82b583f5fca8afcf256521ae1dd5c002fe856b5f
[linux-2.6-microblaze.git] / drivers / gpu / drm / nouveau / nouveau_svm.c
1 /*
2  * Copyright 2018 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "nouveau_svm.h"
23 #include "nouveau_drv.h"
24 #include "nouveau_chan.h"
25 #include "nouveau_dmem.h"
26
27 #include <nvif/notify.h>
28 #include <nvif/object.h>
29 #include <nvif/vmm.h>
30
31 #include <nvif/class.h>
32 #include <nvif/clb069.h>
33 #include <nvif/ifc00d.h>
34
35 #include <linux/sched/mm.h>
36 #include <linux/sort.h>
37 #include <linux/hmm.h>
38 #include <linux/rmap.h>
39
40 struct nouveau_svm {
41         struct nouveau_drm *drm;
42         struct mutex mutex;
43         struct list_head inst;
44
45         struct nouveau_svm_fault_buffer {
46                 int id;
47                 struct nvif_object object;
48                 u32 entries;
49                 u32 getaddr;
50                 u32 putaddr;
51                 u32 get;
52                 u32 put;
53                 struct nvif_notify notify;
54
55                 struct nouveau_svm_fault {
56                         u64 inst;
57                         u64 addr;
58                         u64 time;
59                         u32 engine;
60                         u8  gpc;
61                         u8  hub;
62                         u8  access;
63                         u8  client;
64                         u8  fault;
65                         struct nouveau_svmm *svmm;
66                 } **fault;
67                 int fault_nr;
68         } buffer[1];
69 };
70
71 #define FAULT_ACCESS_READ 0
72 #define FAULT_ACCESS_WRITE 1
73 #define FAULT_ACCESS_ATOMIC 2
74 #define FAULT_ACCESS_PREFETCH 3
75
76 #define SVM_DBG(s,f,a...) NV_DEBUG((s)->drm, "svm: "f"\n", ##a)
77 #define SVM_ERR(s,f,a...) NV_WARN((s)->drm, "svm: "f"\n", ##a)
78
79 struct nouveau_pfnmap_args {
80         struct nvif_ioctl_v0 i;
81         struct nvif_ioctl_mthd_v0 m;
82         struct nvif_vmm_pfnmap_v0 p;
83 };
84
85 struct nouveau_ivmm {
86         struct nouveau_svmm *svmm;
87         u64 inst;
88         struct list_head head;
89 };
90
91 static struct nouveau_ivmm *
92 nouveau_ivmm_find(struct nouveau_svm *svm, u64 inst)
93 {
94         struct nouveau_ivmm *ivmm;
95         list_for_each_entry(ivmm, &svm->inst, head) {
96                 if (ivmm->inst == inst)
97                         return ivmm;
98         }
99         return NULL;
100 }
101
102 #define SVMM_DBG(s,f,a...)                                                     \
103         NV_DEBUG((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a)
104 #define SVMM_ERR(s,f,a...)                                                     \
105         NV_WARN((s)->vmm->cli->drm, "svm-%p: "f"\n", (s), ##a)
106
107 int
108 nouveau_svmm_bind(struct drm_device *dev, void *data,
109                   struct drm_file *file_priv)
110 {
111         struct nouveau_cli *cli = nouveau_cli(file_priv);
112         struct drm_nouveau_svm_bind *args = data;
113         unsigned target, cmd, priority;
114         unsigned long addr, end;
115         struct mm_struct *mm;
116
117         args->va_start &= PAGE_MASK;
118         args->va_end = ALIGN(args->va_end, PAGE_SIZE);
119
120         /* Sanity check arguments */
121         if (args->reserved0 || args->reserved1)
122                 return -EINVAL;
123         if (args->header & (~NOUVEAU_SVM_BIND_VALID_MASK))
124                 return -EINVAL;
125         if (args->va_start >= args->va_end)
126                 return -EINVAL;
127
128         cmd = args->header >> NOUVEAU_SVM_BIND_COMMAND_SHIFT;
129         cmd &= NOUVEAU_SVM_BIND_COMMAND_MASK;
130         switch (cmd) {
131         case NOUVEAU_SVM_BIND_COMMAND__MIGRATE:
132                 break;
133         default:
134                 return -EINVAL;
135         }
136
137         priority = args->header >> NOUVEAU_SVM_BIND_PRIORITY_SHIFT;
138         priority &= NOUVEAU_SVM_BIND_PRIORITY_MASK;
139
140         /* FIXME support CPU target ie all target value < GPU_VRAM */
141         target = args->header >> NOUVEAU_SVM_BIND_TARGET_SHIFT;
142         target &= NOUVEAU_SVM_BIND_TARGET_MASK;
143         switch (target) {
144         case NOUVEAU_SVM_BIND_TARGET__GPU_VRAM:
145                 break;
146         default:
147                 return -EINVAL;
148         }
149
150         /*
151          * FIXME: For now refuse non 0 stride, we need to change the migrate
152          * kernel function to handle stride to avoid to create a mess within
153          * each device driver.
