drm/amd/display: Fix memory leaks in S3 resume
[linux-2.6-microblaze.git] / drivers / hid / hid-logitech-hidpp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  HIDPP protocol for Logitech receivers
4  *
5  *  Copyright (c) 2011 Logitech (c)
6  *  Copyright (c) 2012-2013 Google (c)
7  *  Copyright (c) 2013-2014 Red Hat Inc.
8  */
9
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/device.h>
14 #include <linux/input.h>
15 #include <linux/usb.h>
16 #include <linux/hid.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/sched/clock.h>
21 #include <linux/kfifo.h>
22 #include <linux/input/mt.h>
23 #include <linux/workqueue.h>
24 #include <linux/atomic.h>
25 #include <linux/fixp-arith.h>
26 #include <asm/unaligned.h>
27 #include "usbhid/usbhid.h"
28 #include "hid-ids.h"
29
30 MODULE_LICENSE("GPL");
31 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>");
32 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>");
33
34 static bool disable_raw_mode;
35 module_param(disable_raw_mode, bool, 0644);
36 MODULE_PARM_DESC(disable_raw_mode,
37         "Disable Raw mode reporting for touchpads and keep firmware gestures.");
38
39 static bool disable_tap_to_click;
40 module_param(disable_tap_to_click, bool, 0644);
41 MODULE_PARM_DESC(disable_tap_to_click,
42         "Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently).");
43
44 #define REPORT_ID_HIDPP_SHORT                   0x10
45 #define REPORT_ID_HIDPP_LONG                    0x11
46 #define REPORT_ID_HIDPP_VERY_LONG               0x12
47
48 #define HIDPP_REPORT_SHORT_LENGTH               7
49 #define HIDPP_REPORT_LONG_LENGTH                20
50 #define HIDPP_REPORT_VERY_LONG_MAX_LENGTH       64
51
52 #define HIDPP_REPORT_SHORT_SUPPORTED            BIT(0)
53 #define HIDPP_REPORT_LONG_SUPPORTED             BIT(1)
54 #define HIDPP_REPORT_VERY_LONG_SUPPORTED        BIT(2)
55
56 #define HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS       0x03
57 #define HIDPP_SUB_ID_ROLLER                     0x05
58 #define HIDPP_SUB_ID_MOUSE_EXTRA_BTNS           0x06
59
60 #define HIDPP_QUIRK_CLASS_WTP                   BIT(0)
61 #define HIDPP_QUIRK_CLASS_M560                  BIT(1)
62 #define HIDPP_QUIRK_CLASS_K400                  BIT(2)
63 #define HIDPP_QUIRK_CLASS_G920                  BIT(3)
64 #define HIDPP_QUIRK_CLASS_K750                  BIT(4)
65
66 /* bits 2..20 are reserved for classes */
67 /* #define HIDPP_QUIRK_CONNECT_EVENTS           BIT(21) disabled */
68 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS        BIT(22)
69 #define HIDPP_QUIRK_NO_HIDINPUT                 BIT(23)
70 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS        BIT(24)
71 #define HIDPP_QUIRK_UNIFYING                    BIT(25)
72 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0           BIT(26)
73 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120         BIT(27)
74 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121         BIT(28)
75 #define HIDPP_QUIRK_HIDPP_WHEELS                BIT(29)
76 #define HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS      BIT(30)
77 #define HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS  BIT(31)
78
79 /* These are just aliases for now */
80 #define HIDPP_QUIRK_KBD_SCROLL_WHEEL HIDPP_QUIRK_HIDPP_WHEELS
81 #define HIDPP_QUIRK_KBD_ZOOM_WHEEL   HIDPP_QUIRK_HIDPP_WHEELS
82
83 /* Convenience constant to check for any high-res support. */
84 #define HIDPP_QUIRK_HI_RES_SCROLL       (HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \
85                                          HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \
86                                          HIDPP_QUIRK_HI_RES_SCROLL_X2121)
87
88 #define HIDPP_QUIRK_DELAYED_INIT                HIDPP_QUIRK_NO_HIDINPUT
89
90 #define HIDPP_CAPABILITY_HIDPP10_BATTERY        BIT(0)
91 #define HIDPP_CAPABILITY_HIDPP20_BATTERY        BIT(1)
92 #define HIDPP_CAPABILITY_BATTERY_MILEAGE        BIT(2)
93 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS   BIT(3)
94 #define HIDPP_CAPABILITY_BATTERY_VOLTAGE        BIT(4)
95
96 /*
97  * There are two hidpp protocols in use, the first version hidpp10 is known
98  * as register access protocol or RAP, the second version hidpp20 is known as
99  * feature access protocol or FAP
100  *
101  * Most older devices (including the Unifying usb receiver) use the RAP protocol
102  * where as most newer devices use the FAP protocol. Both protocols are
103  * compatible with the underlying transport, which could be usb, Unifiying, or
104  * bluetooth. The message lengths are defined by the hid vendor specific report
105  * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and
106  * the HIDPP_LONG report type (total message length 20 bytes)
107  *
108  * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG
109  * messages. The Unifying receiver itself responds to RAP messages (device index
110  * is 0xFF for the receiver), and all messages (short or long) with a device
111  * index between 1 and 6 are passed untouched to the corresponding paired
112  * Unifying device.
113  *
114  * The paired device can be RAP or FAP, it will receive the message untouched
115  * from the Unifiying receiver.
116  */
117
118 struct fap {
119         u8 feature_index;
120         u8 funcindex_clientid;
121         u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
122 };
123
124 struct rap {
125         u8 sub_id;
126         u8 reg_address;
127         u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
128 };
129
130 struct hidpp_report {
131         u8 report_id;
132         u8 device_index;
133         union {
134                 struct fap fap;
135                 struct rap rap;
136                 u8 rawbytes[sizeof(struct fap)];
137         };
138 } __packed;
139
140 struct hidpp_battery {
141         u8 feature_index;
142         u8 solar_feature_index;
143         u8 voltage_feature_index;
144         struct power_supply_desc desc;
145         struct power_supply *ps;
146         char name[64];
147         int status;
148         int capacity;
149         int level;
150         int voltage;
151         int charge_type;
152         bool online;
153 };
154
155 /**
156  * struct hidpp_scroll_counter - Utility class for processing high-resolution
157  *                             scroll events.
158  * @dev: the input device for which events should be reported.
159  * @wheel_multiplier: the scalar multiplier to be applied to each wheel event
160  * @remainder: counts the number of high-resolution units moved since the last
161  *             low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should
162  *             only be used by class methods.
163  * @direction: direction of last movement (1 or -1)
164  * @last_time: last event time, used to reset remainder after inactivity
165  */
166 struct hidpp_scroll_counter {
167         int wheel_multiplier;
168         int remainder;
169         int direction;
170         unsigned long long last_time;
171 };
172
173 struct hidpp_device {
174         struct hid_device *hid_dev;
175         struct input_dev *input;
176         struct mutex send_mutex;
177         void *send_receive_buf;
178         char *name;             /* will never be NULL and should not be freed */
179         wait_queue_head_t wait;
180         int very_long_report_length;
181         bool answer_available;
182         u8 protocol_major;
183         u8 protocol_minor;
184
185         void *private_data;
186
187         struct work_struct work;
188         struct kfifo delayed_work_fifo;
189         atomic_t connected;
190         struct input_dev *delayed_input;
191
192         unsigned long quirks;
193         unsigned long capabilities;
194         u8 supported_reports;
195
196         struct hidpp_battery battery;
197         struct hidpp_scroll_counter vertical_wheel_counter;
198
199         u8 wireless_feature_index;
200 };
201
202 /* HID++ 1.0 error codes */
203 #define HIDPP_ERROR                             0x8f
204 #define HIDPP_ERROR_SUCCESS                     0x00
205 #define HIDPP_ERROR_INVALID_SUBID               0x01
206 #define HIDPP_ERROR_INVALID_ADRESS              0x02
207 #define HIDPP_ERROR_INVALID_VALUE               0x03
208 #define HIDPP_ERROR_CONNECT_FAIL                0x04
209 #define HIDPP_ERROR_TOO_MANY_DEVICES            0x05
210 #define HIDPP_ERROR_ALREADY_EXISTS              0x06
211 #define HIDPP_ERROR_BUSY                        0x07
212 #define HIDPP_ERROR_UNKNOWN_DEVICE              0x08
213 #define HIDPP_ERROR_RESOURCE_ERROR              0x09
214 #define HIDPP_ERROR_REQUEST_UNAVAILABLE         0x0a
215 #define HIDPP_ERROR_INVALID_PARAM_VALUE         0x0b
216 #define HIDPP_ERROR_WRONG_PIN_CODE              0x0c
217 /* HID++ 2.0 error codes */
218 #define HIDPP20_ERROR                           0xff
219
220 static void hidpp_connect_event(struct hidpp_device *hidpp_dev);
221
222 static int __hidpp_send_report(struct hid_device *hdev,
223                                 struct hidpp_report *hidpp_report)
224 {
225         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
226         int fields_count, ret;
227
228         switch (hidpp_report->report_id) {
229         case REPORT_ID_HIDPP_SHORT:
230                 fields_count = HIDPP_REPORT_SHORT_LENGTH;
231                 break;
232         case REPORT_ID_HIDPP_LONG:
233                 fields_count = HIDPP_REPORT_LONG_LENGTH;
234                 break;
235         case REPORT_ID_HIDPP_VERY_LONG:
236                 fields_count = hidpp->very_long_report_length;
237                 break;
238         default:
239                 return -ENODEV;
240         }
241
242         /*
243          * set the device_index as the receiver, it will be overwritten by
244          * hid_hw_request if needed
245          */
246         hidpp_report->device_index = 0xff;
247
248         if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) {
249                 ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count);
250         } else {
251                 ret = hid_hw_raw_request(hdev, hidpp_report->report_id,
252                         (u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT,
253                         HID_REQ_SET_REPORT);
254         }
255
256         return ret == fields_count ? 0 : -1;
257 }
258
259 /**
260  * hidpp_send_message_sync() returns 0 in case of success, and something else
261  * in case of a failure.
262  * - If ' something else' is positive, that means that an error has been raised
263  *   by the protocol itself.
264  * - If ' something else' is negative, that means that we had a classic error
265  *   (-ENOMEM, -EPIPE, etc...)
266  */
267 static int hidpp_send_message_sync(struct hidpp_device *hidpp,
268         struct hidpp_report *message,
269         struct hidpp_report *response)
270 {
271         int ret;
272
273         mutex_lock(&hidpp->send_mutex);
274
275         hidpp->send_receive_buf = response;
276         hidpp->answer_available = false;
277
278         /*
279          * So that we can later validate the answer when it arrives
280          * in hidpp_raw_event
281          */
282         *response = *message;
283
284         ret = __hidpp_send_report(hidpp->hid_dev, message);
285
286         if (ret) {
287                 dbg_hid("__hidpp_send_report returned err: %d\n", ret);
288                 memset(response, 0, sizeof(struct hidpp_report));
289                 goto exit;
290         }
291
292         if (!wait_event_timeout(hidpp->wait, hidpp->answer_available,
293                                 5*HZ)) {
294                 dbg_hid("%s:timeout waiting for response\n", __func__);
295                 memset(response, 0, sizeof(struct hidpp_report));
296                 ret = -ETIMEDOUT;
297         }
298
299         if (response->report_id == REPORT_ID_HIDPP_SHORT &&
300             response->rap.sub_id == HIDPP_ERROR) {
301                 ret = response->rap.params[1];
302                 dbg_hid("%s:got hidpp error %02X\n", __func__, ret);
303                 goto exit;
304         }
305
306         if ((response->report_id == REPORT_ID_HIDPP_LONG ||
307                         response->report_id == REPORT_ID_HIDPP_VERY_LONG) &&
308                         response->fap.feature_index == HIDPP20_ERROR) {
309                 ret = response->fap.params[1];
310                 dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret);
311                 goto exit;
312         }
313
314 exit:
315         mutex_unlock(&hidpp->send_mutex);
316         return ret;
317
318 }
319
320 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp,
321         u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count,
322         struct hidpp_report *response)
323 {
324         struct hidpp_report *message;
325         int ret;
326
327         if (param_count > sizeof(message->fap.params))
328                 return -EINVAL;
329
330         message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
331         if (!message)
332                 return -ENOMEM;
333
334         if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4))
335                 message->report_id = REPORT_ID_HIDPP_VERY_LONG;
336         else
337                 message->report_id = REPORT_ID_HIDPP_LONG;
338         message->fap.feature_index = feat_index;
339         message->fap.funcindex_clientid = funcindex_clientid;
340         memcpy(&message->fap.params, params, param_count);
341
342         ret = hidpp_send_message_sync(hidpp, message, response);
343         kfree(message);
344         return ret;
345 }
346
347 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev,
348         u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count,
349         struct hidpp_report *response)
350 {
351         struct hidpp_report *message;
352         int ret, max_count;
353
354         /* Send as long report if short reports are not supported. */
355         if (report_id == REPORT_ID_HIDPP_SHORT &&
356             !(hidpp_dev->supported_reports & HIDPP_REPORT_SHORT_SUPPORTED))
357                 report_id = REPORT_ID_HIDPP_LONG;
358
359         switch (report_id) {
360         case REPORT_ID_HIDPP_SHORT:
361                 max_count = HIDPP_REPORT_SHORT_LENGTH - 4;
362                 break;
363         case REPORT_ID_HIDPP_LONG:
364                 max_count = HIDPP_REPORT_LONG_LENGTH - 4;
365                 break;
366         case REPORT_ID_HIDPP_VERY_LONG:
367                 max_count = hidpp_dev->very_long_report_length - 4;
368                 break;
369         default:
370                 return -EINVAL;
371         }
372
373         if (param_count > max_count)
374                 return -EINVAL;
375
376         message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
377         if (!message)
378                 return -ENOMEM;
379         message->report_id = report_id;
380         message->rap.sub_id = sub_id;
381         message->rap.reg_address = reg_address;
382         memcpy(&message->rap.params, params, param_count);
383
384         ret = hidpp_send_message_sync(hidpp_dev, message, response);
385         kfree(message);
386         return ret;
387 }
388
389 static void delayed_work_cb(struct work_struct *work)
390 {
391         struct hidpp_device *hidpp = container_of(work, struct hidpp_device,
392                                                         work);
393         hidpp_connect_event(hidpp);
394 }
395
396 static inline bool hidpp_match_answer(struct hidpp_report *question,
397                 struct hidpp_report *answer)
398 {
399         return (answer->fap.feature_index == question->fap.feature_index) &&
400            (answer->fap.funcindex_clientid == question->fap.funcindex_clientid);
401 }
402
403 static inline bool hidpp_match_error(struct hidpp_report *question,
404                 struct hidpp_report *answer)
405 {
406         return ((answer->rap.sub_id == HIDPP_ERROR) ||
407             (answer->fap.feature_index == HIDPP20_ERROR)) &&
408             (answer->fap.funcindex_clientid == question->fap.feature_index) &&
409             (answer->fap.params[0] == question->fap.funcindex_clientid);
410 }
411
412 static inline bool hidpp_report_is_connect_event(struct hidpp_device *hidpp,
413                 struct hidpp_report *report)
414 {
415         return (hidpp->wireless_feature_index &&
416                 (report->fap.feature_index == hidpp->wireless_feature_index)) ||
417                 ((report->report_id == REPORT_ID_HIDPP_SHORT) &&
418                 (report->rap.sub_id == 0x41));
419 }
420
421 /**
422  * hidpp_prefix_name() prefixes the current given name with "Logitech ".
423  */
424 static void hidpp_prefix_name(char **name, int name_length)
425 {
426 #define PREFIX_LENGTH 9 /* "Logitech " */
427
428         int new_length;
429         char *new_name;
430
431         if (name_length > PREFIX_LENGTH &&
432             strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0)
433                 /* The prefix has is already in the name */
434                 return;
435
436         new_length = PREFIX_LENGTH + name_length;
437         new_name = kzalloc(new_length, GFP_KERNEL);
438         if (!new_name)
439                 return;
440
441         snprintf(new_name, new_length, "Logitech %s", *name);
442
443         kfree(*name);
444
445         *name = new_name;
446 }
447
448 /**
449  * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll
450  *                                        events given a high-resolution wheel
451  *                                        movement.
452  * @counter: a hid_scroll_counter struct describing the wheel.
453  * @hi_res_value: the movement of the wheel, in the mouse's high-resolution
454  *                units.
455  *
456  * Given a high-resolution movement, this function converts the movement into
457  * fractions of 120 and emits high-resolution scroll events for the input
458  * device. It also uses the multiplier from &struct hid_scroll_counter to
459  * emit low-resolution scroll events when appropriate for
460  * backwards-compatibility with userspace input libraries.
