Merge branch 'for-5.9/upstream-fixes' into for-linus
[linux-2.6-microblaze.git] / drivers / hid / hid-core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  HID support for Linux
4  *
5  *  Copyright (c) 1999 Andreas Gal
6  *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7  *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8  *  Copyright (c) 2006-2012 Jiri Kosina
9  */
10
11 /*
12  */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/spinlock.h>
23 #include <asm/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
35
36 #include "hid-ids.h"
37
38 /*
39  * Version Information
40  */
41
42 #define DRIVER_DESC "HID core driver"
43
44 int hid_debug = 0;
45 module_param_named(debug, hid_debug, int, 0600);
46 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
47 EXPORT_SYMBOL_GPL(hid_debug);
48
49 static int hid_ignore_special_drivers = 0;
50 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
51 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
52
53 /*
54  * Register a new report for a device.
55  */
56
57 struct hid_report *hid_register_report(struct hid_device *device,
58                                        unsigned int type, unsigned int id,
59                                        unsigned int application)
60 {
61         struct hid_report_enum *report_enum = device->report_enum + type;
62         struct hid_report *report;
63
64         if (id >= HID_MAX_IDS)
65                 return NULL;
66         if (report_enum->report_id_hash[id])
67                 return report_enum->report_id_hash[id];
68
69         report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
70         if (!report)
71                 return NULL;
72
73         if (id != 0)
74                 report_enum->numbered = 1;
75
76         report->id = id;
77         report->type = type;
78         report->size = 0;
79         report->device = device;
80         report->application = application;
81         report_enum->report_id_hash[id] = report;
82
83         list_add_tail(&report->list, &report_enum->report_list);
84
85         return report;
86 }
87 EXPORT_SYMBOL_GPL(hid_register_report);
88
89 /*
90  * Register a new field for this report.
91  */
92
93 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
94 {
95         struct hid_field *field;
96
97         if (report->maxfield == HID_MAX_FIELDS) {
98                 hid_err(report->device, "too many fields in report\n");
99                 return NULL;
100         }
101
102         field = kzalloc((sizeof(struct hid_field) +
103                          usages * sizeof(struct hid_usage) +
104                          values * sizeof(unsigned)), GFP_KERNEL);
105         if (!field)
106                 return NULL;
107
108         field->index = report->maxfield++;
109         report->field[field->index] = field;
110         field->usage = (struct hid_usage *)(field + 1);
111         field->value = (s32 *)(field->usage + usages);
112         field->report = report;
113
114         return field;
115 }
116
117 /*
118  * Open a collection. The type/usage is pushed on the stack.
119  */
120
121 static int open_collection(struct hid_parser *parser, unsigned type)
122 {
123         struct hid_collection *collection;
124         unsigned usage;
125         int collection_index;
126
127         usage = parser->local.usage[0];
128
129         if (parser->collection_stack_ptr == parser->collection_stack_size) {
130                 unsigned int *collection_stack;
131                 unsigned int new_size = parser->collection_stack_size +
132                                         HID_COLLECTION_STACK_SIZE;
133
134                 collection_stack = krealloc(parser->collection_stack,
135                                             new_size * sizeof(unsigned int),
136                                             GFP_KERNEL);
137                 if (!collection_stack)
138                         return -ENOMEM;
139
140                 parser->collection_stack = collection_stack;
141                 parser->collection_stack_size = new_size;
142         }
143
144         if (parser->device->maxcollection == parser->device->collection_size) {
145                 collection = kmalloc(
146                                 array3_size(sizeof(struct hid_collection),
147                                             parser->device->collection_size,
148                                             2),
149                                 GFP_KERNEL);
150                 if (collection == NULL) {
151                         hid_err(parser->device, "failed to reallocate collection array\n");
152                         return -ENOMEM;
153                 }
154                 memcpy(collection, parser->device->collection,
155                         sizeof(struct hid_collection) *
156                         parser->device->collection_size);
157                 memset(collection + parser->device->collection_size, 0,
158                         sizeof(struct hid_collection) *
159                         parser->device->collection_size);
160                 kfree(parser->device->collection);
161                 parser->device->collection = collection;
162                 parser->device->collection_size *= 2;
163         }
164
165         parser->collection_stack[parser->collection_stack_ptr++] =
166                 parser->device->maxcollection;
167
168         collection_index = parser->device->maxcollection++;
169         collection = parser->device->collection + collection_index;
170         collection->type = type;
171         collection->usage = usage;
172         collection->level = parser->collection_stack_ptr - 1;
173         collection->parent_idx = (collection->level == 0) ? -1 :
174                 parser->collection_stack[collection->level - 1];
175
176         if (type == HID_COLLECTION_APPLICATION)
177                 parser->device->maxapplication++;
178
179         return 0;
180 }
181
182 /*
183  * Close a collection.
184  */
185
186 static int close_collection(struct hid_parser *parser)
187 {
188         if (!parser->collection_stack_ptr) {
189                 hid_err(parser->device, "collection stack underflow\n");
190                 return -EINVAL;
191         }
192         parser->collection_stack_ptr--;
193         return 0;
194 }
195
196 /*
197  * Climb up the stack, search for the specified collection type
198  * and return the usage.
199  */
200
201 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
202 {
203         struct hid_collection *collection = parser->device->collection;
204         int n;
205
206         for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
207                 unsigned index = parser->collection_stack[n];
208                 if (collection[index].type == type)
209                         return collection[index].usage;
210         }
211         return 0; /* we know nothing about this usage type */
212 }
213
214 /*
215  * Concatenate usage which defines 16 bits or less with the
216  * currently defined usage page to form a 32 bit usage
217  */
218
219 static void complete_usage(struct hid_parser *parser, unsigned int index)
220 {
221         parser->local.usage[index] &= 0xFFFF;
222         parser->local.usage[index] |=
223                 (parser->global.usage_page & 0xFFFF) << 16;
224 }
225
226 /*
227  * Add a usage to the temporary parser table.
228  */
229
230 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
231 {
232         if (parser->local.usage_index >= HID_MAX_USAGES) {
233                 hid_err(parser->device, "usage index exceeded\n");
234                 return -1;
235         }
236         parser->local.usage[parser->local.usage_index] = usage;
237
238         /*
239          * If Usage item only includes usage id, concatenate it with
240          * currently defined usage page
241          */
242         if (size <= 2)
243                 complete_usage(parser, parser->local.usage_index);
244
245         parser->local.usage_size[parser->local.usage_index] = size;
246         parser->local.collection_index[parser->local.usage_index] =
247                 parser->collection_stack_ptr ?
248                 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
249         parser->local.usage_index++;
250         return 0;
251 }
252
253 /*
254  * Register a new field for this report.
255  */
256
257 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
258 {
259         struct hid_report *report;
260         struct hid_field *field;
261         unsigned int usages;
262         unsigned int offset;
263         unsigned int i;
264         unsigned int application;
265
266         application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
267
268         report = hid_register_report(parser->device, report_type,
269                                      parser->global.report_id, application);
270         if (!report) {
271                 hid_err(parser->device, "hid_register_report failed\n");
272                 return -1;
273         }
274
275         /* Handle both signed and unsigned cases properly */
276         if ((parser->global.logical_minimum < 0 &&
277                 parser->global.logical_maximum <
278                 parser->global.logical_minimum) ||
279                 (parser->global.logical_minimum >= 0 &&
280                 (__u32)parser->global.logical_maximum <
281                 (__u32)parser->global.logical_minimum)) {
282                 dbg_hid("logical range invalid 0x%x 0x%x\n",
283                         parser->global.logical_minimum,
284                         parser->global.logical_maximum);
285                 return -1;
286         }
287
288         offset = report->size;
289         report->size += parser->global.report_size * parser->global.report_count;
290
291         /* Total size check: Allow for possible report index byte */
292         if (report->size > (HID_MAX_BUFFER_SIZE - 1) << 3) {
293                 hid_err(parser->device, "report is too long\n");
294                 return -1;
295         }
296
297         if (!parser->local.usage_index) /* Ignore padding fields */
298                 return 0;
299
300         usages = max_t(unsigned, parser->local.usage_index,
301                                  parser->global.report_count);
302
303         field = hid_register_field(report, usages, parser->global.report_count);
304         if (!field)
305                 return 0;
306
307         field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
308         field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
309         field->application = application;
310
311         for (i = 0; i < usages; i++) {
312                 unsigned j = i;
313                 /* Duplicate the last usage we parsed if we have excess values */
314                 if (i >= parser->local.usage_index)
315                         j = parser->local.usage_index - 1;
316                 field->usage[i].hid = parser->local.usage[j];
317                 field->usage[i].collection_index =
318                         parser->local.collection_index[j];
319                 field->usage[i].usage_index = i;
320                 field->usage[i].resolution_multiplier = 1;
321         }
322
323         field->maxusage = usages;
324         field->flags = flags;
325         field->report_offset = offset;
326         field->report_type = report_type;
327         field->report_size = parser->global.report_size;
328         field->report_count = parser->global.report_count;
329         field->logical_minimum = parser->global.logical_minimum;
330         field->logical_maximum = parser->global.logical_maximum;
331         field->physical_minimum = parser->global.physical_minimum;
332         field->physical_maximum = parser->global.physical_maximum;
333         field->unit_exponent = parser->global.unit_exponent;
334         field->unit = parser->global.unit;
335
336         return 0;
337 }
338
339 /*
340  * Read data value from item.
341  */
342
343 static u32 item_udata(struct hid_item *item)
344 {
345         switch (item->size) {
346         case 1: return item->data.u8;
347         case 2: return item->data.u16;
348         case 4: return item->data.u32;
349         }
350         return 0;
351 }
352
353 static s32 item_sdata(struct hid_item *item)
354 {
355         switch (item->size) {
356         case 1: return item->data.s8;
357         case 2: return item->data.s16;
358         case 4: return item->data.s32;
359         }
360         return 0;
361 }
362
363 /*
364  * Process a global item.
