Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / gpu / drm / msm / adreno / a6xx_gpu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */
3
4
5 #include "msm_gem.h"
6 #include "msm_mmu.h"
7 #include "msm_gpu_trace.h"
8 #include "a6xx_gpu.h"
9 #include "a6xx_gmu.xml.h"
10
11 #include <linux/bitfield.h>
12 #include <linux/devfreq.h>
13 #include <linux/nvmem-consumer.h>
14 #include <linux/soc/qcom/llcc-qcom.h>
15
16 #define GPU_PAS_ID 13
17
18 static inline bool _a6xx_check_idle(struct msm_gpu *gpu)
19 {
20         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
21         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
22
23         /* Check that the GMU is idle */
24         if (!a6xx_gmu_isidle(&a6xx_gpu->gmu))
25                 return false;
26
27         /* Check tha the CX master is idle */
28         if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) &
29                         ~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER)
30                 return false;
31
32         return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) &
33                 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT);
34 }
35
36 static bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
37 {
38         /* wait for CP to drain ringbuffer: */
39         if (!adreno_idle(gpu, ring))
40                 return false;
41
42         if (spin_until(_a6xx_check_idle(gpu))) {
43                 DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n",
44                         gpu->name, __builtin_return_address(0),
45                         gpu_read(gpu, REG_A6XX_RBBM_STATUS),
46                         gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS),
47                         gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
48                         gpu_read(gpu, REG_A6XX_CP_RB_WPTR));
49                 return false;
50         }
51
52         return true;
53 }
54
55 static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
56 {
57         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
58         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
59         uint32_t wptr;
60         unsigned long flags;
61
62         /* Expanded APRIV doesn't need to issue the WHERE_AM_I opcode */
63         if (a6xx_gpu->has_whereami && !adreno_gpu->base.hw_apriv) {
64                 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
65
66                 OUT_PKT7(ring, CP_WHERE_AM_I, 2);
67                 OUT_RING(ring, lower_32_bits(shadowptr(a6xx_gpu, ring)));
68                 OUT_RING(ring, upper_32_bits(shadowptr(a6xx_gpu, ring)));
69         }
70
71         spin_lock_irqsave(&ring->preempt_lock, flags);
72
73         /* Copy the shadow to the actual register */
74         ring->cur = ring->next;
75
76         /* Make sure to wrap wptr if we need to */
77         wptr = get_wptr(ring);
78
79         spin_unlock_irqrestore(&ring->preempt_lock, flags);
80
81         /* Make sure everything is posted before making a decision */
82         mb();
83
84         gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr);
85 }
86
87 static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter,
88                 u64 iova)
89 {
90         OUT_PKT7(ring, CP_REG_TO_MEM, 3);
91         OUT_RING(ring, CP_REG_TO_MEM_0_REG(counter) |
92                 CP_REG_TO_MEM_0_CNT(2) |
93                 CP_REG_TO_MEM_0_64B);
94         OUT_RING(ring, lower_32_bits(iova));
95         OUT_RING(ring, upper_32_bits(iova));
96 }
97
98 static void a6xx_set_pagetable(struct a6xx_gpu *a6xx_gpu,
99                 struct msm_ringbuffer *ring, struct msm_file_private *ctx)
100 {
101         phys_addr_t ttbr;
102         u32 asid;
103         u64 memptr = rbmemptr(ring, ttbr0);
104
105         if (ctx == a6xx_gpu->cur_ctx)
106                 return;
107
108         if (msm_iommu_pagetable_params(ctx->aspace->mmu, &ttbr, &asid))
109                 return;
110
111         /* Execute the table update */
112         OUT_PKT7(ring, CP_SMMU_TABLE_UPDATE, 4);
113         OUT_RING(ring, CP_SMMU_TABLE_UPDATE_0_TTBR0_LO(lower_32_bits(ttbr)));
114
115         OUT_RING(ring,
116                 CP_SMMU_TABLE_UPDATE_1_TTBR0_HI(upper_32_bits(ttbr)) |
117                 CP_SMMU_TABLE_UPDATE_1_ASID(asid));
118         OUT_RING(ring, CP_SMMU_TABLE_UPDATE_2_CONTEXTIDR(0));
119         OUT_RING(ring, CP_SMMU_TABLE_UPDATE_3_CONTEXTBANK(0));
120
121         /*
122          * Write the new TTBR0 to the memstore. This is good for debugging.
123          */
124         OUT_PKT7(ring, CP_MEM_WRITE, 4);
125         OUT_RING(ring, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr)));
126         OUT_RING(ring, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr)));
127         OUT_RING(ring, lower_32_bits(ttbr));
128         OUT_RING(ring, (asid << 16) | upper_32_bits(ttbr));
129
130         /*
131          * And finally, trigger a uche flush to be sure there isn't anything
132          * lingering in that part of the GPU
133          */
134
135         OUT_PKT7(ring, CP_EVENT_WRITE, 1);
136         OUT_RING(ring, 0x31);
137
138         a6xx_gpu->cur_ctx = ctx;
139 }
140
141 static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
142 {
143         unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT;
144         struct msm_drm_private *priv = gpu->dev->dev_private;
145         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
146         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
147         struct msm_ringbuffer *ring = submit->ring;
148         unsigned int i;
149
150         a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx);
151
152         get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
153                 rbmemptr_stats(ring, index, cpcycles_start));
154
155         /*
156          * For PM4 the GMU register offsets are calculated from the base of the
157          * GPU registers so we need to add 0x1a800 to the register value on A630
158          * to get the right value from PM4.