461  */
462 static void hidpp_scroll_counter_handle_scroll(struct input_dev *input_dev,
463                                                struct hidpp_scroll_counter *counter,
464                                                int hi_res_value)
465 {
466         int low_res_value, remainder, direction;
467         unsigned long long now, previous;
468
469         hi_res_value = hi_res_value * 120/counter->wheel_multiplier;
470         input_report_rel(input_dev, REL_WHEEL_HI_RES, hi_res_value);
471
472         remainder = counter->remainder;
473         direction = hi_res_value > 0 ? 1 : -1;
474
475         now = sched_clock();
476         previous = counter->last_time;
477         counter->last_time = now;
478         /*
479          * Reset the remainder after a period of inactivity or when the
480          * direction changes. This prevents the REL_WHEEL emulation point
481          * from sliding for devices that don't always provide the same
482          * number of movements per detent.
483          */
484         if (now - previous > 1000000000 || direction != counter->direction)
485                 remainder = 0;
486
487         counter->direction = direction;
488         remainder += hi_res_value;
489
490         /* Some wheels will rest 7/8ths of a detent from the previous detent
491          * after slow movement, so we want the threshold for low-res events to
492          * be in the middle between two detents (e.g. after 4/8ths) as
493          * opposed to on the detents themselves (8/8ths).
494          */
495         if (abs(remainder) >= 60) {
496                 /* Add (or subtract) 1 because we want to trigger when the wheel
497                  * is half-way to the next detent (i.e. scroll 1 detent after a
498                  * 1/2 detent movement, 2 detents after a 1 1/2 detent movement,
499                  * etc.).
500                  */
501                 low_res_value = remainder / 120;
502                 if (low_res_value == 0)
503                         low_res_value = (hi_res_value > 0 ? 1 : -1);
504                 input_report_rel(input_dev, REL_WHEEL, low_res_value);
505                 remainder -= low_res_value * 120;
506         }
507         counter->remainder = remainder;
508 }
509
510 /* -------------------------------------------------------------------------- */
511 /* HIDP++ 1.0 commands                                                        */
512 /* -------------------------------------------------------------------------- */
513
514 #define HIDPP_SET_REGISTER                              0x80
515 #define HIDPP_GET_REGISTER                              0x81
516 #define HIDPP_SET_LONG_REGISTER                         0x82
517 #define HIDPP_GET_LONG_REGISTER                         0x83
518
519 /**
520  * hidpp10_set_register - Modify a HID++ 1.0 register.
521  * @hidpp_dev: the device to set the register on.
522  * @register_address: the address of the register to modify.
523  * @byte: the byte of the register to modify. Should be less than 3.
524  * @mask: mask of the bits to modify
525  * @value: new values for the bits in mask
526  * Return: 0 if successful, otherwise a negative error code.
527  */
528 static int hidpp10_set_register(struct hidpp_device *hidpp_dev,
529         u8 register_address, u8 byte, u8 mask, u8 value)
530 {
531         struct hidpp_report response;
532         int ret;
533         u8 params[3] = { 0 };
534
535         ret = hidpp_send_rap_command_sync(hidpp_dev,
536                                           REPORT_ID_HIDPP_SHORT,
537                                           HIDPP_GET_REGISTER,
538                                           register_address,
539                                           NULL, 0, &response);
540         if (ret)
541                 return ret;
542
543         memcpy(params, response.rap.params, 3);
544
545         params[byte] &= ~mask;
546         params[byte] |= value & mask;
547
548         return hidpp_send_rap_command_sync(hidpp_dev,
549                                            REPORT_ID_HIDPP_SHORT,
550                                            HIDPP_SET_REGISTER,
551                                            register_address,
552                                            params, 3, &response);
553 }
554
555 #define HIDPP_REG_ENABLE_REPORTS                        0x00
556 #define HIDPP_ENABLE_CONSUMER_REPORT                    BIT(0)
557 #define HIDPP_ENABLE_WHEEL_REPORT                       BIT(2)
558 #define HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT             BIT(3)
559 #define HIDPP_ENABLE_BAT_REPORT                         BIT(4)
560 #define HIDPP_ENABLE_HWHEEL_REPORT                      BIT(5)
561
562 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev)
563 {
564         return hidpp10_set_register(hidpp_dev, HIDPP_REG_ENABLE_REPORTS, 0,
565                           HIDPP_ENABLE_BAT_REPORT, HIDPP_ENABLE_BAT_REPORT);
566 }
567
568 #define HIDPP_REG_FEATURES                              0x01
569 #define HIDPP_ENABLE_SPECIAL_BUTTON_FUNC                BIT(1)
570 #define HIDPP_ENABLE_FAST_SCROLL                        BIT(6)
571
572 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */
573 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev)
574 {
575         return hidpp10_set_register(hidpp_dev, HIDPP_REG_FEATURES, 0,
576                           HIDPP_ENABLE_FAST_SCROLL, HIDPP_ENABLE_FAST_SCROLL);
577 }
578
579 #define HIDPP_REG_BATTERY_STATUS                        0x07
580
581 static int hidpp10_battery_status_map_level(u8 param)
582 {
583         int level;
584
585         switch (param) {
586         case 1 ... 2:
587                 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
588                 break;
589         case 3 ... 4:
590                 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
591                 break;
592         case 5 ... 6:
593                 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
594                 break;
595         case 7:
596                 level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
597                 break;
598         default:
599                 level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
600         }
601
602         return level;
603 }
604
605 static int hidpp10_battery_status_map_status(u8 param)
606 {
607         int status;
608
609         switch (param) {
610         case 0x00:
611                 /* discharging (in use) */
612                 status = POWER_SUPPLY_STATUS_DISCHARGING;
613                 break;
614         case 0x21: /* (standard) charging */
615         case 0x24: /* fast charging */
616         case 0x25: /* slow charging */
617                 status = POWER_SUPPLY_STATUS_CHARGING;
618                 break;
619         case 0x26: /* topping charge */
620         case 0x22: /* charge complete */
621                 status = POWER_SUPPLY_STATUS_FULL;
622                 break;
623         case 0x20: /* unknown */
624                 status = POWER_SUPPLY_STATUS_UNKNOWN;
625                 break;
626         /*
627          * 0x01...0x1F = reserved (not charging)
628          * 0x23 = charging error
629          * 0x27..0xff = reserved
630          */
631         default:
632                 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
633                 break;
634         }
635
636         return status;
637 }
638
639 static int hidpp10_query_battery_status(struct hidpp_device *hidpp)
640 {
641         struct hidpp_report response;
642         int ret, status;
643
644         ret = hidpp_send_rap_command_sync(hidpp,
645                                         REPORT_ID_HIDPP_SHORT,
646                                         HIDPP_GET_REGISTER,
647                                         HIDPP_REG_BATTERY_STATUS,
648                                         NULL, 0, &response);
649         if (ret)
650                 return ret;
651
652         hidpp->battery.level =
653                 hidpp10_battery_status_map_level(response.rap.params[0]);
654         status = hidpp10_battery_status_map_status(response.rap.params[1]);
655         hidpp->battery.status = status;
656         /* the capacity is only available when discharging or full */
657         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
658                                 status == POWER_SUPPLY_STATUS_FULL;
659
660         return 0;
661 }
662
663 #define HIDPP_REG_BATTERY_MILEAGE                       0x0D
664
665 static int hidpp10_battery_mileage_map_status(u8 param)
666 {
667         int status;
668
669         switch (param >> 6) {
670         case 0x00:
671                 /* discharging (in use) */
672                 status = POWER_SUPPLY_STATUS_DISCHARGING;
673                 break;
674         case 0x01: /* charging */
675                 status = POWER_SUPPLY_STATUS_CHARGING;
676                 break;
677         case 0x02: /* charge complete */
678                 status = POWER_SUPPLY_STATUS_FULL;
679                 break;
680         /*
681          * 0x03 = charging error
682          */
683         default:
684                 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
685                 break;
686         }
687
688         return status;
689 }
690
691 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp)
692 {
693         struct hidpp_report response;
694         int ret, status;
695
696         ret = hidpp_send_rap_command_sync(hidpp,
697                                         REPORT_ID_HIDPP_SHORT,
698                                         HIDPP_GET_REGISTER,
699                                         HIDPP_REG_BATTERY_MILEAGE,
700                                         NULL, 0, &response);
701         if (ret)
702                 return ret;
703
704         hidpp->battery.capacity = response.rap.params[0];
705         status = hidpp10_battery_mileage_map_status(response.rap.params[2]);
706         hidpp->battery.status = status;
707         /* the capacity is only available when discharging or full */
708         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
709                                 status == POWER_SUPPLY_STATUS_FULL;
710
711         return 0;
712 }
713
714 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size)
715 {
716         struct hidpp_report *report = (struct hidpp_report *)data;
717         int status, capacity, level;
718         bool changed;
719
720         if (report->report_id != REPORT_ID_HIDPP_SHORT)
721                 return 0;
722
723         switch (report->rap.sub_id) {
724         case HIDPP_REG_BATTERY_STATUS:
725                 capacity = hidpp->battery.capacity;
726                 level = hidpp10_battery_status_map_level(report->rawbytes[1]);
727                 status = hidpp10_battery_status_map_status(report->rawbytes[2]);
728                 break;
729         case HIDPP_REG_BATTERY_MILEAGE:
730                 capacity = report->rap.params[0];
731                 level = hidpp->battery.level;
732                 status = hidpp10_battery_mileage_map_status(report->rawbytes[3]);
733                 break;
734         default:
735                 return 0;
736         }
737
738         changed = capacity != hidpp->battery.capacity ||
739                   level != hidpp->battery.level ||
740                   status != hidpp->battery.status;
741
742         /* the capacity is only available when discharging or full */
743         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
744                                 status == POWER_SUPPLY_STATUS_FULL;
745
746         if (changed) {
747                 hidpp->battery.level = level;
748                 hidpp->battery.status = status;
749                 if (hidpp->battery.ps)
750                         power_supply_changed(hidpp->battery.ps);
751         }
752
753         return 0;
754 }
755
756 #define HIDPP_REG_PAIRING_INFORMATION                   0xB5
757 #define HIDPP_EXTENDED_PAIRING                          0x30
758 #define HIDPP_DEVICE_NAME                               0x40
759
760 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev)
761 {
762         struct hidpp_report response;
763         int ret;
764         u8 params[1] = { HIDPP_DEVICE_NAME };
765         char *name;
766         int len;
767
768         ret = hidpp_send_rap_command_sync(hidpp_dev,
769                                         REPORT_ID_HIDPP_SHORT,
770                                         HIDPP_GET_LONG_REGISTER,
771                                         HIDPP_REG_PAIRING_INFORMATION,
772                                         params, 1, &response);
773         if (ret)
774                 return NULL;
775
776         len = response.rap.params[1];
777
778         if (2 + len > sizeof(response.rap.params))
779                 return NULL;
780
781         if (len < 4) /* logitech devices are usually at least Xddd */
782                 return NULL;
783
784         name = kzalloc(len + 1, GFP_KERNEL);
785         if (!name)
786                 return NULL;
787
788         memcpy(name, &response.rap.params[2], len);
789
790         /* include the terminating '\0' */
791         hidpp_prefix_name(&name, len + 1);
792
793         return name;
794 }
795
796 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial)
797 {
798         struct hidpp_report response;
799         int ret;
800         u8 params[1] = { HIDPP_EXTENDED_PAIRING };
801
802         ret = hidpp_send_rap_command_sync(hidpp,
803                                         REPORT_ID_HIDPP_SHORT,
804                                         HIDPP_GET_LONG_REGISTER,
805                                         HIDPP_REG_PAIRING_INFORMATION,
806                                         params, 1, &response);
807         if (ret)
808                 return ret;
809
810         /*
811          * We don't care about LE or BE, we will output it as a string
812          * with %4phD, so we need to keep the order.
813          */
814         *serial = *((u32 *)&response.rap.params[1]);
815         return 0;
816 }
817
818 static int hidpp_unifying_init(struct hidpp_device *hidpp)
819 {
820         struct hid_device *hdev = hidpp->hid_dev;
821         const char *name;
822         u32 serial;
823         int ret;
824
825         ret = hidpp_unifying_get_serial(hidpp, &serial);
826         if (ret)
827                 return ret;
828
829         snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD",
830                  hdev->product, &serial);
831         dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq);
832
833         name = hidpp_unifying_get_name(hidpp);
834         if (!name)
835                 return -EIO;
836
837         snprintf(hdev->name, sizeof(hdev->name), "%s", name);
838         dbg_hid("HID++ Unifying: Got name: %s\n", name);
839
840         kfree(name);
841         return 0;
842 }
843
844 /* -------------------------------------------------------------------------- */
845 /* 0x0000: Root                                                               */
846 /* -------------------------------------------------------------------------- */
847
848 #define HIDPP_PAGE_ROOT                                 0x0000
849 #define HIDPP_PAGE_ROOT_IDX                             0x00
850
851 #define CMD_ROOT_GET_FEATURE                            0x01
852 #define CMD_ROOT_GET_PROTOCOL_VERSION                   0x11
853
854 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature,
855         u8 *feature_index, u8 *feature_type)
856 {
857         struct hidpp_report response;
858         int ret;
859         u8 params[2] = { feature >> 8, feature & 0x00FF };
860
861         ret = hidpp_send_fap_command_sync(hidpp,
862                         HIDPP_PAGE_ROOT_IDX,
863                         CMD_ROOT_GET_FEATURE,
864                         params, 2, &response);
865         if (ret)
866                 return ret;
867
868         if (response.fap.params[0] == 0)
869                 return -ENOENT;
870
871         *feature_index = response.fap.params[0];
872         *feature_type = response.fap.params[1];
873
874         return ret;
875 }
876
877 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp)
878 {
879         const u8 ping_byte = 0x5a;
880         u8 ping_data[3] = { 0, 0, ping_byte };
881         struct hidpp_report response;
882         int ret;
883
884         ret = hidpp_send_rap_command_sync(hidpp,
885                         REPORT_ID_HIDPP_SHORT,
886                         HIDPP_PAGE_ROOT_IDX,
887                         CMD_ROOT_GET_PROTOCOL_VERSION,
888                         ping_data, sizeof(ping_data), &response);
889
890         if (ret == HIDPP_ERROR_INVALID_SUBID) {
891                 hidpp->protocol_major = 1;
892                 hidpp->protocol_minor = 0;
893                 goto print_version;
894         }
895
896         /* the device might not be connected */
897         if (ret == HIDPP_ERROR_RESOURCE_ERROR)
898                 return -EIO;
899
900         if (ret > 0) {
901                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
902                         __func__, ret);
903                 return -EPROTO;
904         }
905         if (ret)
906                 return ret;
907
908         if (response.rap.params[2] != ping_byte) {
909                 hid_err(hidpp->hid_dev, "%s: ping mismatch 0x%02x != 0x%02x\n",
910                         __func__, response.rap.params[2], ping_byte);
911                 return -EPROTO;
912         }
913
914         hidpp->protocol_major = response.rap.params[0];
915         hidpp->protocol_minor = response.rap.params[1];
916
917 print_version:
918         hid_info(hidpp->hid_dev, "HID++ %u.%u device connected.\n",
919                  hidpp->protocol_major, hidpp->protocol_minor);
920         return 0;
921 }
922
923 /* -------------------------------------------------------------------------- */
924 /* 0x0005: GetDeviceNameType                                                  */
925 /* -------------------------------------------------------------------------- */
926
927 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE                 0x0005
928
929 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT              0x01
930 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME        0x11
931 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE               0x21
932
933 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp,
934         u8 feature_index, u8 *nameLength)
935 {
936         struct hidpp_report response;
937         int ret;
938
939         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
940                 CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response);
941
942         if (ret > 0) {
943                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
944                         __func__, ret);
945                 return -EPROTO;
946         }
947         if (ret)
948                 return ret;
949
950         *nameLength = response.fap.params[0];
951
952         return ret;
953 }
954
955 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp,
956         u8 feature_index, u8 char_index, char *device_name, int len_buf)
957 {
958         struct hidpp_report response;
959         int ret, i;
960         int count;
961
962         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
963                 CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1,
964                 &response);
965
966         if (ret > 0) {
967                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
968                         __func__, ret);
969                 return -EPROTO;
970         }
971         if (ret)
972                 return ret;
973
974         switch (response.report_id) {
975         case REPORT_ID_HIDPP_VERY_LONG:
976                 count = hidpp->very_long_report_length - 4;
977                 break;
978         case REPORT_ID_HIDPP_LONG:
979                 count = HIDPP_REPORT_LONG_LENGTH - 4;
980                 break;
981         case REPORT_ID_HIDPP_SHORT:
982                 count = HIDPP_REPORT_SHORT_LENGTH - 4;
983                 break;
984         default:
985                 return -EPROTO;
986         }
987
988         if (len_buf < count)
989                 count = len_buf;
990
991         for (i = 0; i < count; i++)
992                 device_name[i] = response.fap.params[i];
993
994         return count;
995 }
996
997 static char *hidpp_get_device_name(struct hidpp_device *hidpp)
998 {
999         u8 feature_type;
1000         u8 feature_index;
1001         u8 __name_length;
1002         char *name;
1003         unsigned index = 0;
1004         int ret;
1005
1006         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE,
1007                 &feature_index, &feature_type);
1008         if (ret)
1009                 return NULL;
1010
1011         ret = hidpp_devicenametype_get_count(hidpp, feature_index,
1012                 &__name_length);
1013         if (ret)
1014                 return NULL;
1015
1016         name = kzalloc(__name_length + 1, GFP_KERNEL);
1017         if (!name)
1018                 return NULL;
1019
1020         while (index < __name_length) {
1021                 ret = hidpp_devicenametype_get_device_name(hidpp,
1022                         feature_index, index, name + index,
1023                         __name_length - index);
1024                 if (ret <= 0) {
1025                         kfree(name);
1026                         return NULL;
1027                 }
1028                 index += ret;
1029         }
1030
1031         /* include the terminating '\0' */
1032         hidpp_prefix_name(&name, __name_length + 1);
1033
1034         return name;
1035 }
1036
1037 /* -------------------------------------------------------------------------- */
1038 /* 0x1000: Battery level status                                               */
1039 /* -------------------------------------------------------------------------- */
1040
1041 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS                         0x1000
1042
1043 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS       0x00
1044 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY         0x10
1045
1046 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST                    0x00
1047
1048 #define FLAG_BATTERY_LEVEL_DISABLE_OSD                          BIT(0)
1049 #define FLAG_BATTERY_LEVEL_MILEAGE                              BIT(1)
1050 #define FLAG_BATTERY_LEVEL_RECHARGEABLE                         BIT(2)
1051
1052 static int hidpp_map_battery_level(int capacity)
1053 {
1054         if (capacity < 11)
1055                 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1056         /*
1057          * The spec says this should be < 31 but some devices report 30
1058          * with brand new batteries and Windows reports 30 as "Good".
