drm/i915/uapi: reject set_domain for discrete
[linux-2.6-microblaze.git] / drivers / gpu / drm / rcar-du / rcar_du_crtc.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
4  *
5  * Copyright (C) 2013-2015 Renesas Electronics Corporation
6  *
7  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8  */
9
10 #include <linux/clk.h>
11 #include <linux/mutex.h>
12 #include <linux/platform_device.h>
13 #include <linux/sys_soc.h>
14
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_atomic_helper.h>
17 #include <drm/drm_bridge.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_device.h>
20 #include <drm/drm_fb_cma_helper.h>
21 #include <drm/drm_gem_cma_helper.h>
22 #include <drm/drm_plane_helper.h>
23 #include <drm/drm_vblank.h>
24
25 #include "rcar_cmm.h"
26 #include "rcar_du_crtc.h"
27 #include "rcar_du_drv.h"
28 #include "rcar_du_encoder.h"
29 #include "rcar_du_kms.h"
30 #include "rcar_du_plane.h"
31 #include "rcar_du_regs.h"
32 #include "rcar_du_vsp.h"
33 #include "rcar_lvds.h"
34
35 static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
36 {
37         struct rcar_du_device *rcdu = rcrtc->dev;
38
39         return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
40 }
41
42 static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
43 {
44         struct rcar_du_device *rcdu = rcrtc->dev;
45
46         rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
47 }
48
49 static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
50 {
51         struct rcar_du_device *rcdu = rcrtc->dev;
52
53         rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
54                       rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
55 }
56
57 static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
58 {
59         struct rcar_du_device *rcdu = rcrtc->dev;
60
61         rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
62                       rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
63 }
64
65 void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set)
66 {
67         struct rcar_du_device *rcdu = rcrtc->dev;
68
69         rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set;
70         rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr);
71 }
72
73 /* -----------------------------------------------------------------------------
74  * Hardware Setup
75  */
76
77 struct dpll_info {
78         unsigned int output;
79         unsigned int fdpll;
80         unsigned int n;
81         unsigned int m;
82 };
83
84 static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
85                                  struct dpll_info *dpll,
86                                  unsigned long input,
87                                  unsigned long target)
88 {
89         unsigned long best_diff = (unsigned long)-1;
90         unsigned long diff;
91         unsigned int fdpll;
92         unsigned int m;
93         unsigned int n;
94
95         /*
96          *   fin                                 fvco        fout       fclkout
97          * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
98          *              +-> |  |                             |
99          *              |                                    |
100          *              +---------------- [1/N] <------------+
101          *
102          *      fclkout = fvco / P / FDPLL -- (1)
103          *
104          * fin/M = fvco/P/N
105          *
106          *      fvco = fin * P *  N / M -- (2)
107          *
108          * (1) + (2) indicates
109          *
110          *      fclkout = fin * N / M / FDPLL
111          *
112          * NOTES
113          *      N       : (n + 1)
114          *      M       : (m + 1)
115          *      FDPLL   : (fdpll + 1)
116          *      P       : 2
117          *      2kHz < fvco < 4096MHz
118          *
119          * To minimize the jitter,
120          * N : as large as possible
121          * M : as small as possible
122          */
123         for (m = 0; m < 4; m++) {
124                 for (n = 119; n > 38; n--) {
125                         /*
126                          * This code only runs on 64-bit architectures, the
127                          * unsigned long type can thus be used for 64-bit
128                          * computation. It will still compile without any
129                          * warning on 32-bit architectures.
130                          *
131                          * To optimize calculations, use fout instead of fvco
132                          * to verify the VCO frequency constraint.
133                          */
134                         unsigned long fout = input * (n + 1) / (m + 1);
135
136                         if (fout < 1000 || fout > 2048 * 1000 * 1000U)
137                                 continue;
138
139                         for (fdpll = 1; fdpll < 32; fdpll++) {
140                                 unsigned long output;
141
142                                 output = fout / (fdpll + 1);
143                                 if (output >= 400 * 1000 * 1000)
144                                         continue;
145
146                                 diff = abs((long)output - (long)target);
147                                 if (best_diff > diff) {
148                                         best_diff = diff;
149                                         dpll->n = n;
150                                         dpll->m = m;
151                                         dpll->fdpll = fdpll;
152                                         dpll->output = output;
153                                 }
154
155                                 if (diff == 0)
156                                         goto done;
157                         }
158                 }
159         }
160
161 done:
162         dev_dbg(rcrtc->dev->dev,
163                 "output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
164                  dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff);
165 }
166
167 struct du_clk_params {
168         struct clk *clk;
169         unsigned long rate;
170         unsigned long diff;
171         u32 escr;
172 };
173
174 static void rcar_du_escr_divider(struct clk *clk, unsigned long target,
175                                  u32 escr, struct du_clk_params *params)
176 {
177         unsigned long rate;
178         unsigned long diff;
179         u32 div;
180
181         /*
182          * If the target rate has already been achieved perfectly we can't do
183          * better.
