Merge tag 'drm-misc-next-fixes-2021-09-09' of git://anongit.freedesktop.org/drm/drm...
[linux-2.6-microblaze.git] / drivers / gpu / drm / msm / disp / dpu1 / dpu_hw_ctl.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
3  */
4
5 #include <linux/delay.h>
6 #include "dpu_hwio.h"
7 #include "dpu_hw_ctl.h"
8 #include "dpu_kms.h"
9 #include "dpu_trace.h"
10
11 #define   CTL_LAYER(lm)                 \
12         (((lm) == LM_5) ? (0x024) : (((lm) - LM_0) * 0x004))
13 #define   CTL_LAYER_EXT(lm)             \
14         (0x40 + (((lm) - LM_0) * 0x004))
15 #define   CTL_LAYER_EXT2(lm)             \
16         (0x70 + (((lm) - LM_0) * 0x004))
17 #define   CTL_LAYER_EXT3(lm)             \
18         (0xA0 + (((lm) - LM_0) * 0x004))
19 #define   CTL_TOP                       0x014
20 #define   CTL_FLUSH                     0x018
21 #define   CTL_START                     0x01C
22 #define   CTL_PREPARE                   0x0d0
23 #define   CTL_SW_RESET                  0x030
24 #define   CTL_LAYER_EXTN_OFFSET         0x40
25 #define   CTL_MERGE_3D_ACTIVE           0x0E4
26 #define   CTL_INTF_ACTIVE               0x0F4
27 #define   CTL_MERGE_3D_FLUSH            0x100
28 #define   CTL_INTF_FLUSH                0x110
29 #define   CTL_INTF_MASTER               0x134
30 #define   CTL_FETCH_PIPE_ACTIVE         0x0FC
31
32 #define CTL_MIXER_BORDER_OUT            BIT(24)
33 #define CTL_FLUSH_MASK_CTL              BIT(17)
34
35 #define DPU_REG_RESET_TIMEOUT_US        2000
36 #define  MERGE_3D_IDX   23
37 #define  INTF_IDX       31
38 #define CTL_INVALID_BIT                 0xffff
39
40 static const u32 fetch_tbl[SSPP_MAX] = {CTL_INVALID_BIT, 16, 17, 18, 19,
41         CTL_INVALID_BIT, CTL_INVALID_BIT, CTL_INVALID_BIT, CTL_INVALID_BIT, 0,
42         1, 2, 3, CTL_INVALID_BIT, CTL_INVALID_BIT};
43
44 static const struct dpu_ctl_cfg *_ctl_offset(enum dpu_ctl ctl,
45                 const struct dpu_mdss_cfg *m,
46                 void __iomem *addr,
47                 struct dpu_hw_blk_reg_map *b)
48 {
49         int i;
50
51         for (i = 0; i < m->ctl_count; i++) {
52                 if (ctl == m->ctl[i].id) {
53                         b->base_off = addr;
54                         b->blk_off = m->ctl[i].base;
55                         b->length = m->ctl[i].len;
56                         b->hwversion = m->hwversion;
57                         b->log_mask = DPU_DBG_MASK_CTL;
58                         return &m->ctl[i];
59                 }
60         }
61         return ERR_PTR(-ENOMEM);
62 }
63
64 static int _mixer_stages(const struct dpu_lm_cfg *mixer, int count,
65                 enum dpu_lm lm)
66 {
67         int i;
68         int stages = -EINVAL;
69
70         for (i = 0; i < count; i++) {
71                 if (lm == mixer[i].id) {
72                         stages = mixer[i].sblk->maxblendstages;
73                         break;
74                 }
75         }
76
77         return stages;
78 }
79
80 static inline u32 dpu_hw_ctl_get_flush_register(struct dpu_hw_ctl *ctx)
81 {
82         struct dpu_hw_blk_reg_map *c = &ctx->hw;
83
84         return DPU_REG_READ(c, CTL_FLUSH);
85 }
86
87 static inline void dpu_hw_ctl_trigger_start(struct dpu_hw_ctl *ctx)
88 {
89         trace_dpu_hw_ctl_trigger_start(ctx->pending_flush_mask,
90                                        dpu_hw_ctl_get_flush_register(ctx));
91         DPU_REG_WRITE(&ctx->hw, CTL_START, 0x1);
92 }
93
94 static inline void dpu_hw_ctl_trigger_pending(struct dpu_hw_ctl *ctx)
95 {
96         trace_dpu_hw_ctl_trigger_prepare(ctx->pending_flush_mask,
97                                          dpu_hw_ctl_get_flush_register(ctx));
98         DPU_REG_WRITE(&ctx->hw, CTL_PREPARE, 0x1);
99 }
100
101 static inline void dpu_hw_ctl_clear_pending_flush(struct dpu_hw_ctl *ctx)
102 {
103         trace_dpu_hw_ctl_clear_pending_flush(ctx->pending_flush_mask,
104                                      dpu_hw_ctl_get_flush_register(ctx));