1059          */
1060         else if (capacity < 30)
1061                 return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1062         else if (capacity < 81)
1063                 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1064         return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1065 }
1066
1067 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity,
1068                                                     int *next_capacity,
1069                                                     int *level)
1070 {
1071         int status;
1072
1073         *capacity = data[0];
1074         *next_capacity = data[1];
1075         *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1076
1077         /* When discharging, we can rely on the device reported capacity.
1078          * For all other states the device reports 0 (unknown).
1079          */
1080         switch (data[2]) {
1081                 case 0: /* discharging (in use) */
1082                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1083                         *level = hidpp_map_battery_level(*capacity);
1084                         break;
1085                 case 1: /* recharging */
1086                         status = POWER_SUPPLY_STATUS_CHARGING;
1087                         break;
1088                 case 2: /* charge in final stage */
1089                         status = POWER_SUPPLY_STATUS_CHARGING;
1090                         break;
1091                 case 3: /* charge complete */
1092                         status = POWER_SUPPLY_STATUS_FULL;
1093                         *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1094                         *capacity = 100;
1095                         break;
1096                 case 4: /* recharging below optimal speed */
1097                         status = POWER_SUPPLY_STATUS_CHARGING;
1098                         break;
1099                 /* 5 = invalid battery type
1100                    6 = thermal error
1101                    7 = other charging error */
1102                 default:
1103                         status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1104                         break;
1105         }
1106
1107         return status;
1108 }
1109
1110 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp,
1111                                                      u8 feature_index,
1112                                                      int *status,
1113                                                      int *capacity,
1114                                                      int *next_capacity,
1115                                                      int *level)
1116 {
1117         struct hidpp_report response;
1118         int ret;
1119         u8 *params = (u8 *)response.fap.params;
1120
1121         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1122                                           CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS,
1123                                           NULL, 0, &response);
1124         /* Ignore these intermittent errors */
1125         if (ret == HIDPP_ERROR_RESOURCE_ERROR)
1126                 return -EIO;
1127         if (ret > 0) {
1128                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1129                         __func__, ret);
1130                 return -EPROTO;
1131         }
1132         if (ret)
1133                 return ret;
1134
1135         *status = hidpp20_batterylevel_map_status_capacity(params, capacity,
1136                                                            next_capacity,
1137                                                            level);
1138
1139         return 0;
1140 }
1141
1142 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp,
1143                                                   u8 feature_index)
1144 {
1145         struct hidpp_report response;
1146         int ret;
1147         u8 *params = (u8 *)response.fap.params;
1148         unsigned int level_count, flags;
1149
1150         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1151                                           CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY,
1152                                           NULL, 0, &response);
1153         if (ret > 0) {
1154                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1155                         __func__, ret);
1156                 return -EPROTO;
1157         }
1158         if (ret)
1159                 return ret;
1160
1161         level_count = params[0];
1162         flags = params[1];
1163
1164         if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE))
1165                 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1166         else
1167                 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1168
1169         return 0;
1170 }
1171
1172 static int hidpp20_query_battery_info(struct hidpp_device *hidpp)
1173 {
1174         u8 feature_type;
1175         int ret;
1176         int status, capacity, next_capacity, level;
1177
1178         if (hidpp->battery.feature_index == 0xff) {
1179                 ret = hidpp_root_get_feature(hidpp,
1180                                              HIDPP_PAGE_BATTERY_LEVEL_STATUS,
1181                                              &hidpp->battery.feature_index,
1182                                              &feature_type);
1183                 if (ret)
1184                         return ret;
1185         }
1186
1187         ret = hidpp20_batterylevel_get_battery_capacity(hidpp,
1188                                                 hidpp->battery.feature_index,
1189                                                 &status, &capacity,
1190                                                 &next_capacity, &level);
1191         if (ret)
1192                 return ret;
1193
1194         ret = hidpp20_batterylevel_get_battery_info(hidpp,
1195                                                 hidpp->battery.feature_index);
1196         if (ret)
1197                 return ret;
1198
1199         hidpp->battery.status = status;
1200         hidpp->battery.capacity = capacity;
1201         hidpp->battery.level = level;
1202         /* the capacity is only available when discharging or full */
1203         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1204                                 status == POWER_SUPPLY_STATUS_FULL;
1205
1206         return 0;
1207 }
1208
1209 static int hidpp20_battery_event(struct hidpp_device *hidpp,
1210                                  u8 *data, int size)
1211 {
1212         struct hidpp_report *report = (struct hidpp_report *)data;
1213         int status, capacity, next_capacity, level;
1214         bool changed;
1215
1216         if (report->fap.feature_index != hidpp->battery.feature_index ||
1217             report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST)
1218                 return 0;
1219
1220         status = hidpp20_batterylevel_map_status_capacity(report->fap.params,
1221                                                           &capacity,
1222                                                           &next_capacity,
1223                                                           &level);
1224
1225         /* the capacity is only available when discharging or full */
1226         hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1227                                 status == POWER_SUPPLY_STATUS_FULL;
1228
1229         changed = capacity != hidpp->battery.capacity ||
1230                   level != hidpp->battery.level ||
1231                   status != hidpp->battery.status;
1232
1233         if (changed) {
1234                 hidpp->battery.level = level;
1235                 hidpp->battery.capacity = capacity;
1236                 hidpp->battery.status = status;
1237                 if (hidpp->battery.ps)
1238                         power_supply_changed(hidpp->battery.ps);
1239         }
1240
1241         return 0;
1242 }
1243
1244 /* -------------------------------------------------------------------------- */
1245 /* 0x1001: Battery voltage                                                    */
1246 /* -------------------------------------------------------------------------- */
1247
1248 #define HIDPP_PAGE_BATTERY_VOLTAGE 0x1001
1249
1250 #define CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE 0x00
1251
1252 #define EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST 0x00
1253
1254 static int hidpp20_battery_map_status_voltage(u8 data[3], int *voltage,
1255                                                 int *level, int *charge_type)
1256 {
1257         int status;
1258
1259         long flags = (long) data[2];
1260
1261         if (flags & 0x80)
1262                 switch (flags & 0x07) {
1263                 case 0:
1264                         status = POWER_SUPPLY_STATUS_CHARGING;
1265                         break;
1266                 case 1:
1267                         status = POWER_SUPPLY_STATUS_FULL;
1268                         *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1269                         break;
1270                 case 2:
1271                         status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1272                         break;
1273                 default:
1274                         status = POWER_SUPPLY_STATUS_UNKNOWN;
1275                         break;
1276                 }
1277         else
1278                 status = POWER_SUPPLY_STATUS_DISCHARGING;
1279
1280         *charge_type = POWER_SUPPLY_CHARGE_TYPE_STANDARD;
1281         if (test_bit(3, &flags)) {
1282                 *charge_type = POWER_SUPPLY_CHARGE_TYPE_FAST;
1283         }
1284         if (test_bit(4, &flags)) {
1285                 *charge_type = POWER_SUPPLY_CHARGE_TYPE_TRICKLE;
1286         }
1287         if (test_bit(5, &flags)) {
1288                 *level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1289         }
1290
1291         *voltage = get_unaligned_be16(data);
1292
1293         return status;
1294 }
1295
1296 static int hidpp20_battery_get_battery_voltage(struct hidpp_device *hidpp,
1297                                                  u8 feature_index,
1298                                                  int *status, int *voltage,
1299                                                  int *level, int *charge_type)
1300 {
1301         struct hidpp_report response;
1302         int ret;
1303         u8 *params = (u8 *)response.fap.params;
1304
1305         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1306                                           CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE,
1307                                           NULL, 0, &response);
1308
1309         if (ret > 0) {
1310                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1311                         __func__, ret);
1312                 return -EPROTO;
1313         }
1314         if (ret)
1315                 return ret;
1316
1317         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_VOLTAGE;
1318
1319         *status = hidpp20_battery_map_status_voltage(params, voltage,
1320                                                      level, charge_type);
1321
1322         return 0;
1323 }
1324
1325 static int hidpp20_query_battery_voltage_info(struct hidpp_device *hidpp)
1326 {
1327         u8 feature_type;
1328         int ret;
1329         int status, voltage, level, charge_type;
1330
1331         if (hidpp->battery.voltage_feature_index == 0xff) {
1332                 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_BATTERY_VOLTAGE,
1333                                              &hidpp->battery.voltage_feature_index,
1334                                              &feature_type);
1335                 if (ret)
1336                         return ret;
1337         }
1338
1339         ret = hidpp20_battery_get_battery_voltage(hidpp,
1340                                                   hidpp->battery.voltage_feature_index,
1341                                                   &status, &voltage, &level, &charge_type);
1342
1343         if (ret)
1344                 return ret;
1345
1346         hidpp->battery.status = status;
1347         hidpp->battery.voltage = voltage;
1348         hidpp->battery.level = level;
1349         hidpp->battery.charge_type = charge_type;
1350         hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING;
1351
1352         return 0;
1353 }
1354
1355 static int hidpp20_battery_voltage_event(struct hidpp_device *hidpp,
1356                                             u8 *data, int size)
1357 {
1358         struct hidpp_report *report = (struct hidpp_report *)data;
1359         int status, voltage, level, charge_type;
1360
1361         if (report->fap.feature_index != hidpp->battery.voltage_feature_index ||
1362                 report->fap.funcindex_clientid != EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST)
1363                 return 0;
1364
1365         status = hidpp20_battery_map_status_voltage(report->fap.params, &voltage,
1366                                                     &level, &charge_type);
1367
1368         hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING;
1369
1370         if (voltage != hidpp->battery.voltage || status != hidpp->battery.status) {
1371                 hidpp->battery.voltage = voltage;
1372                 hidpp->battery.status = status;
1373                 hidpp->battery.level = level;
1374                 hidpp->battery.charge_type = charge_type;
1375                 if (hidpp->battery.ps)
1376                         power_supply_changed(hidpp->battery.ps);
1377         }
1378         return 0;
1379 }
1380
1381 static enum power_supply_property hidpp_battery_props[] = {
1382         POWER_SUPPLY_PROP_ONLINE,
1383         POWER_SUPPLY_PROP_STATUS,
1384         POWER_SUPPLY_PROP_SCOPE,
1385         POWER_SUPPLY_PROP_MODEL_NAME,
1386         POWER_SUPPLY_PROP_MANUFACTURER,
1387         POWER_SUPPLY_PROP_SERIAL_NUMBER,
1388         0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */
1389         0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */
1390         0, /* placeholder for POWER_SUPPLY_PROP_VOLTAGE_NOW, */
1391 };
1392
1393 static int hidpp_battery_get_property(struct power_supply *psy,
1394                                       enum power_supply_property psp,
1395                                       union power_supply_propval *val)
1396 {
1397         struct hidpp_device *hidpp = power_supply_get_drvdata(psy);
1398         int ret = 0;
1399
1400         switch(psp) {
1401                 case POWER_SUPPLY_PROP_STATUS:
1402                         val->intval = hidpp->battery.status;
1403                         break;
1404                 case POWER_SUPPLY_PROP_CAPACITY:
1405                         val->intval = hidpp->battery.capacity;
1406                         break;
1407                 case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1408                         val->intval = hidpp->battery.level;
1409                         break;
1410                 case POWER_SUPPLY_PROP_SCOPE:
1411                         val->intval = POWER_SUPPLY_SCOPE_DEVICE;
1412                         break;
1413                 case POWER_SUPPLY_PROP_ONLINE:
1414                         val->intval = hidpp->battery.online;
1415                         break;
1416                 case POWER_SUPPLY_PROP_MODEL_NAME:
1417                         if (!strncmp(hidpp->name, "Logitech ", 9))
1418                                 val->strval = hidpp->name + 9;
1419                         else
1420                                 val->strval = hidpp->name;
1421                         break;
1422                 case POWER_SUPPLY_PROP_MANUFACTURER:
1423                         val->strval = "Logitech";
1424                         break;
1425                 case POWER_SUPPLY_PROP_SERIAL_NUMBER:
1426                         val->strval = hidpp->hid_dev->uniq;
1427                         break;
1428                 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
1429                         /* hardware reports voltage in in mV. sysfs expects uV */
1430                         val->intval = hidpp->battery.voltage * 1000;
1431                         break;
1432                 case POWER_SUPPLY_PROP_CHARGE_TYPE:
1433                         val->intval = hidpp->battery.charge_type;
1434                         break;
1435                 default:
1436                         ret = -EINVAL;
1437                         break;
1438         }
1439
1440         return ret;
1441 }
1442
1443 /* -------------------------------------------------------------------------- */
1444 /* 0x1d4b: Wireless device status                                             */
1445 /* -------------------------------------------------------------------------- */
1446 #define HIDPP_PAGE_WIRELESS_DEVICE_STATUS                       0x1d4b
1447
1448 static int hidpp_set_wireless_feature_index(struct hidpp_device *hidpp)
1449 {
1450         u8 feature_type;
1451         int ret;
1452
1453         ret = hidpp_root_get_feature(hidpp,
1454                                      HIDPP_PAGE_WIRELESS_DEVICE_STATUS,
1455                                      &hidpp->wireless_feature_index,
1456                                      &feature_type);
1457
1458         return ret;
1459 }
1460
1461 /* -------------------------------------------------------------------------- */
1462 /* 0x2120: Hi-resolution scrolling                                            */
1463 /* -------------------------------------------------------------------------- */
1464
1465 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING                      0x2120
1466
1467 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE  0x10
1468
1469 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp,
1470         bool enabled, u8 *multiplier)
1471 {
1472         u8 feature_index;
1473         u8 feature_type;
1474         int ret;
1475         u8 params[1];
1476         struct hidpp_report response;
1477
1478         ret = hidpp_root_get_feature(hidpp,
1479                                      HIDPP_PAGE_HI_RESOLUTION_SCROLLING,
1480                                      &feature_index,
1481                                      &feature_type);
1482         if (ret)
1483                 return ret;
1484
1485         params[0] = enabled ? BIT(0) : 0;
1486         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1487                                           CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE,
1488                                           params, sizeof(params), &response);
1489         if (ret)
1490                 return ret;
1491         *multiplier = response.fap.params[1];
1492         return 0;
1493 }
1494
1495 /* -------------------------------------------------------------------------- */
1496 /* 0x2121: HiRes Wheel                                                        */
1497 /* -------------------------------------------------------------------------- */
1498
1499 #define HIDPP_PAGE_HIRES_WHEEL          0x2121
1500
1501 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY    0x00
1502 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE          0x20
1503
1504 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp,
1505         u8 *multiplier)
1506 {
1507         u8 feature_index;
1508         u8 feature_type;
1509         int ret;
1510         struct hidpp_report response;
1511
1512         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1513                                      &feature_index, &feature_type);
1514         if (ret)
1515                 goto return_default;
1516
1517         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1518                                           CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY,
1519                                           NULL, 0, &response);
1520         if (ret)
1521                 goto return_default;
1522
1523         *multiplier = response.fap.params[0];
1524         return 0;
1525 return_default:
1526         hid_warn(hidpp->hid_dev,
1527                  "Couldn't get wheel multiplier (error %d)\n", ret);
1528         return ret;
1529 }
1530
1531 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert,
1532         bool high_resolution, bool use_hidpp)
1533 {
1534         u8 feature_index;
1535         u8 feature_type;
1536         int ret;
1537         u8 params[1];
1538         struct hidpp_report response;
1539
1540         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1541                                      &feature_index, &feature_type);
1542         if (ret)
1543                 return ret;
1544
1545         params[0] = (invert          ? BIT(2) : 0) |
1546                     (high_resolution ? BIT(1) : 0) |
1547                     (use_hidpp       ? BIT(0) : 0);
1548
1549         return hidpp_send_fap_command_sync(hidpp, feature_index,
1550                                            CMD_HIRES_WHEEL_SET_WHEEL_MODE,
1551                                            params, sizeof(params), &response);
1552 }
1553
1554 /* -------------------------------------------------------------------------- */
1555 /* 0x4301: Solar Keyboard                                                     */
1556 /* -------------------------------------------------------------------------- */
1557
1558 #define HIDPP_PAGE_SOLAR_KEYBOARD                       0x4301
1559
1560 #define CMD_SOLAR_SET_LIGHT_MEASURE                     0x00
1561
1562 #define EVENT_SOLAR_BATTERY_BROADCAST                   0x00
1563 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE               0x10
1564 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON                  0x20
1565
1566 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp)
1567 {
1568         struct hidpp_report response;
1569         u8 params[2] = { 1, 1 };
1570         u8 feature_type;
1571         int ret;
1572
1573         if (hidpp->battery.feature_index == 0xff) {
1574                 ret = hidpp_root_get_feature(hidpp,
1575                                              HIDPP_PAGE_SOLAR_KEYBOARD,
1576                                              &hidpp->battery.solar_feature_index,
1577                                              &feature_type);
1578                 if (ret)
1579                         return ret;
1580         }
1581
1582         ret = hidpp_send_fap_command_sync(hidpp,
1583                                           hidpp->battery.solar_feature_index,
1584                                           CMD_SOLAR_SET_LIGHT_MEASURE,
1585                                           params, 2, &response);
1586         if (ret > 0) {
1587                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1588                         __func__, ret);
1589                 return -EPROTO;
1590         }
1591         if (ret)
1592                 return ret;
1593
1594         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1595
1596         return 0;
1597 }
1598
1599 static int hidpp_solar_battery_event(struct hidpp_device *hidpp,
1600                                      u8 *data, int size)
1601 {
1602         struct hidpp_report *report = (struct hidpp_report *)data;
1603         int capacity, lux, status;
1604         u8 function;
1605
1606         function = report->fap.funcindex_clientid;
1607
1608
1609         if (report->fap.feature_index != hidpp->battery.solar_feature_index ||
1610             !(function == EVENT_SOLAR_BATTERY_BROADCAST ||
1611               function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE ||
1612               function == EVENT_SOLAR_CHECK_LIGHT_BUTTON))
1613                 return 0;
1614
1615         capacity = report->fap.params[0];
1616
1617         switch (function) {
1618         case EVENT_SOLAR_BATTERY_LIGHT_MEASURE:
1619                 lux = (report->fap.params[1] << 8) | report->fap.params[2];
1620                 if (lux > 200)
1621                         status = POWER_SUPPLY_STATUS_CHARGING;
1622                 else
1623                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1624                 break;
1625         case EVENT_SOLAR_CHECK_LIGHT_BUTTON:
1626         default:
1627                 if (capacity < hidpp->battery.capacity)
1628                         status = POWER_SUPPLY_STATUS_DISCHARGING;
1629                 else
1630                         status = POWER_SUPPLY_STATUS_CHARGING;
1631
1632         }
1633
1634         if (capacity == 100)
1635                 status = POWER_SUPPLY_STATUS_FULL;
1636
1637         hidpp->battery.online = true;
1638         if (capacity != hidpp->battery.capacity ||
1639             status != hidpp->battery.status) {
1640                 hidpp->battery.capacity = capacity;
1641                 hidpp->battery.status = status;
1642                 if (hidpp->battery.ps)
1643                         power_supply_changed(hidpp->battery.ps);
1644         }
1645
1646         return 0;
1647 }
1648
1649 /* -------------------------------------------------------------------------- */
1650 /* 0x6010: Touchpad FW items                                                  */
1651 /* -------------------------------------------------------------------------- */
1652
1653 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS                    0x6010
1654
1655 #define CMD_TOUCHPAD_FW_ITEMS_SET                       0x10
1656
1657 struct hidpp_touchpad_fw_items {
1658         uint8_t presence;
1659         uint8_t desired_state;
1660         uint8_t state;
1661         uint8_t persistent;
1662 };
1663
1664 /**
1665  * send a set state command to the device by reading the current items->state
1666  * field. items is then filled with the current state.