184          */
185         if (params->diff == 0)
186                 return;
187
188         /*
189          * Compute the input clock rate and internal divisor values to obtain
190          * the clock rate closest to the target frequency.
191          */
192         rate = clk_round_rate(clk, target);
193         div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1;
194         diff = abs(rate / (div + 1) - target);
195
196         /*
197          * Store the parameters if the resulting frequency is better than any
198          * previously calculated value.
199          */
200         if (diff < params->diff) {
201                 params->clk = clk;
202                 params->rate = rate;
203                 params->diff = diff;
204                 params->escr = escr | div;
205         }
206 }
207
208 static const struct soc_device_attribute rcar_du_r8a7795_es1[] = {
209         { .soc_id = "r8a7795", .revision = "ES1.*" },
210         { /* sentinel */ }
211 };
212
213 static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
214 {
215         const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
216         struct rcar_du_device *rcdu = rcrtc->dev;
217         unsigned long mode_clock = mode->clock * 1000;
218         u32 dsmr;
219         u32 escr;
220
221         if (rcdu->info->dpll_mask & (1 << rcrtc->index)) {
222                 unsigned long target = mode_clock;
223                 struct dpll_info dpll = { 0 };
224                 unsigned long extclk;
225                 u32 dpllcr;
226                 u32 div = 0;
227
228                 /*
229                  * DU channels that have a display PLL can't use the internal
230                  * system clock, and have no internal clock divider.
231                  */
232
233                 /*
234                  * The H3 ES1.x exhibits dot clock duty cycle stability issues.
235                  * We can work around them by configuring the DPLL to twice the
236                  * desired frequency, coupled with a /2 post-divider. Restrict
237                  * the workaround to H3 ES1.x as ES2.0 and all other SoCs have
238                  * no post-divider when a display PLL is present (as shown by
239                  * the workaround breaking HDMI output on M3-W during testing).
240                  */
241                 if (soc_device_match(rcar_du_r8a7795_es1)) {
242                         target *= 2;
243                         div = 1;
244                 }
245
246                 extclk = clk_get_rate(rcrtc->extclock);
247                 rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);
248
249                 dpllcr = DPLLCR_CODE | DPLLCR_CLKE
250                        | DPLLCR_FDPLL(dpll.fdpll)
251                        | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
252                        | DPLLCR_STBY;
253
254                 if (rcrtc->index == 1)
255                         dpllcr |= DPLLCR_PLCS1
256                                |  DPLLCR_INCS_DOTCLKIN1;
257                 else
258                         dpllcr |= DPLLCR_PLCS0
259                                |  DPLLCR_INCS_DOTCLKIN0;
260
261                 rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr);
262
263                 escr = ESCR_DCLKSEL_DCLKIN | div;
264         } else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) {
265                 /*
266                  * Use the LVDS PLL output as the dot clock when outputting to
267                  * the LVDS encoder on an SoC that supports this clock routing
268                  * option. We use the clock directly in that case, without any
269                  * additional divider.
270                  */
271                 escr = ESCR_DCLKSEL_DCLKIN;
272         } else {
273                 struct du_clk_params params = { .diff = (unsigned long)-1 };
274
275                 rcar_du_escr_divider(rcrtc->clock, mode_clock,
276                                      ESCR_DCLKSEL_CLKS, &params);
277                 if (rcrtc->extclock)
278                         rcar_du_escr_divider(rcrtc->extclock, mode_clock,
279                                              ESCR_DCLKSEL_DCLKIN, &params);
280
281                 dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n",
282                         mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext",
283                         params.rate);
284
285                 clk_set_rate(params.clk, params.rate);
286                 escr = params.escr;
287         }
288
289         dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr);
290
291         rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr);
292         rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0);
293
294         /* Signal polarities */
295         dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
296              | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
297              | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0)
298              | DSMR_DIPM_DISP | DSMR_CSPM;
299         rcar_du_crtc_write(rcrtc, DSMR, dsmr);
300
301         /* Display timings */
302         rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
303         rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
304                                         mode->hdisplay - 19);
305         rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
306                                         mode->hsync_start - 1);
307         rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);
308
309         rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
310                                         mode->crtc_vsync_end - 2);
311         rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
312                                         mode->crtc_vsync_end +
313                                         mode->crtc_vdisplay - 2);
314         rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
315                                         mode->crtc_vsync_end +
316                                         mode->crtc_vsync_start - 1);
317         rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
318
319         rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1);