105         ctx->pending_flush_mask = 0x0;
106 }
107
108 static inline void dpu_hw_ctl_update_pending_flush(struct dpu_hw_ctl *ctx,
109                 u32 flushbits)
110 {
111         trace_dpu_hw_ctl_update_pending_flush(flushbits,
112                                               ctx->pending_flush_mask);
113         ctx->pending_flush_mask |= flushbits;
114 }
115
116 static u32 dpu_hw_ctl_get_pending_flush(struct dpu_hw_ctl *ctx)
117 {
118         return ctx->pending_flush_mask;
119 }
120
121 static inline void dpu_hw_ctl_trigger_flush_v1(struct dpu_hw_ctl *ctx)
122 {
123
124         if (ctx->pending_flush_mask & BIT(MERGE_3D_IDX))
125                 DPU_REG_WRITE(&ctx->hw, CTL_MERGE_3D_FLUSH,
126                                 ctx->pending_merge_3d_flush_mask);
127         if (ctx->pending_flush_mask & BIT(INTF_IDX))
128                 DPU_REG_WRITE(&ctx->hw, CTL_INTF_FLUSH,
129                                 ctx->pending_intf_flush_mask);
130
131         DPU_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->pending_flush_mask);
132 }
133
134 static inline void dpu_hw_ctl_trigger_flush(struct dpu_hw_ctl *ctx)
135 {
136         trace_dpu_hw_ctl_trigger_pending_flush(ctx->pending_flush_mask,
137                                      dpu_hw_ctl_get_flush_register(ctx));
138         DPU_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->pending_flush_mask);
139 }
140
141 static uint32_t dpu_hw_ctl_get_bitmask_sspp(struct dpu_hw_ctl *ctx,
142         enum dpu_sspp sspp)
143 {
144         uint32_t flushbits = 0;
145
146         switch (sspp) {
147         case SSPP_VIG0:
148                 flushbits =  BIT(0);
149                 break;
150         case SSPP_VIG1:
151                 flushbits = BIT(1);
152                 break;
153         case SSPP_VIG2:
154                 flushbits = BIT(2);
155                 break;
156         case SSPP_VIG3:
157                 flushbits = BIT(18);
158                 break;
159         case SSPP_RGB0:
160                 flushbits = BIT(3);
161                 break;
162         case SSPP_RGB1:
163                 flushbits = BIT(4);
164                 break;
165         case SSPP_RGB2:
166                 flushbits = BIT(5);
167                 break;
168         case SSPP_RGB3:
169                 flushbits = BIT(19);
170                 break;
171         case SSPP_DMA0:
172                 flushbits = BIT(11);
173                 break;
174         case SSPP_DMA1:
175                 flushbits = BIT(12);
176                 break;
177         case SSPP_DMA2:
178                 flushbits = BIT(24);
179                 break;
180         case SSPP_DMA3:
181                 flushbits = BIT(25);
182                 break;
183         case SSPP_CURSOR0:
184                 flushbits = BIT(22);
185                 break;
186         case SSPP_CURSOR1:
187                 flushbits = BIT(23);
188                 break;
189         default:
190                 break;
191         }
192
193         return flushbits;
194 }
195
196 static uint32_t dpu_hw_ctl_get_bitmask_mixer(struct dpu_hw_ctl *ctx,
197         enum dpu_lm lm)
198 {
199         uint32_t flushbits = 0;
200
201         switch (lm) {
202         case LM_0:
203                 flushbits = BIT(6);
204                 break;
205         case LM_1:
206                 flushbits = BIT(7);
207                 break;
208         case LM_2:
209                 flushbits = BIT(8);
210                 break;
211         case LM_3:
212                 flushbits = BIT(9);
213                 break;
214         case LM_4:
215                 flushbits = BIT(10);
216                 break;
217         case LM_5:
218                 flushbits = BIT(20);
219                 break;
220         default:
221                 return -EINVAL;
222         }
223
224         flushbits |= CTL_FLUSH_MASK_CTL;
225
226         return flushbits;
227 }
228
229 static void dpu_hw_ctl_update_pending_flush_intf(struct dpu_hw_ctl *ctx,