1667  */
1668 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp,
1669                                        u8 feature_index,
1670                                        struct hidpp_touchpad_fw_items *items)
1671 {
1672         struct hidpp_report response;
1673         int ret;
1674         u8 *params = (u8 *)response.fap.params;
1675
1676         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1677                 CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response);
1678
1679         if (ret > 0) {
1680                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1681                         __func__, ret);
1682                 return -EPROTO;
1683         }
1684         if (ret)
1685                 return ret;
1686
1687         items->presence = params[0];
1688         items->desired_state = params[1];
1689         items->state = params[2];
1690         items->persistent = params[3];
1691
1692         return 0;
1693 }
1694
1695 /* -------------------------------------------------------------------------- */
1696 /* 0x6100: TouchPadRawXY                                                      */
1697 /* -------------------------------------------------------------------------- */
1698
1699 #define HIDPP_PAGE_TOUCHPAD_RAW_XY                      0x6100
1700
1701 #define CMD_TOUCHPAD_GET_RAW_INFO                       0x01
1702 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE               0x21
1703
1704 #define EVENT_TOUCHPAD_RAW_XY                           0x00
1705
1706 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT               0x01
1707 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT               0x03
1708
1709 struct hidpp_touchpad_raw_info {
1710         u16 x_size;
1711         u16 y_size;
1712         u8 z_range;
1713         u8 area_range;
1714         u8 timestamp_unit;
1715         u8 maxcontacts;
1716         u8 origin;
1717         u16 res;
1718 };
1719
1720 struct hidpp_touchpad_raw_xy_finger {
1721         u8 contact_type;
1722         u8 contact_status;
1723         u16 x;
1724         u16 y;
1725         u8 z;
1726         u8 area;
1727         u8 finger_id;
1728 };
1729
1730 struct hidpp_touchpad_raw_xy {
1731         u16 timestamp;
1732         struct hidpp_touchpad_raw_xy_finger fingers[2];
1733         u8 spurious_flag;
1734         u8 end_of_frame;
1735         u8 finger_count;
1736         u8 button;
1737 };
1738
1739 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp,
1740         u8 feature_index, struct hidpp_touchpad_raw_info *raw_info)
1741 {
1742         struct hidpp_report response;
1743         int ret;
1744         u8 *params = (u8 *)response.fap.params;
1745
1746         ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1747                 CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response);
1748
1749         if (ret > 0) {
1750                 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1751                         __func__, ret);
1752                 return -EPROTO;
1753         }
1754         if (ret)
1755                 return ret;
1756
1757         raw_info->x_size = get_unaligned_be16(&params[0]);
1758         raw_info->y_size = get_unaligned_be16(&params[2]);
1759         raw_info->z_range = params[4];
1760         raw_info->area_range = params[5];
1761         raw_info->maxcontacts = params[7];
1762         raw_info->origin = params[8];
1763         /* res is given in unit per inch */
1764         raw_info->res = get_unaligned_be16(&params[13]) * 2 / 51;
1765
1766         return ret;
1767 }
1768
1769 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev,
1770                 u8 feature_index, bool send_raw_reports,
1771                 bool sensor_enhanced_settings)
1772 {
1773         struct hidpp_report response;
1774
1775         /*
1776          * Params:
1777          *   bit 0 - enable raw
1778          *   bit 1 - 16bit Z, no area
1779          *   bit 2 - enhanced sensitivity
1780          *   bit 3 - width, height (4 bits each) instead of area
1781          *   bit 4 - send raw + gestures (degrades smoothness)
1782          *   remaining bits - reserved
1783          */
1784         u8 params = send_raw_reports | (sensor_enhanced_settings << 2);
1785
1786         return hidpp_send_fap_command_sync(hidpp_dev, feature_index,
1787                 CMD_TOUCHPAD_SET_RAW_REPORT_STATE, &params, 1, &response);
1788 }
1789
1790 static void hidpp_touchpad_touch_event(u8 *data,
1791         struct hidpp_touchpad_raw_xy_finger *finger)
1792 {
1793         u8 x_m = data[0] << 2;
1794         u8 y_m = data[2] << 2;
1795
1796         finger->x = x_m << 6 | data[1];
1797         finger->y = y_m << 6 | data[3];
1798
1799         finger->contact_type = data[0] >> 6;
1800         finger->contact_status = data[2] >> 6;
1801
1802         finger->z = data[4];
1803         finger->area = data[5];
1804         finger->finger_id = data[6] >> 4;
1805 }
1806
1807 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev,
1808                 u8 *data, struct hidpp_touchpad_raw_xy *raw_xy)
1809 {
1810         memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy));
1811         raw_xy->end_of_frame = data[8] & 0x01;
1812         raw_xy->spurious_flag = (data[8] >> 1) & 0x01;
1813         raw_xy->finger_count = data[15] & 0x0f;
1814         raw_xy->button = (data[8] >> 2) & 0x01;
1815
1816         if (raw_xy->finger_count) {
1817                 hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]);
1818                 hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]);
1819         }
1820 }
1821
1822 /* -------------------------------------------------------------------------- */
1823 /* 0x8123: Force feedback support                                             */
1824 /* -------------------------------------------------------------------------- */
1825
1826 #define HIDPP_FF_GET_INFO               0x01
1827 #define HIDPP_FF_RESET_ALL              0x11
1828 #define HIDPP_FF_DOWNLOAD_EFFECT        0x21
1829 #define HIDPP_FF_SET_EFFECT_STATE       0x31
1830 #define HIDPP_FF_DESTROY_EFFECT         0x41
1831 #define HIDPP_FF_GET_APERTURE           0x51
1832 #define HIDPP_FF_SET_APERTURE           0x61
1833 #define HIDPP_FF_GET_GLOBAL_GAINS       0x71
1834 #define HIDPP_FF_SET_GLOBAL_GAINS       0x81
1835
1836 #define HIDPP_FF_EFFECT_STATE_GET       0x00
1837 #define HIDPP_FF_EFFECT_STATE_STOP      0x01
1838 #define HIDPP_FF_EFFECT_STATE_PLAY      0x02
1839 #define HIDPP_FF_EFFECT_STATE_PAUSE     0x03
1840
1841 #define HIDPP_FF_EFFECT_CONSTANT        0x00
1842 #define HIDPP_FF_EFFECT_PERIODIC_SINE           0x01
1843 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE         0x02
1844 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE       0x03
1845 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP     0x04
1846 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN   0x05
1847 #define HIDPP_FF_EFFECT_SPRING          0x06
1848 #define HIDPP_FF_EFFECT_DAMPER          0x07
1849 #define HIDPP_FF_EFFECT_FRICTION        0x08
1850 #define HIDPP_FF_EFFECT_INERTIA         0x09
1851 #define HIDPP_FF_EFFECT_RAMP            0x0A
1852
1853 #define HIDPP_FF_EFFECT_AUTOSTART       0x80
1854
1855 #define HIDPP_FF_EFFECTID_NONE          -1
1856 #define HIDPP_FF_EFFECTID_AUTOCENTER    -2
1857 #define HIDPP_AUTOCENTER_PARAMS_LENGTH  18
1858
1859 #define HIDPP_FF_MAX_PARAMS     20
1860 #define HIDPP_FF_RESERVED_SLOTS 1
1861
1862 struct hidpp_ff_private_data {
1863         struct hidpp_device *hidpp;
1864         u8 feature_index;
1865         u8 version;
1866         u16 gain;
1867         s16 range;
1868         u8 slot_autocenter;
1869         u8 num_effects;
1870         int *effect_ids;
1871         struct workqueue_struct *wq;
1872         atomic_t workqueue_size;
1873 };
1874
1875 struct hidpp_ff_work_data {
1876         struct work_struct work;
1877         struct hidpp_ff_private_data *data;
1878         int effect_id;
1879         u8 command;
1880         u8 params[HIDPP_FF_MAX_PARAMS];
1881         u8 size;
1882 };
1883
1884 static const signed short hidpp_ff_effects[] = {
1885         FF_CONSTANT,
1886         FF_PERIODIC,
1887         FF_SINE,
1888         FF_SQUARE,
1889         FF_SAW_UP,
1890         FF_SAW_DOWN,
1891         FF_TRIANGLE,
1892         FF_SPRING,
1893         FF_DAMPER,
1894         FF_AUTOCENTER,
1895         FF_GAIN,
1896         -1
1897 };
1898
1899 static const signed short hidpp_ff_effects_v2[] = {
1900         FF_RAMP,
1901         FF_FRICTION,
1902         FF_INERTIA,
1903         -1
1904 };
1905
1906 static const u8 HIDPP_FF_CONDITION_CMDS[] = {
1907         HIDPP_FF_EFFECT_SPRING,
1908         HIDPP_FF_EFFECT_FRICTION,
1909         HIDPP_FF_EFFECT_DAMPER,
1910         HIDPP_FF_EFFECT_INERTIA
1911 };
1912
1913 static const char *HIDPP_FF_CONDITION_NAMES[] = {
1914         "spring",
1915         "friction",
1916         "damper",
1917         "inertia"
1918 };
1919
1920
1921 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id)
1922 {
1923         int i;
1924
1925         for (i = 0; i < data->num_effects; i++)
1926                 if (data->effect_ids[i] == effect_id)
1927                         return i+1;
1928
1929         return 0;
1930 }
1931
1932 static void hidpp_ff_work_handler(struct work_struct *w)
1933 {
1934         struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work);
1935         struct hidpp_ff_private_data *data = wd->data;
1936         struct hidpp_report response;
1937         u8 slot;
1938         int ret;
1939
1940         /* add slot number if needed */
1941         switch (wd->effect_id) {
1942         case HIDPP_FF_EFFECTID_AUTOCENTER:
1943                 wd->params[0] = data->slot_autocenter;
1944                 break;
1945         case HIDPP_FF_EFFECTID_NONE:
1946                 /* leave slot as zero */
1947                 break;
1948         default:
1949                 /* find current slot for effect */
1950                 wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id);
1951                 break;
1952         }
1953
1954         /* send command and wait for reply */
1955         ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index,
1956                 wd->command, wd->params, wd->size, &response);
1957
1958         if (ret) {
1959                 hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n");
1960                 goto out;
1961         }
1962
1963         /* parse return data */
1964         switch (wd->command) {
1965         case HIDPP_FF_DOWNLOAD_EFFECT:
1966                 slot = response.fap.params[0];
1967                 if (slot > 0 && slot <= data->num_effects) {
1968                         if (wd->effect_id >= 0)
1969                                 /* regular effect uploaded */
1970                                 data->effect_ids[slot-1] = wd->effect_id;
1971                         else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1972                                 /* autocenter spring uploaded */
1973                                 data->slot_autocenter = slot;
1974                 }
1975                 break;
1976         case HIDPP_FF_DESTROY_EFFECT:
1977                 if (wd->effect_id >= 0)
1978                         /* regular effect destroyed */
1979                         data->effect_ids[wd->params[0]-1] = -1;
1980                 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1981                         /* autocenter spring destoyed */
1982                         data->slot_autocenter = 0;
1983                 break;
1984         case HIDPP_FF_SET_GLOBAL_GAINS:
1985                 data->gain = (wd->params[0] << 8) + wd->params[1];
1986                 break;
1987         case HIDPP_FF_SET_APERTURE:
1988                 data->range = (wd->params[0] << 8) + wd->params[1];
1989                 break;
1990         default:
1991                 /* no action needed */
1992                 break;
1993         }
1994
1995 out:
1996         atomic_dec(&data->workqueue_size);
1997         kfree(wd);
1998 }
1999
2000 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size)
2001 {
2002         struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL);
2003         int s;
2004
2005         if (!wd)
2006                 return -ENOMEM;
2007
2008         INIT_WORK(&wd->work, hidpp_ff_work_handler);
2009
2010         wd->data = data;
2011         wd->effect_id = effect_id;
2012         wd->command = command;
2013         wd->size = size;
2014         memcpy(wd->params, params, size);
2015
2016         atomic_inc(&data->workqueue_size);
2017         queue_work(data->wq, &wd->work);
2018
2019         /* warn about excessive queue size */
2020         s = atomic_read(&data->workqueue_size);
2021         if (s >= 20 && s % 20 == 0)
2022                 hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s);
2023
2024         return 0;
2025 }
2026
2027 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old)
2028 {
2029         struct hidpp_ff_private_data *data = dev->ff->private;
2030         u8 params[20];
2031         u8 size;
2032         int force;
2033
2034         /* set common parameters */
2035         params[2] = effect->replay.length >> 8;
2036         params[3] = effect->replay.length & 255;
2037         params[4] = effect->replay.delay >> 8;
2038         params[5] = effect->replay.delay & 255;
2039
2040         switch (effect->type) {
2041         case FF_CONSTANT:
2042                 force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2043                 params[1] = HIDPP_FF_EFFECT_CONSTANT;
2044                 params[6] = force >> 8;
2045                 params[7] = force & 255;
2046                 params[8] = effect->u.constant.envelope.attack_level >> 7;
2047                 params[9] = effect->u.constant.envelope.attack_length >> 8;
2048                 params[10] = effect->u.constant.envelope.attack_length & 255;
2049                 params[11] = effect->u.constant.envelope.fade_level >> 7;
2050                 params[12] = effect->u.constant.envelope.fade_length >> 8;
2051                 params[13] = effect->u.constant.envelope.fade_length & 255;
2052                 size = 14;
2053                 dbg_hid("Uploading constant force level=%d in dir %d = %d\n",
2054                                 effect->u.constant.level,
2055                                 effect->direction, force);
2056                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2057                                 effect->u.constant.envelope.attack_level,
2058                                 effect->u.constant.envelope.attack_length,
2059                                 effect->u.constant.envelope.fade_level,
2060                                 effect->u.constant.envelope.fade_length);
2061                 break;
2062         case FF_PERIODIC:
2063         {
2064                 switch (effect->u.periodic.waveform) {
2065                 case FF_SINE:
2066                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE;
2067                         break;
2068                 case FF_SQUARE:
2069                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE;
2070                         break;
2071                 case FF_SAW_UP:
2072                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP;
2073                         break;
2074                 case FF_SAW_DOWN:
2075                         params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN;
2076                         break;
2077                 case FF_TRIANGLE:
2078                         params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE;
2079                         break;
2080                 default:
2081                         hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform);
2082                         return -EINVAL;
2083                 }
2084                 force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2085                 params[6] = effect->u.periodic.magnitude >> 8;
2086                 params[7] = effect->u.periodic.magnitude & 255;
2087                 params[8] = effect->u.periodic.offset >> 8;
2088                 params[9] = effect->u.periodic.offset & 255;
2089                 params[10] = effect->u.periodic.period >> 8;
2090                 params[11] = effect->u.periodic.period & 255;
2091                 params[12] = effect->u.periodic.phase >> 8;
2092                 params[13] = effect->u.periodic.phase & 255;
2093                 params[14] = effect->u.periodic.envelope.attack_level >> 7;
2094                 params[15] = effect->u.periodic.envelope.attack_length >> 8;
2095                 params[16] = effect->u.periodic.envelope.attack_length & 255;
2096                 params[17] = effect->u.periodic.envelope.fade_level >> 7;
2097                 params[18] = effect->u.periodic.envelope.fade_length >> 8;
2098                 params[19] = effect->u.periodic.envelope.fade_length & 255;
2099                 size = 20;
2100                 dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n",
2101                                 effect->u.periodic.magnitude, effect->direction,
2102                                 effect->u.periodic.offset,
2103                                 effect->u.periodic.period,
2104                                 effect->u.periodic.phase);
2105                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2106                                 effect->u.periodic.envelope.attack_level,
2107                                 effect->u.periodic.envelope.attack_length,
2108                                 effect->u.periodic.envelope.fade_level,
2109                                 effect->u.periodic.envelope.fade_length);
2110                 break;
2111         }
2112         case FF_RAMP:
2113                 params[1] = HIDPP_FF_EFFECT_RAMP;
2114                 force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2115                 params[6] = force >> 8;
2116                 params[7] = force & 255;
2117                 force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2118                 params[8] = force >> 8;
2119                 params[9] = force & 255;
2120                 params[10] = effect->u.ramp.envelope.attack_level >> 7;
2121                 params[11] = effect->u.ramp.envelope.attack_length >> 8;
2122                 params[12] = effect->u.ramp.envelope.attack_length & 255;
2123                 params[13] = effect->u.ramp.envelope.fade_level >> 7;
2124                 params[14] = effect->u.ramp.envelope.fade_length >> 8;
2125                 params[15] = effect->u.ramp.envelope.fade_length & 255;
2126                 size = 16;
2127                 dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n",
2128                                 effect->u.ramp.start_level,
2129                                 effect->u.ramp.end_level,
2130                                 effect->direction, force);
2131                 dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2132                                 effect->u.ramp.envelope.attack_level,
2133                                 effect->u.ramp.envelope.attack_length,
2134                                 effect->u.ramp.envelope.fade_level,
2135                                 effect->u.ramp.envelope.fade_length);
2136                 break;
2137         case FF_FRICTION:
2138         case FF_INERTIA:
2139         case FF_SPRING:
2140         case FF_DAMPER:
2141                 params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING];
2142                 params[6] = effect->u.condition[0].left_saturation >> 9;