320         rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
321 }
322
323 static unsigned int plane_zpos(struct rcar_du_plane *plane)
324 {
325         return plane->plane.state->normalized_zpos;
326 }
327
328 static const struct rcar_du_format_info *
329 plane_format(struct rcar_du_plane *plane)
330 {
331         return to_rcar_plane_state(plane->plane.state)->format;
332 }
333
334 static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
335 {
336         struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
337         struct rcar_du_device *rcdu = rcrtc->dev;
338         unsigned int num_planes = 0;
339         unsigned int dptsr_planes;
340         unsigned int hwplanes = 0;
341         unsigned int prio = 0;
342         unsigned int i;
343         u32 dspr = 0;
344
345         for (i = 0; i < rcrtc->group->num_planes; ++i) {
346                 struct rcar_du_plane *plane = &rcrtc->group->planes[i];
347                 unsigned int j;
348
349                 if (plane->plane.state->crtc != &rcrtc->crtc ||
350                     !plane->plane.state->visible)
351                         continue;
352
353                 /* Insert the plane in the sorted planes array. */
354                 for (j = num_planes++; j > 0; --j) {
355                         if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
356                                 break;
357                         planes[j] = planes[j-1];
358                 }
359
360                 planes[j] = plane;
361                 prio += plane_format(plane)->planes * 4;
362         }
363
364         for (i = 0; i < num_planes; ++i) {
365                 struct rcar_du_plane *plane = planes[i];
366                 struct drm_plane_state *state = plane->plane.state;
367                 unsigned int index = to_rcar_plane_state(state)->hwindex;
368
369                 prio -= 4;
370                 dspr |= (index + 1) << prio;
371                 hwplanes |= 1 << index;
372
373                 if (plane_format(plane)->planes == 2) {
374                         index = (index + 1) % 8;
375
376                         prio -= 4;
377                         dspr |= (index + 1) << prio;
378                         hwplanes |= 1 << index;
379                 }
380         }
381
382         /* If VSP+DU integration is enabled the plane assignment is fixed. */
383         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
384                 if (rcdu->info->gen < 3) {
385                         dspr = (rcrtc->index % 2) + 1;
386                         hwplanes = 1 << (rcrtc->index % 2);
387                 } else {
388                         dspr = (rcrtc->index % 2) ? 3 : 1;
389                         hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
390                 }
391         }
392
393         /*
394          * Update the planes to display timing and dot clock generator
395          * associations.
396          *
397          * Updating the DPTSR register requires restarting the CRTC group,
398          * resulting in visible flicker. To mitigate the issue only update the
399          * association if needed by enabled planes. Planes being disabled will
400          * keep their current association.
401          */
402         mutex_lock(&rcrtc->group->lock);
403
404         dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
405                      : rcrtc->group->dptsr_planes & ~hwplanes;
406
407         if (dptsr_planes != rcrtc->group->dptsr_planes) {
408                 rcar_du_group_write(rcrtc->group, DPTSR,
409                                     (dptsr_planes << 16) | dptsr_planes);
410                 rcrtc->group->dptsr_planes = dptsr_planes;
411
412                 if (rcrtc->group->used_crtcs)
413                         rcar_du_group_restart(rcrtc->group);
414         }
415
416         /* Restart the group if plane sources have changed. */
417         if (rcrtc->group->need_restart)
418                 rcar_du_group_restart(rcrtc->group);
419
420         mutex_unlock(&rcrtc->group->lock);
421
422         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
423                             dspr);
424 }
425
426 /* -----------------------------------------------------------------------------
427  * Page Flip
428  */
429
430 void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
431 {
432         struct drm_pending_vblank_event *event;
433         struct drm_device *dev = rcrtc->crtc.dev;
434         unsigned long flags;
435
436         spin_lock_irqsave(&dev->event_lock, flags);
437         event = rcrtc->event;
438         rcrtc->event = NULL;
439         spin_unlock_irqrestore(&dev->event_lock, flags);
440
441         if (event == NULL)
442                 return;
443
444         spin_lock_irqsave(&dev->event_lock, flags);
445         drm_crtc_send_vblank_event(&rcrtc->crtc, event);
446         wake_up(&rcrtc->flip_wait);
447         spin_unlock_irqrestore(&dev->event_lock, flags);
448
449         drm_crtc_vblank_put(&rcrtc->crtc);
450 }
451
452 static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
453 {
454         struct drm_device *dev = rcrtc->crtc.dev;
455         unsigned long flags;
456         bool pending;
457
458         spin_lock_irqsave(&dev->event_lock, flags);
459         pending = rcrtc->event != NULL;
460         spin_unlock_irqrestore(&dev->event_lock, flags);
461
462         return pending;
463 }
464
465 static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
466 {
467         struct rcar_du_device *rcdu = rcrtc->dev;
468
469         if (wait_event_timeout(rcrtc->flip_wait,
470                                !rcar_du_crtc_page_flip_pending(rcrtc),
471                                msecs_to_jiffies(50)))
472                 return;
473
474         dev_warn(rcdu->dev, "page flip timeout\n");
475
476         rcar_du_crtc_finish_page_flip(rcrtc);
477 }
478
479 /* -----------------------------------------------------------------------------
480  * Color Management Module (CMM)
481  */
482
483 static int rcar_du_cmm_check(struct drm_crtc *crtc,
484                              struct drm_crtc_state *state)
485 {
486         struct drm_property_blob *drm_lut = state->gamma_lut;
