32e3bc0aa665a1ba6e0c45377d94d3ad9f7e2f30
[linux-2.6-microblaze.git] / drivers / hv / hv_balloon.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2012, Microsoft Corporation.
4  *
5  * Author:
6  *   K. Y. Srinivasan <kys@microsoft.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/jiffies.h>
13 #include <linux/mman.h>
14 #include <linux/delay.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/kthread.h>
19 #include <linux/completion.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/memory.h>
22 #include <linux/notifier.h>
23 #include <linux/percpu_counter.h>
24
25 #include <linux/hyperv.h>
26 #include <asm/hyperv-tlfs.h>
27
28 #include <asm/mshyperv.h>
29
30 #define CREATE_TRACE_POINTS
31 #include "hv_trace_balloon.h"
32
33 /*
34  * We begin with definitions supporting the Dynamic Memory protocol
35  * with the host.
36  *
37  * Begin protocol definitions.
38  */
39
40
41
42 /*
43  * Protocol versions. The low word is the minor version, the high word the major
44  * version.
45  *
46  * History:
47  * Initial version 1.0
48  * Changed to 0.1 on 2009/03/25
49  * Changes to 0.2 on 2009/05/14
50  * Changes to 0.3 on 2009/12/03
51  * Changed to 1.0 on 2011/04/05
52  */
53
54 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
55 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
56 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
57
58 enum {
59         DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
60         DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
61         DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
62
63         DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
64         DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
65         DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
66
67         DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
68 };
69
70
71
72 /*
73  * Message Types
74  */
75
76 enum dm_message_type {
77         /*
78          * Version 0.3
79          */
80         DM_ERROR                        = 0,
81         DM_VERSION_REQUEST              = 1,
82         DM_VERSION_RESPONSE             = 2,
83         DM_CAPABILITIES_REPORT          = 3,
84         DM_CAPABILITIES_RESPONSE        = 4,
85         DM_STATUS_REPORT                = 5,
86         DM_BALLOON_REQUEST              = 6,
87         DM_BALLOON_RESPONSE             = 7,
88         DM_UNBALLOON_REQUEST            = 8,
89         DM_UNBALLOON_RESPONSE           = 9,
90         DM_MEM_HOT_ADD_REQUEST          = 10,
91         DM_MEM_HOT_ADD_RESPONSE         = 11,
92         DM_VERSION_03_MAX               = 11,
93         /*
94          * Version 1.0.
95          */
96         DM_INFO_MESSAGE                 = 12,
97         DM_VERSION_1_MAX                = 12
98 };
99
100
101 /*
102  * Structures defining the dynamic memory management
103  * protocol.
104  */
105
106 union dm_version {
107         struct {
108                 __u16 minor_version;
109                 __u16 major_version;
110         };
111         __u32 version;
112 } __packed;
113
114
115 union dm_caps {
116         struct {
117                 __u64 balloon:1;
118                 __u64 hot_add:1;
119                 /*
120                  * To support guests that may have alignment
121                  * limitations on hot-add, the guest can specify
122                  * its alignment requirements; a value of n
123                  * represents an alignment of 2^n in mega bytes.
124                  */
125                 __u64 hot_add_alignment:4;
126                 __u64 reservedz:58;
127         } cap_bits;
128         __u64 caps;
129 } __packed;
130
131 union dm_mem_page_range {
132         struct  {
133                 /*
134                  * The PFN number of the first page in the range.
135                  * 40 bits is the architectural limit of a PFN
136                  * number for AMD64.
137                  */
138                 __u64 start_page:40;
139                 /*
140                  * The number of pages in the range.
141                  */
142                 __u64 page_cnt:24;
143         } finfo;
144         __u64  page_range;
145 } __packed;
146
147
148
149 /*
150  * The header for all dynamic memory messages:
151  *
152  * type: Type of the message.
153  * size: Size of the message in bytes; including the header.
154  * trans_id: The guest is responsible for manufacturing this ID.
155  */
156
157 struct dm_header {
158         __u16 type;
159         __u16 size;
160         __u32 trans_id;
161 } __packed;
162
163 /*
164  * A generic message format for dynamic memory.
165  * Specific message formats are defined later in the file.
166  */
167
168 struct dm_message {
169         struct dm_header hdr;
170         __u8 data[]; /* enclosed message */
171 } __packed;
172
173
174 /*
175  * Specific message types supporting the dynamic memory protocol.
176  */
177
178 /*
179  * Version negotiation message. Sent from the guest to the host.
180  * The guest is free to try different versions until the host
181  * accepts the version.
182  *
183  * dm_version: The protocol version requested.
184  * is_last_attempt: If TRUE, this is the last version guest will request.
185  * reservedz: Reserved field, set to zero.
186  */
187
188 struct dm_version_request {
189         struct dm_header hdr;
190         union dm_version version;
191         __u32 is_last_attempt:1;
192         __u32 reservedz:31;
193 } __packed;
194
195 /*
196  * Version response message; Host to Guest and indicates
197  * if the host has accepted the version sent by the guest.
198  *
199  * is_accepted: If TRUE, host has accepted the version and the guest
200  * should proceed to the next stage of the protocol. FALSE indicates that
201  * guest should re-try with a different version.
202  *
203  * reservedz: Reserved field, set to zero.
204  */
205
206 struct dm_version_response {
207         struct dm_header hdr;
208         __u64 is_accepted:1;
209         __u64 reservedz:63;
210 } __packed;
211
212 /*
213  * Message reporting capabilities. This is sent from the guest to the
214  * host.
215  */
216
217 struct dm_capabilities {
218         struct dm_header hdr;
219         union dm_caps caps;
220         __u64 min_page_cnt;
221         __u64 max_page_number;
222 } __packed;
223
224 /*
225  * Response to the capabilities message. This is sent from the host to the
226  * guest. This message notifies if the host has accepted the guest's
227  * capabilities. If the host has not accepted, the guest must shutdown
228  * the service.
229  *
230  * is_accepted: Indicates if the host has accepted guest's capabilities.
231  * reservedz: Must be 0.
232  */
233
234 struct dm_capabilities_resp_msg {
235         struct dm_header hdr;
236         __u64 is_accepted:1;
237         __u64 reservedz:63;
238 } __packed;
239
240 /*
241  * This message is used to report memory pressure from the guest.
242  * This message is not part of any transaction and there is no
243  * response to this message.
244  *
245  * num_avail: Available memory in pages.
246  * num_committed: Committed memory in pages.
247  * page_file_size: The accumulated size of all page files
248  *                 in the system in pages.
249  * zero_free: The nunber of zero and free pages.
250  * page_file_writes: The writes to the page file in pages.
251  * io_diff: An indicator of file cache efficiency or page file activity,
252  *          calculated as File Cache Page Fault Count - Page Read Count.
253  *          This value is in pages.
254  *
255  * Some of these metrics are Windows specific and fortunately
256  * the algorithm on the host side that computes the guest memory
257  * pressure only uses num_committed value.
258  */
259
260 struct dm_status {
261         struct dm_header hdr;
262         __u64 num_avail;
263         __u64 num_committed;
264         __u64 page_file_size;
265         __u64 zero_free;
266         __u32 page_file_writes;
267         __u32 io_diff;
268 } __packed;
269
270
271 /*
272  * Message to ask the guest to allocate memory - balloon up message.