365  */
366
367 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
368 {
369         __s32 raw_value;
370         switch (item->tag) {
371         case HID_GLOBAL_ITEM_TAG_PUSH:
372
373                 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
374                         hid_err(parser->device, "global environment stack overflow\n");
375                         return -1;
376                 }
377
378                 memcpy(parser->global_stack + parser->global_stack_ptr++,
379                         &parser->global, sizeof(struct hid_global));
380                 return 0;
381
382         case HID_GLOBAL_ITEM_TAG_POP:
383
384                 if (!parser->global_stack_ptr) {
385                         hid_err(parser->device, "global environment stack underflow\n");
386                         return -1;
387                 }
388
389                 memcpy(&parser->global, parser->global_stack +
390                         --parser->global_stack_ptr, sizeof(struct hid_global));
391                 return 0;
392
393         case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
394                 parser->global.usage_page = item_udata(item);
395                 return 0;
396
397         case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
398                 parser->global.logical_minimum = item_sdata(item);
399                 return 0;
400
401         case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
402                 if (parser->global.logical_minimum < 0)
403                         parser->global.logical_maximum = item_sdata(item);
404                 else
405                         parser->global.logical_maximum = item_udata(item);
406                 return 0;
407
408         case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
409                 parser->global.physical_minimum = item_sdata(item);
410                 return 0;
411
412         case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
413                 if (parser->global.physical_minimum < 0)
414                         parser->global.physical_maximum = item_sdata(item);
415                 else
416                         parser->global.physical_maximum = item_udata(item);
417                 return 0;
418
419         case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
420                 /* Many devices provide unit exponent as a two's complement
421                  * nibble due to the common misunderstanding of HID
422                  * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
423                  * both this and the standard encoding. */
424                 raw_value = item_sdata(item);
425                 if (!(raw_value & 0xfffffff0))
426                         parser->global.unit_exponent = hid_snto32(raw_value, 4);
427                 else
428                         parser->global.unit_exponent = raw_value;
429                 return 0;
430
431         case HID_GLOBAL_ITEM_TAG_UNIT:
432                 parser->global.unit = item_udata(item);
433                 return 0;
434
435         case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
436                 parser->global.report_size = item_udata(item);
437                 if (parser->global.report_size > 256) {
438                         hid_err(parser->device, "invalid report_size %d\n",
439                                         parser->global.report_size);
440                         return -1;
441                 }
442                 return 0;
443
444         case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
445                 parser->global.report_count = item_udata(item);
446                 if (parser->global.report_count > HID_MAX_USAGES) {
447                         hid_err(parser->device, "invalid report_count %d\n",
448                                         parser->global.report_count);
449                         return -1;
450                 }
451                 return 0;
452
453         case HID_GLOBAL_ITEM_TAG_REPORT_ID:
454                 parser->global.report_id = item_udata(item);
455                 if (parser->global.report_id == 0 ||
456                     parser->global.report_id >= HID_MAX_IDS) {
457                         hid_err(parser->device, "report_id %u is invalid\n",
458                                 parser->global.report_id);
459                         return -1;
460                 }
461                 return 0;
462
463         default:
464                 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
465                 return -1;
466         }
467 }
468
469 /*
470  * Process a local item.
471  */
472
473 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
474 {
475         __u32 data;
476         unsigned n;
477         __u32 count;
478
479         data = item_udata(item);
480
481         switch (item->tag) {
482         case HID_LOCAL_ITEM_TAG_DELIMITER:
483
484                 if (data) {
485                         /*
486                          * We treat items before the first delimiter
487                          * as global to all usage sets (branch 0).
488                          * In the moment we process only these global
489                          * items and the first delimiter set.
490                          */
491                         if (parser->local.delimiter_depth != 0) {
492                                 hid_err(parser->device, "nested delimiters\n");
493                                 return -1;
494                         }
495                         parser->local.delimiter_depth++;
496                         parser->local.delimiter_branch++;
497                 } else {
498                         if (parser->local.delimiter_depth < 1) {
499                                 hid_err(parser->device, "bogus close delimiter\n");
500                                 return -1;
501                         }
502                         parser->local.delimiter_depth--;
503                 }
504                 return 0;
505
506         case HID_LOCAL_ITEM_TAG_USAGE:
507
508                 if (parser->local.delimiter_branch > 1) {
509                         dbg_hid("alternative usage ignored\n");
510                         return 0;
511                 }
512
513                 return hid_add_usage(parser, data, item->size);
514
515         case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
516
517                 if (parser->local.delimiter_branch > 1) {
518                         dbg_hid("alternative usage ignored\n");
519                         return 0;
520                 }
521
522                 parser->local.usage_minimum = data;
523                 return 0;
524
525         case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
526
527                 if (parser->local.delimiter_branch > 1) {
528                         dbg_hid("alternative usage ignored\n");
529                         return 0;
530                 }
531
532                 count = data - parser->local.usage_minimum;
533                 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
534                         /*
535                          * We do not warn if the name is not set, we are
536                          * actually pre-scanning the device.
537                          */
538                         if (dev_name(&parser->device->dev))
539                                 hid_warn(parser->device,
540                                          "ignoring exceeding usage max\n");
541                         data = HID_MAX_USAGES - parser->local.usage_index +
542                                 parser->local.usage_minimum - 1;
543                         if (data <= 0) {
544                                 hid_err(parser->device,
545                                         "no more usage index available\n");
546                                 return -1;
547                         }
548                 }
549
550                 for (n = parser->local.usage_minimum; n <= data; n++)
551                         if (hid_add_usage(parser, n, item->size)) {
552                                 dbg_hid("hid_add_usage failed\n");
553                                 return -1;
554                         }
555                 return 0;
556
557         default:
558
559                 dbg_hid("unknown local item tag 0x%x\n", item->tag);
560                 return 0;
561         }
562         return 0;
563 }
564
565 /*
566  * Concatenate Usage Pages into Usages where relevant:
567  * As per specification, 6.2.2.8: "When the parser encounters a main item it
568  * concatenates the last declared Usage Page with a Usage to form a complete
569  * usage value."
570  */
571
572 static void hid_concatenate_last_usage_page(struct hid_parser *parser)
573 {
574         int i;
575         unsigned int usage_page;
576         unsigned int current_page;
577
578         if (!parser->local.usage_index)
579                 return;
580
581         usage_page = parser->global.usage_page;
582
583         /*
584          * Concatenate usage page again only if last declared Usage Page
585          * has not been already used in previous usages concatenation
586          */
587         for (i = parser->local.usage_index - 1; i >= 0; i--) {
588                 if (parser->local.usage_size[i] > 2)
589                         /* Ignore extended usages */
590                         continue;
591
592                 current_page = parser->local.usage[i] >> 16;
593                 if (current_page == usage_page)
594                         break;
595
596                 complete_usage(parser, i);
597         }
598 }
599
600 /*
601  * Process a main item.
602  */
603
604 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
605 {
606         __u32 data;
607         int ret;
608
609         hid_concatenate_last_usage_page(parser);
610
611         data = item_udata(item);
612
613         switch (item->tag) {
614         case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
615                 ret = open_collection(parser, data & 0xff);
616                 break;
617         case HID_MAIN_ITEM_TAG_END_COLLECTION:
618                 ret = close_collection(parser);
619                 break;
620         case HID_MAIN_ITEM_TAG_INPUT:
621                 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
622                 break;
623         case HID_MAIN_ITEM_TAG_OUTPUT:
624                 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
625                 break;
626         case HID_MAIN_ITEM_TAG_FEATURE:
627                 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
628                 break;
629         default:
630                 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
631                 ret = 0;
632         }
633
634         memset(&parser->local, 0, sizeof(parser->local));       /* Reset the local parser environment */
635
636         return ret;
637 }
638
639 /*
640  * Process a reserved item.
641  */
642
643 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
644 {
645         dbg_hid("reserved item type, tag 0x%x\n", item->tag);
646         return 0;
647 }
648
649 /*
650  * Free a report and all registered fields. The field->usage and
651  * field->value table's are allocated behind the field, so we need
652  * only to free(field) itself.
653  */
654
655 static void hid_free_report(struct hid_report *report)
656 {
657         unsigned n;
658
659         for (n = 0; n < report->maxfield; n++)
660                 kfree(report->field[n]);
661         kfree(report);
662 }
663
664 /*
665  * Close report. This function returns the device
666  * state to the point prior to hid_open_report().
667  */
668 static void hid_close_report(struct hid_device *device)
669 {
670         unsigned i, j;
671
672         for (i = 0; i < HID_REPORT_TYPES; i++) {
673                 struct hid_report_enum *report_enum = device->report_enum + i;
674
675                 for (j = 0; j < HID_MAX_IDS; j++) {
676                         struct hid_report *report = report_enum->report_id_hash[j];
677                         if (report)
678                                 hid_free_report(report);
679                 }
680                 memset(report_enum, 0, sizeof(*report_enum));
681                 INIT_LIST_HEAD(&report_enum->report_list);
682         }
683
684         kfree(device->rdesc);
685         device->rdesc = NULL;
686         device->rsize = 0;
687
688         kfree(device->collection);
689         device->collection = NULL;
690         device->collection_size = 0;
691         device->maxcollection = 0;
692         device->maxapplication = 0;
693
694         device->status &= ~HID_STAT_PARSED;
695 }
696
697 /*
698  * Free a device structure, all reports, and all fields.
699  */
700
701 static void hid_device_release(struct device *dev)
702 {
703         struct hid_device *hid = to_hid_device(dev);
704
705         hid_close_report(hid);
706         kfree(hid->dev_rdesc);
707         kfree(hid);
708 }
709
710 /*
711  * Fetch a report description item from the data stream. We support long
712  * items, though they are not used yet.
