drm/ttm: device naming cleanup
[linux-2.6-microblaze.git] / drivers / gpu / drm / vmwgfx / vmwgfx_ttm_buffer.c
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
31
32 static const struct ttm_place vram_placement_flags = {
33         .fpfn = 0,
34         .lpfn = 0,
35         .mem_type = TTM_PL_VRAM,
36         .flags = 0
37 };
38
39 static const struct ttm_place sys_placement_flags = {
40         .fpfn = 0,
41         .lpfn = 0,
42         .mem_type = TTM_PL_SYSTEM,
43         .flags = 0
44 };
45
46 static const struct ttm_place gmr_placement_flags = {
47         .fpfn = 0,
48         .lpfn = 0,
49         .mem_type = VMW_PL_GMR,
50         .flags = 0
51 };
52
53 static const struct ttm_place mob_placement_flags = {
54         .fpfn = 0,
55         .lpfn = 0,
56         .mem_type = VMW_PL_MOB,
57         .flags = 0
58 };
59
60 struct ttm_placement vmw_vram_placement = {
61         .num_placement = 1,
62         .placement = &vram_placement_flags,
63         .num_busy_placement = 1,
64         .busy_placement = &vram_placement_flags
65 };
66
67 static const struct ttm_place vram_gmr_placement_flags[] = {
68         {
69                 .fpfn = 0,
70                 .lpfn = 0,
71                 .mem_type = TTM_PL_VRAM,
72                 .flags = 0
73         }, {
74                 .fpfn = 0,
75                 .lpfn = 0,
76                 .mem_type = VMW_PL_GMR,
77                 .flags = 0
78         }
79 };
80
81 static const struct ttm_place gmr_vram_placement_flags[] = {
82         {
83                 .fpfn = 0,
84                 .lpfn = 0,
85                 .mem_type = VMW_PL_GMR,
86                 .flags = 0
87         }, {
88                 .fpfn = 0,
89                 .lpfn = 0,
90                 .mem_type = TTM_PL_VRAM,
91                 .flags = 0
92         }
93 };
94
95 struct ttm_placement vmw_vram_gmr_placement = {
96         .num_placement = 2,
97         .placement = vram_gmr_placement_flags,
98         .num_busy_placement = 1,
99         .busy_placement = &gmr_placement_flags
100 };
101
102 struct ttm_placement vmw_vram_sys_placement = {
103         .num_placement = 1,
104         .placement = &vram_placement_flags,
105         .num_busy_placement = 1,
106         .busy_placement = &sys_placement_flags
107 };
108
109 struct ttm_placement vmw_sys_placement = {
110         .num_placement = 1,
111         .placement = &sys_placement_flags,
112         .num_busy_placement = 1,
113         .busy_placement = &sys_placement_flags
114 };
115
116 static const struct ttm_place evictable_placement_flags[] = {
117         {
118                 .fpfn = 0,
119                 .lpfn = 0,
120                 .mem_type = TTM_PL_SYSTEM,
121                 .flags = 0
122         }, {
123                 .fpfn = 0,
124                 .lpfn = 0,
125                 .mem_type = TTM_PL_VRAM,
126                 .flags = 0
127         }, {
128                 .fpfn = 0,
129                 .lpfn = 0,
130                 .mem_type = VMW_PL_GMR,
131                 .flags = 0
132         }, {
133                 .fpfn = 0,
134                 .lpfn = 0,
135                 .mem_type = VMW_PL_MOB,
136                 .flags = 0
137         }
138 };
139
140 static const struct ttm_place nonfixed_placement_flags[] = {
141         {
142                 .fpfn = 0,
143                 .lpfn = 0,
144                 .mem_type = TTM_PL_SYSTEM,
145                 .flags = 0
146         }, {
147                 .fpfn = 0,
148                 .lpfn = 0,
149                 .mem_type = VMW_PL_GMR,
150                 .flags = 0
151         }, {
152                 .fpfn = 0,
153                 .lpfn = 0,