273  * This message is sent from the host to the guest. The guest may not be
274  * able to allocate as much memory as requested.
275  *
276  * num_pages: number of pages to allocate.
277  */
278
279 struct dm_balloon {
280         struct dm_header hdr;
281         __u32 num_pages;
282         __u32 reservedz;
283 } __packed;
284
285
286 /*
287  * Balloon response message; this message is sent from the guest
288  * to the host in response to the balloon message.
289  *
290  * reservedz: Reserved; must be set to zero.
291  * more_pages: If FALSE, this is the last message of the transaction.
292  * if TRUE there will atleast one more message from the guest.
293  *
294  * range_count: The number of ranges in the range array.
295  *
296  * range_array: An array of page ranges returned to the host.
297  *
298  */
299
300 struct dm_balloon_response {
301         struct dm_header hdr;
302         __u32 reservedz;
303         __u32 more_pages:1;
304         __u32 range_count:31;
305         union dm_mem_page_range range_array[];
306 } __packed;
307
308 /*
309  * Un-balloon message; this message is sent from the host
310  * to the guest to give guest more memory.
311  *
312  * more_pages: If FALSE, this is the last message of the transaction.
313  * if TRUE there will atleast one more message from the guest.
314  *
315  * reservedz: Reserved; must be set to zero.
316  *
317  * range_count: The number of ranges in the range array.
318  *
319  * range_array: An array of page ranges returned to the host.
320  *
321  */
322
323 struct dm_unballoon_request {
324         struct dm_header hdr;
325         __u32 more_pages:1;
326         __u32 reservedz:31;
327         __u32 range_count;
328         union dm_mem_page_range range_array[];
329 } __packed;
330
331 /*
332  * Un-balloon response message; this message is sent from the guest
333  * to the host in response to an unballoon request.
334  *
335  */
336
337 struct dm_unballoon_response {
338         struct dm_header hdr;
339 } __packed;
340
341
342 /*
343  * Hot add request message. Message sent from the host to the guest.
344  *
345  * mem_range: Memory range to hot add.
346  *
347  */
348
349 struct dm_hot_add {
350         struct dm_header hdr;
351         union dm_mem_page_range range;
352 } __packed;
353
354 /*
355  * Hot add response message.
356  * This message is sent by the guest to report the status of a hot add request.
357  * If page_count is less than the requested page count, then the host should
358  * assume all further hot add requests will fail, since this indicates that
359  * the guest has hit an upper physical memory barrier.
360  *
361  * Hot adds may also fail due to low resources; in this case, the guest must
362  * not complete this message until the hot add can succeed, and the host must
363  * not send a new hot add request until the response is sent.
364  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
365  * times it fails the request.
366  *
367  *
368  * page_count: number of pages that were successfully hot added.
369  *
370  * result: result of the operation 1: success, 0: failure.
371  *
372  */
373
374 struct dm_hot_add_response {
375         struct dm_header hdr;
376         __u32 page_count;
377         __u32 result;
378 } __packed;
379
380 /*
381  * Types of information sent from host to the guest.
382  */
383
384 enum dm_info_type {
385         INFO_TYPE_MAX_PAGE_CNT = 0,
386         MAX_INFO_TYPE
387 };
388
389
390 /*
391  * Header for the information message.
392  */
393
394 struct dm_info_header {
395         enum dm_info_type type;
396         __u32 data_size;
397 } __packed;
398
399 /*
400  * This message is sent from the host to the guest to pass
401  * some relevant information (win8 addition).
402  *
403  * reserved: no used.
404  * info_size: size of the information blob.
405  * info: information blob.
406  */
407
408 struct dm_info_msg {
409         struct dm_header hdr;
410         __u32 reserved;
411         __u32 info_size;
412         __u8  info[];
413 };
414
415 /*
416  * End protocol definitions.
417  */
418
419 /*
420  * State to manage hot adding memory into the guest.
421  * The range start_pfn : end_pfn specifies the range
422  * that the host has asked us to hot add. The range
423  * start_pfn : ha_end_pfn specifies the range that we have
424  * currently hot added. We hot add in multiples of 128M
425  * chunks; it is possible that we may not be able to bring
426  * online all the pages in the region. The range
427  * covered_start_pfn:covered_end_pfn defines the pages that can
428  * be brough online.
429  */
430
431 struct hv_hotadd_state {
432         struct list_head list;
433         unsigned long start_pfn;
434         unsigned long covered_start_pfn;
435         unsigned long covered_end_pfn;
436         unsigned long ha_end_pfn;
437         unsigned long end_pfn;
438         /*
439          * A list of gaps.
440          */
441         struct list_head gap_list;
442 };
443
444 struct hv_hotadd_gap {
445         struct list_head list;
446         unsigned long start_pfn;
447         unsigned long end_pfn;
448 };
449
450 struct balloon_state {
451         __u32 num_pages;
452         struct work_struct wrk;
453 };
454
455 struct hot_add_wrk {
456         union dm_mem_page_range ha_page_range;
457         union dm_mem_page_range ha_region_range;
458         struct work_struct wrk;
459 };
460
461 static bool allow_hibernation;
462 static bool hot_add = true;
463 static bool do_hot_add;
464 /*
465  * Delay reporting memory pressure by
466  * the specified number of seconds.
467  */
468 static uint pressure_report_delay = 45;
469
470 /*
471  * The last time we posted a pressure report to host.
472  */
473 static unsigned long last_post_time;
474
475 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
476 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
477
478 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
479 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
480 static atomic_t trans_id = ATOMIC_INIT(0);
481
482 static int dm_ring_size = 20 * 1024;
483
484 /*
485  * Driver specific state.
486  */
487
488 enum hv_dm_state {
489         DM_INITIALIZING = 0,
490         DM_INITIALIZED,
491         DM_BALLOON_UP,
492         DM_BALLOON_DOWN,
493         DM_HOT_ADD,
494         DM_INIT_ERROR
495 };
496
497
498 static __u8 recv_buffer[HV_HYP_PAGE_SIZE];
499 static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE];
500 #define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE)
501 #define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE)
502
503 struct hv_dynmem_device {
504         struct hv_device *dev;
505         enum hv_dm_state state;
506         struct completion host_event;
507         struct completion config_event;
508
509         /*
510          * Number of pages we have currently ballooned out.
511          */
512         unsigned int num_pages_ballooned;
513         unsigned int num_pages_onlined;
514         unsigned int num_pages_added;
515
516         /*
517          * State to manage the ballooning (up) operation.
518          */
519         struct balloon_state balloon_wrk;
520
521         /*
522          * State to execute the "hot-add" operation.
523          */
524         struct hot_add_wrk ha_wrk;
525
526         /*
527          * This state tracks if the host has specified a hot-add
528          * region.
529          */
530         bool host_specified_ha_region;
531
532         /*
533          * State to synchronize hot-add.
534          */
535         struct completion  ol_waitevent;
536         /*
537          * This thread handles hot-add
538          * requests from the host as well as notifying
539          * the host with regards to memory pressure in
540          * the guest.
