bbec56f978323ac56e545e3132770a22b187c58b
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/module.h>
29 #include <linux/pm_runtime.h>
30
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_fourcc.h>
33 #include <drm/drm_plane_helper.h>
34
35 #include "display/intel_atomic.h"
36 #include "display/intel_bw.h"
37 #include "display/intel_display_types.h"
38 #include "display/intel_fbc.h"
39 #include "display/intel_sprite.h"
40
41 #include "gt/intel_llc.h"
42
43 #include "i915_drv.h"
44 #include "i915_fixed.h"
45 #include "i915_irq.h"
46 #include "i915_trace.h"
47 #include "intel_pm.h"
48 #include "intel_sideband.h"
49 #include "../../../platform/x86/intel_ips.h"
50
51 /* Stores plane specific WM parameters */
52 struct skl_wm_params {
53         bool x_tiled, y_tiled;
54         bool rc_surface;
55         bool is_planar;
56         u32 width;
57         u8 cpp;
58         u32 plane_pixel_rate;
59         u32 y_min_scanlines;
60         u32 plane_bytes_per_line;
61         uint_fixed_16_16_t plane_blocks_per_line;
62         uint_fixed_16_16_t y_tile_minimum;
63         u32 linetime_us;
64         u32 dbuf_block_size;
65 };
66
67 /* used in computing the new watermarks state */
68 struct intel_wm_config {
69         unsigned int num_pipes_active;
70         bool sprites_enabled;
71         bool sprites_scaled;
72 };
73
74 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
75 {
76         if (HAS_LLC(dev_priv)) {
77                 /*
78                  * WaCompressedResourceDisplayNewHashMode:skl,kbl
79                  * Display WA #0390: skl,kbl
80                  *
81                  * Must match Sampler, Pixel Back End, and Media. See
82                  * WaCompressedResourceSamplerPbeMediaNewHashMode.
83                  */
84                 I915_WRITE(CHICKEN_PAR1_1,
85                            I915_READ(CHICKEN_PAR1_1) |
86                            SKL_DE_COMPRESSED_HASH_MODE);
87         }
88
89         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
90         I915_WRITE(CHICKEN_PAR1_1,
91                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
92
93         /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
94         I915_WRITE(GEN8_CHICKEN_DCPR_1,
95                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
96
97         /*
98          * WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl
99          * Display WA #0859: skl,bxt,kbl,glk,cfl
100          */
101         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
102                    DISP_FBC_MEMORY_WAKE);
103 }
104
105 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
106 {
107         gen9_init_clock_gating(dev_priv);
108
109         /* WaDisableSDEUnitClockGating:bxt */
110         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
111                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
112
113         /*
114          * FIXME:
115          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
116          */
117         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
118                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
119
120         /*
121          * Wa: Backlight PWM may stop in the asserted state, causing backlight
122          * to stay fully on.
123          */
124         I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
125                    PWM1_GATING_DIS | PWM2_GATING_DIS);
126
127         /*
128          * Lower the display internal timeout.
129          * This is needed to avoid any hard hangs when DSI port PLL
130          * is off and a MMIO access is attempted by any privilege
131          * application, using batch buffers or any other means.
132          */
133         I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
134
135         /*
136          * WaFbcTurnOffFbcWatermark:bxt
137          * Display WA #0562: bxt
138          */
139         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
140                    DISP_FBC_WM_DIS);
141
142         /*
143          * WaFbcHighMemBwCorruptionAvoidance:bxt
144          * Display WA #0883: bxt
145          */
146         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
147                    ILK_DPFC_DISABLE_DUMMY0);
148 }
149
150 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
151 {
152         gen9_init_clock_gating(dev_priv);
153
154         /*
155          * WaDisablePWMClockGating:glk
156          * Backlight PWM may stop in the asserted state, causing backlight
157          * to stay fully on.
158          */
159         I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
160                    PWM1_GATING_DIS | PWM2_GATING_DIS);
161 }
162
163 static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
164 {
165         u32 tmp;
166
167         tmp = I915_READ(CLKCFG);
168
169         switch (tmp & CLKCFG_FSB_MASK) {
170         case CLKCFG_FSB_533:
171                 dev_priv->fsb_freq = 533; /* 133*4 */
172                 break;
173         case CLKCFG_FSB_800:
174                 dev_priv->fsb_freq = 800; /* 200*4 */
175                 break;
176         case CLKCFG_FSB_667:
177                 dev_priv->fsb_freq =  667; /* 167*4 */
178                 break;
179         case CLKCFG_FSB_400:
180                 dev_priv->fsb_freq = 400; /* 100*4 */
181                 break;
182         }
183
184         switch (tmp & CLKCFG_MEM_MASK) {
185         case CLKCFG_MEM_533:
186                 dev_priv->mem_freq = 533;
187                 break;
188         case CLKCFG_MEM_667:
189                 dev_priv->mem_freq = 667;
190                 break;
191         case CLKCFG_MEM_800:
192                 dev_priv->mem_freq = 800;
193                 break;
194         }
195
196         /* detect pineview DDR3 setting */
197         tmp = I915_READ(CSHRDDR3CTL);
198         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
199 }
200
201 static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
202 {
203         u16 ddrpll, csipll;
204
205         ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
206         csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
207
208         switch (ddrpll & 0xff) {
209         case 0xc:
210                 dev_priv->mem_freq = 800;
211                 break;
212         case 0x10:
213                 dev_priv->mem_freq = 1066;
214                 break;
215         case 0x14:
216                 dev_priv->mem_freq = 1333;
217                 break;
218         case 0x18:
219                 dev_priv->mem_freq = 1600;
220                 break;
221         default:
222                 drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
223                         ddrpll & 0xff);
224                 dev_priv->mem_freq = 0;
225                 break;
226         }
227
228         switch (csipll & 0x3ff) {
229         case 0x00c:
230                 dev_priv->fsb_freq = 3200;
231                 break;
232         case 0x00e:
233                 dev_priv->fsb_freq = 3733;
234                 break;
235         case 0x010:
236                 dev_priv->fsb_freq = 4266;
237                 break;
238         case 0x012:
239                 dev_priv->fsb_freq = 4800;
240                 break;
241         case 0x014:
242                 dev_priv->fsb_freq = 5333;
243                 break;
244         case 0x016:
245                 dev_priv->fsb_freq = 5866;
246                 break;
247         case 0x018:
248                 dev_priv->fsb_freq = 6400;
249                 break;
250         default:
251                 drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
252                         csipll & 0x3ff);
253                 dev_priv->fsb_freq = 0;
254                 break;
255         }
256 }
257
258 static const struct cxsr_latency cxsr_latency_table[] = {
259         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
260         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
261         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
262         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
263         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
264
265         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
266         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
267         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
268         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
269         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
270
271         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
272         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
273         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
274         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
275         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
276
277         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
278         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
279         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
280         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
281         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
282
283         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
284         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
285         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
286         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
287         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
288
289         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
290         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
291         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
292         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
293         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
294 };
295
296 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
297                                                          bool is_ddr3,
298                                                          int fsb,
299                                                          int mem)
300 {
301         const struct cxsr_latency *latency;
302         int i;
303
304         if (fsb == 0 || mem == 0)
305                 return NULL;
306
307         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
308                 latency = &cxsr_latency_table[i];
309                 if (is_desktop == latency->is_desktop &&
310                     is_ddr3 == latency->is_ddr3 &&
311                     fsb == latency->fsb_freq && mem == latency->mem_freq)
312                         return latency;
313         }
314
315         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
316
317         return NULL;
318 }
319
320 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
321 {
322         u32 val;
323
324         vlv_punit_get(dev_priv);
325
326         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
327         if (enable)
328                 val &= ~FORCE_DDR_HIGH_FREQ;
329         else
330                 val |= FORCE_DDR_HIGH_FREQ;
331         val &= ~FORCE_DDR_LOW_FREQ;
332         val |= FORCE_DDR_FREQ_REQ_ACK;
333         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
334
335         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
336                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
337                 drm_err(&dev_priv->drm,
338                         "timed out waiting for Punit DDR DVFS request\n");
339
340         vlv_punit_put(dev_priv);
341 }
342
343 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
344 {
345         u32 val;
346
347         vlv_punit_get(dev_priv);
348
349         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
350         if (enable)
351                 val |= DSP_MAXFIFO_PM5_ENABLE;
352         else
353                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
354         vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
355
356         vlv_punit_put(dev_priv);
357 }
358
359 #define FW_WM(value, plane) \
360         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
361
362 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
363 {
364         bool was_enabled;
365         u32 val;
366
367         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
368                 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
369                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
370                 POSTING_READ(FW_BLC_SELF_VLV);
371         } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
372                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
373                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
374                 POSTING_READ(FW_BLC_SELF);
375         } else if (IS_PINEVIEW(dev_priv)) {
376                 val = I915_READ(DSPFW3);
377                 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
378                 if (enable)
379                         val |= PINEVIEW_SELF_REFRESH_EN;
380                 else
381                         val &= ~PINEVIEW_SELF_REFRESH_EN;
382                 I915_WRITE(DSPFW3, val);
383                 POSTING_READ(DSPFW3);
384         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
385                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
386                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
387                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
388                 I915_WRITE(FW_BLC_SELF, val);
389                 POSTING_READ(FW_BLC_SELF);
390         } else if (IS_I915GM(dev_priv)) {
391                 /*
392                  * FIXME can't find a bit like this for 915G, and
393                  * and yet it does have the related watermark in
394                  * FW_BLC_SELF. What's going on?
395                  */
396                 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
397                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
398                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
399                 I915_WRITE(INSTPM, val);
400                 POSTING_READ(INSTPM);
401         } else {
402                 return false;
403         }
404
405         trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
406
407         drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
408                     enableddisabled(enable),
409                     enableddisabled(was_enabled));
410
411         return was_enabled;
412 }
413
414 /**
415  * intel_set_memory_cxsr - Configure CxSR state
416  * @dev_priv: i915 device
417  * @enable: Allow vs. disallow CxSR
418  *
419  * Allow or disallow the system to enter a special CxSR
420  * (C-state self refresh) state. What typically happens in CxSR mode
421  * is that several display FIFOs may get combined into a single larger
422  * FIFO for a particular plane (so called max FIFO mode) to allow the
423  * system to defer memory fetches longer, and the memory will enter
424  * self refresh.
425  *
426  * Note that enabling CxSR does not guarantee that the system enter
427  * this special mode, nor does it guarantee that the system stays
428  * in that mode once entered. So this just allows/disallows the system
429  * to autonomously utilize the CxSR mode. Other factors such as core
430  * C-states will affect when/if the system actually enters/exits the
431  * CxSR mode.
432  *
433  * Note that on VLV/CHV this actually only controls the max FIFO mode,
434  * and the system is free to enter/exit memory self refresh at any time
435  * even when the use of CxSR has been disallowed.
436  *
437  * While the system is actually in the CxSR/max FIFO mode, some plane
438  * control registers will not get latched on vblank. Thus in order to
439  * guarantee the system will respond to changes in the plane registers
440  * we must always disallow CxSR prior to making changes to those registers.
441  * Unfortunately the system will re-evaluate the CxSR conditions at
442  * frame start which happens after vblank start (which is when the plane
443  * registers would get latched), so we can't proceed with the plane update
444  * during the same frame where we disallowed CxSR.
445  *
446  * Certain platforms also have a deeper HPLL SR mode. Fortunately the
447  * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
448  * the hardware w.r.t. HPLL SR when writing to plane registers.
449  * Disallowing just CxSR is sufficient.
450  */
451 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
452 {
453         bool ret;
454
455         mutex_lock(&dev_priv->wm.wm_mutex);
456         ret = _intel_set_memory_cxsr(dev_priv, enable);
457         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
458                 dev_priv->wm.vlv.cxsr = enable;
459         else if (IS_G4X(dev_priv))
460                 dev_priv->wm.g4x.cxsr = enable;
461         mutex_unlock(&dev_priv->wm.wm_mutex);
462
463         return ret;
464 }
465
466 /*
467  * Latency for FIFO fetches is dependent on several factors:
468  *   - memory configuration (speed, channels)
469  *   - chipset
470  *   - current MCH state
471  * It can be fairly high in some situations, so here we assume a fairly
472  * pessimal value.  It's a tradeoff between extra memory fetches (if we
473  * set this value too high, the FIFO will fetch frequently to stay full)
474  * and power consumption (set it too low to save power and we might see
475  * FIFO underruns and display "flicker").
476  *
477  * A value of 5us seems to be a good balance; safe for very low end
478  * platforms but not overly aggressive on lower latency configs.
479  */
480 static const int pessimal_latency_ns = 5000;
481
482 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
483         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
484
485 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
486 {
487         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
488         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
489         struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
490         enum pipe pipe = crtc->pipe;
491         int sprite0_start, sprite1_start;
492         u32 dsparb, dsparb2, dsparb3;
493
494         switch (pipe) {
495         case PIPE_A:
496                 dsparb = I915_READ(DSPARB);
497                 dsparb2 = I915_READ(DSPARB2);
498                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
499                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
500                 break;
501         case PIPE_B:
502                 dsparb = I915_READ(DSPARB);
503                 dsparb2 = I915_READ(DSPARB2);
504                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
505                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
506                 break;
507         case PIPE_C:
508                 dsparb2 = I915_READ(DSPARB2);
509                 dsparb3 = I915_READ(DSPARB3);
510                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
511                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
512                 break;
513         default:
514                 MISSING_CASE(pipe);
515                 return;
516         }
517
518         fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
519         fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
520         fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
521         fifo_state->plane[PLANE_CURSOR] = 63;
522 }
523
524 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
525                               enum i9xx_plane_id i9xx_plane)
526 {
527         u32 dsparb = I915_READ(DSPARB);
528         int size;
529
530         size = dsparb & 0x7f;
531         if (i9xx_plane == PLANE_B)
532                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
533
534         drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
535                     dsparb, plane_name(i9xx_plane), size);
536
537         return size;
538 }
539
540 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
541                               enum i9xx_plane_id i9xx_plane)
542 {
543         u32 dsparb = I915_READ(DSPARB);
544         int size;
545
546         size = dsparb & 0x1ff;
547         if (i9xx_plane == PLANE_B)
548                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
549         size >>= 1; /* Convert to cachelines */
550
551         drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
552                     dsparb, plane_name(i9xx_plane), size);
553
554         return size;
555 }
556
557 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
558                               enum i9xx_plane_id i9xx_plane)
559 {
560         u32 dsparb = I915_READ(DSPARB);
561         int size;
562
563         size = dsparb & 0x7f;
564         size >>= 2; /* Convert to cachelines */
565
566         drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
567                     dsparb, plane_name(i9xx_plane), size);
568
569         return size;
570 }
571
572 /* Pineview has different values for various configs */
573 static const struct intel_watermark_params pnv_display_wm = {
574         .fifo_size = PINEVIEW_DISPLAY_FIFO,
575         .max_wm = PINEVIEW_MAX_WM,
576         .default_wm = PINEVIEW_DFT_WM,
577         .guard_size = PINEVIEW_GUARD_WM,
578         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
579 };
580
581 static const struct intel_watermark_params pnv_display_hplloff_wm = {
582         .fifo_size = PINEVIEW_DISPLAY_FIFO,
583         .max_wm = PINEVIEW_MAX_WM,
584         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
585         .guard_size = PINEVIEW_GUARD_WM,
586         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
587 };
588
589 static const struct intel_watermark_params pnv_cursor_wm = {
590         .fifo_size = PINEVIEW_CURSOR_FIFO,
591         .max_wm = PINEVIEW_CURSOR_MAX_WM,
592         .default_wm = PINEVIEW_CURSOR_DFT_WM,
593         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
594         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
595 };
596
597 static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
598         .fifo_size = PINEVIEW_CURSOR_FIFO,
599         .max_wm = PINEVIEW_CURSOR_MAX_WM,
600         .default_wm = PINEVIEW_CURSOR_DFT_WM,
601         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
602         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
603 };
604
605 static const struct intel_watermark_params i965_cursor_wm_info = {
606         .fifo_size = I965_CURSOR_FIFO,
607         .max_wm = I965_CURSOR_MAX_WM,
608         .default_wm = I965_CURSOR_DFT_WM,
609         .guard_size = 2,
610         .cacheline_size = I915_FIFO_LINE_SIZE,
611 };
612
613 static const struct intel_watermark_params i945_wm_info = {
614         .fifo_size = I945_FIFO_SIZE,
615         .max_wm = I915_MAX_WM,
616         .default_wm = 1,
617         .guard_size = 2,
618         .cacheline_size = I915_FIFO_LINE_SIZE,
619 };
620
621 static const struct intel_watermark_params i915_wm_info = {
622         .fifo_size = I915_FIFO_SIZE,
623         .max_wm = I915_MAX_WM,
624         .default_wm = 1,
625         .guard_size = 2,
626         .cacheline_size = I915_FIFO_LINE_SIZE,
627 };
628
629 static const struct intel_watermark_params i830_a_wm_info = {
630         .fifo_size = I855GM_FIFO_SIZE,
631         .max_wm = I915_MAX_WM,
632         .default_wm = 1,
633         .guard_size = 2,
634         .cacheline_size = I830_FIFO_LINE_SIZE,
635 };
636
637 static const struct intel_watermark_params i830_bc_wm_info = {
638         .fifo_size = I855GM_FIFO_SIZE,
639         .max_wm = I915_MAX_WM/2,
640         .default_wm = 1,
641         .guard_size = 2,
642         .cacheline_size = I830_FIFO_LINE_SIZE,
643 };
644
645 static const struct intel_watermark_params i845_wm_info = {
646         .fifo_size = I830_FIFO_SIZE,
647         .max_wm = I915_MAX_WM,
648         .default_wm = 1,
649         .guard_size = 2,
650         .cacheline_size = I830_FIFO_LINE_SIZE,
651 };
652
653 /**
654  * intel_wm_method1 - Method 1 / "small buffer" watermark formula
655  * @pixel_rate: Pipe pixel rate in kHz
656  * @cpp: Plane bytes per pixel
657  * @latency: Memory wakeup latency in 0.1us units
658  *
659  * Compute the watermark using the method 1 or "small buffer"
660  * formula. The caller may additonally add extra cachelines
661  * to account for TLB misses and clock crossings.
662  *
663  * This method is concerned with the short term drain rate
664  * of the FIFO, ie. it does not account for blanking periods
665  * which would effectively reduce the average drain rate across
666  * a longer period. The name "small" refers to the fact the
667  * FIFO is relatively small compared to the amount of data
668  * fetched.
