Merge drm-upstream/drm-next into drm-misc-next
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <linux/log2.h>
31
32 #include <drm/drmP.h>
33 #include <drm/i915_drm.h>
34
35 #include "i915_drv.h"
36 #include "i915_gem_render_state.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 #include "intel_workarounds.h"
40
41 /* Rough estimate of the typical request size, performing a flush,
42  * set-context and then emitting the batch.
43  */
44 #define LEGACY_REQUEST_SIZE 200
45
46 static unsigned int __intel_ring_space(unsigned int head,
47                                        unsigned int tail,
48                                        unsigned int size)
49 {
50         /*
51          * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
52          * same cacheline, the Head Pointer must not be greater than the Tail
53          * Pointer."
54          */
55         GEM_BUG_ON(!is_power_of_2(size));
56         return (head - tail - CACHELINE_BYTES) & (size - 1);
57 }
58
59 unsigned int intel_ring_update_space(struct intel_ring *ring)
60 {
61         unsigned int space;
62
63         space = __intel_ring_space(ring->head, ring->emit, ring->size);
64
65         ring->space = space;
66         return space;
67 }
68
69 static int
70 gen2_render_ring_flush(struct i915_request *rq, u32 mode)
71 {
72         u32 cmd, *cs;
73
74         cmd = MI_FLUSH;
75
76         if (mode & EMIT_INVALIDATE)
77                 cmd |= MI_READ_FLUSH;
78
79         cs = intel_ring_begin(rq, 2);
80         if (IS_ERR(cs))
81                 return PTR_ERR(cs);
82
83         *cs++ = cmd;
84         *cs++ = MI_NOOP;
85         intel_ring_advance(rq, cs);
86
87         return 0;
88 }
89
90 static int
91 gen4_render_ring_flush(struct i915_request *rq, u32 mode)
92 {
93         u32 cmd, *cs;
94
95         /*
96          * read/write caches:
97          *
98          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
99          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
100          * also flushed at 2d versus 3d pipeline switches.
101          *
102          * read-only caches:
103          *
104          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
105          * MI_READ_FLUSH is set, and is always flushed on 965.
106          *
107          * I915_GEM_DOMAIN_COMMAND may not exist?
108          *
109          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
110          * invalidated when MI_EXE_FLUSH is set.
111          *
112          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
113          * invalidated with every MI_FLUSH.
114          *
115          * TLBs:
116          *
117          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
118          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
119          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
120          * are flushed at any MI_FLUSH.
121          */
122
123         cmd = MI_FLUSH;
124         if (mode & EMIT_INVALIDATE) {
125                 cmd |= MI_EXE_FLUSH;
126                 if (IS_G4X(rq->i915) || IS_GEN5(rq->i915))
127                         cmd |= MI_INVALIDATE_ISP;
128         }
129
130         cs = intel_ring_begin(rq, 2);
131         if (IS_ERR(cs))
132                 return PTR_ERR(cs);
133
134         *cs++ = cmd;
135         *cs++ = MI_NOOP;
136         intel_ring_advance(rq, cs);
137
138         return 0;
139 }
140
141 /*
142  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
143  * implementing two workarounds on gen6.  From section 1.4.7.1
144  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
145  *
146  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
147  * produced by non-pipelined state commands), software needs to first
148  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
149  * 0.
150  *
151  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
152  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
153  *
154  * And the workaround for these two requires this workaround first:
155  *
156  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
157  * BEFORE the pipe-control with a post-sync op and no write-cache
158  * flushes.
159  *
160  * And this last workaround is tricky because of the requirements on
161  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
162  * volume 2 part 1:
163  *
164  *     "1 of the following must also be set:
165  *      - Render Target Cache Flush Enable ([12] of DW1)
166  *      - Depth Cache Flush Enable ([0] of DW1)
167  *      - Stall at Pixel Scoreboard ([1] of DW1)
168  *      - Depth Stall ([13] of DW1)
169  *      - Post-Sync Operation ([13] of DW1)
170  *      - Notify Enable ([8] of DW1)"
171  *
172  * The cache flushes require the workaround flush that triggered this
173  * one, so we can't use it.  Depth stall would trigger the same.
174  * Post-sync nonzero is what triggered this second workaround, so we
175  * can't use that one either.  Notify enable is IRQs, which aren't
176  * really our business.  That leaves only stall at scoreboard.
177  */
178 static int
179 intel_emit_post_sync_nonzero_flush(struct i915_request *rq)
180 {
181         u32 scratch_addr =
182                 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
183         u32 *cs;
184
185         cs = intel_ring_begin(rq, 6);
186         if (IS_ERR(cs))
187                 return PTR_ERR(cs);
188
189         *cs++ = GFX_OP_PIPE_CONTROL(5);
190         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
191         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
192         *cs++ = 0; /* low dword */
193         *cs++ = 0; /* high dword */
194         *cs++ = MI_NOOP;
195         intel_ring_advance(rq, cs);
196
197         cs = intel_ring_begin(rq, 6);
198         if (IS_ERR(cs))
199                 return PTR_ERR(cs);
200
201         *cs++ = GFX_OP_PIPE_CONTROL(5);
202         *cs++ = PIPE_CONTROL_QW_WRITE;
203         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
204         *cs++ = 0;
205         *cs++ = 0;
206         *cs++ = MI_NOOP;
207         intel_ring_advance(rq, cs);
208
209         return 0;
210 }
211
212 static int
213 gen6_render_ring_flush(struct i915_request *rq, u32 mode)
214 {
215         u32 scratch_addr =
216                 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
217         u32 *cs, flags = 0;
218         int ret;
219
220         /* Force SNB workarounds for PIPE_CONTROL flushes */
221         ret = intel_emit_post_sync_nonzero_flush(rq);
222         if (ret)
223                 return ret;
224
225         /* Just flush everything.  Experiments have shown that reducing the
226          * number of bits based on the write domains has little performance
227          * impact.
228          */
229         if (mode & EMIT_FLUSH) {
230                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
231                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
232                 /*
233                  * Ensure that any following seqno writes only happen
234                  * when the render cache is indeed flushed.
235                  */
236                 flags |= PIPE_CONTROL_CS_STALL;
237         }
238         if (mode & EMIT_INVALIDATE) {
239                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
240                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
241                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
242                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
243                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
244                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
245                 /*
246                  * TLB invalidate requires a post-sync write.
247                  */
248                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
249         }
250
251         cs = intel_ring_begin(rq, 4);
252         if (IS_ERR(cs))
253                 return PTR_ERR(cs);
254
255         *cs++ = GFX_OP_PIPE_CONTROL(4);
256         *cs++ = flags;
257         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
258         *cs++ = 0;
259         intel_ring_advance(rq, cs);
260
261         return 0;
262 }
263
264 static int
265 gen7_render_ring_cs_stall_wa(struct i915_request *rq)
266 {
267         u32 *cs;
268
269         cs = intel_ring_begin(rq, 4);
270         if (IS_ERR(cs))
271                 return PTR_ERR(cs);
272
273         *cs++ = GFX_OP_PIPE_CONTROL(4);
274         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
275         *cs++ = 0;
276         *cs++ = 0;
277         intel_ring_advance(rq, cs);
278
279         return 0;
280 }
281
282 static int
283 gen7_render_ring_flush(struct i915_request *rq, u32 mode)
284 {
285         u32 scratch_addr =
286                 i915_ggtt_offset(rq->engine->scratch) + 2 * CACHELINE_BYTES;
287         u32 *cs, flags = 0;
288
289         /*
290          * Ensure that any following seqno writes only happen when the render
291          * cache is indeed flushed.
292          *
293          * Workaround: 4th PIPE_CONTROL command (except the ones with only
294          * read-cache invalidate bits set) must have the CS_STALL bit set. We
295          * don't try to be clever and just set it unconditionally.
296          */
297         flags |= PIPE_CONTROL_CS_STALL;
298
299         /* Just flush everything.  Experiments have shown that reducing the
300          * number of bits based on the write domains has little performance
301          * impact.
302          */
303         if (mode & EMIT_FLUSH) {
304                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
305                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
306                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
307                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
308         }
309         if (mode & EMIT_INVALIDATE) {
310                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
311                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
312                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
313                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
314                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
315                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
316                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
317                 /*
318                  * TLB invalidate requires a post-sync write.