541          */
542         struct task_struct *thread;
543
544         /*
545          * Protects ha_region_list, num_pages_onlined counter and individual
546          * regions from ha_region_list.
547          */
548         spinlock_t ha_lock;
549
550         /*
551          * A list of hot-add regions.
552          */
553         struct list_head ha_region_list;
554
555         /*
556          * We start with the highest version we can support
557          * and downgrade based on the host; we save here the
558          * next version to try.
559          */
560         __u32 next_version;
561
562         /*
563          * The negotiated version agreed by host.
564          */
565         __u32 version;
566 };
567
568 static struct hv_dynmem_device dm_device;
569
570 static void post_status(struct hv_dynmem_device *dm);
571
572 #ifdef CONFIG_MEMORY_HOTPLUG
573 static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
574                                      unsigned long pfn)
575 {
576         struct hv_hotadd_gap *gap;
577
578         /* The page is not backed. */
579         if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
580                 return false;
581
582         /* Check for gaps. */
583         list_for_each_entry(gap, &has->gap_list, list) {
584                 if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
585                         return false;
586         }
587
588         return true;
589 }
590
591 static unsigned long hv_page_offline_check(unsigned long start_pfn,
592                                            unsigned long nr_pages)
593 {
594         unsigned long pfn = start_pfn, count = 0;
595         struct hv_hotadd_state *has;
596         bool found;
597
598         while (pfn < start_pfn + nr_pages) {
599                 /*
600                  * Search for HAS which covers the pfn and when we find one
601                  * count how many consequitive PFNs are covered.
602                  */
603                 found = false;
604                 list_for_each_entry(has, &dm_device.ha_region_list, list) {
605                         while ((pfn >= has->start_pfn) &&
606                                (pfn < has->end_pfn) &&
607                                (pfn < start_pfn + nr_pages)) {
608                                 found = true;
609                                 if (has_pfn_is_backed(has, pfn))
610                                         count++;
611                                 pfn++;
612                         }
613                 }
614
615                 /*
616                  * This PFN is not in any HAS (e.g. we're offlining a region
617                  * which was present at boot), no need to account for it. Go
618                  * to the next one.
619                  */
620                 if (!found)
621                         pfn++;
622         }
623
624         return count;
625 }
626
627 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
628                               void *v)
629 {
630         struct memory_notify *mem = (struct memory_notify *)v;
631         unsigned long flags, pfn_count;
632
633         switch (val) {
634         case MEM_ONLINE:
635         case MEM_CANCEL_ONLINE:
636                 complete(&dm_device.ol_waitevent);
637                 break;
638
639         case MEM_OFFLINE:
640                 spin_lock_irqsave(&dm_device.ha_lock, flags);
641                 pfn_count = hv_page_offline_check(mem->start_pfn,
642                                                   mem->nr_pages);
643                 if (pfn_count <= dm_device.num_pages_onlined) {
644                         dm_device.num_pages_onlined -= pfn_count;
645                 } else {
646                         /*
647                          * We're offlining more pages than we managed to online.
648                          * This is unexpected. In any case don't let
649                          * num_pages_onlined wrap around zero.
650                          */
651                         WARN_ON_ONCE(1);
652                         dm_device.num_pages_onlined = 0;
653                 }
654                 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
655                 break;
656         case MEM_GOING_ONLINE:
657         case MEM_GOING_OFFLINE:
658         case MEM_CANCEL_OFFLINE:
659                 break;
660         }
661         return NOTIFY_OK;
662 }
663
664 static struct notifier_block hv_memory_nb = {
665         .notifier_call = hv_memory_notifier,
666         .priority = 0
667 };
668
669 /* Check if the particular page is backed and can be onlined and online it. */
670 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
671 {
672         if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
673                 if (!PageOffline(pg))
674                         __SetPageOffline(pg);
675                 return;
676         }
677         if (PageOffline(pg))
678                 __ClearPageOffline(pg);
679
680         /* This frame is currently backed; online the page. */
681         generic_online_page(pg, 0);
682
683         lockdep_assert_held(&dm_device.ha_lock);
684         dm_device.num_pages_onlined++;
685 }
686
687 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
688                                 unsigned long start_pfn, unsigned long size)
689 {
690         int i;
691
692         pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
693         for (i = 0; i < size; i++)
694                 hv_page_online_one(has, pfn_to_page(start_pfn + i));
695 }
696
697 static void hv_mem_hot_add(unsigned long start, unsigned long size,
698                                 unsigned long pfn_count,
699                                 struct hv_hotadd_state *has)
700 {
701         int ret = 0;
702         int i, nid;
703         unsigned long start_pfn;
704         unsigned long processed_pfn;
705         unsigned long total_pfn = pfn_count;
706         unsigned long flags;
707
708         for (i = 0; i < (size/HA_CHUNK); i++) {
709                 start_pfn = start + (i * HA_CHUNK);
710
711                 spin_lock_irqsave(&dm_device.ha_lock, flags);
712                 has->ha_end_pfn +=  HA_CHUNK;
713
714                 if (total_pfn > HA_CHUNK) {
715                         processed_pfn = HA_CHUNK;
716                         total_pfn -= HA_CHUNK;
717                 } else {
718                         processed_pfn = total_pfn;
719                         total_pfn = 0;
720                 }
721
722                 has->covered_end_pfn +=  processed_pfn;
723                 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
724
725                 reinit_completion(&dm_device.ol_waitevent);
726
727                 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
728                 ret = add_memory(nid, PFN_PHYS((start_pfn)),
729                                 (HA_CHUNK << PAGE_SHIFT));
730
731                 if (ret) {
732                         pr_err("hot_add memory failed error is %d\n", ret);
733                         if (ret == -EEXIST) {
734                                 /*
735                                  * This error indicates that the error
736                                  * is not a transient failure. This is the
737                                  * case where the guest's physical address map
738                                  * precludes hot adding memory. Stop all further
739                                  * memory hot-add.
740                                  */
741                                 do_hot_add = false;
742                         }
743                         spin_lock_irqsave(&dm_device.ha_lock, flags);
744                         has->ha_end_pfn -= HA_CHUNK;
745                         has->covered_end_pfn -=  processed_pfn;
746                         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
747                         break;
748                 }
749
750                 /*
751                  * Wait for memory to get onlined. If the kernel onlined the
752                  * memory when adding it, this will return directly. Otherwise,
753                  * it will wait for user space to online the memory. This helps
754                  * to avoid adding memory faster than it is getting onlined. As
755                  * adding succeeded, it is ok to proceed even if the memory was
756                  * not onlined in time.