154          */
155         if (args->stride)
156                 return -EINVAL;
157
158         /*
159          * Ok we are ask to do something sane, for now we only support migrate
160          * commands but we will add things like memory policy (what to do on
161          * page fault) and maybe some other commands.
162          */
163
164         mm = get_task_mm(current);
165         mmap_read_lock(mm);
166
167         if (!cli->svm.svmm) {
168                 mmap_read_unlock(mm);
169                 return -EINVAL;
170         }
171
172         for (addr = args->va_start, end = args->va_end; addr < end;) {
173                 struct vm_area_struct *vma;
174                 unsigned long next;
175
176                 vma = find_vma_intersection(mm, addr, end);
177                 if (!vma)
178                         break;
179
180                 addr = max(addr, vma->vm_start);
181                 next = min(vma->vm_end, end);
182                 /* This is a best effort so we ignore errors */
183                 nouveau_dmem_migrate_vma(cli->drm, cli->svm.svmm, vma, addr,
184                                          next);
185                 addr = next;
186         }
187
188         /*
189          * FIXME Return the number of page we have migrated, again we need to
190          * update the migrate API to return that information so that we can
191          * report it to user space.
192          */
193         args->result = 0;
194
195         mmap_read_unlock(mm);
196         mmput(mm);
197
198         return 0;
199 }
200
201 /* Unlink channel instance from SVMM. */
202 void
203 nouveau_svmm_part(struct nouveau_svmm *svmm, u64 inst)
204 {
205         struct nouveau_ivmm *ivmm;
206         if (svmm) {
207                 mutex_lock(&svmm->vmm->cli->drm->svm->mutex);
208                 ivmm = nouveau_ivmm_find(svmm->vmm->cli->drm->svm, inst);
209                 if (ivmm) {
210                         list_del(&ivmm->head);
211                         kfree(ivmm);
212                 }
213                 mutex_unlock(&svmm->vmm->cli->drm->svm->mutex);
214         }
215 }
216
217 /* Link channel instance to SVMM. */
218 int
219 nouveau_svmm_join(struct nouveau_svmm *svmm, u64 inst)
220 {
221         struct nouveau_ivmm *ivmm;
222         if (svmm) {
223                 if (!(ivmm = kmalloc(sizeof(*ivmm), GFP_KERNEL)))
224                         return -ENOMEM;
225                 ivmm->svmm = svmm;
226                 ivmm->inst = inst;
227
228                 mutex_lock(&svmm->vmm->cli->drm->svm->mutex);
229                 list_add(&ivmm->head, &svmm->vmm->cli->drm->svm->inst);
230                 mutex_unlock(&svmm->vmm->cli->drm->svm->mutex);
231         }
232         return 0;
233 }
234
235 /* Invalidate SVMM address-range on GPU. */
236 void
237 nouveau_svmm_invalidate(struct nouveau_svmm *svmm, u64 start, u64 limit)
238 {
239         if (limit > start) {
240                 bool super = svmm->vmm->vmm.object.client->super;
241                 svmm->vmm->vmm.object.client->super = true;
242                 nvif_object_mthd(&svmm->vmm->vmm.object, NVIF_VMM_V0_PFNCLR,
243                                  &(struct nvif_vmm_pfnclr_v0) {
244                                         .addr = start,
245                                         .size = limit - start,
246                                  }, sizeof(struct nvif_vmm_pfnclr_v0));
247                 svmm->vmm->vmm.object.client->super = super;
248         }
249 }
250
251 static int
252 nouveau_svmm_invalidate_range_start(struct mmu_notifier *mn,
253                                     const struct mmu_notifier_range *update)
254 {
255         struct nouveau_svmm *svmm =
256                 container_of(mn, struct nouveau_svmm, notifier);
257         unsigned long start = update->start;
258         unsigned long limit = update->end;
259
260         if (!mmu_notifier_range_blockable(update))
261                 return -EAGAIN;
262
263         SVMM_DBG(svmm, "invalidate %016lx-%016lx", start, limit);
264
265         mutex_lock(&svmm->mutex);
266         if (unlikely(!svmm->vmm))
267                 goto out;
268
269         /*
270          * Ignore invalidation callbacks for device private pages since
271          * the invalidation is handled as part of the migration process.