154                 .mem_type = VMW_PL_MOB,
155                 .flags = 0
156         }
157 };
158
159 struct ttm_placement vmw_evictable_placement = {
160         .num_placement = 4,
161         .placement = evictable_placement_flags,
162         .num_busy_placement = 1,
163         .busy_placement = &sys_placement_flags
164 };
165
166 struct ttm_placement vmw_srf_placement = {
167         .num_placement = 1,
168         .num_busy_placement = 2,
169         .placement = &gmr_placement_flags,
170         .busy_placement = gmr_vram_placement_flags
171 };
172
173 struct ttm_placement vmw_mob_placement = {
174         .num_placement = 1,
175         .num_busy_placement = 1,
176         .placement = &mob_placement_flags,
177         .busy_placement = &mob_placement_flags
178 };
179
180 struct ttm_placement vmw_nonfixed_placement = {
181         .num_placement = 3,
182         .placement = nonfixed_placement_flags,
183         .num_busy_placement = 1,
184         .busy_placement = &sys_placement_flags
185 };
186
187 struct vmw_ttm_tt {
188         struct ttm_tt dma_ttm;
189         struct vmw_private *dev_priv;
190         int gmr_id;
191         struct vmw_mob *mob;
192         int mem_type;
193         struct sg_table sgt;
194         struct vmw_sg_table vsgt;
195         uint64_t sg_alloc_size;
196         bool mapped;
197         bool bound;
198 };
199
200 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
201
202 /**
203  * Helper functions to advance a struct vmw_piter iterator.
204  *
205  * @viter: Pointer to the iterator.
206  *
207  * These functions return false if past the end of the list,
208  * true otherwise. Functions are selected depending on the current
209  * DMA mapping mode.
210  */
211 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
212 {
213         return ++(viter->i) < viter->num_pages;
214 }
215
216 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
217 {
218         bool ret = __vmw_piter_non_sg_next(viter);
219
220         return __sg_page_iter_dma_next(&viter->iter) && ret;
221 }
222
223
224 /**
225  * Helper functions to return a pointer to the current page.
226  *
227  * @viter: Pointer to the iterator
228  *
229  * These functions return a pointer to the page currently
230  * pointed to by @viter. Functions are selected depending on the
231  * current mapping mode.
232  */
233 static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter)
234 {
235         return viter->pages[viter->i];
236 }
237
238 /**
239  * Helper functions to return the DMA address of the current page.
240  *
241  * @viter: Pointer to the iterator
242  *
243  * These functions return the DMA address of the page currently
244  * pointed to by @viter. Functions are selected depending on the
245  * current mapping mode.
246  */
247 static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter)
248 {
249         return page_to_phys(viter->pages[viter->i]);
250 }
251
252 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
253 {
254         return viter->addrs[viter->i];
255 }
256
257 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
258 {
259         return sg_page_iter_dma_address(&viter->iter);
260 }
261
262
263 /**
264  * vmw_piter_start - Initialize a struct vmw_piter.
265  *
266  * @viter: Pointer to the iterator to initialize
267  * @vsgt: Pointer to a struct vmw_sg_table to initialize from
268  * @p_offset: Pointer offset used to update current array position
269  *
270  * Note that we're following the convention of __sg_page_iter_start, so that
271  * the iterator doesn't point to a valid page after initialization; it has
272  * to be advanced one step first.