669  *
670  * The FIFO level vs. time graph might look something like:
671  *
672  *   |\   |\
673  *   | \  | \
674  * __---__---__ (- plane active, _ blanking)
675  * -> time
676  *
677  * or perhaps like this:
678  *
679  *   |\|\  |\|\
680  * __----__----__ (- plane active, _ blanking)
681  * -> time
682  *
683  * Returns:
684  * The watermark in bytes
685  */
686 static unsigned int intel_wm_method1(unsigned int pixel_rate,
687                                      unsigned int cpp,
688                                      unsigned int latency)
689 {
690         u64 ret;
691
692         ret = mul_u32_u32(pixel_rate, cpp * latency);
693         ret = DIV_ROUND_UP_ULL(ret, 10000);
694
695         return ret;
696 }
697
698 /**
699  * intel_wm_method2 - Method 2 / "large buffer" watermark formula
700  * @pixel_rate: Pipe pixel rate in kHz
701  * @htotal: Pipe horizontal total
702  * @width: Plane width in pixels
703  * @cpp: Plane bytes per pixel
704  * @latency: Memory wakeup latency in 0.1us units
705  *
706  * Compute the watermark using the method 2 or "large buffer"
707  * formula. The caller may additonally add extra cachelines
708  * to account for TLB misses and clock crossings.
709  *
710  * This method is concerned with the long term drain rate
711  * of the FIFO, ie. it does account for blanking periods
712  * which effectively reduce the average drain rate across
713  * a longer period. The name "large" refers to the fact the
714  * FIFO is relatively large compared to the amount of data
715  * fetched.
716  *
717  * The FIFO level vs. time graph might look something like:
718  *
719  *    |\___       |\___
720  *    |    \___   |    \___
721  *    |        \  |        \
722  * __ --__--__--__--__--__--__ (- plane active, _ blanking)
723  * -> time
724  *
725  * Returns:
726  * The watermark in bytes
727  */
728 static unsigned int intel_wm_method2(unsigned int pixel_rate,
729                                      unsigned int htotal,
730                                      unsigned int width,
731                                      unsigned int cpp,
732                                      unsigned int latency)
733 {
734         unsigned int ret;
735
736         /*
737          * FIXME remove once all users are computing
738          * watermarks in the correct place.
739          */
740         if (WARN_ON_ONCE(htotal == 0))
741                 htotal = 1;
742
743         ret = (latency * pixel_rate) / (htotal * 10000);
744         ret = (ret + 1) * width * cpp;
745
746         return ret;
747 }
748
749 /**
750  * intel_calculate_wm - calculate watermark level
751  * @pixel_rate: pixel clock
752  * @wm: chip FIFO params
753  * @fifo_size: size of the FIFO buffer
754  * @cpp: bytes per pixel
755  * @latency_ns: memory latency for the platform
756  *
757  * Calculate the watermark level (the level at which the display plane will
758  * start fetching from memory again).  Each chip has a different display
759  * FIFO size and allocation, so the caller needs to figure that out and pass
760  * in the correct intel_watermark_params structure.
761  *
762  * As the pixel clock runs, the FIFO will be drained at a rate that depends
763  * on the pixel size.  When it reaches the watermark level, it'll start
764  * fetching FIFO line sized based chunks from memory until the FIFO fills
765  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
766  * will occur, and a display engine hang could result.
767  */
768 static unsigned int intel_calculate_wm(int pixel_rate,
769                                        const struct intel_watermark_params *wm,
770                                        int fifo_size, int cpp,
771                                        unsigned int latency_ns)
772 {
773         int entries, wm_size;
774
775         /*
776          * Note: we need to make sure we don't overflow for various clock &
777          * latency values.
778          * clocks go from a few thousand to several hundred thousand.
779          * latency is usually a few thousand
780          */
781         entries = intel_wm_method1(pixel_rate, cpp,
782                                    latency_ns / 100);
783         entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
784                 wm->guard_size;
785         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
786
787         wm_size = fifo_size - entries;
788         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
789
790         /* Don't promote wm_size to unsigned... */
791         if (wm_size > wm->max_wm)
792                 wm_size = wm->max_wm;
793         if (wm_size <= 0)
794                 wm_size = wm->default_wm;
795
796         /*
797          * Bspec seems to indicate that the value shouldn't be lower than
798          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
799          * Lets go for 8 which is the burst size since certain platforms
800          * already use a hardcoded 8 (which is what the spec says should be
801          * done).
802          */
803         if (wm_size <= 8)
804                 wm_size = 8;
805
806         return wm_size;
807 }
808
809 static bool is_disabling(int old, int new, int threshold)
810 {
811         return old >= threshold && new < threshold;
812 }
813
814 static bool is_enabling(int old, int new, int threshold)
815 {
816         return old < threshold && new >= threshold;
817 }
818
819 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
820 {
821         return dev_priv->wm.max_level + 1;
822 }
823
824 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
825                                    const struct intel_plane_state *plane_state)
826 {
827         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
828
829         /* FIXME check the 'enable' instead */
830         if (!crtc_state->hw.active)
831                 return false;
832
833         /*
834          * Treat cursor with fb as always visible since cursor updates
835          * can happen faster than the vrefresh rate, and the current
836          * watermark code doesn't handle that correctly. Cursor updates
837          * which set/clear the fb or change the cursor size are going
838          * to get throttled by intel_legacy_cursor_update() to work
839          * around this problem with the watermark code.
840          */
841         if (plane->id == PLANE_CURSOR)
842                 return plane_state->hw.fb != NULL;
843         else
844                 return plane_state->uapi.visible;
845 }
846
847 static bool intel_crtc_active(struct intel_crtc *crtc)
848 {
849         /* Be paranoid as we can arrive here with only partial
850          * state retrieved from the hardware during setup.
851          *
852          * We can ditch the adjusted_mode.crtc_clock check as soon
853          * as Haswell has gained clock readout/fastboot support.
854          *
855          * We can ditch the crtc->primary->state->fb check as soon as we can
856          * properly reconstruct framebuffers.
857          *
858          * FIXME: The intel_crtc->active here should be switched to
859          * crtc->state->active once we have proper CRTC states wired up
860          * for atomic.
861          */
862         return crtc->active && crtc->base.primary->state->fb &&
863                 crtc->config->hw.adjusted_mode.crtc_clock;
864 }
865
866 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
867 {
868         struct intel_crtc *crtc, *enabled = NULL;
869
870         for_each_intel_crtc(&dev_priv->drm, crtc) {
871                 if (intel_crtc_active(crtc)) {
872                         if (enabled)
873                                 return NULL;
874                         enabled = crtc;
875                 }
876         }
877
878         return enabled;
879 }
880
881 static void pnv_update_wm(struct intel_crtc *unused_crtc)
882 {
883         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
884         struct intel_crtc *crtc;
885         const struct cxsr_latency *latency;
886         u32 reg;
887         unsigned int wm;
888
889         latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
890                                          dev_priv->is_ddr3,
891                                          dev_priv->fsb_freq,
892                                          dev_priv->mem_freq);
893         if (!latency) {
894                 drm_dbg_kms(&dev_priv->drm,
895                             "Unknown FSB/MEM found, disable CxSR\n");
896                 intel_set_memory_cxsr(dev_priv, false);
897                 return;
898         }
899
900         crtc = single_enabled_crtc(dev_priv);
901         if (crtc) {
902                 const struct drm_display_mode *adjusted_mode =
903                         &crtc->config->hw.adjusted_mode;
904                 const struct drm_framebuffer *fb =
905                         crtc->base.primary->state->fb;
906                 int cpp = fb->format->cpp[0];
907                 int clock = adjusted_mode->crtc_clock;
908
909                 /* Display SR */
910                 wm = intel_calculate_wm(clock, &pnv_display_wm,
911                                         pnv_display_wm.fifo_size,
912                                         cpp, latency->display_sr);
913                 reg = I915_READ(DSPFW1);
914                 reg &= ~DSPFW_SR_MASK;
915                 reg |= FW_WM(wm, SR);
916                 I915_WRITE(DSPFW1, reg);
917                 drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
918
919                 /* cursor SR */
920                 wm = intel_calculate_wm(clock, &pnv_cursor_wm,
921                                         pnv_display_wm.fifo_size,
922                                         4, latency->cursor_sr);
923                 reg = I915_READ(DSPFW3);
924                 reg &= ~DSPFW_CURSOR_SR_MASK;
925                 reg |= FW_WM(wm, CURSOR_SR);
926                 I915_WRITE(DSPFW3, reg);
927
928                 /* Display HPLL off SR */
929                 wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm,
930                                         pnv_display_hplloff_wm.fifo_size,
931                                         cpp, latency->display_hpll_disable);
932                 reg = I915_READ(DSPFW3);
933                 reg &= ~DSPFW_HPLL_SR_MASK;
934                 reg |= FW_WM(wm, HPLL_SR);
935                 I915_WRITE(DSPFW3, reg);
936
937                 /* cursor HPLL off SR */
938                 wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm,
939                                         pnv_display_hplloff_wm.fifo_size,
940                                         4, latency->cursor_hpll_disable);
941                 reg = I915_READ(DSPFW3);
942                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
943                 reg |= FW_WM(wm, HPLL_CURSOR);
944                 I915_WRITE(DSPFW3, reg);
945                 drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
946
947                 intel_set_memory_cxsr(dev_priv, true);
948         } else {
949                 intel_set_memory_cxsr(dev_priv, false);
950         }
951 }
952
953 /*
954  * Documentation says:
955  * "If the line size is small, the TLB fetches can get in the way of the
956  *  data fetches, causing some lag in the pixel data return which is not
957  *  accounted for in the above formulas. The following adjustment only
958  *  needs to be applied if eight whole lines fit in the buffer at once.
959  *  The WM is adjusted upwards by the difference between the FIFO size
960  *  and the size of 8 whole lines. This adjustment is always performed
961  *  in the actual pixel depth regardless of whether FBC is enabled or not."
962  */
963 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
964 {
965         int tlb_miss = fifo_size * 64 - width * cpp * 8;
966
967         return max(0, tlb_miss);
968 }
969
970 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
971                                 const struct g4x_wm_values *wm)
972 {
973         enum pipe pipe;
974
975         for_each_pipe(dev_priv, pipe)
976                 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
977
978         I915_WRITE(DSPFW1,
979                    FW_WM(wm->sr.plane, SR) |
980                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
981                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
982                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
983         I915_WRITE(DSPFW2,
984                    (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
985                    FW_WM(wm->sr.fbc, FBC_SR) |
986                    FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
987                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
988                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
989                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
990         I915_WRITE(DSPFW3,
991                    (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
992                    FW_WM(wm->sr.cursor, CURSOR_SR) |
993                    FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
994                    FW_WM(wm->hpll.plane, HPLL_SR));
995
996         POSTING_READ(DSPFW1);
997 }
998
999 #define FW_WM_VLV(value, plane) \
1000         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
1001
1002 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
1003                                 const struct vlv_wm_values *wm)
1004 {
1005         enum pipe pipe;
1006
1007         for_each_pipe(dev_priv, pipe) {
1008                 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
1009
1010                 I915_WRITE(VLV_DDL(pipe),
1011                            (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
1012                            (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
1013                            (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
1014                            (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
1015         }
1016
1017         /*
1018          * Zero the (unused) WM1 watermarks, and also clear all the
1019          * high order bits so that there are no out of bounds values
1020          * present in the registers during the reprogramming.
1021          */
1022         I915_WRITE(DSPHOWM, 0);
1023         I915_WRITE(DSPHOWM1, 0);
1024         I915_WRITE(DSPFW4, 0);
1025         I915_WRITE(DSPFW5, 0);
1026         I915_WRITE(DSPFW6, 0);
1027
1028         I915_WRITE(DSPFW1,
1029                    FW_WM(wm->sr.plane, SR) |
1030                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
1031                    FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
1032                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1033         I915_WRITE(DSPFW2,
1034                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
1035                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1036                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1037         I915_WRITE(DSPFW3,
1038                    FW_WM(wm->sr.cursor, CURSOR_SR));
1039
1040         if (IS_CHERRYVIEW(dev_priv)) {
1041                 I915_WRITE(DSPFW7_CHV,
1042                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1043                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1044                 I915_WRITE(DSPFW8_CHV,
1045                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1046                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1047                 I915_WRITE(DSPFW9_CHV,
1048                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1049                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1050                 I915_WRITE(DSPHOWM,
1051                            FW_WM(wm->sr.plane >> 9, SR_HI) |
1052                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1053                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1054                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1055                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1056                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1057                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1058                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1059                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1060                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1061         } else {
1062                 I915_WRITE(DSPFW7,
1063                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1064                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1065                 I915_WRITE(DSPHOWM,
1066                            FW_WM(wm->sr.plane >> 9, SR_HI) |
1067                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1068                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1069                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1070                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1071                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1072                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1073         }
1074
1075         POSTING_READ(DSPFW1);
1076 }
1077
1078 #undef FW_WM_VLV
1079
1080 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1081 {
1082         /* all latencies in usec */
1083         dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1084         dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1085         dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1086
1087         dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1088 }
1089
1090 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1091 {
1092         /*
1093          * DSPCNTR[13] supposedly controls whether the
1094          * primary plane can use the FIFO space otherwise
1095          * reserved for the sprite plane. It's not 100% clear
1096          * what the actual FIFO size is, but it looks like we
1097          * can happily set both primary and sprite watermarks
1098          * up to 127 cachelines. So that would seem to mean
1099          * that either DSPCNTR[13] doesn't do anything, or that
1100          * the total FIFO is >= 256 cachelines in size. Either
1101          * way, we don't seem to have to worry about this
1102          * repartitioning as the maximum watermark value the
1103          * register can hold for each plane is lower than the
1104          * minimum FIFO size.
1105          */
1106         switch (plane_id) {
1107         case PLANE_CURSOR:
1108                 return 63;
1109         case PLANE_PRIMARY:
1110                 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1111         case PLANE_SPRITE0:
1112                 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1113         default:
1114                 MISSING_CASE(plane_id);
1115                 return 0;
1116         }
1117 }
1118
1119 static int g4x_fbc_fifo_size(int level)
1120 {
1121         switch (level) {
1122         case G4X_WM_LEVEL_SR:
1123                 return 7;
1124         case G4X_WM_LEVEL_HPLL:
1125                 return 15;
1126         default:
1127                 MISSING_CASE(level);
1128                 return 0;
1129         }
1130 }
1131
1132 static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1133                           const struct intel_plane_state *plane_state,
1134                           int level)
1135 {
1136         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1137         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1138         const struct drm_display_mode *adjusted_mode =
1139                 &crtc_state->hw.adjusted_mode;
1140         unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1141         unsigned int clock, htotal, cpp, width, wm;
1142
1143         if (latency == 0)
1144                 return USHRT_MAX;
1145
1146         if (!intel_wm_plane_visible(crtc_state, plane_state))
1147                 return 0;
1148
1149         cpp = plane_state->hw.fb->format->cpp[0];
1150
1151         /*
1152          * Not 100% sure which way ELK should go here as the
1153          * spec only says CL/CTG should assume 32bpp and BW
1154          * doesn't need to. But as these things followed the
1155          * mobile vs. desktop lines on gen3 as well, let's
1156          * assume ELK doesn't need this.
1157          *
1158          * The spec also fails to list such a restriction for
1159          * the HPLL watermark, which seems a little strange.
1160          * Let's use 32bpp for the HPLL watermark as well.
1161          */
1162         if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1163             level != G4X_WM_LEVEL_NORMAL)
1164                 cpp = max(cpp, 4u);
1165
1166         clock = adjusted_mode->crtc_clock;
1167         htotal = adjusted_mode->crtc_htotal;
1168
1169         width = drm_rect_width(&plane_state->uapi.dst);
1170
1171         if (plane->id == PLANE_CURSOR) {
1172                 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1173         } else if (plane->id == PLANE_PRIMARY &&
1174                    level == G4X_WM_LEVEL_NORMAL) {
1175                 wm = intel_wm_method1(clock, cpp, latency);
1176         } else {
1177                 unsigned int small, large;
1178
1179                 small = intel_wm_method1(clock, cpp, latency);
1180                 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1181
1182                 wm = min(small, large);
1183         }
1184
1185         wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1186                               width, cpp);
1187
1188         wm = DIV_ROUND_UP(wm, 64) + 2;
1189
1190         return min_t(unsigned int, wm, USHRT_MAX);
1191 }
1192
1193 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1194                                  int level, enum plane_id plane_id, u16 value)
1195 {
1196         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1197         bool dirty = false;
1198
1199         for (; level < intel_wm_num_levels(dev_priv); level++) {
1200                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1201
1202                 dirty |= raw->plane[plane_id] != value;
1203                 raw->plane[plane_id] = value;
1204         }
1205
1206         return dirty;
1207 }
1208
1209 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1210                                int level, u16 value)
1211 {
1212         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1213         bool dirty = false;
1214
1215         /* NORMAL level doesn't have an FBC watermark */
1216         level = max(level, G4X_WM_LEVEL_SR);
1217
1218         for (; level < intel_wm_num_levels(dev_priv); level++) {
1219                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1220
1221                 dirty |= raw->fbc != value;
1222                 raw->fbc = value;
1223         }
1224
1225         return dirty;
1226 }
1227
1228 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
1229                               const struct intel_plane_state *plane_state,
1230                               u32 pri_val);
1231
1232 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1233                                      const struct intel_plane_state *plane_state)
1234 {
1235         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1236         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1237         int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1238         enum plane_id plane_id = plane->id;
1239         bool dirty = false;
1240         int level;
1241
1242         if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1243                 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1244                 if (plane_id == PLANE_PRIMARY)
1245                         dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1246                 goto out;
1247         }
1248
1249         for (level = 0; level < num_levels; level++) {
1250                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1251                 int wm, max_wm;
1252
1253                 wm = g4x_compute_wm(crtc_state, plane_state, level);
1254                 max_wm = g4x_plane_fifo_size(plane_id, level);
1255
1256                 if (wm > max_wm)
1257                         break;
1258
1259                 dirty |= raw->plane[plane_id] != wm;
1260                 raw->plane[plane_id] = wm;
1261
1262                 if (plane_id != PLANE_PRIMARY ||
1263                     level == G4X_WM_LEVEL_NORMAL)
1264                         continue;
1265
1266                 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1267                                         raw->plane[plane_id]);
1268                 max_wm = g4x_fbc_fifo_size(level);
1269
1270                 /*
1271                  * FBC wm is not mandatory as we
1272                  * can always just disable its use.