319                  */
320                 flags |= PIPE_CONTROL_QW_WRITE;
321                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
322
323                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
324
325                 /* Workaround: we must issue a pipe_control with CS-stall bit
326                  * set before a pipe_control command that has the state cache
327                  * invalidate bit set. */
328                 gen7_render_ring_cs_stall_wa(rq);
329         }
330
331         cs = intel_ring_begin(rq, 4);
332         if (IS_ERR(cs))
333                 return PTR_ERR(cs);
334
335         *cs++ = GFX_OP_PIPE_CONTROL(4);
336         *cs++ = flags;
337         *cs++ = scratch_addr;
338         *cs++ = 0;
339         intel_ring_advance(rq, cs);
340
341         return 0;
342 }
343
344 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
345 {
346         struct drm_i915_private *dev_priv = engine->i915;
347         u32 addr;
348
349         addr = dev_priv->status_page_dmah->busaddr;
350         if (INTEL_GEN(dev_priv) >= 4)
351                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
352         I915_WRITE(HWS_PGA, addr);
353 }
354
355 static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
356 {
357         struct drm_i915_private *dev_priv = engine->i915;
358         i915_reg_t mmio;
359
360         /* The ring status page addresses are no longer next to the rest of
361          * the ring registers as of gen7.
362          */
363         if (IS_GEN7(dev_priv)) {
364                 switch (engine->id) {
365                 /*
366                  * No more rings exist on Gen7. Default case is only to shut up
367                  * gcc switch check warning.
368                  */
369                 default:
370                         GEM_BUG_ON(engine->id);
371                 case RCS:
372                         mmio = RENDER_HWS_PGA_GEN7;
373                         break;
374                 case BCS:
375                         mmio = BLT_HWS_PGA_GEN7;
376                         break;
377                 case VCS:
378                         mmio = BSD_HWS_PGA_GEN7;
379                         break;
380                 case VECS:
381                         mmio = VEBOX_HWS_PGA_GEN7;
382                         break;
383                 }
384         } else if (IS_GEN6(dev_priv)) {
385                 mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
386         } else {
387                 mmio = RING_HWS_PGA(engine->mmio_base);
388         }
389
390         if (INTEL_GEN(dev_priv) >= 6)
391                 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
392
393         I915_WRITE(mmio, engine->status_page.ggtt_offset);
394         POSTING_READ(mmio);
395
396         /* Flush the TLB for this page */
397         if (IS_GEN(dev_priv, 6, 7)) {
398                 i915_reg_t reg = RING_INSTPM(engine->mmio_base);
399
400                 /* ring should be idle before issuing a sync flush*/
401                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
402
403                 I915_WRITE(reg,
404                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
405                                               INSTPM_SYNC_FLUSH));
406                 if (intel_wait_for_register(dev_priv,
407                                             reg, INSTPM_SYNC_FLUSH, 0,
408                                             1000))
409                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
410                                   engine->name);
411         }
412 }
413
414 static bool stop_ring(struct intel_engine_cs *engine)
415 {
416         struct drm_i915_private *dev_priv = engine->i915;
417
418         if (INTEL_GEN(dev_priv) > 2) {
419                 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
420                 if (intel_wait_for_register(dev_priv,
421                                             RING_MI_MODE(engine->mmio_base),
422                                             MODE_IDLE,
423                                             MODE_IDLE,
424                                             1000)) {
425                         DRM_ERROR("%s : timed out trying to stop ring\n",
426                                   engine->name);
427                         /* Sometimes we observe that the idle flag is not
428                          * set even though the ring is empty. So double
429                          * check before giving up.
430                          */
431                         if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
432                                 return false;
433                 }
434         }
435
436         I915_WRITE_HEAD(engine, I915_READ_TAIL(engine));
437
438         I915_WRITE_HEAD(engine, 0);
439         I915_WRITE_TAIL(engine, 0);
440
441         /* The ring must be empty before it is disabled */
442         I915_WRITE_CTL(engine, 0);
443
444         return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
445 }
446
447 static int init_ring_common(struct intel_engine_cs *engine)
448 {
449         struct drm_i915_private *dev_priv = engine->i915;
450         struct intel_ring *ring = engine->buffer;
451         int ret = 0;
452
453         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
454
455         if (!stop_ring(engine)) {
456                 /* G45 ring initialization often fails to reset head to zero */
457                 DRM_DEBUG_DRIVER("%s head not reset to zero "
458                                 "ctl %08x head %08x tail %08x start %08x\n",
459                                 engine->name,
460                                 I915_READ_CTL(engine),
461                                 I915_READ_HEAD(engine),
462                                 I915_READ_TAIL(engine),
463                                 I915_READ_START(engine));
464
465                 if (!stop_ring(engine)) {
466                         DRM_ERROR("failed to set %s head to zero "
467                                   "ctl %08x head %08x tail %08x start %08x\n",
468                                   engine->name,
469                                   I915_READ_CTL(engine),
470                                   I915_READ_HEAD(engine),
471                                   I915_READ_TAIL(engine),
472                                   I915_READ_START(engine));
473                         ret = -EIO;
474                         goto out;
475                 }
476         }
477
478         if (HWS_NEEDS_PHYSICAL(dev_priv))
479                 ring_setup_phys_status_page(engine);
480         else
481                 intel_ring_setup_status_page(engine);
482
483         intel_engine_reset_breadcrumbs(engine);
484
485         /* Enforce ordering by reading HEAD register back */
486         I915_READ_HEAD(engine);
487
488         /* Initialize the ring. This must happen _after_ we've cleared the ring
489          * registers with the above sequence (the readback of the HEAD registers
490          * also enforces ordering), otherwise the hw might lose the new ring
491          * register values. */
492         I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
493
494         /* WaClearRingBufHeadRegAtInit:ctg,elk */
495         if (I915_READ_HEAD(engine))
496                 DRM_DEBUG_DRIVER("%s initialization failed [head=%08x], fudging\n",
497                                  engine->name, I915_READ_HEAD(engine));
498
499         intel_ring_update_space(ring);
500         I915_WRITE_HEAD(engine, ring->head);
501         I915_WRITE_TAIL(engine, ring->tail);
502         (void)I915_READ_TAIL(engine);
503
504         I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
505
506         /* If the head is still not zero, the ring is dead */
507         if (intel_wait_for_register(dev_priv, RING_CTL(engine->mmio_base),
508                                     RING_VALID, RING_VALID,
509                                     50)) {
510                 DRM_ERROR("%s initialization failed "
511                           "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
512                           engine->name,
513                           I915_READ_CTL(engine),
514                           I915_READ_CTL(engine) & RING_VALID,
515                           I915_READ_HEAD(engine), ring->head,
516                           I915_READ_TAIL(engine), ring->tail,
517                           I915_READ_START(engine),
518                           i915_ggtt_offset(ring->vma));
519                 ret = -EIO;
520                 goto out;
521         }
522
523         intel_engine_init_hangcheck(engine);
524
525         if (INTEL_GEN(dev_priv) > 2)
526                 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
527
528 out:
529         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
530
531         return ret;
532 }
533
534 static void reset_ring_common(struct intel_engine_cs *engine,
535                               struct i915_request *request)
536 {
537         /*
538          * RC6 must be prevented until the reset is complete and the engine
539          * reinitialised. If it occurs in the middle of this sequence, the
540          * state written to/loaded from the power context is ill-defined (e.g.
541          * the PP_BASE_DIR may be lost).
542          */
543         assert_forcewakes_active(engine->i915, FORCEWAKE_ALL);
544
545         /*
546          * Try to restore the logical GPU state to match the continuation
547          * of the request queue. If we skip the context/PD restore, then
548          * the next request may try to execute assuming that its context
549          * is valid and loaded on the GPU and so may try to access invalid
550          * memory, prompting repeated GPU hangs.
551          *
552          * If the request was guilty, we still restore the logical state
553          * in case the next request requires it (e.g. the aliasing ppgtt),
554          * but skip over the hung batch.
555          *
556          * If the request was innocent, we try to replay the request with
557          * the restored context.