272          */
273         if (update->event == MMU_NOTIFY_MIGRATE &&
274             update->owner == svmm->vmm->cli->drm->dev)
275                 goto out;
276
277         if (limit > svmm->unmanaged.start && start < svmm->unmanaged.limit) {
278                 if (start < svmm->unmanaged.start) {
279                         nouveau_svmm_invalidate(svmm, start,
280                                                 svmm->unmanaged.limit);
281                 }
282                 start = svmm->unmanaged.limit;
283         }
284
285         nouveau_svmm_invalidate(svmm, start, limit);
286
287 out:
288         mutex_unlock(&svmm->mutex);
289         return 0;
290 }
291
292 static void nouveau_svmm_free_notifier(struct mmu_notifier *mn)
293 {
294         kfree(container_of(mn, struct nouveau_svmm, notifier));
295 }
296
297 static const struct mmu_notifier_ops nouveau_mn_ops = {
298         .invalidate_range_start = nouveau_svmm_invalidate_range_start,
299         .free_notifier = nouveau_svmm_free_notifier,
300 };
301
302 void
303 nouveau_svmm_fini(struct nouveau_svmm **psvmm)
304 {
305         struct nouveau_svmm *svmm = *psvmm;
306         if (svmm) {
307                 mutex_lock(&svmm->mutex);
308                 svmm->vmm = NULL;
309                 mutex_unlock(&svmm->mutex);
310                 mmu_notifier_put(&svmm->notifier);
311                 *psvmm = NULL;
312         }
313 }
314
315 int
316 nouveau_svmm_init(struct drm_device *dev, void *data,
317                   struct drm_file *file_priv)
318 {
319         struct nouveau_cli *cli = nouveau_cli(file_priv);
320         struct nouveau_svmm *svmm;
321         struct drm_nouveau_svm_init *args = data;
322         int ret;
323
324         /* We need to fail if svm is disabled */
325         if (!cli->drm->svm)
326                 return -ENOSYS;
327
328         /* Allocate tracking for SVM-enabled VMM. */
329         if (!(svmm = kzalloc(sizeof(*svmm), GFP_KERNEL)))
330                 return -ENOMEM;
331         svmm->vmm = &cli->svm;
332         svmm->unmanaged.start = args->unmanaged_addr;
333         svmm->unmanaged.limit = args->unmanaged_addr + args->unmanaged_size;
334         mutex_init(&svmm->mutex);
335
336         /* Check that SVM isn't already enabled for the client. */
337         mutex_lock(&cli->mutex);
338         if (cli->svm.cli) {
339                 ret = -EBUSY;
340                 goto out_free;
341         }
342
343         /* Allocate a new GPU VMM that can support SVM (managed by the
344          * client, with replayable faults enabled).
345          *
346          * All future channel/memory allocations will make use of this
347          * VMM instead of the standard one.
348          */
349         ret = nvif_vmm_ctor(&cli->mmu, "svmVmm",
350                             cli->vmm.vmm.object.oclass, true,
351                             args->unmanaged_addr, args->unmanaged_size,
352                             &(struct gp100_vmm_v0) {
353                                 .fault_replay = true,
354                             }, sizeof(struct gp100_vmm_v0), &cli->svm.vmm);
355         if (ret)
356                 goto out_free;
357
358         mmap_write_lock(current->mm);
359         svmm->notifier.ops = &nouveau_mn_ops;
360         ret = __mmu_notifier_register(&svmm->notifier, current->mm);
361         if (ret)
362                 goto out_mm_unlock;
363         /* Note, ownership of svmm transfers to mmu_notifier */
364
365         cli->svm.svmm = svmm;
366         cli->svm.cli = cli;
367         mmap_write_unlock(current->mm);
368         mutex_unlock(&cli->mutex);
369         return 0;
370
371 out_mm_unlock:
372         mmap_write_unlock(current->mm);
373 out_free:
374         mutex_unlock(&cli->mutex);
375         kfree(svmm);
376         return ret;
377 }
378
379 /* Issue fault replay for GPU to retry accesses that faulted previously. */
380 static void
381 nouveau_svm_fault_replay(struct nouveau_svm *svm)
382 {
383         SVM_DBG(svm, "replay");
384         WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object,
385                                  GP100_VMM_VN_FAULT_REPLAY,
386                                  &(struct gp100_vmm_fault_replay_vn) {},
387                                  sizeof(struct gp100_vmm_fault_replay_vn)));
388 }
389
390 /* Cancel a replayable fault that could not be handled.
391  *
392  * Cancelling the fault will trigger recovery to reset the engine
393  * and kill the offending channel (ie. GPU SIGSEGV).