2143                 params[7] = (effect->u.condition[0].left_saturation >> 1) & 255;
2144                 params[8] = effect->u.condition[0].left_coeff >> 8;
2145                 params[9] = effect->u.condition[0].left_coeff & 255;
2146                 params[10] = effect->u.condition[0].deadband >> 9;
2147                 params[11] = (effect->u.condition[0].deadband >> 1) & 255;
2148                 params[12] = effect->u.condition[0].center >> 8;
2149                 params[13] = effect->u.condition[0].center & 255;
2150                 params[14] = effect->u.condition[0].right_coeff >> 8;
2151                 params[15] = effect->u.condition[0].right_coeff & 255;
2152                 params[16] = effect->u.condition[0].right_saturation >> 9;
2153                 params[17] = (effect->u.condition[0].right_saturation >> 1) & 255;
2154                 size = 18;
2155                 dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n",
2156                                 HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING],
2157                                 effect->u.condition[0].left_coeff,
2158                                 effect->u.condition[0].left_saturation,
2159                                 effect->u.condition[0].right_coeff,
2160                                 effect->u.condition[0].right_saturation);
2161                 dbg_hid("          deadband=%d, center=%d\n",
2162                                 effect->u.condition[0].deadband,
2163                                 effect->u.condition[0].center);
2164                 break;
2165         default:
2166                 hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type);
2167                 return -EINVAL;
2168         }
2169
2170         return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size);
2171 }
2172
2173 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value)
2174 {
2175         struct hidpp_ff_private_data *data = dev->ff->private;
2176         u8 params[2];
2177
2178         params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP;
2179
2180         dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id);
2181
2182         return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params));
2183 }
2184
2185 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id)
2186 {
2187         struct hidpp_ff_private_data *data = dev->ff->private;
2188         u8 slot = 0;
2189
2190         dbg_hid("Erasing effect %d.\n", effect_id);
2191
2192         return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1);
2193 }
2194
2195 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude)
2196 {
2197         struct hidpp_ff_private_data *data = dev->ff->private;
2198         u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH];
2199
2200         dbg_hid("Setting autocenter to %d.\n", magnitude);
2201
2202         /* start a standard spring effect */
2203         params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART;
2204         /* zero delay and duration */
2205         params[2] = params[3] = params[4] = params[5] = 0;
2206         /* set coeff to 25% of saturation */
2207         params[8] = params[14] = magnitude >> 11;
2208         params[9] = params[15] = (magnitude >> 3) & 255;
2209         params[6] = params[16] = magnitude >> 9;
2210         params[7] = params[17] = (magnitude >> 1) & 255;
2211         /* zero deadband and center */
2212         params[10] = params[11] = params[12] = params[13] = 0;
2213
2214         hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params));
2215 }
2216
2217 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain)
2218 {
2219         struct hidpp_ff_private_data *data = dev->ff->private;
2220         u8 params[4];
2221
2222         dbg_hid("Setting gain to %d.\n", gain);
2223
2224         params[0] = gain >> 8;
2225         params[1] = gain & 255;
2226         params[2] = 0; /* no boost */
2227         params[3] = 0;
2228
2229         hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params));
2230 }
2231
2232 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf)
2233 {
2234         struct hid_device *hid = to_hid_device(dev);
2235         struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2236         struct input_dev *idev = hidinput->input;
2237         struct hidpp_ff_private_data *data = idev->ff->private;
2238
2239         return scnprintf(buf, PAGE_SIZE, "%u\n", data->range);
2240 }
2241
2242 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
2243 {
2244         struct hid_device *hid = to_hid_device(dev);
2245         struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2246         struct input_dev *idev = hidinput->input;
2247         struct hidpp_ff_private_data *data = idev->ff->private;
2248         u8 params[2];
2249         int range = simple_strtoul(buf, NULL, 10);
2250
2251         range = clamp(range, 180, 900);
2252
2253         params[0] = range >> 8;
2254         params[1] = range & 0x00FF;
2255
2256         hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params));
2257
2258         return count;
2259 }
2260
2261 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store);
2262
2263 static void hidpp_ff_destroy(struct ff_device *ff)
2264 {
2265         struct hidpp_ff_private_data *data = ff->private;
2266         struct hid_device *hid = data->hidpp->hid_dev;
2267
2268         hid_info(hid, "Unloading HID++ force feedback.\n");
2269
2270         device_remove_file(&hid->dev, &dev_attr_range);
2271         destroy_workqueue(data->wq);
2272         kfree(data->effect_ids);
2273 }
2274
2275 static int hidpp_ff_init(struct hidpp_device *hidpp,
2276                          struct hidpp_ff_private_data *data)
2277 {
2278         struct hid_device *hid = hidpp->hid_dev;
2279         struct hid_input *hidinput;
2280         struct input_dev *dev;
2281         const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor);
2282         const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice);
2283         struct ff_device *ff;
2284         int error, j, num_slots = data->num_effects;
2285         u8 version;
2286
2287         if (list_empty(&hid->inputs)) {
2288                 hid_err(hid, "no inputs found\n");
2289                 return -ENODEV;
2290         }
2291         hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2292         dev = hidinput->input;
2293
2294         if (!dev) {
2295                 hid_err(hid, "Struct input_dev not set!\n");
2296                 return -EINVAL;
2297         }
2298
2299         /* Get firmware release */
2300         version = bcdDevice & 255;
2301
2302         /* Set supported force feedback capabilities */
2303         for (j = 0; hidpp_ff_effects[j] >= 0; j++)
2304                 set_bit(hidpp_ff_effects[j], dev->ffbit);
2305         if (version > 1)
2306                 for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++)
2307                         set_bit(hidpp_ff_effects_v2[j], dev->ffbit);
2308
2309         error = input_ff_create(dev, num_slots);
2310
2311         if (error) {
2312                 hid_err(dev, "Failed to create FF device!\n");
2313                 return error;
2314         }
2315         /*
2316          * Create a copy of passed data, so we can transfer memory
2317          * ownership to FF core
2318          */
2319         data = kmemdup(data, sizeof(*data), GFP_KERNEL);
2320         if (!data)
2321                 return -ENOMEM;
2322         data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL);
2323         if (!data->effect_ids) {
2324                 kfree(data);
2325                 return -ENOMEM;
2326         }
2327         data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue");
2328         if (!data->wq) {
2329                 kfree(data->effect_ids);
2330                 kfree(data);
2331                 return -ENOMEM;
2332         }
2333
2334         data->hidpp = hidpp;
2335         data->version = version;
2336         for (j = 0; j < num_slots; j++)
2337                 data->effect_ids[j] = -1;
2338
2339         ff = dev->ff;
2340         ff->private = data;
2341
2342         ff->upload = hidpp_ff_upload_effect;
2343         ff->erase = hidpp_ff_erase_effect;
2344         ff->playback = hidpp_ff_playback;
2345         ff->set_gain = hidpp_ff_set_gain;
2346         ff->set_autocenter = hidpp_ff_set_autocenter;
2347         ff->destroy = hidpp_ff_destroy;
2348
2349         /* Create sysfs interface */
2350         error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range);
2351         if (error)
2352                 hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error);
2353
2354         /* init the hardware command queue */
2355         atomic_set(&data->workqueue_size, 0);
2356
2357         hid_info(hid, "Force feedback support loaded (firmware release %d).\n",
2358                  version);
2359
2360         return 0;
2361 }
2362
2363 /* ************************************************************************** */
2364 /*                                                                            */
2365 /* Device Support                                                             */
2366 /*                                                                            */
2367 /* ************************************************************************** */
2368
2369 /* -------------------------------------------------------------------------- */
2370 /* Touchpad HID++ devices                                                     */
2371 /* -------------------------------------------------------------------------- */
2372
2373 #define WTP_MANUAL_RESOLUTION                           39
2374
2375 struct wtp_data {
2376         u16 x_size, y_size;
2377         u8 finger_count;
2378         u8 mt_feature_index;
2379         u8 button_feature_index;
2380         u8 maxcontacts;
2381         bool flip_y;
2382         unsigned int resolution;
2383 };
2384
2385 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2386                 struct hid_field *field, struct hid_usage *usage,
2387                 unsigned long **bit, int *max)
2388 {
2389         return -1;
2390 }
2391
2392 static void wtp_populate_input(struct hidpp_device *hidpp,
2393                                struct input_dev *input_dev)
2394 {
2395         struct wtp_data *wd = hidpp->private_data;
2396
2397         __set_bit(EV_ABS, input_dev->evbit);
2398         __set_bit(EV_KEY, input_dev->evbit);
2399         __clear_bit(EV_REL, input_dev->evbit);
2400         __clear_bit(EV_LED, input_dev->evbit);
2401
2402         input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0);
2403         input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution);
2404         input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0);
2405         input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution);
2406
2407         /* Max pressure is not given by the devices, pick one */
2408         input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0);
2409
2410         input_set_capability(input_dev, EV_KEY, BTN_LEFT);
2411
2412         if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)
2413                 input_set_capability(input_dev, EV_KEY, BTN_RIGHT);
2414         else
2415                 __set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit);
2416
2417         input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER |
2418                 INPUT_MT_DROP_UNUSED);
2419 }
2420
2421 static void wtp_touch_event(struct hidpp_device *hidpp,
2422         struct hidpp_touchpad_raw_xy_finger *touch_report)
2423 {
2424         struct wtp_data *wd = hidpp->private_data;
2425         int slot;
2426
2427         if (!touch_report->finger_id || touch_report->contact_type)
2428                 /* no actual data */
2429                 return;
2430
2431         slot = input_mt_get_slot_by_key(hidpp->input, touch_report->finger_id);
2432
2433         input_mt_slot(hidpp->input, slot);
2434         input_mt_report_slot_state(hidpp->input, MT_TOOL_FINGER,
2435                                         touch_report->contact_status);
2436         if (touch_report->contact_status) {
2437                 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_X,
2438                                 touch_report->x);
2439                 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_Y,
2440                                 wd->flip_y ? wd->y_size - touch_report->y :
2441                                              touch_report->y);
2442                 input_event(hidpp->input, EV_ABS, ABS_MT_PRESSURE,
2443                                 touch_report->area);
2444         }
2445 }
2446
2447 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp,
2448                 struct hidpp_touchpad_raw_xy *raw)
2449 {
2450         int i;
2451
2452         for (i = 0; i < 2; i++)
2453                 wtp_touch_event(hidpp, &(raw->fingers[i]));
2454
2455         if (raw->end_of_frame &&
2456             !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS))
2457                 input_event(hidpp->input, EV_KEY, BTN_LEFT, raw->button);
2458
2459         if (raw->end_of_frame || raw->finger_count <= 2) {
2460                 input_mt_sync_frame(hidpp->input);
2461                 input_sync(hidpp->input);
2462         }
2463 }
2464
2465 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data)
2466 {
2467         struct wtp_data *wd = hidpp->private_data;
2468         u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) +
2469                       (data[7] >> 4) * (data[7] >> 4)) / 2;
2470         u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) +
2471                       (data[13] >> 4) * (data[13] >> 4)) / 2;
2472         struct hidpp_touchpad_raw_xy raw = {
2473                 .timestamp = data[1],
2474                 .fingers = {
2475                         {
2476                                 .contact_type = 0,
2477                                 .contact_status = !!data[7],
2478                                 .x = get_unaligned_le16(&data[3]),
2479                                 .y = get_unaligned_le16(&data[5]),
2480                                 .z = c1_area,
2481                                 .area = c1_area,
2482                                 .finger_id = data[2],
2483                         }, {
2484                                 .contact_type = 0,
2485                                 .contact_status = !!data[13],
2486                                 .x = get_unaligned_le16(&data[9]),
2487                                 .y = get_unaligned_le16(&data[11]),
2488                                 .z = c2_area,
2489                                 .area = c2_area,
2490                                 .finger_id = data[8],
2491                         }
2492                 },
2493                 .finger_count = wd->maxcontacts,
2494                 .spurious_flag = 0,
2495                 .end_of_frame = (data[0] >> 7) == 0,
2496                 .button = data[0] & 0x01,
2497         };
2498
2499         wtp_send_raw_xy_event(hidpp, &raw);
2500
2501         return 1;
2502 }
2503
2504 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size)
2505 {
2506         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2507         struct wtp_data *wd = hidpp->private_data;
2508         struct hidpp_report *report = (struct hidpp_report *)data;
2509         struct hidpp_touchpad_raw_xy raw;
2510
2511         if (!wd || !hidpp->input)
2512                 return 1;
2513
2514         switch (data[0]) {
2515         case 0x02:
2516                 if (size < 2) {
2517                         hid_err(hdev, "Received HID report of bad size (%d)",
2518                                 size);
2519                         return 1;
2520                 }
2521                 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) {
2522                         input_event(hidpp->input, EV_KEY, BTN_LEFT,
2523                                         !!(data[1] & 0x01));
2524                         input_event(hidpp->input, EV_KEY, BTN_RIGHT,
2525                                         !!(data[1] & 0x02));
2526                         input_sync(hidpp->input);
2527                         return 0;
2528                 } else {
2529                         if (size < 21)
2530                                 return 1;
2531                         return wtp_mouse_raw_xy_event(hidpp, &data[7]);
2532                 }
2533         case REPORT_ID_HIDPP_LONG:
2534                 /* size is already checked in hidpp_raw_event. */
2535                 if ((report->fap.feature_index != wd->mt_feature_index) ||
2536                     (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY))
2537                         return 1;
2538                 hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw);
2539
2540                 wtp_send_raw_xy_event(hidpp, &raw);
2541                 return 0;
2542         }
2543
2544         return 0;
2545 }
2546
2547 static int wtp_get_config(struct hidpp_device *hidpp)
2548 {
2549         struct wtp_data *wd = hidpp->private_data;
2550         struct hidpp_touchpad_raw_info raw_info = {0};
2551         u8 feature_type;
2552         int ret;
2553
2554         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY,
2555                 &wd->mt_feature_index, &feature_type);
2556         if (ret)
2557                 /* means that the device is not powered up */
2558                 return ret;
2559
2560         ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index,
2561                 &raw_info);
2562         if (ret)
2563                 return ret;
2564
2565         wd->x_size = raw_info.x_size;
2566         wd->y_size = raw_info.y_size;
2567         wd->maxcontacts = raw_info.maxcontacts;
2568         wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT;
2569         wd->resolution = raw_info.res;
2570         if (!wd->resolution)
2571                 wd->resolution = WTP_MANUAL_RESOLUTION;
2572
2573         return 0;
2574 }
2575
2576 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id)
2577 {
2578         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2579         struct wtp_data *wd;
2580
2581         wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data),
2582                         GFP_KERNEL);
2583         if (!wd)
2584                 return -ENOMEM;
2585
2586         hidpp->private_data = wd;
2587
2588         return 0;
2589 };
2590
2591 static int wtp_connect(struct hid_device *hdev, bool connected)
2592 {
2593         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2594         struct wtp_data *wd = hidpp->private_data;
2595         int ret;
2596
2597         if (!wd->x_size) {
2598                 ret = wtp_get_config(hidpp);
2599                 if (ret) {
2600                         hid_err(hdev, "Can not get wtp config: %d\n", ret);
2601                         return ret;
2602                 }
2603         }
2604
2605         return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index,
2606                         true, true);
2607 }
2608
2609 /* ------------------------------------------------------------------------- */
2610 /* Logitech M560 devices                                                     */
2611 /* ------------------------------------------------------------------------- */
2612
2613 /*
2614  * Logitech M560 protocol overview
2615  *
2616  * The Logitech M560 mouse, is designed for windows 8. When the middle and/or
2617  * the sides buttons are pressed, it sends some keyboard keys events
2618  * instead of buttons ones.