558          */
559         if (request) {
560                 struct drm_i915_private *dev_priv = request->i915;
561                 struct intel_context *ce = to_intel_context(request->ctx,
562                                                             engine);
563                 struct i915_hw_ppgtt *ppgtt;
564
565                 if (ce->state) {
566                         I915_WRITE(CCID,
567                                    i915_ggtt_offset(ce->state) |
568                                    BIT(8) /* must be set! */ |
569                                    CCID_EXTENDED_STATE_SAVE |
570                                    CCID_EXTENDED_STATE_RESTORE |
571                                    CCID_EN);
572                 }
573
574                 ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
575                 if (ppgtt) {
576                         u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;
577
578                         I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
579                         I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);
580
581                         /* Wait for the PD reload to complete */
582                         if (intel_wait_for_register(dev_priv,
583                                                     RING_PP_DIR_BASE(engine),
584                                                     BIT(0), 0,
585                                                     10))
586                                 DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
587
588                         ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
589                 }
590
591                 /* If the rq hung, jump to its breadcrumb and skip the batch */
592                 if (request->fence.error == -EIO)
593                         request->ring->head = request->postfix;
594         } else {
595                 engine->legacy_active_context = NULL;
596                 engine->legacy_active_ppgtt = NULL;
597         }
598 }
599
600 static int intel_rcs_ctx_init(struct i915_request *rq)
601 {
602         int ret;
603
604         ret = intel_ctx_workarounds_emit(rq);
605         if (ret != 0)
606                 return ret;
607
608         ret = i915_gem_render_state_emit(rq);
609         if (ret)
610                 return ret;
611
612         return 0;
613 }
614
615 static int init_render_ring(struct intel_engine_cs *engine)
616 {
617         struct drm_i915_private *dev_priv = engine->i915;
618         int ret = init_ring_common(engine);
619         if (ret)
620                 return ret;
621
622         intel_whitelist_workarounds_apply(engine);
623
624         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
625         if (IS_GEN(dev_priv, 4, 6))
626                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
627
628         /* We need to disable the AsyncFlip performance optimisations in order
629          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
630          * programmed to '1' on all products.
631          *
632          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
633          */
634         if (IS_GEN(dev_priv, 6, 7))
635                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
636
637         /* Required for the hardware to program scanline values for waiting */
638         /* WaEnableFlushTlbInvalidationMode:snb */
639         if (IS_GEN6(dev_priv))
640                 I915_WRITE(GFX_MODE,
641                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
642
643         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
644         if (IS_GEN7(dev_priv))
645                 I915_WRITE(GFX_MODE_GEN7,
646                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
647                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
648
649         if (IS_GEN6(dev_priv)) {
650                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
651                  * "If this bit is set, STCunit will have LRA as replacement
652                  *  policy. [...] This bit must be reset.  LRA replacement
653                  *  policy is not supported."
654                  */
655                 I915_WRITE(CACHE_MODE_0,
656                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
657         }
658
659         if (IS_GEN(dev_priv, 6, 7))
660                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
661
662         if (INTEL_GEN(dev_priv) >= 6)
663                 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
664
665         return 0;
666 }
667
668 static u32 *gen6_signal(struct i915_request *rq, u32 *cs)
669 {
670         struct drm_i915_private *dev_priv = rq->i915;
671         struct intel_engine_cs *engine;
672         enum intel_engine_id id;
673         int num_rings = 0;
674
675         for_each_engine(engine, dev_priv, id) {
676                 i915_reg_t mbox_reg;
677
678                 if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
679                         continue;
680
681                 mbox_reg = rq->engine->semaphore.mbox.signal[engine->hw_id];
682                 if (i915_mmio_reg_valid(mbox_reg)) {
683                         *cs++ = MI_LOAD_REGISTER_IMM(1);
684                         *cs++ = i915_mmio_reg_offset(mbox_reg);
685                         *cs++ = rq->global_seqno;
686                         num_rings++;
687                 }
688         }
689         if (num_rings & 1)
690                 *cs++ = MI_NOOP;
691
692         return cs;
693 }
694
695 static void cancel_requests(struct intel_engine_cs *engine)
696 {
697         struct i915_request *request;
698         unsigned long flags;
699
700         spin_lock_irqsave(&engine->timeline.lock, flags);
701
702         /* Mark all submitted requests as skipped. */
703         list_for_each_entry(request, &engine->timeline.requests, link) {
704                 GEM_BUG_ON(!request->global_seqno);
705                 if (!i915_request_completed(request))
706                         dma_fence_set_error(&request->fence, -EIO);
707         }
708         /* Remaining _unready_ requests will be nop'ed when submitted */
709
710         spin_unlock_irqrestore(&engine->timeline.lock, flags);
711 }
712
713 static void i9xx_submit_request(struct i915_request *request)
714 {
715         struct drm_i915_private *dev_priv = request->i915;
716
717         i915_request_submit(request);
718
719         I915_WRITE_TAIL(request->engine,
720                         intel_ring_set_tail(request->ring, request->tail));
721 }
722
723 static void i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
724 {
725         *cs++ = MI_STORE_DWORD_INDEX;
726         *cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
727         *cs++ = rq->global_seqno;
728         *cs++ = MI_USER_INTERRUPT;
729
730         rq->tail = intel_ring_offset(rq, cs);
731         assert_ring_tail_valid(rq->ring, rq->tail);
732 }
733
734 static const int i9xx_emit_breadcrumb_sz = 4;
735
736 static void gen6_sema_emit_breadcrumb(struct i915_request *rq, u32 *cs)
737 {
738         return i9xx_emit_breadcrumb(rq, rq->engine->semaphore.signal(rq, cs));
739 }
740
741 static int
742 gen6_ring_sync_to(struct i915_request *rq, struct i915_request *signal)
743 {
744         u32 dw1 = MI_SEMAPHORE_MBOX |
745                   MI_SEMAPHORE_COMPARE |
746                   MI_SEMAPHORE_REGISTER;
747         u32 wait_mbox = signal->engine->semaphore.mbox.wait[rq->engine->hw_id];
748         u32 *cs;
749
750         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
751
752         cs = intel_ring_begin(rq, 4);
753         if (IS_ERR(cs))
754                 return PTR_ERR(cs);
755
756         *cs++ = dw1 | wait_mbox;
757         /* Throughout all of the GEM code, seqno passed implies our current
758          * seqno is >= the last seqno executed. However for hardware the
759          * comparison is strictly greater than.
760          */
761         *cs++ = signal->global_seqno - 1;
762         *cs++ = 0;
763         *cs++ = MI_NOOP;
764         intel_ring_advance(rq, cs);
765
766         return 0;
767 }
768
769 static void
770 gen5_seqno_barrier(struct intel_engine_cs *engine)
771 {
772         /* MI_STORE are internally buffered by the GPU and not flushed
773          * either by MI_FLUSH or SyncFlush or any other combination of
774          * MI commands.
775          *
776          * "Only the submission of the store operation is guaranteed.
777          * The write result will be complete (coherent) some time later
778          * (this is practically a finite period but there is no guaranteed
779          * latency)."
780          *
781          * Empirically, we observe that we need a delay of at least 75us to
782          * be sure that the seqno write is visible by the CPU.
783          */
784         usleep_range(125, 250);
785 }
786
787 static void
788 gen6_seqno_barrier(struct intel_engine_cs *engine)
789 {
790         struct drm_i915_private *dev_priv = engine->i915;
791
792         /* Workaround to force correct ordering between irq and seqno writes on
793          * ivb (and maybe also on snb) by reading from a CS register (like
794          * ACTHD) before reading the status page.
795          *
796          * Note that this effectively stalls the read by the time it takes to
797          * do a memory transaction, which more or less ensures that the write
798          * from the GPU has sufficient time to invalidate the CPU cacheline.
799          * Alternatively we could delay the interrupt from the CS ring to give
800          * the write time to land, but that would incur a delay after every
801          * batch i.e. much more frequent than a delay when waiting for the
802          * interrupt (with the same net latency).
803          *
804          * Also note that to prevent whole machine hangs on gen7, we have to
805          * take the spinlock to guard against concurrent cacheline access.
