clk: uniphier: Fix fixed-rate initialization
[linux-2.6-microblaze.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35 #include <linux/pm_runtime.h>
36
37 #include <drm/drm_atomic.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_atomic_uapi.h>
40 #include <drm/drm_fb_cma_helper.h>
41 #include <drm/drm_print.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_vblank.h>
44
45 #include "vc4_drv.h"
46 #include "vc4_hdmi.h"
47 #include "vc4_regs.h"
48
49 #define HVS_FIFO_LATENCY_PIX    6
50
51 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
52 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
53
54 static const struct debugfs_reg32 crtc_regs[] = {
55         VC4_REG32(PV_CONTROL),
56         VC4_REG32(PV_V_CONTROL),
57         VC4_REG32(PV_VSYNCD_EVEN),
58         VC4_REG32(PV_HORZA),
59         VC4_REG32(PV_HORZB),
60         VC4_REG32(PV_VERTA),
61         VC4_REG32(PV_VERTB),
62         VC4_REG32(PV_VERTA_EVEN),
63         VC4_REG32(PV_VERTB_EVEN),
64         VC4_REG32(PV_INTEN),
65         VC4_REG32(PV_INTSTAT),
66         VC4_REG32(PV_STAT),
67         VC4_REG32(PV_HACT_ACT),
68 };
69
70 static unsigned int
71 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
72 {
73         u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
74         /* Top/base are supposed to be 4-pixel aligned, but the
75          * Raspberry Pi firmware fills the low bits (which are
76          * presumably ignored).
77          */
78         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
79         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
80
81         return top - base + 4;
82 }
83
84 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
85                                           bool in_vblank_irq,
86                                           int *vpos, int *hpos,
87                                           ktime_t *stime, ktime_t *etime,
88                                           const struct drm_display_mode *mode)
89 {
90         struct drm_device *dev = crtc->dev;
91         struct vc4_dev *vc4 = to_vc4_dev(dev);
92         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
93         struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
94         unsigned int cob_size;
95         u32 val;
96         int fifo_lines;
97         int vblank_lines;
98         bool ret = false;
99
100         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
101
102         /* Get optional system timestamp before query. */
103         if (stime)
104                 *stime = ktime_get();
105
106         /*
107          * Read vertical scanline which is currently composed for our
108          * pixelvalve by the HVS, and also the scaler status.
109          */
110         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
111
112         /* Get optional system timestamp after query. */
113         if (etime)
114                 *etime = ktime_get();
115
116         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
117
118         /* Vertical position of hvs composed scanline. */
119         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
120         *hpos = 0;
121
122         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
123                 *vpos /= 2;
124
125                 /* Use hpos to correct for field offset in interlaced mode. */
126                 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
127                         *hpos += mode->crtc_htotal / 2;
128         }
129
130         cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
131         /* This is the offset we need for translating hvs -> pv scanout pos. */
132         fifo_lines = cob_size / mode->crtc_hdisplay;
133
134         if (fifo_lines > 0)
135                 ret = true;
136
137         /* HVS more than fifo_lines into frame for compositing? */
138         if (*vpos > fifo_lines) {
139                 /*
140                  * We are in active scanout and can get some meaningful results
141                  * from HVS. The actual PV scanout can not trail behind more
142                  * than fifo_lines as that is the fifo's capacity. Assume that
143                  * in active scanout the HVS and PV work in lockstep wrt. HVS
144                  * refilling the fifo and PV consuming from the fifo, ie.
145                  * whenever the PV consumes and frees up a scanline in the
146                  * fifo, the HVS will immediately refill it, therefore
147                  * incrementing vpos. Therefore we choose HVS read position -
148                  * fifo size in scanlines as a estimate of the real scanout
149                  * position of the PV.
150                  */
151                 *vpos -= fifo_lines + 1;
152
153                 return ret;
154         }
155
156         /*
157          * Less: This happens when we are in vblank and the HVS, after getting
158          * the VSTART restart signal from the PV, just started refilling its
159          * fifo with new lines from the top-most lines of the new framebuffers.
160          * The PV does not scan out in vblank, so does not remove lines from
161          * the fifo, so the fifo will be full quickly and the HVS has to pause.
162          * We can't get meaningful readings wrt. scanline position of the PV
163          * and need to make things up in a approximative but consistent way.
164          */
165         vblank_lines = mode->vtotal - mode->vdisplay;
166
167         if (in_vblank_irq) {
168                 /*
169                  * Assume the irq handler got called close to first
170                  * line of vblank, so PV has about a full vblank
171                  * scanlines to go, and as a base timestamp use the
172                  * one taken at entry into vblank irq handler, so it
173                  * is not affected by random delays due to lock
174                  * contention on event_lock or vblank_time lock in
175                  * the core.