757                  */
758                 wait_for_completion_timeout(&dm_device.ol_waitevent, 5 * HZ);
759                 post_status(&dm_device);
760         }
761 }
762
763 static void hv_online_page(struct page *pg, unsigned int order)
764 {
765         struct hv_hotadd_state *has;
766         unsigned long flags;
767         unsigned long pfn = page_to_pfn(pg);
768
769         spin_lock_irqsave(&dm_device.ha_lock, flags);
770         list_for_each_entry(has, &dm_device.ha_region_list, list) {
771                 /* The page belongs to a different HAS. */
772                 if ((pfn < has->start_pfn) ||
773                                 (pfn + (1UL << order) > has->end_pfn))
774                         continue;
775
776                 hv_bring_pgs_online(has, pfn, 1UL << order);
777                 break;
778         }
779         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
780 }
781
782 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
783 {
784         struct hv_hotadd_state *has;
785         struct hv_hotadd_gap *gap;
786         unsigned long residual, new_inc;
787         int ret = 0;
788         unsigned long flags;
789
790         spin_lock_irqsave(&dm_device.ha_lock, flags);
791         list_for_each_entry(has, &dm_device.ha_region_list, list) {
792                 /*
793                  * If the pfn range we are dealing with is not in the current
794                  * "hot add block", move on.
795                  */
796                 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
797                         continue;
798
799                 /*
800                  * If the current start pfn is not where the covered_end
801                  * is, create a gap and update covered_end_pfn.
802                  */
803                 if (has->covered_end_pfn != start_pfn) {
804                         gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
805                         if (!gap) {
806                                 ret = -ENOMEM;
807                                 break;
808                         }
809
810                         INIT_LIST_HEAD(&gap->list);
811                         gap->start_pfn = has->covered_end_pfn;
812                         gap->end_pfn = start_pfn;
813                         list_add_tail(&gap->list, &has->gap_list);
814
815                         has->covered_end_pfn = start_pfn;
816                 }
817
818                 /*
819                  * If the current hot add-request extends beyond
820                  * our current limit; extend it.
821                  */
822                 if ((start_pfn + pfn_cnt) > has->end_pfn) {
823                         residual = (start_pfn + pfn_cnt - has->end_pfn);
824                         /*
825                          * Extend the region by multiples of HA_CHUNK.
826                          */
827                         new_inc = (residual / HA_CHUNK) * HA_CHUNK;
828                         if (residual % HA_CHUNK)
829                                 new_inc += HA_CHUNK;
830
831                         has->end_pfn += new_inc;
832                 }
833
834                 ret = 1;
835                 break;
836         }
837         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
838
839         return ret;
840 }
841
842 static unsigned long handle_pg_range(unsigned long pg_start,
843                                         unsigned long pg_count)
844 {
845         unsigned long start_pfn = pg_start;
846         unsigned long pfn_cnt = pg_count;
847         unsigned long size;
848         struct hv_hotadd_state *has;
849         unsigned long pgs_ol = 0;
850         unsigned long old_covered_state;
851         unsigned long res = 0, flags;
852
853         pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
854                 pg_start);
855
856         spin_lock_irqsave(&dm_device.ha_lock, flags);
857         list_for_each_entry(has, &dm_device.ha_region_list, list) {
858                 /*
859                  * If the pfn range we are dealing with is not in the current
860                  * "hot add block", move on.
861                  */
862                 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
863                         continue;
864
865                 old_covered_state = has->covered_end_pfn;
866
867                 if (start_pfn < has->ha_end_pfn) {
868                         /*
869                          * This is the case where we are backing pages
870                          * in an already hot added region. Bring
871                          * these pages online first.
872                          */
873                         pgs_ol = has->ha_end_pfn - start_pfn;
874                         if (pgs_ol > pfn_cnt)
875                                 pgs_ol = pfn_cnt;
876
877                         has->covered_end_pfn +=  pgs_ol;
878                         pfn_cnt -= pgs_ol;
879                         /*
880                          * Check if the corresponding memory block is already
881                          * online. It is possible to observe struct pages still
882                          * being uninitialized here so check section instead.
883                          * In case the section is online we need to bring the
884                          * rest of pfns (which were not backed previously)
885                          * online too.
886                          */
887                         if (start_pfn > has->start_pfn &&
888                             online_section_nr(pfn_to_section_nr(start_pfn)))
889                                 hv_bring_pgs_online(has, start_pfn, pgs_ol);
890
891                 }
892
893                 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
894                         /*
895                          * We have some residual hot add range
896                          * that needs to be hot added; hot add
897                          * it now. Hot add a multiple of
898                          * of HA_CHUNK that fully covers the pages
899                          * we have.
900                          */
901                         size = (has->end_pfn - has->ha_end_pfn);
902                         if (pfn_cnt <= size) {
903                                 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
904                                 if (pfn_cnt % HA_CHUNK)
905                                         size += HA_CHUNK;
906                         } else {
907                                 pfn_cnt = size;
908                         }
909                         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
910                         hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
911                         spin_lock_irqsave(&dm_device.ha_lock, flags);
912                 }
913                 /*
914                  * If we managed to online any pages that were given to us,
915                  * we declare success.
916                  */
917                 res = has->covered_end_pfn - old_covered_state;
918                 break;
919         }
920         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
921
922         return res;
923 }
924
925 static unsigned long process_hot_add(unsigned long pg_start,
926                                         unsigned long pfn_cnt,
927                                         unsigned long rg_start,
928                                         unsigned long rg_size)
929 {
930         struct hv_hotadd_state *ha_region = NULL;
931         int covered;
932         unsigned long flags;
933
934         if (pfn_cnt == 0)
935                 return 0;
936
937         if (!dm_device.host_specified_ha_region) {
938                 covered = pfn_covered(pg_start, pfn_cnt);
939                 if (covered < 0)
940                         return 0;
941
942                 if (covered)
943                         goto do_pg_range;
944         }
945
946         /*
947          * If the host has specified a hot-add range; deal with it first.
948          */
949
950         if (rg_size != 0) {
951                 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
952                 if (!ha_region)
953                         return 0;
954
955                 INIT_LIST_HEAD(&ha_region->list);
956                 INIT_LIST_HEAD(&ha_region->gap_list);
957
958                 ha_region->start_pfn = rg_start;
959                 ha_region->ha_end_pfn = rg_start;
960                 ha_region->covered_start_pfn = pg_start;
961                 ha_region->covered_end_pfn = pg_start;
962                 ha_region->end_pfn = rg_start + rg_size;
963
964                 spin_lock_irqsave(&dm_device.ha_lock, flags);
965                 list_add_tail(&ha_region->list, &dm_device.ha_region_list);
966                 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
967         }
968
969 do_pg_range:
970         /*
971          * Process the page range specified; bringing them
972          * online if possible.
973          */
974         return handle_pg_range(pg_start, pfn_cnt);
975 }
976
977 #endif
978
979 static void hot_add_req(struct work_struct *dummy)
980 {
981         struct dm_hot_add_response resp;
982 #ifdef CONFIG_MEMORY_HOTPLUG
983         unsigned long pg_start, pfn_cnt;
984         unsigned long rg_start, rg_sz;
985 #endif
986         struct hv_dynmem_device *dm = &dm_device;
987
988         memset(&resp, 0, sizeof(struct dm_hot_add_response));
989         resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
990         resp.hdr.size = sizeof(struct dm_hot_add_response);
991
992 #ifdef CONFIG_MEMORY_HOTPLUG
993         pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
994         pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
995
996         rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
997         rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
998
999         if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1000                 unsigned long region_size;
1001                 unsigned long region_start;
1002
1003                 /*
1004                  * The host has not specified the hot-add region.