806          */
807         spin_lock_irq(&dev_priv->uncore.lock);
808         POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
809         spin_unlock_irq(&dev_priv->uncore.lock);
810 }
811
812 static void
813 gen5_irq_enable(struct intel_engine_cs *engine)
814 {
815         gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
816 }
817
818 static void
819 gen5_irq_disable(struct intel_engine_cs *engine)
820 {
821         gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
822 }
823
824 static void
825 i9xx_irq_enable(struct intel_engine_cs *engine)
826 {
827         struct drm_i915_private *dev_priv = engine->i915;
828
829         dev_priv->irq_mask &= ~engine->irq_enable_mask;
830         I915_WRITE(IMR, dev_priv->irq_mask);
831         POSTING_READ_FW(RING_IMR(engine->mmio_base));
832 }
833
834 static void
835 i9xx_irq_disable(struct intel_engine_cs *engine)
836 {
837         struct drm_i915_private *dev_priv = engine->i915;
838
839         dev_priv->irq_mask |= engine->irq_enable_mask;
840         I915_WRITE(IMR, dev_priv->irq_mask);
841 }
842
843 static void
844 i8xx_irq_enable(struct intel_engine_cs *engine)
845 {
846         struct drm_i915_private *dev_priv = engine->i915;
847
848         dev_priv->irq_mask &= ~engine->irq_enable_mask;
849         I915_WRITE16(IMR, dev_priv->irq_mask);
850         POSTING_READ16(RING_IMR(engine->mmio_base));
851 }
852
853 static void
854 i8xx_irq_disable(struct intel_engine_cs *engine)
855 {
856         struct drm_i915_private *dev_priv = engine->i915;
857
858         dev_priv->irq_mask |= engine->irq_enable_mask;
859         I915_WRITE16(IMR, dev_priv->irq_mask);
860 }
861
862 static int
863 bsd_ring_flush(struct i915_request *rq, u32 mode)
864 {
865         u32 *cs;
866
867         cs = intel_ring_begin(rq, 2);
868         if (IS_ERR(cs))
869                 return PTR_ERR(cs);
870
871         *cs++ = MI_FLUSH;
872         *cs++ = MI_NOOP;
873         intel_ring_advance(rq, cs);
874         return 0;
875 }
876
877 static void
878 gen6_irq_enable(struct intel_engine_cs *engine)
879 {
880         struct drm_i915_private *dev_priv = engine->i915;
881
882         I915_WRITE_IMR(engine,
883                        ~(engine->irq_enable_mask |
884                          engine->irq_keep_mask));
885         gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
886 }
887
888 static void
889 gen6_irq_disable(struct intel_engine_cs *engine)
890 {
891         struct drm_i915_private *dev_priv = engine->i915;
892
893         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
894         gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
895 }
896
897 static void
898 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
899 {
900         struct drm_i915_private *dev_priv = engine->i915;
901
902         I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
903         gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
904 }
905
906 static void
907 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
908 {
909         struct drm_i915_private *dev_priv = engine->i915;
910
911         I915_WRITE_IMR(engine, ~0);
912         gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
913 }
914
915 static int
916 i965_emit_bb_start(struct i915_request *rq,
917                    u64 offset, u32 length,
918                    unsigned int dispatch_flags)
919 {
920         u32 *cs;
921
922         cs = intel_ring_begin(rq, 2);
923         if (IS_ERR(cs))
924                 return PTR_ERR(cs);
925
926         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
927                 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
928         *cs++ = offset;
929         intel_ring_advance(rq, cs);
930
931         return 0;
932 }
933
934 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
935 #define I830_BATCH_LIMIT (256*1024)
936 #define I830_TLB_ENTRIES (2)
937 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
938 static int
939 i830_emit_bb_start(struct i915_request *rq,
940                    u64 offset, u32 len,
941                    unsigned int dispatch_flags)
942 {
943         u32 *cs, cs_offset = i915_ggtt_offset(rq->engine->scratch);
944
945         cs = intel_ring_begin(rq, 6);
946         if (IS_ERR(cs))
947                 return PTR_ERR(cs);
948
949         /* Evict the invalid PTE TLBs */
950         *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
951         *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
952         *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
953         *cs++ = cs_offset;
954         *cs++ = 0xdeadbeef;
955         *cs++ = MI_NOOP;
956         intel_ring_advance(rq, cs);
957
958         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
959                 if (len > I830_BATCH_LIMIT)
960                         return -ENOSPC;
961
962                 cs = intel_ring_begin(rq, 6 + 2);
963                 if (IS_ERR(cs))
964                         return PTR_ERR(cs);
965
966                 /* Blit the batch (which has now all relocs applied) to the
967                  * stable batch scratch bo area (so that the CS never
968                  * stumbles over its tlb invalidation bug) ...
969                  */
970                 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
971                 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
972                 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
973                 *cs++ = cs_offset;
974                 *cs++ = 4096;
975                 *cs++ = offset;
976
977                 *cs++ = MI_FLUSH;
978                 *cs++ = MI_NOOP;
979                 intel_ring_advance(rq, cs);
980
981                 /* ... and execute it. */
982                 offset = cs_offset;
983         }
984
985         cs = intel_ring_begin(rq, 2);
986         if (IS_ERR(cs))
987                 return PTR_ERR(cs);
988
989         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
990         *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
991                 MI_BATCH_NON_SECURE);
992         intel_ring_advance(rq, cs);
993
994         return 0;
995 }
996
997 static int
998 i915_emit_bb_start(struct i915_request *rq,
999                    u64 offset, u32 len,
1000                    unsigned int dispatch_flags)
1001 {
1002         u32 *cs;
1003
1004         cs = intel_ring_begin(rq, 2);
1005         if (IS_ERR(cs))
1006                 return PTR_ERR(cs);
1007
1008         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1009         *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1010                 MI_BATCH_NON_SECURE);
1011         intel_ring_advance(rq, cs);
1012
1013         return 0;
1014 }
1015
1016
1017
1018 int intel_ring_pin(struct intel_ring *ring,
1019                    struct drm_i915_private *i915,
1020                    unsigned int offset_bias)
1021 {
1022         enum i915_map_type map = HAS_LLC(i915) ? I915_MAP_WB : I915_MAP_WC;
1023         struct i915_vma *vma = ring->vma;
1024         unsigned int flags;
1025         void *addr;
1026         int ret;
1027
1028         GEM_BUG_ON(ring->vaddr);
1029
1030
1031         flags = PIN_GLOBAL;
1032         if (offset_bias)
1033                 flags |= PIN_OFFSET_BIAS | offset_bias;
1034         if (vma->obj->stolen)
1035                 flags |= PIN_MAPPABLE;
1036         else
1037                 flags |= PIN_HIGH;
1038
1039         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1040                 if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1041                         ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1042                 else
1043                         ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1044                 if (unlikely(ret))
1045                         return ret;
1046         }
1047
1048         ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1049         if (unlikely(ret))
1050                 return ret;
1051
1052         if (i915_vma_is_map_and_fenceable(vma))
1053                 addr = (void __force *)i915_vma_pin_iomap(vma);
1054         else
1055                 addr = i915_gem_object_pin_map(vma->obj, map);
1056         if (IS_ERR(addr))
1057                 goto err;
1058
1059         vma->obj->pin_global++;
1060
1061         ring->vaddr = addr;
1062         return 0;
1063
1064 err:
1065         i915_vma_unpin(vma);
1066         return PTR_ERR(addr);
1067 }
1068
1069 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1070 {
1071         ring->tail = tail;
1072         ring->head = tail;
1073         ring->emit = tail;
1074         intel_ring_update_space(ring);
1075 }
1076
1077 void intel_ring_unpin(struct intel_ring *ring)
1078 {
1079         GEM_BUG_ON(!ring->vma);
1080         GEM_BUG_ON(!ring->vaddr);
1081
1082         /* Discard any unused bytes beyond that submitted to hw. */
1083         intel_ring_reset(ring, ring->tail);
1084
1085         if (i915_vma_is_map_and_fenceable(ring->vma))
1086                 i915_vma_unpin_iomap(ring->vma);
1087         else
1088                 i915_gem_object_unpin_map(ring->vma->obj);
1089         ring->vaddr = NULL;
1090
1091         ring->vma->obj->pin_global--;
1092         i915_vma_unpin(ring->vma);
1093 }
1094
1095 static struct i915_vma *
1096 intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1097 {
1098         struct drm_i915_gem_object *obj;
1099         struct i915_vma *vma;
1100
1101         obj = i915_gem_object_create_stolen(dev_priv, size);
1102         if (!obj)
1103                 obj = i915_gem_object_create_internal(dev_priv, size);
1104         if (IS_ERR(obj))
1105                 return ERR_CAST(obj);
1106
1107         /* mark ring buffers as read-only from GPU side by default */
1108         obj->gt_ro = 1;
1109
1110         vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
1111         if (IS_ERR(vma))
1112                 goto err;
1113
1114         return vma;
1115
1116 err:
1117         i915_gem_object_put(obj);
1118         return vma;
1119 }
1120
1121 struct intel_ring *
1122 intel_engine_create_ring(struct intel_engine_cs *engine,
1123                          struct i915_timeline *timeline,
1124                          int size)
1125 {
1126         struct intel_ring *ring;
1127         struct i915_vma *vma;
1128
1129         GEM_BUG_ON(!is_power_of_2(size));
1130         GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1131         GEM_BUG_ON(timeline == &engine->timeline);
1132         lockdep_assert_held(&engine->i915->drm.struct_mutex);
1133
1134         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1135         if (!ring)
1136                 return ERR_PTR(-ENOMEM);
1137
1138         INIT_LIST_HEAD(&ring->request_list);
1139         ring->timeline = i915_timeline_get(timeline);
1140
1141         ring->size = size;
1142         /* Workaround an erratum on the i830 which causes a hang if
1143          * the TAIL pointer points to within the last 2 cachelines
1144          * of the buffer.