159          */
160         get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
161                 rbmemptr_stats(ring, index, alwayson_start));
162
163         /* Invalidate CCU depth and color */
164         OUT_PKT7(ring, CP_EVENT_WRITE, 1);
165         OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_DEPTH));
166
167         OUT_PKT7(ring, CP_EVENT_WRITE, 1);
168         OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_COLOR));
169
170         /* Submit the commands */
171         for (i = 0; i < submit->nr_cmds; i++) {
172                 switch (submit->cmd[i].type) {
173                 case MSM_SUBMIT_CMD_IB_TARGET_BUF:
174                         break;
175                 case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
176                         if (priv->lastctx == submit->queue->ctx)
177                                 break;
178                         fallthrough;
179                 case MSM_SUBMIT_CMD_BUF:
180                         OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
181                         OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
182                         OUT_RING(ring, upper_32_bits(submit->cmd[i].iova));
183                         OUT_RING(ring, submit->cmd[i].size);
184                         break;
185                 }
186         }
187
188         get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
189                 rbmemptr_stats(ring, index, cpcycles_end));
190         get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
191                 rbmemptr_stats(ring, index, alwayson_end));
192
193         /* Write the fence to the scratch register */
194         OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1);
195         OUT_RING(ring, submit->seqno);
196
197         /*
198          * Execute a CACHE_FLUSH_TS event. This will ensure that the
199          * timestamp is written to the memory and then triggers the interrupt
200          */
201         OUT_PKT7(ring, CP_EVENT_WRITE, 4);
202         OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) |
203                 CP_EVENT_WRITE_0_IRQ);
204         OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence)));
205         OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence)));
206         OUT_RING(ring, submit->seqno);
207
208         trace_msm_gpu_submit_flush(submit,
209                 gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
210                         REG_A6XX_CP_ALWAYS_ON_COUNTER_HI));
211
212         a6xx_flush(gpu, ring);
213 }
214
215 const struct adreno_reglist a630_hwcg[] = {
216         {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222},
217         {REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222},
218         {REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222},
219         {REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222},
220         {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220},
221         {REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220},
222         {REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220},
223         {REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220},
224         {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
225         {REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
226         {REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080},
227         {REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080},
228         {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf},
229         {REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf},
230         {REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf},
231         {REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf},
232         {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
233         {REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222},
234         {REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222},
235         {REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222},
236         {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
237         {REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
238         {REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222},
239         {REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222},
240         {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
241         {REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222},
242         {REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222},
243         {REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222},
244         {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
245         {REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222},
246         {REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222},
247         {REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222},
248         {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
249         {REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
250         {REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777},
251         {REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777},
252         {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
253         {REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
254         {REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777},
255         {REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777},
256         {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
257         {REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777},
258         {REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777},
259         {REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777},
260         {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
261         {REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777},
262         {REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777},
263         {REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777},
264         {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
265         {REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
266         {REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111},
267         {REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111},
268         {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
269         {REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
270         {REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111},
271         {REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111},
272         {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
273         {REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111},
274         {REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111},
275         {REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111},
276         {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
277         {REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111},
278         {REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111},
279         {REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111},
280         {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
281         {REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
282         {REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
283         {REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
284         {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
285         {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
286         {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
287         {REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
288         {REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222},
289         {REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222},
290         {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222},
291         {REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222},
292         {REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222},
293         {REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222},
294         {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
295         {REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220},
296         {REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220},
297         {REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220},
298         {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00},
299         {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00},
300         {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00},
301         {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00},
302         {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022},
303         {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
304         {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
305         {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
306         {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
307         {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
308         {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
309         {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
310         {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
311         {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
312         {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
313         {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
314         {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
315         {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
316         {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
317         {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
318         {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
319         {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
320         {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
321         {},
322 };
323
324 const struct adreno_reglist a640_hwcg[] = {
325         {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
326         {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
327         {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
328         {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
329         {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
330         {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
331         {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
332         {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
333         {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
334         {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
335         {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
336         {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
337         {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
338         {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
339         {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
340         {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
341         {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
342         {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
343         {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
344         {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
345         {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05222022},
346         {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
347         {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
348         {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
349         {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
350         {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
351         {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
352         {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
353         {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
354         {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
355         {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
356         {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
357         {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
358         {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
359         {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
360         {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
361         {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
362         {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
363         {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
364         {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
365         {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
366         {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
367         {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
368         {REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
369         {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
370         {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
371         {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
372         {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
373         {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
374         {},
375 };
376
377 const struct adreno_reglist a650_hwcg[] = {
378         {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
379         {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
380         {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
381         {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
382         {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
383         {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
384         {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
385         {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
386         {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
387         {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
388         {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
389         {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
390         {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
391         {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
392         {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
393         {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
394         {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
395         {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
396         {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
397         {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
398         {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
399         {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
400         {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
401         {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
402         {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
403         {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
404         {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
405         {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
406         {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
407         {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
408         {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
409         {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
410         {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
411         {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
412         {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
413         {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
414         {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
415         {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
416         {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
417         {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000777},
418         {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
419         {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
420         {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
421         {REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
422         {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
423         {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