176                  */
177                 *vpos = -vblank_lines;
178
179                 if (stime)
180                         *stime = vc4_crtc->t_vblank;
181                 if (etime)
182                         *etime = vc4_crtc->t_vblank;
183
184                 /*
185                  * If the HVS fifo is not yet full then we know for certain
186                  * we are at the very beginning of vblank, as the hvs just
187                  * started refilling, and the stime and etime timestamps
188                  * truly correspond to start of vblank.
189                  *
190                  * Unfortunately there's no way to report this to upper levels
191                  * and make it more useful.
192                  */
193         } else {
194                 /*
195                  * No clue where we are inside vblank. Return a vpos of zero,
196                  * which will cause calling code to just return the etime
197                  * timestamp uncorrected. At least this is no worse than the
198                  * standard fallback.
199                  */
200                 *vpos = 0;
201         }
202
203         return ret;
204 }
205
206 void vc4_crtc_destroy(struct drm_crtc *crtc)
207 {
208         drm_crtc_cleanup(crtc);
209 }
210
211 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
212 {
213         const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
214         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
215         struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
216         u32 fifo_len_bytes = pv_data->fifo_depth;
217
218         /*
219          * Pixels are pulled from the HVS if the number of bytes is
220          * lower than the FIFO full level.
221          *
222          * The latency of the pixel fetch mechanism is 6 pixels, so we
223          * need to convert those 6 pixels in bytes, depending on the
224          * format, and then subtract that from the length of the FIFO
225          * to make sure we never end up in a situation where the FIFO
226          * is full.
227          */
228         switch (format) {
229         case PV_CONTROL_FORMAT_DSIV_16:
230         case PV_CONTROL_FORMAT_DSIC_16:
231                 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
232         case PV_CONTROL_FORMAT_DSIV_18:
233                 return fifo_len_bytes - 14;
234         case PV_CONTROL_FORMAT_24:
235         case PV_CONTROL_FORMAT_DSIV_24:
236         default:
237                 /*
238                  * For some reason, the pixelvalve4 doesn't work with
239                  * the usual formula and will only work with 32.
240                  */
241                 if (crtc_data->hvs_output == 5)
242                         return 32;
243
244                 /*
245                  * It looks like in some situations, we will overflow
246                  * the PixelValve FIFO (with the bit 10 of PV stat being
247                  * set) and stall the HVS / PV, eventually resulting in
248                  * a page flip timeout.
249                  *
250                  * Displaying the video overlay during a playback with
251                  * Kodi on an RPi3 seems to be a great solution with a
252                  * failure rate around 50%.
253                  *
254                  * Removing 1 from the FIFO full level however
255                  * seems to completely remove that issue.
256                  */
257                 if (!vc4->hvs->hvs5)
258                         return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
259
260                 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
261         }
262 }
263
264 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
265                                              u32 format)
266 {
267         u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
268         u32 ret = 0;
269
270         ret |= VC4_SET_FIELD((level >> 6),
271                              PV5_CONTROL_FIFO_LEVEL_HIGH);
272
273         return ret | VC4_SET_FIELD(level & 0x3f,
274                                    PV_CONTROL_FIFO_LEVEL);
275 }
276
277 /*
278  * Returns the encoder attached to the CRTC.
279  *
280  * VC4 can only scan out to one encoder at a time, while the DRM core
281  * allows drivers to push pixels to more than one encoder from the
282  * same CRTC.