1145          */
1146         ring->effective_size = size;
1147         if (IS_I830(engine->i915) || IS_I845G(engine->i915))
1148                 ring->effective_size -= 2 * CACHELINE_BYTES;
1149
1150         intel_ring_update_space(ring);
1151
1152         vma = intel_ring_create_vma(engine->i915, size);
1153         if (IS_ERR(vma)) {
1154                 kfree(ring);
1155                 return ERR_CAST(vma);
1156         }
1157         ring->vma = vma;
1158
1159         return ring;
1160 }
1161
1162 void
1163 intel_ring_free(struct intel_ring *ring)
1164 {
1165         struct drm_i915_gem_object *obj = ring->vma->obj;
1166
1167         i915_vma_close(ring->vma);
1168         __i915_gem_object_release_unless_active(obj);
1169
1170         i915_timeline_put(ring->timeline);
1171         kfree(ring);
1172 }
1173
1174 static int context_pin(struct intel_context *ce)
1175 {
1176         struct i915_vma *vma = ce->state;
1177         int ret;
1178
1179         /*
1180          * Clear this page out of any CPU caches for coherent swap-in/out.
1181          * We only want to do this on the first bind so that we do not stall
1182          * on an active context (which by nature is already on the GPU).
1183          */
1184         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1185                 ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1186                 if (ret)
1187                         return ret;
1188         }
1189
1190         return i915_vma_pin(vma, 0, I915_GTT_MIN_ALIGNMENT,
1191                             PIN_GLOBAL | PIN_HIGH);
1192 }
1193
1194 static struct i915_vma *
1195 alloc_context_vma(struct intel_engine_cs *engine)
1196 {
1197         struct drm_i915_private *i915 = engine->i915;
1198         struct drm_i915_gem_object *obj;
1199         struct i915_vma *vma;
1200         int err;
1201
1202         obj = i915_gem_object_create(i915, engine->context_size);
1203         if (IS_ERR(obj))
1204                 return ERR_CAST(obj);
1205
1206         if (engine->default_state) {
1207                 void *defaults, *vaddr;
1208
1209                 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1210                 if (IS_ERR(vaddr)) {
1211                         err = PTR_ERR(vaddr);
1212                         goto err_obj;
1213                 }
1214
1215                 defaults = i915_gem_object_pin_map(engine->default_state,
1216                                                    I915_MAP_WB);
1217                 if (IS_ERR(defaults)) {
1218                         err = PTR_ERR(defaults);
1219                         goto err_map;
1220                 }
1221
1222                 memcpy(vaddr, defaults, engine->context_size);
1223
1224                 i915_gem_object_unpin_map(engine->default_state);
1225                 i915_gem_object_unpin_map(obj);
1226         }
1227
1228         /*
1229          * Try to make the context utilize L3 as well as LLC.
1230          *
1231          * On VLV we don't have L3 controls in the PTEs so we
1232          * shouldn't touch the cache level, especially as that
1233          * would make the object snooped which might have a
1234          * negative performance impact.
1235          *
1236          * Snooping is required on non-llc platforms in execlist
1237          * mode, but since all GGTT accesses use PAT entry 0 we
1238          * get snooping anyway regardless of cache_level.
1239          *
1240          * This is only applicable for Ivy Bridge devices since
1241          * later platforms don't have L3 control bits in the PTE.
1242          */
1243         if (IS_IVYBRIDGE(i915)) {
1244                 /* Ignore any error, regard it as a simple optimisation */
1245                 i915_gem_object_set_cache_level(obj, I915_CACHE_L3_LLC);
1246         }
1247
1248         vma = i915_vma_instance(obj, &i915->ggtt.base, NULL);
1249         if (IS_ERR(vma)) {
1250                 err = PTR_ERR(vma);
1251                 goto err_obj;
1252         }
1253
1254         return vma;
1255
1256 err_map:
1257         i915_gem_object_unpin_map(obj);
1258 err_obj:
1259         i915_gem_object_put(obj);
1260         return ERR_PTR(err);
1261 }
1262
1263 static struct intel_ring *
1264 intel_ring_context_pin(struct intel_engine_cs *engine,
1265                        struct i915_gem_context *ctx)
1266 {
1267         struct intel_context *ce = to_intel_context(ctx, engine);
1268         int ret;
1269
1270         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1271
1272         if (likely(ce->pin_count++))
1273                 goto out;
1274         GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1275
1276         if (!ce->state && engine->context_size) {
1277                 struct i915_vma *vma;
1278
1279                 vma = alloc_context_vma(engine);
1280                 if (IS_ERR(vma)) {
1281                         ret = PTR_ERR(vma);
1282                         goto err;
1283                 }
1284
1285                 ce->state = vma;
1286         }
1287
1288         if (ce->state) {
1289                 ret = context_pin(ce);
1290                 if (ret)
1291                         goto err;
1292
1293                 ce->state->obj->pin_global++;
1294         }
1295
1296         i915_gem_context_get(ctx);
1297
1298 out:
1299         /* One ringbuffer to rule them all */
1300         return engine->buffer;
1301
1302 err:
1303         ce->pin_count = 0;
1304         return ERR_PTR(ret);
1305 }
1306
1307 static void intel_ring_context_unpin(struct intel_engine_cs *engine,
1308                                      struct i915_gem_context *ctx)
1309 {
1310         struct intel_context *ce = to_intel_context(ctx, engine);
1311
1312         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1313         GEM_BUG_ON(ce->pin_count == 0);
1314
1315         if (--ce->pin_count)
1316                 return;
1317
1318         if (ce->state) {
1319                 ce->state->obj->pin_global--;
1320                 i915_vma_unpin(ce->state);
1321         }
1322
1323         i915_gem_context_put(ctx);
1324 }
1325
1326 static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1327 {
1328         struct intel_ring *ring;
1329         struct i915_timeline *timeline;
1330         int err;
1331
1332         intel_engine_setup_common(engine);
1333
1334         err = intel_engine_init_common(engine);
1335         if (err)
1336                 goto err;
1337
1338         timeline = i915_timeline_create(engine->i915, engine->name);
1339         if (IS_ERR(timeline)) {
1340                 err = PTR_ERR(timeline);
1341                 goto err;
1342         }
1343
1344         ring = intel_engine_create_ring(engine, timeline, 32 * PAGE_SIZE);
1345         i915_timeline_put(timeline);
1346         if (IS_ERR(ring)) {
1347                 err = PTR_ERR(ring);
1348                 goto err;
1349         }
1350
1351         /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1352         err = intel_ring_pin(ring, engine->i915, I915_GTT_PAGE_SIZE);
1353         if (err)
1354                 goto err_ring;
1355
1356         GEM_BUG_ON(engine->buffer);
1357         engine->buffer = ring;
1358
1359         return 0;
1360
1361 err_ring:
1362         intel_ring_free(ring);
1363 err:
1364         intel_engine_cleanup_common(engine);
1365         return err;
1366 }
1367
1368 void intel_engine_cleanup(struct intel_engine_cs *engine)
1369 {
1370         struct drm_i915_private *dev_priv = engine->i915;
1371
1372         WARN_ON(INTEL_GEN(dev_priv) > 2 &&
1373                 (I915_READ_MODE(engine) & MODE_IDLE) == 0);
1374
1375         intel_ring_unpin(engine->buffer);
1376         intel_ring_free(engine->buffer);
1377
1378         if (engine->cleanup)
1379                 engine->cleanup(engine);
1380
1381         intel_engine_cleanup_common(engine);
1382
1383         dev_priv->engine[engine->id] = NULL;
1384         kfree(engine);
1385 }
1386
1387 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
1388 {
1389         struct intel_engine_cs *engine;
1390         enum intel_engine_id id;
1391
1392         /* Restart from the beginning of the rings for convenience */
1393         for_each_engine(engine, dev_priv, id)
1394                 intel_ring_reset(engine->buffer, 0);
1395 }
1396
1397 static inline int mi_set_context(struct i915_request *rq, u32 flags)
1398 {
1399         struct drm_i915_private *i915 = rq->i915;
1400         struct intel_engine_cs *engine = rq->engine;
1401         enum intel_engine_id id;
1402         const int num_rings =
1403                 /* Use an extended w/a on gen7 if signalling from other rings */
1404                 (HAS_LEGACY_SEMAPHORES(i915) && IS_GEN7(i915)) ?