424         {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
425         {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
426         {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
427         {},
428 };
429
430 const struct adreno_reglist a660_hwcg[] = {
431         {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
432         {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
433         {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
434         {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
435         {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
436         {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
437         {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
438         {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
439         {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
440         {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
441         {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
442         {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
443         {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
444         {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
445         {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
446         {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
447         {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
448         {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
449         {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
450         {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
451         {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
452         {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
453         {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
454         {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
455         {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
456         {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
457         {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
458         {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
459         {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
460         {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
461         {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
462         {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
463         {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
464         {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
465         {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
466         {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
467         {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
468         {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
469         {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
470         {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
471         {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
472         {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
473         {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
474         {REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
475         {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
476         {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
477         {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
478         {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
479         {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
480         {},
481 };
482
483 static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state)
484 {
485         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
486         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
487         struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
488         const struct adreno_reglist *reg;
489         unsigned int i;
490         u32 val, clock_cntl_on;
491
492         if (!adreno_gpu->info->hwcg)
493                 return;
494
495         if (adreno_is_a630(adreno_gpu))
496                 clock_cntl_on = 0x8aa8aa02;
497         else
498                 clock_cntl_on = 0x8aa8aa82;
499
500         val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL);
501
502         /* Don't re-program the registers if they are already correct */
503         if ((!state && !val) || (state && (val == clock_cntl_on)))
504                 return;
505
506         /* Disable SP clock before programming HWCG registers */
507         gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0);
508
509         for (i = 0; (reg = &adreno_gpu->info->hwcg[i], reg->offset); i++)
510                 gpu_write(gpu, reg->offset, state ? reg->value : 0);
511
512         /* Enable SP clock */
513         gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1);
514
515         gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? clock_cntl_on : 0);
516 }
517
518 /* For a615, a616, a618, A619, a630, a640 and a680 */
519 static const u32 a6xx_protect[] = {
520         A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
521         A6XX_PROTECT_RDONLY(0x00501, 0x0005),
522         A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
523         A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
524         A6XX_PROTECT_NORDWR(0x00510, 0x0000),
525         A6XX_PROTECT_NORDWR(0x00534, 0x0000),
526         A6XX_PROTECT_NORDWR(0x00800, 0x0082),
527         A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
528         A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
529         A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
530         A6XX_PROTECT_NORDWR(0x00900, 0x004d),
531         A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
532         A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
533         A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
534         A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
535         A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
536         A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
537         A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
538         A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
539         A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
540         A6XX_PROTECT_NORDWR(0x09624, 0x01db),
541         A6XX_PROTECT_NORDWR(0x09e70, 0x0001),
542         A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
543         A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
544         A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
545         A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
546         A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
547         A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
548         A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
549         A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
550         A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
551         A6XX_PROTECT_NORDWR(0x11c00, 0x0000), /* note: infinite range */
552 };
553
554 /* These are for a620 and a650 */
555 static const u32 a650_protect[] = {
556         A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
557         A6XX_PROTECT_RDONLY(0x00501, 0x0005),
558         A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
559         A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
560         A6XX_PROTECT_NORDWR(0x00510, 0x0000),
561         A6XX_PROTECT_NORDWR(0x00534, 0x0000),
562         A6XX_PROTECT_NORDWR(0x00800, 0x0082),
563         A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
564         A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
565         A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
566         A6XX_PROTECT_NORDWR(0x00900, 0x004d),
567         A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
568         A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
569         A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
570         A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
571         A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
572         A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
573         A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
574         A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
575         A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
576         A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
577         A6XX_PROTECT_NORDWR(0x09624, 0x01db),
578         A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
579         A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
580         A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
581         A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
582         A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
583         A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
584         A6XX_PROTECT_NORDWR(0x0b608, 0x0007),
585         A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
586         A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
587         A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
588         A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
589         A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
590         A6XX_PROTECT_NORDWR(0x1a800, 0x1fff),
591         A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
592         A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
593         A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
594         A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
595 };
596
597 /* These are for a635 and a660 */
598 static const u32 a660_protect[] = {
599         A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
600         A6XX_PROTECT_RDONLY(0x00501, 0x0005),
601         A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
602         A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
603         A6XX_PROTECT_NORDWR(0x00510, 0x0000),
604         A6XX_PROTECT_NORDWR(0x00534, 0x0000),
605         A6XX_PROTECT_NORDWR(0x00800, 0x0082),
606         A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
607         A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
608         A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
609         A6XX_PROTECT_NORDWR(0x00900, 0x004d),
610         A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
611         A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
612         A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
613         A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
614         A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
615         A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
616         A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
617         A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
618         A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
619         A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
620         A6XX_PROTECT_NORDWR(0x09624, 0x01db),
621         A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
622         A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
623         A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
624         A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
625         A6XX_PROTECT_NORDWR(0x0ae50, 0x012f),
626         A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
627         A6XX_PROTECT_NORDWR(0x0b608, 0x0006),
628         A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
629         A6XX_PROTECT_NORDWR(0x0be20, 0x015f),
630         A6XX_PROTECT_NORDWR(0x0d000, 0x05ff),
631         A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
632         A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
633         A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
634         A6XX_PROTECT_NORDWR(0x1a400, 0x1fff),
635         A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
636         A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
637         A6XX_PROTECT_NORDWR(0x1f860, 0x0000),
638         A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
639         A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
640 };
641
642 static void a6xx_set_cp_protect(struct msm_gpu *gpu)
643 {
644         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
645         const u32 *regs = a6xx_protect;
646         unsigned i, count = ARRAY_SIZE(a6xx_protect), count_max = 32;
647
648         BUILD_BUG_ON(ARRAY_SIZE(a6xx_protect) > 32);
649         BUILD_BUG_ON(ARRAY_SIZE(a650_protect) > 48);
650
651         if (adreno_is_a650(adreno_gpu)) {
652                 regs = a650_protect;
653                 count = ARRAY_SIZE(a650_protect);
654                 count_max = 48;
655         } else if (adreno_is_a660(adreno_gpu)) {
656                 regs = a660_protect;
657                 count = ARRAY_SIZE(a660_protect);
658                 count_max = 48;
659         }
660
661         /*
662          * Enable access protection to privileged registers, fault on an access
663          * protect violation and select the last span to protect from the start
664          * address all the way to the end of the register address space
665          */
666         gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, BIT(0) | BIT(1) | BIT(3));
667
668         for (i = 0; i < count - 1; i++)
669                 gpu_write(gpu, REG_A6XX_CP_PROTECT(i), regs[i]);
670         /* last CP_PROTECT to have "infinite" length on the last entry */
671         gpu_write(gpu, REG_A6XX_CP_PROTECT(count_max - 1), regs[i]);
672 }
673
674 static void a6xx_set_ubwc_config(struct msm_gpu *gpu)
675 {
676         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
677         u32 lower_bit = 2;
678         u32 amsbc = 0;
679         u32 rgb565_predicator = 0;
680         u32 uavflagprd_inv = 0;
681
682         /* a618 is using the hw default values */
683         if (adreno_is_a618(adreno_gpu))
684                 return;
685
686         if (adreno_is_a640(adreno_gpu))
687                 amsbc = 1;
688
689         if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) {
690                 /* TODO: get ddr type from bootloader and use 2 for LPDDR4 */
691                 lower_bit = 3;
692                 amsbc = 1;
693                 rgb565_predicator = 1;
694                 uavflagprd_inv = 2;
695         }
696
697         gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL,
698                 rgb565_predicator << 11 | amsbc << 4 | lower_bit << 1);
699         gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, lower_bit << 1);
700         gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL,
701                 uavflagprd_inv << 4 | lower_bit << 1);
702         gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, lower_bit << 21);
703 }
704
705 static int a6xx_cp_init(struct msm_gpu *gpu)
706 {
707         struct msm_ringbuffer *ring = gpu->rb[0];
708
709         OUT_PKT7(ring, CP_ME_INIT, 8);
710
711         OUT_RING(ring, 0x0000002f);
712
713         /* Enable multiple hardware contexts */
714         OUT_RING(ring, 0x00000003);
715
716         /* Enable error detection */
717         OUT_RING(ring, 0x20000000);
718
719         /* Don't enable header dump */
720         OUT_RING(ring, 0x00000000);
721         OUT_RING(ring, 0x00000000);
722
723         /* No workarounds enabled */
724         OUT_RING(ring, 0x00000000);
725
726         /* Pad rest of the cmds with 0's */
727         OUT_RING(ring, 0x00000000);
728         OUT_RING(ring, 0x00000000);
729
730         a6xx_flush(gpu, ring);
731         return a6xx_idle(gpu, ring) ? 0 : -EINVAL;
732 }
733
734 /*
735  * Check that the microcode version is new enough to include several key
736  * security fixes. Return true if the ucode is safe.
737  */
738 static bool a6xx_ucode_check_version(struct a6xx_gpu *a6xx_gpu,
739                 struct drm_gem_object *obj)
740 {
741         struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
742         struct msm_gpu *gpu = &adreno_gpu->base;
743         u32 *buf = msm_gem_get_vaddr(obj);
744         bool ret = false;
745
746         if (IS_ERR(buf))
747                 return false;
748
749         /*
750          * Targets up to a640 (a618, a630 and a640) need to check for a
751          * microcode version that is patched to support the whereami opcode or
752          * one that is new enough to include it by default.