283  */
284 struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
285                                          struct drm_crtc_state *state)
286 {
287         struct drm_encoder *encoder;
288
289         WARN_ON(hweight32(state->encoder_mask) > 1);
290
291         drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
292                 return encoder;
293
294         return NULL;
295 }
296
297 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
298 {
299         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
300
301         /* The PV needs to be disabled before it can be flushed */
302         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
303         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
304 }
305
306 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
307                                struct drm_atomic_state *state)
308 {
309         struct drm_device *dev = crtc->dev;
310         struct vc4_dev *vc4 = to_vc4_dev(dev);
311         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
312         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
313         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
314         struct drm_crtc_state *crtc_state = crtc->state;
315         struct drm_display_mode *mode = &crtc_state->adjusted_mode;
316         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
317         u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
318         bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
319                        vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
320         u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
321         u8 ppc = pv_data->pixels_per_clock;
322         bool debug_dump_regs = false;
323
324         if (debug_dump_regs) {
325                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
326                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
327                          drm_crtc_index(crtc));
328                 drm_print_regset32(&p, &vc4_crtc->regset);
329         }
330
331         vc4_crtc_pixelvalve_reset(crtc);
332
333         CRTC_WRITE(PV_HORZA,
334                    VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
335                                  PV_HORZA_HBP) |
336                    VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
337                                  PV_HORZA_HSYNC));
338
339         CRTC_WRITE(PV_HORZB,
340                    VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
341                                  PV_HORZB_HFP) |
342                    VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
343                                  PV_HORZB_HACTIVE));
344
345         CRTC_WRITE(PV_VERTA,
346                    VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
347                                  PV_VERTA_VBP) |
348                    VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
349                                  PV_VERTA_VSYNC));
350         CRTC_WRITE(PV_VERTB,
351                    VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
352                                  PV_VERTB_VFP) |
353                    VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
354
355         if (interlace) {
356                 CRTC_WRITE(PV_VERTA_EVEN,
357                            VC4_SET_FIELD(mode->crtc_vtotal -
358                                          mode->crtc_vsync_end - 1,
359                                          PV_VERTA_VBP) |
360                            VC4_SET_FIELD(mode->crtc_vsync_end -
361                                          mode->crtc_vsync_start,
362                                          PV_VERTA_VSYNC));
363                 CRTC_WRITE(PV_VERTB_EVEN,
364                            VC4_SET_FIELD(mode->crtc_vsync_start -
365                                          mode->crtc_vdisplay,
366                                          PV_VERTB_VFP) |
367                            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
368
369                 /* We set up first field even mode for HDMI.  VEC's
370                  * NTSC mode would want first field odd instead, once
371                  * we support it (to do so, set ODD_FIRST and put the
372                  * delay in VSYNCD_EVEN instead).
373                  */
374                 CRTC_WRITE(PV_V_CONTROL,
375                            PV_VCONTROL_CONTINUOUS |
376                            (is_dsi ? PV_VCONTROL_DSI : 0) |
377                            PV_VCONTROL_INTERLACE |
378                            VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
379                                          PV_VCONTROL_ODD_DELAY));
380                 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
381         } else {
382                 CRTC_WRITE(PV_V_CONTROL,
383                            PV_VCONTROL_CONTINUOUS |
384                            (is_dsi ? PV_VCONTROL_DSI : 0));
385         }
386
387         if (is_dsi)
388                 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
389
390         if (vc4->hvs->hvs5)
391                 CRTC_WRITE(PV_MUX_CFG,
392                            VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
393                                          PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
394
395         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
396                    vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
397                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
398                    VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
399                    PV_CONTROL_CLR_AT_START |
400                    PV_CONTROL_TRIGGER_UNDERFLOW |
401                    PV_CONTROL_WAIT_HSTART |
402                    VC4_SET_FIELD(vc4_encoder->clock_select,
403                                  PV_CONTROL_CLK_SELECT));
404
405         if (debug_dump_regs) {
406                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
407                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
408                          drm_crtc_index(crtc));
409                 drm_print_regset32(&p, &vc4_crtc->regset);
410         }
411 }
412
413 static void require_hvs_enabled(struct drm_device *dev)
414 {
415         struct vc4_dev *vc4 = to_vc4_dev(dev);
416
417         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
418                      SCALER_DISPCTRL_ENABLE);
419 }
420
421 static int vc4_crtc_disable(struct drm_crtc *crtc,
422                             struct drm_encoder *encoder,
423                             struct drm_atomic_state *state,
424                             unsigned int channel)
425 {
426         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
427         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
428         struct drm_device *dev = crtc->dev;
429         int ret;
430
431         CRTC_WRITE(PV_V_CONTROL,
432                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
433         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
434         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
435
436         /*
437          * This delay is needed to avoid to get a pixel stuck in an
438          * unflushable FIFO between the pixelvalve and the HDMI
439          * controllers on the BCM2711.
440          *
441          * Timing is fairly sensitive here, so mdelay is the safest
442          * approach.
443          *
444          * If it was to be reworked, the stuck pixel happens on a
445          * BCM2711 when changing mode with a good probability, so a
446          * script that changes mode on a regular basis should trigger
447          * the bug after less than 10 attempts. It manifests itself with
448          * every pixels being shifted by one to the right, and thus the
449          * last pixel of a line actually being displayed as the first
450          * pixel on the next line.