1273                  */
1274                 if (wm > max_wm)
1275                         wm = USHRT_MAX;
1276
1277                 dirty |= raw->fbc != wm;
1278                 raw->fbc = wm;
1279         }
1280
1281         /* mark watermarks as invalid */
1282         dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1283
1284         if (plane_id == PLANE_PRIMARY)
1285                 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1286
1287  out:
1288         if (dirty) {
1289                 drm_dbg_kms(&dev_priv->drm,
1290                             "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1291                             plane->base.name,
1292                             crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1293                             crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1294                             crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1295
1296                 if (plane_id == PLANE_PRIMARY)
1297                         drm_dbg_kms(&dev_priv->drm,
1298                                     "FBC watermarks: SR=%d, HPLL=%d\n",
1299                                     crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1300                                     crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1301         }
1302
1303         return dirty;
1304 }
1305
1306 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1307                                       enum plane_id plane_id, int level)
1308 {
1309         const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1310
1311         return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1312 }
1313
1314 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1315                                      int level)
1316 {
1317         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1318
1319         if (level > dev_priv->wm.max_level)
1320                 return false;
1321
1322         return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1323                 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1324                 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1325 }
1326
1327 /* mark all levels starting from 'level' as invalid */
1328 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1329                                struct g4x_wm_state *wm_state, int level)
1330 {
1331         if (level <= G4X_WM_LEVEL_NORMAL) {
1332                 enum plane_id plane_id;
1333
1334                 for_each_plane_id_on_crtc(crtc, plane_id)
1335                         wm_state->wm.plane[plane_id] = USHRT_MAX;
1336         }
1337
1338         if (level <= G4X_WM_LEVEL_SR) {
1339                 wm_state->cxsr = false;
1340                 wm_state->sr.cursor = USHRT_MAX;
1341                 wm_state->sr.plane = USHRT_MAX;
1342                 wm_state->sr.fbc = USHRT_MAX;
1343         }
1344
1345         if (level <= G4X_WM_LEVEL_HPLL) {
1346                 wm_state->hpll_en = false;
1347                 wm_state->hpll.cursor = USHRT_MAX;
1348                 wm_state->hpll.plane = USHRT_MAX;
1349                 wm_state->hpll.fbc = USHRT_MAX;
1350         }
1351 }
1352
1353 static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state,
1354                                int level)
1355 {
1356         if (level < G4X_WM_LEVEL_SR)
1357                 return false;
1358
1359         if (level >= G4X_WM_LEVEL_SR &&
1360             wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1361                 return false;
1362
1363         if (level >= G4X_WM_LEVEL_HPLL &&
1364             wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1365                 return false;
1366
1367         return true;
1368 }
1369
1370 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1371 {
1372         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1373         struct intel_atomic_state *state =
1374                 to_intel_atomic_state(crtc_state->uapi.state);
1375         struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1376         int num_active_planes = hweight8(crtc_state->active_planes &
1377                                          ~BIT(PLANE_CURSOR));
1378         const struct g4x_pipe_wm *raw;
1379         const struct intel_plane_state *old_plane_state;
1380         const struct intel_plane_state *new_plane_state;
1381         struct intel_plane *plane;
1382         enum plane_id plane_id;
1383         int i, level;
1384         unsigned int dirty = 0;
1385
1386         for_each_oldnew_intel_plane_in_state(state, plane,
1387                                              old_plane_state,
1388                                              new_plane_state, i) {
1389                 if (new_plane_state->hw.crtc != &crtc->base &&
1390                     old_plane_state->hw.crtc != &crtc->base)
1391                         continue;
1392
1393                 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1394                         dirty |= BIT(plane->id);
1395         }
1396
1397         if (!dirty)
1398                 return 0;
1399
1400         level = G4X_WM_LEVEL_NORMAL;
1401         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1402                 goto out;
1403
1404         raw = &crtc_state->wm.g4x.raw[level];
1405         for_each_plane_id_on_crtc(crtc, plane_id)
1406                 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1407
1408         level = G4X_WM_LEVEL_SR;
1409         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1410                 goto out;
1411
1412         raw = &crtc_state->wm.g4x.raw[level];
1413         wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1414         wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1415         wm_state->sr.fbc = raw->fbc;
1416
1417         wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1418
1419         level = G4X_WM_LEVEL_HPLL;
1420         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1421                 goto out;
1422
1423         raw = &crtc_state->wm.g4x.raw[level];
1424         wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1425         wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1426         wm_state->hpll.fbc = raw->fbc;
1427
1428         wm_state->hpll_en = wm_state->cxsr;
1429
1430         level++;
1431
1432  out:
1433         if (level == G4X_WM_LEVEL_NORMAL)
1434                 return -EINVAL;
1435
1436         /* invalidate the higher levels */
1437         g4x_invalidate_wms(crtc, wm_state, level);
1438
1439         /*
1440          * Determine if the FBC watermark(s) can be used. IF
1441          * this isn't the case we prefer to disable the FBC
1442          * watermark(s) rather than disable the SR/HPLL
1443          * level(s) entirely. 'level-1' is the highest valid
1444          * level here.
1445          */
1446         wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1);
1447
1448         return 0;
1449 }
1450
1451 static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1452 {
1453         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1454         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1455         struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1456         const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1457         struct intel_atomic_state *intel_state =
1458                 to_intel_atomic_state(new_crtc_state->uapi.state);
1459         const struct intel_crtc_state *old_crtc_state =
1460                 intel_atomic_get_old_crtc_state(intel_state, crtc);
1461         const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1462         enum plane_id plane_id;
1463
1464         if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
1465                 *intermediate = *optimal;
1466
1467                 intermediate->cxsr = false;
1468                 intermediate->hpll_en = false;
1469                 goto out;
1470         }
1471
1472         intermediate->cxsr = optimal->cxsr && active->cxsr &&
1473                 !new_crtc_state->disable_cxsr;
1474         intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1475                 !new_crtc_state->disable_cxsr;
1476         intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1477
1478         for_each_plane_id_on_crtc(crtc, plane_id) {
1479                 intermediate->wm.plane[plane_id] =
1480                         max(optimal->wm.plane[plane_id],
1481                             active->wm.plane[plane_id]);
1482
1483                 drm_WARN_ON(&dev_priv->drm, intermediate->wm.plane[plane_id] >
1484                             g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1485         }
1486
1487         intermediate->sr.plane = max(optimal->sr.plane,
1488                                      active->sr.plane);
1489         intermediate->sr.cursor = max(optimal->sr.cursor,
1490                                       active->sr.cursor);
1491         intermediate->sr.fbc = max(optimal->sr.fbc,
1492                                    active->sr.fbc);
1493
1494         intermediate->hpll.plane = max(optimal->hpll.plane,
1495                                        active->hpll.plane);
1496         intermediate->hpll.cursor = max(optimal->hpll.cursor,
1497                                         active->hpll.cursor);
1498         intermediate->hpll.fbc = max(optimal->hpll.fbc,
1499                                      active->hpll.fbc);
1500
1501         drm_WARN_ON(&dev_priv->drm,
1502                     (intermediate->sr.plane >
1503                      g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1504                      intermediate->sr.cursor >
1505                      g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1506                     intermediate->cxsr);
1507         drm_WARN_ON(&dev_priv->drm,
1508                     (intermediate->sr.plane >
1509                      g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1510                      intermediate->sr.cursor >
1511                      g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1512                     intermediate->hpll_en);
1513
1514         drm_WARN_ON(&dev_priv->drm,
1515                     intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1516                     intermediate->fbc_en && intermediate->cxsr);
1517         drm_WARN_ON(&dev_priv->drm,
1518                     intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1519                     intermediate->fbc_en && intermediate->hpll_en);
1520
1521 out:
1522         /*
1523          * If our intermediate WM are identical to the final WM, then we can
1524          * omit the post-vblank programming; only update if it's different.
1525          */
1526         if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1527                 new_crtc_state->wm.need_postvbl_update = true;
1528
1529         return 0;
1530 }
1531
1532 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1533                          struct g4x_wm_values *wm)
1534 {
1535         struct intel_crtc *crtc;
1536         int num_active_pipes = 0;
1537
1538         wm->cxsr = true;
1539         wm->hpll_en = true;
1540         wm->fbc_en = true;
1541
1542         for_each_intel_crtc(&dev_priv->drm, crtc) {
1543                 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1544
1545                 if (!crtc->active)
1546                         continue;
1547
1548                 if (!wm_state->cxsr)
1549                         wm->cxsr = false;
1550                 if (!wm_state->hpll_en)
1551                         wm->hpll_en = false;
1552                 if (!wm_state->fbc_en)
1553                         wm->fbc_en = false;
1554
1555                 num_active_pipes++;
1556         }
1557
1558         if (num_active_pipes != 1) {
1559                 wm->cxsr = false;
1560                 wm->hpll_en = false;
1561                 wm->fbc_en = false;
1562         }
1563
1564         for_each_intel_crtc(&dev_priv->drm, crtc) {
1565                 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1566                 enum pipe pipe = crtc->pipe;
1567
1568                 wm->pipe[pipe] = wm_state->wm;
1569                 if (crtc->active && wm->cxsr)
1570                         wm->sr = wm_state->sr;
1571                 if (crtc->active && wm->hpll_en)
1572                         wm->hpll = wm_state->hpll;
1573         }
1574 }
1575
1576 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1577 {
1578         struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1579         struct g4x_wm_values new_wm = {};
1580
1581         g4x_merge_wm(dev_priv, &new_wm);
1582
1583         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1584                 return;
1585
1586         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1587                 _intel_set_memory_cxsr(dev_priv, false);
1588
1589         g4x_write_wm_values(dev_priv, &new_wm);
1590
1591         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1592                 _intel_set_memory_cxsr(dev_priv, true);
1593
1594         *old_wm = new_wm;
1595 }
1596
1597 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1598                                    struct intel_crtc *crtc)
1599 {
1600         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1601         const struct intel_crtc_state *crtc_state =
1602                 intel_atomic_get_new_crtc_state(state, crtc);
1603
1604         mutex_lock(&dev_priv->wm.wm_mutex);
1605         crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1606         g4x_program_watermarks(dev_priv);
1607         mutex_unlock(&dev_priv->wm.wm_mutex);
1608 }
1609
1610 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1611                                     struct intel_crtc *crtc)
1612 {
1613         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1614         const struct intel_crtc_state *crtc_state =
1615                 intel_atomic_get_new_crtc_state(state, crtc);
1616
1617         if (!crtc_state->wm.need_postvbl_update)
1618                 return;
1619
1620         mutex_lock(&dev_priv->wm.wm_mutex);
1621         crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1622         g4x_program_watermarks(dev_priv);
1623         mutex_unlock(&dev_priv->wm.wm_mutex);
1624 }
1625
1626 /* latency must be in 0.1us units. */
1627 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1628                                    unsigned int htotal,
1629                                    unsigned int width,
1630                                    unsigned int cpp,
1631                                    unsigned int latency)
1632 {
1633         unsigned int ret;
1634
1635         ret = intel_wm_method2(pixel_rate, htotal,
1636                                width, cpp, latency);
1637         ret = DIV_ROUND_UP(ret, 64);
1638
1639         return ret;
1640 }
1641
1642 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1643 {
1644         /* all latencies in usec */
1645         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1646
1647         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1648
1649         if (IS_CHERRYVIEW(dev_priv)) {
1650                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1651                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1652
1653                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1654         }
1655 }
1656
1657 static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1658                                 const struct intel_plane_state *plane_state,
1659                                 int level)
1660 {
1661         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1662         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1663         const struct drm_display_mode *adjusted_mode =
1664                 &crtc_state->hw.adjusted_mode;
1665         unsigned int clock, htotal, cpp, width, wm;
1666
1667         if (dev_priv->wm.pri_latency[level] == 0)
1668                 return USHRT_MAX;
1669
1670         if (!intel_wm_plane_visible(crtc_state, plane_state))
1671                 return 0;
1672
1673         cpp = plane_state->hw.fb->format->cpp[0];
1674         clock = adjusted_mode->crtc_clock;
1675         htotal = adjusted_mode->crtc_htotal;
1676         width = crtc_state->pipe_src_w;
1677
1678         if (plane->id == PLANE_CURSOR) {
1679                 /*
1680                  * FIXME the formula gives values that are
1681                  * too big for the cursor FIFO, and hence we
1682                  * would never be able to use cursors. For
1683                  * now just hardcode the watermark.
1684                  */
1685                 wm = 63;
1686         } else {
1687                 wm = vlv_wm_method2(clock, htotal, width, cpp,
1688                                     dev_priv->wm.pri_latency[level] * 10);
1689         }
1690
1691         return min_t(unsigned int, wm, USHRT_MAX);
1692 }
1693
1694 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1695 {
1696         return (active_planes & (BIT(PLANE_SPRITE0) |
1697                                  BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1698 }
1699
1700 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1701 {
1702         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1703         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1704         const struct g4x_pipe_wm *raw =
1705                 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1706         struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1707         unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1708         int num_active_planes = hweight8(active_planes);
1709         const int fifo_size = 511;
1710         int fifo_extra, fifo_left = fifo_size;
1711         int sprite0_fifo_extra = 0;
1712         unsigned int total_rate;
1713         enum plane_id plane_id;
1714
1715         /*
1716          * When enabling sprite0 after sprite1 has already been enabled
1717          * we tend to get an underrun unless sprite0 already has some
1718          * FIFO space allcoated. Hence we always allocate at least one
1719          * cacheline for sprite0 whenever sprite1 is enabled.
1720          *
1721          * All other plane enable sequences appear immune to this problem.
1722          */
1723         if (vlv_need_sprite0_fifo_workaround(active_planes))
1724                 sprite0_fifo_extra = 1;
1725
1726         total_rate = raw->plane[PLANE_PRIMARY] +
1727                 raw->plane[PLANE_SPRITE0] +
1728                 raw->plane[PLANE_SPRITE1] +
1729                 sprite0_fifo_extra;
1730
1731         if (total_rate > fifo_size)
1732                 return -EINVAL;
1733
1734         if (total_rate == 0)
1735                 total_rate = 1;
1736
1737         for_each_plane_id_on_crtc(crtc, plane_id) {
1738                 unsigned int rate;
1739
1740                 if ((active_planes & BIT(plane_id)) == 0) {
1741                         fifo_state->plane[plane_id] = 0;
1742                         continue;
1743                 }
1744
1745                 rate = raw->plane[plane_id];
1746                 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1747                 fifo_left -= fifo_state->plane[plane_id];
1748         }
1749
1750         fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1751         fifo_left -= sprite0_fifo_extra;
1752
1753         fifo_state->plane[PLANE_CURSOR] = 63;
1754
1755         fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1756
1757         /* spread the remainder evenly */
1758         for_each_plane_id_on_crtc(crtc, plane_id) {
1759                 int plane_extra;
1760
1761                 if (fifo_left == 0)
1762                         break;
1763
1764                 if ((active_planes & BIT(plane_id)) == 0)
1765                         continue;
1766
1767                 plane_extra = min(fifo_extra, fifo_left);
1768                 fifo_state->plane[plane_id] += plane_extra;
1769                 fifo_left -= plane_extra;
1770         }
1771
1772         drm_WARN_ON(&dev_priv->drm, active_planes != 0 && fifo_left != 0);
1773
1774         /* give it all to the first plane if none are active */
1775         if (active_planes == 0) {
1776                 drm_WARN_ON(&dev_priv->drm, fifo_left != fifo_size);
1777                 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1778         }
1779
1780         return 0;
1781 }
1782
1783 /* mark all levels starting from 'level' as invalid */
1784 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1785                                struct vlv_wm_state *wm_state, int level)
1786 {
1787         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1788
1789         for (; level < intel_wm_num_levels(dev_priv); level++) {
1790                 enum plane_id plane_id;
1791
1792                 for_each_plane_id_on_crtc(crtc, plane_id)
1793                         wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1794
1795                 wm_state->sr[level].cursor = USHRT_MAX;
1796                 wm_state->sr[level].plane = USHRT_MAX;
1797         }
1798 }
1799
1800 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1801 {
1802         if (wm > fifo_size)
1803                 return USHRT_MAX;
1804         else
1805                 return fifo_size - wm;
1806 }
1807
1808 /*
1809  * Starting from 'level' set all higher
1810  * levels to 'value' in the "raw" watermarks.
1811  */
1812 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1813                                  int level, enum plane_id plane_id, u16 value)
1814 {
1815         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1816         int num_levels = intel_wm_num_levels(dev_priv);
1817         bool dirty = false;
1818
1819         for (; level < num_levels; level++) {
1820                 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1821
1822                 dirty |= raw->plane[plane_id] != value;
1823                 raw->plane[plane_id] = value;
1824         }
1825
1826         return dirty;
1827 }
1828
1829 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1830                                      const struct intel_plane_state *plane_state)
1831 {
1832         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
1833         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1834         enum plane_id plane_id = plane->id;
1835         int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1836         int level;
1837         bool dirty = false;
1838
1839         if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1840                 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1841                 goto out;
1842         }
1843
1844         for (level = 0; level < num_levels; level++) {
1845                 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1846                 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1847                 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1848
1849                 if (wm > max_wm)
1850                         break;
1851
1852                 dirty |= raw->plane[plane_id] != wm;
1853                 raw->plane[plane_id] = wm;
1854         }
1855
1856         /* mark all higher levels as invalid */
1857         dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1858
1859 out:
1860         if (dirty)
1861                 drm_dbg_kms(&dev_priv->drm,
1862                             "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1863                             plane->base.name,
1864                             crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1865                             crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1866                             crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1867
1868         return dirty;
1869 }
1870
1871 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1872                                       enum plane_id plane_id, int level)
1873 {
1874         const struct g4x_pipe_wm *raw =
1875                 &crtc_state->wm.vlv.raw[level];
1876         const struct vlv_fifo_state *fifo_state =
1877                 &crtc_state->wm.vlv.fifo_state;
1878
1879         return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1880 }
1881
1882 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1883 {
1884         return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1885                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1886                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1887                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1888 }
1889
1890 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1891 {
1892         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1893         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1894         struct intel_atomic_state *state =
1895                 to_intel_atomic_state(crtc_state->uapi.state);
1896         struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1897         const struct vlv_fifo_state *fifo_state =
1898                 &crtc_state->wm.vlv.fifo_state;
1899         int num_active_planes = hweight8(crtc_state->active_planes &
1900                                          ~BIT(PLANE_CURSOR));
1901         bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
1902         const struct intel_plane_state *old_plane_state;
1903         const struct intel_plane_state *new_plane_state;
1904         struct intel_plane *plane;
1905         enum plane_id plane_id;
1906         int level, ret, i;
1907         unsigned int dirty = 0;
1908
1909         for_each_oldnew_intel_plane_in_state(state, plane,
1910                                              old_plane_state,
1911                                              new_plane_state, i) {
1912                 if (new_plane_state->hw.crtc != &crtc->base &&
1913                     old_plane_state->hw.crtc != &crtc->base)
1914                         continue;
1915
1916                 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1917                         dirty |= BIT(plane->id);
1918         }
1919
1920         /*
1921          * DSPARB registers may have been reset due to the
1922          * power well being turned off. Make sure we restore
1923          * them to a consistent state even if no primary/sprite
1924          * planes are initially active.
1925          */
1926         if (needs_modeset)
1927                 crtc_state->fifo_changed = true;
1928
1929         if (!dirty)
1930                 return 0;
1931
1932         /* cursor changes don't warrant a FIFO recompute */
1933         if (dirty & ~BIT(PLANE_CURSOR)) {
1934                 const struct intel_crtc_state *old_crtc_state =
1935                         intel_atomic_get_old_crtc_state(state, crtc);
1936                 const struct vlv_fifo_state *old_fifo_state =
1937                         &old_crtc_state->wm.vlv.fifo_state;
1938
1939                 ret = vlv_compute_fifo(crtc_state);
1940                 if (ret)
1941                         return ret;
1942
1943                 if (needs_modeset ||
1944                     memcmp(old_fifo_state, fifo_state,
1945                            sizeof(*fifo_state)) != 0)
1946                         crtc_state->fifo_changed = true;
1947         }
1948
1949         /* initially allow all levels */
1950         wm_state->num_levels = intel_wm_num_levels(dev_priv);
1951         /*
1952          * Note that enabling cxsr with no primary/sprite planes
1953          * enabled can wedge the pipe. Hence we only allow cxsr
1954          * with exactly one enabled primary/sprite plane.
