dev);
962         return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
963 }
964
965 static ssize_t temp_min_store(struct device *dev,
966                               struct device_attribute *attr, const char *buf,
967                               size_t count)
968 {
969         int nr = to_sensor_dev_attr(attr)->index;
970         struct lm85_data *data = dev_get_drvdata(dev);
971         struct i2c_client *client = data->client;
972         long val;
973         int err;
974
975         err = kstrtol(buf, 10, &val);
976         if (err)
977                 return err;
978
979         if (IS_ADT7468_OFF64(data))
980                 val += 64;
981
982         mutex_lock(&data->update_lock);
983         data->temp_min[nr] = TEMP_TO_REG(val);
984         lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
985         mutex_unlock(&data->update_lock);
986         return count;
987 }
988
989 static ssize_t temp_max_show(struct device *dev,
990                              struct device_attribute *attr, char *buf)
991 {
992         int nr = to_sensor_dev_attr(attr)->index;
993         struct lm85_data *data = lm85_update_device(dev);
994         return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
995 }
996
997 static ssize_t temp_max_store(struct device *dev,
998                               struct device_attribute *attr, const char *buf,
999                               size_t count)
1000 {
1001         int nr = to_sensor_dev_attr(attr)->index;
1002         struct lm85_data *data = dev_get_drvdata(dev);
1003         struct i2c_client *client = data->client;
1004         long val;
1005         int err;
1006
1007         err = kstrtol(buf, 10, &val);
1008         if (err)
1009                 return err;
1010
1011         if (IS_ADT7468_OFF64(data))
1012                 val += 64;
1013
1014         mutex_lock(&data->update_lock);
1015         data->temp_max[nr] = TEMP_TO_REG(val);
1016         lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
1017         mutex_unlock(&data->update_lock);
1018         return count;
1019 }
1020
1021 static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
1022 static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
1023 static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
1024 static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
1025 static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
1026 static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
1027 static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
1028 static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
1029 static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
1030
1031 /* Automatic PWM control */
1032
1033 static ssize_t pwm_auto_channels_show(struct device *dev,
1034                                       struct device_attribute *attr,
1035                                       char *buf)
1036 {
1037         int nr = to_sensor_dev_attr(attr)->index;
1038         struct lm85_data *data = lm85_update_device(dev);
1039         return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
1040 }
1041
1042 static ssize_t pwm_auto_channels_store(struct device *dev,
1043                                        struct device_attribute *attr,
1044                                        const char *buf, size_t count)
1045 {
1046         int nr = to_sensor_dev_attr(attr)->index;
1047         struct lm85_data *data = dev_get_drvdata(dev);
1048         struct i2c_client *client = data->client;
1049         long val;
1050         int err;
1051
1052         err = kstrtol(buf, 10, &val);
1053         if (err)
1054                 return err;
1055
1056         mutex_lock(&data->update_lock);
1057         data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
1058                 | ZONE_TO_REG(val);
1059         lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
1060                 data->autofan[nr].config);
1061         mutex_unlock(&data->update_lock);
1062         return count;
1063 }
1064
1065 static ssize_t pwm_auto_pwm_min_show(struct device *dev,
1066                                      struct device_attribute *attr, char *buf)
1067 {
1068         int nr = to_sensor_dev_attr(attr)->index;
1069         struct lm85_data *data = lm85_update_device(dev);
1070         return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
1071 }
1072