487         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
488         struct device *dev = rcrtc->dev->dev;
489
490         if (!drm_lut)
491                 return 0;
492
493         /* We only accept fully populated LUT tables. */
494         if (drm_color_lut_size(drm_lut) != CM2_LUT_SIZE) {
495                 dev_err(dev, "invalid gamma lut size: %zu bytes\n",
496                         drm_lut->length);
497                 return -EINVAL;
498         }
499
500         return 0;
501 }
502
503 static void rcar_du_cmm_setup(struct drm_crtc *crtc)
504 {
505         struct drm_property_blob *drm_lut = crtc->state->gamma_lut;
506         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
507         struct rcar_cmm_config cmm_config = {};
508
509         if (!rcrtc->cmm)
510                 return;
511
512         if (drm_lut)
513                 cmm_config.lut.table = (struct drm_color_lut *)drm_lut->data;
514
515         rcar_cmm_setup(rcrtc->cmm, &cmm_config);
516 }
517
518 /* -----------------------------------------------------------------------------
519  * Start/Stop and Suspend/Resume
520  */
521
522 static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
523 {
524         /* Set display off and background to black */
525         rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
526         rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
527
528         /* Configure display timings and output routing */
529         rcar_du_crtc_set_display_timing(rcrtc);
530         rcar_du_group_set_routing(rcrtc->group);
531
532         /* Start with all planes disabled. */
533         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
534
535         /* Enable the VSP compositor. */
536         if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
537                 rcar_du_vsp_enable(rcrtc);
538
539         /* Turn vertical blanking interrupt reporting on. */
540         drm_crtc_vblank_on(&rcrtc->crtc);
541 }
542
543 static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
544 {
545         int ret;
546
547         /*
548          * Guard against double-get, as the function is called from both the
549          * .atomic_enable() and .atomic_begin() handlers.
550          */
551         if (rcrtc->initialized)
552                 return 0;
553
554         ret = clk_prepare_enable(rcrtc->clock);
555         if (ret < 0)
556                 return ret;
557
558         ret = clk_prepare_enable(rcrtc->extclock);
559         if (ret < 0)
560                 goto error_clock;
561
562         ret = rcar_du_group_get(rcrtc->group);
563         if (ret < 0)
564                 goto error_group;
565
566         rcar_du_crtc_setup(rcrtc);
567         rcrtc->initialized = true;
568
569         return 0;
570
571 error_group:
572         clk_disable_unprepare(rcrtc->extclock);
573 error_clock:
574         clk_disable_unprepare(rcrtc->clock);
575         return ret;
576 }
577
578 static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
579 {
580         rcar_du_group_put(rcrtc->group);
581
582         clk_disable_unprepare(rcrtc->extclock);
583         clk_disable_unprepare(rcrtc->clock);
584
585         rcrtc->initialized = false;
586 }
587
588 static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
589 {
590         bool interlaced;
591
592         /*
593          * Select master sync mode. This enables display operation in master
594          * sync mode (with the HSYNC and VSYNC signals configured as outputs and
595          * actively driven).
596          */
597         interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
598         rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
599                                    (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
600                                    DSYSR_TVM_MASTER);
601
602         rcar_du_group_start_stop(rcrtc->group, true);
603 }
604
605 static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
606 {
607         struct rcar_du_device *rcdu = rcrtc->dev;
608         struct drm_crtc *crtc = &rcrtc->crtc;
609         u32 status;
610
611         /* Make sure vblank interrupts are enabled. */
612         drm_crtc_vblank_get(crtc);
613
614         /*
615          * Disable planes and calculate how many vertical blanking interrupts we
616          * have to wait for. If a vertical blanking interrupt has been triggered
617          * but not processed yet, we don't know whether it occurred before or
618          * after the planes got disabled. We thus have to wait for two vblank
619          * interrupts in that case.
620          */
621         spin_lock_irq(&rcrtc->vblank_lock);
622         rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
623         status = rcar_du_crtc_read(rcrtc, DSSR);
624         rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
625         spin_unlock_irq(&rcrtc->vblank_lock);
626
627         if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
628                                 msecs_to_jiffies(100)))
629                 dev_warn(rcdu->dev, "vertical blanking timeout\n");
630
631         drm_crtc_vblank_put(crtc);
632 }
633
634 static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
635 {
636         struct drm_crtc *crtc = &rcrtc->crtc;
637
638         /*
639          * Disable all planes and wait for the change to take effect. This is
640          * required as the plane enable registers are updated on vblank, and no
641          * vblank will occur once the CRTC is stopped. Disabling planes when
642          * starting the CRTC thus wouldn't be enough as it would start scanning
643          * out immediately from old frame buffers until the next vblank.
644          *
645          * This increases the CRTC stop delay, especially when multiple CRTCs
646          * are stopped in one operation as we now wait for one vblank per CRTC.
647          * Whether this can be improved needs to be researched.
648          */
649         rcar_du_crtc_disable_planes(rcrtc);
650
651         /*
652          * Disable vertical blanking interrupt reporting. We first need to wait
653          * for page flip completion before stopping the CRTC as userspace
654          * expects page flips to eventually complete.
