Merge tag 'clk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux
[linux-2.6-microblaze.git] / drivers / hv / hv_balloon.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2012, Microsoft Corporation.
4  *
5  * Author:
6  *   K. Y. Srinivasan <kys@microsoft.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/jiffies.h>
13 #include <linux/mman.h>
14 #include <linux/delay.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/kthread.h>
19 #include <linux/completion.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/memory.h>
22 #include <linux/notifier.h>
23 #include <linux/percpu_counter.h>
24 #include <linux/page_reporting.h>
25
26 #include <linux/hyperv.h>
27 #include <asm/hyperv-tlfs.h>
28
29 #include <asm/mshyperv.h>
30
31 #define CREATE_TRACE_POINTS
32 #include "hv_trace_balloon.h"
33
34 /*
35  * We begin with definitions supporting the Dynamic Memory protocol
36  * with the host.
37  *
38  * Begin protocol definitions.
39  */
40
41
42
43 /*
44  * Protocol versions. The low word is the minor version, the high word the major
45  * version.
46  *
47  * History:
48  * Initial version 1.0
49  * Changed to 0.1 on 2009/03/25
50  * Changes to 0.2 on 2009/05/14
51  * Changes to 0.3 on 2009/12/03
52  * Changed to 1.0 on 2011/04/05
53  */
54
55 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
56 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
57 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
58
59 enum {
60         DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
61         DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
62         DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
63
64         DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
65         DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
66         DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
67
68         DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
69 };
70
71
72
73 /*
74  * Message Types
75  */
76
77 enum dm_message_type {
78         /*
79          * Version 0.3
80          */
81         DM_ERROR                        = 0,
82         DM_VERSION_REQUEST              = 1,
83         DM_VERSION_RESPONSE             = 2,
84         DM_CAPABILITIES_REPORT          = 3,
85         DM_CAPABILITIES_RESPONSE        = 4,
86         DM_STATUS_REPORT                = 5,
87         DM_BALLOON_REQUEST              = 6,
88         DM_BALLOON_RESPONSE             = 7,
89         DM_UNBALLOON_REQUEST            = 8,
90         DM_UNBALLOON_RESPONSE           = 9,
91         DM_MEM_HOT_ADD_REQUEST          = 10,
92         DM_MEM_HOT_ADD_RESPONSE         = 11,
93         DM_VERSION_03_MAX               = 11,
94         /*
95          * Version 1.0.
96          */
97         DM_INFO_MESSAGE                 = 12,
98         DM_VERSION_1_MAX                = 12
99 };
100
101
102 /*
103  * Structures defining the dynamic memory management
104  * protocol.
105  */
106
107 union dm_version {
108         struct {
109                 __u16 minor_version;
110                 __u16 major_version;
111         };
112         __u32 version;
113 } __packed;
114
115
116 union dm_caps {
117         struct {
118                 __u64 balloon:1;
119                 __u64 hot_add:1;
120                 /*
121                  * To support guests that may have alignment
122                  * limitations on hot-add, the guest can specify
123                  * its alignment requirements; a value of n
124                  * represents an alignment of 2^n in mega bytes.
125                  */
126                 __u64 hot_add_alignment:4;
127                 __u64 reservedz:58;
128         } cap_bits;
129         __u64 caps;
130 } __packed;
131
132 union dm_mem_page_range {
133         struct  {
134                 /*
135                  * The PFN number of the first page in the range.
136                  * 40 bits is the architectural limit of a PFN
137                  * number for AMD64.
138                  */
139                 __u64 start_page:40;
140                 /*
141                  * The number of pages in the range.
142                  */
143                 __u64 page_cnt:24;
144         } finfo;
145         __u64  page_range;
146 } __packed;
147
148
149
150 /*
151  * The header for all dynamic memory messages:
152  *
153  * type: Type of the message.
154  * size: Size of the message in bytes; including the header.
155  * trans_id: The guest is responsible for manufacturing this ID.
156  */
157
158 struct dm_header {
159         __u16 type;
160         __u16 size;
161         __u32 trans_id;
162 } __packed;
163
164 /*
165  * A generic message format for dynamic memory.
166  * Specific message formats are defined later in the file.
167  */
168
169 struct dm_message {
170         struct dm_header hdr;
171         __u8 data[]; /* enclosed message */
172 } __packed;
173
174
175 /*
176  * Specific message types supporting the dynamic memory protocol.
177  */
178
179 /*
180  * Version negotiation message. Sent from the guest to the host.
181  * The guest is free to try different versions until the host
182  * accepts the version.
183  *
184  * dm_version: The protocol version requested.
185  * is_last_attempt: If TRUE, this is the last version guest will request.
186  * reservedz: Reserved field, set to zero.
187  */
188
189 struct dm_version_request {
190         struct dm_header hdr;
191         union dm_version version;
192         __u32 is_last_attempt:1;
193         __u32 reservedz:31;
194 } __packed;
195
196 /*
197  * Version response message; Host to Guest and indicates
198  * if the host has accepted the version sent by the guest.
199  *
200  * is_accepted: If TRUE, host has accepted the version and the guest
201  * should proceed to the next stage of the protocol. FALSE indicates that
202  * guest should re-try with a different version.
203  *
204  * reservedz: Reserved field, set to zero.
205  */
206
207 struct dm_version_response {
208         struct dm_header hdr;
209         __u64 is_accepted:1;
210         __u64 reservedz:63;
211 } __packed;
212
213 /*
214  * Message reporting capabilities. This is sent from the guest to the
215  * host.
216  */
217
218 struct dm_capabilities {
219         struct dm_header hdr;
220         union dm_caps caps;
221         __u64 min_page_cnt;
222         __u64 max_page_number;
223 } __packed;
224
225 /*
226  * Response to the capabilities message. This is sent from the host to the
227  * guest. This message notifies if the host has accepted the guest's
228  * capabilities. If the host has not accepted, the guest must shutdown
229  * the service.
230  *
231  * is_accepted: Indicates if the host has accepted guest's capabilities.
232  * reservedz: Must be 0.
233  */
234
235 struct dm_capabilities_resp_msg {
236         struct dm_header hdr;
237         __u64 is_accepted:1;
238         __u64 reservedz:63;
239 } __packed;
240
241 /*
242  * This message is used to report memory pressure from the guest.
243  * This message is not part of any transaction and there is no
244  * response to this message.
245  *
246  * num_avail: Available memory in pages.
247  * num_committed: Committed memory in pages.
248  * page_file_size: The accumulated size of all page files
249  *                 in the system in pages.
250  * zero_free: The nunber of zero and free pages.
251  * page_file_writes: The writes to the page file in pages.
252  * io_diff: An indicator of file cache efficiency or page file activity,
253  *          calculated as File Cache Page Fault Count - Page Read Count.
254  *          This value is in pages.
255  *
256  * Some of these metrics are Windows specific and fortunately
257  * the algorithm on the host side that computes the guest memory
258  * pressure only uses num_committed value.
259  */
260
261 struct dm_status {
262         struct dm_header hdr;
263         __u64 num_avail;
264         __u64 num_committed;
265         __u64 page_file_size;
266         __u64 zero_free;
267         __u32 page_file_writes;
268         __u32 io_diff;
269 } __packed;
270
271
272 /*
273  * Message to ask the guest to allocate memory - balloon up message.
274  * This message is sent from the host to the guest. The guest may not be
275  * able to allocate as much memory as requested.
276  *
277  * num_pages: number of pages to allocate.
278  */
279
280 struct dm_balloon {
281         struct dm_header hdr;
282         __u32 num_pages;
283         __u32 reservedz;
284 } __packed;
285
286
287 /*
288  * Balloon response message; this message is sent from the guest
289  * to the host in response to the balloon message.