1955          */
1956         wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1957
1958         for (level = 0; level < wm_state->num_levels; level++) {
1959                 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1960                 const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
1961
1962                 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1963                         break;
1964
1965                 for_each_plane_id_on_crtc(crtc, plane_id) {
1966                         wm_state->wm[level].plane[plane_id] =
1967                                 vlv_invert_wm_value(raw->plane[plane_id],
1968                                                     fifo_state->plane[plane_id]);
1969                 }
1970
1971                 wm_state->sr[level].plane =
1972                         vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1973                                                  raw->plane[PLANE_SPRITE0],
1974                                                  raw->plane[PLANE_SPRITE1]),
1975                                             sr_fifo_size);
1976
1977                 wm_state->sr[level].cursor =
1978                         vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1979                                             63);
1980         }
1981
1982         if (level == 0)
1983                 return -EINVAL;
1984
1985         /* limit to only levels we can actually handle */
1986         wm_state->num_levels = level;
1987
1988         /* invalidate the higher levels */
1989         vlv_invalidate_wms(crtc, wm_state, level);
1990
1991         return 0;
1992 }
1993
1994 #define VLV_FIFO(plane, value) \
1995         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1996
1997 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1998                                    struct intel_crtc *crtc)
1999 {
2000         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2001         struct intel_uncore *uncore = &dev_priv->uncore;
2002         const struct intel_crtc_state *crtc_state =
2003                 intel_atomic_get_new_crtc_state(state, crtc);
2004         const struct vlv_fifo_state *fifo_state =
2005                 &crtc_state->wm.vlv.fifo_state;
2006         int sprite0_start, sprite1_start, fifo_size;
2007         u32 dsparb, dsparb2, dsparb3;
2008
2009         if (!crtc_state->fifo_changed)
2010                 return;
2011
2012         sprite0_start = fifo_state->plane[PLANE_PRIMARY];
2013         sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
2014         fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
2015
2016         drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
2017         drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
2018
2019         trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
2020
2021         /*
2022          * uncore.lock serves a double purpose here. It allows us to
2023          * use the less expensive I915_{READ,WRITE}_FW() functions, and
2024          * it protects the DSPARB registers from getting clobbered by
2025          * parallel updates from multiple pipes.
2026          *
2027          * intel_pipe_update_start() has already disabled interrupts
2028          * for us, so a plain spin_lock() is sufficient here.
2029          */
2030         spin_lock(&uncore->lock);
2031
2032         switch (crtc->pipe) {
2033         case PIPE_A:
2034                 dsparb = intel_uncore_read_fw(uncore, DSPARB);
2035                 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2036
2037                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
2038                             VLV_FIFO(SPRITEB, 0xff));
2039                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
2040                            VLV_FIFO(SPRITEB, sprite1_start));
2041
2042                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
2043                              VLV_FIFO(SPRITEB_HI, 0x1));
2044                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
2045                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
2046
2047                 intel_uncore_write_fw(uncore, DSPARB, dsparb);
2048                 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2049                 break;
2050         case PIPE_B:
2051                 dsparb = intel_uncore_read_fw(uncore, DSPARB);
2052                 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2053
2054                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
2055                             VLV_FIFO(SPRITED, 0xff));
2056                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
2057                            VLV_FIFO(SPRITED, sprite1_start));
2058
2059                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
2060                              VLV_FIFO(SPRITED_HI, 0xff));
2061                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2062                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2063
2064                 intel_uncore_write_fw(uncore, DSPARB, dsparb);
2065                 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2066                 break;
2067         case PIPE_C:
2068                 dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
2069                 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2070
2071                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2072                              VLV_FIFO(SPRITEF, 0xff));
2073                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2074                             VLV_FIFO(SPRITEF, sprite1_start));
2075
2076                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2077                              VLV_FIFO(SPRITEF_HI, 0xff));
2078                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2079                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2080
2081                 intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
2082                 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2083                 break;
2084         default:
2085                 break;
2086         }
2087
2088         intel_uncore_posting_read_fw(uncore, DSPARB);
2089
2090         spin_unlock(&uncore->lock);
2091 }
2092
2093 #undef VLV_FIFO
2094
2095 static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2096 {
2097         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2098         struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2099         const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2100         struct intel_atomic_state *intel_state =
2101                 to_intel_atomic_state(new_crtc_state->uapi.state);
2102         const struct intel_crtc_state *old_crtc_state =
2103                 intel_atomic_get_old_crtc_state(intel_state, crtc);
2104         const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2105         int level;
2106
2107         if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
2108                 *intermediate = *optimal;
2109
2110                 intermediate->cxsr = false;
2111                 goto out;
2112         }
2113
2114         intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2115         intermediate->cxsr = optimal->cxsr && active->cxsr &&
2116                 !new_crtc_state->disable_cxsr;
2117
2118         for (level = 0; level < intermediate->num_levels; level++) {
2119                 enum plane_id plane_id;
2120
2121                 for_each_plane_id_on_crtc(crtc, plane_id) {
2122                         intermediate->wm[level].plane[plane_id] =
2123                                 min(optimal->wm[level].plane[plane_id],
2124                                     active->wm[level].plane[plane_id]);
2125                 }
2126
2127                 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2128                                                     active->sr[level].plane);
2129                 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2130                                                      active->sr[level].cursor);
2131         }
2132
2133         vlv_invalidate_wms(crtc, intermediate, level);
2134
2135 out:
2136         /*
2137          * If our intermediate WM are identical to the final WM, then we can
2138          * omit the post-vblank programming; only update if it's different.
2139          */
2140         if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2141                 new_crtc_state->wm.need_postvbl_update = true;
2142
2143         return 0;
2144 }
2145
2146 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2147                          struct vlv_wm_values *wm)
2148 {
2149         struct intel_crtc *crtc;
2150         int num_active_pipes = 0;
2151
2152         wm->level = dev_priv->wm.max_level;
2153         wm->cxsr = true;
2154
2155         for_each_intel_crtc(&dev_priv->drm, crtc) {
2156                 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2157
2158                 if (!crtc->active)
2159                         continue;
2160
2161                 if (!wm_state->cxsr)
2162                         wm->cxsr = false;
2163
2164                 num_active_pipes++;
2165                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2166         }
2167
2168         if (num_active_pipes != 1)
2169                 wm->cxsr = false;
2170
2171         if (num_active_pipes > 1)
2172                 wm->level = VLV_WM_LEVEL_PM2;
2173
2174         for_each_intel_crtc(&dev_priv->drm, crtc) {
2175                 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2176                 enum pipe pipe = crtc->pipe;
2177
2178                 wm->pipe[pipe] = wm_state->wm[wm->level];
2179                 if (crtc->active && wm->cxsr)
2180                         wm->sr = wm_state->sr[wm->level];
2181
2182                 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2183                 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2184                 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2185                 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2186         }
2187 }
2188
2189 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2190 {
2191         struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2192         struct vlv_wm_values new_wm = {};
2193
2194         vlv_merge_wm(dev_priv, &new_wm);
2195
2196         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2197                 return;
2198
2199         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2200                 chv_set_memory_dvfs(dev_priv, false);
2201
2202         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2203                 chv_set_memory_pm5(dev_priv, false);
2204
2205         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2206                 _intel_set_memory_cxsr(dev_priv, false);
2207
2208         vlv_write_wm_values(dev_priv, &new_wm);
2209
2210         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2211                 _intel_set_memory_cxsr(dev_priv, true);
2212
2213         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2214                 chv_set_memory_pm5(dev_priv, true);
2215
2216         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2217                 chv_set_memory_dvfs(dev_priv, true);
2218
2219         *old_wm = new_wm;
2220 }
2221
2222 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2223                                    struct intel_crtc *crtc)
2224 {
2225         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2226         const struct intel_crtc_state *crtc_state =
2227                 intel_atomic_get_new_crtc_state(state, crtc);
2228
2229         mutex_lock(&dev_priv->wm.wm_mutex);
2230         crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2231         vlv_program_watermarks(dev_priv);
2232         mutex_unlock(&dev_priv->wm.wm_mutex);
2233 }
2234
2235 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2236                                     struct intel_crtc *crtc)
2237 {
2238         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2239         const struct intel_crtc_state *crtc_state =
2240                 intel_atomic_get_new_crtc_state(state, crtc);
2241
2242         if (!crtc_state->wm.need_postvbl_update)
2243                 return;
2244
2245         mutex_lock(&dev_priv->wm.wm_mutex);
2246         crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2247         vlv_program_watermarks(dev_priv);
2248         mutex_unlock(&dev_priv->wm.wm_mutex);
2249 }
2250
2251 static void i965_update_wm(struct intel_crtc *unused_crtc)
2252 {
2253         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2254         struct intel_crtc *crtc;
2255         int srwm = 1;
2256         int cursor_sr = 16;
2257         bool cxsr_enabled;
2258
2259         /* Calc sr entries for one plane configs */
2260         crtc = single_enabled_crtc(dev_priv);
2261         if (crtc) {
2262                 /* self-refresh has much higher latency */
2263                 static const int sr_latency_ns = 12000;
2264                 const struct drm_display_mode *adjusted_mode =
2265                         &crtc->config->hw.adjusted_mode;
2266                 const struct drm_framebuffer *fb =
2267                         crtc->base.primary->state->fb;
2268                 int clock = adjusted_mode->crtc_clock;
2269                 int htotal = adjusted_mode->crtc_htotal;
2270                 int hdisplay = crtc->config->pipe_src_w;
2271                 int cpp = fb->format->cpp[0];
2272                 int entries;
2273
2274                 entries = intel_wm_method2(clock, htotal,
2275                                            hdisplay, cpp, sr_latency_ns / 100);
2276                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2277                 srwm = I965_FIFO_SIZE - entries;
2278                 if (srwm < 0)
2279                         srwm = 1;
2280                 srwm &= 0x1ff;
2281                 drm_dbg_kms(&dev_priv->drm,
2282                             "self-refresh entries: %d, wm: %d\n",
2283                             entries, srwm);
2284
2285                 entries = intel_wm_method2(clock, htotal,
2286                                            crtc->base.cursor->state->crtc_w, 4,
2287                                            sr_latency_ns / 100);
2288                 entries = DIV_ROUND_UP(entries,
2289                                        i965_cursor_wm_info.cacheline_size) +
2290                         i965_cursor_wm_info.guard_size;
2291
2292                 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2293                 if (cursor_sr > i965_cursor_wm_info.max_wm)
2294                         cursor_sr = i965_cursor_wm_info.max_wm;
2295
2296                 drm_dbg_kms(&dev_priv->drm,
2297                             "self-refresh watermark: display plane %d "
2298                             "cursor %d\n", srwm, cursor_sr);
2299
2300                 cxsr_enabled = true;
2301         } else {
2302                 cxsr_enabled = false;
2303                 /* Turn off self refresh if both pipes are enabled */
2304                 intel_set_memory_cxsr(dev_priv, false);
2305         }
2306
2307         drm_dbg_kms(&dev_priv->drm,
2308                     "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2309                     srwm);
2310
2311         /* 965 has limitations... */
2312         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2313                    FW_WM(8, CURSORB) |
2314                    FW_WM(8, PLANEB) |
2315                    FW_WM(8, PLANEA));
2316         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2317                    FW_WM(8, PLANEC_OLD));
2318         /* update cursor SR watermark */
2319         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2320
2321         if (cxsr_enabled)
2322                 intel_set_memory_cxsr(dev_priv, true);
2323 }
2324
2325 #undef FW_WM
2326
2327 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2328 {
2329         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2330         const struct intel_watermark_params *wm_info;
2331         u32 fwater_lo;
2332         u32 fwater_hi;
2333         int cwm, srwm = 1;
2334         int fifo_size;
2335         int planea_wm, planeb_wm;
2336         struct intel_crtc *crtc, *enabled = NULL;
2337
2338         if (IS_I945GM(dev_priv))
2339                 wm_info = &i945_wm_info;
2340         else if (!IS_GEN(dev_priv, 2))
2341                 wm_info = &i915_wm_info;
2342         else
2343                 wm_info = &i830_a_wm_info;
2344
2345         fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2346         crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2347         if (intel_crtc_active(crtc)) {
2348                 const struct drm_display_mode *adjusted_mode =
2349                         &crtc->config->hw.adjusted_mode;
2350                 const struct drm_framebuffer *fb =
2351                         crtc->base.primary->state->fb;
2352                 int cpp;
2353
2354                 if (IS_GEN(dev_priv, 2))
2355                         cpp = 4;
2356                 else
2357                         cpp = fb->format->cpp[0];
2358
2359                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2360                                                wm_info, fifo_size, cpp,
2361                                                pessimal_latency_ns);
2362                 enabled = crtc;
2363         } else {
2364                 planea_wm = fifo_size - wm_info->guard_size;
2365                 if (planea_wm > (long)wm_info->max_wm)
2366                         planea_wm = wm_info->max_wm;
2367         }
2368
2369         if (IS_GEN(dev_priv, 2))
2370                 wm_info = &i830_bc_wm_info;
2371
2372         fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2373         crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2374         if (intel_crtc_active(crtc)) {
2375                 const struct drm_display_mode *adjusted_mode =
2376                         &crtc->config->hw.adjusted_mode;
2377                 const struct drm_framebuffer *fb =
2378                         crtc->base.primary->state->fb;
2379                 int cpp;
2380
2381                 if (IS_GEN(dev_priv, 2))
2382                         cpp = 4;
2383                 else
2384                         cpp = fb->format->cpp[0];
2385
2386                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2387                                                wm_info, fifo_size, cpp,
2388                                                pessimal_latency_ns);
2389                 if (enabled == NULL)
2390                         enabled = crtc;
2391                 else
2392                         enabled = NULL;
2393         } else {
2394                 planeb_wm = fifo_size - wm_info->guard_size;
2395                 if (planeb_wm > (long)wm_info->max_wm)
2396                         planeb_wm = wm_info->max_wm;
2397         }
2398
2399         drm_dbg_kms(&dev_priv->drm,
2400                     "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2401
2402         if (IS_I915GM(dev_priv) && enabled) {
2403                 struct drm_i915_gem_object *obj;
2404
2405                 obj = intel_fb_obj(enabled->base.primary->state->fb);
2406
2407                 /* self-refresh seems busted with untiled */
2408                 if (!i915_gem_object_is_tiled(obj))
2409                         enabled = NULL;
2410         }
2411
2412         /*
2413          * Overlay gets an aggressive default since video jitter is bad.
2414          */
2415         cwm = 2;
2416
2417         /* Play safe and disable self-refresh before adjusting watermarks. */
2418         intel_set_memory_cxsr(dev_priv, false);
2419
2420         /* Calc sr entries for one plane configs */
2421         if (HAS_FW_BLC(dev_priv) && enabled) {
2422                 /* self-refresh has much higher latency */
2423                 static const int sr_latency_ns = 6000;
2424                 const struct drm_display_mode *adjusted_mode =
2425                         &enabled->config->hw.adjusted_mode;
2426                 const struct drm_framebuffer *fb =
2427                         enabled->base.primary->state->fb;
2428                 int clock = adjusted_mode->crtc_clock;
2429                 int htotal = adjusted_mode->crtc_htotal;
2430                 int hdisplay = enabled->config->pipe_src_w;
2431                 int cpp;
2432                 int entries;
2433
2434                 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2435                         cpp = 4;
2436                 else
2437                         cpp = fb->format->cpp[0];
2438
2439                 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2440                                            sr_latency_ns / 100);
2441                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2442                 drm_dbg_kms(&dev_priv->drm,
2443                             "self-refresh entries: %d\n", entries);
2444                 srwm = wm_info->fifo_size - entries;
2445                 if (srwm < 0)
2446                         srwm = 1;
2447
2448                 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2449                         I915_WRITE(FW_BLC_SELF,
2450                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2451                 else
2452                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2453         }
2454
2455         drm_dbg_kms(&dev_priv->drm,
2456                     "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2457                      planea_wm, planeb_wm, cwm, srwm);
2458
2459         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2460         fwater_hi = (cwm & 0x1f);
2461
2462         /* Set request length to 8 cachelines per fetch */
2463         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2464         fwater_hi = fwater_hi | (1 << 8);
2465
2466         I915_WRITE(FW_BLC, fwater_lo);
2467         I915_WRITE(FW_BLC2, fwater_hi);
2468
2469         if (enabled)
2470                 intel_set_memory_cxsr(dev_priv, true);
2471 }
2472
2473 static void i845_update_wm(struct intel_crtc *unused_crtc)
2474 {
2475         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2476         struct intel_crtc *crtc;
2477         const struct drm_display_mode *adjusted_mode;
2478         u32 fwater_lo;
2479         int planea_wm;
2480
2481         crtc = single_enabled_crtc(dev_priv);
2482         if (crtc == NULL)
2483                 return;
2484
2485         adjusted_mode = &crtc->config->hw.adjusted_mode;
2486         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2487                                        &i845_wm_info,
2488                                        dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2489                                        4, pessimal_latency_ns);
2490         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2491         fwater_lo |= (3<<8) | planea_wm;
2492
2493         drm_dbg_kms(&dev_priv->drm,
2494                     "Setting FIFO watermarks - A: %d\n", planea_wm);
2495
2496         I915_WRITE(FW_BLC, fwater_lo);
2497 }
2498
2499 /* latency must be in 0.1us units. */
2500 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2501                                    unsigned int cpp,
2502                                    unsigned int latency)
2503 {
2504         unsigned int ret;
2505
2506         ret = intel_wm_method1(pixel_rate, cpp, latency);
2507         ret = DIV_ROUND_UP(ret, 64) + 2;
2508
2509         return ret;
2510 }
2511
2512 /* latency must be in 0.1us units. */
2513 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2514                                    unsigned int htotal,
2515                                    unsigned int width,
2516                                    unsigned int cpp,
2517                                    unsigned int latency)
2518 {
2519         unsigned int ret;
2520
2521         ret = intel_wm_method2(pixel_rate, htotal,
2522                                width, cpp, latency);
2523         ret = DIV_ROUND_UP(ret, 64) + 2;
2524
2525         return ret;
2526 }
2527
2528 static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2529 {
2530         /*
2531          * Neither of these should be possible since this function shouldn't be
2532          * called if the CRTC is off or the plane is invisible.  But let's be
2533          * extra paranoid to avoid a potential divide-by-zero if we screw up
2534          * elsewhere in the driver.
2535          */
2536         if (WARN_ON(!cpp))
2537                 return 0;
2538         if (WARN_ON(!horiz_pixels))
2539                 return 0;
2540
2541         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2542 }
2543
2544 struct ilk_wm_maximums {
2545         u16 pri;
2546         u16 spr;
2547         u16 cur;
2548         u16 fbc;
2549 };
2550
2551 /*
2552  * For both WM_PIPE and WM_LP.
2553  * mem_value must be in 0.1us units.