753          *
754          * a650 tier targets don't need whereami but still need to be
755          * equal to or newer than 0.95 for other security fixes
756          *
757          * a660 targets have all the critical security fixes from the start
758          */
759         if (adreno_is_a618(adreno_gpu) || adreno_is_a630(adreno_gpu) ||
760                 adreno_is_a640(adreno_gpu)) {
761                 /*
762                  * If the lowest nibble is 0xa that is an indication that this
763                  * microcode has been patched. The actual version is in dword
764                  * [3] but we only care about the patchlevel which is the lowest
765                  * nibble of dword [3]
766                  *
767                  * Otherwise check that the firmware is greater than or equal
768                  * to 1.90 which was the first version that had this fix built
769                  * in
770                  */
771                 if ((((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1) ||
772                         (buf[0] & 0xfff) >= 0x190) {
773                         a6xx_gpu->has_whereami = true;
774                         ret = true;
775                         goto out;
776                 }
777
778                 DRM_DEV_ERROR(&gpu->pdev->dev,
779                         "a630 SQE ucode is too old. Have version %x need at least %x\n",
780                         buf[0] & 0xfff, 0x190);
781         } else if (adreno_is_a650(adreno_gpu)) {
782                 if ((buf[0] & 0xfff) >= 0x095) {
783                         ret = true;
784                         goto out;
785                 }
786
787                 DRM_DEV_ERROR(&gpu->pdev->dev,
788                         "a650 SQE ucode is too old. Have version %x need at least %x\n",
789                         buf[0] & 0xfff, 0x095);
790         } else if (adreno_is_a660(adreno_gpu)) {
791                 ret = true;
792         } else {
793                 DRM_DEV_ERROR(&gpu->pdev->dev,
794                         "unknown GPU, add it to a6xx_ucode_check_version()!!\n");
795         }
796 out:
797         msm_gem_put_vaddr(obj);
798         return ret;
799 }
800
801 static int a6xx_ucode_init(struct msm_gpu *gpu)
802 {
803         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
804         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
805
806         if (!a6xx_gpu->sqe_bo) {
807                 a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu,
808                         adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova);
809
810                 if (IS_ERR(a6xx_gpu->sqe_bo)) {
811                         int ret = PTR_ERR(a6xx_gpu->sqe_bo);
812
813                         a6xx_gpu->sqe_bo = NULL;
814                         DRM_DEV_ERROR(&gpu->pdev->dev,
815                                 "Could not allocate SQE ucode: %d\n", ret);
816
817                         return ret;
818                 }
819
820                 msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw");
821                 if (!a6xx_ucode_check_version(a6xx_gpu, a6xx_gpu->sqe_bo)) {
822                         msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
823                         drm_gem_object_put(a6xx_gpu->sqe_bo);
824
825                         a6xx_gpu->sqe_bo = NULL;
826                         return -EPERM;
827                 }
828         }
829
830         gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE,
831                 REG_A6XX_CP_SQE_INSTR_BASE+1, a6xx_gpu->sqe_iova);
832
833         return 0;
834 }
835
836 static int a6xx_zap_shader_init(struct msm_gpu *gpu)
837 {
838         static bool loaded;
839         int ret;
840
841         if (loaded)
842                 return 0;
843
844         ret = adreno_zap_shader_load(gpu, GPU_PAS_ID);
845
846         loaded = !ret;
847         return ret;
848 }
849
850 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \
851           A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \
852           A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
853           A6XX_RBBM_INT_0_MASK_CP_IB2 | \
854           A6XX_RBBM_INT_0_MASK_CP_IB1 | \
855           A6XX_RBBM_INT_0_MASK_CP_RB | \
856           A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
857           A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \
858           A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \
859           A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
860           A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR)
861
862 static int a6xx_hw_init(struct msm_gpu *gpu)
863 {
864         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
865         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
866         int ret;
867
868         /* Make sure the GMU keeps the GPU on while we set it up */
869         a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
870
871         gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0);
872
873         /*
874          * Disable the trusted memory range - we don't actually supported secure
875          * memory rendering at this point in time and we don't want to block off
876          * part of the virtual memory space.
877          */
878         gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO,
879                 REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_HI, 0x00000000);
880         gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000);
881
882         /* Turn on 64 bit addressing for all blocks */
883         gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1);
884         gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1);
885         gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1);
886         gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1);
887         gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1);
888         gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1);
889         gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1);
890         gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1);
891         gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1);
892         gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1);
893         gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1);
894         gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1);
895
896         /* enable hardware clockgating */
897         a6xx_set_hwcg(gpu, true);
898
899         /* VBIF/GBIF start*/
900         if (adreno_is_a640(adreno_gpu) || adreno_is_a650_family(adreno_gpu)) {
901                 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE0, 0x00071620);
902                 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE1, 0x00071620);
903                 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE2, 0x00071620);
904                 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
905                 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
906                 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x3);
907         } else {
908                 gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3);
909         }
910
911         if (adreno_is_a630(adreno_gpu))
912                 gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009);
913
914         /* Make all blocks contribute to the GPU BUSY perf counter */
915         gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff);
916
917         /* Disable L2 bypass in the UCHE */
918         gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_LO, 0xffffffc0);
919         gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_HI, 0x0001ffff);
920         gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_LO, 0xfffff000);
921         gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_HI, 0x0001ffff);
922         gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_LO, 0xfffff000);
923         gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_HI, 0x0001ffff);
924
925         if (!adreno_is_a650_family(adreno_gpu)) {
926                 /* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */
927                 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN_LO,
928                         REG_A6XX_UCHE_GMEM_RANGE_MIN_HI, 0x00100000);
929
930                 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX_LO,
931                         REG_A6XX_UCHE_GMEM_RANGE_MAX_HI,
932                         0x00100000 + adreno_gpu->gmem - 1);
933         }
934
935         gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804);
936         gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4);
937
938         if (adreno_is_a640(adreno_gpu) || adreno_is_a650_family(adreno_gpu))
939                 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140);
940         else
941                 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0);
942         gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c);
943
944         if (adreno_is_a660(adreno_gpu))
945                 gpu_write(gpu, REG_A6XX_CP_LPAC_PROG_FIFO_SIZE, 0x00000020);
946
947         /* Setting the mem pool size */
948         gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128);
949
950         /* Setting the primFifo thresholds default values,
951          * and vccCacheSkipDis=1 bit (0x200) for A640 and newer
952         */
953         if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu))
954                 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200);
955         else if (adreno_is_a640(adreno_gpu))
956                 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00200200);
957         else
958                 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00180000);