713  */
714
715 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
716 {
717         u8 b;
718
719         if ((end - start) <= 0)
720                 return NULL;
721
722         b = *start++;
723
724         item->type = (b >> 2) & 3;
725         item->tag  = (b >> 4) & 15;
726
727         if (item->tag == HID_ITEM_TAG_LONG) {
728
729                 item->format = HID_ITEM_FORMAT_LONG;
730
731                 if ((end - start) < 2)
732                         return NULL;
733
734                 item->size = *start++;
735                 item->tag  = *start++;
736
737                 if ((end - start) < item->size)
738                         return NULL;
739
740                 item->data.longdata = start;
741                 start += item->size;
742                 return start;
743         }
744
745         item->format = HID_ITEM_FORMAT_SHORT;
746         item->size = b & 3;
747
748         switch (item->size) {
749         case 0:
750                 return start;
751
752         case 1:
753                 if ((end - start) < 1)
754                         return NULL;
755                 item->data.u8 = *start++;
756                 return start;
757
758         case 2:
759                 if ((end - start) < 2)
760                         return NULL;
761                 item->data.u16 = get_unaligned_le16(start);
762                 start = (__u8 *)((__le16 *)start + 1);
763                 return start;
764
765         case 3:
766                 item->size++;
767                 if ((end - start) < 4)
768                         return NULL;
769                 item->data.u32 = get_unaligned_le32(start);
770                 start = (__u8 *)((__le32 *)start + 1);
771                 return start;
772         }
773
774         return NULL;
775 }
776
777 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
778 {
779         struct hid_device *hid = parser->device;
780
781         if (usage == HID_DG_CONTACTID)
782                 hid->group = HID_GROUP_MULTITOUCH;
783 }
784
785 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
786 {
787         if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
788             parser->global.report_size == 8)
789                 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
790
791         if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
792             parser->global.report_size == 8)
793                 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
794 }
795
796 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
797 {
798         struct hid_device *hid = parser->device;
799         int i;
800
801         if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
802             type == HID_COLLECTION_PHYSICAL)
803                 hid->group = HID_GROUP_SENSOR_HUB;
804
805         if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
806             hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
807             hid->group == HID_GROUP_MULTITOUCH)
808                 hid->group = HID_GROUP_GENERIC;
809
810         if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
811                 for (i = 0; i < parser->local.usage_index; i++)
812                         if (parser->local.usage[i] == HID_GD_POINTER)
813                                 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
814
815         if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
816                 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
817
818         if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
819                 for (i = 0; i < parser->local.usage_index; i++)
820                         if (parser->local.usage[i] ==
821                                         (HID_UP_GOOGLEVENDOR | 0x0001))
822                                 parser->device->group =
823                                         HID_GROUP_VIVALDI;
824 }
825
826 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
827 {
828         __u32 data;
829         int i;
830
831         hid_concatenate_last_usage_page(parser);
832
833         data = item_udata(item);
834
835         switch (item->tag) {
836         case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
837                 hid_scan_collection(parser, data & 0xff);
838                 break;
839         case HID_MAIN_ITEM_TAG_END_COLLECTION:
840                 break;
841         case HID_MAIN_ITEM_TAG_INPUT:
842                 /* ignore constant inputs, they will be ignored by hid-input */
843                 if (data & HID_MAIN_ITEM_CONSTANT)
844                         break;
845                 for (i = 0; i < parser->local.usage_index; i++)
846                         hid_scan_input_usage(parser, parser->local.usage[i]);
847                 break;
848         case HID_MAIN_ITEM_TAG_OUTPUT:
849                 break;
850         case HID_MAIN_ITEM_TAG_FEATURE:
851                 for (i = 0; i < parser->local.usage_index; i++)
852                         hid_scan_feature_usage(parser, parser->local.usage[i]);
853                 break;
854         }
855
856         /* Reset the local parser environment */
857         memset(&parser->local, 0, sizeof(parser->local));
858
859         return 0;
860 }
861
862 /*
863  * Scan a report descriptor before the device is added to the bus.
864  * Sets device groups and other properties that determine what driver
865  * to load.
866  */
867 static int hid_scan_report(struct hid_device *hid)
868 {
869         struct hid_parser *parser;
870         struct hid_item item;
871         __u8 *start = hid->dev_rdesc;
872         __u8 *end = start + hid->dev_rsize;
873         static int (*dispatch_type[])(struct hid_parser *parser,
874                                       struct hid_item *item) = {
875                 hid_scan_main,
876                 hid_parser_global,
877                 hid_parser_local,
878                 hid_parser_reserved
879         };
880
881         parser = vzalloc(sizeof(struct hid_parser));
882         if (!parser)
883                 return -ENOMEM;
884
885         parser->device = hid;
886         hid->group = HID_GROUP_GENERIC;
887
888         /*
889          * The parsing is simpler than the one in hid_open_report() as we should
890          * be robust against hid errors. Those errors will be raised by
891          * hid_open_report() anyway.
892          */
893         while ((start = fetch_item(start, end, &item)) != NULL)
894                 dispatch_type[item.type](parser, &item);
895
896         /*
897          * Handle special flags set during scanning.
898          */
899         if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
900             (hid->group == HID_GROUP_MULTITOUCH))
901                 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
902
903         /*
904          * Vendor specific handlings
905          */
906         switch (hid->vendor) {
907         case USB_VENDOR_ID_WACOM:
908                 hid->group = HID_GROUP_WACOM;
909                 break;
910         case USB_VENDOR_ID_SYNAPTICS:
911                 if (hid->group == HID_GROUP_GENERIC)
912                         if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
913                             && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
914                                 /*
915                                  * hid-rmi should take care of them,
916                                  * not hid-generic
917                                  */
918                                 hid->group = HID_GROUP_RMI;
919                 break;
920         }
921
922         kfree(parser->collection_stack);
923         vfree(parser);
924         return 0;
925 }
926
927 /**
928  * hid_parse_report - parse device report
929  *
930  * @hid: hid device
931  * @start: report start
932  * @size: report size
933  *
934  * Allocate the device report as read by the bus driver. This function should
935  * only be called from parse() in ll drivers.
936  */
937 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
938 {
939         hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
940         if (!hid->dev_rdesc)
941                 return -ENOMEM;
942         hid->dev_rsize = size;
943         return 0;
944 }
945 EXPORT_SYMBOL_GPL(hid_parse_report);
946
947 static const char * const hid_report_names[] = {
948         "HID_INPUT_REPORT",
949         "HID_OUTPUT_REPORT",
950         "HID_FEATURE_REPORT",
951 };
952 /**
953  * hid_validate_values - validate existing device report's value indexes
954  *
955  * @hid: hid device
956  * @type: which report type to examine
957  * @id: which report ID to examine (0 for first)
958  * @field_index: which report field to examine
959  * @report_counts: expected number of values
960  *
961  * Validate the number of values in a given field of a given report, after
962  * parsing.
963  */
964 struct hid_report *hid_validate_values(struct hid_device *hid,
965                                        unsigned int type, unsigned int id,
966                                        unsigned int field_index,
967                                        unsigned int report_counts)
968 {
969         struct hid_report *report;
970
971         if (type > HID_FEATURE_REPORT) {
972                 hid_err(hid, "invalid HID report type %u\n", type);
973                 return NULL;
974         }
975
976         if (id >= HID_MAX_IDS) {
977                 hid_err(hid, "invalid HID report id %u\n", id);
978                 return NULL;
979         }
980
981         /*
982          * Explicitly not using hid_get_report() here since it depends on
983          * ->numbered being checked, which may not always be the case when
984          * drivers go to access report values.
985          */
986         if (id == 0) {
987                 /*
988                  * Validating on id 0 means we should examine the first
989                  * report in the list.
990                  */
991                 report = list_entry(
992                                 hid->report_enum[type].report_list.next,
993                                 struct hid_report, list);
994         } else {
995                 report = hid->report_enum[type].report_id_hash[id];
996         }
997         if (!report) {
998                 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
999                 return NULL;
1000         }
1001         if (report->maxfield <= field_index) {
1002                 hid_err(hid, "not enough fields in %s %u\n",
1003                         hid_report_names[type], id);
1004                 return NULL;
1005         }
1006         if (report->field[field_index]->report_count < report_counts) {
1007                 hid_err(hid, "not enough values in %s %u field %u\n",
1008                         hid_report_names[type], id, field_index);
1009                 return NULL;
1010         }
1011         return report;
1012 }
1013 EXPORT_SYMBOL_GPL(hid_validate_values);
1014
1015 static int hid_calculate_multiplier(struct hid_device *hid,
1016                                      struct hid_field *multiplier)
1017 {
1018         int m;
1019         __s32 v = *multiplier->value;
1020         __s32 lmin = multiplier->logical_minimum;
1021         __s32 lmax = multiplier->logical_maximum;
1022         __s32 pmin = multiplier->physical_minimum;
1023         __s32 pmax = multiplier->physical_maximum;
1024
1025         /*
1026          * "Because OS implementations will generally divide the control's
1027          * reported count by the Effective Resolution Multiplier, designers
1028          * should take care not to establish a potential Effective
1029          * Resolution Multiplier of zero."
1030          * HID Usage Table, v1.12, Section 4.3.1, p31
1031          */
1032         if (lmax - lmin == 0)
1033                 return 1;
1034         /*
1035          * Handling the unit exponent is left as an exercise to whoever
1036          * finds a device where that exponent is not 0.
1037          */
1038         m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1039         if (unlikely(multiplier->unit_exponent != 0)) {
1040                 hid_warn(hid,
1041                          "unsupported Resolution Multiplier unit exponent %d\n",
1042                          multiplier->unit_exponent);
1043         }
1044
1045         /* There are no devices with an effective multiplier > 255 */
1046         if (unlikely(m == 0 || m > 255 || m < -255)) {
1047                 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1048                 m = 1;
1049         }
1050
1051         return m;
1052 }
1053
1054 static void hid_apply_multiplier_to_field(struct hid_device *hid,
1055                                           struct hid_field *field,
1056                                           struct hid_collection *multiplier_collection,
1057                                           int effective_multiplier)
1058 {
1059         struct hid_collection *collection;
1060         struct hid_usage *usage;
1061         int i;
1062
1063         /*
1064          * If multiplier_collection is NULL, the multiplier applies
1065          * to all fields in the report.