394  */
395 static void
396 nouveau_svm_fault_cancel(struct nouveau_svm *svm,
397                          u64 inst, u8 hub, u8 gpc, u8 client)
398 {
399         SVM_DBG(svm, "cancel %016llx %d %02x %02x", inst, hub, gpc, client);
400         WARN_ON(nvif_object_mthd(&svm->drm->client.vmm.vmm.object,
401                                  GP100_VMM_VN_FAULT_CANCEL,
402                                  &(struct gp100_vmm_fault_cancel_v0) {
403                                         .hub = hub,
404                                         .gpc = gpc,
405                                         .client = client,
406                                         .inst = inst,
407                                  }, sizeof(struct gp100_vmm_fault_cancel_v0)));
408 }
409
410 static void
411 nouveau_svm_fault_cancel_fault(struct nouveau_svm *svm,
412                                struct nouveau_svm_fault *fault)
413 {
414         nouveau_svm_fault_cancel(svm, fault->inst,
415                                       fault->hub,
416                                       fault->gpc,
417                                       fault->client);
418 }
419
420 static int
421 nouveau_svm_fault_priority(u8 fault)
422 {
423         switch (fault) {
424         case FAULT_ACCESS_PREFETCH:
425                 return 0;
426         case FAULT_ACCESS_READ:
427                 return 1;
428         case FAULT_ACCESS_WRITE:
429                 return 2;
430         case FAULT_ACCESS_ATOMIC:
431                 return 3;
432         default:
433                 WARN_ON_ONCE(1);
434                 return -1;
435         }
436 }
437
438 static int
439 nouveau_svm_fault_cmp(const void *a, const void *b)
440 {
441         const struct nouveau_svm_fault *fa = *(struct nouveau_svm_fault **)a;
442         const struct nouveau_svm_fault *fb = *(struct nouveau_svm_fault **)b;
443         int ret;
444         if ((ret = (s64)fa->inst - fb->inst))
445                 return ret;
446         if ((ret = (s64)fa->addr - fb->addr))
447                 return ret;
448         return nouveau_svm_fault_priority(fa->access) -
449                 nouveau_svm_fault_priority(fb->access);
450 }
451
452 static void
453 nouveau_svm_fault_cache(struct nouveau_svm *svm,
454                         struct nouveau_svm_fault_buffer *buffer, u32 offset)
455 {
456         struct nvif_object *memory = &buffer->object;
457         const u32 instlo = nvif_rd32(memory, offset + 0x00);
458         const u32 insthi = nvif_rd32(memory, offset + 0x04);
459         const u32 addrlo = nvif_rd32(memory, offset + 0x08);
460         const u32 addrhi = nvif_rd32(memory, offset + 0x0c);
461         const u32 timelo = nvif_rd32(memory, offset + 0x10);
462         const u32 timehi = nvif_rd32(memory, offset + 0x14);
463         const u32 engine = nvif_rd32(memory, offset + 0x18);
464         const u32   info = nvif_rd32(memory, offset + 0x1c);
465         const u64   inst = (u64)insthi << 32 | instlo;
466         const u8     gpc = (info & 0x1f000000) >> 24;
467         const u8     hub = (info & 0x00100000) >> 20;
468         const u8  client = (info & 0x00007f00) >> 8;
469         struct nouveau_svm_fault *fault;
470
471         //XXX: i think we're supposed to spin waiting */
472         if (WARN_ON(!(info & 0x80000000)))
473                 return;
474
475         nvif_mask(memory, offset + 0x1c, 0x80000000, 0x00000000);
476
477         if (!buffer->fault[buffer->fault_nr]) {
478                 fault = kmalloc(sizeof(*fault), GFP_KERNEL);
479                 if (WARN_ON(!fault)) {
480                         nouveau_svm_fault_cancel(svm, inst, hub, gpc, client);
481                         return;
482                 }
483                 buffer->fault[buffer->fault_nr] = fault;
484         }
485
486         fault = buffer->fault[buffer->fault_nr++];
487         fault->inst   = inst;
488         fault->addr   = (u64)addrhi << 32 | addrlo;
489         fault->time   = (u64)timehi << 32 | timelo;
490         fault->engine = engine;
491         fault->gpc    = gpc;
492         fault->hub    = hub;
493         fault->access = (info & 0x000f0000) >> 16;
494         fault->client = client;
495         fault->fault  = (info & 0x0000001f);
496
497         SVM_DBG(svm, "fault %016llx %016llx %02x",
498                 fault->inst, fault->addr, fault->access);
499 }
500
501 struct svm_notifier {
502         struct mmu_interval_notifier notifier;
503         struct nouveau_svmm *svmm;
504 };
505
506 static bool nouveau_svm_range_invalidate(struct mmu_interval_notifier *mni,
507                                          const struct mmu_notifier_range *range,
508                                          unsigned long cur_seq)
509 {
510         struct svm_notifier *sn =
511                 container_of(mni, struct svm_notifier, notifier);
512
513         if (range->event == MMU_NOTIFY_EXCLUSIVE &&
514             range->owner == sn->svmm->vmm->cli->drm->dev)
515                 return true;
516
517         /*
518          * serializes the update to mni->invalidate_seq done by caller and
519          * prevents invalidation of the PTE from progressing while HW is being
520          * programmed. This is very hacky and only works because the normal
521          * notifier that does invalidation is always called after the range
522          * notifier.
523          */
524         if (mmu_notifier_range_blockable(range))
525                 mutex_lock(&sn->svmm->mutex);
526         else if (!mutex_trylock(&sn->svmm->mutex))
527                 return false;
528         mmu_interval_set_seq(mni, cur_seq);
529         mutex_unlock(&sn->svmm->mutex);
530         return true;
531 }
532
533 static const struct mmu_interval_notifier_ops nouveau_svm_mni_ops = {
534         .invalidate = nouveau_svm_range_invalidate,
535 };
536
537 static void nouveau_hmm_convert_pfn(struct nouveau_drm *drm,
538                                     struct hmm_range *range,
539                                     struct nouveau_pfnmap_args *args)
540 {
541         struct page *page;
542
543         /*
544          * The address prepared here is passed through nvif_object_ioctl()
545          * to an eventual DMA map in something like gp100_vmm_pgt_pfn()
546          *
547          * This is all just encoding the internal hmm representation into a
548          * different nouveau internal representation.