1005                  * Based on the hot-add page range being specified,
1006                  * compute a hot-add region that can cover the pages
1007                  * that need to be hot-added while ensuring the alignment
1008                  * and size requirements of Linux as it relates to hot-add.
1009                  */
1010                 region_start = pg_start;
1011                 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1012                 if (pfn_cnt % HA_CHUNK)
1013                         region_size += HA_CHUNK;
1014
1015                 region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1016
1017                 rg_start = region_start;
1018                 rg_sz = region_size;
1019         }
1020
1021         if (do_hot_add)
1022                 resp.page_count = process_hot_add(pg_start, pfn_cnt,
1023                                                 rg_start, rg_sz);
1024
1025         dm->num_pages_added += resp.page_count;
1026 #endif
1027         /*
1028          * The result field of the response structure has the
1029          * following semantics:
1030          *
1031          * 1. If all or some pages hot-added: Guest should return success.
1032          *
1033          * 2. If no pages could be hot-added:
1034          *
1035          * If the guest returns success, then the host
1036          * will not attempt any further hot-add operations. This
1037          * signifies a permanent failure.
1038          *
1039          * If the guest returns failure, then this failure will be
1040          * treated as a transient failure and the host may retry the
1041          * hot-add operation after some delay.
1042          */
1043         if (resp.page_count > 0)
1044                 resp.result = 1;
1045         else if (!do_hot_add)
1046                 resp.result = 1;
1047         else
1048                 resp.result = 0;
1049
1050         if (!do_hot_add || resp.page_count == 0) {
1051                 if (!allow_hibernation)
1052                         pr_err("Memory hot add failed\n");
1053                 else
1054                         pr_info("Ignore hot-add request!\n");
1055         }
1056
1057         dm->state = DM_INITIALIZED;
1058         resp.hdr.trans_id = atomic_inc_return(&trans_id);
1059         vmbus_sendpacket(dm->dev->channel, &resp,
1060                         sizeof(struct dm_hot_add_response),
1061                         (unsigned long)NULL,
1062                         VM_PKT_DATA_INBAND, 0);
1063 }
1064
1065 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1066 {
1067         struct dm_info_header *info_hdr;
1068
1069         info_hdr = (struct dm_info_header *)msg->info;
1070
1071         switch (info_hdr->type) {
1072         case INFO_TYPE_MAX_PAGE_CNT:
1073                 if (info_hdr->data_size == sizeof(__u64)) {
1074                         __u64 *max_page_count = (__u64 *)&info_hdr[1];
1075
1076                         pr_info("Max. dynamic memory size: %llu MB\n",
1077                                 (*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT));
1078                 }
1079
1080                 break;
1081         default:
1082                 pr_warn("Received Unknown type: %d\n", info_hdr->type);
1083         }
1084 }
1085
1086 static unsigned long compute_balloon_floor(void)
1087 {
1088         unsigned long min_pages;
1089         unsigned long nr_pages = totalram_pages();
1090 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1091         /* Simple continuous piecewiese linear function:
1092          *  max MiB -> min MiB  gradient
1093          *       0         0
1094          *      16        16
1095          *      32        24
1096          *     128        72    (1/2)
1097          *     512       168    (1/4)
1098          *    2048       360    (1/8)
1099          *    8192       744    (1/16)
1100          *   32768      1512    (1/32)
1101          */
1102         if (nr_pages < MB2PAGES(128))
1103                 min_pages = MB2PAGES(8) + (nr_pages >> 1);
1104         else if (nr_pages < MB2PAGES(512))
1105                 min_pages = MB2PAGES(40) + (nr_pages >> 2);
1106         else if (nr_pages < MB2PAGES(2048))
1107                 min_pages = MB2PAGES(104) + (nr_pages >> 3);
1108         else if (nr_pages < MB2PAGES(8192))
1109                 min_pages = MB2PAGES(232) + (nr_pages >> 4);
1110         else
1111                 min_pages = MB2PAGES(488) + (nr_pages >> 5);
1112 #undef MB2PAGES
1113         return min_pages;
1114 }
1115
1116 /*
1117  * Post our status as it relates memory pressure to the
1118  * host. Host expects the guests to post this status
1119  * periodically at 1 second intervals.
1120  *
1121  * The metrics specified in this protocol are very Windows
1122  * specific and so we cook up numbers here to convey our memory
1123  * pressure.
1124  */
1125
1126 static void post_status(struct hv_dynmem_device *dm)
1127 {
1128         struct dm_status status;
1129         unsigned long now = jiffies;
1130         unsigned long last_post = last_post_time;
1131
1132         if (pressure_report_delay > 0) {
1133                 --pressure_report_delay;
1134                 return;
1135         }
1136
1137         if (!time_after(now, (last_post_time + HZ)))
1138                 return;
1139
1140         memset(&status, 0, sizeof(struct dm_status));
1141         status.hdr.type = DM_STATUS_REPORT;
1142         status.hdr.size = sizeof(struct dm_status);
1143         status.hdr.trans_id = atomic_inc_return(&trans_id);
1144
1145         /*
1146          * The host expects the guest to report free and committed memory.
1147          * Furthermore, the host expects the pressure information to include
1148          * the ballooned out pages. For a given amount of memory that we are
1149          * managing we need to compute a floor below which we should not
1150          * balloon. Compute this and add it to the pressure report.
1151          * We also need to report all offline pages (num_pages_added -
1152          * num_pages_onlined) as committed to the host, otherwise it can try
1153          * asking us to balloon them out.
1154          */
1155         status.num_avail = si_mem_available();
1156         status.num_committed = vm_memory_committed() +
1157                 dm->num_pages_ballooned +
1158                 (dm->num_pages_added > dm->num_pages_onlined ?
1159                  dm->num_pages_added - dm->num_pages_onlined : 0) +
1160                 compute_balloon_floor();
1161
1162         trace_balloon_status(status.num_avail, status.num_committed,
1163                              vm_memory_committed(), dm->num_pages_ballooned,
1164                              dm->num_pages_added, dm->num_pages_onlined);
1165         /*
1166          * If our transaction ID is no longer current, just don't
1167          * send the status. This can happen if we were interrupted
1168          * after we picked our transaction ID.
1169          */
1170         if (status.hdr.trans_id != atomic_read(&trans_id))
1171                 return;
1172
1173         /*
1174          * If the last post time that we sampled has changed,
1175          * we have raced, don't post the status.
1176          */
1177         if (last_post != last_post_time)
1178                 return;
1179
1180         last_post_time = jiffies;
1181         vmbus_sendpacket(dm->dev->channel, &status,
1182                                 sizeof(struct dm_status),
1183                                 (unsigned long)NULL,
1184                                 VM_PKT_DATA_INBAND, 0);
1185
1186 }
1187
1188 static void free_balloon_pages(struct hv_dynmem_device *dm,
1189                          union dm_mem_page_range *range_array)
1190 {
1191         int num_pages = range_array->finfo.page_cnt;
1192         __u64 start_frame = range_array->finfo.start_page;
1193         struct page *pg;
1194         int i;
1195
1196         for (i = 0; i < num_pages; i++) {
1197                 pg = pfn_to_page(i + start_frame);
1198                 __ClearPageOffline(pg);
1199                 __free_page(pg);
1200                 dm->num_pages_ballooned--;
1201         }
1202 }
1203
1204
1205
1206 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1207                                         unsigned int num_pages,
1208                                         struct dm_balloon_response *bl_resp,
1209                                         int alloc_unit)
1210 {
1211         unsigned int i, j;
1212         struct page *pg;
1213
1214         for (i = 0; i < num_pages / alloc_unit; i++) {
1215                 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1216                         HV_HYP_PAGE_SIZE)
1217                         return i * alloc_unit;
1218
1219                 /*
1220                  * We execute this code in a thread context. Furthermore,
1221                  * we don't want the kernel to try too hard.