230                 enum dpu_intf intf)
231 {
232         switch (intf) {
233         case INTF_0:
234                 ctx->pending_flush_mask |= BIT(31);
235                 break;
236         case INTF_1:
237                 ctx->pending_flush_mask |= BIT(30);
238                 break;
239         case INTF_2:
240                 ctx->pending_flush_mask |= BIT(29);
241                 break;
242         case INTF_3:
243                 ctx->pending_flush_mask |= BIT(28);
244                 break;
245         default:
246                 break;
247         }
248 }
249
250 static void dpu_hw_ctl_update_pending_flush_intf_v1(struct dpu_hw_ctl *ctx,
251                 enum dpu_intf intf)
252 {
253         ctx->pending_intf_flush_mask |= BIT(intf - INTF_0);
254         ctx->pending_flush_mask |= BIT(INTF_IDX);
255 }
256
257 static void dpu_hw_ctl_update_pending_flush_merge_3d_v1(struct dpu_hw_ctl *ctx,
258                 enum dpu_merge_3d merge_3d)
259 {
260         ctx->pending_merge_3d_flush_mask |= BIT(merge_3d - MERGE_3D_0);
261         ctx->pending_flush_mask |= BIT(MERGE_3D_IDX);
262 }
263
264 static uint32_t dpu_hw_ctl_get_bitmask_dspp(struct dpu_hw_ctl *ctx,
265         enum dpu_dspp dspp)
266 {
267         uint32_t flushbits = 0;
268
269         switch (dspp) {
270         case DSPP_0:
271                 flushbits = BIT(13);
272                 break;
273         case DSPP_1:
274                 flushbits = BIT(14);
275                 break;
276         case DSPP_2:
277                 flushbits = BIT(15);
278                 break;
279         case DSPP_3:
280                 flushbits = BIT(21);
281                 break;
282         default:
283                 return 0;
284         }
285
286         return flushbits;
287 }
288
289 static u32 dpu_hw_ctl_poll_reset_status(struct dpu_hw_ctl *ctx, u32 timeout_us)
290 {
291         struct dpu_hw_blk_reg_map *c = &ctx->hw;
292         ktime_t timeout;
293         u32 status;
294
295         timeout = ktime_add_us(ktime_get(), timeout_us);
296
297         /*
298          * it takes around 30us to have mdp finish resetting its ctl path
299          * poll every 50us so that reset should be completed at 1st poll
300          */
301         do {
302                 status = DPU_REG_READ(c, CTL_SW_RESET);
303                 status &= 0x1;
304                 if (status)
305                         usleep_range(20, 50);
306         } while (status && ktime_compare_safe(ktime_get(), timeout) < 0);
307
308         return status;
309 }
310
311 static int dpu_hw_ctl_reset_control(struct dpu_hw_ctl *ctx)
312 {
313         struct dpu_hw_blk_reg_map *c = &ctx->hw;
314
315         pr_debug("issuing hw ctl reset for ctl:%d\n", ctx->idx);
316         DPU_REG_WRITE(c, CTL_SW_RESET, 0x1);
317         if (dpu_hw_ctl_poll_reset_status(ctx, DPU_REG_RESET_TIMEOUT_US))
318                 return -EINVAL;
319
320         return 0;
321 }
322
323 static int dpu_hw_ctl_wait_reset_status(struct dpu_hw_ctl *ctx)
324 {
325         struct dpu_hw_blk_reg_map *c = &ctx->hw;
326         u32 status;
327
328         status = DPU_REG_READ(c, CTL_SW_RESET);
329         status &= 0x01;
330         if (!status)
331                 return 0;
332
333         pr_debug("hw ctl reset is set for ctl:%d\n", ctx->idx);
334         if (dpu_hw_ctl_poll_reset_status(ctx, DPU_REG_RESET_TIMEOUT_US)) {
335                 pr_err("hw recovery is not complete for ctl:%d\n", ctx->idx);
336                 return -EINVAL;
337         }
338
339         return 0;
340 }
341
342 static void dpu_hw_ctl_clear_all_blendstages(struct dpu_hw_ctl *ctx)
343 {
344         struct dpu_hw_blk_reg_map *c = &ctx->hw;
345         int i;
346
347         for (i = 0; i < ctx->mixer_count; i++) {
348                 enum dpu_lm mixer_id = ctx->mixer_hw_caps[i].id;
349
350                 DPU_REG_WRITE(c, CTL_LAYER(mixer_id), 0);
351                 DPU_REG_WRITE(c, CTL_LAYER_EXT(mixer_id), 0);