1073 static ssize_t pwm_auto_pwm_min_store(struct device *dev,
1074                                       struct device_attribute *attr,
1075                                       const char *buf, size_t count)
1076 {
1077         int nr = to_sensor_dev_attr(attr)->index;
1078         struct lm85_data *data = dev_get_drvdata(dev);
1079         struct i2c_client *client = data->client;
1080         unsigned long val;
1081         int err;
1082
1083         err = kstrtoul(buf, 10, &val);
1084         if (err)
1085                 return err;
1086
1087         mutex_lock(&data->update_lock);
1088         data->autofan[nr].min_pwm = PWM_TO_REG(val);
1089         lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
1090                 data->autofan[nr].min_pwm);
1091         mutex_unlock(&data->update_lock);
1092         return count;
1093 }
1094
1095 static ssize_t pwm_auto_pwm_minctl_show(struct device *dev,
1096                                         struct device_attribute *attr,
1097                                         char *buf)
1098 {
1099         int nr = to_sensor_dev_attr(attr)->index;
1100         struct lm85_data *data = lm85_update_device(dev);
1101         return sprintf(buf, "%d\n", data->autofan[nr].min_off);
1102 }
1103
1104 static ssize_t pwm_auto_pwm_minctl_store(struct device *dev,
1105                                          struct device_attribute *attr,
1106                                          const char *buf, size_t count)
1107 {
1108         int nr = to_sensor_dev_attr(attr)->index;
1109         struct lm85_data *data = dev_get_drvdata(dev);
1110         struct i2c_client *client = data->client;
1111         u8 tmp;
1112         long val;
1113         int err;
1114
1115         err = kstrtol(buf, 10, &val);
1116         if (err)
1117                 return err;
1118
1119         mutex_lock(&data->update_lock);
1120         data->autofan[nr].min_off = val;
1121         tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1122         tmp &= ~(0x20 << nr);
1123         if (data->autofan[nr].min_off)
1124                 tmp |= 0x20 << nr;
1125         lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
1126         mutex_unlock(&data->update_lock);
1127         return count;
1128 }
1129
1130 static SENSOR_DEVICE_ATTR_RW(pwm1_auto_channels, pwm_auto_channels, 0);
1131 static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_min, pwm_auto_pwm_min, 0);
1132 static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_minctl, pwm_auto_pwm_minctl, 0);
1133 static SENSOR_DEVICE_ATTR_RW(pwm2_auto_channels, pwm_auto_channels, 1);
1134 static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_min, pwm_auto_pwm_min, 1);
1135 static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_minctl, pwm_auto_pwm_minctl, 1);
1136 static SENSOR_DEVICE_ATTR_RW(pwm3_auto_channels, pwm_auto_channels, 2);
1137 static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_min, pwm_auto_pwm_min, 2);
1138 static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_minctl, pwm_auto_pwm_minctl, 2);
1139
1140 /* Temperature settings for automatic PWM control */
1141
1142 static ssize_t temp_auto_temp_off_show(struct device *dev,
1143                                        struct device_attribute *attr,
1144                                        char *buf)
1145 {
1146         int nr = to_sensor_dev_attr(attr)->index;
1147         struct lm85_data *data = lm85_update_device(dev);
1148         return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
1149                 HYST_FROM_REG(data->zone[nr].hyst));
1150 }
1151
1152 static ssize_t temp_auto_temp_off_store(struct device *dev,
1153                                         struct device_attribute *attr,
1154                                         const char *buf, size_t count)
1155 {
1156         int nr = to_sensor_dev_attr(attr)->index;
1157         struct lm85_data *data = dev_get_drvdata(dev);
1158         struct i2c_client *client = data->client;
1159         int min;
1160         long val;
1161         int err;
1162
1163         err = kstrtol(buf, 10, &val);
1164         if (err)
1165                 return err;
1166
1167         mutex_lock(&data->update_lock);
1168         min = TEMP_FROM_REG(data->zone[nr].limit);
1169         data->zone[nr].hyst = HYST_TO_REG(min - val);
1170         if (nr == 0 || nr == 1) {
1171                 lm85_write_value(client, LM85_REG_AFAN_HYST1,