959
960         /* Set the AHB default slave response to "ERROR" */
961         gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1);
962
963         /* Turn on performance counters */
964         gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1);
965
966         /* Select CP0 to always count cycles */
967         gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL(0), PERF_CP_ALWAYS_COUNT);
968
969         a6xx_set_ubwc_config(gpu);
970
971         /* Enable fault detection */
972         gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL,
973                 (1 << 30) | 0x1fffff);
974
975         gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1);
976
977         /* Set weights for bicubic filtering */
978         if (adreno_is_a650_family(adreno_gpu)) {
979                 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0);
980                 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1,
981                         0x3fe05ff4);
982                 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2,
983                         0x3fa0ebee);
984                 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3,
985                         0x3f5193ed);
986                 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4,
987                         0x3f0243f0);
988         }
989
990         /* Protect registers from the CP */
991         a6xx_set_cp_protect(gpu);
992
993         if (adreno_is_a660(adreno_gpu)) {
994                 gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, 0x1);
995                 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x0);
996                 /* Set dualQ + disable afull for A660 GPU but not for A635 */
997                 gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG, 0x66906);
998         }
999
1000         /* Enable expanded apriv for targets that support it */
1001         if (gpu->hw_apriv) {
1002                 gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL,
1003                         (1 << 6) | (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1));
1004         }
1005
1006         /* Enable interrupts */
1007         gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK);
1008
1009         ret = adreno_hw_init(gpu);
1010         if (ret)
1011                 goto out;
1012
1013         ret = a6xx_ucode_init(gpu);
1014         if (ret)
1015                 goto out;
1016
1017         /* Set the ringbuffer address */
1018         gpu_write64(gpu, REG_A6XX_CP_RB_BASE, REG_A6XX_CP_RB_BASE_HI,
1019                 gpu->rb[0]->iova);
1020
1021         /* Targets that support extended APRIV can use the RPTR shadow from
1022          * hardware but all the other ones need to disable the feature. Targets
1023          * that support the WHERE_AM_I opcode can use that instead
1024          */
1025         if (adreno_gpu->base.hw_apriv)
1026                 gpu_write(gpu, REG_A6XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT);
1027         else
1028                 gpu_write(gpu, REG_A6XX_CP_RB_CNTL,
1029                         MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE);
1030
1031         /*
1032          * Expanded APRIV and targets that support WHERE_AM_I both need a
1033          * privileged buffer to store the RPTR shadow
1034          */
1035
1036         if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) {
1037                 if (!a6xx_gpu->shadow_bo) {
1038                         a6xx_gpu->shadow = msm_gem_kernel_new_locked(gpu->dev,
1039                                 sizeof(u32) * gpu->nr_rings,
1040                                 MSM_BO_WC | MSM_BO_MAP_PRIV,
1041                                 gpu->aspace, &a6xx_gpu->shadow_bo,
1042                                 &a6xx_gpu->shadow_iova);
1043
1044                         if (IS_ERR(a6xx_gpu->shadow))
1045                                 return PTR_ERR(a6xx_gpu->shadow);
1046                 }
1047
1048                 gpu_write64(gpu, REG_A6XX_CP_RB_RPTR_ADDR_LO,
1049                         REG_A6XX_CP_RB_RPTR_ADDR_HI,
1050                         shadowptr(a6xx_gpu, gpu->rb[0]));
1051         }
1052
1053         /* Always come up on rb 0 */
1054         a6xx_gpu->cur_ring = gpu->rb[0];
1055
1056         a6xx_gpu->cur_ctx = NULL;
1057
1058         /* Enable the SQE_to start the CP engine */
1059         gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1);
1060
1061         ret = a6xx_cp_init(gpu);
1062         if (ret)
1063                 goto out;
1064
1065         /*
1066          * Try to load a zap shader into the secure world. If successful
1067          * we can use the CP to switch out of secure mode. If not then we
1068          * have no resource but to try to switch ourselves out manually. If we
1069          * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will
1070          * be blocked and a permissions violation will soon follow.
1071          */
1072         ret = a6xx_zap_shader_init(gpu);
1073         if (!ret) {
1074                 OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1);
1075                 OUT_RING(gpu->rb[0], 0x00000000);
1076
1077                 a6xx_flush(gpu, gpu->rb[0]);
1078                 if (!a6xx_idle(gpu, gpu->rb[0]))
1079                         return -EINVAL;
1080         } else if (ret == -ENODEV) {
1081                 /*
1082                  * This device does not use zap shader (but print a warning
1083                  * just in case someone got their dt wrong.. hopefully they
1084                  * have a debug UART to realize the error of their ways...
1085                  * if you mess this up you are about to crash horribly)
1086                  */
1087                 dev_warn_once(gpu->dev->dev,
1088                         "Zap shader not enabled - using SECVID_TRUST_CNTL instead\n");
1089                 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0);
1090                 ret = 0;
1091         } else {
1092                 return ret;
1093         }
1094
1095 out:
1096         /*
1097          * Tell the GMU that we are done touching the GPU and it can start power
1098          * management
1099          */
1100         a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
1101
1102         if (a6xx_gpu->gmu.legacy) {
1103                 /* Take the GMU out of its special boot mode */
1104                 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER);
1105         }
1106
1107         return ret;
1108 }
1109
1110 static void a6xx_dump(struct msm_gpu *gpu)
1111 {
1112         DRM_DEV_INFO(&gpu->pdev->dev, "status:   %08x\n",
1113                         gpu_read(gpu, REG_A6XX_RBBM_STATUS));
1114         adreno_dump(gpu);
1115 }
1116
1117 #define VBIF_RESET_ACK_TIMEOUT  100
1118 #define VBIF_RESET_ACK_MASK     0x00f0
1119
1120 static void a6xx_recover(struct msm_gpu *gpu)
1121 {
1122         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1123         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1124         int i;
1125
1126         adreno_dump_info(gpu);
1127
1128         for (i = 0; i < 8; i++)
1129                 DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i,
1130                         gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i)));
1131
1132         if (hang_debug)
1133                 a6xx_dump(gpu);
1134
1135         /*
1136          * Turn off keep alive that might have been enabled by the hang
1137          * interrupt
1138          */
1139         gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 0);
1140
1141         gpu->funcs->pm_suspend(gpu);
1142         gpu->funcs->pm_resume(gpu);
1143
1144         msm_gpu_hw_init(gpu);
1145 }
1146
1147 static const char *a6xx_uche_fault_block(struct msm_gpu *gpu, u32 mid)
1148 {
1149         static const char *uche_clients[7] = {
1150                 "VFD", "SP", "VSC", "VPC", "HLSQ", "PC", "LRZ",
1151         };
1152         u32 val;
1153
1154         if (mid < 1 || mid > 3)
1155                 return "UNKNOWN";
1156
1157         /*
1158          * The source of the data depends on the mid ID read from FSYNR1.
1159          * and the client ID read from the UCHE block
1160          */
1161         val = gpu_read(gpu, REG_A6XX_UCHE_CLIENT_PF);
1162
1163         /* mid = 3 is most precise and refers to only one block per client */
1164         if (mid == 3)
1165                 return uche_clients[val & 7];
1166
1167         /* For mid=2 the source is TP or VFD except when the client id is 0 */
1168         if (mid == 2)
1169                 return ((val & 7) == 0) ? "TP" : "TP|VFD";
1170
1171         /* For mid=1 just return "UCHE" as a catchall for everything else */
1172         return "UCHE";
1173 }
1174
1175 static const char *a6xx_fault_block(struct msm_gpu *gpu, u32 id)
1176 {
1177         if (id == 0)
1178                 return "CP";
1179         else if (id == 4)
1180                 return "CCU";
1181         else if (id == 6)
1182                 return "CDP Prefetch";
1183
1184         return a6xx_uche_fault_block(gpu, id);
1185 }
1186
1187 #define ARM_SMMU_FSR_TF                 BIT(1)
1188 #define ARM_SMMU_FSR_PF                 BIT(3)
1189 #define ARM_SMMU_FSR_EF                 BIT(4)
1190
1191 static int a6xx_fault_handler(void *arg, unsigned long iova, int flags, void *data)
1192 {
1193         struct msm_gpu *gpu = arg;
1194         struct adreno_smmu_fault_info *info = data;
1195         const char *type = "UNKNOWN";
1196         const char *block;
1197         bool do_devcoredump = info && !READ_ONCE(gpu->crashstate);
1198
1199         /*
1200          * If we aren't going to be resuming later from fault_worker, then do
1201          * it now.