352                 DPU_REG_WRITE(c, CTL_LAYER_EXT2(mixer_id), 0);
353                 DPU_REG_WRITE(c, CTL_LAYER_EXT3(mixer_id), 0);
354         }
355
356         DPU_REG_WRITE(c, CTL_FETCH_PIPE_ACTIVE, 0);
357 }
358
359 static void dpu_hw_ctl_setup_blendstage(struct dpu_hw_ctl *ctx,
360         enum dpu_lm lm, struct dpu_hw_stage_cfg *stage_cfg)
361 {
362         struct dpu_hw_blk_reg_map *c = &ctx->hw;
363         u32 mixercfg = 0, mixercfg_ext = 0, mix, ext;
364         u32 mixercfg_ext2 = 0, mixercfg_ext3 = 0;
365         int i, j;
366         int stages;
367         int pipes_per_stage;
368
369         stages = _mixer_stages(ctx->mixer_hw_caps, ctx->mixer_count, lm);
370         if (stages < 0)
371                 return;
372
373         if (test_bit(DPU_MIXER_SOURCESPLIT,
374                 &ctx->mixer_hw_caps->features))
375                 pipes_per_stage = PIPES_PER_STAGE;
376         else
377                 pipes_per_stage = 1;
378
379         mixercfg = CTL_MIXER_BORDER_OUT; /* always set BORDER_OUT */
380
381         if (!stage_cfg)
382                 goto exit;
383
384         for (i = 0; i <= stages; i++) {
385                 /* overflow to ext register if 'i + 1 > 7' */
386                 mix = (i + 1) & 0x7;
387                 ext = i >= 7;
388
389                 for (j = 0 ; j < pipes_per_stage; j++) {
390                         enum dpu_sspp_multirect_index rect_index =
391                                 stage_cfg->multirect_index[i][j];
392
393                         switch (stage_cfg->stage[i][j]) {
394                         case SSPP_VIG0:
395                                 if (rect_index == DPU_SSPP_RECT_1) {
396                                         mixercfg_ext3 |= ((i + 1) & 0xF) << 0;
397                                 } else {
398                                         mixercfg |= mix << 0;
399                                         mixercfg_ext |= ext << 0;
400                                 }
401                                 break;
402                         case SSPP_VIG1:
403                                 if (rect_index == DPU_SSPP_RECT_1) {
404                                         mixercfg_ext3 |= ((i + 1) & 0xF) << 4;
405                                 } else {
406                                         mixercfg |= mix << 3;
407                                         mixercfg_ext |= ext << 2;
408                                 }
409                                 break;
410                         case SSPP_VIG2:
411                                 if (rect_index == DPU_SSPP_RECT_1) {
412                                         mixercfg_ext3 |= ((i + 1) & 0xF) << 8;
413                                 } else {
414                                         mixercfg |= mix << 6;
415                                         mixercfg_ext |= ext << 4;
416                                 }
417                                 break;
418                         case SSPP_VIG3:
419                                 if (rect_index == DPU_SSPP_RECT_1) {
420                                         mixercfg_ext3 |= ((i + 1) & 0xF) << 12;
421                                 } else {
422                                         mixercfg |= mix << 26;
423                                         mixercfg_ext |= ext << 6;
424                                 }
425                                 break;
426                         case SSPP_RGB0:
427                                 mixercfg |= mix << 9;
428                                 mixercfg_ext |= ext << 8;
429                                 break;
430                         case SSPP_RGB1:
431                                 mixercfg |= mix << 12;
432                                 mixercfg_ext |= ext << 10;
433                                 break;
434                         case SSPP_RGB2:
435                                 mixercfg |= mix << 15;