549          */
550         if (!(range->hmm_pfns[0] & HMM_PFN_VALID)) {
551                 args->p.phys[0] = 0;
552                 return;
553         }
554
555         page = hmm_pfn_to_page(range->hmm_pfns[0]);
556         /*
557          * Only map compound pages to the GPU if the CPU is also mapping the
558          * page as a compound page. Otherwise, the PTE protections might not be
559          * consistent (e.g., CPU only maps part of a compound page).
560          * Note that the underlying page might still be larger than the
561          * CPU mapping (e.g., a PUD sized compound page partially mapped with
562          * a PMD sized page table entry).
563          */
564         if (hmm_pfn_to_map_order(range->hmm_pfns[0])) {
565                 unsigned long addr = args->p.addr;
566
567                 args->p.page = hmm_pfn_to_map_order(range->hmm_pfns[0]) +
568                                 PAGE_SHIFT;
569                 args->p.size = 1UL << args->p.page;
570                 args->p.addr &= ~(args->p.size - 1);
571                 page -= (addr - args->p.addr) >> PAGE_SHIFT;
572         }
573         if (is_device_private_page(page))
574                 args->p.phys[0] = nouveau_dmem_page_addr(page) |
575                                 NVIF_VMM_PFNMAP_V0_V |
576                                 NVIF_VMM_PFNMAP_V0_VRAM;
577         else
578                 args->p.phys[0] = page_to_phys(page) |
579                                 NVIF_VMM_PFNMAP_V0_V |
580                                 NVIF_VMM_PFNMAP_V0_HOST;
581         if (range->hmm_pfns[0] & HMM_PFN_WRITE)
582                 args->p.phys[0] |= NVIF_VMM_PFNMAP_V0_W;
583 }
584
585 static int nouveau_atomic_range_fault(struct nouveau_svmm *svmm,
586                                struct nouveau_drm *drm,
587                                struct nouveau_pfnmap_args *args, u32 size,
588                                struct svm_notifier *notifier)
589 {
590         unsigned long timeout =
591                 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
592         struct mm_struct *mm = svmm->notifier.mm;
593         struct page *page;
594         unsigned long start = args->p.addr;
595         unsigned long notifier_seq;
596         int ret = 0;
597
598         ret = mmu_interval_notifier_insert(&notifier->notifier, mm,
599                                         args->p.addr, args->p.size,
600                                         &nouveau_svm_mni_ops);
601         if (ret)
602                 return ret;
603
604         while (true) {
605                 if (time_after(jiffies, timeout)) {
606                         ret = -EBUSY;
607                         goto out;
608                 }
609
610                 notifier_seq = mmu_interval_read_begin(&notifier->notifier);
611                 mmap_read_lock(mm);
612                 ret = make_device_exclusive_range(mm, start, start + PAGE_SIZE,
613                                             &page, drm->dev);
614                 mmap_read_unlock(mm);
615                 if (ret <= 0 || !page) {
616                         ret = -EINVAL;
617                         goto out;
618                 }
619
620                 mutex_lock(&svmm->mutex);
621                 if (!mmu_interval_read_retry(&notifier->notifier,
622                                              notifier_seq))
623                         break;
624                 mutex_unlock(&svmm->mutex);
625         }
626
627         /* Map the page on the GPU. */
628         args->p.page = 12;
629         args->p.size = PAGE_SIZE;
630         args->p.addr = start;
631         args->p.phys[0] = page_to_phys(page) |
632                 NVIF_VMM_PFNMAP_V0_V |
633                 NVIF_VMM_PFNMAP_V0_W |
634                 NVIF_VMM_PFNMAP_V0_A |
635                 NVIF_VMM_PFNMAP_V0_HOST;
636
637         svmm->vmm->vmm.object.client->super = true;
638         ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, size, NULL);
639         svmm->vmm->vmm.object.client->super = false;
640         mutex_unlock(&svmm->mutex);
641
642         unlock_page(page);
643         put_page(page);
644
645 out:
646         mmu_interval_notifier_remove(&notifier->notifier);
647         return ret;
648 }
649
650 static int nouveau_range_fault(struct nouveau_svmm *svmm,
651                                struct nouveau_drm *drm,
652                                struct nouveau_pfnmap_args *args, u32 size,
653                                unsigned long hmm_flags,
654                                struct svm_notifier *notifier)
655 {
656         unsigned long timeout =
657                 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
658         /* Have HMM fault pages within the fault window to the GPU. */
659         unsigned long hmm_pfns[1];
660         struct hmm_range range = {
661                 .notifier = &notifier->notifier,
662                 .default_flags = hmm_flags,
663                 .hmm_pfns = hmm_pfns,
664                 .dev_private_owner = drm->dev,
665         };
666         struct mm_struct *mm = svmm->notifier.mm;
667         int ret;
668
669         ret = mmu_interval_notifier_insert(&notifier->notifier, mm,
670                                         args->p.addr, args->p.size,
671                                         &nouveau_svm_mni_ops);
672         if (ret)
673                 return ret;
674
675         range.start = notifier->notifier.interval_tree.start;
676         range.end = notifier->notifier.interval_tree.last + 1;