290  *
291  * reservedz: Reserved; must be set to zero.
292  * more_pages: If FALSE, this is the last message of the transaction.
293  * if TRUE there will atleast one more message from the guest.
294  *
295  * range_count: The number of ranges in the range array.
296  *
297  * range_array: An array of page ranges returned to the host.
298  *
299  */
300
301 struct dm_balloon_response {
302         struct dm_header hdr;
303         __u32 reservedz;
304         __u32 more_pages:1;
305         __u32 range_count:31;
306         union dm_mem_page_range range_array[];
307 } __packed;
308
309 /*
310  * Un-balloon message; this message is sent from the host
311  * to the guest to give guest more memory.
312  *
313  * more_pages: If FALSE, this is the last message of the transaction.
314  * if TRUE there will atleast one more message from the guest.
315  *
316  * reservedz: Reserved; must be set to zero.
317  *
318  * range_count: The number of ranges in the range array.
319  *
320  * range_array: An array of page ranges returned to the host.
321  *
322  */
323
324 struct dm_unballoon_request {
325         struct dm_header hdr;
326         __u32 more_pages:1;
327         __u32 reservedz:31;
328         __u32 range_count;
329         union dm_mem_page_range range_array[];
330 } __packed;
331
332 /*
333  * Un-balloon response message; this message is sent from the guest
334  * to the host in response to an unballoon request.
335  *
336  */
337
338 struct dm_unballoon_response {
339         struct dm_header hdr;
340 } __packed;
341
342
343 /*
344  * Hot add request message. Message sent from the host to the guest.
345  *
346  * mem_range: Memory range to hot add.
347  *
348  */
349
350 struct dm_hot_add {
351         struct dm_header hdr;
352         union dm_mem_page_range range;
353 } __packed;
354
355 /*
356  * Hot add response message.
357  * This message is sent by the guest to report the status of a hot add request.
358  * If page_count is less than the requested page count, then the host should
359  * assume all further hot add requests will fail, since this indicates that
360  * the guest has hit an upper physical memory barrier.
361  *
362  * Hot adds may also fail due to low resources; in this case, the guest must
363  * not complete this message until the hot add can succeed, and the host must
364  * not send a new hot add request until the response is sent.
365  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
366  * times it fails the request.
367  *
368  *
369  * page_count: number of pages that were successfully hot added.
370  *
371  * result: result of the operation 1: success, 0: failure.
372  *
373  */
374
375 struct dm_hot_add_response {
376         struct dm_header hdr;
377         __u32 page_count;
378         __u32 result;
379 } __packed;
380
381 /*
382  * Types of information sent from host to the guest.
383  */
384
385 enum dm_info_type {
386         INFO_TYPE_MAX_PAGE_CNT = 0,
387         MAX_INFO_TYPE
388 };
389
390
391 /*
392  * Header for the information message.
393  */
394
395 struct dm_info_header {
396         enum dm_info_type type;
397         __u32 data_size;
398 } __packed;
399
400 /*
401  * This message is sent from the host to the guest to pass
402  * some relevant information (win8 addition).
403  *
404  * reserved: no used.
405  * info_size: size of the information blob.
406  * info: information blob.
407  */
408
409 struct dm_info_msg {
410         struct dm_header hdr;
411         __u32 reserved;
412         __u32 info_size;
413         __u8  info[];
414 };
415
416 /*
417  * End protocol definitions.
418  */
419
420 /*
421  * State to manage hot adding memory into the guest.
422  * The range start_pfn : end_pfn specifies the range
423  * that the host has asked us to hot add. The range
424  * start_pfn : ha_end_pfn specifies the range that we have
425  * currently hot added. We hot add in multiples of 128M
426  * chunks; it is possible that we may not be able to bring
427  * online all the pages in the region. The range
428  * covered_start_pfn:covered_end_pfn defines the pages that can
429  * be brough online.
430  */
431
432 struct hv_hotadd_state {
433         struct list_head list;
434         unsigned long start_pfn;
435         unsigned long covered_start_pfn;
436         unsigned long covered_end_pfn;
437         unsigned long ha_end_pfn;
438         unsigned long end_pfn;
439         /*
440          * A list of gaps.
441          */
442         struct list_head gap_list;
443 };
444
445 struct hv_hotadd_gap {
446         struct list_head list;
447         unsigned long start_pfn;
448         unsigned long end_pfn;
449 };
450
451 struct balloon_state {
452         __u32 num_pages;
453         struct work_struct wrk;
454 };
455
456 struct hot_add_wrk {
457         union dm_mem_page_range ha_page_range;
458         union dm_mem_page_range ha_region_range;
459         struct work_struct wrk;
460 };
461
462 static bool allow_hibernation;
463 static bool hot_add = true;
464 static bool do_hot_add;
465 /*
466  * Delay reporting memory pressure by
467  * the specified number of seconds.
468  */
469 static uint pressure_report_delay = 45;
470
471 /*
472  * The last time we posted a pressure report to host.
473  */
474 static unsigned long last_post_time;
475
476 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
477 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
478
479 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
480 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
481 static atomic_t trans_id = ATOMIC_INIT(0);
482
483 static int dm_ring_size = 20 * 1024;
484
485 /*
486  * Driver specific state.
487  */
488
489 enum hv_dm_state {
490         DM_INITIALIZING = 0,
491         DM_INITIALIZED,
492         DM_BALLOON_UP,
493         DM_BALLOON_DOWN,
494         DM_HOT_ADD,
495         DM_INIT_ERROR
496 };
497
498
499 static __u8 recv_buffer[HV_HYP_PAGE_SIZE];
500 static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE];
501 #define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE)
502 #define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE)
503
504 struct hv_dynmem_device {
505         struct hv_device *dev;
506         enum hv_dm_state state;
507         struct completion host_event;
508         struct completion config_event;
509
510         /*
511          * Number of pages we have currently ballooned out.
512          */
513         unsigned int num_pages_ballooned;
514         unsigned int num_pages_onlined;
515         unsigned int num_pages_added;
516
517         /*
518          * State to manage the ballooning (up) operation.
519          */
520         struct balloon_state balloon_wrk;
521
522         /*
523          * State to execute the "hot-add" operation.
524          */
525         struct hot_add_wrk ha_wrk;
526
527         /*
528          * This state tracks if the host has specified a hot-add
529          * region.
530          */
531         bool host_specified_ha_region;
532
533         /*
534          * State to synchronize hot-add.
535          */
536         struct completion  ol_waitevent;
537         /*
538          * This thread handles hot-add
539          * requests from the host as well as notifying
540          * the host with regards to memory pressure in
541          * the guest.
542          */
543         struct task_struct *thread;
544
545         /*
546          * Protects ha_region_list, num_pages_onlined counter and individual
547          * regions from ha_region_list.
548          */
549         spinlock_t ha_lock;
550
551         /*
552          * A list of hot-add regions.
553          */
554         struct list_head ha_region_list;
555
556         /*
557          * We start with the highest version we can support
558          * and downgrade based on the host; we save here the
559          * next version to try.
560          */
561         __u32 next_version;
562
563         /*
564          * The negotiated version agreed by host.