1202          */
1203         if (!do_devcoredump) {
1204                 gpu->aspace->mmu->funcs->resume_translation(gpu->aspace->mmu);
1205         }
1206
1207         /*
1208          * Print a default message if we couldn't get the data from the
1209          * adreno-smmu-priv
1210          */
1211         if (!info) {
1212                 pr_warn_ratelimited("*** gpu fault: iova=%.16lx flags=%d (%u,%u,%u,%u)\n",
1213                         iova, flags,
1214                         gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
1215                         gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
1216                         gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
1217                         gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)));
1218
1219                 return 0;
1220         }
1221
1222         if (info->fsr & ARM_SMMU_FSR_TF)
1223                 type = "TRANSLATION";
1224         else if (info->fsr & ARM_SMMU_FSR_PF)
1225                 type = "PERMISSION";
1226         else if (info->fsr & ARM_SMMU_FSR_EF)
1227                 type = "EXTERNAL";
1228
1229         block = a6xx_fault_block(gpu, info->fsynr1 & 0xff);
1230
1231         pr_warn_ratelimited("*** gpu fault: ttbr0=%.16llx iova=%.16lx dir=%s type=%s source=%s (%u,%u,%u,%u)\n",
1232                         info->ttbr0, iova,
1233                         flags & IOMMU_FAULT_WRITE ? "WRITE" : "READ",
1234                         type, block,
1235                         gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
1236                         gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
1237                         gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
1238                         gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)));
1239
1240         if (do_devcoredump) {
1241                 /* Turn off the hangcheck timer to keep it from bothering us */
1242                 del_timer(&gpu->hangcheck_timer);
1243
1244                 gpu->fault_info.ttbr0 = info->ttbr0;
1245                 gpu->fault_info.iova  = iova;
1246                 gpu->fault_info.flags = flags;
1247                 gpu->fault_info.type  = type;
1248                 gpu->fault_info.block = block;
1249
1250                 kthread_queue_work(gpu->worker, &gpu->fault_work);
1251         }
1252
1253         return 0;
1254 }
1255
1256 static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu)
1257 {
1258         u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS);
1259
1260         if (status & A6XX_CP_INT_CP_OPCODE_ERROR) {
1261                 u32 val;
1262
1263                 gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1);
1264                 val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA);
1265                 dev_err_ratelimited(&gpu->pdev->dev,
1266                         "CP | opcode error | possible opcode=0x%8.8X\n",
1267                         val);
1268         }
1269
1270         if (status & A6XX_CP_INT_CP_UCODE_ERROR)
1271                 dev_err_ratelimited(&gpu->pdev->dev,
1272                         "CP ucode error interrupt\n");
1273
1274         if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR)
1275                 dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n",
1276                         gpu_read(gpu, REG_A6XX_CP_HW_FAULT));
1277
1278         if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) {
1279                 u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS);
1280
1281                 dev_err_ratelimited(&gpu->pdev->dev,
1282                         "CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n",
1283                         val & (1 << 20) ? "READ" : "WRITE",
1284                         (val & 0x3ffff), val);
1285         }
1286
1287         if (status & A6XX_CP_INT_CP_AHB_ERROR)
1288                 dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n");
1289
1290         if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR)
1291                 dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n");
1292
1293         if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR)
1294                 dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n");
1295
1296 }
1297
1298 static void a6xx_fault_detect_irq(struct msm_gpu *gpu)
1299 {
1300         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1301         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1302         struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
1303
1304         /*
1305          * If stalled on SMMU fault, we could trip the GPU's hang detection,
1306          * but the fault handler will trigger the devcore dump, and we want
1307          * to otherwise resume normally rather than killing the submit, so
1308          * just bail.
1309          */
1310         if (gpu_read(gpu, REG_A6XX_RBBM_STATUS3) & A6XX_RBBM_STATUS3_SMMU_STALLED_ON_FAULT)
1311                 return;
1312
1313         /*
1314          * Force the GPU to stay on until after we finish
1315          * collecting information
1316          */
1317         gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1);
1318
1319         DRM_DEV_ERROR(&gpu->pdev->dev,
1320                 "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
1321                 ring ? ring->id : -1, ring ? ring->seqno : 0,
1322                 gpu_read(gpu, REG_A6XX_RBBM_STATUS),
1323                 gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
1324                 gpu_read(gpu, REG_A6XX_CP_RB_WPTR),
1325                 gpu_read64(gpu, REG_A6XX_CP_IB1_BASE, REG_A6XX_CP_IB1_BASE_HI),
1326                 gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE),
1327                 gpu_read64(gpu, REG_A6XX_CP_IB2_BASE, REG_A6XX_CP_IB2_BASE_HI),
1328                 gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE));
1329
1330         /* Turn off the hangcheck timer to keep it from bothering us */
1331         del_timer(&gpu->hangcheck_timer);
1332
1333         kthread_queue_work(gpu->worker, &gpu->recover_work);
1334 }
1335
1336 static irqreturn_t a6xx_irq(struct msm_gpu *gpu)
1337 {
1338         u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS);
1339
1340         gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status);
1341
1342         if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT)
1343                 a6xx_fault_detect_irq(gpu);
1344
1345         if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR)
1346                 dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n");
1347
1348         if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR)
1349                 a6xx_cp_hw_err_irq(gpu);
1350
1351         if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW)
1352                 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n");
1353
1354         if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW)
1355                 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n");
1356
1357         if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS)
1358                 dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n");
1359
1360         if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS)
1361                 msm_gpu_retire(gpu);
1362
1363         return IRQ_HANDLED;
1364 }
1365
1366 static void a6xx_llc_rmw(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 mask, u32 or)
1367 {
1368         return msm_rmw(a6xx_gpu->llc_mmio + (reg << 2), mask, or);
1369 }
1370
1371 static void a6xx_llc_write(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 value)
1372 {
1373         return msm_writel(value, a6xx_gpu->llc_mmio + (reg << 2));
1374 }
1375
1376 static void a6xx_llc_deactivate(struct a6xx_gpu *a6xx_gpu)
1377 {
1378         llcc_slice_deactivate(a6xx_gpu->llc_slice);
1379         llcc_slice_deactivate(a6xx_gpu->htw_llc_slice);
1380 }
1381
1382 static void a6xx_llc_activate(struct a6xx_gpu *a6xx_gpu)
1383 {
1384         struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1385         struct msm_gpu *gpu = &adreno_gpu->base;
1386         u32 cntl1_regval = 0;
1387
1388         if (IS_ERR(a6xx_gpu->llc_mmio))
1389                 return;
1390
1391         if (!llcc_slice_activate(a6xx_gpu->llc_slice)) {
1392                 u32 gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice);
1393
1394                 gpu_scid &= 0x1f;
1395                 cntl1_regval = (gpu_scid << 0) | (gpu_scid << 5) | (gpu_scid << 10) |
1396                                (gpu_scid << 15) | (gpu_scid << 20);
1397         }
1398
1399         /*
1400          * For targets with a MMU500, activate the slice but don't program the
1401          * register.  The XBL will take care of that.