2554  */
2555 static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
2556                               const struct intel_plane_state *plane_state,
2557                               u32 mem_value, bool is_lp)
2558 {
2559         u32 method1, method2;
2560         int cpp;
2561
2562         if (mem_value == 0)
2563                 return U32_MAX;
2564
2565         if (!intel_wm_plane_visible(crtc_state, plane_state))
2566                 return 0;
2567
2568         cpp = plane_state->hw.fb->format->cpp[0];
2569
2570         method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2571
2572         if (!is_lp)
2573                 return method1;
2574
2575         method2 = ilk_wm_method2(crtc_state->pixel_rate,
2576                                  crtc_state->hw.adjusted_mode.crtc_htotal,
2577                                  drm_rect_width(&plane_state->uapi.dst),
2578                                  cpp, mem_value);
2579
2580         return min(method1, method2);
2581 }
2582
2583 /*
2584  * For both WM_PIPE and WM_LP.
2585  * mem_value must be in 0.1us units.
2586  */
2587 static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
2588                               const struct intel_plane_state *plane_state,
2589                               u32 mem_value)
2590 {
2591         u32 method1, method2;
2592         int cpp;
2593
2594         if (mem_value == 0)
2595                 return U32_MAX;
2596
2597         if (!intel_wm_plane_visible(crtc_state, plane_state))
2598                 return 0;
2599
2600         cpp = plane_state->hw.fb->format->cpp[0];
2601
2602         method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2603         method2 = ilk_wm_method2(crtc_state->pixel_rate,
2604                                  crtc_state->hw.adjusted_mode.crtc_htotal,
2605                                  drm_rect_width(&plane_state->uapi.dst),
2606                                  cpp, mem_value);
2607         return min(method1, method2);
2608 }
2609
2610 /*
2611  * For both WM_PIPE and WM_LP.
2612  * mem_value must be in 0.1us units.
2613  */
2614 static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
2615                               const struct intel_plane_state *plane_state,
2616                               u32 mem_value)
2617 {
2618         int cpp;
2619
2620         if (mem_value == 0)
2621                 return U32_MAX;
2622
2623         if (!intel_wm_plane_visible(crtc_state, plane_state))
2624                 return 0;
2625
2626         cpp = plane_state->hw.fb->format->cpp[0];
2627
2628         return ilk_wm_method2(crtc_state->pixel_rate,
2629                               crtc_state->hw.adjusted_mode.crtc_htotal,
2630                               drm_rect_width(&plane_state->uapi.dst),
2631                               cpp, mem_value);
2632 }
2633
2634 /* Only for WM_LP. */
2635 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
2636                               const struct intel_plane_state *plane_state,
2637                               u32 pri_val)
2638 {
2639         int cpp;
2640
2641         if (!intel_wm_plane_visible(crtc_state, plane_state))
2642                 return 0;
2643
2644         cpp = plane_state->hw.fb->format->cpp[0];
2645
2646         return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
2647                           cpp);
2648 }
2649
2650 static unsigned int
2651 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2652 {
2653         if (INTEL_GEN(dev_priv) >= 8)
2654                 return 3072;
2655         else if (INTEL_GEN(dev_priv) >= 7)
2656                 return 768;
2657         else
2658                 return 512;
2659 }
2660
2661 static unsigned int
2662 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2663                      int level, bool is_sprite)
2664 {
2665         if (INTEL_GEN(dev_priv) >= 8)
2666                 /* BDW primary/sprite plane watermarks */
2667                 return level == 0 ? 255 : 2047;
2668         else if (INTEL_GEN(dev_priv) >= 7)
2669                 /* IVB/HSW primary/sprite plane watermarks */
2670                 return level == 0 ? 127 : 1023;
2671         else if (!is_sprite)
2672                 /* ILK/SNB primary plane watermarks */
2673                 return level == 0 ? 127 : 511;
2674         else
2675                 /* ILK/SNB sprite plane watermarks */
2676                 return level == 0 ? 63 : 255;
2677 }
2678
2679 static unsigned int
2680 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2681 {
2682         if (INTEL_GEN(dev_priv) >= 7)
2683                 return level == 0 ? 63 : 255;
2684         else
2685                 return level == 0 ? 31 : 63;
2686 }
2687
2688 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2689 {
2690         if (INTEL_GEN(dev_priv) >= 8)
2691                 return 31;
2692         else
2693                 return 15;
2694 }
2695
2696 /* Calculate the maximum primary/sprite plane watermark */
2697 static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2698                                      int level,
2699                                      const struct intel_wm_config *config,
2700                                      enum intel_ddb_partitioning ddb_partitioning,
2701                                      bool is_sprite)
2702 {
2703         unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2704
2705         /* if sprites aren't enabled, sprites get nothing */
2706         if (is_sprite && !config->sprites_enabled)
2707                 return 0;
2708
2709         /* HSW allows LP1+ watermarks even with multiple pipes */
2710         if (level == 0 || config->num_pipes_active > 1) {
2711                 fifo_size /= INTEL_NUM_PIPES(dev_priv);
2712
2713                 /*
2714                  * For some reason the non self refresh
2715                  * FIFO size is only half of the self
2716                  * refresh FIFO size on ILK/SNB.
2717                  */
2718                 if (INTEL_GEN(dev_priv) <= 6)
2719                         fifo_size /= 2;
2720         }
2721
2722         if (config->sprites_enabled) {
2723                 /* level 0 is always calculated with 1:1 split */
2724                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2725                         if (is_sprite)
2726                                 fifo_size *= 5;
2727                         fifo_size /= 6;
2728                 } else {
2729                         fifo_size /= 2;
2730                 }
2731         }
2732
2733         /* clamp to max that the registers can hold */
2734         return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2735 }
2736
2737 /* Calculate the maximum cursor plane watermark */
2738 static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2739                                       int level,
2740                                       const struct intel_wm_config *config)
2741 {
2742         /* HSW LP1+ watermarks w/ multiple pipes */
2743         if (level > 0 && config->num_pipes_active > 1)
2744                 return 64;
2745
2746         /* otherwise just report max that registers can hold */
2747         return ilk_cursor_wm_reg_max(dev_priv, level);
2748 }
2749
2750 static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2751                                     int level,
2752                                     const struct intel_wm_config *config,
2753                                     enum intel_ddb_partitioning ddb_partitioning,
2754                                     struct ilk_wm_maximums *max)
2755 {
2756         max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2757         max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2758         max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2759         max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2760 }
2761
2762 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2763                                         int level,
2764                                         struct ilk_wm_maximums *max)
2765 {
2766         max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2767         max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2768         max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2769         max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2770 }
2771
2772 static bool ilk_validate_wm_level(int level,
2773                                   const struct ilk_wm_maximums *max,
2774                                   struct intel_wm_level *result)
2775 {
2776         bool ret;
2777
2778         /* already determined to be invalid? */
2779         if (!result->enable)
2780                 return false;
2781
2782         result->enable = result->pri_val <= max->pri &&
2783                          result->spr_val <= max->spr &&
2784                          result->cur_val <= max->cur;
2785
2786         ret = result->enable;
2787
2788         /*
2789          * HACK until we can pre-compute everything,
2790          * and thus fail gracefully if LP0 watermarks
2791          * are exceeded...
2792          */
2793         if (level == 0 && !result->enable) {
2794                 if (result->pri_val > max->pri)
2795                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2796                                       level, result->pri_val, max->pri);
2797                 if (result->spr_val > max->spr)
2798                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2799                                       level, result->spr_val, max->spr);
2800                 if (result->cur_val > max->cur)
2801                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2802                                       level, result->cur_val, max->cur);
2803
2804                 result->pri_val = min_t(u32, result->pri_val, max->pri);
2805                 result->spr_val = min_t(u32, result->spr_val, max->spr);
2806                 result->cur_val = min_t(u32, result->cur_val, max->cur);
2807                 result->enable = true;
2808         }
2809
2810         return ret;
2811 }
2812
2813 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2814                                  const struct intel_crtc *crtc,
2815                                  int level,
2816                                  struct intel_crtc_state *crtc_state,
2817                                  const struct intel_plane_state *pristate,
2818                                  const struct intel_plane_state *sprstate,
2819                                  const struct intel_plane_state *curstate,
2820                                  struct intel_wm_level *result)
2821 {
2822         u16 pri_latency = dev_priv->wm.pri_latency[level];
2823         u16 spr_latency = dev_priv->wm.spr_latency[level];
2824         u16 cur_latency = dev_priv->wm.cur_latency[level];
2825
2826         /* WM1+ latency values stored in 0.5us units */
2827         if (level > 0) {
2828                 pri_latency *= 5;
2829                 spr_latency *= 5;
2830                 cur_latency *= 5;
2831         }
2832
2833         if (pristate) {
2834                 result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2835                                                      pri_latency, level);
2836                 result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2837         }
2838
2839         if (sprstate)
2840                 result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2841
2842         if (curstate)
2843                 result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2844
2845         result->enable = true;
2846 }
2847
2848 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2849                                   u16 wm[8])
2850 {
2851         struct intel_uncore *uncore = &dev_priv->uncore;
2852
2853         if (INTEL_GEN(dev_priv) >= 9) {
2854                 u32 val;
2855                 int ret, i;
2856                 int level, max_level = ilk_wm_max_level(dev_priv);
2857
2858                 /* read the first set of memory latencies[0:3] */
2859                 val = 0; /* data0 to be programmed to 0 for first set */
2860                 ret = sandybridge_pcode_read(dev_priv,
2861                                              GEN9_PCODE_READ_MEM_LATENCY,
2862                                              &val, NULL);
2863
2864                 if (ret) {
2865                         drm_err(&dev_priv->drm,
2866                                 "SKL Mailbox read error = %d\n", ret);
2867                         return;
2868                 }
2869
2870                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2871                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2872                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2873                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2874                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2875                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2876                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2877
2878                 /* read the second set of memory latencies[4:7] */
2879                 val = 1; /* data0 to be programmed to 1 for second set */
2880                 ret = sandybridge_pcode_read(dev_priv,
2881                                              GEN9_PCODE_READ_MEM_LATENCY,
2882                                              &val, NULL);
2883                 if (ret) {
2884                         drm_err(&dev_priv->drm,
2885                                 "SKL Mailbox read error = %d\n", ret);
2886                         return;
2887                 }
2888
2889                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2890                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2891                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2892                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2893                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2894                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2895                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2896
2897                 /*
2898                  * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2899                  * need to be disabled. We make sure to sanitize the values out
2900                  * of the punit to satisfy this requirement.
2901                  */
2902                 for (level = 1; level <= max_level; level++) {
2903                         if (wm[level] == 0) {
2904                                 for (i = level + 1; i <= max_level; i++)
2905                                         wm[i] = 0;
2906                                 break;
2907                         }
2908                 }
2909
2910                 /*
2911                  * WaWmMemoryReadLatency:skl+,glk
2912                  *
2913                  * punit doesn't take into account the read latency so we need
2914                  * to add 2us to the various latency levels we retrieve from the
2915                  * punit when level 0 response data us 0us.
2916                  */
2917                 if (wm[0] == 0) {
2918                         wm[0] += 2;
2919                         for (level = 1; level <= max_level; level++) {
2920                                 if (wm[level] == 0)
2921                                         break;
2922                                 wm[level] += 2;
2923                         }
2924                 }
2925
2926                 /*
2927                  * WA Level-0 adjustment for 16GB DIMMs: SKL+
2928                  * If we could not get dimm info enable this WA to prevent from
2929                  * any underrun. If not able to get Dimm info assume 16GB dimm
2930                  * to avoid any underrun.
2931                  */
2932                 if (dev_priv->dram_info.is_16gb_dimm)
2933                         wm[0] += 1;
2934
2935         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2936                 u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2937
2938                 wm[0] = (sskpd >> 56) & 0xFF;
2939                 if (wm[0] == 0)
2940                         wm[0] = sskpd & 0xF;
2941                 wm[1] = (sskpd >> 4) & 0xFF;
2942                 wm[2] = (sskpd >> 12) & 0xFF;
2943                 wm[3] = (sskpd >> 20) & 0x1FF;
2944                 wm[4] = (sskpd >> 32) & 0x1FF;
2945         } else if (INTEL_GEN(dev_priv) >= 6) {
2946                 u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2947
2948                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2949                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2950                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2951                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2952         } else if (INTEL_GEN(dev_priv) >= 5) {
2953                 u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2954
2955                 /* ILK primary LP0 latency is 700 ns */
2956                 wm[0] = 7;
2957                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2958                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2959         } else {
2960                 MISSING_CASE(INTEL_DEVID(dev_priv));
2961         }
2962 }
2963
2964 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2965                                        u16 wm[5])
2966 {
2967         /* ILK sprite LP0 latency is 1300 ns */
2968         if (IS_GEN(dev_priv, 5))
2969                 wm[0] = 13;
2970 }
2971
2972 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2973                                        u16 wm[5])
2974 {
2975         /* ILK cursor LP0 latency is 1300 ns */
2976         if (IS_GEN(dev_priv, 5))
2977                 wm[0] = 13;
2978 }
2979
2980 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2981 {
2982         /* how many WM levels are we expecting */
2983         if (INTEL_GEN(dev_priv) >= 9)
2984                 return 7;
2985         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2986                 return 4;
2987         else if (INTEL_GEN(dev_priv) >= 6)
2988                 return 3;
2989         else
2990                 return 2;
2991 }
2992
2993 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2994                                    const char *name,
2995                                    const u16 wm[8])
2996 {
2997         int level, max_level = ilk_wm_max_level(dev_priv);
2998
2999         for (level = 0; level <= max_level; level++) {
3000                 unsigned int latency = wm[level];
3001
3002                 if (latency == 0) {
3003                         drm_dbg_kms(&dev_priv->drm,
3004                                     "%s WM%d latency not provided\n",
3005                                     name, level);
3006                         continue;
3007                 }
3008
3009                 /*
3010                  * - latencies are in us on gen9.
3011                  * - before then, WM1+ latency values are in 0.5us units
3012                  */
3013                 if (INTEL_GEN(dev_priv) >= 9)
3014                         latency *= 10;
3015                 else if (level > 0)
3016                         latency *= 5;
3017
3018                 drm_dbg_kms(&dev_priv->drm,
3019                             "%s WM%d latency %u (%u.%u usec)\n", name, level,
3020                             wm[level], latency / 10, latency % 10);
3021         }
3022 }
3023
3024 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
3025                                     u16 wm[5], u16 min)
3026 {
3027         int level, max_level = ilk_wm_max_level(dev_priv);
3028
3029         if (wm[0] >= min)
3030                 return false;
3031
3032         wm[0] = max(wm[0], min);
3033         for (level = 1; level <= max_level; level++)
3034                 wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3035
3036         return true;
3037 }
3038
3039 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3040 {
3041         bool changed;
3042
3043         /*
3044          * The BIOS provided WM memory latency values are often
3045          * inadequate for high resolution displays. Adjust them.
3046          */
3047         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
3048                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
3049                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
3050
3051         if (!changed)
3052                 return;
3053
3054         drm_dbg_kms(&dev_priv->drm,
3055                     "WM latency values increased to avoid potential underruns\n");
3056         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3057         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3058         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3059 }
3060
3061 static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
3062 {
3063         /*
3064          * On some SNB machines (Thinkpad X220 Tablet at least)
3065          * LP3 usage can cause vblank interrupts to be lost.
3066          * The DEIIR bit will go high but it looks like the CPU
3067          * never gets interrupted.
3068          *
3069          * It's not clear whether other interrupt source could
3070          * be affected or if this is somehow limited to vblank
3071          * interrupts only. To play it safe we disable LP3
3072          * watermarks entirely.
3073          */
3074         if (dev_priv->wm.pri_latency[3] == 0 &&
3075             dev_priv->wm.spr_latency[3] == 0 &&
3076             dev_priv->wm.cur_latency[3] == 0)
3077                 return;
3078
3079         dev_priv->wm.pri_latency[3] = 0;
3080         dev_priv->wm.spr_latency[3] = 0;
3081         dev_priv->wm.cur_latency[3] = 0;
3082
3083         drm_dbg_kms(&dev_priv->drm,
3084                     "LP3 watermarks disabled due to potential for lost interrupts\n");
3085         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3086         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3087         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3088 }
3089
3090 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3091 {
3092         intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3093
3094         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3095                sizeof(dev_priv->wm.pri_latency));
3096         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3097                sizeof(dev_priv->wm.pri_latency));
3098
3099         intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3100         intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3101
3102         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3103         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3104         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3105
3106         if (IS_GEN(dev_priv, 6)) {
3107                 snb_wm_latency_quirk(dev_priv);
3108                 snb_wm_lp3_irq_quirk(dev_priv);
3109         }
3110 }
3111
3112 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3113 {
3114         intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3115         intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3116 }
3117
3118 static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3119                                  struct intel_pipe_wm *pipe_wm)
3120 {
3121         /* LP0 watermark maximums depend on this pipe alone */
3122         const struct intel_wm_config config = {
3123                 .num_pipes_active = 1,
3124                 .sprites_enabled = pipe_wm->sprites_enabled,
3125                 .sprites_scaled = pipe_wm->sprites_scaled,
3126         };
3127         struct ilk_wm_maximums max;
3128
3129         /* LP0 watermarks always use 1/2 DDB partitioning */
3130         ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3131
3132         /* At least LP0 must be valid */
3133         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3134                 drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
3135                 return false;
3136         }
3137
3138         return true;
3139 }
3140
3141 /* Compute new watermarks for the pipe */
3142 static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3143 {
3144         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3145         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3146         struct intel_pipe_wm *pipe_wm;
3147         struct intel_plane *plane;
3148         const struct intel_plane_state *plane_state;
3149         const struct intel_plane_state *pristate = NULL;
3150         const struct intel_plane_state *sprstate = NULL;
3151         const struct intel_plane_state *curstate = NULL;
3152         int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3153         struct ilk_wm_maximums max;
3154
3155         pipe_wm = &crtc_state->wm.ilk.optimal;
3156
3157         intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
3158                 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
3159                         pristate = plane_state;
3160                 else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
3161                         sprstate = plane_state;
3162                 else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
3163                         curstate = plane_state;
3164         }
3165
3166         pipe_wm->pipe_enabled = crtc_state->hw.active;
3167         if (sprstate) {
3168                 pipe_wm->sprites_enabled = sprstate->uapi.visible;
3169                 pipe_wm->sprites_scaled = sprstate->uapi.visible &&
3170                         (drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
3171                          drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
3172         }
3173
3174         usable_level = max_level;
3175
3176         /* ILK/SNB: LP2+ watermarks only w/o sprites */
3177         if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3178                 usable_level = 1;
3179
3180         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3181         if (pipe_wm->sprites_scaled)
3182                 usable_level = 0;
3183
3184         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3185         ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
3186                              pristate, sprstate, curstate, &pipe_wm->wm[0]);
3187
3188         if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3189                 return -EINVAL;
3190
3191         ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3192
3193         for (level = 1; level <= usable_level; level++) {
3194                 struct intel_wm_level *wm = &pipe_wm->wm[level];
3195
3196                 ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
3197                                      pristate, sprstate, curstate, wm);
3198
3199                 /*
3200                  * Disable any watermark level that exceeds the
3201                  * register maximums since such watermarks are
3202                  * always invalid.