565          */
566         __u32 version;
567
568         struct page_reporting_dev_info pr_dev_info;
569 };
570
571 static struct hv_dynmem_device dm_device;
572
573 static void post_status(struct hv_dynmem_device *dm);
574
575 #ifdef CONFIG_MEMORY_HOTPLUG
576 static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
577                                      unsigned long pfn)
578 {
579         struct hv_hotadd_gap *gap;
580
581         /* The page is not backed. */
582         if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
583                 return false;
584
585         /* Check for gaps. */
586         list_for_each_entry(gap, &has->gap_list, list) {
587                 if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
588                         return false;
589         }
590
591         return true;
592 }
593
594 static unsigned long hv_page_offline_check(unsigned long start_pfn,
595                                            unsigned long nr_pages)
596 {
597         unsigned long pfn = start_pfn, count = 0;
598         struct hv_hotadd_state *has;
599         bool found;
600
601         while (pfn < start_pfn + nr_pages) {
602                 /*
603                  * Search for HAS which covers the pfn and when we find one
604                  * count how many consequitive PFNs are covered.
605                  */
606                 found = false;
607                 list_for_each_entry(has, &dm_device.ha_region_list, list) {
608                         while ((pfn >= has->start_pfn) &&
609                                (pfn < has->end_pfn) &&
610                                (pfn < start_pfn + nr_pages)) {
611                                 found = true;
612                                 if (has_pfn_is_backed(has, pfn))
613                                         count++;
614                                 pfn++;
615                         }
616                 }
617
618                 /*
619                  * This PFN is not in any HAS (e.g. we're offlining a region
620                  * which was present at boot), no need to account for it. Go
621                  * to the next one.
622                  */
623                 if (!found)
624                         pfn++;
625         }
626
627         return count;
628 }
629
630 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
631                               void *v)
632 {
633         struct memory_notify *mem = (struct memory_notify *)v;
634         unsigned long flags, pfn_count;
635
636         switch (val) {
637         case MEM_ONLINE:
638         case MEM_CANCEL_ONLINE:
639                 complete(&dm_device.ol_waitevent);
640                 break;
641
642         case MEM_OFFLINE:
643                 spin_lock_irqsave(&dm_device.ha_lock, flags);
644                 pfn_count = hv_page_offline_check(mem->start_pfn,
645                                                   mem->nr_pages);
646                 if (pfn_count <= dm_device.num_pages_onlined) {
647                         dm_device.num_pages_onlined -= pfn_count;
648                 } else {
649                         /*
650                          * We're offlining more pages than we managed to online.
651                          * This is unexpected. In any case don't let
652                          * num_pages_onlined wrap around zero.
653                          */
654                         WARN_ON_ONCE(1);
655                         dm_device.num_pages_onlined = 0;
656                 }
657                 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
658                 break;
659         case MEM_GOING_ONLINE:
660         case MEM_GOING_OFFLINE:
661         case MEM_CANCEL_OFFLINE:
662                 break;
663         }
664         return NOTIFY_OK;
665 }
666
667 static struct notifier_block hv_memory_nb = {
668         .notifier_call = hv_memory_notifier,
669         .priority = 0
670 };
671
672 /* Check if the particular page is backed and can be onlined and online it. */
673 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
674 {
675         if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
676                 if (!PageOffline(pg))
677                         __SetPageOffline(pg);
678                 return;
679         }
680         if (PageOffline(pg))
681                 __ClearPageOffline(pg);
682
683         /* This frame is currently backed; online the page. */
684         generic_online_page(pg, 0);
685
686         lockdep_assert_held(&dm_device.ha_lock);
687         dm_device.num_pages_onlined++;
688 }
689
690 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
691                                 unsigned long start_pfn, unsigned long size)
692 {
693         int i;
694
695         pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
696         for (i = 0; i < size; i++)
697                 hv_page_online_one(has, pfn_to_page(start_pfn + i));
698 }
699
700 static void hv_mem_hot_add(unsigned long start, unsigned long size,
701                                 unsigned long pfn_count,
702                                 struct hv_hotadd_state *has)
703 {
704         int ret = 0;
705         int i, nid;
706         unsigned long start_pfn;
707         unsigned long processed_pfn;
708         unsigned long total_pfn = pfn_count;
709         unsigned long flags;
710
711         for (i = 0; i < (size/HA_CHUNK); i++) {
712                 start_pfn = start + (i * HA_CHUNK);
713
714                 spin_lock_irqsave(&dm_device.ha_lock, flags);
715                 has->ha_end_pfn +=  HA_CHUNK;
716
717                 if (total_pfn > HA_CHUNK) {
718                         processed_pfn = HA_CHUNK;
719                         total_pfn -= HA_CHUNK;
720                 } else {
721                         processed_pfn = total_pfn;
722                         total_pfn = 0;
723                 }
724
725                 has->covered_end_pfn +=  processed_pfn;
726                 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
727
728                 reinit_completion(&dm_device.ol_waitevent);
729
730                 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
731                 ret = add_memory(nid, PFN_PHYS((start_pfn)),
732                                 (HA_CHUNK << PAGE_SHIFT), MHP_MERGE_RESOURCE);
733
734                 if (ret) {
735                         pr_err("hot_add memory failed error is %d\n", ret);
736                         if (ret == -EEXIST) {
737                                 /*
738                                  * This error indicates that the error
739                                  * is not a transient failure. This is the
740                                  * case where the guest's physical address map
741                                  * precludes hot adding memory. Stop all further
742                                  * memory hot-add.
743                                  */
744                                 do_hot_add = false;
745                         }
746                         spin_lock_irqsave(&dm_device.ha_lock, flags);
747                         has->ha_end_pfn -= HA_CHUNK;
748                         has->covered_end_pfn -=  processed_pfn;
749                         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
750                         break;
751                 }
752
753                 /*
754                  * Wait for memory to get onlined. If the kernel onlined the
755                  * memory when adding it, this will return directly. Otherwise,
756                  * it will wait for user space to online the memory. This helps
757                  * to avoid adding memory faster than it is getting onlined. As
758                  * adding succeeded, it is ok to proceed even if the memory was
759                  * not onlined in time.
760                  */
761                 wait_for_completion_timeout(&dm_device.ol_waitevent, 5 * HZ);
762                 post_status(&dm_device);
763         }
764 }
765
766 static void hv_online_page(struct page *pg, unsigned int order)
767 {
768         struct hv_hotadd_state *has;
769         unsigned long flags;
770         unsigned long pfn = page_to_pfn(pg);
771
772         spin_lock_irqsave(&dm_device.ha_lock, flags);
773         list_for_each_entry(has, &dm_device.ha_region_list, list) {
774                 /* The page belongs to a different HAS. */
775                 if ((pfn < has->start_pfn) ||
776                                 (pfn + (1UL << order) > has->end_pfn))
777                         continue;
778
779                 hv_bring_pgs_online(has, pfn, 1UL << order);
780                 break;
781         }
782         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
783 }
784
785 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
786 {
787         struct hv_hotadd_state *has;
788         struct hv_hotadd_gap *gap;
789         unsigned long residual, new_inc;
790         int ret = 0;
791         unsigned long flags;
792
793         spin_lock_irqsave(&dm_device.ha_lock, flags);
794         list_for_each_entry(has, &dm_device.ha_region_list, list) {
795                 /*
796                  * If the pfn range we are dealing with is not in the current
797                  * "hot add block", move on.
798                  */
799                 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
800                         continue;
801
802                 /*
803                  * If the current start pfn is not where the covered_end
804                  * is, create a gap and update covered_end_pfn.
805                  */
806                 if (has->covered_end_pfn != start_pfn) {
807                         gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
808                         if (!gap) {
809                                 ret = -ENOMEM;
810                                 break;
811                         }
812
813                         INIT_LIST_HEAD(&gap->list);
814                         gap->start_pfn = has->covered_end_pfn;
815                         gap->end_pfn = start_pfn;
816                         list_add_tail(&gap->list, &has->gap_list);
817
818                         has->covered_end_pfn = start_pfn;
819                 }
820
821                 /*
822                  * If the current hot add-request extends beyond
823                  * our current limit; extend it.