677
678         while (true) {
679                 if (time_after(jiffies, timeout)) {
680                         ret = -EBUSY;
681                         goto out;
682                 }
683
684                 range.notifier_seq = mmu_interval_read_begin(range.notifier);
685                 mmap_read_lock(mm);
686                 ret = hmm_range_fault(&range);
687                 mmap_read_unlock(mm);
688                 if (ret) {
689                         if (ret == -EBUSY)
690                                 continue;
691                         goto out;
692                 }
693
694                 mutex_lock(&svmm->mutex);
695                 if (mmu_interval_read_retry(range.notifier,
696                                             range.notifier_seq)) {
697                         mutex_unlock(&svmm->mutex);
698                         continue;
699                 }
700                 break;
701         }
702
703         nouveau_hmm_convert_pfn(drm, &range, args);
704
705         svmm->vmm->vmm.object.client->super = true;
706         ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, size, NULL);
707         svmm->vmm->vmm.object.client->super = false;
708         mutex_unlock(&svmm->mutex);
709
710 out:
711         mmu_interval_notifier_remove(&notifier->notifier);
712
713         return ret;
714 }
715
716 static int
717 nouveau_svm_fault(struct nvif_notify *notify)
718 {
719         struct nouveau_svm_fault_buffer *buffer =
720                 container_of(notify, typeof(*buffer), notify);
721         struct nouveau_svm *svm =
722                 container_of(buffer, typeof(*svm), buffer[buffer->id]);
723         struct nvif_object *device = &svm->drm->client.device.object;
724         struct nouveau_svmm *svmm;
725         struct {
726                 struct nouveau_pfnmap_args i;
727                 u64 phys[1];
728         } args;
729         unsigned long hmm_flags;
730         u64 inst, start, limit;
731         int fi, fn;
732         int replay = 0, atomic = 0, ret;
733
734         /* Parse available fault buffer entries into a cache, and update
735          * the GET pointer so HW can reuse the entries.
736          */
737         SVM_DBG(svm, "fault handler");
738         if (buffer->get == buffer->put) {
739                 buffer->put = nvif_rd32(device, buffer->putaddr);
740                 buffer->get = nvif_rd32(device, buffer->getaddr);
741                 if (buffer->get == buffer->put)
742                         return NVIF_NOTIFY_KEEP;
743         }
744         buffer->fault_nr = 0;
745
746         SVM_DBG(svm, "get %08x put %08x", buffer->get, buffer->put);
747         while (buffer->get != buffer->put) {
748                 nouveau_svm_fault_cache(svm, buffer, buffer->get * 0x20);
749                 if (++buffer->get == buffer->entries)
750                         buffer->get = 0;
751         }
752         nvif_wr32(device, buffer->getaddr, buffer->get);
753         SVM_DBG(svm, "%d fault(s) pending", buffer->fault_nr);
754
755         /* Sort parsed faults by instance pointer to prevent unnecessary
756          * instance to SVMM translations, followed by address and access
757          * type to reduce the amount of work when handling the faults.
758          */
759         sort(buffer->fault, buffer->fault_nr, sizeof(*buffer->fault),
760              nouveau_svm_fault_cmp, NULL);
761
762         /* Lookup SVMM structure for each unique instance pointer. */
763         mutex_lock(&svm->mutex);
764         for (fi = 0, svmm = NULL; fi < buffer->fault_nr; fi++) {
765                 if (!svmm || buffer->fault[fi]->inst != inst) {
766                         struct nouveau_ivmm *ivmm =
767                                 nouveau_ivmm_find(svm, buffer->fault[fi]->inst);
768                         svmm = ivmm ? ivmm->svmm : NULL;
769                         inst = buffer->fault[fi]->inst;
770                         SVM_DBG(svm, "inst %016llx -> svm-%p", inst, svmm);
771                 }
772                 buffer->fault[fi]->svmm = svmm;
773         }
774         mutex_unlock(&svm->mutex);
775
776         /* Process list of faults. */
777         args.i.i.version = 0;
778         args.i.i.type = NVIF_IOCTL_V0_MTHD;
779         args.i.m.version = 0;
780         args.i.m.method = NVIF_VMM_V0_PFNMAP;
781         args.i.p.version = 0;
782
783         for (fi = 0; fn = fi + 1, fi < buffer->fault_nr; fi = fn) {
784                 struct svm_notifier notifier;
785                 struct mm_struct *mm;
786
787                 /* Cancel any faults from non-SVM channels. */
788                 if (!(svmm = buffer->fault[fi]->svmm)) {
789                         nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
790                         continue;
791                 }
792                 SVMM_DBG(svmm, "addr %016llx", buffer->fault[fi]->addr);
793
794                 /* We try and group handling of faults within a small
795                  * window into a single update.
796                  */
797                 start = buffer->fault[fi]->addr;
798                 limit = start + PAGE_SIZE;
799                 if (start < svmm->unmanaged.limit)
800                         limit = min_t(u64, limit, svmm->unmanaged.start);
801
802                 /*
803                  * Prepare the GPU-side update of all pages within the
804                  * fault window, determining required pages and access
805                  * permissions based on pending faults.