2619  * To complicate things further, the middle button keys sequence
2620  * is different from the odd press and the even press.
2621  *
2622  * forward button -> Super_R
2623  * backward button -> Super_L+'d' (press only)
2624  * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only)
2625  *                  2nd time: left-click (press only)
2626  * NB: press-only means that when the button is pressed, the
2627  * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated
2628  * together sequentially; instead when the button is released, no event is
2629  * generated !
2630  *
2631  * With the command
2632  *      10<xx>0a 3500af03 (where <xx> is the mouse id),
2633  * the mouse reacts differently:
2634  * - it never sends a keyboard key event
2635  * - for the three mouse button it sends:
2636  *      middle button               press   11<xx>0a 3500af00...
2637  *      side 1 button (forward)     press   11<xx>0a 3500b000...
2638  *      side 2 button (backward)    press   11<xx>0a 3500ae00...
2639  *      middle/side1/side2 button   release 11<xx>0a 35000000...
2640  */
2641
2642 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03};
2643
2644 /* how buttons are mapped in the report */
2645 #define M560_MOUSE_BTN_LEFT             0x01
2646 #define M560_MOUSE_BTN_RIGHT            0x02
2647 #define M560_MOUSE_BTN_WHEEL_LEFT       0x08
2648 #define M560_MOUSE_BTN_WHEEL_RIGHT      0x10
2649
2650 #define M560_SUB_ID                     0x0a
2651 #define M560_BUTTON_MODE_REGISTER       0x35
2652
2653 static int m560_send_config_command(struct hid_device *hdev, bool connected)
2654 {
2655         struct hidpp_report response;
2656         struct hidpp_device *hidpp_dev;
2657
2658         hidpp_dev = hid_get_drvdata(hdev);
2659
2660         return hidpp_send_rap_command_sync(
2661                 hidpp_dev,
2662                 REPORT_ID_HIDPP_SHORT,
2663                 M560_SUB_ID,
2664                 M560_BUTTON_MODE_REGISTER,
2665                 (u8 *)m560_config_parameter,
2666                 sizeof(m560_config_parameter),
2667                 &response
2668         );
2669 }
2670
2671 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size)
2672 {
2673         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2674
2675         /* sanity check */
2676         if (!hidpp->input) {
2677                 hid_err(hdev, "error in parameter\n");
2678                 return -EINVAL;
2679         }
2680
2681         if (size < 7) {
2682                 hid_err(hdev, "error in report\n");
2683                 return 0;
2684         }
2685
2686         if (data[0] == REPORT_ID_HIDPP_LONG &&
2687             data[2] == M560_SUB_ID && data[6] == 0x00) {
2688                 /*
2689                  * m560 mouse report for middle, forward and backward button
2690                  *
2691                  * data[0] = 0x11
2692                  * data[1] = device-id
2693                  * data[2] = 0x0a
2694                  * data[5] = 0xaf -> middle
2695                  *           0xb0 -> forward
2696                  *           0xae -> backward
2697                  *           0x00 -> release all
2698                  * data[6] = 0x00
2699                  */
2700
2701                 switch (data[5]) {
2702                 case 0xaf:
2703                         input_report_key(hidpp->input, BTN_MIDDLE, 1);
2704                         break;
2705                 case 0xb0:
2706                         input_report_key(hidpp->input, BTN_FORWARD, 1);
2707                         break;
2708                 case 0xae:
2709                         input_report_key(hidpp->input, BTN_BACK, 1);
2710                         break;
2711                 case 0x00:
2712                         input_report_key(hidpp->input, BTN_BACK, 0);
2713                         input_report_key(hidpp->input, BTN_FORWARD, 0);
2714                         input_report_key(hidpp->input, BTN_MIDDLE, 0);
2715                         break;
2716                 default:
2717                         hid_err(hdev, "error in report\n");
2718                         return 0;
2719                 }
2720                 input_sync(hidpp->input);
2721
2722         } else if (data[0] == 0x02) {
2723                 /*
2724                  * Logitech M560 mouse report
2725                  *
2726                  * data[0] = type (0x02)
2727                  * data[1..2] = buttons
2728                  * data[3..5] = xy
2729                  * data[6] = wheel
2730                  */
2731
2732                 int v;
2733
2734                 input_report_key(hidpp->input, BTN_LEFT,
2735                         !!(data[1] & M560_MOUSE_BTN_LEFT));
2736                 input_report_key(hidpp->input, BTN_RIGHT,
2737                         !!(data[1] & M560_MOUSE_BTN_RIGHT));
2738
2739                 if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) {
2740                         input_report_rel(hidpp->input, REL_HWHEEL, -1);
2741                         input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2742                                          -120);
2743                 } else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) {
2744                         input_report_rel(hidpp->input, REL_HWHEEL, 1);
2745                         input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2746                                          120);
2747                 }
2748
2749                 v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12);
2750                 input_report_rel(hidpp->input, REL_X, v);
2751
2752                 v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12);
2753                 input_report_rel(hidpp->input, REL_Y, v);
2754
2755                 v = hid_snto32(data[6], 8);
2756                 if (v != 0)
2757                         hidpp_scroll_counter_handle_scroll(hidpp->input,
2758                                         &hidpp->vertical_wheel_counter, v);
2759
2760                 input_sync(hidpp->input);
2761         }
2762
2763         return 1;
2764 }
2765
2766 static void m560_populate_input(struct hidpp_device *hidpp,
2767                                 struct input_dev *input_dev)
2768 {
2769         __set_bit(EV_KEY, input_dev->evbit);
2770         __set_bit(BTN_MIDDLE, input_dev->keybit);
2771         __set_bit(BTN_RIGHT, input_dev->keybit);
2772         __set_bit(BTN_LEFT, input_dev->keybit);
2773         __set_bit(BTN_BACK, input_dev->keybit);
2774         __set_bit(BTN_FORWARD, input_dev->keybit);
2775
2776         __set_bit(EV_REL, input_dev->evbit);
2777         __set_bit(REL_X, input_dev->relbit);
2778         __set_bit(REL_Y, input_dev->relbit);
2779         __set_bit(REL_WHEEL, input_dev->relbit);
2780         __set_bit(REL_HWHEEL, input_dev->relbit);
2781         __set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
2782         __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
2783 }
2784
2785 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2786                 struct hid_field *field, struct hid_usage *usage,
2787                 unsigned long **bit, int *max)
2788 {
2789         return -1;
2790 }
2791
2792 /* ------------------------------------------------------------------------- */
2793 /* Logitech K400 devices                                                     */
2794 /* ------------------------------------------------------------------------- */
2795
2796 /*
2797  * The Logitech K400 keyboard has an embedded touchpad which is seen
2798  * as a mouse from the OS point of view. There is a hardware shortcut to disable
2799  * tap-to-click but the setting is not remembered accross reset, annoying some
2800  * users.
2801  *
2802  * We can toggle this feature from the host by using the feature 0x6010:
2803  * Touchpad FW items
2804  */
2805
2806 struct k400_private_data {
2807         u8 feature_index;
2808 };
2809
2810 static int k400_disable_tap_to_click(struct hidpp_device *hidpp)
2811 {
2812         struct k400_private_data *k400 = hidpp->private_data;
2813         struct hidpp_touchpad_fw_items items = {};
2814         int ret;
2815         u8 feature_type;
2816
2817         if (!k400->feature_index) {
2818                 ret = hidpp_root_get_feature(hidpp,
2819                         HIDPP_PAGE_TOUCHPAD_FW_ITEMS,
2820                         &k400->feature_index, &feature_type);
2821                 if (ret)
2822                         /* means that the device is not powered up */
2823                         return ret;
2824         }
2825
2826         ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items);
2827         if (ret)
2828                 return ret;
2829
2830         return 0;
2831 }
2832
2833 static int k400_allocate(struct hid_device *hdev)
2834 {
2835         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2836         struct k400_private_data *k400;
2837
2838         k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data),
2839                             GFP_KERNEL);
2840         if (!k400)
2841                 return -ENOMEM;
2842
2843         hidpp->private_data = k400;
2844
2845         return 0;
2846 };
2847
2848 static int k400_connect(struct hid_device *hdev, bool connected)
2849 {
2850         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2851
2852         if (!disable_tap_to_click)
2853                 return 0;
2854
2855         return k400_disable_tap_to_click(hidpp);
2856 }
2857
2858 /* ------------------------------------------------------------------------- */
2859 /* Logitech G920 Driving Force Racing Wheel for Xbox One                     */
2860 /* ------------------------------------------------------------------------- */
2861
2862 #define HIDPP_PAGE_G920_FORCE_FEEDBACK                  0x8123
2863
2864 static int g920_ff_set_autocenter(struct hidpp_device *hidpp,
2865                                   struct hidpp_ff_private_data *data)
2866 {
2867         struct hidpp_report response;
2868         u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH] = {
2869                 [1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART,
2870         };
2871         int ret;
2872
2873         /* initialize with zero autocenter to get wheel in usable state */
2874
2875         dbg_hid("Setting autocenter to 0.\n");
2876         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
2877                                           HIDPP_FF_DOWNLOAD_EFFECT,
2878                                           params, ARRAY_SIZE(params),
2879                                           &response);
2880         if (ret)
2881                 hid_warn(hidpp->hid_dev, "Failed to autocenter device!\n");
2882         else
2883                 data->slot_autocenter = response.fap.params[0];
2884
2885         return ret;
2886 }
2887
2888 static int g920_get_config(struct hidpp_device *hidpp,
2889                            struct hidpp_ff_private_data *data)
2890 {
2891         struct hidpp_report response;
2892         u8 feature_type;
2893         int ret;
2894
2895         memset(data, 0, sizeof(*data));
2896
2897         /* Find feature and store for later use */
2898         ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK,
2899                                      &data->feature_index, &feature_type);
2900         if (ret)
2901                 return ret;
2902
2903         /* Read number of slots available in device */
2904         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
2905                                           HIDPP_FF_GET_INFO,
2906                                           NULL, 0,
2907                                           &response);
2908         if (ret) {
2909                 if (ret < 0)
2910                         return ret;
2911                 hid_err(hidpp->hid_dev,
2912                         "%s: received protocol error 0x%02x\n", __func__, ret);
2913                 return -EPROTO;
2914         }
2915
2916         data->num_effects = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS;
2917
2918         /* reset all forces */
2919         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
2920                                           HIDPP_FF_RESET_ALL,
2921                                           NULL, 0,
2922                                           &response);
2923         if (ret)
2924                 hid_warn(hidpp->hid_dev, "Failed to reset all forces!\n");
2925
2926         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
2927                                           HIDPP_FF_GET_APERTURE,
2928                                           NULL, 0,
2929                                           &response);
2930         if (ret) {
2931                 hid_warn(hidpp->hid_dev,
2932                          "Failed to read range from device!\n");
2933         }
2934         data->range = ret ?
2935                 900 : get_unaligned_be16(&response.fap.params[0]);
2936
2937         /* Read the current gain values */
2938         ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
2939                                           HIDPP_FF_GET_GLOBAL_GAINS,
2940                                           NULL, 0,
2941                                           &response);
2942         if (ret)
2943                 hid_warn(hidpp->hid_dev,
2944                          "Failed to read gain values from device!\n");
2945         data->gain = ret ?
2946                 0xffff : get_unaligned_be16(&response.fap.params[0]);
2947
2948         /* ignore boost value at response.fap.params[2] */
2949
2950         return g920_ff_set_autocenter(hidpp, data);
2951 }
2952
2953 /* -------------------------------------------------------------------------- */
2954 /* HID++1.0 devices which use HID++ reports for their wheels                  */
2955 /* -------------------------------------------------------------------------- */
2956 static int hidpp10_wheel_connect(struct hidpp_device *hidpp)
2957 {
2958         return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
2959                         HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT,
2960                         HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT);
2961 }
2962
2963 static int hidpp10_wheel_raw_event(struct hidpp_device *hidpp,
2964                                    u8 *data, int size)
2965 {
2966         s8 value, hvalue;
2967
2968         if (!hidpp->input)
2969                 return -EINVAL;
2970
2971         if (size < 7)
2972                 return 0;
2973
2974         if (data[0] != REPORT_ID_HIDPP_SHORT || data[2] != HIDPP_SUB_ID_ROLLER)
2975                 return 0;
2976
2977         value = data[3];
2978         hvalue = data[4];
2979
2980         input_report_rel(hidpp->input, REL_WHEEL, value);
2981         input_report_rel(hidpp->input, REL_WHEEL_HI_RES, value * 120);
2982         input_report_rel(hidpp->input, REL_HWHEEL, hvalue);
2983         input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, hvalue * 120);
2984         input_sync(hidpp->input);
2985
2986         return 1;
2987 }
2988
2989 static void hidpp10_wheel_populate_input(struct hidpp_device *hidpp,
2990                                          struct input_dev *input_dev)
2991 {
2992         __set_bit(EV_REL, input_dev->evbit);
2993         __set_bit(REL_WHEEL, input_dev->relbit);
2994         __set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
2995         __set_bit(REL_HWHEEL, input_dev->relbit);
2996         __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
2997 }
2998
2999 /* -------------------------------------------------------------------------- */
3000 /* HID++1.0 mice which use HID++ reports for extra mouse buttons              */
3001 /* -------------------------------------------------------------------------- */
3002 static int hidpp10_extra_mouse_buttons_connect(struct hidpp_device *hidpp)
3003 {
3004         return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3005                                     HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT,
3006                                     HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT);
3007 }
3008
3009 static int hidpp10_extra_mouse_buttons_raw_event(struct hidpp_device *hidpp,
3010                                     u8 *data, int size)
3011 {
3012         int i;
3013
3014         if (!hidpp->input)
3015                 return -EINVAL;
3016
3017         if (size < 7)
3018                 return 0;
3019
3020         if (data[0] != REPORT_ID_HIDPP_SHORT ||
3021             data[2] != HIDPP_SUB_ID_MOUSE_EXTRA_BTNS)
3022                 return 0;
3023
3024         /*
3025          * Buttons are either delivered through the regular mouse report *or*
3026          * through the extra buttons report. At least for button 6 how it is
3027          * delivered differs per receiver firmware version. Even receivers with
3028          * the same usb-id show different behavior, so we handle both cases.