1066          * Otherwise, it is the Logical Collection the multiplier applies to
1067          * but our field may be in a subcollection of that collection.
1068          */
1069         for (i = 0; i < field->maxusage; i++) {
1070                 usage = &field->usage[i];
1071
1072                 collection = &hid->collection[usage->collection_index];
1073                 while (collection->parent_idx != -1 &&
1074                        collection != multiplier_collection)
1075                         collection = &hid->collection[collection->parent_idx];
1076
1077                 if (collection->parent_idx != -1 ||
1078                     multiplier_collection == NULL)
1079                         usage->resolution_multiplier = effective_multiplier;
1080
1081         }
1082 }
1083
1084 static void hid_apply_multiplier(struct hid_device *hid,
1085                                  struct hid_field *multiplier)
1086 {
1087         struct hid_report_enum *rep_enum;
1088         struct hid_report *rep;
1089         struct hid_field *field;
1090         struct hid_collection *multiplier_collection;
1091         int effective_multiplier;
1092         int i;
1093
1094         /*
1095          * "The Resolution Multiplier control must be contained in the same
1096          * Logical Collection as the control(s) to which it is to be applied.
1097          * If no Resolution Multiplier is defined, then the Resolution
1098          * Multiplier defaults to 1.  If more than one control exists in a
1099          * Logical Collection, the Resolution Multiplier is associated with
1100          * all controls in the collection. If no Logical Collection is
1101          * defined, the Resolution Multiplier is associated with all
1102          * controls in the report."
1103          * HID Usage Table, v1.12, Section 4.3.1, p30
1104          *
1105          * Thus, search from the current collection upwards until we find a
1106          * logical collection. Then search all fields for that same parent
1107          * collection. Those are the fields the multiplier applies to.
1108          *
1109          * If we have more than one multiplier, it will overwrite the
1110          * applicable fields later.
1111          */
1112         multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1113         while (multiplier_collection->parent_idx != -1 &&
1114                multiplier_collection->type != HID_COLLECTION_LOGICAL)
1115                 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1116
1117         effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1118
1119         rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1120         list_for_each_entry(rep, &rep_enum->report_list, list) {
1121                 for (i = 0; i < rep->maxfield; i++) {
1122                         field = rep->field[i];
1123                         hid_apply_multiplier_to_field(hid, field,
1124                                                       multiplier_collection,
1125                                                       effective_multiplier);
1126                 }
1127         }
1128 }
1129
1130 /*
1131  * hid_setup_resolution_multiplier - set up all resolution multipliers
1132  *
1133  * @device: hid device
1134  *
1135  * Search for all Resolution Multiplier Feature Reports and apply their
1136  * value to all matching Input items. This only updates the internal struct
1137  * fields.
1138  *
1139  * The Resolution Multiplier is applied by the hardware. If the multiplier
1140  * is anything other than 1, the hardware will send pre-multiplied events
1141  * so that the same physical interaction generates an accumulated
1142  *      accumulated_value = value * * multiplier
1143  * This may be achieved by sending
1144  * - "value * multiplier" for each event, or
1145  * - "value" but "multiplier" times as frequently, or
1146  * - a combination of the above
1147  * The only guarantee is that the same physical interaction always generates
1148  * an accumulated 'value * multiplier'.
1149  *
1150  * This function must be called before any event processing and after
1151  * any SetRequest to the Resolution Multiplier.
1152  */
1153 void hid_setup_resolution_multiplier(struct hid_device *hid)
1154 {
1155         struct hid_report_enum *rep_enum;
1156         struct hid_report *rep;
1157         struct hid_usage *usage;
1158         int i, j;
1159
1160         rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1161         list_for_each_entry(rep, &rep_enum->report_list, list) {
1162                 for (i = 0; i < rep->maxfield; i++) {
1163                         /* Ignore if report count is out of bounds. */
1164                         if (rep->field[i]->report_count < 1)
1165                                 continue;
1166
1167                         for (j = 0; j < rep->field[i]->maxusage; j++) {
1168                                 usage = &rep->field[i]->usage[j];
1169                                 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1170                                         hid_apply_multiplier(hid,
1171                                                              rep->field[i]);
1172                         }
1173                 }
1174         }
1175 }
1176 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1177
1178 /**
1179  * hid_open_report - open a driver-specific device report
1180  *
1181  * @device: hid device
1182  *
1183  * Parse a report description into a hid_device structure. Reports are
1184  * enumerated, fields are attached to these reports.
1185  * 0 returned on success, otherwise nonzero error value.
1186  *
1187  * This function (or the equivalent hid_parse() macro) should only be
1188  * called from probe() in drivers, before starting the device.
1189  */
1190 int hid_open_report(struct hid_device *device)
1191 {
1192         struct hid_parser *parser;
1193         struct hid_item item;
1194         unsigned int size;
1195         __u8 *start;
1196         __u8 *buf;
1197         __u8 *end;
1198         __u8 *next;
1199         int ret;
1200         static int (*dispatch_type[])(struct hid_parser *parser,
1201                                       struct hid_item *item) = {
1202                 hid_parser_main,
1203                 hid_parser_global,
1204                 hid_parser_local,
1205                 hid_parser_reserved
1206         };
1207
1208         if (WARN_ON(device->status & HID_STAT_PARSED))
1209                 return -EBUSY;
1210
1211         start = device->dev_rdesc;
1212         if (WARN_ON(!start))
1213                 return -ENODEV;
1214         size = device->dev_rsize;
1215
1216         buf = kmemdup(start, size, GFP_KERNEL);
1217         if (buf == NULL)
1218                 return -ENOMEM;
1219
1220         if (device->driver->report_fixup)
1221                 start = device->driver->report_fixup(device, buf, &size);
1222         else
1223                 start = buf;
1224
1225         start = kmemdup(start, size, GFP_KERNEL);
1226         kfree(buf);
1227         if (start == NULL)
1228                 return -ENOMEM;
1229
1230         device->rdesc = start;
1231         device->rsize = size;
1232
1233         parser = vzalloc(sizeof(struct hid_parser));
1234         if (!parser) {
1235                 ret = -ENOMEM;
1236                 goto alloc_err;
1237         }
1238
1239         parser->device = device;
1240
1241         end = start + size;
1242
1243         device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1244                                      sizeof(struct hid_collection), GFP_KERNEL);
1245         if (!device->collection) {
1246                 ret = -ENOMEM;
1247                 goto err;
1248         }
1249         device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1250
1251         ret = -EINVAL;
1252         while ((next = fetch_item(start, end, &item)) != NULL) {
1253                 start = next;
1254
1255                 if (item.format != HID_ITEM_FORMAT_SHORT) {
1256                         hid_err(device, "unexpected long global item\n");
1257                         goto err;
1258                 }
1259
1260                 if (dispatch_type[item.type](parser, &item)) {
1261                         hid_err(device, "item %u %u %u %u parsing failed\n",
1262                                 item.format, (unsigned)item.size,
1263                                 (unsigned)item.type, (unsigned)item.tag);
1264                         goto err;
1265                 }
1266
1267                 if (start == end) {
1268                         if (parser->collection_stack_ptr) {
1269                                 hid_err(device, "unbalanced collection at end of report description\n");
1270                                 goto err;
1271                         }
1272                         if (parser->local.delimiter_depth) {
1273                                 hid_err(device, "unbalanced delimiter at end of report description\n");
1274                                 goto err;
1275                         }
1276
1277                         /*
1278                          * fetch initial values in case the device's
1279                          * default multiplier isn't the recommended 1
1280                          */
1281                         hid_setup_resolution_multiplier(device);
1282
1283                         kfree(parser->collection_stack);
1284                         vfree(parser);
1285                         device->status |= HID_STAT_PARSED;
1286
1287                         return 0;
1288                 }
1289         }
1290
1291         hid_err(device, "item fetching failed at offset %u/%u\n",
1292                 size - (unsigned int)(end - start), size);
1293 err:
1294         kfree(parser->collection_stack);
1295 alloc_err:
1296         vfree(parser);
1297         hid_close_report(device);
1298         return ret;
1299 }
1300 EXPORT_SYMBOL_GPL(hid_open_report);
1301
1302 /*
1303  * Convert a signed n-bit integer to signed 32-bit integer. Common
1304  * cases are done through the compiler, the screwed things has to be
1305  * done by hand.
1306  */
1307
1308 static s32 snto32(__u32 value, unsigned n)
1309 {
1310         switch (n) {
1311         case 8:  return ((__s8)value);
1312         case 16: return ((__s16)value);
1313         case 32: return ((__s32)value);
1314         }
1315         return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1316 }
1317
1318 s32 hid_snto32(__u32 value, unsigned n)
1319 {
1320         return snto32(value, n);
1321 }
1322 EXPORT_SYMBOL_GPL(hid_snto32);
1323
1324 /*
1325  * Convert a signed 32-bit integer to a signed n-bit integer.
1326  */
1327
1328 static u32 s32ton(__s32 value, unsigned n)
1329 {
1330         s32 a = value >> (n - 1);
1331         if (a && a != -1)
1332                 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1333         return value & ((1 << n) - 1);
1334 }
1335
1336 /*
1337  * Extract/implement a data field from/to a little endian report (bit array).
1338  *
1339  * Code sort-of follows HID spec:
1340  *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1341  *
1342  * While the USB HID spec allows unlimited length bit fields in "report
1343  * descriptors", most devices never use more than 16 bits.