436                                 mixercfg_ext |= ext << 12;
437                                 break;
438                         case SSPP_RGB3:
439                                 mixercfg |= mix << 29;
440                                 mixercfg_ext |= ext << 14;
441                                 break;
442                         case SSPP_DMA0:
443                                 if (rect_index == DPU_SSPP_RECT_1) {
444                                         mixercfg_ext2 |= ((i + 1) & 0xF) << 8;
445                                 } else {
446                                         mixercfg |= mix << 18;
447                                         mixercfg_ext |= ext << 16;
448                                 }
449                                 break;
450                         case SSPP_DMA1:
451                                 if (rect_index == DPU_SSPP_RECT_1) {
452                                         mixercfg_ext2 |= ((i + 1) & 0xF) << 12;
453                                 } else {
454                                         mixercfg |= mix << 21;
455                                         mixercfg_ext |= ext << 18;
456                                 }
457                                 break;
458                         case SSPP_DMA2:
459                                 if (rect_index == DPU_SSPP_RECT_1) {
460                                         mixercfg_ext2 |= ((i + 1) & 0xF) << 16;
461                                 } else {
462                                         mix |= (i + 1) & 0xF;
463                                         mixercfg_ext2 |= mix << 0;
464                                 }
465                                 break;
466                         case SSPP_DMA3:
467                                 if (rect_index == DPU_SSPP_RECT_1) {
468                                         mixercfg_ext2 |= ((i + 1) & 0xF) << 20;
469                                 } else {
470                                         mix |= (i + 1) & 0xF;
471                                         mixercfg_ext2 |= mix << 4;
472                                 }
473                                 break;
474                         case SSPP_CURSOR0:
475                                 mixercfg_ext |= ((i + 1) & 0xF) << 20;
476                                 break;
477                         case SSPP_CURSOR1:
478                                 mixercfg_ext |= ((i + 1) & 0xF) << 26;
479                                 break;
480                         default:
481                                 break;
482                         }
483                 }
484         }
485
486 exit:
487         DPU_REG_WRITE(c, CTL_LAYER(lm), mixercfg);
488         DPU_REG_WRITE(c, CTL_LAYER_EXT(lm), mixercfg_ext);
489         DPU_REG_WRITE(c, CTL_LAYER_EXT2(lm), mixercfg_ext2);
490         DPU_REG_WRITE(c, CTL_LAYER_EXT3(lm), mixercfg_ext3);
491 }
492
493
494 static void dpu_hw_ctl_intf_cfg_v1(struct dpu_hw_ctl *ctx,
495                 struct dpu_hw_intf_cfg *cfg)
496 {
497         struct dpu_hw_blk_reg_map *c = &ctx->hw;
498         u32 intf_active = 0;
499         u32 mode_sel = 0;
500
501         if (cfg->intf_mode_sel == DPU_CTL_MODE_SEL_CMD)
502                 mode_sel |= BIT(17);
503
504         intf_active = DPU_REG_READ(c, CTL_INTF_ACTIVE);
505         intf_active |= BIT(cfg->intf - INTF_0);
506
507         DPU_REG_WRITE(c, CTL_TOP, mode_sel);
508         DPU_REG_WRITE(c, CTL_INTF_ACTIVE, intf_active);
509         if (cfg->merge_3d)
510                 DPU_REG_WRITE(c, CTL_MERGE_3D_ACTIVE,
511                               BIT(cfg->merge_3d - MERGE_3D_0));
512 }
513
514 static void dpu_hw_ctl_intf_cfg(struct dpu_hw_ctl *ctx,
515                 struct dpu_hw_intf_cfg *cfg)
516 {
517         struct dpu_hw_blk_reg_map *c = &ctx->hw;
518         u32 intf_cfg = 0;
519
520         intf_cfg |= (cfg->intf & 0xF) << 4;
521
522         if (cfg->mode_3d) {
523                 intf_cfg |= BIT(19);