1172                         (data->zone[0].hyst << 4)
1173                         | data->zone[1].hyst);
1174         } else {
1175                 lm85_write_value(client, LM85_REG_AFAN_HYST2,
1176                         (data->zone[2].hyst << 4));
1177         }
1178         mutex_unlock(&data->update_lock);
1179         return count;
1180 }
1181
1182 static ssize_t temp_auto_temp_min_show(struct device *dev,
1183                                        struct device_attribute *attr,
1184                                        char *buf)
1185 {
1186         int nr = to_sensor_dev_attr(attr)->index;
1187         struct lm85_data *data = lm85_update_device(dev);
1188         return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
1189 }
1190
1191 static ssize_t temp_auto_temp_min_store(struct device *dev,
1192                                         struct device_attribute *attr,
1193                                         const char *buf, size_t count)
1194 {
1195         int nr = to_sensor_dev_attr(attr)->index;
1196         struct lm85_data *data = dev_get_drvdata(dev);
1197         struct i2c_client *client = data->client;
1198         long val;
1199         int err;
1200
1201         err = kstrtol(buf, 10, &val);
1202         if (err)
1203                 return err;
1204
1205         mutex_lock(&data->update_lock);
1206         data->zone[nr].limit = TEMP_TO_REG(val);
1207         lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1208                 data->zone[nr].limit);
1209
1210 /* Update temp_auto_max and temp_auto_range */
1211         data->zone[nr].range = RANGE_TO_REG(
1212                 TEMP_FROM_REG(data->zone[nr].max_desired) -
1213                 TEMP_FROM_REG(data->zone[nr].limit));
1214         lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1215                 ((data->zone[nr].range & 0x0f) << 4)
1216                 | data->pwm_freq[nr]);
1217
1218         mutex_unlock(&data->update_lock);
1219         return count;
1220 }
1221
1222 static ssize_t temp_auto_temp_max_show(struct device *dev,
1223                                        struct device_attribute *attr,
1224                                        char *buf)
1225 {
1226         int nr = to_sensor_dev_attr(attr)->index;
1227         struct lm85_data *data = lm85_update_device(dev);
1228         return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1229                 RANGE_FROM_REG(data->zone[nr].range));
1230 }
1231
1232 static ssize_t temp_auto_temp_max_store(struct device *dev,
1233                                         struct device_attribute *attr,
1234                                         const char *buf, size_t count)
1235 {
1236         int nr = to_sensor_dev_attr(attr)->index;
1237         struct lm85_data *data = dev_get_drvdata(dev);
1238         struct i2c_client *client = data->client;
1239         int min;
1240         long val;
1241         int err;
1242
1243         err = kstrtol(buf, 10, &val);
1244         if (err)
1245                 return err;
1246
1247         mutex_lock(&data->update_lock);
1248         min = TEMP_FROM_REG(data->zone[nr].limit);
1249         data->zone[nr].max_desired = TEMP_TO_REG(val);
1250         data->zone[nr].range = RANGE_TO_REG(
1251                 val - min);
1252         lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1253                 ((data->zone[nr].range & 0x0f) << 4)
1254                 | data->pwm_freq[nr]);
1255         mutex_unlock(&data->update_lock);
1256         return count;
1257 }
1258
1259 static ssize_t temp_auto_temp_crit_show(struct device *dev,
1260                                         struct device_attribute *attr,
1261                                         char *buf)
1262 {
1263         int nr = to_sensor_dev_attr(attr)->index;
1264         struct lm85_data *data = lm85_update_device(dev);
1265         return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1266 }
1267
1268 static ssize_t temp_auto_temp_crit_store(struct device *dev,
1269                                          struct device_attribute *attr,
1270                                          const char *buf, size_t count)
1271 {
1272         int nr = to_sensor_dev_attr(attr)->index;
1273         struct lm85_data *data = dev_get_drvdata(dev);
1274         struct i2c_client *client = data->client;
1275         long val;