1344  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1345  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1346  */
1347
1348 static u32 __extract(u8 *report, unsigned offset, int n)
1349 {
1350         unsigned int idx = offset / 8;
1351         unsigned int bit_nr = 0;
1352         unsigned int bit_shift = offset % 8;
1353         int bits_to_copy = 8 - bit_shift;
1354         u32 value = 0;
1355         u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1356
1357         while (n > 0) {
1358                 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1359                 n -= bits_to_copy;
1360                 bit_nr += bits_to_copy;
1361                 bits_to_copy = 8;
1362                 bit_shift = 0;
1363                 idx++;
1364         }
1365
1366         return value & mask;
1367 }
1368
1369 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1370                         unsigned offset, unsigned n)
1371 {
1372         if (n > 32) {
1373                 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1374                               __func__, n, current->comm);
1375                 n = 32;
1376         }
1377
1378         return __extract(report, offset, n);
1379 }
1380 EXPORT_SYMBOL_GPL(hid_field_extract);
1381
1382 /*
1383  * "implement" : set bits in a little endian bit stream.
1384  * Same concepts as "extract" (see comments above).
1385  * The data mangled in the bit stream remains in little endian
1386  * order the whole time. It make more sense to talk about
1387  * endianness of register values by considering a register
1388  * a "cached" copy of the little endian bit stream.
1389  */
1390
1391 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1392 {
1393         unsigned int idx = offset / 8;
1394         unsigned int bit_shift = offset % 8;
1395         int bits_to_set = 8 - bit_shift;
1396
1397         while (n - bits_to_set >= 0) {
1398                 report[idx] &= ~(0xff << bit_shift);
1399                 report[idx] |= value << bit_shift;
1400                 value >>= bits_to_set;
1401                 n -= bits_to_set;
1402                 bits_to_set = 8;
1403                 bit_shift = 0;
1404                 idx++;
1405         }
1406
1407         /* last nibble */
1408         if (n) {
1409                 u8 bit_mask = ((1U << n) - 1);
1410                 report[idx] &= ~(bit_mask << bit_shift);
1411                 report[idx] |= value << bit_shift;
1412         }
1413 }
1414
1415 static void implement(const struct hid_device *hid, u8 *report,
1416                       unsigned offset, unsigned n, u32 value)
1417 {
1418         if (unlikely(n > 32)) {
1419                 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1420                          __func__, n, current->comm);
1421                 n = 32;
1422         } else if (n < 32) {
1423                 u32 m = (1U << n) - 1;
1424
1425                 if (unlikely(value > m)) {
1426                         hid_warn(hid,
1427                                  "%s() called with too large value %d (n: %d)! (%s)\n",
1428                                  __func__, value, n, current->comm);
1429                         WARN_ON(1);
1430                         value &= m;
1431                 }
1432         }
1433
1434         __implement(report, offset, n, value);
1435 }
1436
1437 /*
1438  * Search an array for a value.
1439  */
1440
1441 static int search(__s32 *array, __s32 value, unsigned n)
1442 {
1443         while (n--) {
1444                 if (*array++ == value)
1445                         return 0;
1446         }
1447         return -1;
1448 }
1449
1450 /**
1451  * hid_match_report - check if driver's raw_event should be called
1452  *
1453  * @hid: hid device
1454  * @report: hid report to match against
1455  *
1456  * compare hid->driver->report_table->report_type to report->type
1457  */
1458 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1459 {
1460         const struct hid_report_id *id = hid->driver->report_table;
1461
1462         if (!id) /* NULL means all */
1463                 return 1;
1464
1465         for (; id->report_type != HID_TERMINATOR; id++)
1466                 if (id->report_type == HID_ANY_ID ||
1467                                 id->report_type == report->type)
1468                         return 1;
1469         return 0;
1470 }
1471
1472 /**
1473  * hid_match_usage - check if driver's event should be called
1474  *
1475  * @hid: hid device
1476  * @usage: usage to match against
1477  *
1478  * compare hid->driver->usage_table->usage_{type,code} to
1479  * usage->usage_{type,code}
1480  */
1481 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1482 {
1483         const struct hid_usage_id *id = hid->driver->usage_table;
1484
1485         if (!id) /* NULL means all */
1486                 return 1;
1487
1488         for (; id->usage_type != HID_ANY_ID - 1; id++)
1489                 if ((id->usage_hid == HID_ANY_ID ||
1490                                 id->usage_hid == usage->hid) &&
1491                                 (id->usage_type == HID_ANY_ID ||
1492                                 id->usage_type == usage->type) &&
1493                                 (id->usage_code == HID_ANY_ID ||
1494                                  id->usage_code == usage->code))
1495                         return 1;
1496         return 0;
1497 }
1498
1499 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1500                 struct hid_usage *usage, __s32 value, int interrupt)
1501 {
1502         struct hid_driver *hdrv = hid->driver;
1503         int ret;
1504
1505         if (!list_empty(&hid->debug_list))
1506                 hid_dump_input(hid, usage, value);
1507
1508         if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1509                 ret = hdrv->event(hid, field, usage, value);
1510                 if (ret != 0) {
1511                         if (ret < 0)
1512                                 hid_err(hid, "%s's event failed with %d\n",
1513                                                 hdrv->name, ret);
1514                         return;
1515                 }
1516         }
1517
1518         if (hid->claimed & HID_CLAIMED_INPUT)
1519                 hidinput_hid_event(hid, field, usage, value);
1520         if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1521                 hid->hiddev_hid_event(hid, field, usage, value);
1522 }
1523
1524 /*
1525  * Analyse a received field, and fetch the data from it. The field
1526  * content is stored for next report processing (we do differential
1527  * reporting to the layer).
1528  */
1529
1530 static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1531                             __u8 *data, int interrupt)
1532 {
1533         unsigned n;
1534         unsigned count = field->report_count;
1535         unsigned offset = field->report_offset;
1536         unsigned size = field->report_size;
1537         __s32 min = field->logical_minimum;
1538         __s32 max = field->logical_maximum;
1539         __s32 *value;
1540
1541         value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1542         if (!value)
1543                 return;
1544
1545         for (n = 0; n < count; n++) {
1546
1547                 value[n] = min < 0 ?
1548                         snto32(hid_field_extract(hid, data, offset + n * size,
1549                                size), size) :
1550                         hid_field_extract(hid, data, offset + n * size, size);
1551
1552                 /* Ignore report if ErrorRollOver */
1553                 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1554                     value[n] >= min && value[n] <= max &&
1555                     value[n] - min < field->maxusage &&
1556                     field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1557                         goto exit;
1558         }
1559
1560         for (n = 0; n < count; n++) {
1561
1562                 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1563                         hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1564                         continue;
1565                 }
1566
1567                 if (field->value[n] >= min && field->value[n] <= max
1568                         && field->value[n] - min < field->maxusage
1569                         && field->usage[field->value[n] - min].hid
1570                         && search(value, field->value[n], count))
1571                                 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1572
1573                 if (value[n] >= min && value[n] <= max
1574                         && value[n] - min < field->maxusage
1575                         && field->usage[value[n] - min].hid
1576                         && search(field->value, value[n], count))
1577                                 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1578         }
1579
1580         memcpy(field->value, value, count * sizeof(__s32));
1581 exit:
1582         kfree(value);
1583 }
1584
1585 /*
1586  * Output the field into the report.
1587  */
1588
1589 static void hid_output_field(const struct hid_device *hid,
1590                              struct hid_field *field, __u8 *data)
1591 {
1592         unsigned count = field->report_count;
1593         unsigned offset = field->report_offset;
1594         unsigned size = field->report_size;
1595         unsigned n;
1596
1597         for (n = 0; n < count; n++) {
1598                 if (field->logical_minimum < 0) /* signed values */
1599                         implement(hid, data, offset + n * size, size,
1600                                   s32ton(field->value[n], size));
1601                 else                            /* unsigned values */
1602                         implement(hid, data, offset + n * size, size,
1603                                   field->value[n]);
1604         }
1605 }
1606
1607 /*
1608  * Compute the size of a report.
1609  */
1610 static size_t hid_compute_report_size(struct hid_report *report)
1611 {
1612         if (report->size)
1613                 return ((report->size - 1) >> 3) + 1;
1614
1615         return 0;
1616 }
1617
1618 /*
1619  * Create a report. 'data' has to be allocated using
1620  * hid_alloc_report_buf() so that it has proper size.
1621  */
1622
1623 void hid_output_report(struct hid_report *report, __u8 *data)
1624 {
1625         unsigned n;
1626
1627         if (report->id > 0)
1628                 *data++ = report->id;
1629
1630         memset(data, 0, hid_compute_report_size(report));
1631         for (n = 0; n < report->maxfield; n++)
1632                 hid_output_field(report->device, report->field[n], data);
1633 }
1634 EXPORT_SYMBOL_GPL(hid_output_report);
1635
1636 /*
1637  * Allocator for buffer that is going to be passed to hid_output_report()
1638  */
1639 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1640 {
1641         /*
1642          * 7 extra bytes are necessary to achieve proper functionality
1643          * of implement() working on 8 byte chunks
1644          */
1645
1646         u32 len = hid_report_len(report) + 7;
1647
1648         return kmalloc(len, flags);
1649 }
1650 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1651
1652 /*
1653  * Set a field value. The report this field belongs to has to be
1654  * created and transferred to the device, to set this value in the
1655  * device.