524                 intf_cfg |= (cfg->mode_3d - 0x1) << 20;
525         }
526
527         switch (cfg->intf_mode_sel) {
528         case DPU_CTL_MODE_SEL_VID:
529                 intf_cfg &= ~BIT(17);
530                 intf_cfg &= ~(0x3 << 15);
531                 break;
532         case DPU_CTL_MODE_SEL_CMD:
533                 intf_cfg |= BIT(17);
534                 intf_cfg |= ((cfg->stream_sel & 0x3) << 15);
535                 break;
536         default:
537                 pr_err("unknown interface type %d\n", cfg->intf_mode_sel);
538                 return;
539         }
540
541         DPU_REG_WRITE(c, CTL_TOP, intf_cfg);
542 }
543
544 static void dpu_hw_ctl_set_fetch_pipe_active(struct dpu_hw_ctl *ctx,
545         unsigned long *fetch_active)
546 {
547         int i;
548         u32 val = 0;
549
550         if (fetch_active) {
551                 for (i = 0; i < SSPP_MAX; i++) {
552                         if (test_bit(i, fetch_active) &&
553                                 fetch_tbl[i] != CTL_INVALID_BIT)
554                                 val |= BIT(fetch_tbl[i]);
555                 }
556         }
557
558         DPU_REG_WRITE(&ctx->hw, CTL_FETCH_PIPE_ACTIVE, val);
559 }
560
561 static void _setup_ctl_ops(struct dpu_hw_ctl_ops *ops,
562                 unsigned long cap)
563 {
564         if (cap & BIT(DPU_CTL_ACTIVE_CFG)) {
565                 ops->trigger_flush = dpu_hw_ctl_trigger_flush_v1;
566                 ops->setup_intf_cfg = dpu_hw_ctl_intf_cfg_v1;
567                 ops->update_pending_flush_intf =
568                         dpu_hw_ctl_update_pending_flush_intf_v1;
569                 ops->update_pending_flush_merge_3d =
570                         dpu_hw_ctl_update_pending_flush_merge_3d_v1;
571         } else {
572                 ops->trigger_flush = dpu_hw_ctl_trigger_flush;
573                 ops->setup_intf_cfg = dpu_hw_ctl_intf_cfg;
574                 ops->update_pending_flush_intf =
575                         dpu_hw_ctl_update_pending_flush_intf;
576         }
577         ops->clear_pending_flush = dpu_hw_ctl_clear_pending_flush;
578         ops->update_pending_flush = dpu_hw_ctl_update_pending_flush;
579         ops->get_pending_flush = dpu_hw_ctl_get_pending_flush;
580         ops->get_flush_register = dpu_hw_ctl_get_flush_register;
581         ops->trigger_start = dpu_hw_ctl_trigger_start;
582         ops->trigger_pending = dpu_hw_ctl_trigger_pending;
583         ops->reset = dpu_hw_ctl_reset_control;
584         ops->wait_reset_status = dpu_hw_ctl_wait_reset_status;
585         ops->clear_all_blendstages = dpu_hw_ctl_clear_all_blendstages;
586         ops->setup_blendstage = dpu_hw_ctl_setup_blendstage;
587         ops->get_bitmask_sspp = dpu_hw_ctl_get_bitmask_sspp;
588         ops->get_bitmask_mixer = dpu_hw_ctl_get_bitmask_mixer;
589         ops->get_bitmask_dspp = dpu_hw_ctl_get_bitmask_dspp;
590         if (cap & BIT(DPU_CTL_FETCH_ACTIVE))
591                 ops->set_active_pipes = dpu_hw_ctl_set_fetch_pipe_active;
592 };
593
594 struct dpu_hw_ctl *dpu_hw_ctl_init(enum dpu_ctl idx,
595                 void __iomem *addr,
596                 const struct dpu_mdss_cfg *m)
597 {
598         struct dpu_hw_ctl *c;
599         const struct dpu_ctl_cfg *cfg;
600
601         c = kzalloc(sizeof(*c), GFP_KERNEL);
602         if (!c)
603                 return ERR_PTR(-ENOMEM);
604
605         cfg = _ctl_offset(idx, m, addr, &c->hw);
606         if (IS_ERR_OR_NULL(cfg)) {
607                 kfree(c);
608                 pr_err("failed to create dpu_hw_ctl %d\n", idx);
609                 return ERR_PTR(-EINVAL);
610         }
611
612         c->caps = cfg;
613         _setup_ctl_ops(&c->ops, c->caps->features);
614         c->idx = idx;
615         c->mixer_count = m->mixer_count;
616         c->mixer_hw_caps = m->mixer;
617
618         return c;
619 }
620
621 void dpu_hw_ctl_destroy(struct dpu_hw_ctl *ctx)
622 {
623         kfree(ctx);
624 }