1402          */
1403         if (!llcc_slice_activate(a6xx_gpu->htw_llc_slice)) {
1404                 if (!a6xx_gpu->have_mmu500) {
1405                         u32 gpuhtw_scid = llcc_get_slice_id(a6xx_gpu->htw_llc_slice);
1406
1407                         gpuhtw_scid &= 0x1f;
1408                         cntl1_regval |= FIELD_PREP(GENMASK(29, 25), gpuhtw_scid);
1409                 }
1410         }
1411
1412         if (cntl1_regval) {
1413                 /*
1414                  * Program the slice IDs for the various GPU blocks and GPU MMU
1415                  * pagetables
1416                  */
1417                 if (a6xx_gpu->have_mmu500)
1418                         gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL1, GENMASK(24, 0),
1419                                 cntl1_regval);
1420                 else {
1421                         a6xx_llc_write(a6xx_gpu,
1422                                 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_1, cntl1_regval);
1423
1424                         /*
1425                          * Program cacheability overrides to not allocate cache
1426                          * lines on a write miss
1427                          */
1428                         a6xx_llc_rmw(a6xx_gpu,
1429                                 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_0, 0xF, 0x03);
1430                 }
1431         }
1432 }
1433
1434 static void a6xx_llc_slices_destroy(struct a6xx_gpu *a6xx_gpu)
1435 {
1436         llcc_slice_putd(a6xx_gpu->llc_slice);
1437         llcc_slice_putd(a6xx_gpu->htw_llc_slice);
1438 }
1439
1440 static void a6xx_llc_slices_init(struct platform_device *pdev,
1441                 struct a6xx_gpu *a6xx_gpu)
1442 {
1443         struct device_node *phandle;
1444
1445         /*
1446          * There is a different programming path for targets with an mmu500
1447          * attached, so detect if that is the case
1448          */
1449         phandle = of_parse_phandle(pdev->dev.of_node, "iommus", 0);
1450         a6xx_gpu->have_mmu500 = (phandle &&
1451                 of_device_is_compatible(phandle, "arm,mmu-500"));
1452         of_node_put(phandle);
1453
1454         if (a6xx_gpu->have_mmu500)
1455                 a6xx_gpu->llc_mmio = NULL;
1456         else
1457                 a6xx_gpu->llc_mmio = msm_ioremap(pdev, "cx_mem", "gpu_cx");
1458
1459         a6xx_gpu->llc_slice = llcc_slice_getd(LLCC_GPU);
1460         a6xx_gpu->htw_llc_slice = llcc_slice_getd(LLCC_GPUHTW);
1461
1462         if (IS_ERR_OR_NULL(a6xx_gpu->llc_slice) && IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice))
1463                 a6xx_gpu->llc_mmio = ERR_PTR(-EINVAL);
1464 }
1465
1466 static int a6xx_pm_resume(struct msm_gpu *gpu)
1467 {
1468         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1469         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1470         int ret;
1471
1472         gpu->needs_hw_init = true;
1473
1474         trace_msm_gpu_resume(0);
1475
1476         ret = a6xx_gmu_resume(a6xx_gpu);
1477         if (ret)
1478                 return ret;
1479
1480         msm_gpu_resume_devfreq(gpu);
1481
1482         a6xx_llc_activate(a6xx_gpu);
1483
1484         return 0;
1485 }
1486
1487 static int a6xx_pm_suspend(struct msm_gpu *gpu)
1488 {
1489         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1490         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1491         int i, ret;
1492
1493         trace_msm_gpu_suspend(0);
1494
1495         a6xx_llc_deactivate(a6xx_gpu);
1496
1497         devfreq_suspend_device(gpu->devfreq.devfreq);
1498
1499         ret = a6xx_gmu_stop(a6xx_gpu);
1500         if (ret)
1501                 return ret;
1502
1503         if (a6xx_gpu->shadow_bo)
1504                 for (i = 0; i < gpu->nr_rings; i++)
1505                         a6xx_gpu->shadow[i] = 0;
1506
1507         return 0;
1508 }
1509
1510 static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
1511 {
1512         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1513         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1514         static DEFINE_MUTEX(perfcounter_oob);
1515
1516         mutex_lock(&perfcounter_oob);
1517
1518         /* Force the GPU power on so we can read this register */
1519         a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
1520
1521         *value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
1522                 REG_A6XX_CP_ALWAYS_ON_COUNTER_HI);
1523
1524         a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
1525         mutex_unlock(&perfcounter_oob);
1526         return 0;
1527 }
1528
1529 static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu)
1530 {
1531         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1532         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1533
1534         return a6xx_gpu->cur_ring;
1535 }
1536
1537 static void a6xx_destroy(struct msm_gpu *gpu)
1538 {
1539         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1540         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1541
1542         if (a6xx_gpu->sqe_bo) {
1543                 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
1544                 drm_gem_object_put(a6xx_gpu->sqe_bo);
1545         }
1546
1547         if (a6xx_gpu->shadow_bo) {
1548                 msm_gem_unpin_iova(a6xx_gpu->shadow_bo, gpu->aspace);
1549                 drm_gem_object_put(a6xx_gpu->shadow_bo);
1550         }
1551
1552         a6xx_llc_slices_destroy(a6xx_gpu);
1553
1554         a6xx_gmu_remove(a6xx_gpu);
1555
1556         adreno_gpu_cleanup(adreno_gpu);
1557
1558         kfree(a6xx_gpu);
1559 }
1560
1561 static unsigned long a6xx_gpu_busy(struct msm_gpu *gpu)
1562 {
1563         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1564         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1565         u64 busy_cycles, busy_time;
1566
1567
1568         /* Only read the gpu busy if the hardware is already active */
1569         if (pm_runtime_get_if_in_use(a6xx_gpu->gmu.dev) == 0)
1570                 return 0;
1571
1572         busy_cycles = gmu_read64(&a6xx_gpu->gmu,
1573                         REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L,
1574                         REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H);
1575
1576         busy_time = (busy_cycles - gpu->devfreq.busy_cycles) * 10;
1577         do_div(busy_time, 192);
1578
1579         gpu->devfreq.busy_cycles = busy_cycles;
1580
1581         pm_runtime_put(a6xx_gpu->gmu.dev);
1582
1583         if (WARN_ON(busy_time > ~0LU))
1584                 return ~0LU;
1585
1586         return (unsigned long)busy_time;
1587 }
1588
1589 static struct msm_gem_address_space *
1590 a6xx_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev)
1591 {
1592         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1593         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1594         struct iommu_domain *iommu;
1595         struct msm_mmu *mmu;
1596         struct msm_gem_address_space *aspace;
1597         u64 start, size;
1598
1599         iommu = iommu_domain_alloc(&platform_bus_type);
1600         if (!iommu)
1601                 return NULL;
1602
1603         /*
1604          * This allows GPU to set the bus attributes required to use system
1605          * cache on behalf of the iommu page table walker.