824                  */
825                 if ((start_pfn + pfn_cnt) > has->end_pfn) {
826                         residual = (start_pfn + pfn_cnt - has->end_pfn);
827                         /*
828                          * Extend the region by multiples of HA_CHUNK.
829                          */
830                         new_inc = (residual / HA_CHUNK) * HA_CHUNK;
831                         if (residual % HA_CHUNK)
832                                 new_inc += HA_CHUNK;
833
834                         has->end_pfn += new_inc;
835                 }
836
837                 ret = 1;
838                 break;
839         }
840         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
841
842         return ret;
843 }
844
845 static unsigned long handle_pg_range(unsigned long pg_start,
846                                         unsigned long pg_count)
847 {
848         unsigned long start_pfn = pg_start;
849         unsigned long pfn_cnt = pg_count;
850         unsigned long size;
851         struct hv_hotadd_state *has;
852         unsigned long pgs_ol = 0;
853         unsigned long old_covered_state;
854         unsigned long res = 0, flags;
855
856         pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
857                 pg_start);
858
859         spin_lock_irqsave(&dm_device.ha_lock, flags);
860         list_for_each_entry(has, &dm_device.ha_region_list, list) {
861                 /*
862                  * If the pfn range we are dealing with is not in the current
863                  * "hot add block", move on.
864                  */
865                 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
866                         continue;
867
868                 old_covered_state = has->covered_end_pfn;
869
870                 if (start_pfn < has->ha_end_pfn) {
871                         /*
872                          * This is the case where we are backing pages
873                          * in an already hot added region. Bring
874                          * these pages online first.
875                          */
876                         pgs_ol = has->ha_end_pfn - start_pfn;
877                         if (pgs_ol > pfn_cnt)
878                                 pgs_ol = pfn_cnt;
879
880                         has->covered_end_pfn +=  pgs_ol;
881                         pfn_cnt -= pgs_ol;
882                         /*
883                          * Check if the corresponding memory block is already
884                          * online. It is possible to observe struct pages still
885                          * being uninitialized here so check section instead.
886                          * In case the section is online we need to bring the
887                          * rest of pfns (which were not backed previously)
888                          * online too.
889                          */
890                         if (start_pfn > has->start_pfn &&
891                             online_section_nr(pfn_to_section_nr(start_pfn)))
892                                 hv_bring_pgs_online(has, start_pfn, pgs_ol);
893
894                 }
895
896                 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
897                         /*
898                          * We have some residual hot add range
899                          * that needs to be hot added; hot add
900                          * it now. Hot add a multiple of
901                          * of HA_CHUNK that fully covers the pages
902                          * we have.
903                          */
904                         size = (has->end_pfn - has->ha_end_pfn);
905                         if (pfn_cnt <= size) {
906                                 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
907                                 if (pfn_cnt % HA_CHUNK)
908                                         size += HA_CHUNK;
909                         } else {
910                                 pfn_cnt = size;
911                         }
912                         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
913                         hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
914                         spin_lock_irqsave(&dm_device.ha_lock, flags);
915                 }
916                 /*
917                  * If we managed to online any pages that were given to us,
918                  * we declare success.
919                  */
920                 res = has->covered_end_pfn - old_covered_state;
921                 break;
922         }
923         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
924
925         return res;
926 }
927
928 static unsigned long process_hot_add(unsigned long pg_start,
929                                         unsigned long pfn_cnt,
930                                         unsigned long rg_start,
931                                         unsigned long rg_size)
932 {
933         struct hv_hotadd_state *ha_region = NULL;
934         int covered;
935         unsigned long flags;
936
937         if (pfn_cnt == 0)
938                 return 0;
939
940         if (!dm_device.host_specified_ha_region) {
941                 covered = pfn_covered(pg_start, pfn_cnt);
942                 if (covered < 0)
943                         return 0;
944
945                 if (covered)
946                         goto do_pg_range;
947         }
948
949         /*
950          * If the host has specified a hot-add range; deal with it first.
951          */
952
953         if (rg_size != 0) {
954                 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
955                 if (!ha_region)
956                         return 0;
957
958                 INIT_LIST_HEAD(&ha_region->list);
959                 INIT_LIST_HEAD(&ha_region->gap_list);
960
961                 ha_region->start_pfn = rg_start;
962                 ha_region->ha_end_pfn = rg_start;
963                 ha_region->covered_start_pfn = pg_start;
964                 ha_region->covered_end_pfn = pg_start;
965                 ha_region->end_pfn = rg_start + rg_size;
966
967                 spin_lock_irqsave(&dm_device.ha_lock, flags);
968                 list_add_tail(&ha_region->list, &dm_device.ha_region_list);
969                 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
970         }
971
972 do_pg_range:
973         /*
974          * Process the page range specified; bringing them
975          * online if possible.
976          */
977         return handle_pg_range(pg_start, pfn_cnt);
978 }
979
980 #endif
981
982 static void hot_add_req(struct work_struct *dummy)
983 {
984         struct dm_hot_add_response resp;
985 #ifdef CONFIG_MEMORY_HOTPLUG
986         unsigned long pg_start, pfn_cnt;
987         unsigned long rg_start, rg_sz;
988 #endif
989         struct hv_dynmem_device *dm = &dm_device;
990
991         memset(&resp, 0, sizeof(struct dm_hot_add_response));
992         resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
993         resp.hdr.size = sizeof(struct dm_hot_add_response);
994
995 #ifdef CONFIG_MEMORY_HOTPLUG
996         pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
997         pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
998
999         rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
1000         rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
1001
1002         if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1003                 unsigned long region_size;
1004                 unsigned long region_start;
1005
1006                 /*
1007                  * The host has not specified the hot-add region.
1008                  * Based on the hot-add page range being specified,
1009                  * compute a hot-add region that can cover the pages
1010                  * that need to be hot-added while ensuring the alignment
1011                  * and size requirements of Linux as it relates to hot-add.
1012                  */
1013                 region_start = pg_start;
1014                 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1015                 if (pfn_cnt % HA_CHUNK)
1016                         region_size += HA_CHUNK;
1017
1018                 region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1019
1020                 rg_start = region_start;
1021                 rg_sz = region_size;
1022         }
1023
1024         if (do_hot_add)
1025                 resp.page_count = process_hot_add(pg_start, pfn_cnt,
1026                                                 rg_start, rg_sz);
1027
1028         dm->num_pages_added += resp.page_count;
1029 #endif
1030         /*
1031          * The result field of the response structure has the
1032          * following semantics:
1033          *
1034          * 1. If all or some pages hot-added: Guest should return success.
1035          *
1036          * 2. If no pages could be hot-added:
1037          *
1038          * If the guest returns success, then the host
1039          * will not attempt any further hot-add operations. This
1040          * signifies a permanent failure.
1041          *
1042          * If the guest returns failure, then this failure will be
1043          * treated as a transient failure and the host may retry the
1044          * hot-add operation after some delay.