1276         int err;
1277
1278         err = kstrtol(buf, 10, &val);
1279         if (err)
1280                 return err;
1281
1282         mutex_lock(&data->update_lock);
1283         data->zone[nr].critical = TEMP_TO_REG(val);
1284         lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1285                 data->zone[nr].critical);
1286         mutex_unlock(&data->update_lock);
1287         return count;
1288 }
1289
1290 static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_off, temp_auto_temp_off, 0);
1291 static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_min, temp_auto_temp_min, 0);
1292 static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_max, temp_auto_temp_max, 0);
1293 static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_crit, temp_auto_temp_crit, 0);
1294 static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_off, temp_auto_temp_off, 1);
1295 static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_min, temp_auto_temp_min, 1);
1296 static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_max, temp_auto_temp_max, 1);
1297 static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_crit, temp_auto_temp_crit, 1);
1298 static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_off, temp_auto_temp_off, 2);
1299 static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_min, temp_auto_temp_min, 2);
1300 static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_max, temp_auto_temp_max, 2);
1301 static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_crit, temp_auto_temp_crit, 2);
1302
1303 static struct attribute *lm85_attributes[] = {
1304         &sensor_dev_attr_fan1_input.dev_attr.attr,
1305         &sensor_dev_attr_fan2_input.dev_attr.attr,
1306         &sensor_dev_attr_fan3_input.dev_attr.attr,
1307         &sensor_dev_attr_fan4_input.dev_attr.attr,
1308         &sensor_dev_attr_fan1_min.dev_attr.attr,
1309         &sensor_dev_attr_fan2_min.dev_attr.attr,
1310         &sensor_dev_attr_fan3_min.dev_attr.attr,
1311         &sensor_dev_attr_fan4_min.dev_attr.attr,
1312         &sensor_dev_attr_fan1_alarm.dev_attr.attr,
1313         &sensor_dev_attr_fan2_alarm.dev_attr.attr,
1314         &sensor_dev_attr_fan3_alarm.dev_attr.attr,
1315         &sensor_dev_attr_fan4_alarm.dev_attr.attr,
1316
1317         &sensor_dev_attr_pwm1.dev_attr.attr,
1318         &sensor_dev_attr_pwm2.dev_attr.attr,
1319         &sensor_dev_attr_pwm3.dev_attr.attr,
1320         &sensor_dev_attr_pwm1_enable.dev_attr.attr,
1321         &sensor_dev_attr_pwm2_enable.dev_attr.attr,
1322         &sensor_dev_attr_pwm3_enable.dev_attr.attr,
1323         &sensor_dev_attr_pwm1_freq.dev_attr.attr,
1324         &sensor_dev_attr_pwm2_freq.dev_attr.attr,
1325         &sensor_dev_attr_pwm3_freq.dev_attr.attr,
1326
1327         &sensor_dev_attr_in0_input.dev_attr.attr,
1328         &sensor_dev_attr_in1_input.dev_attr.attr,
1329         &sensor_dev_attr_in2_input.dev_attr.attr,
1330         &sensor_dev_attr_in3_input.dev_attr.attr,
1331         &sensor_dev_attr_in0_min.dev_attr.attr,
1332         &sensor_dev_attr_in1_min.dev_attr.attr,
1333         &sensor_dev_attr_in2_min.dev_attr.attr,
1334         &sensor_dev_attr_in3_min.dev_attr.attr,
1335         &sensor_dev_attr_in0_max.dev_attr.attr,
1336         &sensor_dev_attr_in1_max.dev_attr.attr,
1337         &sensor_dev_attr_in2_max.dev_attr.attr,
1338         &sensor_dev_attr_in3_max.dev_attr.attr,
1339         &sensor_dev_attr_in0_alarm.dev_attr.attr,
1340         &sensor_dev_attr_in1_alarm.dev_attr.attr,
1341         &sensor_dev_attr_in2_alarm.dev_attr.attr,
1342         &sensor_dev_attr_in3_alarm.dev_attr.attr,
1343
1344         &sensor_dev_attr_temp1_input.dev_attr.attr,
1345         &sensor_dev_attr_temp2_input.dev_attr.attr,
1346         &sensor_dev_attr_temp3_input.dev_attr.attr,
1347         &sensor_dev_attr_temp1_min.dev_attr.attr,
1348         &sensor_dev_attr_temp2_min.dev_attr.attr,
1349         &sensor_dev_attr_temp3_min.dev_attr.attr,
1350         &sensor_dev_attr_temp1_max.dev_attr.attr,
1351         &sensor_dev_attr_temp2_max.dev_attr.attr,
1352         &sensor_dev_attr_temp3_max.dev_attr.attr,
1353         &sensor_dev_attr_temp1_alarm.dev_attr.attr,
1354         &sensor_dev_attr_temp2_alarm.dev_attr.attr,
1355         &sensor_dev_attr_temp3_alarm.dev_attr.attr,
1356         &sensor_dev_attr_temp1_fault.dev_attr.attr,