3203                  */
3204                 if (!ilk_validate_wm_level(level, &max, wm)) {
3205                         memset(wm, 0, sizeof(*wm));
3206                         break;
3207                 }
3208         }
3209
3210         return 0;
3211 }
3212
3213 /*
3214  * Build a set of 'intermediate' watermark values that satisfy both the old
3215  * state and the new state.  These can be programmed to the hardware
3216  * immediately.
3217  */
3218 static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3219 {
3220         struct intel_crtc *intel_crtc = to_intel_crtc(newstate->uapi.crtc);
3221         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3222         struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3223         struct intel_atomic_state *intel_state =
3224                 to_intel_atomic_state(newstate->uapi.state);
3225         const struct intel_crtc_state *oldstate =
3226                 intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3227         const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3228         int level, max_level = ilk_wm_max_level(dev_priv);
3229
3230         /*
3231          * Start with the final, target watermarks, then combine with the
3232          * currently active watermarks to get values that are safe both before
3233          * and after the vblank.
3234          */
3235         *a = newstate->wm.ilk.optimal;
3236         if (!newstate->hw.active || drm_atomic_crtc_needs_modeset(&newstate->uapi) ||
3237             intel_state->skip_intermediate_wm)
3238                 return 0;
3239
3240         a->pipe_enabled |= b->pipe_enabled;
3241         a->sprites_enabled |= b->sprites_enabled;
3242         a->sprites_scaled |= b->sprites_scaled;
3243
3244         for (level = 0; level <= max_level; level++) {
3245                 struct intel_wm_level *a_wm = &a->wm[level];
3246                 const struct intel_wm_level *b_wm = &b->wm[level];
3247
3248                 a_wm->enable &= b_wm->enable;
3249                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3250                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3251                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3252                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3253         }
3254
3255         /*
3256          * We need to make sure that these merged watermark values are
3257          * actually a valid configuration themselves.  If they're not,
3258          * there's no safe way to transition from the old state to
3259          * the new state, so we need to fail the atomic transaction.
3260          */
3261         if (!ilk_validate_pipe_wm(dev_priv, a))
3262                 return -EINVAL;
3263
3264         /*
3265          * If our intermediate WM are identical to the final WM, then we can
3266          * omit the post-vblank programming; only update if it's different.
3267          */
3268         if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3269                 newstate->wm.need_postvbl_update = true;
3270
3271         return 0;
3272 }
3273
3274 /*
3275  * Merge the watermarks from all active pipes for a specific level.
3276  */
3277 static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3278                                int level,
3279                                struct intel_wm_level *ret_wm)
3280 {
3281         const struct intel_crtc *intel_crtc;
3282
3283         ret_wm->enable = true;
3284
3285         for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3286                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3287                 const struct intel_wm_level *wm = &active->wm[level];
3288
3289                 if (!active->pipe_enabled)
3290                         continue;
3291
3292                 /*
3293                  * The watermark values may have been used in the past,
3294                  * so we must maintain them in the registers for some
3295                  * time even if the level is now disabled.
3296                  */
3297                 if (!wm->enable)
3298                         ret_wm->enable = false;
3299
3300                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3301                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3302                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3303                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3304         }
3305 }
3306
3307 /*
3308  * Merge all low power watermarks for all active pipes.
3309  */
3310 static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3311                          const struct intel_wm_config *config,
3312                          const struct ilk_wm_maximums *max,
3313                          struct intel_pipe_wm *merged)
3314 {
3315         int level, max_level = ilk_wm_max_level(dev_priv);
3316         int last_enabled_level = max_level;
3317
3318         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3319         if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3320             config->num_pipes_active > 1)
3321                 last_enabled_level = 0;
3322
3323         /* ILK: FBC WM must be disabled always */
3324         merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3325
3326         /* merge each WM1+ level */
3327         for (level = 1; level <= max_level; level++) {
3328                 struct intel_wm_level *wm = &merged->wm[level];
3329
3330                 ilk_merge_wm_level(dev_priv, level, wm);
3331
3332                 if (level > last_enabled_level)
3333                         wm->enable = false;
3334                 else if (!ilk_validate_wm_level(level, max, wm))
3335                         /* make sure all following levels get disabled */
3336                         last_enabled_level = level - 1;
3337
3338                 /*
3339                  * The spec says it is preferred to disable
3340                  * FBC WMs instead of disabling a WM level.
3341                  */
3342                 if (wm->fbc_val > max->fbc) {
3343                         if (wm->enable)
3344                                 merged->fbc_wm_enabled = false;
3345                         wm->fbc_val = 0;
3346                 }
3347         }
3348
3349         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3350         /*
3351          * FIXME this is racy. FBC might get enabled later.
3352          * What we should check here is whether FBC can be
3353          * enabled sometime later.
3354          */
3355         if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3356             intel_fbc_is_active(dev_priv)) {
3357                 for (level = 2; level <= max_level; level++) {
3358                         struct intel_wm_level *wm = &merged->wm[level];
3359
3360                         wm->enable = false;
3361                 }
3362         }
3363 }
3364
3365 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3366 {
3367         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3368         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3369 }
3370
3371 /* The value we need to program into the WM_LPx latency field */
3372 static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3373                                       int level)
3374 {
3375         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3376                 return 2 * level;
3377         else
3378                 return dev_priv->wm.pri_latency[level];
3379 }
3380
3381 static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3382                                    const struct intel_pipe_wm *merged,
3383                                    enum intel_ddb_partitioning partitioning,
3384                                    struct ilk_wm_values *results)
3385 {
3386         struct intel_crtc *intel_crtc;
3387         int level, wm_lp;
3388
3389         results->enable_fbc_wm = merged->fbc_wm_enabled;
3390         results->partitioning = partitioning;
3391
3392         /* LP1+ register values */
3393         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3394                 const struct intel_wm_level *r;
3395
3396                 level = ilk_wm_lp_to_level(wm_lp, merged);
3397
3398                 r = &merged->wm[level];
3399
3400                 /*
3401                  * Maintain the watermark values even if the level is
3402                  * disabled. Doing otherwise could cause underruns.
3403                  */
3404                 results->wm_lp[wm_lp - 1] =
3405                         (ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3406                         (r->pri_val << WM1_LP_SR_SHIFT) |
3407                         r->cur_val;
3408
3409                 if (r->enable)
3410                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3411
3412                 if (INTEL_GEN(dev_priv) >= 8)
3413                         results->wm_lp[wm_lp - 1] |=
3414                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3415                 else
3416                         results->wm_lp[wm_lp - 1] |=
3417                                 r->fbc_val << WM1_LP_FBC_SHIFT;
3418
3419                 /*
3420                  * Always set WM1S_LP_EN when spr_val != 0, even if the
3421                  * level is disabled. Doing otherwise could cause underruns.
3422                  */
3423                 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3424                         drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
3425                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3426                 } else
3427                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3428         }
3429
3430         /* LP0 register values */
3431         for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3432                 enum pipe pipe = intel_crtc->pipe;
3433                 const struct intel_pipe_wm *pipe_wm = &intel_crtc->wm.active.ilk;
3434                 const struct intel_wm_level *r = &pipe_wm->wm[0];
3435
3436                 if (drm_WARN_ON(&dev_priv->drm, !r->enable))
3437                         continue;
3438
3439                 results->wm_pipe[pipe] =
3440                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3441                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3442                         r->cur_val;
3443         }
3444 }
3445
3446 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3447  * case both are at the same level. Prefer r1 in case they're the same. */
3448 static struct intel_pipe_wm *
3449 ilk_find_best_result(struct drm_i915_private *dev_priv,
3450                      struct intel_pipe_wm *r1,
3451                      struct intel_pipe_wm *r2)
3452 {
3453         int level, max_level = ilk_wm_max_level(dev_priv);
3454         int level1 = 0, level2 = 0;
3455
3456         for (level = 1; level <= max_level; level++) {
3457                 if (r1->wm[level].enable)
3458                         level1 = level;
3459                 if (r2->wm[level].enable)
3460                         level2 = level;
3461         }
3462
3463         if (level1 == level2) {
3464                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3465                         return r2;
3466                 else
3467                         return r1;
3468         } else if (level1 > level2) {
3469                 return r1;
3470         } else {
3471                 return r2;
3472         }
3473 }
3474
3475 /* dirty bits used to track which watermarks need changes */
3476 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3477 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3478 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3479 #define WM_DIRTY_FBC (1 << 24)
3480 #define WM_DIRTY_DDB (1 << 25)
3481
3482 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3483                                          const struct ilk_wm_values *old,
3484                                          const struct ilk_wm_values *new)
3485 {
3486         unsigned int dirty = 0;
3487         enum pipe pipe;
3488         int wm_lp;
3489
3490         for_each_pipe(dev_priv, pipe) {
3491                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3492                         dirty |= WM_DIRTY_PIPE(pipe);
3493                         /* Must disable LP1+ watermarks too */
3494                         dirty |= WM_DIRTY_LP_ALL;
3495                 }
3496         }
3497
3498         if (old->enable_fbc_wm != new->enable_fbc_wm) {
3499                 dirty |= WM_DIRTY_FBC;
3500                 /* Must disable LP1+ watermarks too */
3501                 dirty |= WM_DIRTY_LP_ALL;
3502         }
3503
3504         if (old->partitioning != new->partitioning) {
3505                 dirty |= WM_DIRTY_DDB;
3506                 /* Must disable LP1+ watermarks too */
3507                 dirty |= WM_DIRTY_LP_ALL;
3508         }
3509
3510         /* LP1+ watermarks already deemed dirty, no need to continue */
3511         if (dirty & WM_DIRTY_LP_ALL)
3512                 return dirty;
3513
3514         /* Find the lowest numbered LP1+ watermark in need of an update... */
3515         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3516                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3517                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3518                         break;
3519         }
3520
3521         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3522         for (; wm_lp <= 3; wm_lp++)
3523                 dirty |= WM_DIRTY_LP(wm_lp);
3524
3525         return dirty;
3526 }
3527
3528 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3529                                unsigned int dirty)
3530 {
3531         struct ilk_wm_values *previous = &dev_priv->wm.hw;
3532         bool changed = false;
3533
3534         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3535                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3536                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3537                 changed = true;
3538         }
3539         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3540                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3541                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3542                 changed = true;
3543         }
3544         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3545                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3546                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3547                 changed = true;
3548         }
3549
3550         /*
3551          * Don't touch WM1S_LP_EN here.
3552          * Doing so could cause underruns.
3553          */
3554
3555         return changed;
3556 }
3557
3558 /*
3559  * The spec says we shouldn't write when we don't need, because every write
3560  * causes WMs to be re-evaluated, expending some power.
3561  */
3562 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3563                                 struct ilk_wm_values *results)
3564 {
3565         struct ilk_wm_values *previous = &dev_priv->wm.hw;
3566         unsigned int dirty;
3567         u32 val;
3568
3569         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3570         if (!dirty)
3571                 return;
3572
3573         _ilk_disable_lp_wm(dev_priv, dirty);
3574
3575         if (dirty & WM_DIRTY_PIPE(PIPE_A))
3576                 I915_WRITE(WM0_PIPE_ILK(PIPE_A), results->wm_pipe[0]);
3577         if (dirty & WM_DIRTY_PIPE(PIPE_B))
3578                 I915_WRITE(WM0_PIPE_ILK(PIPE_B), results->wm_pipe[1]);
3579         if (dirty & WM_DIRTY_PIPE(PIPE_C))
3580                 I915_WRITE(WM0_PIPE_ILK(PIPE_C), results->wm_pipe[2]);
3581
3582         if (dirty & WM_DIRTY_DDB) {
3583                 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3584                         val = I915_READ(WM_MISC);
3585                         if (results->partitioning == INTEL_DDB_PART_1_2)
3586                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
3587                         else
3588                                 val |= WM_MISC_DATA_PARTITION_5_6;
3589                         I915_WRITE(WM_MISC, val);
3590                 } else {
3591                         val = I915_READ(DISP_ARB_CTL2);
3592                         if (results->partitioning == INTEL_DDB_PART_1_2)
3593                                 val &= ~DISP_DATA_PARTITION_5_6;
3594                         else
3595                                 val |= DISP_DATA_PARTITION_5_6;
3596                         I915_WRITE(DISP_ARB_CTL2, val);
3597                 }
3598         }
3599
3600         if (dirty & WM_DIRTY_FBC) {
3601                 val = I915_READ(DISP_ARB_CTL);
3602                 if (results->enable_fbc_wm)
3603                         val &= ~DISP_FBC_WM_DIS;
3604                 else
3605                         val |= DISP_FBC_WM_DIS;
3606                 I915_WRITE(DISP_ARB_CTL, val);
3607         }
3608
3609         if (dirty & WM_DIRTY_LP(1) &&
3610             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3611                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3612
3613         if (INTEL_GEN(dev_priv) >= 7) {
3614                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3615                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3616                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3617                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3618         }
3619
3620         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3621                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3622         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3623                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3624         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3625                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3626
3627         dev_priv->wm.hw = *results;
3628 }
3629
3630 bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
3631 {
3632         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3633 }
3634
3635 u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv)
3636 {
3637         int i;
3638         int max_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
3639         u8 enabled_slices_mask = 0;
3640
3641         for (i = 0; i < max_slices; i++) {
3642                 if (I915_READ(DBUF_CTL_S(i)) & DBUF_POWER_STATE)
3643                         enabled_slices_mask |= BIT(i);
3644         }
3645
3646         return enabled_slices_mask;
3647 }
3648
3649 /*
3650  * FIXME: We still don't have the proper code detect if we need to apply the WA,
3651  * so assume we'll always need it in order to avoid underruns.
3652  */
3653 static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3654 {
3655         return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3656 }
3657
3658 static bool
3659 intel_has_sagv(struct drm_i915_private *dev_priv)
3660 {
3661         return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
3662                 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3663 }
3664
3665 static void
3666 skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
3667 {
3668         if (INTEL_GEN(dev_priv) >= 12) {
3669                 u32 val = 0;
3670                 int ret;
3671
3672                 ret = sandybridge_pcode_read(dev_priv,
3673                                              GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
3674                                              &val, NULL);
3675                 if (!ret) {
3676                         dev_priv->sagv_block_time_us = val;
3677                         return;
3678                 }
3679
3680                 drm_dbg(&dev_priv->drm, "Couldn't read SAGV block time!\n");
3681         } else if (IS_GEN(dev_priv, 11)) {
3682                 dev_priv->sagv_block_time_us = 10;
3683                 return;
3684         } else if (IS_GEN(dev_priv, 10)) {
3685                 dev_priv->sagv_block_time_us = 20;
3686                 return;
3687         } else if (IS_GEN(dev_priv, 9)) {
3688                 dev_priv->sagv_block_time_us = 30;
3689                 return;
3690         } else {
3691                 MISSING_CASE(INTEL_GEN(dev_priv));
3692         }
3693
3694         /* Default to an unusable block time */
3695         dev_priv->sagv_block_time_us = -1;
3696 }
3697
3698 /*
3699  * SAGV dynamically adjusts the system agent voltage and clock frequencies
3700  * depending on power and performance requirements. The display engine access
3701  * to system memory is blocked during the adjustment time. Because of the
3702  * blocking time, having this enabled can cause full system hangs and/or pipe
3703  * underruns if we don't meet all of the following requirements:
3704  *
3705  *  - <= 1 pipe enabled
3706  *  - All planes can enable watermarks for latencies >= SAGV engine block time
3707  *  - We're not using an interlaced display configuration
3708  */
3709 static int
3710 intel_enable_sagv(struct drm_i915_private *dev_priv)
3711 {
3712         int ret;
3713
3714         if (!intel_has_sagv(dev_priv))
3715                 return 0;
3716
3717         if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3718                 return 0;
3719
3720         drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
3721         ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3722                                       GEN9_SAGV_ENABLE);
3723
3724         /* We don't need to wait for SAGV when enabling */
3725
3726         /*
3727          * Some skl systems, pre-release machines in particular,
3728          * don't actually have SAGV.
3729          */
3730         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3731                 drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3732                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3733                 return 0;
3734         } else if (ret < 0) {
3735                 drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
3736                 return ret;
3737         }
3738
3739         dev_priv->sagv_status = I915_SAGV_ENABLED;
3740         return 0;
3741 }
3742
3743 static int
3744 intel_disable_sagv(struct drm_i915_private *dev_priv)
3745 {
3746         int ret;
3747
3748         if (!intel_has_sagv(dev_priv))
3749                 return 0;
3750
3751         if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3752                 return 0;
3753
3754         drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
3755         /* bspec says to keep retrying for at least 1 ms */
3756         ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3757                                 GEN9_SAGV_DISABLE,
3758                                 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3759                                 1);
3760         /*
3761          * Some skl systems, pre-release machines in particular,
3762          * don't actually have SAGV.
3763          */
3764         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3765                 drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
3766                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3767                 return 0;
3768         } else if (ret < 0) {
3769                 drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
3770                 return ret;
3771         }
3772
3773         dev_priv->sagv_status = I915_SAGV_DISABLED;
3774         return 0;
3775 }
3776
3777 void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
3778 {
3779         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3780         const struct intel_bw_state *new_bw_state;
3781         const struct intel_bw_state *old_bw_state;
3782         u32 new_mask = 0;
3783
3784         /*
3785          * Just return if we can't control SAGV or don't have it.
3786          * This is different from situation when we have SAGV but just can't
3787          * afford it due to DBuf limitation - in case if SAGV is completely
3788          * disabled in a BIOS, we are not even allowed to send a PCode request,
3789          * as it will throw an error. So have to check it here.
3790          */
3791         if (!intel_has_sagv(dev_priv))
3792                 return;
3793
3794         new_bw_state = intel_atomic_get_new_bw_state(state);
3795         if (!new_bw_state)
3796                 return;
3797
3798         if (INTEL_GEN(dev_priv) < 11 && !intel_can_enable_sagv(dev_priv, new_bw_state)) {
3799                 intel_disable_sagv(dev_priv);
3800                 return;
3801         }
3802
3803         old_bw_state = intel_atomic_get_old_bw_state(state);
3804         /*
3805          * Nothing to mask
3806          */
3807         if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
3808                 return;
3809
3810         new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
3811
3812         /*
3813          * If new mask is zero - means there is nothing to mask,
3814          * we can only unmask, which should be done in unmask.
3815          */
3816         if (!new_mask)
3817                 return;
3818
3819         /*
3820          * Restrict required qgv points before updating the configuration.
3821          * According to BSpec we can't mask and unmask qgv points at the same
3822          * time. Also masking should be done before updating the configuration
3823          * and unmasking afterwards.
3824          */
3825         icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3826 }
3827
3828 void intel_sagv_post_plane_update(struct intel_atomic_state *state)
3829 {
3830         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3831         const struct intel_bw_state *new_bw_state;
3832         const struct intel_bw_state *old_bw_state;
3833         u32 new_mask = 0;
3834
3835         /*
3836          * Just return if we can't control SAGV or don't have it.
3837          * This is different from situation when we have SAGV but just can't
3838          * afford it due to DBuf limitation - in case if SAGV is completely
3839          * disabled in a BIOS, we are not even allowed to send a PCode request,
3840          * as it will throw an error. So have to check it here.