1045          */
1046         if (resp.page_count > 0)
1047                 resp.result = 1;
1048         else if (!do_hot_add)
1049                 resp.result = 1;
1050         else
1051                 resp.result = 0;
1052
1053         if (!do_hot_add || resp.page_count == 0) {
1054                 if (!allow_hibernation)
1055                         pr_err("Memory hot add failed\n");
1056                 else
1057                         pr_info("Ignore hot-add request!\n");
1058         }
1059
1060         dm->state = DM_INITIALIZED;
1061         resp.hdr.trans_id = atomic_inc_return(&trans_id);
1062         vmbus_sendpacket(dm->dev->channel, &resp,
1063                         sizeof(struct dm_hot_add_response),
1064                         (unsigned long)NULL,
1065                         VM_PKT_DATA_INBAND, 0);
1066 }
1067
1068 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1069 {
1070         struct dm_info_header *info_hdr;
1071
1072         info_hdr = (struct dm_info_header *)msg->info;
1073
1074         switch (info_hdr->type) {
1075         case INFO_TYPE_MAX_PAGE_CNT:
1076                 if (info_hdr->data_size == sizeof(__u64)) {
1077                         __u64 *max_page_count = (__u64 *)&info_hdr[1];
1078
1079                         pr_info("Max. dynamic memory size: %llu MB\n",
1080                                 (*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT));
1081                 }
1082
1083                 break;
1084         default:
1085                 pr_warn("Received Unknown type: %d\n", info_hdr->type);
1086         }
1087 }
1088
1089 static unsigned long compute_balloon_floor(void)
1090 {
1091         unsigned long min_pages;
1092         unsigned long nr_pages = totalram_pages();
1093 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1094         /* Simple continuous piecewiese linear function:
1095          *  max MiB -> min MiB  gradient
1096          *       0         0
1097          *      16        16
1098          *      32        24
1099          *     128        72    (1/2)
1100          *     512       168    (1/4)
1101          *    2048       360    (1/8)
1102          *    8192       744    (1/16)
1103          *   32768      1512    (1/32)
1104          */
1105         if (nr_pages < MB2PAGES(128))
1106                 min_pages = MB2PAGES(8) + (nr_pages >> 1);
1107         else if (nr_pages < MB2PAGES(512))
1108                 min_pages = MB2PAGES(40) + (nr_pages >> 2);
1109         else if (nr_pages < MB2PAGES(2048))
1110                 min_pages = MB2PAGES(104) + (nr_pages >> 3);
1111         else if (nr_pages < MB2PAGES(8192))
1112                 min_pages = MB2PAGES(232) + (nr_pages >> 4);
1113         else
1114                 min_pages = MB2PAGES(488) + (nr_pages >> 5);
1115 #undef MB2PAGES
1116         return min_pages;
1117 }
1118
1119 /*
1120  * Post our status as it relates memory pressure to the
1121  * host. Host expects the guests to post this status
1122  * periodically at 1 second intervals.
1123  *
1124  * The metrics specified in this protocol are very Windows
1125  * specific and so we cook up numbers here to convey our memory
1126  * pressure.
1127  */
1128
1129 static void post_status(struct hv_dynmem_device *dm)
1130 {
1131         struct dm_status status;
1132         unsigned long now = jiffies;
1133         unsigned long last_post = last_post_time;
1134
1135         if (pressure_report_delay > 0) {
1136                 --pressure_report_delay;
1137                 return;
1138         }
1139
1140         if (!time_after(now, (last_post_time + HZ)))
1141                 return;
1142
1143         memset(&status, 0, sizeof(struct dm_status));
1144         status.hdr.type = DM_STATUS_REPORT;
1145         status.hdr.size = sizeof(struct dm_status);
1146         status.hdr.trans_id = atomic_inc_return(&trans_id);
1147
1148         /*
1149          * The host expects the guest to report free and committed memory.
1150          * Furthermore, the host expects the pressure information to include
1151          * the ballooned out pages. For a given amount of memory that we are
1152          * managing we need to compute a floor below which we should not
1153          * balloon. Compute this and add it to the pressure report.
1154          * We also need to report all offline pages (num_pages_added -
1155          * num_pages_onlined) as committed to the host, otherwise it can try
1156          * asking us to balloon them out.
1157          */
1158         status.num_avail = si_mem_available();
1159         status.num_committed = vm_memory_committed() +
1160                 dm->num_pages_ballooned +
1161                 (dm->num_pages_added > dm->num_pages_onlined ?
1162                  dm->num_pages_added - dm->num_pages_onlined : 0) +
1163                 compute_balloon_floor();
1164
1165         trace_balloon_status(status.num_avail, status.num_committed,
1166                              vm_memory_committed(), dm->num_pages_ballooned,
1167                              dm->num_pages_added, dm->num_pages_onlined);
1168         /*
1169          * If our transaction ID is no longer current, just don't
1170          * send the status. This can happen if we were interrupted
1171          * after we picked our transaction ID.
1172          */
1173         if (status.hdr.trans_id != atomic_read(&trans_id))
1174                 return;
1175
1176         /*
1177          * If the last post time that we sampled has changed,
1178          * we have raced, don't post the status.
1179          */
1180         if (last_post != last_post_time)
1181                 return;
1182
1183         last_post_time = jiffies;
1184         vmbus_sendpacket(dm->dev->channel, &status,
1185                                 sizeof(struct dm_status),
1186                                 (unsigned long)NULL,
1187                                 VM_PKT_DATA_INBAND, 0);
1188
1189 }
1190
1191 static void free_balloon_pages(struct hv_dynmem_device *dm,
1192                          union dm_mem_page_range *range_array)
1193 {
1194         int num_pages = range_array->finfo.page_cnt;
1195         __u64 start_frame = range_array->finfo.start_page;
1196         struct page *pg;
1197         int i;
1198
1199         for (i = 0; i < num_pages; i++) {
1200                 pg = pfn_to_page(i + start_frame);
1201                 __ClearPageOffline(pg);
1202                 __free_page(pg);
1203                 dm->num_pages_ballooned--;
1204                 adjust_managed_page_count(pg, 1);
1205         }
1206 }
1207
1208
1209
1210 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1211                                         unsigned int num_pages,
1212                                         struct dm_balloon_response *bl_resp,
1213                                         int alloc_unit)
1214 {
1215         unsigned int i, j;
1216         struct page *pg;
1217
1218         for (i = 0; i < num_pages / alloc_unit; i++) {
1219                 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1220                         HV_HYP_PAGE_SIZE)
1221                         return i * alloc_unit;
1222
1223                 /*
1224                  * We execute this code in a thread context. Furthermore,
1225                  * we don't want the kernel to try too hard.
1226                  */
1227                 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1228                                 __GFP_NOMEMALLOC | __GFP_NOWARN,
1229                                 get_order(alloc_unit << PAGE_SHIFT));
1230
1231                 if (!pg)
1232                         return i * alloc_unit;
1233
1234                 dm->num_pages_ballooned += alloc_unit;
1235
1236                 /*
1237                  * If we allocatted 2M pages; split them so we
1238                  * can free them in any order we get.
1239                  */
1240
1241                 if (alloc_unit != 1)
1242                         split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1243
1244                 /* mark all pages offline */
1245                 for (j = 0; j < alloc_unit; j++) {
1246                         __SetPageOffline(pg + j);
1247                         adjust_managed_page_count(pg + j, -1);
1248                 }
1249
1250                 bl_resp->range_count++;
1251                 bl_resp->range_array[i].finfo.start_page =
1252                         page_to_pfn(pg);
1253                 bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1254                 bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1255
1256         }
1257
1258         return i * alloc_unit;
1259 }
1260
1261 static void balloon_up(struct work_struct *dummy)
1262 {
1263         unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1264         unsigned int num_ballooned = 0;
1265         struct dm_balloon_response *bl_resp;
1266         int alloc_unit;
1267         int ret;
1268         bool done = false;
1269         int i;
1270         long avail_pages;
1271         unsigned long floor;
1272
1273         /*
1274          * We will attempt 2M allocations. However, if we fail to
1275          * allocate 2M chunks, we will go back to PAGE_SIZE allocations.