1606          */
1607         if (!IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice))
1608                 adreno_set_llc_attributes(iommu);
1609
1610         mmu = msm_iommu_new(&pdev->dev, iommu);
1611         if (IS_ERR(mmu)) {
1612                 iommu_domain_free(iommu);
1613                 return ERR_CAST(mmu);
1614         }
1615
1616         /*
1617          * Use the aperture start or SZ_16M, whichever is greater. This will
1618          * ensure that we align with the allocated pagetable range while still
1619          * allowing room in the lower 32 bits for GMEM and whatnot
1620          */
1621         start = max_t(u64, SZ_16M, iommu->geometry.aperture_start);
1622         size = iommu->geometry.aperture_end - start + 1;
1623
1624         aspace = msm_gem_address_space_create(mmu, "gpu",
1625                 start & GENMASK_ULL(48, 0), size);
1626
1627         if (IS_ERR(aspace) && !IS_ERR(mmu))
1628                 mmu->funcs->destroy(mmu);
1629
1630         return aspace;
1631 }
1632
1633 static struct msm_gem_address_space *
1634 a6xx_create_private_address_space(struct msm_gpu *gpu)
1635 {
1636         struct msm_mmu *mmu;
1637
1638         mmu = msm_iommu_pagetable_create(gpu->aspace->mmu);
1639
1640         if (IS_ERR(mmu))
1641                 return ERR_CAST(mmu);
1642
1643         return msm_gem_address_space_create(mmu,
1644                 "gpu", 0x100000000ULL, 0x1ffffffffULL);
1645 }
1646
1647 static uint32_t a6xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
1648 {
1649         struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1650         struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1651
1652         if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami)
1653                 return a6xx_gpu->shadow[ring->id];
1654
1655         return ring->memptrs->rptr = gpu_read(gpu, REG_A6XX_CP_RB_RPTR);
1656 }
1657
1658 static u32 a618_get_speed_bin(u32 fuse)
1659 {
1660         if (fuse == 0)
1661                 return 0;
1662         else if (fuse == 169)
1663                 return 1;
1664         else if (fuse == 174)
1665                 return 2;
1666
1667         return UINT_MAX;
1668 }
1669
1670 static u32 fuse_to_supp_hw(struct device *dev, u32 revn, u32 fuse)
1671 {
1672         u32 val = UINT_MAX;
1673
1674         if (revn == 618)
1675                 val = a618_get_speed_bin(fuse);
1676
1677         if (val == UINT_MAX) {
1678                 DRM_DEV_ERROR(dev,
1679                         "missing support for speed-bin: %u. Some OPPs may not be supported by hardware",
1680                         fuse);
1681                 return UINT_MAX;
1682         }
1683
1684         return (1 << val);
1685 }
1686
1687 static int a6xx_set_supported_hw(struct device *dev, struct a6xx_gpu *a6xx_gpu,
1688                 u32 revn)
1689 {
1690         u32 supp_hw = UINT_MAX;
1691         u16 speedbin;
1692         int ret;
1693
1694         ret = nvmem_cell_read_u16(dev, "speed_bin", &speedbin);
1695         /*
1696          * -ENOENT means that the platform doesn't support speedbin which is
1697          * fine
1698          */
1699         if (ret == -ENOENT) {
1700                 return 0;
1701         } else if (ret) {
1702                 DRM_DEV_ERROR(dev,
1703                               "failed to read speed-bin (%d). Some OPPs may not be supported by hardware",
1704                               ret);
1705                 goto done;
1706         }
1707         speedbin = le16_to_cpu(speedbin);
1708
1709         supp_hw = fuse_to_supp_hw(dev, revn, speedbin);
1710
1711 done:
1712         ret = devm_pm_opp_set_supported_hw(dev, &supp_hw, 1);
1713         if (ret)
1714                 return ret;
1715
1716         return 0;
1717 }
1718
1719 static const struct adreno_gpu_funcs funcs = {
1720         .base = {
1721                 .get_param = adreno_get_param,
1722                 .hw_init = a6xx_hw_init,
1723                 .pm_suspend = a6xx_pm_suspend,
1724                 .pm_resume = a6xx_pm_resume,
1725                 .recover = a6xx_recover,
1726                 .submit = a6xx_submit,
1727                 .active_ring = a6xx_active_ring,
1728                 .irq = a6xx_irq,
1729                 .destroy = a6xx_destroy,
1730 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1731                 .show = a6xx_show,
1732 #endif
1733                 .gpu_busy = a6xx_gpu_busy,
1734                 .gpu_get_freq = a6xx_gmu_get_freq,
1735                 .gpu_set_freq = a6xx_gmu_set_freq,
1736 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1737                 .gpu_state_get = a6xx_gpu_state_get,
1738                 .gpu_state_put = a6xx_gpu_state_put,
1739 #endif
1740                 .create_address_space = a6xx_create_address_space,
1741                 .create_private_address_space = a6xx_create_private_address_space,
1742                 .get_rptr = a6xx_get_rptr,
1743         },
1744         .get_timestamp = a6xx_get_timestamp,
1745 };
1746
1747 struct msm_gpu *a6xx_gpu_init(struct drm_device *dev)
1748 {
1749         struct msm_drm_private *priv = dev->dev_private;
1750         struct platform_device *pdev = priv->gpu_pdev;
1751         struct adreno_platform_config *config = pdev->dev.platform_data;
1752         const struct adreno_info *info;
1753         struct device_node *node;
1754         struct a6xx_gpu *a6xx_gpu;
1755         struct adreno_gpu *adreno_gpu;
1756         struct msm_gpu *gpu;
1757         int ret;
1758
1759         a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL);
1760         if (!a6xx_gpu)
1761                 return ERR_PTR(-ENOMEM);
1762
1763         adreno_gpu = &a6xx_gpu->base;
1764         gpu = &adreno_gpu->base;
1765
1766         adreno_gpu->registers = NULL;
1767
1768         /*
1769          * We need to know the platform type before calling into adreno_gpu_init
1770          * so that the hw_apriv flag can be correctly set. Snoop into the info
1771          * and grab the revision number
1772          */
1773         info = adreno_info(config->rev);
1774
1775         if (info && (info->revn == 650 || info->revn == 660))
1776                 adreno_gpu->base.hw_apriv = true;
1777
1778         a6xx_llc_slices_init(pdev, a6xx_gpu);
1779
1780         ret = a6xx_set_supported_hw(&pdev->dev, a6xx_gpu, info->revn);
1781         if (ret) {
1782                 a6xx_destroy(&(a6xx_gpu->base.base));
1783                 return ERR_PTR(ret);
1784         }
1785
1786         ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1);
1787         if (ret) {
1788                 a6xx_destroy(&(a6xx_gpu->base.base));
1789                 return ERR_PTR(ret);
1790         }
1791
1792         /* Check if there is a GMU phandle and set it up */
1793         node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0);
1794
1795         /* FIXME: How do we gracefully handle this? */
1796         BUG_ON(!node);
1797
1798         ret = a6xx_gmu_init(a6xx_gpu, node);
1799         if (ret) {
1800                 a6xx_destroy(&(a6xx_gpu->base.base));
1801                 return ERR_PTR(ret);
1802         }
1803
1804         if (gpu->aspace)
1805                 msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu,
1806                                 a6xx_fault_handler);
1807
1808         return gpu;
1809 }