806                  */
807                 args.i.p.addr = start;
808                 args.i.p.page = PAGE_SHIFT;
809                 args.i.p.size = PAGE_SIZE;
810                 /*
811                  * Determine required permissions based on GPU fault
812                  * access flags.
813                  */
814                 switch (buffer->fault[fi]->access) {
815                 case 0: /* READ. */
816                         hmm_flags = HMM_PFN_REQ_FAULT;
817                         break;
818                 case 2: /* ATOMIC. */
819                         atomic = true;
820                         break;
821                 case 3: /* PREFETCH. */
822                         hmm_flags = 0;
823                         break;
824                 default:
825                         hmm_flags = HMM_PFN_REQ_FAULT | HMM_PFN_REQ_WRITE;
826                         break;
827                 }
828
829                 mm = svmm->notifier.mm;
830                 if (!mmget_not_zero(mm)) {
831                         nouveau_svm_fault_cancel_fault(svm, buffer->fault[fi]);
832                         continue;
833                 }
834
835                 notifier.svmm = svmm;
836                 if (atomic)
837                         ret = nouveau_atomic_range_fault(svmm, svm->drm,
838                                                          &args.i, sizeof(args),
839                                                          &notifier);
840                 else
841                         ret = nouveau_range_fault(svmm, svm->drm, &args.i,
842                                                   sizeof(args), hmm_flags,
843                                                   &notifier);
844                 mmput(mm);
845
846                 limit = args.i.p.addr + args.i.p.size;
847                 for (fn = fi; ++fn < buffer->fault_nr; ) {
848                         /* It's okay to skip over duplicate addresses from the
849                          * same SVMM as faults are ordered by access type such
850                          * that only the first one needs to be handled.
851                          *
852                          * ie. WRITE faults appear first, thus any handling of
853                          * pending READ faults will already be satisfied.
854                          * But if a large page is mapped, make sure subsequent
855                          * fault addresses have sufficient access permission.
856                          */
857                         if (buffer->fault[fn]->svmm != svmm ||
858                             buffer->fault[fn]->addr >= limit ||
859                             (buffer->fault[fi]->access == FAULT_ACCESS_READ &&
860                              !(args.phys[0] & NVIF_VMM_PFNMAP_V0_V)) ||
861                             (buffer->fault[fi]->access != FAULT_ACCESS_READ &&
862                              buffer->fault[fi]->access != FAULT_ACCESS_PREFETCH &&
863                              !(args.phys[0] & NVIF_VMM_PFNMAP_V0_W)) ||
864                             (buffer->fault[fi]->access != FAULT_ACCESS_READ &&
865                              buffer->fault[fi]->access != FAULT_ACCESS_WRITE &&
866                              buffer->fault[fi]->access != FAULT_ACCESS_PREFETCH &&
867                              !(args.phys[0] & NVIF_VMM_PFNMAP_V0_A)))
868                                 break;
869                 }
870
871                 /* If handling failed completely, cancel all faults. */
872                 if (ret) {
873                         while (fi < fn) {
874                                 struct nouveau_svm_fault *fault =
875                                         buffer->fault[fi++];
876
877                                 nouveau_svm_fault_cancel_fault(svm, fault);
878                         }
879                 } else
880                         replay++;
881         }
882
883         /* Issue fault replay to the GPU. */
884         if (replay)
885                 nouveau_svm_fault_replay(svm);
886         return NVIF_NOTIFY_KEEP;
887 }
888
889 static struct nouveau_pfnmap_args *
890 nouveau_pfns_to_args(void *pfns)
891 {
892         return container_of(pfns, struct nouveau_pfnmap_args, p.phys);
893 }
894
895 u64 *
896 nouveau_pfns_alloc(unsigned long npages)
897 {
898         struct nouveau_pfnmap_args *args;
899
900         args = kzalloc(struct_size(args, p.phys, npages), GFP_KERNEL);
901         if (!args)
902                 return NULL;
903
904         args->i.type = NVIF_IOCTL_V0_MTHD;
905         args->m.method = NVIF_VMM_V0_PFNMAP;
906         args->p.page = PAGE_SHIFT;
907
908         return args->p.phys;
909 }
910
911 void
912 nouveau_pfns_free(u64 *pfns)
913 {
914         struct nouveau_pfnmap_args *args = nouveau_pfns_to_args(pfns);
915
916         kfree(args);
917 }
918
919 void
920 nouveau_pfns_map(struct nouveau_svmm *svmm, struct mm_struct *mm,
921                  unsigned long addr, u64 *pfns, unsigned long npages)
922 {
923         struct nouveau_pfnmap_args *args = nouveau_pfns_to_args(pfns);
924         int ret;
925
926         args->p.addr = addr;