1357         &sensor_dev_attr_temp3_fault.dev_attr.attr,
1358
1359         &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1360         &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1361         &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1362         &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1363         &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1364         &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1365
1366         &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1367         &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1368         &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1369         &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1370         &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1371         &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1372         &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1373         &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1374         &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1375
1376         &dev_attr_vrm.attr,
1377         &dev_attr_cpu0_vid.attr,
1378         &dev_attr_alarms.attr,
1379         NULL
1380 };
1381
1382 static const struct attribute_group lm85_group = {
1383         .attrs = lm85_attributes,
1384 };
1385
1386 static struct attribute *lm85_attributes_minctl[] = {
1387         &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1388         &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1389         &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1390         NULL
1391 };
1392
1393 static const struct attribute_group lm85_group_minctl = {
1394         .attrs = lm85_attributes_minctl,
1395 };
1396
1397 static struct attribute *lm85_attributes_temp_off[] = {
1398         &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1399         &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1400         &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1401         NULL
1402 };
1403
1404 static const struct attribute_group lm85_group_temp_off = {
1405         .attrs = lm85_attributes_temp_off,
1406 };
1407
1408 static struct attribute *lm85_attributes_in4[] = {
1409         &sensor_dev_attr_in4_input.dev_attr.attr,
1410         &sensor_dev_attr_in4_min.dev_attr.attr,
1411         &sensor_dev_attr_in4_max.dev_attr.attr,
1412         &sensor_dev_attr_in4_alarm.dev_attr.attr,
1413         NULL
1414 };
1415
1416 static const struct attribute_group lm85_group_in4 = {
1417         .attrs = lm85_attributes_in4,
1418 };
1419
1420 static struct attribute *lm85_attributes_in567[] = {
1421         &sensor_dev_attr_in5_input.dev_attr.attr,
1422         &sensor_dev_attr_in6_input.dev_attr.attr,
1423         &sensor_dev_attr_in7_input.dev_attr.attr,
1424         &sensor_dev_attr_in5_min.dev_attr.attr,
1425         &sensor_dev_attr_in6_min.dev_attr.attr,
1426         &sensor_dev_attr_in7_min.dev_attr.attr,
1427         &sensor_dev_attr_in5_max.dev_attr.attr,
1428         &sensor_dev_attr_in6_max.dev_attr.attr,
1429         &sensor_dev_attr_in7_max.dev_attr.attr,
1430         &sensor_dev_attr_in5_alarm.dev_attr.attr,
1431         &sensor_dev_attr_in6_alarm.dev_attr.attr,
1432         &sensor_dev_attr_in7_alarm.dev_attr.attr,
1433         NULL
1434 };
1435
1436 static const struct attribute_group lm85_group_in567 = {
1437         .attrs = lm85_attributes_in567,
1438 };
1439
1440 static void lm85_init_client(struct i2c_client *client)
1441 {
1442         int value;
1443
1444         /* Start monitoring if needed */
1445         value = lm85_read_value(client, LM85_REG_CONFIG);
1446         if (!(value & 0x01)) {
1447                 dev_info(&client->dev, "Starting monitoring\n");
1448                 lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1449         }
1450
1451         /* Warn about unusual configuration bits */
1452         if (value & 0x02)
1453                 dev_warn(&client->dev, "Device configuration is locked\n");
1454         if (!(value & 0x04))
1455                 dev_warn(&client->dev, "Device is not ready\n");
1456 }
1457
1458 static int lm85_is_fake(struct i2c_client *client)
1459 {
1460         /*
1461          * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1462          * emulate the former except that it has no hardware monitoring function
1463          * so the readings are always 0.