1276          */
1277         alloc_unit = PAGES_IN_2M;
1278
1279         avail_pages = si_mem_available();
1280         floor = compute_balloon_floor();
1281
1282         /* Refuse to balloon below the floor. */
1283         if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1284                 pr_info("Balloon request will be partially fulfilled. %s\n",
1285                         avail_pages < num_pages ? "Not enough memory." :
1286                         "Balloon floor reached.");
1287
1288                 num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1289         }
1290
1291         while (!done) {
1292                 memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE);
1293                 bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
1294                 bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1295                 bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1296                 bl_resp->more_pages = 1;
1297
1298                 num_pages -= num_ballooned;
1299                 num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1300                                                     bl_resp, alloc_unit);
1301
1302                 if (alloc_unit != 1 && num_ballooned == 0) {
1303                         alloc_unit = 1;
1304                         continue;
1305                 }
1306
1307                 if (num_ballooned == 0 || num_ballooned == num_pages) {
1308                         pr_debug("Ballooned %u out of %u requested pages.\n",
1309                                 num_pages, dm_device.balloon_wrk.num_pages);
1310
1311                         bl_resp->more_pages = 0;
1312                         done = true;
1313                         dm_device.state = DM_INITIALIZED;
1314                 }
1315
1316                 /*
1317                  * We are pushing a lot of data through the channel;
1318                  * deal with transient failures caused because of the
1319                  * lack of space in the ring buffer.
1320                  */
1321
1322                 do {
1323                         bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1324                         ret = vmbus_sendpacket(dm_device.dev->channel,
1325                                                 bl_resp,
1326                                                 bl_resp->hdr.size,
1327                                                 (unsigned long)NULL,
1328                                                 VM_PKT_DATA_INBAND, 0);
1329
1330                         if (ret == -EAGAIN)
1331                                 msleep(20);
1332                         post_status(&dm_device);
1333                 } while (ret == -EAGAIN);
1334
1335                 if (ret) {
1336                         /*
1337                          * Free up the memory we allocatted.
1338                          */
1339                         pr_err("Balloon response failed\n");
1340
1341                         for (i = 0; i < bl_resp->range_count; i++)
1342                                 free_balloon_pages(&dm_device,
1343                                                  &bl_resp->range_array[i]);
1344
1345                         done = true;
1346                 }
1347         }
1348
1349 }
1350
1351 static void balloon_down(struct hv_dynmem_device *dm,
1352                         struct dm_unballoon_request *req)
1353 {
1354         union dm_mem_page_range *range_array = req->range_array;
1355         int range_count = req->range_count;
1356         struct dm_unballoon_response resp;
1357         int i;
1358         unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1359
1360         for (i = 0; i < range_count; i++) {
1361                 free_balloon_pages(dm, &range_array[i]);
1362                 complete(&dm_device.config_event);
1363         }
1364
1365         pr_debug("Freed %u ballooned pages.\n",
1366                 prev_pages_ballooned - dm->num_pages_ballooned);
1367
1368         if (req->more_pages == 1)
1369                 return;
1370
1371         memset(&resp, 0, sizeof(struct dm_unballoon_response));
1372         resp.hdr.type = DM_UNBALLOON_RESPONSE;
1373         resp.hdr.trans_id = atomic_inc_return(&trans_id);
1374         resp.hdr.size = sizeof(struct dm_unballoon_response);
1375
1376         vmbus_sendpacket(dm_device.dev->channel, &resp,
1377                                 sizeof(struct dm_unballoon_response),
1378                                 (unsigned long)NULL,
1379                                 VM_PKT_DATA_INBAND, 0);
1380
1381         dm->state = DM_INITIALIZED;
1382 }
1383
1384 static void balloon_onchannelcallback(void *context);
1385
1386 static int dm_thread_func(void *dm_dev)
1387 {
1388         struct hv_dynmem_device *dm = dm_dev;
1389
1390         while (!kthread_should_stop()) {
1391                 wait_for_completion_interruptible_timeout(
1392                                                 &dm_device.config_event, 1*HZ);
1393                 /*
1394                  * The host expects us to post information on the memory
1395                  * pressure every second.
1396                  */
1397                 reinit_completion(&dm_device.config_event);
1398                 post_status(dm);
1399         }
1400
1401         return 0;
1402 }
1403
1404
1405 static void version_resp(struct hv_dynmem_device *dm,
1406                         struct dm_version_response *vresp)
1407 {
1408         struct dm_version_request version_req;
1409         int ret;
1410
1411         if (vresp->is_accepted) {
1412                 /*
1413                  * We are done; wakeup the
1414                  * context waiting for version
1415                  * negotiation.
1416                  */
1417                 complete(&dm->host_event);
1418                 return;
1419         }
1420         /*
1421          * If there are more versions to try, continue
1422          * with negotiations; if not
1423          * shutdown the service since we are not able
1424          * to negotiate a suitable version number
1425          * with the host.
1426          */
1427         if (dm->next_version == 0)
1428                 goto version_error;
1429
1430         memset(&version_req, 0, sizeof(struct dm_version_request));
1431         version_req.hdr.type = DM_VERSION_REQUEST;
1432         version_req.hdr.size = sizeof(struct dm_version_request);
1433         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1434         version_req.version.version = dm->next_version;
1435         dm->version = version_req.version.version;
1436
1437         /*
1438          * Set the next version to try in case current version fails.
1439          * Win7 protocol ought to be the last one to try.
1440          */
1441         switch (version_req.version.version) {
1442         case DYNMEM_PROTOCOL_VERSION_WIN8:
1443                 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1444                 version_req.is_last_attempt = 0;
1445                 break;
1446         default:
1447                 dm->next_version = 0;
1448                 version_req.is_last_attempt = 1;
1449         }
1450
1451         ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1452                                 sizeof(struct dm_version_request),
1453                                 (unsigned long)NULL,
1454                                 VM_PKT_DATA_INBAND, 0);
1455
1456         if (ret)
1457                 goto version_error;
1458
1459         return;
1460
1461 version_error:
1462         dm->state = DM_INIT_ERROR;
1463         complete(&dm->host_event);
1464 }
1465
1466 static void cap_resp(struct hv_dynmem_device *dm,
1467                         struct dm_capabilities_resp_msg *cap_resp)
1468 {
1469         if (!cap_resp->is_accepted) {
1470                 pr_err("Capabilities not accepted by host\n");
1471                 dm->state = DM_INIT_ERROR;
1472         }
1473         complete(&dm->host_event);
1474 }
1475
1476 static void balloon_onchannelcallback(void *context)
1477 {
1478         struct hv_device *dev = context;
1479         u32 recvlen;
1480         u64 requestid;
1481         struct dm_message *dm_msg;
1482         struct dm_header *dm_hdr;
1483         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1484         struct dm_balloon *bal_msg;
1485         struct dm_hot_add *ha_msg;
1486         union dm_mem_page_range *ha_pg_range;
1487         union dm_mem_page_range *ha_region;
1488
1489         memset(recv_buffer, 0, sizeof(recv_buffer));
1490         vmbus_recvpacket(dev->channel, recv_buffer,
1491                          HV_HYP_PAGE_SIZE, &recvlen, &requestid);
1492
1493         if (recvlen > 0) {
1494                 dm_msg = (struct dm_message *)recv_buffer;
1495                 dm_hdr = &dm_msg->hdr;
1496
1497                 switch (dm_hdr->type) {
1498                 case DM_VERSION_RESPONSE:
1499                         version_resp(dm,
1500                                  (struct dm_version_response *)dm_msg);
1501                         break;
1502
1503                 case DM_CAPABILITIES_RESPONSE:
1504                         cap_resp(dm,
1505                                  (struct dm_capabilities_resp_msg *)dm_msg);
1506                         break;
1507
1508                 case DM_BALLOON_REQUEST:
1509                         if (allow_hibernation) {
1510                                 pr_info("Ignore balloon-up request!\n");
1511                                 break;
1512                         }
1513
1514                         if (dm->state == DM_BALLOON_UP)
1515                                 pr_warn("Currently ballooning\n");
1516                         bal_msg = (struct dm_balloon *)recv_buffer;
1517                         dm->state = DM_BALLOON_UP;
1518                         dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1519                         schedule_work(&dm_device.balloon_wrk.wrk);
1520                         break;
1521
1522                 case DM_UNBALLOON_REQUEST:
1523                         if (allow_hibernation) {
1524                                 pr_info("Ignore balloon-down request!\n");
1525                                 break;
1526                         }
1527
1528                         dm->state = DM_BALLOON_DOWN;
1529                         balloon_down(dm,
1530                                  (struct dm_unballoon_request *)recv_buffer);
1531                         break;
1532
1533                 case DM_MEM_HOT_ADD_REQUEST:
1534                         if (dm->state == DM_HOT_ADD)
1535                                 pr_warn("Currently hot-adding\n");
1536                         dm->state = DM_HOT_ADD;
1537                         ha_msg = (struct dm_hot_add *)recv_buffer;
1538                         if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1539                                 /*
1540                                  * This is a normal hot-add request specifying
1541                                  * hot-add memory.