1656  */
1657
1658 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1659 {
1660         unsigned size;
1661
1662         if (!field)
1663                 return -1;
1664
1665         size = field->report_size;
1666
1667         hid_dump_input(field->report->device, field->usage + offset, value);
1668
1669         if (offset >= field->report_count) {
1670                 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1671                                 offset, field->report_count);
1672                 return -1;
1673         }
1674         if (field->logical_minimum < 0) {
1675                 if (value != snto32(s32ton(value, size), size)) {
1676                         hid_err(field->report->device, "value %d is out of range\n", value);
1677                         return -1;
1678                 }
1679         }
1680         field->value[offset] = value;
1681         return 0;
1682 }
1683 EXPORT_SYMBOL_GPL(hid_set_field);
1684
1685 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1686                 const u8 *data)
1687 {
1688         struct hid_report *report;
1689         unsigned int n = 0;     /* Normally report number is 0 */
1690
1691         /* Device uses numbered reports, data[0] is report number */
1692         if (report_enum->numbered)
1693                 n = *data;
1694
1695         report = report_enum->report_id_hash[n];
1696         if (report == NULL)
1697                 dbg_hid("undefined report_id %u received\n", n);
1698
1699         return report;
1700 }
1701
1702 /*
1703  * Implement a generic .request() callback, using .raw_request()
1704  * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1705  */
1706 int __hid_request(struct hid_device *hid, struct hid_report *report,
1707                 int reqtype)
1708 {
1709         char *buf;
1710         int ret;
1711         u32 len;
1712
1713         buf = hid_alloc_report_buf(report, GFP_KERNEL);
1714         if (!buf)
1715                 return -ENOMEM;
1716
1717         len = hid_report_len(report);
1718
1719         if (reqtype == HID_REQ_SET_REPORT)
1720                 hid_output_report(report, buf);
1721
1722         ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1723                                           report->type, reqtype);
1724         if (ret < 0) {
1725                 dbg_hid("unable to complete request: %d\n", ret);
1726                 goto out;
1727         }
1728
1729         if (reqtype == HID_REQ_GET_REPORT)
1730                 hid_input_report(hid, report->type, buf, ret, 0);
1731
1732         ret = 0;
1733
1734 out:
1735         kfree(buf);
1736         return ret;
1737 }
1738 EXPORT_SYMBOL_GPL(__hid_request);
1739
1740 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1741                 int interrupt)
1742 {
1743         struct hid_report_enum *report_enum = hid->report_enum + type;
1744         struct hid_report *report;
1745         struct hid_driver *hdrv;
1746         unsigned int a;
1747         u32 rsize, csize = size;
1748         u8 *cdata = data;
1749         int ret = 0;
1750
1751         report = hid_get_report(report_enum, data);
1752         if (!report)
1753                 goto out;
1754
1755         if (report_enum->numbered) {
1756                 cdata++;
1757                 csize--;
1758         }
1759
1760         rsize = hid_compute_report_size(report);
1761
1762         if (report_enum->numbered && rsize >= HID_MAX_BUFFER_SIZE)
1763                 rsize = HID_MAX_BUFFER_SIZE - 1;
1764         else if (rsize > HID_MAX_BUFFER_SIZE)
1765                 rsize = HID_MAX_BUFFER_SIZE;
1766
1767         if (csize < rsize) {
1768                 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1769                                 csize, rsize);
1770                 memset(cdata + csize, 0, rsize - csize);
1771         }
1772
1773         if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1774                 hid->hiddev_report_event(hid, report);
1775         if (hid->claimed & HID_CLAIMED_HIDRAW) {
1776                 ret = hidraw_report_event(hid, data, size);
1777                 if (ret)
1778                         goto out;
1779         }
1780
1781         if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1782                 for (a = 0; a < report->maxfield; a++)
1783                         hid_input_field(hid, report->field[a], cdata, interrupt);
1784                 hdrv = hid->driver;
1785                 if (hdrv && hdrv->report)
1786                         hdrv->report(hid, report);
1787         }
1788
1789         if (hid->claimed & HID_CLAIMED_INPUT)
1790                 hidinput_report_event(hid, report);
1791 out:
1792         return ret;
1793 }
1794 EXPORT_SYMBOL_GPL(hid_report_raw_event);
1795
1796 /**
1797  * hid_input_report - report data from lower layer (usb, bt...)
1798  *
1799  * @hid: hid device
1800  * @type: HID report type (HID_*_REPORT)
1801  * @data: report contents
1802  * @size: size of data parameter
1803  * @interrupt: distinguish between interrupt and control transfers
1804  *
1805  * This is data entry for lower layers.
1806  */
1807 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1808 {
1809         struct hid_report_enum *report_enum;
1810         struct hid_driver *hdrv;
1811         struct hid_report *report;
1812         int ret = 0;
1813
1814         if (!hid)
1815                 return -ENODEV;
1816
1817         if (down_trylock(&hid->driver_input_lock))
1818                 return -EBUSY;
1819
1820         if (!hid->driver) {
1821                 ret = -ENODEV;
1822                 goto unlock;
1823         }
1824         report_enum = hid->report_enum + type;
1825         hdrv = hid->driver;
1826
1827         if (!size) {
1828                 dbg_hid("empty report\n");
1829                 ret = -1;
1830                 goto unlock;
1831         }
1832
1833         /* Avoid unnecessary overhead if debugfs is disabled */
1834         if (!list_empty(&hid->debug_list))
1835                 hid_dump_report(hid, type, data, size);
1836
1837         report = hid_get_report(report_enum, data);
1838
1839         if (!report) {
1840                 ret = -1;
1841                 goto unlock;
1842         }
1843
1844         if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1845                 ret = hdrv->raw_event(hid, report, data, size);
1846                 if (ret < 0)
1847                         goto unlock;
1848         }
1849
1850         ret = hid_report_raw_event(hid, type, data, size, interrupt);
1851
1852 unlock:
1853         up(&hid->driver_input_lock);
1854         return ret;
1855 }
1856 EXPORT_SYMBOL_GPL(hid_input_report);
1857
1858 bool hid_match_one_id(const struct hid_device *hdev,
1859                       const struct hid_device_id *id)
1860 {
1861         return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1862                 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1863                 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1864                 (id->product == HID_ANY_ID || id->product == hdev->product);
1865 }
1866
1867 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1868                 const struct hid_device_id *id)
1869 {
1870         for (; id->bus; id++)
1871                 if (hid_match_one_id(hdev, id))
1872                         return id;
1873
1874         return NULL;
1875 }
1876
1877 static const struct hid_device_id hid_hiddev_list[] = {
1878         { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1879         { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1880         { }
1881 };
1882
1883 static bool hid_hiddev(struct hid_device *hdev)
1884 {
1885         return !!hid_match_id(hdev, hid_hiddev_list);
1886 }
1887
1888
1889 static ssize_t
1890 read_report_descriptor(struct file *filp, struct kobject *kobj,
1891                 struct bin_attribute *attr,
1892                 char *buf, loff_t off, size_t count)
1893 {
1894         struct device *dev = kobj_to_dev(kobj);
1895         struct hid_device *hdev = to_hid_device(dev);
1896
1897         if (off >= hdev->rsize)
1898                 return 0;
1899
1900         if (off + count > hdev->rsize)
1901                 count = hdev->rsize - off;
1902
1903         memcpy(buf, hdev->rdesc + off, count);
1904
1905         return count;
1906 }
1907
1908 static ssize_t
1909 show_country(struct device *dev, struct device_attribute *attr,
1910                 char *buf)
1911 {
1912         struct hid_device *hdev = to_hid_device(dev);
1913
1914         return sprintf(buf, "%02x\n", hdev->country & 0xff);
1915 }
1916
1917 static struct bin_attribute dev_bin_attr_report_desc = {
1918         .attr = { .name = "report_descriptor", .mode = 0444 },
1919         .read = read_report_descriptor,
1920         .size = HID_MAX_DESCRIPTOR_SIZE,
1921 };
1922
1923 static const struct device_attribute dev_attr_country = {
1924         .attr = { .name = "country", .mode = 0444 },
1925         .show = show_country,
1926 };
1927
1928 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1929 {
1930         static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1931                 "Joystick", "Gamepad", "Keyboard", "Keypad",
1932                 "Multi-Axis Controller"
1933         };
1934         const char *type, *bus;
1935         char buf[64] = "";
1936         unsigned int i;
1937         int len;
1938         int ret;
1939
1940         if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1941                 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1942         if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1943                 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1944         if (hdev->bus != BUS_USB)
1945                 connect_mask &= ~HID_CONNECT_HIDDEV;
1946         if (hid_hiddev(hdev))
1947                 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1948
1949         if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1950                                 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1951                 hdev->claimed |= HID_CLAIMED_INPUT;
1952
1953         if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1954                         !hdev->hiddev_connect(hdev,
1955                                 connect_mask & HID_CONNECT_HIDDEV_FORCE))
1956                 hdev->claimed |= HID_CLAIMED_HIDDEV;
1957         if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1958                 hdev->claimed |= HID_CLAIMED_HIDRAW;
1959
1960         if (connect_mask & HID_CONNECT_DRIVER)
1961                 hdev->claimed |= HID_CLAIMED_DRIVER;
1962
1963         /* Drivers with the ->raw_event callback set are not required to connect
1964          * to any other listener. */
1965         if (!hdev->claimed && !hdev->driver->raw_event) {
1966                 hid_err(hdev, "device has no listeners, quitting\n");
1967                 return -ENODEV;
1968         }
1969
1970         if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1971                         (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1972                 hdev->ff_init(hdev);
1973
1974         len = 0;
1975         if (hdev->claimed & HID_CLAIMED_INPUT)
1976                 len += sprintf(buf + len, "input");
1977         if (hdev->claimed & HID_CLAIMED_HIDDEV)
1978                 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1979                                 ((struct hiddev *)hdev->hiddev)->minor);
1980         if (hdev->claimed & HID_CLAIMED_HIDRAW)
1981                 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1982                                 ((struct hidraw *)hdev->hidraw)->minor);
1983
1984         type = "Device";
1985         for (i = 0; i < hdev->maxcollection; i++) {
1986                 struct hid_collection *col = &hdev->collection[i];
1987                 if (col->type == HID_COLLECTION_APPLICATION &&
1988                    (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1989                    (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1990                         type = types[col->usage & 0xffff];
1991                         break;
1992                 }
1993         }
1994
1995         switch (hdev->bus) {
1996         case BUS_USB:
1997                 bus = "USB";
1998                 break;
1999         case BUS_BLUETOOTH:
2000                 bus = "BLUETOOTH";
2001                 break;
2002         case BUS_I2C:
2003                 bus = "I2C";
2004                 break;
2005         default:
2006                 bus = "<UNKNOWN>";
2007         }
2008
2009         ret = device_create_file(&hdev->dev, &dev_attr_country);
2010         if (ret)
2011                 hid_warn(hdev,
2012                          "can't create sysfs country code attribute err: %d\n", ret);
2013
2014         hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2015                  buf, bus, hdev->version >> 8, hdev->version & 0xff,
2016                  type, hdev->name, hdev->phys);
2017
2018         return 0;
2019 }
2020 EXPORT_SYMBOL_GPL(hid_connect);
2021
2022 void hid_disconnect(struct hid_device *hdev)
2023 {
2024         device_remove_file(&hdev->dev, &dev_attr_country);
2025         if (hdev->claimed & HID_CLAIMED_INPUT)
2026                 hidinput_disconnect(hdev);
2027         if (hdev->claimed & HID_CLAIMED_HIDDEV)
2028                 hdev->hiddev_disconnect(hdev);
2029         if (hdev->claimed & HID_CLAIMED_HIDRAW)
2030                 hidraw_disconnect(hdev);
2031         hdev->claimed = 0;
2032 }
2033 EXPORT_SYMBOL_GPL(hid_disconnect);
2034
2035 /**
2036  * hid_hw_start - start underlying HW
2037  * @hdev: hid device
2038  * @connect_mask: which outputs to connect, see HID_CONNECT_*
2039  *
2040  * Call this in probe function *after* hid_parse. This will setup HW
2041  * buffers and start the device (if not defeirred to device open).