1222                  */
1223                 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1224                                 __GFP_NOMEMALLOC | __GFP_NOWARN,
1225                                 get_order(alloc_unit << PAGE_SHIFT));
1226
1227                 if (!pg)
1228                         return i * alloc_unit;
1229
1230                 dm->num_pages_ballooned += alloc_unit;
1231
1232                 /*
1233                  * If we allocatted 2M pages; split them so we
1234                  * can free them in any order we get.
1235                  */
1236
1237                 if (alloc_unit != 1)
1238                         split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1239
1240                 /* mark all pages offline */
1241                 for (j = 0; j < (1 << get_order(alloc_unit << PAGE_SHIFT)); j++)
1242                         __SetPageOffline(pg + j);
1243
1244                 bl_resp->range_count++;
1245                 bl_resp->range_array[i].finfo.start_page =
1246                         page_to_pfn(pg);
1247                 bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1248                 bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1249
1250         }
1251
1252         return i * alloc_unit;
1253 }
1254
1255 static void balloon_up(struct work_struct *dummy)
1256 {
1257         unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1258         unsigned int num_ballooned = 0;
1259         struct dm_balloon_response *bl_resp;
1260         int alloc_unit;
1261         int ret;
1262         bool done = false;
1263         int i;
1264         long avail_pages;
1265         unsigned long floor;
1266
1267         /*
1268          * We will attempt 2M allocations. However, if we fail to
1269          * allocate 2M chunks, we will go back to PAGE_SIZE allocations.
1270          */
1271         alloc_unit = PAGES_IN_2M;
1272
1273         avail_pages = si_mem_available();
1274         floor = compute_balloon_floor();
1275
1276         /* Refuse to balloon below the floor. */
1277         if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1278                 pr_warn("Balloon request will be partially fulfilled. %s\n",
1279                         avail_pages < num_pages ? "Not enough memory." :
1280                         "Balloon floor reached.");
1281
1282                 num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1283         }
1284
1285         while (!done) {
1286                 memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE);
1287                 bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
1288                 bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1289                 bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1290                 bl_resp->more_pages = 1;
1291
1292                 num_pages -= num_ballooned;
1293                 num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1294                                                     bl_resp, alloc_unit);
1295
1296                 if (alloc_unit != 1 && num_ballooned == 0) {
1297                         alloc_unit = 1;
1298                         continue;
1299                 }
1300
1301                 if (num_ballooned == 0 || num_ballooned == num_pages) {
1302                         pr_debug("Ballooned %u out of %u requested pages.\n",
1303                                 num_pages, dm_device.balloon_wrk.num_pages);
1304
1305                         bl_resp->more_pages = 0;
1306                         done = true;
1307                         dm_device.state = DM_INITIALIZED;
1308                 }
1309
1310                 /*
1311                  * We are pushing a lot of data through the channel;
1312                  * deal with transient failures caused because of the
1313                  * lack of space in the ring buffer.
1314                  */
1315
1316                 do {
1317                         bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1318                         ret = vmbus_sendpacket(dm_device.dev->channel,
1319                                                 bl_resp,
1320                                                 bl_resp->hdr.size,
1321                                                 (unsigned long)NULL,
1322                                                 VM_PKT_DATA_INBAND, 0);
1323
1324                         if (ret == -EAGAIN)
1325                                 msleep(20);
1326                         post_status(&dm_device);
1327                 } while (ret == -EAGAIN);
1328
1329                 if (ret) {
1330                         /*
1331                          * Free up the memory we allocatted.
1332                          */
1333                         pr_err("Balloon response failed\n");
1334
1335                         for (i = 0; i < bl_resp->range_count; i++)
1336                                 free_balloon_pages(&dm_device,
1337                                                  &bl_resp->range_array[i]);
1338
1339                         done = true;
1340                 }
1341         }
1342
1343 }
1344
1345 static void balloon_down(struct hv_dynmem_device *dm,
1346                         struct dm_unballoon_request *req)
1347 {
1348         union dm_mem_page_range *range_array = req->range_array;
1349         int range_count = req->range_count;
1350         struct dm_unballoon_response resp;
1351         int i;
1352         unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1353
1354         for (i = 0; i < range_count; i++) {
1355                 free_balloon_pages(dm, &range_array[i]);
1356                 complete(&dm_device.config_event);
1357         }
1358
1359         pr_debug("Freed %u ballooned pages.\n",
1360                 prev_pages_ballooned - dm->num_pages_ballooned);
1361
1362         if (req->more_pages == 1)
1363                 return;
1364
1365         memset(&resp, 0, sizeof(struct dm_unballoon_response));
1366         resp.hdr.type = DM_UNBALLOON_RESPONSE;
1367         resp.hdr.trans_id = atomic_inc_return(&trans_id);
1368         resp.hdr.size = sizeof(struct dm_unballoon_response);
1369
1370         vmbus_sendpacket(dm_device.dev->channel, &resp,
1371                                 sizeof(struct dm_unballoon_response),
1372                                 (unsigned long)NULL,
1373                                 VM_PKT_DATA_INBAND, 0);
1374
1375         dm->state = DM_INITIALIZED;
1376 }
1377
1378 static void balloon_onchannelcallback(void *context);
1379
1380 static int dm_thread_func(void *dm_dev)
1381 {
1382         struct hv_dynmem_device *dm = dm_dev;
1383
1384         while (!kthread_should_stop()) {
1385                 wait_for_completion_interruptible_timeout(
1386                                                 &dm_device.config_event, 1*HZ);
1387                 /*
1388                  * The host expects us to post information on the memory
1389                  * pressure every second.
1390                  */
1391                 reinit_completion(&dm_device.config_event);
1392                 post_status(dm);
1393         }
1394
1395         return 0;
1396 }
1397
1398
1399 static void version_resp(struct hv_dynmem_device *dm,
1400                         struct dm_version_response *vresp)
1401 {
1402         struct dm_version_request version_req;
1403         int ret;
1404
1405         if (vresp->is_accepted) {
1406                 /*
1407                  * We are done; wakeup the
1408                  * context waiting for version
1409                  * negotiation.
1410                  */
1411                 complete(&dm->host_event);
1412                 return;
1413         }
1414         /*
1415          * If there are more versions to try, continue
1416          * with negotiations; if not
1417          * shutdown the service since we are not able
1418          * to negotiate a suitable version number
1419          * with the host.