1542                                  */
1543                                 dm->host_specified_ha_region = false;
1544                                 ha_pg_range = &ha_msg->range;
1545                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1546                                 dm->ha_wrk.ha_region_range.page_range = 0;
1547                         } else {
1548                                 /*
1549                                  * Host is specifying that we first hot-add
1550                                  * a region and then partially populate this
1551                                  * region.
1552                                  */
1553                                 dm->host_specified_ha_region = true;
1554                                 ha_pg_range = &ha_msg->range;
1555                                 ha_region = &ha_pg_range[1];
1556                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1557                                 dm->ha_wrk.ha_region_range = *ha_region;
1558                         }
1559                         schedule_work(&dm_device.ha_wrk.wrk);
1560                         break;
1561
1562                 case DM_INFO_MESSAGE:
1563                         process_info(dm, (struct dm_info_msg *)dm_msg);
1564                         break;
1565
1566                 default:
1567                         pr_warn("Unhandled message: type: %d\n", dm_hdr->type);
1568
1569                 }
1570         }
1571
1572 }
1573
1574 /* Hyper-V only supports reporting 2MB pages or higher */
1575 #define HV_MIN_PAGE_REPORTING_ORDER     9
1576 #define HV_MIN_PAGE_REPORTING_LEN (HV_HYP_PAGE_SIZE << HV_MIN_PAGE_REPORTING_ORDER)
1577 static int hv_free_page_report(struct page_reporting_dev_info *pr_dev_info,
1578                     struct scatterlist *sgl, unsigned int nents)
1579 {
1580         unsigned long flags;
1581         struct hv_memory_hint *hint;
1582         int i;
1583         u64 status;
1584         struct scatterlist *sg;
1585
1586         WARN_ON_ONCE(nents > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1587         WARN_ON_ONCE(sgl->length < HV_MIN_PAGE_REPORTING_LEN);
1588         local_irq_save(flags);
1589         hint = *(struct hv_memory_hint **)this_cpu_ptr(hyperv_pcpu_input_arg);
1590         if (!hint) {
1591                 local_irq_restore(flags);
1592                 return -ENOSPC;
1593         }
1594
1595         hint->type = HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD;
1596         hint->reserved = 0;
1597         for_each_sg(sgl, sg, nents, i) {
1598                 union hv_gpa_page_range *range;
1599
1600                 range = &hint->ranges[i];
1601                 range->address_space = 0;
1602                 /* page reporting only reports 2MB pages or higher */
1603                 range->page.largepage = 1;
1604                 range->page.additional_pages =
1605                         (sg->length / HV_MIN_PAGE_REPORTING_LEN) - 1;
1606                 range->page_size = HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB;
1607                 range->base_large_pfn =
1608                         page_to_hvpfn(sg_page(sg)) >> HV_MIN_PAGE_REPORTING_ORDER;
1609         }
1610
1611         status = hv_do_rep_hypercall(HV_EXT_CALL_MEMORY_HEAT_HINT, nents, 0,
1612                                      hint, NULL);
1613         local_irq_restore(flags);
1614         if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS) {
1615                 pr_err("Cold memory discard hypercall failed with status %llx\n",
1616                         status);
1617                 return -EINVAL;
1618         }
1619
1620         return 0;
1621 }
1622
1623 static void enable_page_reporting(void)
1624 {
1625         int ret;
1626
1627         /* Essentially, validating 'PAGE_REPORTING_MIN_ORDER' is big enough. */
1628         if (pageblock_order < HV_MIN_PAGE_REPORTING_ORDER) {
1629                 pr_debug("Cold memory discard is only supported on 2MB pages and above\n");
1630                 return;
1631         }
1632
1633         if (!hv_query_ext_cap(HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT)) {
1634                 pr_debug("Cold memory discard hint not supported by Hyper-V\n");
1635                 return;
1636         }
1637
1638         BUILD_BUG_ON(PAGE_REPORTING_CAPACITY > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1639         dm_device.pr_dev_info.report = hv_free_page_report;
1640         ret = page_reporting_register(&dm_device.pr_dev_info);
1641         if (ret < 0) {
1642                 dm_device.pr_dev_info.report = NULL;
1643                 pr_err("Failed to enable cold memory discard: %d\n", ret);
1644         } else {
1645                 pr_info("Cold memory discard hint enabled\n");
1646         }
1647 }
1648
1649 static void disable_page_reporting(void)
1650 {
1651         if (dm_device.pr_dev_info.report) {
1652                 page_reporting_unregister(&dm_device.pr_dev_info);
1653                 dm_device.pr_dev_info.report = NULL;
1654         }
1655 }
1656
1657 static int balloon_connect_vsp(struct hv_device *dev)
1658 {
1659         struct dm_version_request version_req;
1660         struct dm_capabilities cap_msg;
1661         unsigned long t;
1662         int ret;
1663
1664         ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1665                          balloon_onchannelcallback, dev);
1666         if (ret)
1667                 return ret;
1668
1669         /*
1670          * Initiate the hand shake with the host and negotiate
1671          * a version that the host can support. We start with the
1672          * highest version number and go down if the host cannot
1673          * support it.
1674          */
1675         memset(&version_req, 0, sizeof(struct dm_version_request));
1676         version_req.hdr.type = DM_VERSION_REQUEST;
1677         version_req.hdr.size = sizeof(struct dm_version_request);
1678         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1679         version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1680         version_req.is_last_attempt = 0;
1681         dm_device.version = version_req.version.version;
1682
1683         ret = vmbus_sendpacket(dev->channel, &version_req,
1684                                sizeof(struct dm_version_request),
1685                                (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1686         if (ret)
1687                 goto out;
1688
1689         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1690         if (t == 0) {
1691                 ret = -ETIMEDOUT;
1692                 goto out;
1693         }
1694
1695         /*
1696          * If we could not negotiate a compatible version with the host
1697          * fail the probe function.
1698          */
1699         if (dm_device.state == DM_INIT_ERROR) {
1700                 ret = -EPROTO;
1701                 goto out;
1702         }
1703
1704         pr_info("Using Dynamic Memory protocol version %u.%u\n",
1705                 DYNMEM_MAJOR_VERSION(dm_device.version),
1706                 DYNMEM_MINOR_VERSION(dm_device.version));
1707
1708         /*
1709          * Now submit our capabilities to the host.