927         args->p.size = npages << PAGE_SHIFT;
928
929         mutex_lock(&svmm->mutex);
930
931         svmm->vmm->vmm.object.client->super = true;
932         ret = nvif_object_ioctl(&svmm->vmm->vmm.object, args, sizeof(*args) +
933                                 npages * sizeof(args->p.phys[0]), NULL);
934         svmm->vmm->vmm.object.client->super = false;
935
936         mutex_unlock(&svmm->mutex);
937 }
938
939 static void
940 nouveau_svm_fault_buffer_fini(struct nouveau_svm *svm, int id)
941 {
942         struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
943         nvif_notify_put(&buffer->notify);
944 }
945
946 static int
947 nouveau_svm_fault_buffer_init(struct nouveau_svm *svm, int id)
948 {
949         struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
950         struct nvif_object *device = &svm->drm->client.device.object;
951         buffer->get = nvif_rd32(device, buffer->getaddr);
952         buffer->put = nvif_rd32(device, buffer->putaddr);
953         SVM_DBG(svm, "get %08x put %08x (init)", buffer->get, buffer->put);
954         return nvif_notify_get(&buffer->notify);
955 }
956
957 static void
958 nouveau_svm_fault_buffer_dtor(struct nouveau_svm *svm, int id)
959 {
960         struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
961         int i;
962
963         if (buffer->fault) {
964                 for (i = 0; buffer->fault[i] && i < buffer->entries; i++)
965                         kfree(buffer->fault[i]);
966                 kvfree(buffer->fault);
967         }
968
969         nouveau_svm_fault_buffer_fini(svm, id);
970
971         nvif_notify_dtor(&buffer->notify);
972         nvif_object_dtor(&buffer->object);
973 }
974
975 static int
976 nouveau_svm_fault_buffer_ctor(struct nouveau_svm *svm, s32 oclass, int id)
977 {
978         struct nouveau_svm_fault_buffer *buffer = &svm->buffer[id];
979         struct nouveau_drm *drm = svm->drm;
980         struct nvif_object *device = &drm->client.device.object;
981         struct nvif_clb069_v0 args = {};
982         int ret;
983
984         buffer->id = id;
985
986         ret = nvif_object_ctor(device, "svmFaultBuffer", 0, oclass, &args,
987                                sizeof(args), &buffer->object);
988         if (ret < 0) {
989                 SVM_ERR(svm, "Fault buffer allocation failed: %d", ret);
990                 return ret;
991         }
992
993         nvif_object_map(&buffer->object, NULL, 0);
994         buffer->entries = args.entries;
995         buffer->getaddr = args.get;
996         buffer->putaddr = args.put;
997
998         ret = nvif_notify_ctor(&buffer->object, "svmFault", nouveau_svm_fault,
999                                true, NVB069_V0_NTFY_FAULT, NULL, 0, 0,
1000                                &buffer->notify);
1001         if (ret)
1002                 return ret;
1003
1004         buffer->fault = kvzalloc(sizeof(*buffer->fault) * buffer->entries, GFP_KERNEL);
1005         if (!buffer->fault)
1006                 return -ENOMEM;
1007
1008         return nouveau_svm_fault_buffer_init(svm, id);
1009 }
1010
1011 void
1012 nouveau_svm_resume(struct nouveau_drm *drm)
1013 {
1014         struct nouveau_svm *svm = drm->svm;
1015         if (svm)
1016                 nouveau_svm_fault_buffer_init(svm, 0);
1017 }
1018
1019 void
1020 nouveau_svm_suspend(struct nouveau_drm *drm)
1021 {
1022         struct nouveau_svm *svm = drm->svm;
1023         if (svm)
1024                 nouveau_svm_fault_buffer_fini(svm, 0);
1025 }
1026
1027 void
1028 nouveau_svm_fini(struct nouveau_drm *drm)
1029 {
1030         struct nouveau_svm *svm = drm->svm;
1031         if (svm) {
1032                 nouveau_svm_fault_buffer_dtor(svm, 0);
1033                 kfree(drm->svm);
1034                 drm->svm = NULL;
1035         }
1036 }
1037
1038 void
1039 nouveau_svm_init(struct nouveau_drm *drm)
1040 {
1041         static const struct nvif_mclass buffers[] = {
1042                 {   VOLTA_FAULT_BUFFER_A, 0 },
1043                 { MAXWELL_FAULT_BUFFER_A, 0 },
1044                 {}
1045         };
1046         struct nouveau_svm *svm;
1047         int ret;
1048
1049         /* Disable on Volta and newer until channel recovery is fixed,
1050          * otherwise clients will have a trivial way to trash the GPU
1051          * for everyone.
1052          */
1053         if (drm->client.device.info.family > NV_DEVICE_INFO_V0_PASCAL)
1054                 return;
1055
1056         if (!(drm->svm = svm = kzalloc(sizeof(*drm->svm), GFP_KERNEL)))
1057                 return;
1058
1059         drm->svm->drm = drm;
1060         mutex_init(&drm->svm->mutex);
1061         INIT_LIST_HEAD(&drm->svm->inst);
1062
1063         ret = nvif_mclass(&drm->client.device.object, buffers);
1064         if (ret < 0) {
1065                 SVM_DBG(svm, "No supported fault buffer class");
1066                 nouveau_svm_fini(drm);
1067                 return;
1068         }
1069
1070         ret = nouveau_svm_fault_buffer_ctor(svm, buffers[ret].oclass, 0);
1071         if (ret) {
1072                 nouveau_svm_fini(drm);
1073                 return;
1074         }
1075
1076         SVM_DBG(svm, "Initialised");
1077 }