1464          */
1465         int i;
1466         u8 in_temp, fan;
1467
1468         for (i = 0; i < 8; i++) {
1469                 in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1470                 fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1471                 if (in_temp != 0x00 || fan != 0xff)
1472                         return 0;
1473         }
1474
1475         return 1;
1476 }
1477
1478 /* Return 0 if detection is successful, -ENODEV otherwise */
1479 static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1480 {
1481         struct i2c_adapter *adapter = client->adapter;
1482         int address = client->addr;
1483         const char *type_name = NULL;
1484         int company, verstep;
1485
1486         if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1487                 /* We need to be able to do byte I/O */
1488                 return -ENODEV;
1489         }
1490
1491         /* Determine the chip type */
1492         company = lm85_read_value(client, LM85_REG_COMPANY);
1493         verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1494
1495         dev_dbg(&adapter->dev,
1496                 "Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1497                 address, company, verstep);
1498
1499         if (company == LM85_COMPANY_NATIONAL) {
1500                 switch (verstep) {
1501                 case LM85_VERSTEP_LM85C:
1502                         type_name = "lm85c";
1503                         break;
1504                 case LM85_VERSTEP_LM85B:
1505                         type_name = "lm85b";
1506                         break;
1507                 case LM85_VERSTEP_LM96000_1:
1508                 case LM85_VERSTEP_LM96000_2:
1509                         /* Check for Winbond WPCD377I */
1510                         if (lm85_is_fake(client)) {
1511                                 dev_dbg(&adapter->dev,
1512                                         "Found Winbond WPCD377I, ignoring\n");
1513                                 return -ENODEV;
1514                         }
1515                         type_name = "lm96000";
1516                         break;
1517                 }
1518         } else if (company == LM85_COMPANY_ANALOG_DEV) {
1519                 switch (verstep) {
1520                 case LM85_VERSTEP_ADM1027:
1521                         type_name = "adm1027";
1522                         break;
1523                 case LM85_VERSTEP_ADT7463:
1524                 case LM85_VERSTEP_ADT7463C:
1525                         type_name = "adt7463";
1526                         break;
1527                 case LM85_VERSTEP_ADT7468_1:
1528                 case LM85_VERSTEP_ADT7468_2:
1529                         type_name = "adt7468";
1530                         break;
1531                 }
1532         } else if (company == LM85_COMPANY_SMSC) {
1533                 switch (verstep) {
1534                 case LM85_VERSTEP_EMC6D100_A0:
1535                 case LM85_VERSTEP_EMC6D100_A1:
1536                         /* Note: we can't tell a '100 from a '101 */
1537                         type_name = "emc6d100";
1538                         break;
1539                 case LM85_VERSTEP_EMC6D102:
1540                         type_name = "emc6d102";
1541                         break;
1542                 case LM85_VERSTEP_EMC6D103_A0:
1543                 case LM85_VERSTEP_EMC6D103_A1:
1544                         type_name = "emc6d103";
1545                         break;
1546                 case LM85_VERSTEP_EMC6D103S:
1547                         type_name = "emc6d103s";
1548                         break;
1549                 }
1550         }
1551
1552         if (!type_name)
1553                 return -ENODEV;
1554
1555         strlcpy(info->type, type_name, I2C_NAME_SIZE);
1556
1557         return 0;
1558 }
1559
1560 static int lm85_probe(struct i2c_client *client, const struct i2c_device_id *id)
1561 {
1562         struct device *dev = &client->dev;
1563         struct device *hwmon_dev;
1564         struct lm85_data *data;
1565         int idx = 0;
1566
1567         data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
1568         if (!data)
1569                 return -ENOMEM;
1570
1571         data->client = client;
1572         if (client->dev.of_node)
1573                 data->type = (enum chips)of_device_get_match_data(&client->dev);
1574         else
1575                 data->type = id->driver_data;
1576         mutex_init(&data->update_lock);
1577
1578         /* Fill in the chip specific driver values */
1579         switch (data->type) {
1580         case adm1027:
1581         case adt7463:
1582         case adt7468:
1583         case emc6d100:
1584         case emc6d102:
1585         case emc6d103:
1586         case emc6d103s:
1587                 data->freq_map = adm1027_freq_map;
1588                 data->freq_map_size = ARRAY_SIZE(adm1027_freq_map);
1589                 break;
1590         case lm96000:
1591                 data->freq_map = lm96000_freq_map;
1592                 data->freq_map_size = ARRAY_SIZE(lm96000_freq_map);
1593                 break;
1594         default:
1595                 data->freq_map = lm85_freq_map;
1596                 data->freq_map_size = ARRAY_SIZE(lm85_freq_map);
1597         }
1598
1599         /* Set the VRM version */
1600         data->vrm = vid_which_vrm();
1601
1602         /* Initialize the LM85 chip */
1603         lm85_init_client(client);
1604
1605         /* sysfs hooks */
1606         data->groups[idx++] = &lm85_group;
1607
1608         /* minctl and temp_off exist on all chips except emc6d103s */
1609         if (data->type != emc6d103s) {
1610                 data->groups[idx++] = &lm85_group_minctl;
1611                 data->groups[idx++] = &lm85_group_temp_off;
1612         }
1613
1614         /*
1615          * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1616          * as a sixth digital VID input rather than an analog input.