1710          */
1711         memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1712         cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1713         cap_msg.hdr.size = sizeof(struct dm_capabilities);
1714         cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1715
1716         /*
1717          * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host
1718          * currently still requires the bits to be set, so we have to add code
1719          * to fail the host's hot-add and balloon up/down requests, if any.
1720          */
1721         cap_msg.caps.cap_bits.balloon = 1;
1722         cap_msg.caps.cap_bits.hot_add = 1;
1723
1724         /*
1725          * Specify our alignment requirements as it relates
1726          * memory hot-add. Specify 128MB alignment.
1727          */
1728         cap_msg.caps.cap_bits.hot_add_alignment = 7;
1729
1730         /*
1731          * Currently the host does not use these
1732          * values and we set them to what is done in the
1733          * Windows driver.
1734          */
1735         cap_msg.min_page_cnt = 0;
1736         cap_msg.max_page_number = -1;
1737
1738         ret = vmbus_sendpacket(dev->channel, &cap_msg,
1739                                sizeof(struct dm_capabilities),
1740                                (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1741         if (ret)
1742                 goto out;
1743
1744         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1745         if (t == 0) {
1746                 ret = -ETIMEDOUT;
1747                 goto out;
1748         }
1749
1750         /*
1751          * If the host does not like our capabilities,
1752          * fail the probe function.
1753          */
1754         if (dm_device.state == DM_INIT_ERROR) {
1755                 ret = -EPROTO;
1756                 goto out;
1757         }
1758
1759         return 0;
1760 out:
1761         vmbus_close(dev->channel);
1762         return ret;
1763 }
1764
1765 static int balloon_probe(struct hv_device *dev,
1766                          const struct hv_vmbus_device_id *dev_id)
1767 {
1768         int ret;
1769
1770         allow_hibernation = hv_is_hibernation_supported();
1771         if (allow_hibernation)
1772                 hot_add = false;
1773
1774 #ifdef CONFIG_MEMORY_HOTPLUG
1775         do_hot_add = hot_add;
1776 #else
1777         do_hot_add = false;
1778 #endif
1779         dm_device.dev = dev;
1780         dm_device.state = DM_INITIALIZING;
1781         dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1782         init_completion(&dm_device.host_event);
1783         init_completion(&dm_device.config_event);
1784         INIT_LIST_HEAD(&dm_device.ha_region_list);
1785         spin_lock_init(&dm_device.ha_lock);
1786         INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1787         INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1788         dm_device.host_specified_ha_region = false;
1789
1790 #ifdef CONFIG_MEMORY_HOTPLUG
1791         set_online_page_callback(&hv_online_page);
1792         init_completion(&dm_device.ol_waitevent);
1793         register_memory_notifier(&hv_memory_nb);
1794 #endif
1795
1796         hv_set_drvdata(dev, &dm_device);
1797
1798         ret = balloon_connect_vsp(dev);
1799         if (ret != 0)
1800                 return ret;
1801
1802         enable_page_reporting();
1803         dm_device.state = DM_INITIALIZED;
1804
1805         dm_device.thread =
1806                  kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1807         if (IS_ERR(dm_device.thread)) {
1808                 ret = PTR_ERR(dm_device.thread);
1809                 goto probe_error;
1810         }
1811
1812         return 0;
1813
1814 probe_error:
1815         dm_device.state = DM_INIT_ERROR;
1816         dm_device.thread  = NULL;
1817         disable_page_reporting();
1818         vmbus_close(dev->channel);
1819 #ifdef CONFIG_MEMORY_HOTPLUG
1820         unregister_memory_notifier(&hv_memory_nb);
1821         restore_online_page_callback(&hv_online_page);
1822 #endif
1823         return ret;
1824 }
1825
1826 static int balloon_remove(struct hv_device *dev)
1827 {
1828         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1829         struct hv_hotadd_state *has, *tmp;
1830         struct hv_hotadd_gap *gap, *tmp_gap;
1831         unsigned long flags;
1832
1833         if (dm->num_pages_ballooned != 0)
1834                 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1835
1836         cancel_work_sync(&dm->balloon_wrk.wrk);
1837         cancel_work_sync(&dm->ha_wrk.wrk);
1838
1839         kthread_stop(dm->thread);
1840         disable_page_reporting();
1841         vmbus_close(dev->channel);
1842 #ifdef CONFIG_MEMORY_HOTPLUG
1843         unregister_memory_notifier(&hv_memory_nb);
1844         restore_online_page_callback(&hv_online_page);
1845 #endif
1846         spin_lock_irqsave(&dm_device.ha_lock, flags);
1847         list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
1848                 list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
1849                         list_del(&gap->list);
1850                         kfree(gap);
1851                 }
1852                 list_del(&has->list);
1853                 kfree(has);
1854         }
1855         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
1856
1857         return 0;
1858 }
1859
1860 static int balloon_suspend(struct hv_device *hv_dev)
1861 {
1862         struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev);
1863
1864         tasklet_disable(&hv_dev->channel->callback_event);
1865
1866         cancel_work_sync(&dm->balloon_wrk.wrk);
1867         cancel_work_sync(&dm->ha_wrk.wrk);
1868
1869         if (dm->thread) {
1870                 kthread_stop(dm->thread);
1871                 dm->thread = NULL;
1872                 vmbus_close(hv_dev->channel);
1873         }
1874
1875         tasklet_enable(&hv_dev->channel->callback_event);
1876
1877         return 0;
1878
1879 }
1880
1881 static int balloon_resume(struct hv_device *dev)
1882 {
1883         int ret;
1884
1885         dm_device.state = DM_INITIALIZING;
1886
1887         ret = balloon_connect_vsp(dev);
1888
1889         if (ret != 0)
1890                 goto out;
1891
1892         dm_device.thread =
1893                  kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1894         if (IS_ERR(dm_device.thread)) {
1895                 ret = PTR_ERR(dm_device.thread);
1896                 dm_device.thread = NULL;
1897                 goto close_channel;
1898         }
1899
1900         dm_device.state = DM_INITIALIZED;
1901         return 0;
1902 close_channel:
1903         vmbus_close(dev->channel);
1904 out:
1905         dm_device.state = DM_INIT_ERROR;
1906 #ifdef CONFIG_MEMORY_HOTPLUG
1907         unregister_memory_notifier(&hv_memory_nb);
1908         restore_online_page_callback(&hv_online_page);
1909 #endif
1910         return ret;
1911 }
1912
1913 static const struct hv_vmbus_device_id id_table[] = {
1914         /* Dynamic Memory Class ID */
1915         /* 525074DC-8985-46e2-8057-A307DC18A502 */
1916         { HV_DM_GUID, },
1917         { },
1918 };
1919
1920 MODULE_DEVICE_TABLE(vmbus, id_table);
1921
1922 static  struct hv_driver balloon_drv = {
1923         .name = "hv_balloon",
1924         .id_table = id_table,
1925         .probe =  balloon_probe,
1926         .remove =  balloon_remove,
1927         .suspend = balloon_suspend,
1928         .resume = balloon_resume,
1929         .driver = {
1930                 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1931         },
1932 };
1933
1934 static int __init init_balloon_drv(void)
1935 {
1936
1937         return vmbus_driver_register(&balloon_drv);
1938 }
1939
1940 module_init(init_balloon_drv);
1941
1942 MODULE_DESCRIPTION("Hyper-V Balloon");
1943 MODULE_LICENSE("GPL");