3841          */
3842         if (!intel_has_sagv(dev_priv))
3843                 return;
3844
3845         new_bw_state = intel_atomic_get_new_bw_state(state);
3846         if (!new_bw_state)
3847                 return;
3848
3849         if (INTEL_GEN(dev_priv) < 11 && intel_can_enable_sagv(dev_priv, new_bw_state)) {
3850                 intel_enable_sagv(dev_priv);
3851                 return;
3852         }
3853
3854         old_bw_state = intel_atomic_get_old_bw_state(state);
3855         /*
3856          * Nothing to unmask
3857          */
3858         if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
3859                 return;
3860
3861         new_mask = new_bw_state->qgv_points_mask;
3862
3863         /*
3864          * Allow required qgv points after updating the configuration.
3865          * According to BSpec we can't mask and unmask qgv points at the same
3866          * time. Also masking should be done before updating the configuration
3867          * and unmasking afterwards.
3868          */
3869         icl_pcode_restrict_qgv_points(dev_priv, new_mask);
3870 }
3871
3872 static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3873 {
3874         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3875         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3876         struct intel_plane *plane;
3877         const struct intel_plane_state *plane_state;
3878         int level, latency;
3879
3880         if (!intel_has_sagv(dev_priv))
3881                 return false;
3882
3883         if (!crtc_state->hw.active)
3884                 return true;
3885
3886         if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3887                 return false;
3888
3889         intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
3890                 const struct skl_plane_wm *wm =
3891                         &crtc_state->wm.skl.optimal.planes[plane->id];
3892
3893                 /* Skip this plane if it's not enabled */
3894                 if (!wm->wm[0].plane_en)
3895                         continue;
3896
3897                 /* Find the highest enabled wm level for this plane */
3898                 for (level = ilk_wm_max_level(dev_priv);
3899                      !wm->wm[level].plane_en; --level)
3900                      { }
3901
3902                 latency = dev_priv->wm.skl_latency[level];
3903
3904                 if (skl_needs_memory_bw_wa(dev_priv) &&
3905                     plane_state->uapi.fb->modifier ==
3906                     I915_FORMAT_MOD_X_TILED)
3907                         latency += 15;
3908
3909                 /*
3910                  * If any of the planes on this pipe don't enable wm levels that
3911                  * incur memory latencies higher than sagv_block_time_us we
3912                  * can't enable SAGV.
3913                  */
3914                 if (latency < dev_priv->sagv_block_time_us)
3915                         return false;
3916         }
3917
3918         return true;
3919 }
3920
3921 static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3922 {
3923         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3924         enum plane_id plane_id;
3925
3926         if (!crtc_state->hw.active)
3927                 return true;
3928
3929         for_each_plane_id_on_crtc(crtc, plane_id) {
3930                 const struct skl_ddb_entry *plane_alloc =
3931                         &crtc_state->wm.skl.plane_ddb_y[plane_id];
3932                 const struct skl_plane_wm *wm =
3933                         &crtc_state->wm.skl.optimal.planes[plane_id];
3934
3935                 if (skl_ddb_entry_size(plane_alloc) < wm->sagv_wm0.min_ddb_alloc)
3936                         return false;
3937         }
3938
3939         return true;
3940 }
3941
3942 static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
3943 {
3944         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3945         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3946
3947         if (INTEL_GEN(dev_priv) >= 12)
3948                 return tgl_crtc_can_enable_sagv(crtc_state);
3949         else
3950                 return skl_crtc_can_enable_sagv(crtc_state);
3951 }
3952
3953 bool intel_can_enable_sagv(struct drm_i915_private *dev_priv,
3954                            const struct intel_bw_state *bw_state)
3955 {
3956         if (INTEL_GEN(dev_priv) < 11 &&
3957             bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
3958                 return false;
3959
3960         return bw_state->pipe_sagv_reject == 0;
3961 }
3962
3963 static int intel_compute_sagv_mask(struct intel_atomic_state *state)
3964 {
3965         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3966         int ret;
3967         struct intel_crtc *crtc;
3968         struct intel_crtc_state *new_crtc_state;
3969         struct intel_bw_state *new_bw_state = NULL;
3970         const struct intel_bw_state *old_bw_state = NULL;
3971         int i;
3972
3973         for_each_new_intel_crtc_in_state(state, crtc,
3974                                          new_crtc_state, i) {
3975                 new_bw_state = intel_atomic_get_bw_state(state);
3976                 if (IS_ERR(new_bw_state))
3977                         return PTR_ERR(new_bw_state);
3978
3979                 old_bw_state = intel_atomic_get_old_bw_state(state);
3980
3981                 if (intel_crtc_can_enable_sagv(new_crtc_state))
3982                         new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
3983                 else
3984                         new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
3985         }
3986
3987         if (!new_bw_state)
3988                 return 0;
3989
3990         new_bw_state->active_pipes =
3991                 intel_calc_active_pipes(state, old_bw_state->active_pipes);
3992
3993         if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
3994                 ret = intel_atomic_lock_global_state(&new_bw_state->base);
3995                 if (ret)
3996                         return ret;
3997         }
3998
3999         for_each_new_intel_crtc_in_state(state, crtc,
4000                                          new_crtc_state, i) {
4001                 struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;
4002
4003                 /*
4004                  * We store use_sagv_wm in the crtc state rather than relying on
4005                  * that bw state since we have no convenient way to get at the
4006                  * latter from the plane commit hooks (especially in the legacy
4007                  * cursor case)
4008                  */
4009                 pipe_wm->use_sagv_wm = INTEL_GEN(dev_priv) >= 12 &&
4010                                        intel_can_enable_sagv(dev_priv, new_bw_state);
4011         }
4012
4013         if (intel_can_enable_sagv(dev_priv, new_bw_state) !=
4014             intel_can_enable_sagv(dev_priv, old_bw_state)) {
4015                 ret = intel_atomic_serialize_global_state(&new_bw_state->base);
4016                 if (ret)
4017                         return ret;
4018         } else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
4019                 ret = intel_atomic_lock_global_state(&new_bw_state->base);
4020                 if (ret)
4021                         return ret;
4022         }
4023
4024         return 0;
4025 }
4026
4027 /*
4028  * Calculate initial DBuf slice offset, based on slice size
4029  * and mask(i.e if slice size is 1024 and second slice is enabled
4030  * offset would be 1024)
4031  */
4032 static unsigned int
4033 icl_get_first_dbuf_slice_offset(u32 dbuf_slice_mask,
4034                                 u32 slice_size,
4035                                 u32 ddb_size)
4036 {
4037         unsigned int offset = 0;
4038
4039         if (!dbuf_slice_mask)
4040                 return 0;
4041
4042         offset = (ffs(dbuf_slice_mask) - 1) * slice_size;
4043
4044         WARN_ON(offset >= ddb_size);
4045         return offset;
4046 }
4047
4048 u16 intel_get_ddb_size(struct drm_i915_private *dev_priv)
4049 {
4050         u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
4051         drm_WARN_ON(&dev_priv->drm, ddb_size == 0);
4052
4053         if (INTEL_GEN(dev_priv) < 11)
4054                 return ddb_size - 4; /* 4 blocks for bypass path allocation */
4055
4056         return ddb_size;
4057 }
4058
4059 u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *dev_priv,
4060                             const struct skl_ddb_entry *entry)
4061 {
4062         u32 slice_mask = 0;
4063         u16 ddb_size = intel_get_ddb_size(dev_priv);
4064         u16 num_supported_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
4065         u16 slice_size = ddb_size / num_supported_slices;
4066         u16 start_slice;
4067         u16 end_slice;
4068
4069         if (!skl_ddb_entry_size(entry))
4070                 return 0;
4071
4072         start_slice = entry->start / slice_size;
4073         end_slice = (entry->end - 1) / slice_size;
4074
4075         /*
4076          * Per plane DDB entry can in a really worst case be on multiple slices
4077          * but single entry is anyway contigious.
4078          */
4079         while (start_slice <= end_slice) {
4080                 slice_mask |= BIT(start_slice);
4081                 start_slice++;
4082         }
4083
4084         return slice_mask;
4085 }
4086
4087 static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
4088                                   u8 active_pipes);
4089
4090 static int
4091 skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
4092                                    const struct intel_crtc_state *crtc_state,
4093                                    const u64 total_data_rate,
4094                                    struct skl_ddb_entry *alloc, /* out */
4095                                    int *num_active /* out */)
4096 {
4097         struct drm_atomic_state *state = crtc_state->uapi.state;
4098         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4099         struct drm_crtc *for_crtc = crtc_state->uapi.crtc;
4100         const struct intel_crtc *crtc;
4101         u32 pipe_width = 0, total_width_in_range = 0, width_before_pipe_in_range = 0;
4102         enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
4103         struct intel_dbuf_state *new_dbuf_state =
4104                 intel_atomic_get_new_dbuf_state(intel_state);
4105         const struct intel_dbuf_state *old_dbuf_state =
4106                 intel_atomic_get_old_dbuf_state(intel_state);
4107         u8 active_pipes = new_dbuf_state->active_pipes;
4108         u16 ddb_size;
4109         u32 ddb_range_size;
4110         u32 i;
4111         u32 dbuf_slice_mask;
4112         u32 offset;
4113         u32 slice_size;
4114         u32 total_slice_mask;
4115         u32 start, end;
4116         int ret;
4117
4118         *num_active = hweight8(active_pipes);
4119
4120         if (!crtc_state->hw.active) {
4121                 alloc->start = 0;
4122                 alloc->end = 0;
4123                 return 0;
4124         }
4125
4126         ddb_size = intel_get_ddb_size(dev_priv);
4127
4128         slice_size = ddb_size / INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
4129
4130         /*
4131          * If the state doesn't change the active CRTC's or there is no
4132          * modeset request, then there's no need to recalculate;
4133          * the existing pipe allocation limits should remain unchanged.
4134          * Note that we're safe from racing commits since any racing commit
4135          * that changes the active CRTC list or do modeset would need to
4136          * grab _all_ crtc locks, including the one we currently hold.
4137          */
4138         if (old_dbuf_state->active_pipes == new_dbuf_state->active_pipes &&
4139             !dev_priv->wm.distrust_bios_wm) {
4140                 /*
4141                  * alloc may be cleared by clear_intel_crtc_state,
4142                  * copy from old state to be sure
4143                  *
4144                  * FIXME get rid of this mess
4145                  */
4146                 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
4147                 return 0;
4148         }
4149
4150         /*
4151          * Get allowed DBuf slices for correspondent pipe and platform.
4152          */
4153         dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state, active_pipes);
4154
4155         /*
4156          * Figure out at which DBuf slice we start, i.e if we start at Dbuf S2
4157          * and slice size is 1024, the offset would be 1024
4158          */
4159         offset = icl_get_first_dbuf_slice_offset(dbuf_slice_mask,
4160                                                  slice_size, ddb_size);
4161
4162         /*
4163          * Figure out total size of allowed DBuf slices, which is basically
4164          * a number of allowed slices for that pipe multiplied by slice size.
4165          * Inside of this
4166          * range ddb entries are still allocated in proportion to display width.
4167          */
4168         ddb_range_size = hweight8(dbuf_slice_mask) * slice_size;
4169
4170         /*
4171          * Watermark/ddb requirement highly depends upon width of the
4172          * framebuffer, So instead of allocating DDB equally among pipes
4173          * distribute DDB based on resolution/width of the display.
4174          */
4175         total_slice_mask = dbuf_slice_mask;
4176         for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
4177                 const struct drm_display_mode *adjusted_mode =
4178                         &crtc_state->hw.adjusted_mode;
4179                 enum pipe pipe = crtc->pipe;
4180                 int hdisplay, vdisplay;
4181                 u32 pipe_dbuf_slice_mask;
4182
4183                 if (!crtc_state->hw.active)
4184                         continue;
4185
4186                 pipe_dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state,
4187                                                                active_pipes);
4188
4189                 /*
4190                  * According to BSpec pipe can share one dbuf slice with another
4191                  * pipes or pipe can use multiple dbufs, in both cases we
4192                  * account for other pipes only if they have exactly same mask.
4193                  * However we need to account how many slices we should enable
4194                  * in total.
4195                  */
4196                 total_slice_mask |= pipe_dbuf_slice_mask;
4197
4198                 /*
4199                  * Do not account pipes using other slice sets
4200                  * luckily as of current BSpec slice sets do not partially
4201                  * intersect(pipes share either same one slice or same slice set
4202                  * i.e no partial intersection), so it is enough to check for
4203                  * equality for now.
4204                  */
4205                 if (dbuf_slice_mask != pipe_dbuf_slice_mask)
4206                         continue;
4207
4208                 drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
4209
4210                 total_width_in_range += hdisplay;
4211
4212                 if (pipe < for_pipe)
4213                         width_before_pipe_in_range += hdisplay;
4214                 else if (pipe == for_pipe)
4215                         pipe_width = hdisplay;
4216         }
4217
4218         /*
4219          * FIXME: For now we always enable slice S1 as per
4220          * the Bspec display initialization sequence.
4221          */
4222         new_dbuf_state->enabled_slices = total_slice_mask | BIT(DBUF_S1);
4223
4224         if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices) {
4225                 ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
4226                 if (ret)
4227                         return ret;
4228         }
4229
4230         start = ddb_range_size * width_before_pipe_in_range / total_width_in_range;
4231         end = ddb_range_size *
4232                 (width_before_pipe_in_range + pipe_width) / total_width_in_range;
4233
4234         alloc->start = offset + start;
4235         alloc->end = offset + end;
4236
4237         drm_dbg_kms(&dev_priv->drm,
4238                     "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x\n",
4239                     for_crtc->base.id, for_crtc->name,
4240                     dbuf_slice_mask, alloc->start, alloc->end, active_pipes);
4241
4242         return 0;
4243 }
4244
4245 static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
4246                                  int width, const struct drm_format_info *format,
4247                                  u64 modifier, unsigned int rotation,
4248                                  u32 plane_pixel_rate, struct skl_wm_params *wp,
4249                                  int color_plane);
4250 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4251                                  int level,
4252                                  unsigned int latency,
4253                                  const struct skl_wm_params *wp,
4254                                  const struct skl_wm_level *result_prev,
4255                                  struct skl_wm_level *result /* out */);
4256
4257 static unsigned int
4258 skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
4259                       int num_active)
4260 {
4261         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4262         int level, max_level = ilk_wm_max_level(dev_priv);
4263         struct skl_wm_level wm = {};
4264         int ret, min_ddb_alloc = 0;
4265         struct skl_wm_params wp;
4266
4267         ret = skl_compute_wm_params(crtc_state, 256,
4268                                     drm_format_info(DRM_FORMAT_ARGB8888),
4269                                     DRM_FORMAT_MOD_LINEAR,
4270                                     DRM_MODE_ROTATE_0,
4271                                     crtc_state->pixel_rate, &wp, 0);
4272         drm_WARN_ON(&dev_priv->drm, ret);
4273
4274         for (level = 0; level <= max_level; level++) {
4275                 unsigned int latency = dev_priv->wm.skl_latency[level];
4276
4277                 skl_compute_plane_wm(crtc_state, level, latency, &wp, &wm, &wm);
4278                 if (wm.min_ddb_alloc == U16_MAX)
4279                         break;
4280
4281                 min_ddb_alloc = wm.min_ddb_alloc;
4282         }
4283
4284         return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
4285 }
4286
4287 static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
4288                                        struct skl_ddb_entry *entry, u32 reg)
4289 {
4290
4291         entry->start = reg & DDB_ENTRY_MASK;
4292         entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
4293
4294         if (entry->end)
4295                 entry->end += 1;
4296 }
4297
4298 static void
4299 skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
4300                            const enum pipe pipe,
4301                            const enum plane_id plane_id,
4302                            struct skl_ddb_entry *ddb_y,
4303                            struct skl_ddb_entry *ddb_uv)
4304 {
4305         u32 val, val2;
4306         u32 fourcc = 0;
4307
4308         /* Cursor doesn't support NV12/planar, so no extra calculation needed */
4309         if (plane_id == PLANE_CURSOR) {
4310                 val = I915_READ(CUR_BUF_CFG(pipe));
4311                 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4312                 return;
4313         }
4314
4315         val = I915_READ(PLANE_CTL(pipe, plane_id));
4316
4317         /* No DDB allocated for disabled planes */
4318         if (val & PLANE_CTL_ENABLE)
4319                 fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
4320                                               val & PLANE_CTL_ORDER_RGBX,
4321                                               val & PLANE_CTL_ALPHA_MASK);
4322
4323         if (INTEL_GEN(dev_priv) >= 11) {
4324                 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4325                 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4326         } else {
4327                 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4328                 val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4329
4330                 if (fourcc &&
4331                     drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
4332                         swap(val, val2);
4333
4334                 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4335                 skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4336         }
4337 }
4338
4339 void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
4340                                struct skl_ddb_entry *ddb_y,
4341                                struct skl_ddb_entry *ddb_uv)
4342 {
4343         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4344         enum intel_display_power_domain power_domain;
4345         enum pipe pipe = crtc->pipe;
4346         intel_wakeref_t wakeref;
4347         enum plane_id plane_id;
4348
4349         power_domain = POWER_DOMAIN_PIPE(pipe);
4350         wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4351         if (!wakeref)
4352                 return;
4353
4354         for_each_plane_id_on_crtc(crtc, plane_id)
4355                 skl_ddb_get_hw_plane_state(dev_priv, pipe,
4356                                            plane_id,
4357                                            &ddb_y[plane_id],
4358                                            &ddb_uv[plane_id]);
4359
4360         intel_display_power_put(dev_priv, power_domain, wakeref);
4361 }
4362
4363 /*
4364  * Determines the downscale amount of a plane for the purposes of watermark calculations.
4365  * The bspec defines downscale amount as:
4366  *
4367  * """
4368  * Horizontal down scale amount = maximum[1, Horizontal source size /
4369  *                                           Horizontal destination size]
4370  * Vertical down scale amount = maximum[1, Vertical source size /
4371  *                                         Vertical destination size]
4372  * Total down scale amount = Horizontal down scale amount *
4373  *                           Vertical down scale amount
4374  * """
4375  *
4376  * Return value is provided in 16.16 fixed point form to retain fractional part.
4377  * Caller should take care of dividing & rounding off the value.
4378  */
4379 static uint_fixed_16_16_t
4380 skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
4381                            const struct intel_plane_state *plane_state)
4382 {
4383         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4384         u32 src_w, src_h, dst_w, dst_h;
4385         uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4386         uint_fixed_16_16_t downscale_h, downscale_w;
4387
4388         if (drm_WARN_ON(&dev_priv->drm,
4389                         !intel_wm_plane_visible(crtc_state, plane_state)))
4390                 return u32_to_fixed16(0);
4391
4392         /*
4393          * Src coordinates are already rotated by 270 degrees for
4394          * the 90/270 degree plane rotation cases (to match the
4395          * GTT mapping), hence no need to account for rotation here.
4396          *
4397          * n.b., src is 16.16 fixed point, dst is whole integer.