655          */
656         rcar_du_crtc_wait_page_flip(rcrtc);
657         drm_crtc_vblank_off(crtc);
658
659         /* Disable the VSP compositor. */
660         if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
661                 rcar_du_vsp_disable(rcrtc);
662
663         if (rcrtc->cmm)
664                 rcar_cmm_disable(rcrtc->cmm);
665
666         /*
667          * Select switch sync mode. This stops display operation and configures
668          * the HSYNC and VSYNC signals as inputs.
669          *
670          * TODO: Find another way to stop the display for DUs that don't support
671          * TVM sync.
672          */
673         if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC))
674                 rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK,
675                                            DSYSR_TVM_SWITCH);
676
677         rcar_du_group_start_stop(rcrtc->group, false);
678 }
679
680 /* -----------------------------------------------------------------------------
681  * CRTC Functions
682  */
683
684 static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc,
685                                      struct drm_atomic_state *state)
686 {
687         struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
688                                                                           crtc);
689         struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc_state);
690         struct drm_encoder *encoder;
691         int ret;
692
693         ret = rcar_du_cmm_check(crtc, crtc_state);
694         if (ret)
695                 return ret;
696
697         /* Store the routes from the CRTC output to the DU outputs. */
698         rstate->outputs = 0;
699
700         drm_for_each_encoder_mask(encoder, crtc->dev,
701                                   crtc_state->encoder_mask) {
702                 struct rcar_du_encoder *renc;
703
704                 /* Skip the writeback encoder. */
705                 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
706                         continue;
707
708                 renc = to_rcar_encoder(encoder);
709                 rstate->outputs |= BIT(renc->output);
710         }
711
712         return 0;
713 }
714
715 static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
716                                        struct drm_atomic_state *state)
717 {
718         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
719         struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state);
720         struct rcar_du_device *rcdu = rcrtc->dev;
721
722         if (rcrtc->cmm)
723                 rcar_cmm_enable(rcrtc->cmm);
724         rcar_du_crtc_get(rcrtc);
725
726         /*
727          * On D3/E3 the dot clock is provided by the LVDS encoder attached to
728          * the DU channel. We need to enable its clock output explicitly if
729          * the LVDS output is disabled.
730          */
731         if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
732             rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
733                 struct drm_bridge *bridge = rcdu->lvds[rcrtc->index];
734                 const struct drm_display_mode *mode =
735                         &crtc->state->adjusted_mode;
736
737                 rcar_lvds_clk_enable(bridge, mode->clock * 1000);
738         }
739
740         rcar_du_crtc_start(rcrtc);
741
742         /*
743          * TODO: The chip manual indicates that CMM tables should be written
744          * after the DU channel has been activated. Investigate the impact
745          * of this restriction on the first displayed frame.
746          */
747         rcar_du_cmm_setup(crtc);
748 }
749
750 static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
751                                         struct drm_atomic_state *state)
752 {
753         struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
754                                                                          crtc);
755         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
756         struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state);
757         struct rcar_du_device *rcdu = rcrtc->dev;
758
759         rcar_du_crtc_stop(rcrtc);
760         rcar_du_crtc_put(rcrtc);
761
762         if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
763             rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
764                 struct drm_bridge *bridge = rcdu->lvds[rcrtc->index];
765
766                 /*
767                  * Disable the LVDS clock output, see
768                  * rcar_du_crtc_atomic_enable().
769                  */
770                 rcar_lvds_clk_disable(bridge);
771         }
772
773         spin_lock_irq(&crtc->dev->event_lock);
774         if (crtc->state->event) {
775                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
776                 crtc->state->event = NULL;
777         }
778         spin_unlock_irq(&crtc->dev->event_lock);
779 }
780
781 static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
782                                       struct drm_atomic_state *state)
783 {
784         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
785
786         WARN_ON(!crtc->state->enable);
787
788         /*
789          * If a mode set is in progress we can be called with the CRTC disabled.
790          * We thus need to first get and setup the CRTC in order to configure
791          * planes. We must *not* put the CRTC in .atomic_flush(), as it must be
792          * kept awake until the .atomic_enable() call that will follow. The get
793          * operation in .atomic_enable() will in that case be a no-op, and the
794          * CRTC will be put later in .atomic_disable().
795          *
796          * If a mode set is not in progress the CRTC is enabled, and the
797          * following get call will be a no-op. There is thus no need to balance
798          * it in .atomic_flush() either.