273  */
274 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
275                      unsigned long p_offset)
276 {
277         viter->i = p_offset - 1;
278         viter->num_pages = vsgt->num_pages;
279         viter->page = &__vmw_piter_non_sg_page;
280         viter->pages = vsgt->pages;
281         switch (vsgt->mode) {
282         case vmw_dma_phys:
283                 viter->next = &__vmw_piter_non_sg_next;
284                 viter->dma_address = &__vmw_piter_phys_addr;
285                 break;
286         case vmw_dma_alloc_coherent:
287                 viter->next = &__vmw_piter_non_sg_next;
288                 viter->dma_address = &__vmw_piter_dma_addr;
289                 viter->addrs = vsgt->addrs;
290                 break;
291         case vmw_dma_map_populate:
292         case vmw_dma_map_bind:
293                 viter->next = &__vmw_piter_sg_next;
294                 viter->dma_address = &__vmw_piter_sg_addr;
295                 __sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl,
296                                      vsgt->sgt->orig_nents, p_offset);
297                 break;
298         default:
299                 BUG();
300         }
301 }
302
303 /**
304  * vmw_ttm_unmap_from_dma - unmap  device addresses previsouly mapped for
305  * TTM pages
306  *
307  * @vmw_tt: Pointer to a struct vmw_ttm_backend
308  *
309  * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
310  */
311 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
312 {
313         struct device *dev = vmw_tt->dev_priv->drm.dev;
314
315         dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
316         vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
317 }
318
319 /**
320  * vmw_ttm_map_for_dma - map TTM pages to get device addresses
321  *
322  * @vmw_tt: Pointer to a struct vmw_ttm_backend
323  *
324  * This function is used to get device addresses from the kernel DMA layer.
325  * However, it's violating the DMA API in that when this operation has been
326  * performed, it's illegal for the CPU to write to the pages without first
327  * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
328  * therefore only legal to call this function if we know that the function
329  * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
330  * a CPU write buffer flush.
331  */
332 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
333 {
334         struct device *dev = vmw_tt->dev_priv->drm.dev;
335
336         return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0);
337 }
338
339 /**
340  * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
341  *
342  * @vmw_tt: Pointer to a struct vmw_ttm_tt
343  *
344  * Select the correct function for and make sure the TTM pages are
345  * visible to the device. Allocate storage for the device mappings.
346  * If a mapping has already been performed, indicated by the storage
347  * pointer being non NULL, the function returns success.
348  */
349 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
350 {
351         struct vmw_private *dev_priv = vmw_tt->dev_priv;
352         struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
353         struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
354         struct ttm_operation_ctx ctx = {
355                 .interruptible = true,
356                 .no_wait_gpu = false
357         };
358         struct vmw_piter iter;
359         dma_addr_t old;
360         int ret = 0;
361         static size_t sgl_size;
362         static size_t sgt_size;
363         struct scatterlist *sg;
364
365         if (vmw_tt->mapped)
366                 return 0;
367
368         vsgt->mode = dev_priv->map_mode;
369         vsgt->pages = vmw_tt->dma_ttm.pages;
370         vsgt->num_pages = vmw_tt->dma_ttm.num_pages;
371         vsgt->addrs = vmw_tt->dma_ttm.dma_address;
372         vsgt->sgt = &vmw_tt->sgt;
373
374         switch (dev_priv->map_mode) {
375         case vmw_dma_map_bind:
376         case vmw_dma_map_populate:
377                 if (unlikely(!sgl_size)) {
378                         sgl_size = ttm_round_pot(sizeof(struct scatterlist));
379                         sgt_size = ttm_round_pot(sizeof(struct sg_table));
380                 }
381                 vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
382                 ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx);
383                 if (unlikely(ret != 0))
384                         return ret;
385
386                 sg = __sg_alloc_table_from_pages(&vmw_tt->sgt, vsgt->pages,
387                                 vsgt->num_pages, 0,
388                                 (unsigned long) vsgt->num_pages << PAGE_SHIFT,
389                                 dma_get_max_seg_size(dev_priv->drm.dev),
390                                 NULL, 0, GFP_KERNEL);
391                 if (IS_ERR(sg)) {
392                         ret = PTR_ERR(sg);
393                         goto out_sg_alloc_fail;
394                 }
395
396                 if (vsgt->num_pages > vmw_tt->sgt.orig_nents) {
397                         uint64_t over_alloc =
398                                 sgl_size * (vsgt->num_pages -
399                                             vmw_tt->sgt.orig_nents);
400
401                         ttm_mem_global_free(glob, over_alloc);
402                         vmw_tt->sg_alloc_size -= over_alloc;
403                 }
404
405                 ret = vmw_ttm_map_for_dma(vmw_tt);
406                 if (unlikely(ret != 0))
407                         goto out_map_fail;
408
409                 break;
410         default:
411                 break;
412         }
413
414         old = ~((dma_addr_t) 0);
415         vmw_tt->vsgt.num_regions = 0;
416         for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
417                 dma_addr_t cur = vmw_piter_dma_addr(&iter);
418
419                 if (cur != old + PAGE_SIZE)
420                         vmw_tt->vsgt.num_regions++;
421                 old = cur;
422         }
423
424         vmw_tt->mapped = true;
425         return 0;
426
427 out_map_fail:
428         sg_free_table(vmw_tt->vsgt.sgt);
429         vmw_tt->vsgt.sgt = NULL;
430 out_sg_alloc_fail:
431         ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
432         return ret;
433 }
434
435 /**
436  * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
437  *
438  * @vmw_tt: Pointer to a struct vmw_ttm_tt
439  *
440  * Tear down any previously set up device DMA mappings and free
441  * any storage space allocated for them. If there are no mappings set up,
442  * this function is a NOP.