451          */
452         mdelay(20);
453
454         if (vc4_encoder && vc4_encoder->post_crtc_disable)
455                 vc4_encoder->post_crtc_disable(encoder, state);
456
457         vc4_crtc_pixelvalve_reset(crtc);
458         vc4_hvs_stop_channel(dev, channel);
459
460         if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
461                 vc4_encoder->post_crtc_powerdown(encoder, state);
462
463         return 0;
464 }
465
466 static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc,
467                                                         enum vc4_encoder_type type)
468 {
469         struct drm_encoder *encoder;
470
471         drm_for_each_encoder(encoder, crtc->dev) {
472                 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
473
474                 if (vc4_encoder->type == type)
475                         return encoder;
476         }
477
478         return NULL;
479 }
480
481 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
482 {
483         struct drm_device *drm = crtc->dev;
484         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
485         enum vc4_encoder_type encoder_type;
486         const struct vc4_pv_data *pv_data;
487         struct drm_encoder *encoder;
488         struct vc4_hdmi *vc4_hdmi;
489         unsigned encoder_sel;
490         int channel;
491         int ret;
492
493         if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
494                                       "brcm,bcm2711-pixelvalve2") ||
495               of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
496                                       "brcm,bcm2711-pixelvalve4")))
497                 return 0;
498
499         if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
500                 return 0;
501
502         if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
503                 return 0;
504
505         channel = vc4_hvs_get_fifo_from_output(drm, vc4_crtc->data->hvs_output);
506         if (channel < 0)
507                 return 0;
508
509         encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
510         if (WARN_ON(encoder_sel != 0))
511                 return 0;
512
513         pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
514         encoder_type = pv_data->encoder_types[encoder_sel];
515         encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type);
516         if (WARN_ON(!encoder))
517                 return 0;
518
519         vc4_hdmi = encoder_to_vc4_hdmi(encoder);
520         ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
521         if (ret)
522                 return ret;
523
524         ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
525         if (ret)
526                 return ret;
527
528         ret = pm_runtime_put(&vc4_hdmi->pdev->dev);
529         if (ret)
530                 return ret;
531
532         return 0;
533 }
534
535 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
536                                     struct drm_atomic_state *state)
537 {
538         struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
539                                                                          crtc);
540         struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
541         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
542         struct drm_device *dev = crtc->dev;
543
544         drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
545                 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
546
547         require_hvs_enabled(dev);
548
549         /* Disable vblank irq handling before crtc is disabled. */
550         drm_crtc_vblank_off(crtc);
551
552         vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
553
554         /*
555          * Make sure we issue a vblank event after disabling the CRTC if
556          * someone was waiting it.
557          */
558         if (crtc->state->event) {
559                 unsigned long flags;
560
561                 spin_lock_irqsave(&dev->event_lock, flags);
562                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
563                 crtc->state->event = NULL;
564                 spin_unlock_irqrestore(&dev->event_lock, flags);
565         }
566 }
567
568 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
569                                    struct drm_atomic_state *state)
570 {
571         struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
572                                                                          crtc);
573         struct drm_device *dev = crtc->dev;
574         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
575         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
576         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
577
578         drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
579                 crtc->name, crtc->base.id, encoder->name, encoder->base.id);
580
581         require_hvs_enabled(dev);
582
583         /* Enable vblank irq handling before crtc is started otherwise
584          * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
585          */
586         drm_crtc_vblank_on(crtc);
587
588         vc4_hvs_atomic_enable(crtc, state);
589
590         if (vc4_encoder->pre_crtc_configure)
591                 vc4_encoder->pre_crtc_configure(encoder, state);
592
593         vc4_crtc_config_pv(crtc, encoder, state);
594
595         CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
596
597         if (vc4_encoder->pre_crtc_enable)
598                 vc4_encoder->pre_crtc_enable(encoder, state);
599
600         /* When feeding the transposer block the pixelvalve is unneeded and
601          * should not be enabled.
602          */
603         CRTC_WRITE(PV_V_CONTROL,
604                    CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
605
606         if (vc4_encoder->post_crtc_enable)
607                 vc4_encoder->post_crtc_enable(encoder, state);
608 }
609
610 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
611                                                 const struct drm_display_mode *mode)
612 {
613         /* Do not allow doublescan modes from user space */
614         if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
615                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
616                               crtc->base.id);
617                 return MODE_NO_DBLESCAN;
618         }
619
620         return MODE_OK;
621 }
622
623 void vc4_crtc_get_margins(struct drm_crtc_state *state,
624                           unsigned int *left, unsigned int *right,
625                           unsigned int *top, unsigned int *bottom)
626 {
627         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
628         struct drm_connector_state *conn_state;
629         struct drm_connector *conn;
630         int i;
631
632         *left = vc4_state->margins.left;
633         *right = vc4_state->margins.right;
634         *top = vc4_state->margins.top;
635         *bottom = vc4_state->margins.bottom;
636
637         /* We have to interate over all new connector states because
638          * vc4_crtc_get_margins() might be called before
639          * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
640          * might be outdated.