3029          */
3030         for (i = 0; i < 8; i++)
3031                 input_report_key(hidpp->input, BTN_MOUSE + i,
3032                                  (data[3] & (1 << i)));
3033
3034         /* Some mice report events on button 9+, use BTN_MISC */
3035         for (i = 0; i < 8; i++)
3036                 input_report_key(hidpp->input, BTN_MISC + i,
3037                                  (data[4] & (1 << i)));
3038
3039         input_sync(hidpp->input);
3040         return 1;
3041 }
3042
3043 static void hidpp10_extra_mouse_buttons_populate_input(
3044                         struct hidpp_device *hidpp, struct input_dev *input_dev)
3045 {
3046         /* BTN_MOUSE - BTN_MOUSE+7 are set already by the descriptor */
3047         __set_bit(BTN_0, input_dev->keybit);
3048         __set_bit(BTN_1, input_dev->keybit);
3049         __set_bit(BTN_2, input_dev->keybit);
3050         __set_bit(BTN_3, input_dev->keybit);
3051         __set_bit(BTN_4, input_dev->keybit);
3052         __set_bit(BTN_5, input_dev->keybit);
3053         __set_bit(BTN_6, input_dev->keybit);
3054         __set_bit(BTN_7, input_dev->keybit);
3055 }
3056
3057 /* -------------------------------------------------------------------------- */
3058 /* HID++1.0 kbds which only report 0x10xx consumer usages through sub-id 0x03 */
3059 /* -------------------------------------------------------------------------- */
3060
3061 /* Find the consumer-page input report desc and change Maximums to 0x107f */
3062 static u8 *hidpp10_consumer_keys_report_fixup(struct hidpp_device *hidpp,
3063                                               u8 *_rdesc, unsigned int *rsize)
3064 {
3065         /* Note 0 terminated so we can use strnstr to search for this. */
3066         static const char consumer_rdesc_start[] = {
3067                 0x05, 0x0C,     /* USAGE_PAGE (Consumer Devices)       */
3068                 0x09, 0x01,     /* USAGE (Consumer Control)            */
3069                 0xA1, 0x01,     /* COLLECTION (Application)            */
3070                 0x85, 0x03,     /* REPORT_ID = 3                       */
3071                 0x75, 0x10,     /* REPORT_SIZE (16)                    */
3072                 0x95, 0x02,     /* REPORT_COUNT (2)                    */
3073                 0x15, 0x01,     /* LOGICAL_MIN (1)                     */
3074                 0x26, 0x00      /* LOGICAL_MAX (...                    */
3075         };
3076         char *consumer_rdesc, *rdesc = (char *)_rdesc;
3077         unsigned int size;
3078
3079         consumer_rdesc = strnstr(rdesc, consumer_rdesc_start, *rsize);
3080         size = *rsize - (consumer_rdesc - rdesc);
3081         if (consumer_rdesc && size >= 25) {
3082                 consumer_rdesc[15] = 0x7f;
3083                 consumer_rdesc[16] = 0x10;
3084                 consumer_rdesc[20] = 0x7f;
3085                 consumer_rdesc[21] = 0x10;
3086         }
3087         return _rdesc;
3088 }
3089
3090 static int hidpp10_consumer_keys_connect(struct hidpp_device *hidpp)
3091 {
3092         return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3093                                     HIDPP_ENABLE_CONSUMER_REPORT,
3094                                     HIDPP_ENABLE_CONSUMER_REPORT);
3095 }
3096
3097 static int hidpp10_consumer_keys_raw_event(struct hidpp_device *hidpp,
3098                                            u8 *data, int size)
3099 {
3100         u8 consumer_report[5];
3101
3102         if (size < 7)
3103                 return 0;
3104
3105         if (data[0] != REPORT_ID_HIDPP_SHORT ||
3106             data[2] != HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS)
3107                 return 0;
3108
3109         /*
3110          * Build a normal consumer report (3) out of the data, this detour
3111          * is necessary to get some keyboards to report their 0x10xx usages.
3112          */
3113         consumer_report[0] = 0x03;
3114         memcpy(&consumer_report[1], &data[3], 4);
3115         /* We are called from atomic context */
3116         hid_report_raw_event(hidpp->hid_dev, HID_INPUT_REPORT,
3117                              consumer_report, 5, 1);
3118
3119         return 1;
3120 }
3121
3122 /* -------------------------------------------------------------------------- */
3123 /* High-resolution scroll wheels                                              */
3124 /* -------------------------------------------------------------------------- */
3125
3126 static int hi_res_scroll_enable(struct hidpp_device *hidpp)
3127 {
3128         int ret;
3129         u8 multiplier = 1;
3130
3131         if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) {
3132                 ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false);
3133                 if (ret == 0)
3134                         ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier);
3135         } else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) {
3136                 ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true,
3137                                                            &multiplier);
3138         } else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ {
3139                 ret = hidpp10_enable_scrolling_acceleration(hidpp);
3140                 multiplier = 8;
3141         }
3142         if (ret)
3143                 return ret;
3144
3145         if (multiplier == 0)
3146                 multiplier = 1;
3147
3148         hidpp->vertical_wheel_counter.wheel_multiplier = multiplier;
3149         hid_dbg(hidpp->hid_dev, "wheel multiplier = %d\n", multiplier);
3150         return 0;
3151 }
3152
3153 /* -------------------------------------------------------------------------- */
3154 /* Generic HID++ devices                                                      */
3155 /* -------------------------------------------------------------------------- */
3156
3157 static u8 *hidpp_report_fixup(struct hid_device *hdev, u8 *rdesc,
3158                               unsigned int *rsize)
3159 {
3160         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3161
3162         if (!hidpp)
3163                 return rdesc;
3164
3165         /* For 27 MHz keyboards the quirk gets set after hid_parse. */
3166         if (hdev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE ||
3167             (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS))
3168                 rdesc = hidpp10_consumer_keys_report_fixup(hidpp, rdesc, rsize);
3169
3170         return rdesc;
3171 }
3172
3173 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
3174                 struct hid_field *field, struct hid_usage *usage,
3175                 unsigned long **bit, int *max)
3176 {
3177         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3178
3179         if (!hidpp)
3180                 return 0;
3181
3182         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3183                 return wtp_input_mapping(hdev, hi, field, usage, bit, max);
3184         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 &&
3185                         field->application != HID_GD_MOUSE)
3186                 return m560_input_mapping(hdev, hi, field, usage, bit, max);
3187
3188         return 0;
3189 }
3190
3191 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi,
3192                 struct hid_field *field, struct hid_usage *usage,
3193                 unsigned long **bit, int *max)
3194 {
3195         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3196
3197         if (!hidpp)
3198                 return 0;
3199
3200         /* Ensure that Logitech G920 is not given a default fuzz/flat value */
3201         if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3202                 if (usage->type == EV_ABS && (usage->code == ABS_X ||
3203                                 usage->code == ABS_Y || usage->code == ABS_Z ||
3204                                 usage->code == ABS_RZ)) {
3205                         field->application = HID_GD_MULTIAXIS;
3206                 }
3207         }
3208
3209         return 0;
3210 }
3211
3212
3213 static void hidpp_populate_input(struct hidpp_device *hidpp,
3214                                  struct input_dev *input)
3215 {
3216         hidpp->input = input;
3217
3218         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3219                 wtp_populate_input(hidpp, input);
3220         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3221                 m560_populate_input(hidpp, input);
3222
3223         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS)
3224                 hidpp10_wheel_populate_input(hidpp, input);
3225
3226         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS)
3227                 hidpp10_extra_mouse_buttons_populate_input(hidpp, input);
3228 }
3229
3230 static int hidpp_input_configured(struct hid_device *hdev,
3231                                 struct hid_input *hidinput)
3232 {
3233         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3234         struct input_dev *input = hidinput->input;
3235
3236         if (!hidpp)
3237                 return 0;
3238
3239         hidpp_populate_input(hidpp, input);
3240
3241         return 0;
3242 }
3243
3244 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data,
3245                 int size)
3246 {
3247         struct hidpp_report *question = hidpp->send_receive_buf;
3248         struct hidpp_report *answer = hidpp->send_receive_buf;
3249         struct hidpp_report *report = (struct hidpp_report *)data;
3250         int ret;
3251
3252         /*
3253          * If the mutex is locked then we have a pending answer from a
3254          * previously sent command.
3255          */
3256         if (unlikely(mutex_is_locked(&hidpp->send_mutex))) {
3257                 /*
3258                  * Check for a correct hidpp20 answer or the corresponding
3259                  * error
3260                  */
3261                 if (hidpp_match_answer(question, report) ||
3262                                 hidpp_match_error(question, report)) {
3263                         *answer = *report;
3264                         hidpp->answer_available = true;
3265                         wake_up(&hidpp->wait);
3266                         /*
3267                          * This was an answer to a command that this driver sent
3268                          * We return 1 to hid-core to avoid forwarding the
3269                          * command upstream as it has been treated by the driver
3270                          */
3271
3272                         return 1;
3273                 }
3274         }
3275
3276         if (unlikely(hidpp_report_is_connect_event(hidpp, report))) {
3277                 atomic_set(&hidpp->connected,
3278                                 !(report->rap.params[0] & (1 << 6)));
3279                 if (schedule_work(&hidpp->work) == 0)
3280                         dbg_hid("%s: connect event already queued\n", __func__);
3281                 return 1;
3282         }
3283
3284         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3285                 ret = hidpp20_battery_event(hidpp, data, size);
3286                 if (ret != 0)
3287                         return ret;
3288                 ret = hidpp_solar_battery_event(hidpp, data, size);
3289                 if (ret != 0)
3290                         return ret;
3291                 ret = hidpp20_battery_voltage_event(hidpp, data, size);
3292                 if (ret != 0)
3293                         return ret;
3294         }
3295
3296         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3297                 ret = hidpp10_battery_event(hidpp, data, size);
3298                 if (ret != 0)
3299                         return ret;
3300         }
3301
3302         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3303                 ret = hidpp10_wheel_raw_event(hidpp, data, size);
3304                 if (ret != 0)
3305                         return ret;
3306         }
3307
3308         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3309                 ret = hidpp10_extra_mouse_buttons_raw_event(hidpp, data, size);
3310                 if (ret != 0)
3311                         return ret;
3312         }
3313
3314         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3315                 ret = hidpp10_consumer_keys_raw_event(hidpp, data, size);
3316                 if (ret != 0)
3317                         return ret;
3318         }
3319
3320         return 0;
3321 }
3322
3323 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report,
3324                 u8 *data, int size)
3325 {
3326         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3327         int ret = 0;
3328
3329         if (!hidpp)
3330                 return 0;
3331
3332         /* Generic HID++ processing. */
3333         switch (data[0]) {
3334         case REPORT_ID_HIDPP_VERY_LONG:
3335                 if (size != hidpp->very_long_report_length) {
3336                         hid_err(hdev, "received hid++ report of bad size (%d)",
3337                                 size);
3338                         return 1;
3339                 }
3340                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
3341                 break;
3342         case REPORT_ID_HIDPP_LONG:
3343                 if (size != HIDPP_REPORT_LONG_LENGTH) {
3344                         hid_err(hdev, "received hid++ report of bad size (%d)",
3345                                 size);
3346                         return 1;
3347                 }
3348                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
3349                 break;
3350         case REPORT_ID_HIDPP_SHORT:
3351                 if (size != HIDPP_REPORT_SHORT_LENGTH) {
3352                         hid_err(hdev, "received hid++ report of bad size (%d)",
3353                                 size);
3354                         return 1;
3355                 }
3356                 ret = hidpp_raw_hidpp_event(hidpp, data, size);
3357                 break;
3358         }
3359
3360         /* If no report is available for further processing, skip calling
3361          * raw_event of subclasses. */
3362         if (ret != 0)
3363                 return ret;
3364
3365         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3366                 return wtp_raw_event(hdev, data, size);
3367         else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3368                 return m560_raw_event(hdev, data, size);
3369
3370         return 0;
3371 }
3372
3373 static int hidpp_event(struct hid_device *hdev, struct hid_field *field,
3374         struct hid_usage *usage, __s32 value)
3375 {
3376         /* This function will only be called for scroll events, due to the
3377          * restriction imposed in hidpp_usages.
3378          */
3379         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3380         struct hidpp_scroll_counter *counter;
3381
3382         if (!hidpp)
3383                 return 0;
3384
3385         counter = &hidpp->vertical_wheel_counter;
3386         /* A scroll event may occur before the multiplier has been retrieved or
3387          * the input device set, or high-res scroll enabling may fail. In such
3388          * cases we must return early (falling back to default behaviour) to
3389          * avoid a crash in hidpp_scroll_counter_handle_scroll.