2042  * hid_hw_stop must be called if this was successful.
2043  */
2044 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2045 {
2046         int error;
2047
2048         error = hdev->ll_driver->start(hdev);
2049         if (error)
2050                 return error;
2051
2052         if (connect_mask) {
2053                 error = hid_connect(hdev, connect_mask);
2054                 if (error) {
2055                         hdev->ll_driver->stop(hdev);
2056                         return error;
2057                 }
2058         }
2059
2060         return 0;
2061 }
2062 EXPORT_SYMBOL_GPL(hid_hw_start);
2063
2064 /**
2065  * hid_hw_stop - stop underlying HW
2066  * @hdev: hid device
2067  *
2068  * This is usually called from remove function or from probe when something
2069  * failed and hid_hw_start was called already.
2070  */
2071 void hid_hw_stop(struct hid_device *hdev)
2072 {
2073         hid_disconnect(hdev);
2074         hdev->ll_driver->stop(hdev);
2075 }
2076 EXPORT_SYMBOL_GPL(hid_hw_stop);
2077
2078 /**
2079  * hid_hw_open - signal underlying HW to start delivering events
2080  * @hdev: hid device
2081  *
2082  * Tell underlying HW to start delivering events from the device.
2083  * This function should be called sometime after successful call
2084  * to hid_hw_start().
2085  */
2086 int hid_hw_open(struct hid_device *hdev)
2087 {
2088         int ret;
2089
2090         ret = mutex_lock_killable(&hdev->ll_open_lock);
2091         if (ret)
2092                 return ret;
2093
2094         if (!hdev->ll_open_count++) {
2095                 ret = hdev->ll_driver->open(hdev);
2096                 if (ret)
2097                         hdev->ll_open_count--;
2098         }
2099
2100         mutex_unlock(&hdev->ll_open_lock);
2101         return ret;
2102 }
2103 EXPORT_SYMBOL_GPL(hid_hw_open);
2104
2105 /**
2106  * hid_hw_close - signal underlaying HW to stop delivering events
2107  *
2108  * @hdev: hid device
2109  *
2110  * This function indicates that we are not interested in the events
2111  * from this device anymore. Delivery of events may or may not stop,
2112  * depending on the number of users still outstanding.
2113  */
2114 void hid_hw_close(struct hid_device *hdev)
2115 {
2116         mutex_lock(&hdev->ll_open_lock);
2117         if (!--hdev->ll_open_count)
2118                 hdev->ll_driver->close(hdev);
2119         mutex_unlock(&hdev->ll_open_lock);
2120 }
2121 EXPORT_SYMBOL_GPL(hid_hw_close);
2122
2123 struct hid_dynid {
2124         struct list_head list;
2125         struct hid_device_id id;
2126 };
2127
2128 /**
2129  * store_new_id - add a new HID device ID to this driver and re-probe devices
2130  * @drv: target device driver
2131  * @buf: buffer for scanning device ID data
2132  * @count: input size
2133  *
2134  * Adds a new dynamic hid device ID to this driver,
2135  * and causes the driver to probe for all devices again.
2136  */
2137 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2138                 size_t count)
2139 {
2140         struct hid_driver *hdrv = to_hid_driver(drv);
2141         struct hid_dynid *dynid;
2142         __u32 bus, vendor, product;
2143         unsigned long driver_data = 0;
2144         int ret;
2145
2146         ret = sscanf(buf, "%x %x %x %lx",
2147                         &bus, &vendor, &product, &driver_data);
2148         if (ret < 3)
2149                 return -EINVAL;
2150
2151         dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2152         if (!dynid)
2153                 return -ENOMEM;
2154
2155         dynid->id.bus = bus;
2156         dynid->id.group = HID_GROUP_ANY;
2157         dynid->id.vendor = vendor;
2158         dynid->id.product = product;
2159         dynid->id.driver_data = driver_data;
2160
2161         spin_lock(&hdrv->dyn_lock);
2162         list_add_tail(&dynid->list, &hdrv->dyn_list);
2163         spin_unlock(&hdrv->dyn_lock);
2164
2165         ret = driver_attach(&hdrv->driver);
2166
2167         return ret ? : count;
2168 }
2169 static DRIVER_ATTR_WO(new_id);
2170
2171 static struct attribute *hid_drv_attrs[] = {
2172         &driver_attr_new_id.attr,
2173         NULL,
2174 };
2175 ATTRIBUTE_GROUPS(hid_drv);
2176
2177 static void hid_free_dynids(struct hid_driver *hdrv)
2178 {
2179         struct hid_dynid *dynid, *n;
2180
2181         spin_lock(&hdrv->dyn_lock);
2182         list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2183                 list_del(&dynid->list);
2184                 kfree(dynid);
2185         }
2186         spin_unlock(&hdrv->dyn_lock);
2187 }
2188
2189 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2190                                              struct hid_driver *hdrv)
2191 {
2192         struct hid_dynid *dynid;
2193
2194         spin_lock(&hdrv->dyn_lock);
2195         list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2196                 if (hid_match_one_id(hdev, &dynid->id)) {
2197                         spin_unlock(&hdrv->dyn_lock);
2198                         return &dynid->id;
2199                 }
2200         }
2201         spin_unlock(&hdrv->dyn_lock);
2202
2203         return hid_match_id(hdev, hdrv->id_table);
2204 }
2205 EXPORT_SYMBOL_GPL(hid_match_device);
2206
2207 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2208 {
2209         struct hid_driver *hdrv = to_hid_driver(drv);
2210         struct hid_device *hdev = to_hid_device(dev);
2211
2212         return hid_match_device(hdev, hdrv) != NULL;
2213 }
2214
2215 /**
2216  * hid_compare_device_paths - check if both devices share the same path
2217  * @hdev_a: hid device
2218  * @hdev_b: hid device
2219  * @separator: char to use as separator
2220  *
2221  * Check if two devices share the same path up to the last occurrence of
2222  * the separator char. Both paths must exist (i.e., zero-length paths
2223  * don't match).
2224  */
2225 bool hid_compare_device_paths(struct hid_device *hdev_a,
2226                               struct hid_device *hdev_b, char separator)
2227 {
2228         int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2229         int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2230
2231         if (n1 != n2 || n1 <= 0 || n2 <= 0)
2232                 return false;
2233
2234         return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2235 }
2236 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2237
2238 static int hid_device_probe(struct device *dev)
2239 {
2240         struct hid_driver *hdrv = to_hid_driver(dev->driver);
2241         struct hid_device *hdev = to_hid_device(dev);
2242         const struct hid_device_id *id;
2243         int ret = 0;
2244
2245         if (down_interruptible(&hdev->driver_input_lock)) {
2246                 ret = -EINTR;
2247                 goto end;
2248         }
2249         hdev->io_started = false;
2250
2251         clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2252
2253         if (!hdev->driver) {
2254                 id = hid_match_device(hdev, hdrv);
2255                 if (id == NULL) {
2256                         ret = -ENODEV;
2257                         goto unlock;
2258                 }
2259
2260                 if (hdrv->match) {
2261                         if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2262                                 ret = -ENODEV;
2263                                 goto unlock;
2264                         }
2265                 } else {
2266                         /*
2267                          * hid-generic implements .match(), so if
2268                          * hid_ignore_special_drivers is set, we can safely
2269                          * return.