1420          */
1421         if (dm->next_version == 0)
1422                 goto version_error;
1423
1424         memset(&version_req, 0, sizeof(struct dm_version_request));
1425         version_req.hdr.type = DM_VERSION_REQUEST;
1426         version_req.hdr.size = sizeof(struct dm_version_request);
1427         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1428         version_req.version.version = dm->next_version;
1429         dm->version = version_req.version.version;
1430
1431         /*
1432          * Set the next version to try in case current version fails.
1433          * Win7 protocol ought to be the last one to try.
1434          */
1435         switch (version_req.version.version) {
1436         case DYNMEM_PROTOCOL_VERSION_WIN8:
1437                 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1438                 version_req.is_last_attempt = 0;
1439                 break;
1440         default:
1441                 dm->next_version = 0;
1442                 version_req.is_last_attempt = 1;
1443         }
1444
1445         ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1446                                 sizeof(struct dm_version_request),
1447                                 (unsigned long)NULL,
1448                                 VM_PKT_DATA_INBAND, 0);
1449
1450         if (ret)
1451                 goto version_error;
1452
1453         return;
1454
1455 version_error:
1456         dm->state = DM_INIT_ERROR;
1457         complete(&dm->host_event);
1458 }
1459
1460 static void cap_resp(struct hv_dynmem_device *dm,
1461                         struct dm_capabilities_resp_msg *cap_resp)
1462 {
1463         if (!cap_resp->is_accepted) {
1464                 pr_err("Capabilities not accepted by host\n");
1465                 dm->state = DM_INIT_ERROR;
1466         }
1467         complete(&dm->host_event);
1468 }
1469
1470 static void balloon_onchannelcallback(void *context)
1471 {
1472         struct hv_device *dev = context;
1473         u32 recvlen;
1474         u64 requestid;
1475         struct dm_message *dm_msg;
1476         struct dm_header *dm_hdr;
1477         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1478         struct dm_balloon *bal_msg;
1479         struct dm_hot_add *ha_msg;
1480         union dm_mem_page_range *ha_pg_range;
1481         union dm_mem_page_range *ha_region;
1482
1483         memset(recv_buffer, 0, sizeof(recv_buffer));
1484         vmbus_recvpacket(dev->channel, recv_buffer,
1485                          HV_HYP_PAGE_SIZE, &recvlen, &requestid);
1486
1487         if (recvlen > 0) {
1488                 dm_msg = (struct dm_message *)recv_buffer;
1489                 dm_hdr = &dm_msg->hdr;
1490
1491                 switch (dm_hdr->type) {
1492                 case DM_VERSION_RESPONSE:
1493                         version_resp(dm,
1494                                  (struct dm_version_response *)dm_msg);
1495                         break;
1496
1497                 case DM_CAPABILITIES_RESPONSE:
1498                         cap_resp(dm,
1499                                  (struct dm_capabilities_resp_msg *)dm_msg);
1500                         break;
1501
1502                 case DM_BALLOON_REQUEST:
1503                         if (allow_hibernation) {
1504                                 pr_info("Ignore balloon-up request!\n");
1505                                 break;
1506                         }
1507
1508                         if (dm->state == DM_BALLOON_UP)
1509                                 pr_warn("Currently ballooning\n");
1510                         bal_msg = (struct dm_balloon *)recv_buffer;
1511                         dm->state = DM_BALLOON_UP;
1512                         dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1513                         schedule_work(&dm_device.balloon_wrk.wrk);
1514                         break;
1515
1516                 case DM_UNBALLOON_REQUEST:
1517                         if (allow_hibernation) {
1518                                 pr_info("Ignore balloon-down request!\n");
1519                                 break;
1520                         }
1521
1522                         dm->state = DM_BALLOON_DOWN;
1523                         balloon_down(dm,
1524                                  (struct dm_unballoon_request *)recv_buffer);
1525                         break;
1526
1527                 case DM_MEM_HOT_ADD_REQUEST:
1528                         if (dm->state == DM_HOT_ADD)
1529                                 pr_warn("Currently hot-adding\n");
1530                         dm->state = DM_HOT_ADD;
1531                         ha_msg = (struct dm_hot_add *)recv_buffer;
1532                         if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1533                                 /*
1534                                  * This is a normal hot-add request specifying
1535                                  * hot-add memory.
1536                                  */
1537                                 dm->host_specified_ha_region = false;
1538                                 ha_pg_range = &ha_msg->range;
1539                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1540                                 dm->ha_wrk.ha_region_range.page_range = 0;
1541                         } else {
1542                                 /*
1543                                  * Host is specifying that we first hot-add
1544                                  * a region and then partially populate this
1545                                  * region.
1546                                  */
1547                                 dm->host_specified_ha_region = true;
1548                                 ha_pg_range = &ha_msg->range;
1549                                 ha_region = &ha_pg_range[1];
1550                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1551                                 dm->ha_wrk.ha_region_range = *ha_region;
1552                         }
1553                         schedule_work(&dm_device.ha_wrk.wrk);
1554                         break;
1555
1556                 case DM_INFO_MESSAGE:
1557                         process_info(dm, (struct dm_info_msg *)dm_msg);
1558                         break;
1559
1560                 default:
1561                         pr_warn("Unhandled message: type: %d\n", dm_hdr->type);
1562
1563                 }
1564         }
1565
1566 }
1567
1568 static int balloon_connect_vsp(struct hv_device *dev)
1569 {
1570         struct dm_version_request version_req;
1571         struct dm_capabilities cap_msg;
1572         unsigned long t;
1573         int ret;
1574
1575         ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1576                          balloon_onchannelcallback, dev);
1577         if (ret)
1578                 return ret;
1579
1580         /*
1581          * Initiate the hand shake with the host and negotiate
1582          * a version that the host can support. We start with the
1583          * highest version number and go down if the host cannot
1584          * support it.
1585          */
1586         memset(&version_req, 0, sizeof(struct dm_version_request));
1587         version_req.hdr.type = DM_VERSION_REQUEST;
1588         version_req.hdr.size = sizeof(struct dm_version_request);
1589         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1590         version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1591         version_req.is_last_attempt = 0;
1592         dm_device.version = version_req.version.version;
1593
1594         ret = vmbus_sendpacket(dev->channel, &version_req,
1595                                sizeof(struct dm_version_request),
1596                                (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1597         if (ret)
1598                 goto out;
1599
1600         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1601         if (t == 0) {
1602                 ret = -ETIMEDOUT;
1603                 goto out;
1604         }
1605
1606         /*
1607          * If we could not negotiate a compatible version with the host
1608          * fail the probe function.
1609          */
1610         if (dm_device.state == DM_INIT_ERROR) {
1611                 ret = -EPROTO;
1612                 goto out;
1613         }
1614
1615         pr_info("Using Dynamic Memory protocol version %u.%u\n",
1616                 DYNMEM_MAJOR_VERSION(dm_device.version),
1617                 DYNMEM_MINOR_VERSION(dm_device.version));
1618
1619         /*
1620          * Now submit our capabilities to the host.
1621          */
1622         memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1623         cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1624         cap_msg.hdr.size = sizeof(struct dm_capabilities);
1625         cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1626
1627         /*
1628          * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host
1629          * currently still requires the bits to be set, so we have to add code
1630          * to fail the host's hot-add and balloon up/down requests, if any.