799          */
800         rcar_du_crtc_get(rcrtc);
801
802         /* If the active state changed, we let .atomic_enable handle CMM. */
803         if (crtc->state->color_mgmt_changed && !crtc->state->active_changed)
804                 rcar_du_cmm_setup(crtc);
805
806         if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
807                 rcar_du_vsp_atomic_begin(rcrtc);
808 }
809
810 static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
811                                       struct drm_atomic_state *state)
812 {
813         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
814         struct drm_device *dev = rcrtc->crtc.dev;
815         unsigned long flags;
816
817         rcar_du_crtc_update_planes(rcrtc);
818
819         if (crtc->state->event) {
820                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
821
822                 spin_lock_irqsave(&dev->event_lock, flags);
823                 rcrtc->event = crtc->state->event;
824                 crtc->state->event = NULL;
825                 spin_unlock_irqrestore(&dev->event_lock, flags);
826         }
827
828         if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
829                 rcar_du_vsp_atomic_flush(rcrtc);
830 }
831
832 static enum drm_mode_status
833 rcar_du_crtc_mode_valid(struct drm_crtc *crtc,
834                         const struct drm_display_mode *mode)
835 {
836         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
837         struct rcar_du_device *rcdu = rcrtc->dev;
838         bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
839         unsigned int vbp;
840
841         if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED))
842                 return MODE_NO_INTERLACE;
843
844         /*
845          * The hardware requires a minimum combined horizontal sync and back
846          * porch of 20 pixels and a minimum vertical back porch of 3 lines.
847          */
848         if (mode->htotal - mode->hsync_start < 20)
849                 return MODE_HBLANK_NARROW;
850
851         vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1);
852         if (vbp < 3)
853                 return MODE_VBLANK_NARROW;
854
855         return MODE_OK;
856 }
857
858 static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
859         .atomic_check = rcar_du_crtc_atomic_check,
860         .atomic_begin = rcar_du_crtc_atomic_begin,
861         .atomic_flush = rcar_du_crtc_atomic_flush,
862         .atomic_enable = rcar_du_crtc_atomic_enable,
863         .atomic_disable = rcar_du_crtc_atomic_disable,
864         .mode_valid = rcar_du_crtc_mode_valid,
865 };
866
867 static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
868 {
869         struct rcar_du_device *rcdu = rcrtc->dev;
870         const char **sources;
871         unsigned int count;
872         int i = -1;
873
874         /* CRC available only on Gen3 HW. */
875         if (rcdu->info->gen < 3)
876                 return;
877
878         /* Reserve 1 for "auto" source. */
879         count = rcrtc->vsp->num_planes + 1;
880
881         sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
882         if (!sources)
883                 return;
884
885         sources[0] = kstrdup("auto", GFP_KERNEL);
886         if (!sources[0])
887                 goto error;
888
889         for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
890                 struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
891                 char name[16];
892
893                 sprintf(name, "plane%u", plane->base.id);
894                 sources[i + 1] = kstrdup(name, GFP_KERNEL);
895                 if (!sources[i + 1])
896                         goto error;
897         }
898
899         rcrtc->sources = sources;
900         rcrtc->sources_count = count;
901         return;
902
903 error:
904         while (i >= 0) {
905                 kfree(sources[i]);
906                 i--;
907         }
908         kfree(sources);
909 }
910
911 static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
912 {
913         unsigned int i;
914
915         if (!rcrtc->sources)
916                 return;
917
918         for (i = 0; i < rcrtc->sources_count; i++)
919                 kfree(rcrtc->sources[i]);
920         kfree(rcrtc->sources);
921
922         rcrtc->sources = NULL;
923         rcrtc->sources_count = 0;
924 }
925
926 static struct drm_crtc_state *
927 rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
928 {
929         struct rcar_du_crtc_state *state;
930         struct rcar_du_crtc_state *copy;
931
932         if (WARN_ON(!crtc->state))
933                 return NULL;
934
935         state = to_rcar_crtc_state(crtc->state);
936         copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
937         if (copy == NULL)
938                 return NULL;
939
940         __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->state);
941
942         return &copy->state;
943 }
944
945 static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
946                                               struct drm_crtc_state *state)
947 {
948         __drm_atomic_helper_crtc_destroy_state(state);
949         kfree(to_rcar_crtc_state(state));
950 }
951
952 static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
953 {
954         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
955
956         rcar_du_crtc_crc_cleanup(rcrtc);
957
958         return drm_crtc_cleanup(crtc);
959 }
960
961 static void rcar_du_crtc_reset(struct drm_crtc *crtc)
962 {
963         struct rcar_du_crtc_state *state;
964
965         if (crtc->state) {
966                 rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
967                 crtc->state = NULL;
968         }
969
970         state = kzalloc(sizeof(*state), GFP_KERNEL);
971         if (state == NULL)
972                 return;
973
974         state->crc.source = VSP1_DU_CRC_NONE;
975         state->crc.index = 0;
976
977         __drm_atomic_helper_crtc_reset(crtc, &state->state);
978 }
979
980 static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
981 {
982         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
983
984         rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
985         rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
986         rcrtc->vblank_enable = true;
987
988         return 0;
989 }
990
991 static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
992 {
993         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
994
995         rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
996         rcrtc->vblank_enable = false;
997 }
998
999 static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
1000                                          const char *source_name,
1001                                          enum vsp1_du_crc_source *source)
1002 {
1003         unsigned int index;
1004         int ret;
1005
1006         /*
1007          * Parse the source name. Supported values are "plane%u" to compute the
1008          * CRC on an input plane (%u is the plane ID), and "auto" to compute the
1009          * CRC on the composer (VSP) output.