3390          */
3391         if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0
3392             || hidpp->input == NULL || counter->wheel_multiplier == 0)
3393                 return 0;
3394
3395         hidpp_scroll_counter_handle_scroll(hidpp->input, counter, value);
3396         return 1;
3397 }
3398
3399 static int hidpp_initialize_battery(struct hidpp_device *hidpp)
3400 {
3401         static atomic_t battery_no = ATOMIC_INIT(0);
3402         struct power_supply_config cfg = { .drv_data = hidpp };
3403         struct power_supply_desc *desc = &hidpp->battery.desc;
3404         enum power_supply_property *battery_props;
3405         struct hidpp_battery *battery;
3406         unsigned int num_battery_props;
3407         unsigned long n;
3408         int ret;
3409
3410         if (hidpp->battery.ps)
3411                 return 0;
3412
3413         hidpp->battery.feature_index = 0xff;
3414         hidpp->battery.solar_feature_index = 0xff;
3415         hidpp->battery.voltage_feature_index = 0xff;
3416
3417         if (hidpp->protocol_major >= 2) {
3418                 if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750)
3419                         ret = hidpp_solar_request_battery_event(hidpp);
3420                 else {
3421                         ret = hidpp20_query_battery_voltage_info(hidpp);
3422                         if (ret)
3423                                 ret = hidpp20_query_battery_info(hidpp);
3424                 }
3425
3426                 if (ret)
3427                         return ret;
3428                 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY;
3429         } else {
3430                 ret = hidpp10_query_battery_status(hidpp);
3431                 if (ret) {
3432                         ret = hidpp10_query_battery_mileage(hidpp);
3433                         if (ret)
3434                                 return -ENOENT;
3435                         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
3436                 } else {
3437                         hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
3438                 }
3439                 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY;
3440         }
3441
3442         battery_props = devm_kmemdup(&hidpp->hid_dev->dev,
3443                                      hidpp_battery_props,
3444                                      sizeof(hidpp_battery_props),
3445                                      GFP_KERNEL);
3446         if (!battery_props)
3447                 return -ENOMEM;
3448
3449         num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 3;
3450
3451         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3452                 battery_props[num_battery_props++] =
3453                                 POWER_SUPPLY_PROP_CAPACITY;
3454
3455         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS)
3456                 battery_props[num_battery_props++] =
3457                                 POWER_SUPPLY_PROP_CAPACITY_LEVEL;
3458
3459         if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE)
3460                 battery_props[num_battery_props++] =
3461                         POWER_SUPPLY_PROP_VOLTAGE_NOW;
3462
3463         battery = &hidpp->battery;
3464
3465         n = atomic_inc_return(&battery_no) - 1;
3466         desc->properties = battery_props;
3467         desc->num_properties = num_battery_props;
3468         desc->get_property = hidpp_battery_get_property;
3469         sprintf(battery->name, "hidpp_battery_%ld", n);
3470         desc->name = battery->name;
3471         desc->type = POWER_SUPPLY_TYPE_BATTERY;
3472         desc->use_for_apm = 0;
3473
3474         battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev,
3475                                                  &battery->desc,
3476                                                  &cfg);
3477         if (IS_ERR(battery->ps))
3478                 return PTR_ERR(battery->ps);
3479
3480         power_supply_powers(battery->ps, &hidpp->hid_dev->dev);
3481
3482         return ret;
3483 }
3484
3485 static void hidpp_overwrite_name(struct hid_device *hdev)
3486 {
3487         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3488         char *name;
3489
3490         if (hidpp->protocol_major < 2)
3491                 return;
3492
3493         name = hidpp_get_device_name(hidpp);
3494
3495         if (!name) {
3496                 hid_err(hdev, "unable to retrieve the name of the device");
3497         } else {
3498                 dbg_hid("HID++: Got name: %s\n", name);
3499                 snprintf(hdev->name, sizeof(hdev->name), "%s", name);
3500         }
3501
3502         kfree(name);
3503 }
3504
3505 static int hidpp_input_open(struct input_dev *dev)
3506 {
3507         struct hid_device *hid = input_get_drvdata(dev);
3508
3509         return hid_hw_open(hid);
3510 }
3511
3512 static void hidpp_input_close(struct input_dev *dev)
3513 {
3514         struct hid_device *hid = input_get_drvdata(dev);
3515
3516         hid_hw_close(hid);
3517 }
3518
3519 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev)
3520 {
3521         struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev);
3522         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3523
3524         if (!input_dev)
3525                 return NULL;
3526
3527         input_set_drvdata(input_dev, hdev);
3528         input_dev->open = hidpp_input_open;
3529         input_dev->close = hidpp_input_close;
3530
3531         input_dev->name = hidpp->name;
3532         input_dev->phys = hdev->phys;
3533         input_dev->uniq = hdev->uniq;
3534         input_dev->id.bustype = hdev->bus;
3535         input_dev->id.vendor  = hdev->vendor;
3536         input_dev->id.product = hdev->product;
3537         input_dev->id.version = hdev->version;
3538         input_dev->dev.parent = &hdev->dev;
3539
3540         return input_dev;
3541 }
3542
3543 static void hidpp_connect_event(struct hidpp_device *hidpp)
3544 {
3545         struct hid_device *hdev = hidpp->hid_dev;
3546         int ret = 0;
3547         bool connected = atomic_read(&hidpp->connected);
3548         struct input_dev *input;
3549         char *name, *devm_name;
3550
3551         if (!connected) {
3552                 if (hidpp->battery.ps) {
3553                         hidpp->battery.online = false;
3554                         hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN;
3555                         hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
3556                         power_supply_changed(hidpp->battery.ps);
3557                 }
3558                 return;
3559         }
3560
3561         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3562                 ret = wtp_connect(hdev, connected);
3563                 if (ret)
3564                         return;
3565         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
3566                 ret = m560_send_config_command(hdev, connected);
3567                 if (ret)
3568                         return;
3569         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3570                 ret = k400_connect(hdev, connected);
3571                 if (ret)
3572                         return;
3573         }
3574
3575         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3576                 ret = hidpp10_wheel_connect(hidpp);
3577                 if (ret)
3578                         return;
3579         }
3580
3581         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3582                 ret = hidpp10_extra_mouse_buttons_connect(hidpp);
3583                 if (ret)
3584                         return;
3585         }
3586
3587         if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3588                 ret = hidpp10_consumer_keys_connect(hidpp);
3589                 if (ret)
3590                         return;
3591         }
3592
3593         /* the device is already connected, we can ask for its name and
3594          * protocol */
3595         if (!hidpp->protocol_major) {
3596                 ret = hidpp_root_get_protocol_version(hidpp);
3597                 if (ret) {
3598                         hid_err(hdev, "Can not get the protocol version.\n");
3599                         return;
3600                 }
3601         }
3602
3603         if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) {
3604                 name = hidpp_get_device_name(hidpp);
3605                 if (name) {
3606                         devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL,
3607                                                    "%s", name);
3608                         kfree(name);
3609                         if (!devm_name)
3610                                 return;
3611
3612                         hidpp->name = devm_name;
3613                 }
3614         }
3615
3616         hidpp_initialize_battery(hidpp);
3617
3618         /* forward current battery state */
3619         if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3620                 hidpp10_enable_battery_reporting(hidpp);
3621                 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3622                         hidpp10_query_battery_mileage(hidpp);
3623                 else
3624                         hidpp10_query_battery_status(hidpp);
3625         } else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3626                 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE)
3627                         hidpp20_query_battery_voltage_info(hidpp);
3628                 else
3629                         hidpp20_query_battery_info(hidpp);
3630         }
3631         if (hidpp->battery.ps)
3632                 power_supply_changed(hidpp->battery.ps);
3633
3634         if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL)
3635                 hi_res_scroll_enable(hidpp);
3636
3637         if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input)
3638                 /* if the input nodes are already created, we can stop now */
3639                 return;
3640
3641         input = hidpp_allocate_input(hdev);
3642         if (!input) {
3643                 hid_err(hdev, "cannot allocate new input device: %d\n", ret);
3644                 return;
3645         }
3646
3647         hidpp_populate_input(hidpp, input);
3648
3649         ret = input_register_device(input);
3650         if (ret)
3651                 input_free_device(input);
3652
3653         hidpp->delayed_input = input;
3654 }
3655
3656 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL);
3657
3658 static struct attribute *sysfs_attrs[] = {
3659         &dev_attr_builtin_power_supply.attr,
3660         NULL
3661 };
3662
3663 static const struct attribute_group ps_attribute_group = {
3664         .attrs = sysfs_attrs
3665 };
3666
3667 static int hidpp_get_report_length(struct hid_device *hdev, int id)
3668 {
3669         struct hid_report_enum *re;
3670         struct hid_report *report;
3671
3672         re = &(hdev->report_enum[HID_OUTPUT_REPORT]);
3673         report = re->report_id_hash[id];
3674         if (!report)
3675                 return 0;
3676
3677         return report->field[0]->report_count + 1;
3678 }
3679
3680 static u8 hidpp_validate_device(struct hid_device *hdev)
3681 {
3682         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3683         int id, report_length;
3684         u8 supported_reports = 0;
3685
3686         id = REPORT_ID_HIDPP_SHORT;
3687         report_length = hidpp_get_report_length(hdev, id);
3688         if (report_length) {
3689                 if (report_length < HIDPP_REPORT_SHORT_LENGTH)
3690                         goto bad_device;
3691
3692                 supported_reports |= HIDPP_REPORT_SHORT_SUPPORTED;
3693         }
3694
3695         id = REPORT_ID_HIDPP_LONG;
3696         report_length = hidpp_get_report_length(hdev, id);
3697         if (report_length) {
3698                 if (report_length < HIDPP_REPORT_LONG_LENGTH)
3699                         goto bad_device;
3700
3701                 supported_reports |= HIDPP_REPORT_LONG_SUPPORTED;
3702         }
3703
3704         id = REPORT_ID_HIDPP_VERY_LONG;
3705         report_length = hidpp_get_report_length(hdev, id);
3706         if (report_length) {
3707                 if (report_length < HIDPP_REPORT_LONG_LENGTH ||
3708                     report_length > HIDPP_REPORT_VERY_LONG_MAX_LENGTH)
3709                         goto bad_device;
3710
3711                 supported_reports |= HIDPP_REPORT_VERY_LONG_SUPPORTED;
3712                 hidpp->very_long_report_length = report_length;
3713         }
3714
3715         return supported_reports;
3716
3717 bad_device:
3718         hid_warn(hdev, "not enough values in hidpp report %d\n", id);
3719         return false;
3720 }
3721
3722 static bool hidpp_application_equals(struct hid_device *hdev,
3723                                      unsigned int application)
3724 {
3725         struct list_head *report_list;
3726         struct hid_report *report;
3727
3728         report_list = &hdev->report_enum[HID_INPUT_REPORT].report_list;
3729         report = list_first_entry_or_null(report_list, struct hid_report, list);
3730         return report && report->application == application;
3731 }
3732
3733 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id)
3734 {
3735         struct hidpp_device *hidpp;
3736         int ret;
3737         bool connected;
3738         unsigned int connect_mask = HID_CONNECT_DEFAULT;
3739         struct hidpp_ff_private_data data;
3740
3741         /* report_fixup needs drvdata to be set before we call hid_parse */
3742         hidpp = devm_kzalloc(&hdev->dev, sizeof(*hidpp), GFP_KERNEL);
3743         if (!hidpp)
3744                 return -ENOMEM;
3745
3746         hidpp->hid_dev = hdev;
3747         hidpp->name = hdev->name;
3748         hidpp->quirks = id->driver_data;
3749         hid_set_drvdata(hdev, hidpp);
3750
3751         ret = hid_parse(hdev);
3752         if (ret) {
3753                 hid_err(hdev, "%s:parse failed\n", __func__);
3754                 return ret;
3755         }
3756
3757         /*
3758          * Make sure the device is HID++ capable, otherwise treat as generic HID
3759          */
3760         hidpp->supported_reports = hidpp_validate_device(hdev);
3761
3762         if (!hidpp->supported_reports) {
3763                 hid_set_drvdata(hdev, NULL);
3764                 devm_kfree(&hdev->dev, hidpp);
3765                 return hid_hw_start(hdev, HID_CONNECT_DEFAULT);
3766         }
3767
3768         if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE)
3769                 hidpp->quirks |= HIDPP_QUIRK_UNIFYING;
3770
3771         if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
3772             hidpp_application_equals(hdev, HID_GD_MOUSE))
3773                 hidpp->quirks |= HIDPP_QUIRK_HIDPP_WHEELS |
3774                                  HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS;
3775
3776         if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
3777             hidpp_application_equals(hdev, HID_GD_KEYBOARD))
3778                 hidpp->quirks |= HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS;
3779
3780         if (disable_raw_mode) {
3781                 hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP;
3782                 hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT;
3783         }
3784
3785         if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3786                 ret = wtp_allocate(hdev, id);
3787                 if (ret)
3788                         return ret;
3789         } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3790                 ret = k400_allocate(hdev);
3791                 if (ret)
3792                         return ret;
3793         }
3794
3795         INIT_WORK(&hidpp->work, delayed_work_cb);
3796         mutex_init(&hidpp->send_mutex);
3797         init_waitqueue_head(&hidpp->wait);
3798
3799         /* indicates we are handling the battery properties in the kernel */
3800         ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group);
3801         if (ret)
3802                 hid_warn(hdev, "Cannot allocate sysfs group for %s\n",
3803                          hdev->name);
3804
3805         /*
3806          * Plain USB connections need to actually call start and open
3807          * on the transport driver to allow incoming data.
3808          */
3809         ret = hid_hw_start(hdev, 0);
3810         if (ret) {
3811                 hid_err(hdev, "hw start failed\n");
3812                 goto hid_hw_start_fail;
3813         }
3814
3815         ret = hid_hw_open(hdev);
3816         if (ret < 0) {
3817                 dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n",
3818                         __func__, ret);
3819                 goto hid_hw_open_fail;
3820         }
3821
3822         /* Allow incoming packets */
3823         hid_device_io_start(hdev);
3824
3825         if (hidpp->quirks & HIDPP_QUIRK_UNIFYING)
3826                 hidpp_unifying_init(hidpp);
3827
3828         connected = hidpp_root_get_protocol_version(hidpp) == 0;
3829         atomic_set(&hidpp->connected, connected);
3830         if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) {
3831                 if (!connected) {
3832                         ret = -ENODEV;
3833                         hid_err(hdev, "Device not connected");
3834                         goto hid_hw_init_fail;
3835                 }
3836
3837                 hidpp_overwrite_name(hdev);
3838         }
3839
3840         if (connected && hidpp->protocol_major >= 2) {
3841                 ret = hidpp_set_wireless_feature_index(hidpp);
3842                 if (ret == -ENOENT)
3843                         hidpp->wireless_feature_index = 0;
3844                 else if (ret)
3845                         goto hid_hw_init_fail;
3846         }
3847
3848         if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) {
3849                 ret = wtp_get_config(hidpp);
3850                 if (ret)
3851                         goto hid_hw_init_fail;
3852         } else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
3853                 ret = g920_get_config(hidpp, &data);
3854                 if (ret)
3855                         goto hid_hw_init_fail;
3856         }
3857
3858         hidpp_connect_event(hidpp);
3859
3860         /* Reset the HID node state */
3861         hid_device_io_stop(hdev);
3862         hid_hw_close(hdev);
3863         hid_hw_stop(hdev);
3864
3865         if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT)
3866                 connect_mask &= ~HID_CONNECT_HIDINPUT;
3867
3868         /* Now export the actual inputs and hidraw nodes to the world */
3869         ret = hid_hw_start(hdev, connect_mask);
3870         if (ret) {
3871                 hid_err(hdev, "%s:hid_hw_start returned error\n", __func__);
3872                 goto hid_hw_start_fail;
3873         }
3874
3875         if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3876                 ret = hidpp_ff_init(hidpp, &data);
3877                 if (ret)
3878                         hid_warn(hidpp->hid_dev,
3879                      "Unable to initialize force feedback support, errno %d\n",
3880                                  ret);
3881         }
3882
3883         return ret;
3884
3885 hid_hw_init_fail:
3886         hid_hw_close(hdev);
3887 hid_hw_open_fail:
3888         hid_hw_stop(hdev);
3889 hid_hw_start_fail:
3890         sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3891         cancel_work_sync(&hidpp->work);
3892         mutex_destroy(&hidpp->send_mutex);
3893         return ret;
3894 }
3895
3896 static void hidpp_remove(struct hid_device *hdev)
3897 {
3898         struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3899
3900         if (!hidpp)
3901                 return hid_hw_stop(hdev);
3902
3903         sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3904
3905         hid_hw_stop(hdev);
3906         cancel_work_sync(&hidpp->work);
3907         mutex_destroy(&hidpp->send_mutex);
3908 }
3909
3910 #define LDJ_DEVICE(product) \
3911         HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \
3912                    USB_VENDOR_ID_LOGITECH, (product))
3913
3914 #define L27MHZ_DEVICE(product) \
3915         HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_27MHZ_DEVICE, \
3916                    USB_VENDOR_ID_LOGITECH, (product))
3917
3918 static const struct hid_device_id hidpp_devices[] = {
3919         { /* wireless touchpad */
3920           LDJ_DEVICE(0x4011),
3921           .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT |
3922                          HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS },
3923         { /* wireless touchpad T650 */
3924           LDJ_DEVICE(0x4101),
3925           .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT },
3926         { /* wireless touchpad T651 */
3927           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH,
3928                 USB_DEVICE_ID_LOGITECH_T651),
3929           .driver_data = HIDPP_QUIRK_CLASS_WTP },
3930         { /* Mouse Logitech Anywhere MX */
3931           LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3932         { /* Mouse Logitech Cube */
3933           LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3934         { /* Mouse Logitech M335 */
3935           LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3936         { /* Mouse Logitech M515 */
3937           LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3938         { /* Mouse logitech M560 */
3939           LDJ_DEVICE(0x402d),
3940           .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560
3941                 | HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3942         { /* Mouse Logitech M705 (firmware RQM17) */
3943           LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3944         { /* Mouse Logitech M705 (firmware RQM67) */
3945           LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3946         { /* Mouse Logitech M720 */
3947           LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3948         { /* Mouse Logitech MX Anywhere 2 */
3949           LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3950         { LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3951         { LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3952         { LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3953         { /* Mouse Logitech MX Anywhere 2S */
3954           LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3955         { /* Mouse Logitech MX Master */
3956           LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3957         { LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3958         { LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3959         { /* Mouse Logitech MX Master 2S */
3960           LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3961         { /* Mouse Logitech MX Master 3 */
3962           LDJ_DEVICE(0x4082), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3963         { /* Mouse Logitech Performance MX */
3964           LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3965         { /* Keyboard logitech K400 */
3966           LDJ_DEVICE(0x4024),
3967           .driver_data = HIDPP_QUIRK_CLASS_K400 },
3968         { /* Solar Keyboard Logitech K750 */
3969           LDJ_DEVICE(0x4002),
3970           .driver_data = HIDPP_QUIRK_CLASS_K750 },
3971         { /* Keyboard MX5000 (Bluetooth-receiver in HID proxy mode) */
3972           LDJ_DEVICE(0xb305),
3973           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
3974         { /* Keyboard MX5500 (Bluetooth-receiver in HID proxy mode) */
3975           LDJ_DEVICE(0xb30b),
3976           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
3977
3978         { LDJ_DEVICE(HID_ANY_ID) },
3979
3980         { /* Keyboard LX501 (Y-RR53) */
3981           L27MHZ_DEVICE(0x0049),
3982           .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
3983         { /* Keyboard MX3000 (Y-RAM74) */
3984           L27MHZ_DEVICE(0x0057),
3985           .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
3986         { /* Keyboard MX3200 (Y-RAV80) */
3987           L27MHZ_DEVICE(0x005c),
3988           .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
3989         { /* S510 Media Remote */
3990           L27MHZ_DEVICE(0x00fe),
3991           .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
3992
3993         { L27MHZ_DEVICE(HID_ANY_ID) },
3994
3995         { /* Logitech G403 Wireless Gaming Mouse over USB */
3996           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC082) },
3997         { /* Logitech G703 Gaming Mouse over USB */
3998           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC087) },
3999         { /* Logitech G703 Hero Gaming Mouse over USB */
4000           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC090) },
4001         { /* Logitech G900 Gaming Mouse over USB */
4002           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC081) },
4003         { /* Logitech G903 Gaming Mouse over USB */
4004           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC086) },
4005         { /* Logitech G903 Hero Gaming Mouse over USB */
4006           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC091) },
4007         { /* Logitech G920 Wheel over USB */
4008           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL),
4009                 .driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS},
4010         { /* Logitech G Pro Gaming Mouse over USB */
4011           HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC088) },
4012
4013         { /* MX5000 keyboard over Bluetooth */
4014           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb305),
4015           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4016         { /* MX5500 keyboard over Bluetooth */
4017           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb30b),
4018           .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4019         { /* MX Master mouse over Bluetooth */
4020           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb012),
4021           .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4022         { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01e),
4023           .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4024         { /* MX Master 3 mouse over Bluetooth */
4025           HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb023),
4026           .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4027         {}
4028 };
4029
4030 MODULE_DEVICE_TABLE(hid, hidpp_devices);
4031
4032 static const struct hid_usage_id hidpp_usages[] = {
4033         { HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES },
4034         { HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1}
4035 };
4036
4037 static struct hid_driver hidpp_driver = {
4038         .name = "logitech-hidpp-device",
4039         .id_table = hidpp_devices,
4040         .report_fixup = hidpp_report_fixup,
4041         .probe = hidpp_probe,
4042         .remove = hidpp_remove,
4043         .raw_event = hidpp_raw_event,
4044         .usage_table = hidpp_usages,
4045         .event = hidpp_event,
4046         .input_configured = hidpp_input_configured,
4047         .input_mapping = hidpp_input_mapping,
4048         .input_mapped = hidpp_input_mapped,
4049 };
4050
4051 module_hid_driver(hidpp_driver);