1631          */
1632         cap_msg.caps.cap_bits.balloon = 1;
1633         cap_msg.caps.cap_bits.hot_add = 1;
1634
1635         /*
1636          * Specify our alignment requirements as it relates
1637          * memory hot-add. Specify 128MB alignment.
1638          */
1639         cap_msg.caps.cap_bits.hot_add_alignment = 7;
1640
1641         /*
1642          * Currently the host does not use these
1643          * values and we set them to what is done in the
1644          * Windows driver.
1645          */
1646         cap_msg.min_page_cnt = 0;
1647         cap_msg.max_page_number = -1;
1648
1649         ret = vmbus_sendpacket(dev->channel, &cap_msg,
1650                                sizeof(struct dm_capabilities),
1651                                (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1652         if (ret)
1653                 goto out;
1654
1655         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1656         if (t == 0) {
1657                 ret = -ETIMEDOUT;
1658                 goto out;
1659         }
1660
1661         /*
1662          * If the host does not like our capabilities,
1663          * fail the probe function.
1664          */
1665         if (dm_device.state == DM_INIT_ERROR) {
1666                 ret = -EPROTO;
1667                 goto out;
1668         }
1669
1670         return 0;
1671 out:
1672         vmbus_close(dev->channel);
1673         return ret;
1674 }
1675
1676 static int balloon_probe(struct hv_device *dev,
1677                          const struct hv_vmbus_device_id *dev_id)
1678 {
1679         int ret;
1680
1681         allow_hibernation = hv_is_hibernation_supported();
1682         if (allow_hibernation)
1683                 hot_add = false;
1684
1685 #ifdef CONFIG_MEMORY_HOTPLUG
1686         do_hot_add = hot_add;
1687 #else
1688         do_hot_add = false;
1689 #endif
1690         dm_device.dev = dev;
1691         dm_device.state = DM_INITIALIZING;
1692         dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1693         init_completion(&dm_device.host_event);
1694         init_completion(&dm_device.config_event);
1695         INIT_LIST_HEAD(&dm_device.ha_region_list);
1696         spin_lock_init(&dm_device.ha_lock);
1697         INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1698         INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1699         dm_device.host_specified_ha_region = false;
1700
1701 #ifdef CONFIG_MEMORY_HOTPLUG
1702         set_online_page_callback(&hv_online_page);
1703         init_completion(&dm_device.ol_waitevent);
1704         register_memory_notifier(&hv_memory_nb);
1705 #endif
1706
1707         hv_set_drvdata(dev, &dm_device);
1708
1709         ret = balloon_connect_vsp(dev);
1710         if (ret != 0)
1711                 return ret;
1712
1713         dm_device.state = DM_INITIALIZED;
1714
1715         dm_device.thread =
1716                  kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1717         if (IS_ERR(dm_device.thread)) {
1718                 ret = PTR_ERR(dm_device.thread);
1719                 goto probe_error;
1720         }
1721
1722         return 0;
1723
1724 probe_error:
1725         dm_device.state = DM_INIT_ERROR;
1726         dm_device.thread  = NULL;
1727         vmbus_close(dev->channel);
1728 #ifdef CONFIG_MEMORY_HOTPLUG
1729         unregister_memory_notifier(&hv_memory_nb);
1730         restore_online_page_callback(&hv_online_page);
1731 #endif
1732         return ret;
1733 }
1734
1735 static int balloon_remove(struct hv_device *dev)
1736 {
1737         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1738         struct hv_hotadd_state *has, *tmp;
1739         struct hv_hotadd_gap *gap, *tmp_gap;
1740         unsigned long flags;
1741
1742         if (dm->num_pages_ballooned != 0)
1743                 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1744
1745         cancel_work_sync(&dm->balloon_wrk.wrk);
1746         cancel_work_sync(&dm->ha_wrk.wrk);
1747
1748         kthread_stop(dm->thread);
1749         vmbus_close(dev->channel);
1750 #ifdef CONFIG_MEMORY_HOTPLUG
1751         unregister_memory_notifier(&hv_memory_nb);
1752         restore_online_page_callback(&hv_online_page);
1753 #endif
1754         spin_lock_irqsave(&dm_device.ha_lock, flags);
1755         list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
1756                 list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
1757                         list_del(&gap->list);
1758                         kfree(gap);
1759                 }
1760                 list_del(&has->list);
1761                 kfree(has);
1762         }
1763         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
1764
1765         return 0;
1766 }
1767
1768 static int balloon_suspend(struct hv_device *hv_dev)
1769 {
1770         struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev);
1771
1772         tasklet_disable(&hv_dev->channel->callback_event);
1773
1774         cancel_work_sync(&dm->balloon_wrk.wrk);
1775         cancel_work_sync(&dm->ha_wrk.wrk);
1776
1777         if (dm->thread) {
1778                 kthread_stop(dm->thread);
1779                 dm->thread = NULL;
1780                 vmbus_close(hv_dev->channel);
1781         }
1782
1783         tasklet_enable(&hv_dev->channel->callback_event);
1784
1785         return 0;
1786
1787 }
1788
1789 static int balloon_resume(struct hv_device *dev)
1790 {
1791         int ret;
1792
1793         dm_device.state = DM_INITIALIZING;
1794
1795         ret = balloon_connect_vsp(dev);
1796
1797         if (ret != 0)
1798                 goto out;
1799
1800         dm_device.thread =
1801                  kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1802         if (IS_ERR(dm_device.thread)) {
1803                 ret = PTR_ERR(dm_device.thread);
1804                 dm_device.thread = NULL;
1805                 goto close_channel;
1806         }
1807
1808         dm_device.state = DM_INITIALIZED;
1809         return 0;
1810 close_channel:
1811         vmbus_close(dev->channel);
1812 out:
1813         dm_device.state = DM_INIT_ERROR;
1814 #ifdef CONFIG_MEMORY_HOTPLUG
1815         unregister_memory_notifier(&hv_memory_nb);
1816         restore_online_page_callback(&hv_online_page);
1817 #endif
1818         return ret;
1819 }
1820
1821 static const struct hv_vmbus_device_id id_table[] = {
1822         /* Dynamic Memory Class ID */
1823         /* 525074DC-8985-46e2-8057-A307DC18A502 */
1824         { HV_DM_GUID, },
1825         { },
1826 };
1827
1828 MODULE_DEVICE_TABLE(vmbus, id_table);
1829
1830 static  struct hv_driver balloon_drv = {
1831         .name = "hv_balloon",
1832         .id_table = id_table,
1833         .probe =  balloon_probe,
1834         .remove =  balloon_remove,
1835         .suspend = balloon_suspend,
1836         .resume = balloon_resume,
1837         .driver = {
1838                 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1839         },
1840 };
1841
1842 static int __init init_balloon_drv(void)
1843 {
1844
1845         return vmbus_driver_register(&balloon_drv);
1846 }
1847
1848 module_init(init_balloon_drv);
1849
1850 MODULE_DESCRIPTION("Hyper-V Balloon");
1851 MODULE_LICENSE("GPL");