1010          */
1011
1012         if (!source_name) {
1013                 *source = VSP1_DU_CRC_NONE;
1014                 return 0;
1015         } else if (!strcmp(source_name, "auto")) {
1016                 *source = VSP1_DU_CRC_OUTPUT;
1017                 return 0;
1018         } else if (strstarts(source_name, "plane")) {
1019                 unsigned int i;
1020
1021                 *source = VSP1_DU_CRC_PLANE;
1022
1023                 ret = kstrtouint(source_name + strlen("plane"), 10, &index);
1024                 if (ret < 0)
1025                         return ret;
1026
1027                 for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
1028                         if (index == rcrtc->vsp->planes[i].plane.base.id)
1029                                 return i;
1030                 }
1031         }
1032
1033         return -EINVAL;
1034 }
1035
1036 static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
1037                                           const char *source_name,
1038                                           size_t *values_cnt)
1039 {
1040         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1041         enum vsp1_du_crc_source source;
1042
1043         if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
1044                 DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
1045                 return -EINVAL;
1046         }
1047
1048         *values_cnt = 1;
1049         return 0;
1050 }
1051
1052 static const char *const *
1053 rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count)
1054 {
1055         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1056
1057         *count = rcrtc->sources_count;
1058         return rcrtc->sources;
1059 }
1060
1061 static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
1062                                        const char *source_name)
1063 {
1064         struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1065         struct drm_modeset_acquire_ctx ctx;
1066         struct drm_crtc_state *crtc_state;
1067         struct drm_atomic_state *state;
1068         enum vsp1_du_crc_source source;
1069         unsigned int index;
1070         int ret;
1071
1072         ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
1073         if (ret < 0)
1074                 return ret;
1075
1076         index = ret;
1077
1078         /* Perform an atomic commit to set the CRC source. */
1079         drm_modeset_acquire_init(&ctx, 0);
1080
1081         state = drm_atomic_state_alloc(crtc->dev);
1082         if (!state) {
1083                 ret = -ENOMEM;
1084                 goto unlock;
1085         }
1086
1087         state->acquire_ctx = &ctx;
1088
1089 retry:
1090         crtc_state = drm_atomic_get_crtc_state(state, crtc);
1091         if (!IS_ERR(crtc_state)) {
1092                 struct rcar_du_crtc_state *rcrtc_state;
1093
1094                 rcrtc_state = to_rcar_crtc_state(crtc_state);
1095                 rcrtc_state->crc.source = source;
1096                 rcrtc_state->crc.index = index;
1097
1098                 ret = drm_atomic_commit(state);
1099         } else {
1100                 ret = PTR_ERR(crtc_state);
1101         }
1102
1103         if (ret == -EDEADLK) {
1104                 drm_atomic_state_clear(state);
1105                 drm_modeset_backoff(&ctx);
1106                 goto retry;
1107         }
1108
1109         drm_atomic_state_put(state);
1110
1111 unlock:
1112         drm_modeset_drop_locks(&ctx);
1113         drm_modeset_acquire_fini(&ctx);
1114
1115         return ret;
1116 }
1117
1118 static const struct drm_crtc_funcs crtc_funcs_gen2 = {
1119         .reset = rcar_du_crtc_reset,
1120         .destroy = drm_crtc_cleanup,
1121         .set_config = drm_atomic_helper_set_config,
1122         .page_flip = drm_atomic_helper_page_flip,
1123         .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1124         .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1125         .enable_vblank = rcar_du_crtc_enable_vblank,
1126         .disable_vblank = rcar_du_crtc_disable_vblank,
1127 };
1128
1129 static const struct drm_crtc_funcs crtc_funcs_gen3 = {
1130         .reset = rcar_du_crtc_reset,
1131         .destroy = rcar_du_crtc_cleanup,
1132         .set_config = drm_atomic_helper_set_config,
1133         .page_flip = drm_atomic_helper_page_flip,
1134         .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1135         .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1136         .enable_vblank = rcar_du_crtc_enable_vblank,
1137         .disable_vblank = rcar_du_crtc_disable_vblank,
1138         .set_crc_source = rcar_du_crtc_set_crc_source,
1139         .verify_crc_source = rcar_du_crtc_verify_crc_source,
1140         .get_crc_sources = rcar_du_crtc_get_crc_sources,
1141 };
1142
1143 /* -----------------------------------------------------------------------------
1144  * Interrupt Handling
1145  */
1146
1147 static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
1148 {
1149         struct rcar_du_crtc *rcrtc = arg;
1150         struct rcar_du_device *rcdu = rcrtc->dev;
1151         irqreturn_t ret = IRQ_NONE;
1152         u32 status;
1153
1154         spin_lock(&rcrtc->vblank_lock);
1155
1156         status = rcar_du_crtc_read(rcrtc, DSSR);
1157         rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
1158
1159         if (status & DSSR_VBK) {
1160                 /*
1161                  * Wake up the vblank wait if the counter reaches 0. This must
1162                  * be protected by the vblank_lock to avoid races in
1163                  * rcar_du_crtc_disable_planes().