443  */
444 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
445 {
446         struct vmw_private *dev_priv = vmw_tt->dev_priv;
447
448         if (!vmw_tt->vsgt.sgt)
449                 return;
450
451         switch (dev_priv->map_mode) {
452         case vmw_dma_map_bind:
453         case vmw_dma_map_populate:
454                 vmw_ttm_unmap_from_dma(vmw_tt);
455                 sg_free_table(vmw_tt->vsgt.sgt);
456                 vmw_tt->vsgt.sgt = NULL;
457                 ttm_mem_global_free(vmw_mem_glob(dev_priv),
458                                     vmw_tt->sg_alloc_size);
459                 break;
460         default:
461                 break;
462         }
463         vmw_tt->mapped = false;
464 }
465
466 /**
467  * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
468  * TTM buffer object
469  *
470  * @bo: Pointer to a struct ttm_buffer_object
471  *
472  * Returns a pointer to a struct vmw_sg_table object. The object should
473  * not be freed after use.
474  * Note that for the device addresses to be valid, the buffer object must
475  * either be reserved or pinned.
476  */
477 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
478 {
479         struct vmw_ttm_tt *vmw_tt =
480                 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
481
482         return &vmw_tt->vsgt;
483 }
484
485
486 static int vmw_ttm_bind(struct ttm_device *bdev,
487                         struct ttm_tt *ttm, struct ttm_resource *bo_mem)
488 {
489         struct vmw_ttm_tt *vmw_be =
490                 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
491         int ret = 0;
492
493         if (!bo_mem)
494                 return -EINVAL;
495
496         if (vmw_be->bound)
497                 return 0;
498
499         ret = vmw_ttm_map_dma(vmw_be);
500         if (unlikely(ret != 0))
501                 return ret;
502
503         vmw_be->gmr_id = bo_mem->start;
504         vmw_be->mem_type = bo_mem->mem_type;
505
506         switch (bo_mem->mem_type) {
507         case VMW_PL_GMR:
508                 ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
509                                     ttm->num_pages, vmw_be->gmr_id);
510                 break;
511         case VMW_PL_MOB:
512                 if (unlikely(vmw_be->mob == NULL)) {
513                         vmw_be->mob =
514                                 vmw_mob_create(ttm->num_pages);
515                         if (unlikely(vmw_be->mob == NULL))
516                                 return -ENOMEM;
517                 }
518
519                 ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
520                                     &vmw_be->vsgt, ttm->num_pages,
521                                     vmw_be->gmr_id);
522                 break;
523         default:
524                 BUG();
525         }
526         vmw_be->bound = true;
527         return ret;
528 }
529
530 static void vmw_ttm_unbind(struct ttm_device *bdev,
531                            struct ttm_tt *ttm)
532 {
533         struct vmw_ttm_tt *vmw_be =
534                 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
535
536         if (!vmw_be->bound)
537                 return;
538
539         switch (vmw_be->mem_type) {
540         case VMW_PL_GMR:
541                 vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
542                 break;
543         case VMW_PL_MOB:
544                 vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
545                 break;
546         default:
547                 BUG();
548         }
549
550         if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
551                 vmw_ttm_unmap_dma(vmw_be);
552         vmw_be->bound = false;
553 }
554
555
556 static void vmw_ttm_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
557 {
558         struct vmw_ttm_tt *vmw_be =
559                 container_of(ttm, struct vmw_ttm_tt, dma_ttm);
560
561         vmw_ttm_unbind(bdev, ttm);
562         ttm_tt_destroy_common(bdev, ttm);
563         vmw_ttm_unmap_dma(vmw_be);