1405                 INTEL_INFO(i915)->num_rings - 1 :
1406                 0;
1407         int len;
1408         u32 *cs;
1409
1410         flags |= MI_MM_SPACE_GTT;
1411         if (IS_HASWELL(i915))
1412                 /* These flags are for resource streamer on HSW+ */
1413                 flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
1414         else
1415                 flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;
1416
1417         len = 4;
1418         if (IS_GEN7(i915))
1419                 len += 2 + (num_rings ? 4*num_rings + 6 : 0);
1420
1421         cs = intel_ring_begin(rq, len);
1422         if (IS_ERR(cs))
1423                 return PTR_ERR(cs);
1424
1425         /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1426         if (IS_GEN7(i915)) {
1427                 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1428                 if (num_rings) {
1429                         struct intel_engine_cs *signaller;
1430
1431                         *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1432                         for_each_engine(signaller, i915, id) {
1433                                 if (signaller == engine)
1434                                         continue;
1435
1436                                 *cs++ = i915_mmio_reg_offset(
1437                                            RING_PSMI_CTL(signaller->mmio_base));
1438                                 *cs++ = _MASKED_BIT_ENABLE(
1439                                                 GEN6_PSMI_SLEEP_MSG_DISABLE);
1440                         }
1441                 }
1442         }
1443
1444         *cs++ = MI_NOOP;
1445         *cs++ = MI_SET_CONTEXT;
1446         *cs++ = i915_ggtt_offset(to_intel_context(rq->ctx, engine)->state) | flags;
1447         /*
1448          * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1449          * WaMiSetContext_Hang:snb,ivb,vlv
1450          */
1451         *cs++ = MI_NOOP;
1452
1453         if (IS_GEN7(i915)) {
1454                 if (num_rings) {
1455                         struct intel_engine_cs *signaller;
1456                         i915_reg_t last_reg = {}; /* keep gcc quiet */
1457
1458                         *cs++ = MI_LOAD_REGISTER_IMM(num_rings);
1459                         for_each_engine(signaller, i915, id) {
1460                                 if (signaller == engine)
1461                                         continue;
1462
1463                                 last_reg = RING_PSMI_CTL(signaller->mmio_base);
1464                                 *cs++ = i915_mmio_reg_offset(last_reg);
1465                                 *cs++ = _MASKED_BIT_DISABLE(
1466                                                 GEN6_PSMI_SLEEP_MSG_DISABLE);
1467                         }
1468
1469                         /* Insert a delay before the next switch! */
1470                         *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1471                         *cs++ = i915_mmio_reg_offset(last_reg);
1472                         *cs++ = i915_ggtt_offset(engine->scratch);
1473                         *cs++ = MI_NOOP;
1474                 }
1475                 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1476         }
1477
1478         intel_ring_advance(rq, cs);
1479
1480         return 0;
1481 }
1482
1483 static int remap_l3(struct i915_request *rq, int slice)
1484 {
1485         u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1486         int i;
1487
1488         if (!remap_info)
1489                 return 0;
1490
1491         cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1492         if (IS_ERR(cs))
1493                 return PTR_ERR(cs);
1494
1495         /*
1496          * Note: We do not worry about the concurrent register cacheline hang
1497          * here because no other code should access these registers other than
1498          * at initialization time.
1499          */
1500         *cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1501         for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1502                 *cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1503                 *cs++ = remap_info[i];
1504         }
1505         *cs++ = MI_NOOP;
1506         intel_ring_advance(rq, cs);
1507
1508         return 0;
1509 }
1510
1511 static int switch_context(struct i915_request *rq)
1512 {
1513         struct intel_engine_cs *engine = rq->engine;
1514         struct i915_gem_context *to_ctx = rq->ctx;
1515         struct i915_hw_ppgtt *to_mm =
1516                 to_ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
1517         struct i915_gem_context *from_ctx = engine->legacy_active_context;
1518         struct i915_hw_ppgtt *from_mm = engine->legacy_active_ppgtt;
1519         u32 hw_flags = 0;
1520         int ret, i;
1521
1522         lockdep_assert_held(&rq->i915->drm.struct_mutex);
1523         GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1524
1525         if (to_mm != from_mm ||
1526             (to_mm && intel_engine_flag(engine) & to_mm->pd_dirty_rings)) {
1527                 trace_switch_mm(engine, to_ctx);
1528                 ret = to_mm->switch_mm(to_mm, rq);
1529                 if (ret)
1530                         goto err;
1531
1532                 to_mm->pd_dirty_rings &= ~intel_engine_flag(engine);
1533                 engine->legacy_active_ppgtt = to_mm;
1534                 hw_flags = MI_FORCE_RESTORE;
1535         }
1536
1537         if (to_intel_context(to_ctx, engine)->state &&
1538             (to_ctx != from_ctx || hw_flags & MI_FORCE_RESTORE)) {
1539                 GEM_BUG_ON(engine->id != RCS);
1540
1541                 /*
1542                  * The kernel context(s) is treated as pure scratch and is not
1543                  * expected to retain any state (as we sacrifice it during
1544                  * suspend and on resume it may be corrupted). This is ok,
1545                  * as nothing actually executes using the kernel context; it
1546                  * is purely used for flushing user contexts.
1547                  */
1548                 if (i915_gem_context_is_kernel(to_ctx))
1549                         hw_flags = MI_RESTORE_INHIBIT;
1550
1551                 ret = mi_set_context(rq, hw_flags);
1552                 if (ret)
1553                         goto err_mm;
1554
1555                 engine->legacy_active_context = to_ctx;
1556         }
1557
1558         if (to_ctx->remap_slice) {
1559                 for (i = 0; i < MAX_L3_SLICES; i++) {
1560                         if (!(to_ctx->remap_slice & BIT(i)))
1561                                 continue;
1562
1563                         ret = remap_l3(rq, i);
1564                         if (ret)
1565                                 goto err_ctx;
1566                 }
1567
1568                 to_ctx->remap_slice = 0;
1569         }
1570
1571         return 0;
1572
1573 err_ctx:
1574         engine->legacy_active_context = from_ctx;
1575 err_mm:
1576         engine->legacy_active_ppgtt = from_mm;
1577 err:
1578         return ret;
1579 }
1580
1581 static int ring_request_alloc(struct i915_request *request)
1582 {
1583         int ret;
1584
1585         GEM_BUG_ON(!to_intel_context(request->ctx, request->engine)->pin_count);
1586
1587         /* Flush enough space to reduce the likelihood of waiting after
1588          * we start building the request - in which case we will just
1589          * have to repeat work.