641          */
642         for_each_new_connector_in_state(state->state, conn, conn_state, i) {
643                 if (conn_state->crtc != state->crtc)
644                         continue;
645
646                 *left = conn_state->tv.margins.left;
647                 *right = conn_state->tv.margins.right;
648                 *top = conn_state->tv.margins.top;
649                 *bottom = conn_state->tv.margins.bottom;
650                 break;
651         }
652 }
653
654 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
655                                  struct drm_atomic_state *state)
656 {
657         struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
658                                                                           crtc);
659         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
660         struct drm_connector *conn;
661         struct drm_connector_state *conn_state;
662         struct drm_encoder *encoder;
663         int ret, i;
664
665         ret = vc4_hvs_atomic_check(crtc, state);
666         if (ret)
667                 return ret;
668
669         encoder = vc4_get_crtc_encoder(crtc, crtc_state);
670         if (encoder) {
671                 const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
672                 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
673
674                 mode = &crtc_state->adjusted_mode;
675                 if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
676                         vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 1000,
677                                                   mode->clock * 9 / 10) * 1000;
678                 } else {
679                         vc4_state->hvs_load = mode->clock * 1000;
680                 }
681         }
682
683         for_each_new_connector_in_state(state, conn, conn_state,
684                                         i) {
685                 if (conn_state->crtc != crtc)
686                         continue;
687
688                 vc4_state->margins.left = conn_state->tv.margins.left;
689                 vc4_state->margins.right = conn_state->tv.margins.right;
690                 vc4_state->margins.top = conn_state->tv.margins.top;
691                 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
692                 break;
693         }
694
695         return 0;
696 }
697
698 static int vc4_enable_vblank(struct drm_crtc *crtc)
699 {
700         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
701
702         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
703
704         return 0;
705 }
706
707 static void vc4_disable_vblank(struct drm_crtc *crtc)
708 {
709         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
710
711         CRTC_WRITE(PV_INTEN, 0);
712 }
713
714 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
715 {
716         struct drm_crtc *crtc = &vc4_crtc->base;
717         struct drm_device *dev = crtc->dev;
718         struct vc4_dev *vc4 = to_vc4_dev(dev);
719         u32 chan = vc4_crtc->current_hvs_channel;
720         unsigned long flags;
721
722         spin_lock_irqsave(&dev->event_lock, flags);
723         spin_lock(&vc4_crtc->irq_lock);
724         if (vc4_crtc->event &&
725             (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
726              vc4_crtc->feeds_txp)) {
727                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
728                 vc4_crtc->event = NULL;
729                 drm_crtc_vblank_put(crtc);
730
731                 /* Wait for the page flip to unmask the underrun to ensure that
732                  * the display list was updated by the hardware. Before that
733                  * happens, the HVS will be using the previous display list with
734                  * the CRTC and encoder already reconfigured, leading to
735                  * underruns. This can be seen when reconfiguring the CRTC.
736                  */
737                 vc4_hvs_unmask_underrun(dev, chan);
738         }
739         spin_unlock(&vc4_crtc->irq_lock);
740         spin_unlock_irqrestore(&dev->event_lock, flags);
741 }
742
743 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
744 {
745         crtc->t_vblank = ktime_get();
746         drm_crtc_handle_vblank(&crtc->base);
747         vc4_crtc_handle_page_flip(crtc);
748 }
749
750 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
751 {
752         struct vc4_crtc *vc4_crtc = data;
753         u32 stat = CRTC_READ(PV_INTSTAT);
754         irqreturn_t ret = IRQ_NONE;
755
756         if (stat & PV_INT_VFP_START) {
757                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
758                 vc4_crtc_handle_vblank(vc4_crtc);
759                 ret = IRQ_HANDLED;
760         }
761
762         return ret;
763 }
764
765 struct vc4_async_flip_state {
766         struct drm_crtc *crtc;
767         struct drm_framebuffer *fb;
768         struct drm_framebuffer *old_fb;
769         struct drm_pending_vblank_event *event;
770
771         struct vc4_seqno_cb cb;
772 };
773
774 /* Called when the V3D execution for the BO being flipped to is done, so that
775  * we can actually update the plane's address to point to it.
776  */
777 static void
778 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
779 {
780         struct vc4_async_flip_state *flip_state =
781                 container_of(cb, struct vc4_async_flip_state, cb);
782         struct drm_crtc *crtc = flip_state->crtc;
783         struct drm_device *dev = crtc->dev;
784         struct drm_plane *plane = crtc->primary;
785
786         vc4_plane_async_set_fb(plane, flip_state->fb);
787         if (flip_state->event) {
788                 unsigned long flags;
789
790                 spin_lock_irqsave(&dev->event_lock, flags);
791                 drm_crtc_send_vblank_event(crtc, flip_state->event);
792                 spin_unlock_irqrestore(&dev->event_lock, flags);
793         }
794
795         drm_crtc_vblank_put(crtc);
796         drm_framebuffer_put(flip_state->fb);
797
798         /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
799          * when the planes are updated through the async update path.
800          * FIXME: we should move to generic async-page-flip when it's
801          * available, so that we can get rid of this hand-made cleanup_fb()
802          * logic.