2270                          */
2271                         if (hid_ignore_special_drivers) {
2272                                 ret = -ENODEV;
2273                                 goto unlock;
2274                         }
2275                 }
2276
2277                 /* reset the quirks that has been previously set */
2278                 hdev->quirks = hid_lookup_quirk(hdev);
2279                 hdev->driver = hdrv;
2280                 if (hdrv->probe) {
2281                         ret = hdrv->probe(hdev, id);
2282                 } else { /* default probe */
2283                         ret = hid_open_report(hdev);
2284                         if (!ret)
2285                                 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2286                 }
2287                 if (ret) {
2288                         hid_close_report(hdev);
2289                         hdev->driver = NULL;
2290                 }
2291         }
2292 unlock:
2293         if (!hdev->io_started)
2294                 up(&hdev->driver_input_lock);
2295 end:
2296         return ret;
2297 }
2298
2299 static int hid_device_remove(struct device *dev)
2300 {
2301         struct hid_device *hdev = to_hid_device(dev);
2302         struct hid_driver *hdrv;
2303         int ret = 0;
2304
2305         if (down_interruptible(&hdev->driver_input_lock)) {
2306                 ret = -EINTR;
2307                 goto end;
2308         }
2309         hdev->io_started = false;
2310
2311         hdrv = hdev->driver;
2312         if (hdrv) {
2313                 if (hdrv->remove)
2314                         hdrv->remove(hdev);
2315                 else /* default remove */
2316                         hid_hw_stop(hdev);
2317                 hid_close_report(hdev);
2318                 hdev->driver = NULL;
2319         }
2320
2321         if (!hdev->io_started)
2322                 up(&hdev->driver_input_lock);
2323 end:
2324         return ret;
2325 }
2326
2327 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2328                              char *buf)
2329 {
2330         struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2331
2332         return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2333                          hdev->bus, hdev->group, hdev->vendor, hdev->product);
2334 }
2335 static DEVICE_ATTR_RO(modalias);
2336
2337 static struct attribute *hid_dev_attrs[] = {
2338         &dev_attr_modalias.attr,
2339         NULL,
2340 };
2341 static struct bin_attribute *hid_dev_bin_attrs[] = {
2342         &dev_bin_attr_report_desc,
2343         NULL
2344 };
2345 static const struct attribute_group hid_dev_group = {
2346         .attrs = hid_dev_attrs,
2347         .bin_attrs = hid_dev_bin_attrs,
2348 };
2349 __ATTRIBUTE_GROUPS(hid_dev);
2350
2351 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2352 {
2353         struct hid_device *hdev = to_hid_device(dev);
2354
2355         if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2356                         hdev->bus, hdev->vendor, hdev->product))
2357                 return -ENOMEM;
2358
2359         if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2360                 return -ENOMEM;
2361
2362         if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2363                 return -ENOMEM;
2364
2365         if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2366                 return -ENOMEM;
2367
2368         if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2369                            hdev->bus, hdev->group, hdev->vendor, hdev->product))
2370                 return -ENOMEM;
2371
2372         return 0;
2373 }
2374
2375 struct bus_type hid_bus_type = {
2376         .name           = "hid",
2377         .dev_groups     = hid_dev_groups,
2378         .drv_groups     = hid_drv_groups,
2379         .match          = hid_bus_match,
2380         .probe          = hid_device_probe,
2381         .remove         = hid_device_remove,
2382         .uevent         = hid_uevent,
2383 };
2384 EXPORT_SYMBOL(hid_bus_type);
2385
2386 int hid_add_device(struct hid_device *hdev)
2387 {
2388         static atomic_t id = ATOMIC_INIT(0);
2389         int ret;
2390
2391         if (WARN_ON(hdev->status & HID_STAT_ADDED))
2392                 return -EBUSY;
2393
2394         hdev->quirks = hid_lookup_quirk(hdev);
2395
2396         /* we need to kill them here, otherwise they will stay allocated to
2397          * wait for coming driver */
2398         if (hid_ignore(hdev))
2399                 return -ENODEV;
2400
2401         /*
2402          * Check for the mandatory transport channel.
2403          */
2404          if (!hdev->ll_driver->raw_request) {
2405                 hid_err(hdev, "transport driver missing .raw_request()\n");
2406                 return -EINVAL;
2407          }
2408
2409         /*
2410          * Read the device report descriptor once and use as template
2411          * for the driver-specific modifications.
2412          */
2413         ret = hdev->ll_driver->parse(hdev);
2414         if (ret)
2415                 return ret;
2416         if (!hdev->dev_rdesc)
2417                 return -ENODEV;
2418
2419         /*
2420          * Scan generic devices for group information
2421          */
2422         if (hid_ignore_special_drivers) {
2423                 hdev->group = HID_GROUP_GENERIC;
2424         } else if (!hdev->group &&
2425                    !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2426                 ret = hid_scan_report(hdev);
2427                 if (ret)
2428                         hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2429         }
2430
2431         /* XXX hack, any other cleaner solution after the driver core
2432          * is converted to allow more than 20 bytes as the device name? */
2433         dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2434                      hdev->vendor, hdev->product, atomic_inc_return(&id));
2435
2436         hid_debug_register(hdev, dev_name(&hdev->dev));
2437         ret = device_add(&hdev->dev);
2438         if (!ret)
2439                 hdev->status |= HID_STAT_ADDED;
2440         else
2441                 hid_debug_unregister(hdev);
2442
2443         return ret;
2444 }
2445 EXPORT_SYMBOL_GPL(hid_add_device);
2446
2447 /**
2448  * hid_allocate_device - allocate new hid device descriptor
2449  *
2450  * Allocate and initialize hid device, so that hid_destroy_device might be
2451  * used to free it.
2452  *
2453  * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2454  * error value.
2455  */
2456 struct hid_device *hid_allocate_device(void)
2457 {
2458         struct hid_device *hdev;
2459         int ret = -ENOMEM;
2460
2461         hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2462         if (hdev == NULL)
2463                 return ERR_PTR(ret);
2464
2465         device_initialize(&hdev->dev);
2466         hdev->dev.release = hid_device_release;
2467         hdev->dev.bus = &hid_bus_type;
2468         device_enable_async_suspend(&hdev->dev);
2469
2470         hid_close_report(hdev);
2471
2472         init_waitqueue_head(&hdev->debug_wait);
2473         INIT_LIST_HEAD(&hdev->debug_list);
2474         spin_lock_init(&hdev->debug_list_lock);
2475         sema_init(&hdev->driver_input_lock, 1);
2476         mutex_init(&hdev->ll_open_lock);
2477
2478         return hdev;
2479 }
2480 EXPORT_SYMBOL_GPL(hid_allocate_device);
2481
2482 static void hid_remove_device(struct hid_device *hdev)
2483 {
2484         if (hdev->status & HID_STAT_ADDED) {
2485                 device_del(&hdev->dev);
2486                 hid_debug_unregister(hdev);
2487                 hdev->status &= ~HID_STAT_ADDED;
2488         }
2489         kfree(hdev->dev_rdesc);
2490         hdev->dev_rdesc = NULL;
2491         hdev->dev_rsize = 0;
2492 }
2493
2494 /**
2495  * hid_destroy_device - free previously allocated device
2496  *
2497  * @hdev: hid device
2498  *
2499  * If you allocate hid_device through hid_allocate_device, you should ever
2500  * free by this function.
2501  */
2502 void hid_destroy_device(struct hid_device *hdev)
2503 {
2504         hid_remove_device(hdev);
2505         put_device(&hdev->dev);
2506 }
2507 EXPORT_SYMBOL_GPL(hid_destroy_device);
2508
2509
2510 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2511 {
2512         struct hid_driver *hdrv = data;
2513         struct hid_device *hdev = to_hid_device(dev);
2514
2515         if (hdev->driver == hdrv &&
2516             !hdrv->match(hdev, hid_ignore_special_drivers) &&
2517             !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2518                 return device_reprobe(dev);
2519
2520         return 0;
2521 }
2522
2523 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2524 {
2525         struct hid_driver *hdrv = to_hid_driver(drv);
2526
2527         if (hdrv->match) {
2528                 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2529                                  __hid_bus_reprobe_drivers);
2530         }
2531
2532         return 0;
2533 }
2534
2535 static int __bus_removed_driver(struct device_driver *drv, void *data)
2536 {
2537         return bus_rescan_devices(&hid_bus_type);
2538 }
2539
2540 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2541                 const char *mod_name)
2542 {
2543         int ret;
2544
2545         hdrv->driver.name = hdrv->name;
2546         hdrv->driver.bus = &hid_bus_type;
2547         hdrv->driver.owner = owner;
2548         hdrv->driver.mod_name = mod_name;
2549
2550         INIT_LIST_HEAD(&hdrv->dyn_list);
2551         spin_lock_init(&hdrv->dyn_lock);
2552
2553         ret = driver_register(&hdrv->driver);
2554
2555         if (ret == 0)
2556                 bus_for_each_drv(&hid_bus_type, NULL, NULL,
2557                                  __hid_bus_driver_added);
2558
2559         return ret;
2560 }
2561 EXPORT_SYMBOL_GPL(__hid_register_driver);
2562
2563 void hid_unregister_driver(struct hid_driver *hdrv)
2564 {
2565         driver_unregister(&hdrv->driver);
2566         hid_free_dynids(hdrv);
2567
2568         bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2569 }
2570 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2571
2572 int hid_check_keys_pressed(struct hid_device *hid)
2573 {
2574         struct hid_input *hidinput;
2575         int i;
2576
2577         if (!(hid->claimed & HID_CLAIMED_INPUT))
2578                 return 0;
2579
2580         list_for_each_entry(hidinput, &hid->inputs, list) {
2581                 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2582                         if (hidinput->input->key[i])
2583                                 return 1;
2584         }
2585
2586         return 0;
2587 }
2588
2589 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2590
2591 static int __init hid_init(void)
2592 {
2593         int ret;
2594
2595         if (hid_debug)
2596                 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2597                         "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2598
2599         ret = bus_register(&hid_bus_type);
2600         if (ret) {
2601                 pr_err("can't register hid bus\n");
2602                 goto err;
2603         }
2604
2605         ret = hidraw_init();
2606         if (ret)
2607                 goto err_bus;
2608
2609         hid_debug_init();
2610
2611         return 0;
2612 err_bus:
2613         bus_unregister(&hid_bus_type);
2614 err:
2615         return ret;
2616 }
2617
2618 static void __exit hid_exit(void)
2619 {
2620         hid_debug_exit();
2621         hidraw_exit();
2622         bus_unregister(&hid_bus_type);
2623         hid_quirks_exit(HID_BUS_ANY);
2624 }
2625
2626 module_init(hid_init);
2627 module_exit(hid_exit);
2628
2629 MODULE_AUTHOR("Andreas Gal");
2630 MODULE_AUTHOR("Vojtech Pavlik");
2631 MODULE_AUTHOR("Jiri Kosina");
2632 MODULE_LICENSE("GPL");