1590          */
1591         request->reserved_space += LEGACY_REQUEST_SIZE;
1592
1593         ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1594         if (ret)
1595                 return ret;
1596
1597         ret = switch_context(request);
1598         if (ret)
1599                 return ret;
1600
1601         request->reserved_space -= LEGACY_REQUEST_SIZE;
1602         return 0;
1603 }
1604
1605 static noinline int wait_for_space(struct intel_ring *ring, unsigned int bytes)
1606 {
1607         struct i915_request *target;
1608         long timeout;
1609
1610         lockdep_assert_held(&ring->vma->vm->i915->drm.struct_mutex);
1611
1612         if (intel_ring_update_space(ring) >= bytes)
1613                 return 0;
1614
1615         GEM_BUG_ON(list_empty(&ring->request_list));
1616         list_for_each_entry(target, &ring->request_list, ring_link) {
1617                 /* Would completion of this request free enough space? */
1618                 if (bytes <= __intel_ring_space(target->postfix,
1619                                                 ring->emit, ring->size))
1620                         break;
1621         }
1622
1623         if (WARN_ON(&target->ring_link == &ring->request_list))
1624                 return -ENOSPC;
1625
1626         timeout = i915_request_wait(target,
1627                                     I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
1628                                     MAX_SCHEDULE_TIMEOUT);
1629         if (timeout < 0)
1630                 return timeout;
1631
1632         i915_request_retire_upto(target);
1633
1634         intel_ring_update_space(ring);
1635         GEM_BUG_ON(ring->space < bytes);
1636         return 0;
1637 }
1638
1639 int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes)
1640 {
1641         GEM_BUG_ON(bytes > ring->effective_size);
1642         if (unlikely(bytes > ring->effective_size - ring->emit))
1643                 bytes += ring->size - ring->emit;
1644
1645         if (unlikely(bytes > ring->space)) {
1646                 int ret = wait_for_space(ring, bytes);
1647                 if (unlikely(ret))
1648                         return ret;
1649         }
1650
1651         GEM_BUG_ON(ring->space < bytes);
1652         return 0;
1653 }
1654
1655 u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
1656 {
1657         struct intel_ring *ring = rq->ring;
1658         const unsigned int remain_usable = ring->effective_size - ring->emit;
1659         const unsigned int bytes = num_dwords * sizeof(u32);
1660         unsigned int need_wrap = 0;
1661         unsigned int total_bytes;
1662         u32 *cs;
1663
1664         /* Packets must be qword aligned. */
1665         GEM_BUG_ON(num_dwords & 1);
1666
1667         total_bytes = bytes + rq->reserved_space;
1668         GEM_BUG_ON(total_bytes > ring->effective_size);
1669
1670         if (unlikely(total_bytes > remain_usable)) {
1671                 const int remain_actual = ring->size - ring->emit;
1672
1673                 if (bytes > remain_usable) {
1674                         /*
1675                          * Not enough space for the basic request. So need to
1676                          * flush out the remainder and then wait for
1677                          * base + reserved.
1678                          */
1679                         total_bytes += remain_actual;
1680                         need_wrap = remain_actual | 1;
1681                 } else  {
1682                         /*
1683                          * The base request will fit but the reserved space
1684                          * falls off the end. So we don't need an immediate
1685                          * wrap and only need to effectively wait for the
1686                          * reserved size from the start of ringbuffer.
1687                          */
1688                         total_bytes = rq->reserved_space + remain_actual;
1689                 }
1690         }
1691
1692         if (unlikely(total_bytes > ring->space)) {
1693                 int ret;
1694
1695                 /*
1696                  * Space is reserved in the ringbuffer for finalising the
1697                  * request, as that cannot be allowed to fail. During request
1698                  * finalisation, reserved_space is set to 0 to stop the
1699                  * overallocation and the assumption is that then we never need
1700                  * to wait (which has the risk of failing with EINTR).
1701                  *
1702                  * See also i915_request_alloc() and i915_request_add().
1703                  */
1704                 GEM_BUG_ON(!rq->reserved_space);
1705
1706                 ret = wait_for_space(ring, total_bytes);
1707                 if (unlikely(ret))
1708                         return ERR_PTR(ret);
1709         }
1710
1711         if (unlikely(need_wrap)) {
1712                 need_wrap &= ~1;
1713                 GEM_BUG_ON(need_wrap > ring->space);
1714                 GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1715                 GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64)));
1716
1717                 /* Fill the tail with MI_NOOP */
1718                 memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64));
1719                 ring->space -= need_wrap;
1720                 ring->emit = 0;
1721         }
1722
1723         GEM_BUG_ON(ring->emit > ring->size - bytes);
1724         GEM_BUG_ON(ring->space < bytes);
1725         cs = ring->vaddr + ring->emit;
1726         GEM_DEBUG_EXEC(memset32(cs, POISON_INUSE, bytes / sizeof(*cs)));
1727         ring->emit += bytes;
1728         ring->space -= bytes;
1729
1730         return cs;
1731 }
1732
1733 /* Align the ring tail to a cacheline boundary */
1734 int intel_ring_cacheline_align(struct i915_request *rq)
1735 {
1736         int num_dwords;
1737         void *cs;
1738
1739         num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
1740         if (num_dwords == 0)
1741                 return 0;
1742
1743         num_dwords = CACHELINE_DWORDS - num_dwords;
1744         GEM_BUG_ON(num_dwords & 1);
1745
1746         cs = intel_ring_begin(rq, num_dwords);
1747         if (IS_ERR(cs))
1748                 return PTR_ERR(cs);
1749
1750         memset64(cs, (u64)MI_NOOP << 32 | MI_NOOP, num_dwords / 2);
1751         intel_ring_advance(rq, cs);
1752
1753         GEM_BUG_ON(rq->ring->emit & (CACHELINE_BYTES - 1));
1754         return 0;
1755 }
1756
1757 static void gen6_bsd_submit_request(struct i915_request *request)
1758 {
1759         struct drm_i915_private *dev_priv = request->i915;
1760
1761         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1762
1763        /* Every tail move must follow the sequence below */
1764
1765         /* Disable notification that the ring is IDLE. The GT
1766          * will then assume that it is busy and bring it out of rc6.
1767          */
1768         I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1769                       _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1770
1771         /* Clear the context id. Here be magic! */
1772         I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
1773
1774         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1775         if (__intel_wait_for_register_fw(dev_priv,
1776                                          GEN6_BSD_SLEEP_PSMI_CONTROL,
1777                                          GEN6_BSD_SLEEP_INDICATOR,
1778                                          0,
1779                                          1000, 0, NULL))
1780                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1781
1782         /* Now that the ring is fully powered up, update the tail */
1783         i9xx_submit_request(request);
1784
1785         /* Let the ring send IDLE messages to the GT again,
1786          * and so let it sleep to conserve power when idle.
1787          */
1788         I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
1789                       _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1790
1791         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1792 }
1793
1794 static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
1795 {
1796         u32 cmd, *cs;
1797
1798         cs = intel_ring_begin(rq, 4);
1799         if (IS_ERR(cs))
1800                 return PTR_ERR(cs);
1801
1802         cmd = MI_FLUSH_DW;
1803
1804         /* We always require a command barrier so that subsequent
1805          * commands, such as breadcrumb interrupts, are strictly ordered
1806          * wrt the contents of the write cache being flushed to memory
1807          * (and thus being coherent from the CPU).
1808          */
1809         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1810
1811         /*
1812          * Bspec vol 1c.5 - video engine command streamer:
1813          * "If ENABLED, all TLBs will be invalidated once the flush
1814          * operation is complete. This bit is only valid when the
1815          * Post-Sync Operation field is a value of 1h or 3h."
1816          */
1817         if (mode & EMIT_INVALIDATE)
1818                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1819
1820         *cs++ = cmd;
1821         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1822         *cs++ = 0;
1823         *cs++ = MI_NOOP;
1824         intel_ring_advance(rq, cs);
1825         return 0;
1826 }
1827
1828 static int
1829 hsw_emit_bb_start(struct i915_request *rq,
1830                   u64 offset, u32 len,
1831                   unsigned int dispatch_flags)
1832 {
1833         u32 *cs;
1834
1835         cs = intel_ring_begin(rq, 2);
1836         if (IS_ERR(cs))
1837                 return PTR_ERR(cs);
1838
1839         *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1840                 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
1841                 (dispatch_flags & I915_DISPATCH_RS ?
1842                 MI_BATCH_RESOURCE_STREAMER : 0);
1843         /* bit0-7 is the length on GEN6+ */
1844         *cs++ = offset;
1845         intel_ring_advance(rq, cs);
1846
1847         return 0;
1848 }
1849
1850 static int
1851 gen6_emit_bb_start(struct i915_request *rq,
1852                    u64 offset, u32 len,
1853                    unsigned int dispatch_flags)
1854 {
1855         u32 *cs;
1856
1857         cs = intel_ring_begin(rq, 2);
1858         if (IS_ERR(cs))
1859                 return PTR_ERR(cs);
1860
1861         *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
1862                 0 : MI_BATCH_NON_SECURE_I965);
1863         /* bit0-7 is the length on GEN6+ */
1864         *cs++ = offset;
1865         intel_ring_advance(rq, cs);
1866
1867         return 0;
1868 }
1869
1870 /* Blitter support (SandyBridge+) */
1871
1872 static int gen6_ring_flush(struct i915_request *rq, u32 mode)
1873 {
1874         u32 cmd, *cs;
1875
1876         cs = intel_ring_begin(rq, 4);
1877         if (IS_ERR(cs))
1878                 return PTR_ERR(cs);
1879
1880         cmd = MI_FLUSH_DW;
1881
1882         /* We always require a command barrier so that subsequent
1883          * commands, such as breadcrumb interrupts, are strictly ordered
1884          * wrt the contents of the write cache being flushed to memory
1885          * (and thus being coherent from the CPU).