803          */
804         if (flip_state->old_fb) {
805                 struct drm_gem_cma_object *cma_bo;
806                 struct vc4_bo *bo;
807
808                 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
809                 bo = to_vc4_bo(&cma_bo->base);
810                 vc4_bo_dec_usecnt(bo);
811                 drm_framebuffer_put(flip_state->old_fb);
812         }
813
814         kfree(flip_state);
815 }
816
817 /* Implements async (non-vblank-synced) page flips.
818  *
819  * The page flip ioctl needs to return immediately, so we grab the
820  * modeset semaphore on the pipe, and queue the address update for
821  * when V3D is done with the BO being flipped to.
822  */
823 static int vc4_async_page_flip(struct drm_crtc *crtc,
824                                struct drm_framebuffer *fb,
825                                struct drm_pending_vblank_event *event,
826                                uint32_t flags)
827 {
828         struct drm_device *dev = crtc->dev;
829         struct drm_plane *plane = crtc->primary;
830         int ret = 0;
831         struct vc4_async_flip_state *flip_state;
832         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
833         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
834
835         /* Increment the BO usecnt here, so that we never end up with an
836          * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
837          * plane is later updated through the non-async path.
838          * FIXME: we should move to generic async-page-flip when it's
839          * available, so that we can get rid of this hand-made prepare_fb()
840          * logic.
841          */
842         ret = vc4_bo_inc_usecnt(bo);
843         if (ret)
844                 return ret;
845
846         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
847         if (!flip_state) {
848                 vc4_bo_dec_usecnt(bo);
849                 return -ENOMEM;
850         }
851
852         drm_framebuffer_get(fb);
853         flip_state->fb = fb;
854         flip_state->crtc = crtc;
855         flip_state->event = event;
856
857         /* Save the current FB before it's replaced by the new one in
858          * drm_atomic_set_fb_for_plane(). We'll need the old FB in
859          * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
860          * it consistent.
861          * FIXME: we should move to generic async-page-flip when it's
862          * available, so that we can get rid of this hand-made cleanup_fb()
863          * logic.
864          */
865         flip_state->old_fb = plane->state->fb;
866         if (flip_state->old_fb)
867                 drm_framebuffer_get(flip_state->old_fb);
868
869         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
870
871         /* Immediately update the plane's legacy fb pointer, so that later
872          * modeset prep sees the state that will be present when the semaphore
873          * is released.
874          */
875         drm_atomic_set_fb_for_plane(plane->state, fb);
876
877         vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
878                            vc4_async_page_flip_complete);
879
880         /* Driver takes ownership of state on successful async commit. */
881         return 0;
882 }
883
884 int vc4_page_flip(struct drm_crtc *crtc,
885                   struct drm_framebuffer *fb,
886                   struct drm_pending_vblank_event *event,
887                   uint32_t flags,
888                   struct drm_modeset_acquire_ctx *ctx)
889 {
890         if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
891                 return vc4_async_page_flip(crtc, fb, event, flags);
892         else
893                 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
894 }
895
896 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
897 {
898         struct vc4_crtc_state *vc4_state, *old_vc4_state;
899
900         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
901         if (!vc4_state)
902                 return NULL;
903
904         old_vc4_state = to_vc4_crtc_state(crtc->state);
905         vc4_state->margins = old_vc4_state->margins;
906         vc4_state->assigned_channel = old_vc4_state->assigned_channel;
907
908         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
909         return &vc4_state->base;
910 }
911
912 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
913                             struct drm_crtc_state *state)
914 {
915         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
916         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
917
918         if (drm_mm_node_allocated(&vc4_state->mm)) {
919                 unsigned long flags;
920
921                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
922                 drm_mm_remove_node(&vc4_state->mm);
923                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
924
925         }
926
927         drm_atomic_helper_crtc_destroy_state(crtc, state);
928 }
929
930 void vc4_crtc_reset(struct drm_crtc *crtc)
931 {
932         struct vc4_crtc_state *vc4_crtc_state;
933
934         if (crtc->state)
935                 vc4_crtc_destroy_state(crtc, crtc->state);
936
937         vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
938         if (!vc4_crtc_state) {
939                 crtc->state = NULL;
940                 return;
941         }
942
943         vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
944         __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
945 }
946
947 static const struct drm_crtc_funcs vc4_crtc_funcs = {
948         .set_config = drm_atomic_helper_set_config,
949         .destroy = vc4_crtc_destroy,
950         .page_flip = vc4_page_flip,
951         .set_property = NULL,
952         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
953         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
954         .reset = vc4_crtc_reset,
955         .atomic_duplicate_state = vc4_crtc_duplicate_state,
956         .atomic_destroy_state = vc4_crtc_destroy_state,
957         .enable_vblank = vc4_enable_vblank,
958         .disable_vblank = vc4_disable_vblank,
959         .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
960 };
961
962 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
963         .mode_valid = vc4_crtc_mode_valid,
964         .atomic_check = vc4_crtc_atomic_check,
965         .atomic_begin = vc4_hvs_atomic_begin,