564         if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
565                 ttm_tt_fini(&vmw_be->dma_ttm);
566         else
567                 ttm_tt_fini(ttm);
568
569         if (vmw_be->mob)
570                 vmw_mob_destroy(vmw_be->mob);
571
572         kfree(vmw_be);
573 }
574
575
576 static int vmw_ttm_populate(struct ttm_device *bdev,
577                             struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
578 {
579         /* TODO: maybe completely drop this ? */
580         if (ttm_tt_is_populated(ttm))
581                 return 0;
582
583         return ttm_pool_alloc(&bdev->pool, ttm, ctx);
584 }
585
586 static void vmw_ttm_unpopulate(struct ttm_device *bdev,
587                                struct ttm_tt *ttm)
588 {
589         struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
590                                                  dma_ttm);
591
592         if (vmw_tt->mob) {
593                 vmw_mob_destroy(vmw_tt->mob);
594                 vmw_tt->mob = NULL;
595         }
596
597         vmw_ttm_unmap_dma(vmw_tt);
598         ttm_pool_free(&bdev->pool, ttm);
599 }
600
601 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
602                                         uint32_t page_flags)
603 {
604         struct vmw_ttm_tt *vmw_be;
605         int ret;
606
607         vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
608         if (!vmw_be)
609                 return NULL;
610
611         vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev);
612         vmw_be->mob = NULL;
613
614         if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
615                 ret = ttm_sg_tt_init(&vmw_be->dma_ttm, bo, page_flags,
616                                      ttm_cached);
617         else
618                 ret = ttm_tt_init(&vmw_be->dma_ttm, bo, page_flags,
619                                   ttm_cached);
620         if (unlikely(ret != 0))
621                 goto out_no_init;
622
623         return &vmw_be->dma_ttm;
624 out_no_init:
625         kfree(vmw_be);
626         return NULL;
627 }
628
629 static void vmw_evict_flags(struct ttm_buffer_object *bo,
630                      struct ttm_placement *placement)
631 {
632         *placement = vmw_sys_placement;
633 }
634
635 static int vmw_verify_access(struct ttm_buffer_object *bo, struct file *filp)
636 {
637         struct ttm_object_file *tfile =
638                 vmw_fpriv((struct drm_file *)filp->private_data)->tfile;
639
640         return vmw_user_bo_verify_access(bo, tfile);
641 }
642
643 static int vmw_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
644 {
645         struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
646
647         switch (mem->mem_type) {
648         case TTM_PL_SYSTEM:
649         case VMW_PL_GMR:
650         case VMW_PL_MOB:
651                 return 0;
652         case TTM_PL_VRAM:
653                 mem->bus.offset = (mem->start << PAGE_SHIFT) +
654                         dev_priv->vram_start;
655                 mem->bus.is_iomem = true;
656                 mem->bus.caching = ttm_cached;
657                 break;
658         default:
659                 return -EINVAL;
660         }
661         return 0;
662 }
663
664 /**
665  * vmw_move_notify - TTM move_notify_callback
666  *
667  * @bo: The TTM buffer object about to move.
668  * @evict: Unused
669  * @mem: The struct ttm_resource indicating to what memory
670  *       region the move is taking place.
671  *
672  * Calls move_notify for all subsystems needing it.
673  * (currently only resources).
674  */
675 static void vmw_move_notify(struct ttm_buffer_object *bo,
676                             bool evict,
677                             struct ttm_resource *mem)
678 {
679         if (!mem)
680                 return;
681         vmw_bo_move_notify(bo, mem);
682         vmw_query_move_notify(bo, mem);
683 }
684
685
686 /**
687  * vmw_swap_notify - TTM move_notify_callback
688  *
689  * @bo: The TTM buffer object about to be swapped out.