1617          */
1618         if (data->type == adt7463 || data->type == adt7468) {
1619                 u8 vid = lm85_read_value(client, LM85_REG_VID);
1620                 if (vid & 0x80)
1621                         data->has_vid5 = true;
1622         }
1623
1624         if (!data->has_vid5)
1625                 data->groups[idx++] = &lm85_group_in4;
1626
1627         /* The EMC6D100 has 3 additional voltage inputs */
1628         if (data->type == emc6d100)
1629                 data->groups[idx++] = &lm85_group_in567;
1630
1631         hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1632                                                            data, data->groups);
1633         return PTR_ERR_OR_ZERO(hwmon_dev);
1634 }
1635
1636 static const struct i2c_device_id lm85_id[] = {
1637         { "adm1027", adm1027 },
1638         { "adt7463", adt7463 },
1639         { "adt7468", adt7468 },
1640         { "lm85", lm85 },
1641         { "lm85b", lm85 },
1642         { "lm85c", lm85 },
1643         { "lm96000", lm96000 },
1644         { "emc6d100", emc6d100 },
1645         { "emc6d101", emc6d100 },
1646         { "emc6d102", emc6d102 },
1647         { "emc6d103", emc6d103 },
1648         { "emc6d103s", emc6d103s },
1649         { }
1650 };
1651 MODULE_DEVICE_TABLE(i2c, lm85_id);
1652
1653 static const struct of_device_id __maybe_unused lm85_of_match[] = {
1654         {
1655                 .compatible = "adi,adm1027",
1656                 .data = (void *)adm1027
1657         },
1658         {
1659                 .compatible = "adi,adt7463",
1660                 .data = (void *)adt7463
1661         },
1662         {
1663                 .compatible = "adi,adt7468",
1664                 .data = (void *)adt7468
1665         },
1666         {
1667                 .compatible = "national,lm85",
1668                 .data = (void *)lm85
1669         },
1670         {
1671                 .compatible = "national,lm85b",
1672                 .data = (void *)lm85
1673         },
1674         {
1675                 .compatible = "national,lm85c",
1676                 .data = (void *)lm85
1677         },
1678         {
1679                 .compatible = "ti,lm96000",
1680                 .data = (void *)lm96000
1681         },
1682         {
1683                 .compatible = "smsc,emc6d100",
1684                 .data = (void *)emc6d100
1685         },
1686         {
1687                 .compatible = "smsc,emc6d101",
1688                 .data = (void *)emc6d100
1689         },
1690         {
1691                 .compatible = "smsc,emc6d102",
1692                 .data = (void *)emc6d102
1693         },
1694         {
1695                 .compatible = "smsc,emc6d103",
1696                 .data = (void *)emc6d103
1697         },
1698         {
1699                 .compatible = "smsc,emc6d103s",
1700                 .data = (void *)emc6d103s
1701         },
1702         { },
1703 };
1704 MODULE_DEVICE_TABLE(of, lm85_of_match);
1705
1706 static struct i2c_driver lm85_driver = {
1707         .class          = I2C_CLASS_HWMON,
1708         .driver = {
1709                 .name   = "lm85",
1710                 .of_match_table = of_match_ptr(lm85_of_match),
1711         },
1712         .probe          = lm85_probe,
1713         .id_table       = lm85_id,
1714         .detect         = lm85_detect,
1715         .address_list   = normal_i2c,
1716 };
1717
1718 module_i2c_driver(lm85_driver);
1719
1720 MODULE_LICENSE("GPL");
1721 MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1722         "Margit Schubert-While <margitsw@t-online.de>, "
1723         "Justin Thiessen <jthiessen@penguincomputing.com>");
1724 MODULE_DESCRIPTION("LM85-B, LM85-C driver");