966         .atomic_flush = vc4_hvs_atomic_flush,
967         .atomic_enable = vc4_crtc_atomic_enable,
968         .atomic_disable = vc4_crtc_atomic_disable,
969         .get_scanout_position = vc4_crtc_get_scanout_position,
970 };
971
972 static const struct vc4_pv_data bcm2835_pv0_data = {
973         .base = {
974                 .hvs_available_channels = BIT(0),
975                 .hvs_output = 0,
976         },
977         .debugfs_name = "crtc0_regs",
978         .fifo_depth = 64,
979         .pixels_per_clock = 1,
980         .encoder_types = {
981                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
982                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
983         },
984 };
985
986 static const struct vc4_pv_data bcm2835_pv1_data = {
987         .base = {
988                 .hvs_available_channels = BIT(2),
989                 .hvs_output = 2,
990         },
991         .debugfs_name = "crtc1_regs",
992         .fifo_depth = 64,
993         .pixels_per_clock = 1,
994         .encoder_types = {
995                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
996                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
997         },
998 };
999
1000 static const struct vc4_pv_data bcm2835_pv2_data = {
1001         .base = {
1002                 .hvs_available_channels = BIT(1),
1003                 .hvs_output = 1,
1004         },
1005         .debugfs_name = "crtc2_regs",
1006         .fifo_depth = 64,
1007         .pixels_per_clock = 1,
1008         .encoder_types = {
1009                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1010                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1011         },
1012 };
1013
1014 static const struct vc4_pv_data bcm2711_pv0_data = {
1015         .base = {
1016                 .hvs_available_channels = BIT(0),
1017                 .hvs_output = 0,
1018         },
1019         .debugfs_name = "crtc0_regs",
1020         .fifo_depth = 64,
1021         .pixels_per_clock = 1,
1022         .encoder_types = {
1023                 [0] = VC4_ENCODER_TYPE_DSI0,
1024                 [1] = VC4_ENCODER_TYPE_DPI,
1025         },
1026 };
1027
1028 static const struct vc4_pv_data bcm2711_pv1_data = {
1029         .base = {
1030                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1031                 .hvs_output = 3,
1032         },
1033         .debugfs_name = "crtc1_regs",
1034         .fifo_depth = 64,
1035         .pixels_per_clock = 1,
1036         .encoder_types = {
1037                 [0] = VC4_ENCODER_TYPE_DSI1,
1038                 [1] = VC4_ENCODER_TYPE_SMI,
1039         },
1040 };
1041
1042 static const struct vc4_pv_data bcm2711_pv2_data = {
1043         .base = {
1044                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1045                 .hvs_output = 4,
1046         },
1047         .debugfs_name = "crtc2_regs",
1048         .fifo_depth = 256,
1049         .pixels_per_clock = 2,
1050         .encoder_types = {
1051                 [0] = VC4_ENCODER_TYPE_HDMI0,
1052         },
1053 };
1054
1055 static const struct vc4_pv_data bcm2711_pv3_data = {
1056         .base = {
1057                 .hvs_available_channels = BIT(1),
1058                 .hvs_output = 1,
1059         },
1060         .debugfs_name = "crtc3_regs",
1061         .fifo_depth = 64,
1062         .pixels_per_clock = 1,
1063         .encoder_types = {
1064                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1065         },
1066 };
1067
1068 static const struct vc4_pv_data bcm2711_pv4_data = {
1069         .base = {
1070                 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1071                 .hvs_output = 5,
1072         },
1073         .debugfs_name = "crtc4_regs",
1074         .fifo_depth = 64,
1075         .pixels_per_clock = 2,
1076         .encoder_types = {
1077                 [0] = VC4_ENCODER_TYPE_HDMI1,
1078         },
1079 };
1080
1081 static const struct of_device_id vc4_crtc_dt_match[] = {
1082         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1083         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1084         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1085         { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1086         { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1087         { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1088         { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1089         { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1090         {}
1091 };
1092
1093 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1094                                         struct drm_crtc *crtc)
1095 {
1096         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1097         const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1098         const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1099         struct drm_encoder *encoder;
1100
1101         drm_for_each_encoder(encoder, drm) {
1102                 struct vc4_encoder *vc4_encoder;
1103                 int i;
1104
1105                 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1106                         continue;
1107
1108                 vc4_encoder = to_vc4_encoder(encoder);
1109                 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1110                         if (vc4_encoder->type == encoder_types[i]) {
1111                                 vc4_encoder->clock_select = i;
1112                                 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1113                                 break;
1114                         }
1115                 }
1116         }
1117 }
1118
1119 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1120                   const struct drm_crtc_funcs *crtc_funcs,
1121                   const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1122 {
1123         struct vc4_dev *vc4 = to_vc4_dev(drm);
1124         struct drm_crtc *crtc = &vc4_crtc->base;
1125         struct drm_plane *primary_plane;
1126         unsigned int i;
1127
1128         /* For now, we create just the primary and the legacy cursor
1129          * planes.  We should be able to stack more planes on easily,
1130          * but to do that we would need to compute the bandwidth
1131          * requirement of the plane configuration, and reject ones
1132          * that will take too much.