690  */
691 static void vmw_swap_notify(struct ttm_buffer_object *bo)
692 {
693         vmw_bo_swap_notify(bo);
694         (void) ttm_bo_wait(bo, false, false);
695 }
696
697 static int vmw_move(struct ttm_buffer_object *bo,
698                     bool evict,
699                     struct ttm_operation_ctx *ctx,
700                     struct ttm_resource *new_mem,
701                     struct ttm_place *hop)
702 {
703         struct ttm_resource_manager *old_man = ttm_manager_type(bo->bdev, bo->mem.mem_type);
704         struct ttm_resource_manager *new_man = ttm_manager_type(bo->bdev, new_mem->mem_type);
705         int ret;
706
707         if (new_man->use_tt && new_mem->mem_type != TTM_PL_SYSTEM) {
708                 ret = vmw_ttm_bind(bo->bdev, bo->ttm, new_mem);
709                 if (ret)
710                         return ret;
711         }
712
713         vmw_move_notify(bo, evict, new_mem);
714
715         if (old_man->use_tt && new_man->use_tt) {
716                 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
717                         ttm_bo_assign_mem(bo, new_mem);
718                         return 0;
719                 }
720                 ret = ttm_bo_wait_ctx(bo, ctx);
721                 if (ret)
722                         goto fail;
723
724                 vmw_ttm_unbind(bo->bdev, bo->ttm);
725                 ttm_resource_free(bo, &bo->mem);
726                 ttm_bo_assign_mem(bo, new_mem);
727                 return 0;
728         } else {
729                 ret = ttm_bo_move_memcpy(bo, ctx, new_mem);
730                 if (ret)
731                         goto fail;
732         }
733         return 0;
734 fail:
735         swap(*new_mem, bo->mem);
736         vmw_move_notify(bo, false, new_mem);
737         swap(*new_mem, bo->mem);
738         return ret;
739 }
740
741 static void
742 vmw_delete_mem_notify(struct ttm_buffer_object *bo)
743 {
744         vmw_move_notify(bo, false, NULL);
745 }
746
747 struct ttm_device_funcs vmw_bo_driver = {
748         .ttm_tt_create = &vmw_ttm_tt_create,
749         .ttm_tt_populate = &vmw_ttm_populate,
750         .ttm_tt_unpopulate = &vmw_ttm_unpopulate,
751         .ttm_tt_destroy = &vmw_ttm_destroy,
752         .eviction_valuable = ttm_bo_eviction_valuable,
753         .evict_flags = vmw_evict_flags,
754         .move = vmw_move,
755         .verify_access = vmw_verify_access,
756         .delete_mem_notify = vmw_delete_mem_notify,
757         .swap_notify = vmw_swap_notify,
758         .io_mem_reserve = &vmw_ttm_io_mem_reserve,
759 };
760
761 int vmw_bo_create_and_populate(struct vmw_private *dev_priv,
762                                unsigned long bo_size,
763                                struct ttm_buffer_object **bo_p)
764 {
765         struct ttm_operation_ctx ctx = {
766                 .interruptible = false,
767                 .no_wait_gpu = false
768         };
769         struct ttm_buffer_object *bo;
770         int ret;
771
772         ret = vmw_bo_create_kernel(dev_priv, bo_size,
773                                    &vmw_sys_placement,
774                                    &bo);
775         if (unlikely(ret != 0))
776                 return ret;
777
778         ret = ttm_bo_reserve(bo, false, true, NULL);
779         BUG_ON(ret != 0);
780         ret = vmw_ttm_populate(bo->bdev, bo->ttm, &ctx);
781         if (likely(ret == 0)) {
782                 struct vmw_ttm_tt *vmw_tt =
783                         container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm);
784                 ret = vmw_ttm_map_dma(vmw_tt);
785         }
786
787         ttm_bo_unreserve(bo);
788
789         if (likely(ret == 0))
790                 *bo_p = bo;
791         return ret;
792 }