1886          */
1887         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1888
1889         /*
1890          * Bspec vol 1c.3 - blitter engine command streamer:
1891          * "If ENABLED, all TLBs will be invalidated once the flush
1892          * operation is complete. This bit is only valid when the
1893          * Post-Sync Operation field is a value of 1h or 3h."
1894          */
1895         if (mode & EMIT_INVALIDATE)
1896                 cmd |= MI_INVALIDATE_TLB;
1897         *cs++ = cmd;
1898         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1899         *cs++ = 0;
1900         *cs++ = MI_NOOP;
1901         intel_ring_advance(rq, cs);
1902
1903         return 0;
1904 }
1905
1906 static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
1907                                        struct intel_engine_cs *engine)
1908 {
1909         int i;
1910
1911         if (!HAS_LEGACY_SEMAPHORES(dev_priv))
1912                 return;
1913
1914         GEM_BUG_ON(INTEL_GEN(dev_priv) < 6);
1915         engine->semaphore.sync_to = gen6_ring_sync_to;
1916         engine->semaphore.signal = gen6_signal;
1917
1918         /*
1919          * The current semaphore is only applied on pre-gen8
1920          * platform.  And there is no VCS2 ring on the pre-gen8
1921          * platform. So the semaphore between RCS and VCS2 is
1922          * initialized as INVALID.
1923          */
1924         for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
1925                 static const struct {
1926                         u32 wait_mbox;
1927                         i915_reg_t mbox_reg;
1928                 } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
1929                         [RCS_HW] = {
1930                                 [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
1931                                 [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
1932                                 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
1933                         },
1934                         [VCS_HW] = {
1935                                 [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
1936                                 [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
1937                                 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
1938                         },
1939                         [BCS_HW] = {
1940                                 [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
1941                                 [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
1942                                 [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
1943                         },
1944                         [VECS_HW] = {
1945                                 [RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
1946                                 [VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
1947                                 [BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
1948                         },
1949                 };
1950                 u32 wait_mbox;
1951                 i915_reg_t mbox_reg;
1952
1953                 if (i == engine->hw_id) {
1954                         wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
1955                         mbox_reg = GEN6_NOSYNC;
1956                 } else {
1957                         wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
1958                         mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
1959                 }
1960
1961                 engine->semaphore.mbox.wait[i] = wait_mbox;
1962                 engine->semaphore.mbox.signal[i] = mbox_reg;
1963         }
1964 }
1965
1966 static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
1967                                 struct intel_engine_cs *engine)
1968 {
1969         if (INTEL_GEN(dev_priv) >= 6) {
1970                 engine->irq_enable = gen6_irq_enable;
1971                 engine->irq_disable = gen6_irq_disable;
1972                 engine->irq_seqno_barrier = gen6_seqno_barrier;
1973         } else if (INTEL_GEN(dev_priv) >= 5) {
1974                 engine->irq_enable = gen5_irq_enable;
1975                 engine->irq_disable = gen5_irq_disable;
1976                 engine->irq_seqno_barrier = gen5_seqno_barrier;
1977         } else if (INTEL_GEN(dev_priv) >= 3) {
1978                 engine->irq_enable = i9xx_irq_enable;
1979                 engine->irq_disable = i9xx_irq_disable;
1980         } else {
1981                 engine->irq_enable = i8xx_irq_enable;
1982                 engine->irq_disable = i8xx_irq_disable;
1983         }
1984 }
1985
1986 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
1987 {
1988         engine->submit_request = i9xx_submit_request;
1989         engine->cancel_requests = cancel_requests;
1990
1991         engine->park = NULL;
1992         engine->unpark = NULL;
1993 }
1994
1995 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
1996 {
1997         i9xx_set_default_submission(engine);
1998         engine->submit_request = gen6_bsd_submit_request;
1999 }
2000
2001 static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2002                                       struct intel_engine_cs *engine)
2003 {
2004         /* gen8+ are only supported with execlists */
2005         GEM_BUG_ON(INTEL_GEN(dev_priv) >= 8);
2006
2007         intel_ring_init_irq(dev_priv, engine);
2008         intel_ring_init_semaphores(dev_priv, engine);
2009
2010         engine->init_hw = init_ring_common;
2011         engine->reset_hw = reset_ring_common;
2012
2013         engine->context_pin = intel_ring_context_pin;
2014         engine->context_unpin = intel_ring_context_unpin;
2015
2016         engine->request_alloc = ring_request_alloc;
2017
2018         engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2019         engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2020         if (HAS_LEGACY_SEMAPHORES(dev_priv)) {
2021                 int num_rings;
2022
2023                 engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2024
2025                 num_rings = INTEL_INFO(dev_priv)->num_rings - 1;
2026                 engine->emit_breadcrumb_sz += num_rings * 3;
2027                 if (num_rings & 1)
2028                         engine->emit_breadcrumb_sz++;
2029         }
2030
2031         engine->set_default_submission = i9xx_set_default_submission;
2032
2033         if (INTEL_GEN(dev_priv) >= 6)
2034                 engine->emit_bb_start = gen6_emit_bb_start;
2035         else if (INTEL_GEN(dev_priv) >= 4)
2036                 engine->emit_bb_start = i965_emit_bb_start;
2037         else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
2038                 engine->emit_bb_start = i830_emit_bb_start;
2039         else
2040                 engine->emit_bb_start = i915_emit_bb_start;
2041 }
2042
2043 int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2044 {
2045         struct drm_i915_private *dev_priv = engine->i915;
2046         int ret;
2047
2048         intel_ring_default_vfuncs(dev_priv, engine);
2049
2050         if (HAS_L3_DPF(dev_priv))
2051                 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2052
2053         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2054
2055         if (INTEL_GEN(dev_priv) >= 6) {
2056                 engine->init_context = intel_rcs_ctx_init;
2057                 engine->emit_flush = gen7_render_ring_flush;
2058                 if (IS_GEN6(dev_priv))
2059                         engine->emit_flush = gen6_render_ring_flush;
2060         } else if (IS_GEN5(dev_priv)) {
2061                 engine->emit_flush = gen4_render_ring_flush;
2062         } else {
2063                 if (INTEL_GEN(dev_priv) < 4)
2064                         engine->emit_flush = gen2_render_ring_flush;
2065                 else
2066                         engine->emit_flush = gen4_render_ring_flush;
2067                 engine->irq_enable_mask = I915_USER_INTERRUPT;
2068         }
2069
2070         if (IS_HASWELL(dev_priv))
2071                 engine->emit_bb_start = hsw_emit_bb_start;
2072
2073         engine->init_hw = init_render_ring;
2074
2075         ret = intel_init_ring_buffer(engine);
2076         if (ret)
2077                 return ret;
2078
2079         if (INTEL_GEN(dev_priv) >= 6) {
2080                 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2081                 if (ret)
2082                         return ret;
2083         } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2084                 ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2085                 if (ret)
2086                         return ret;
2087         }
2088
2089         return 0;
2090 }
2091
2092 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2093 {
2094         struct drm_i915_private *dev_priv = engine->i915;
2095
2096         intel_ring_default_vfuncs(dev_priv, engine);
2097
2098         if (INTEL_GEN(dev_priv) >= 6) {
2099                 /* gen6 bsd needs a special wa for tail updates */
2100                 if (IS_GEN6(dev_priv))
2101                         engine->set_default_submission = gen6_bsd_set_default_submission;
2102                 engine->emit_flush = gen6_bsd_ring_flush;
2103                 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2104         } else {
2105                 engine->emit_flush = bsd_ring_flush;
2106                 if (IS_GEN5(dev_priv))
2107                         engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2108                 else
2109                         engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2110         }
2111
2112         return intel_init_ring_buffer(engine);
2113 }
2114
2115 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2116 {
2117         struct drm_i915_private *dev_priv = engine->i915;
2118
2119         intel_ring_default_vfuncs(dev_priv, engine);
2120
2121         engine->emit_flush = gen6_ring_flush;
2122         engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2123
2124         return intel_init_ring_buffer(engine);
2125 }
2126
2127 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
2128 {
2129         struct drm_i915_private *dev_priv = engine->i915;
2130
2131         intel_ring_default_vfuncs(dev_priv, engine);
2132
2133         engine->emit_flush = gen6_ring_flush;
2134         engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2135         engine->irq_enable = hsw_vebox_irq_enable;
2136         engine->irq_disable = hsw_vebox_irq_disable;
2137
2138         return intel_init_ring_buffer(engine);
2139 }