1133          */
1134         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1135         if (IS_ERR(primary_plane)) {
1136                 dev_err(drm->dev, "failed to construct primary plane\n");
1137                 return PTR_ERR(primary_plane);
1138         }
1139
1140         spin_lock_init(&vc4_crtc->irq_lock);
1141         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1142                                   crtc_funcs, NULL);
1143         drm_crtc_helper_add(crtc, crtc_helper_funcs);
1144
1145         if (!vc4->hvs->hvs5) {
1146                 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1147
1148                 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1149
1150                 /* We support CTM, but only for one CRTC at a time. It's therefore
1151                  * implemented as private driver state in vc4_kms, not here.
1152                  */
1153                 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1154         }
1155
1156         for (i = 0; i < crtc->gamma_size; i++) {
1157                 vc4_crtc->lut_r[i] = i;
1158                 vc4_crtc->lut_g[i] = i;
1159                 vc4_crtc->lut_b[i] = i;
1160         }
1161
1162         return 0;
1163 }
1164
1165 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1166 {
1167         struct platform_device *pdev = to_platform_device(dev);
1168         struct drm_device *drm = dev_get_drvdata(master);
1169         const struct vc4_pv_data *pv_data;
1170         struct vc4_crtc *vc4_crtc;
1171         struct drm_crtc *crtc;
1172         struct drm_plane *destroy_plane, *temp;
1173         int ret;
1174
1175         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1176         if (!vc4_crtc)
1177                 return -ENOMEM;
1178         crtc = &vc4_crtc->base;
1179
1180         pv_data = of_device_get_match_data(dev);
1181         if (!pv_data)
1182                 return -ENODEV;
1183         vc4_crtc->data = &pv_data->base;
1184         vc4_crtc->pdev = pdev;
1185
1186         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1187         if (IS_ERR(vc4_crtc->regs))
1188                 return PTR_ERR(vc4_crtc->regs);
1189
1190         vc4_crtc->regset.base = vc4_crtc->regs;
1191         vc4_crtc->regset.regs = crtc_regs;
1192         vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1193
1194         ret = vc4_crtc_init(drm, vc4_crtc,
1195                             &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1196         if (ret)
1197                 return ret;
1198         vc4_set_crtc_possible_masks(drm, crtc);
1199
1200         CRTC_WRITE(PV_INTEN, 0);
1201         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1202         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1203                                vc4_crtc_irq_handler,
1204                                IRQF_SHARED,
1205                                "vc4 crtc", vc4_crtc);
1206         if (ret)
1207                 goto err_destroy_planes;
1208
1209         platform_set_drvdata(pdev, vc4_crtc);
1210
1211         vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1212                                  &vc4_crtc->regset);
1213
1214         return 0;
1215
1216 err_destroy_planes:
1217         list_for_each_entry_safe(destroy_plane, temp,
1218                                  &drm->mode_config.plane_list, head) {
1219                 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1220                     destroy_plane->funcs->destroy(destroy_plane);
1221         }
1222
1223         return ret;
1224 }
1225
1226 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1227                             void *data)
1228 {
1229         struct platform_device *pdev = to_platform_device(dev);
1230         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1231
1232         vc4_crtc_destroy(&vc4_crtc->base);
1233
1234         CRTC_WRITE(PV_INTEN, 0);
1235
1236         platform_set_drvdata(pdev, NULL);
1237 }
1238
1239 static const struct component_ops vc4_crtc_ops = {
1240         .bind   = vc4_crtc_bind,
1241         .unbind = vc4_crtc_unbind,
1242 };
1243
1244 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1245 {
1246         return component_add(&pdev->dev, &vc4_crtc_ops);
1247 }
1248
1249 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1250 {
1251         component_del(&pdev->dev, &vc4_crtc_ops);
1252         return 0;
1253 }
1254
1255 struct platform_driver vc4_crtc_driver = {
1256         .probe = vc4_crtc_dev_probe,
1257         .remove = vc4_crtc_dev_remove,
1258         .driver = {
1259                 .name = "vc4_crtc",
1260                 .of_match_table = vc4_crtc_dt_match,
1261         },
1262 };