1164                  */
1165                 if (rcrtc->vblank_count) {
1166                         if (--rcrtc->vblank_count == 0)
1167                                 wake_up(&rcrtc->vblank_wait);
1168                 }
1169         }
1170
1171         spin_unlock(&rcrtc->vblank_lock);
1172
1173         if (status & DSSR_VBK) {
1174                 if (rcdu->info->gen < 3) {
1175                         drm_crtc_handle_vblank(&rcrtc->crtc);
1176                         rcar_du_crtc_finish_page_flip(rcrtc);
1177                 }
1178
1179                 ret = IRQ_HANDLED;
1180         }
1181
1182         return ret;
1183 }
1184
1185 /* -----------------------------------------------------------------------------
1186  * Initialization
1187  */
1188
1189 int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
1190                         unsigned int hwindex)
1191 {
1192         static const unsigned int mmio_offsets[] = {
1193                 DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
1194         };
1195
1196         struct rcar_du_device *rcdu = rgrp->dev;
1197         struct platform_device *pdev = to_platform_device(rcdu->dev);
1198         struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
1199         struct drm_crtc *crtc = &rcrtc->crtc;
1200         struct drm_plane *primary;
1201         unsigned int irqflags;
1202         struct clk *clk;
1203         char clk_name[9];
1204         char *name;
1205         int irq;
1206         int ret;
1207
1208         /* Get the CRTC clock and the optional external clock. */
1209         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1210                 sprintf(clk_name, "du.%u", hwindex);
1211                 name = clk_name;
1212         } else {
1213                 name = NULL;
1214         }
1215
1216         rcrtc->clock = devm_clk_get(rcdu->dev, name);
1217         if (IS_ERR(rcrtc->clock)) {
1218                 dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
1219                 return PTR_ERR(rcrtc->clock);
1220         }
1221
1222         sprintf(clk_name, "dclkin.%u", hwindex);
1223         clk = devm_clk_get(rcdu->dev, clk_name);
1224         if (!IS_ERR(clk)) {
1225                 rcrtc->extclock = clk;
1226         } else if (PTR_ERR(clk) == -EPROBE_DEFER) {
1227                 return -EPROBE_DEFER;
1228         } else if (rcdu->info->dpll_mask & BIT(hwindex)) {
1229                 /*
1230                  * DU channels that have a display PLL can't use the internal
1231                  * system clock and thus require an external clock.
1232                  */
1233                 ret = PTR_ERR(clk);
1234                 dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret);
1235                 return ret;
1236         }
1237
1238         init_waitqueue_head(&rcrtc->flip_wait);
1239         init_waitqueue_head(&rcrtc->vblank_wait);
1240         spin_lock_init(&rcrtc->vblank_lock);
1241
1242         rcrtc->dev = rcdu;
1243         rcrtc->group = rgrp;
1244         rcrtc->mmio_offset = mmio_offsets[hwindex];
1245         rcrtc->index = hwindex;
1246         rcrtc->dsysr = (rcrtc->index % 2 ? 0 : DSYSR_DRES) | DSYSR_TVM_TVSYNC;
1247
1248         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
1249                 primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
1250         else
1251                 primary = &rgrp->planes[swindex % 2].plane;
1252
1253         ret = drm_crtc_init_with_planes(&rcdu->ddev, crtc, primary, NULL,
1254                                         rcdu->info->gen <= 2 ?
1255                                         &crtc_funcs_gen2 : &crtc_funcs_gen3,
1256                                         NULL);
1257         if (ret < 0)
1258                 return ret;
1259
1260         /* CMM might be disabled for this CRTC. */
1261         if (rcdu->cmms[swindex]) {
1262                 rcrtc->cmm = rcdu->cmms[swindex];
1263                 rgrp->cmms_mask |= BIT(hwindex % 2);
1264
1265                 drm_mode_crtc_set_gamma_size(crtc, CM2_LUT_SIZE);
1266                 drm_crtc_enable_color_mgmt(crtc, 0, false, CM2_LUT_SIZE);
1267         }
1268
1269         drm_crtc_helper_add(crtc, &crtc_helper_funcs);
1270
1271         /* Register the interrupt handler. */
1272         if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1273                 /* The IRQ's are associated with the CRTC (sw)index. */
1274                 irq = platform_get_irq(pdev, swindex);
1275                 irqflags = 0;
1276         } else {
1277                 irq = platform_get_irq(pdev, 0);
1278                 irqflags = IRQF_SHARED;
1279         }
1280
1281         if (irq < 0) {
1282                 dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
1283                 return irq;
1284         }
1285
1286         ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
1287                                dev_name(rcdu->dev), rcrtc);
1288         if (ret < 0) {
1289                 dev_err(rcdu->dev,
1290                         "failed to register IRQ for CRTC %u\n", swindex);
1291                 return ret;
1292         }
1293
1294         rcar_du_crtc_crc_init(rcrtc);
1295
1296         return 0;
1297 }