4398          */
4399         src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4400         src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
4401         dst_w = drm_rect_width(&plane_state->uapi.dst);
4402         dst_h = drm_rect_height(&plane_state->uapi.dst);
4403
4404         fp_w_ratio = div_fixed16(src_w, dst_w);
4405         fp_h_ratio = div_fixed16(src_h, dst_h);
4406         downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4407         downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4408
4409         return mul_fixed16(downscale_w, downscale_h);
4410 }
4411
4412 struct dbuf_slice_conf_entry {
4413         u8 active_pipes;
4414         u8 dbuf_mask[I915_MAX_PIPES];
4415 };
4416
4417 /*
4418  * Table taken from Bspec 12716
4419  * Pipes do have some preferred DBuf slice affinity,
4420  * plus there are some hardcoded requirements on how
4421  * those should be distributed for multipipe scenarios.
4422  * For more DBuf slices algorithm can get even more messy
4423  * and less readable, so decided to use a table almost
4424  * as is from BSpec itself - that way it is at least easier
4425  * to compare, change and check.
4426  */
4427 static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
4428 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
4429 {
4430         {
4431                 .active_pipes = BIT(PIPE_A),
4432                 .dbuf_mask = {
4433                         [PIPE_A] = BIT(DBUF_S1),
4434                 },
4435         },
4436         {
4437                 .active_pipes = BIT(PIPE_B),
4438                 .dbuf_mask = {
4439                         [PIPE_B] = BIT(DBUF_S1),
4440                 },
4441         },
4442         {
4443                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4444                 .dbuf_mask = {
4445                         [PIPE_A] = BIT(DBUF_S1),
4446                         [PIPE_B] = BIT(DBUF_S2),
4447                 },
4448         },
4449         {
4450                 .active_pipes = BIT(PIPE_C),
4451                 .dbuf_mask = {
4452                         [PIPE_C] = BIT(DBUF_S2),
4453                 },
4454         },
4455         {
4456                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4457                 .dbuf_mask = {
4458                         [PIPE_A] = BIT(DBUF_S1),
4459                         [PIPE_C] = BIT(DBUF_S2),
4460                 },
4461         },
4462         {
4463                 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4464                 .dbuf_mask = {
4465                         [PIPE_B] = BIT(DBUF_S1),
4466                         [PIPE_C] = BIT(DBUF_S2),
4467                 },
4468         },
4469         {
4470                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4471                 .dbuf_mask = {
4472                         [PIPE_A] = BIT(DBUF_S1),
4473                         [PIPE_B] = BIT(DBUF_S1),
4474                         [PIPE_C] = BIT(DBUF_S2),
4475                 },
4476         },
4477         {}
4478 };
4479
4480 /*
4481  * Table taken from Bspec 49255
4482  * Pipes do have some preferred DBuf slice affinity,
4483  * plus there are some hardcoded requirements on how
4484  * those should be distributed for multipipe scenarios.
4485  * For more DBuf slices algorithm can get even more messy
4486  * and less readable, so decided to use a table almost
4487  * as is from BSpec itself - that way it is at least easier
4488  * to compare, change and check.
4489  */
4490 static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
4491 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
4492 {
4493         {
4494                 .active_pipes = BIT(PIPE_A),
4495                 .dbuf_mask = {
4496                         [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
4497                 },
4498         },
4499         {
4500                 .active_pipes = BIT(PIPE_B),
4501                 .dbuf_mask = {
4502                         [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
4503                 },
4504         },
4505         {
4506                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
4507                 .dbuf_mask = {
4508                         [PIPE_A] = BIT(DBUF_S2),
4509                         [PIPE_B] = BIT(DBUF_S1),
4510                 },
4511         },
4512         {
4513                 .active_pipes = BIT(PIPE_C),
4514                 .dbuf_mask = {
4515                         [PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
4516                 },
4517         },
4518         {
4519                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
4520                 .dbuf_mask = {
4521                         [PIPE_A] = BIT(DBUF_S1),
4522                         [PIPE_C] = BIT(DBUF_S2),
4523                 },
4524         },
4525         {
4526                 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
4527                 .dbuf_mask = {
4528                         [PIPE_B] = BIT(DBUF_S1),
4529                         [PIPE_C] = BIT(DBUF_S2),
4530                 },
4531         },
4532         {
4533                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
4534                 .dbuf_mask = {
4535                         [PIPE_A] = BIT(DBUF_S1),
4536                         [PIPE_B] = BIT(DBUF_S1),
4537                         [PIPE_C] = BIT(DBUF_S2),
4538                 },
4539         },
4540         {
4541                 .active_pipes = BIT(PIPE_D),
4542                 .dbuf_mask = {
4543                         [PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
4544                 },
4545         },
4546         {
4547                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
4548                 .dbuf_mask = {
4549                         [PIPE_A] = BIT(DBUF_S1),
4550                         [PIPE_D] = BIT(DBUF_S2),
4551                 },
4552         },
4553         {
4554                 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
4555                 .dbuf_mask = {
4556                         [PIPE_B] = BIT(DBUF_S1),
4557                         [PIPE_D] = BIT(DBUF_S2),
4558                 },
4559         },
4560         {
4561                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
4562                 .dbuf_mask = {
4563                         [PIPE_A] = BIT(DBUF_S1),
4564                         [PIPE_B] = BIT(DBUF_S1),
4565                         [PIPE_D] = BIT(DBUF_S2),
4566                 },
4567         },
4568         {
4569                 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
4570                 .dbuf_mask = {
4571                         [PIPE_C] = BIT(DBUF_S1),
4572                         [PIPE_D] = BIT(DBUF_S2),
4573                 },
4574         },
4575         {
4576                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
4577                 .dbuf_mask = {
4578                         [PIPE_A] = BIT(DBUF_S1),
4579                         [PIPE_C] = BIT(DBUF_S2),
4580                         [PIPE_D] = BIT(DBUF_S2),
4581                 },
4582         },
4583         {
4584                 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4585                 .dbuf_mask = {
4586                         [PIPE_B] = BIT(DBUF_S1),
4587                         [PIPE_C] = BIT(DBUF_S2),
4588                         [PIPE_D] = BIT(DBUF_S2),
4589                 },
4590         },
4591         {
4592                 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
4593                 .dbuf_mask = {
4594                         [PIPE_A] = BIT(DBUF_S1),
4595                         [PIPE_B] = BIT(DBUF_S1),
4596                         [PIPE_C] = BIT(DBUF_S2),
4597                         [PIPE_D] = BIT(DBUF_S2),
4598                 },
4599         },
4600         {}
4601 };
4602
4603 static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes,
4604                               const struct dbuf_slice_conf_entry *dbuf_slices)
4605 {
4606         int i;
4607
4608         for (i = 0; i < dbuf_slices[i].active_pipes; i++) {
4609                 if (dbuf_slices[i].active_pipes == active_pipes)
4610                         return dbuf_slices[i].dbuf_mask[pipe];
4611         }
4612         return 0;
4613 }
4614
4615 /*
4616  * This function finds an entry with same enabled pipe configuration and
4617  * returns correspondent DBuf slice mask as stated in BSpec for particular
4618  * platform.
4619  */
4620 static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4621 {
4622         /*
4623          * FIXME: For ICL this is still a bit unclear as prev BSpec revision
4624          * required calculating "pipe ratio" in order to determine
4625          * if one or two slices can be used for single pipe configurations
4626          * as additional constraint to the existing table.
4627          * However based on recent info, it should be not "pipe ratio"
4628          * but rather ratio between pixel_rate and cdclk with additional
4629          * constants, so for now we are using only table until this is
4630          * clarified. Also this is the reason why crtc_state param is
4631          * still here - we will need it once those additional constraints
4632          * pop up.
4633          */
4634         return compute_dbuf_slices(pipe, active_pipes, icl_allowed_dbufs);
4635 }
4636
4637 static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
4638 {
4639         return compute_dbuf_slices(pipe, active_pipes, tgl_allowed_dbufs);
4640 }
4641
4642 static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
4643                                   u8 active_pipes)
4644 {
4645         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4646         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4647         enum pipe pipe = crtc->pipe;
4648
4649         if (IS_GEN(dev_priv, 12))
4650                 return tgl_compute_dbuf_slices(pipe, active_pipes);
4651         else if (IS_GEN(dev_priv, 11))
4652                 return icl_compute_dbuf_slices(pipe, active_pipes);
4653         /*
4654          * For anything else just return one slice yet.
4655          * Should be extended for other platforms.
4656          */
4657         return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0;
4658 }
4659
4660 static u64
4661 skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
4662                              const struct intel_plane_state *plane_state,
4663                              int color_plane)
4664 {
4665         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4666         const struct drm_framebuffer *fb = plane_state->hw.fb;
4667         u32 data_rate;
4668         u32 width = 0, height = 0;
4669         uint_fixed_16_16_t down_scale_amount;
4670         u64 rate;
4671
4672         if (!plane_state->uapi.visible)
4673                 return 0;
4674
4675         if (plane->id == PLANE_CURSOR)
4676                 return 0;
4677
4678         if (color_plane == 1 &&
4679             !intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
4680                 return 0;
4681
4682         /*
4683          * Src coordinates are already rotated by 270 degrees for
4684          * the 90/270 degree plane rotation cases (to match the
4685          * GTT mapping), hence no need to account for rotation here.
4686          */
4687         width = drm_rect_width(&plane_state->uapi.src) >> 16;
4688         height = drm_rect_height(&plane_state->uapi.src) >> 16;
4689
4690         /* UV plane does 1/2 pixel sub-sampling */
4691         if (color_plane == 1) {
4692                 width /= 2;
4693                 height /= 2;
4694         }
4695
4696         data_rate = width * height;
4697
4698         down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4699
4700         rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4701
4702         rate *= fb->format->cpp[color_plane];
4703         return rate;
4704 }
4705
4706 static u64
4707 skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4708                                  u64 *plane_data_rate,
4709                                  u64 *uv_plane_data_rate)
4710 {
4711         struct intel_plane *plane;
4712         const struct intel_plane_state *plane_state;
4713         u64 total_data_rate = 0;
4714
4715         /* Calculate and cache data rate for each plane */
4716         intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
4717                 enum plane_id plane_id = plane->id;
4718                 u64 rate;
4719
4720                 /* packed/y */
4721                 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4722                 plane_data_rate[plane_id] = rate;
4723                 total_data_rate += rate;
4724
4725                 /* uv-plane */
4726                 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4727                 uv_plane_data_rate[plane_id] = rate;
4728                 total_data_rate += rate;
4729         }
4730
4731         return total_data_rate;
4732 }
4733
4734 static u64
4735 icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4736                                  u64 *plane_data_rate)
4737 {
4738         struct intel_plane *plane;
4739         const struct intel_plane_state *plane_state;
4740         u64 total_data_rate = 0;
4741
4742         /* Calculate and cache data rate for each plane */
4743         intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
4744                 enum plane_id plane_id = plane->id;
4745                 u64 rate;
4746
4747                 if (!plane_state->planar_linked_plane) {
4748                         rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4749                         plane_data_rate[plane_id] = rate;
4750                         total_data_rate += rate;
4751                 } else {
4752                         enum plane_id y_plane_id;
4753
4754                         /*
4755                          * The slave plane might not iterate in
4756                          * intel_atomic_crtc_state_for_each_plane_state(),
4757                          * and needs the master plane state which may be
4758                          * NULL if we try get_new_plane_state(), so we
4759                          * always calculate from the master.
4760                          */
4761                         if (plane_state->planar_slave)
4762                                 continue;
4763
4764                         /* Y plane rate is calculated on the slave */
4765                         rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4766                         y_plane_id = plane_state->planar_linked_plane->id;
4767                         plane_data_rate[y_plane_id] = rate;
4768                         total_data_rate += rate;
4769
4770                         rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4771                         plane_data_rate[plane_id] = rate;
4772                         total_data_rate += rate;
4773                 }
4774         }
4775
4776         return total_data_rate;
4777 }
4778
4779 static const struct skl_wm_level *
4780 skl_plane_wm_level(const struct intel_crtc_state *crtc_state,
4781                    enum plane_id plane_id,
4782                    int level)
4783 {
4784         const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
4785         const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
4786
4787         if (level == 0 && pipe_wm->use_sagv_wm)
4788                 return &wm->sagv_wm0;
4789
4790         return &wm->wm[level];
4791 }
4792
4793 static int
4794 skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state)
4795 {
4796         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4797         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4798         struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4799         u16 alloc_size, start = 0;
4800         u16 total[I915_MAX_PLANES] = {};
4801         u16 uv_total[I915_MAX_PLANES] = {};
4802         u64 total_data_rate;
4803         enum plane_id plane_id;
4804         int num_active;
4805         u64 plane_data_rate[I915_MAX_PLANES] = {};
4806         u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4807         u32 blocks;
4808         int level;
4809         int ret;
4810
4811         /* Clear the partitioning for disabled planes. */
4812         memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
4813         memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4814
4815         if (!crtc_state->hw.active) {
4816                 struct intel_atomic_state *state =
4817                         to_intel_atomic_state(crtc_state->uapi.state);
4818                 struct intel_dbuf_state *new_dbuf_state =
4819                         intel_atomic_get_new_dbuf_state(state);
4820                 const struct intel_dbuf_state *old_dbuf_state =
4821                         intel_atomic_get_old_dbuf_state(state);
4822
4823                 /*
4824                  * FIXME hack to make sure we compute this sensibly when
4825                  * turning off all the pipes. Otherwise we leave it at
4826                  * whatever we had previously, and then runtime PM will
4827                  * mess it up by turning off all but S1. Remove this
4828                  * once the dbuf state computation flow becomes sane.
4829                  */
4830                 if (new_dbuf_state->active_pipes == 0) {
4831                         new_dbuf_state->enabled_slices = BIT(DBUF_S1);
4832
4833                         if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices) {
4834                                 ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
4835                                 if (ret)
4836                                         return ret;
4837                         }
4838                 }
4839
4840                 alloc->start = alloc->end = 0;
4841                 return 0;
4842         }
4843
4844         if (INTEL_GEN(dev_priv) >= 11)
4845                 total_data_rate =
4846                         icl_get_total_relative_data_rate(crtc_state,
4847                                                          plane_data_rate);
4848         else
4849                 total_data_rate =
4850                         skl_get_total_relative_data_rate(crtc_state,
4851                                                          plane_data_rate,
4852                                                          uv_plane_data_rate);
4853
4854         ret = skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state,
4855                                                  total_data_rate,
4856                                                  alloc, &num_active);
4857         if (ret)
4858                 return ret;
4859
4860         alloc_size = skl_ddb_entry_size(alloc);
4861         if (alloc_size == 0)
4862                 return 0;
4863
4864         /* Allocate fixed number of blocks for cursor. */
4865         total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4866         alloc_size -= total[PLANE_CURSOR];
4867         crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4868                 alloc->end - total[PLANE_CURSOR];
4869         crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4870
4871         if (total_data_rate == 0)
4872                 return 0;
4873
4874         /*
4875          * Find the highest watermark level for which we can satisfy the block
4876          * requirement of active planes.
4877          */
4878         for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4879                 blocks = 0;
4880                 for_each_plane_id_on_crtc(crtc, plane_id) {
4881                         const struct skl_plane_wm *wm =
4882                                 &crtc_state->wm.skl.optimal.planes[plane_id];
4883
4884                         if (plane_id == PLANE_CURSOR) {
4885                                 if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) {
4886                                         drm_WARN_ON(&dev_priv->drm,
4887                                                     wm->wm[level].min_ddb_alloc != U16_MAX);
4888                                         blocks = U32_MAX;
4889                                         break;
4890                                 }
4891                                 continue;
4892                         }
4893
4894                         blocks += wm->wm[level].min_ddb_alloc;
4895                         blocks += wm->uv_wm[level].min_ddb_alloc;
4896                 }
4897
4898                 if (blocks <= alloc_size) {
4899                         alloc_size -= blocks;
4900                         break;
4901                 }
4902         }
4903
4904         if (level < 0) {
4905                 drm_dbg_kms(&dev_priv->drm,
4906                             "Requested display configuration exceeds system DDB limitations");
4907                 drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
4908                             blocks, alloc_size);
4909                 return -EINVAL;
4910         }
4911
4912         /*
4913          * Grant each plane the blocks it requires at the highest achievable
4914          * watermark level, plus an extra share of the leftover blocks
4915          * proportional to its relative data rate.
4916          */
4917         for_each_plane_id_on_crtc(crtc, plane_id) {
4918                 const struct skl_plane_wm *wm =
4919                         &crtc_state->wm.skl.optimal.planes[plane_id];
4920                 u64 rate;
4921                 u16 extra;
4922
4923                 if (plane_id == PLANE_CURSOR)
4924                         continue;
4925
4926                 /*
4927                  * We've accounted for all active planes; remaining planes are
4928                  * all disabled.
4929                  */
4930                 if (total_data_rate == 0)
4931                         break;
4932
4933                 rate = plane_data_rate[plane_id];
4934                 extra = min_t(u16, alloc_size,
4935                               DIV64_U64_ROUND_UP(alloc_size * rate,
4936                                                  total_data_rate));
4937                 total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4938                 alloc_size -= extra;
4939                 total_data_rate -= rate;
4940
4941                 if (total_data_rate == 0)
4942                         break;
4943
4944                 rate = uv_plane_data_rate[plane_id];
4945                 extra = min_t(u16, alloc_size,
4946                               DIV64_U64_ROUND_UP(alloc_size * rate,
4947                                                  total_data_rate));
4948                 uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4949                 alloc_size -= extra;
4950                 total_data_rate -= rate;
4951         }
4952         drm_WARN_ON(&dev_priv->drm, alloc_size != 0 || total_data_rate != 0);
4953
4954         /* Set the actual DDB start/end points for each plane */
4955         start = alloc->start;
4956         for_each_plane_id_on_crtc(crtc, plane_id) {
4957                 struct skl_ddb_entry *plane_alloc =
4958                         &crtc_state->wm.skl.plane_ddb_y[plane_id];
4959                 struct skl_ddb_entry *uv_plane_alloc =
4960                         &crtc_state->wm.skl.plane_ddb_uv[plane_id];
4961
4962                 if (plane_id == PLANE_CURSOR)
4963                         continue;
4964
4965                 /* Gen11+ uses a separate plane for UV watermarks */
4966                 drm_WARN_ON(&dev_priv->drm,
4967                             INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
4968
4969                 /* Leave disabled planes at (0,0) */
4970                 if (total[plane_id]) {
4971                         plane_alloc->start = start;
4972                         start += total[plane_id];
4973                         plane_alloc->end = start;
4974                 }
4975
4976                 if (uv_total[plane_id]) {
4977                         uv_plane_alloc->start = start;
4978                         start += uv_total[plane_id];
4979                         uv_plane_alloc->end = start;
4980                 }
4981         }
4982
4983         /*
4984          * When we calculated watermark values we didn't know how high
4985          * of a level we'd actually be able to hit, so we just marked
4986          * all levels as "enabled."  Go back now and disable the ones
4987          * that aren't actually possible.
4988          */
4989         for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
4990                 for_each_plane_id_on_crtc(crtc, plane_id) {
4991                         struct skl_plane_wm *wm =
4992                                 &crtc_state->wm.skl.optimal.planes[plane_id];
4993
4994                         /*
4995                          * We only disable the watermarks for each plane if
4996                          * they exceed the ddb allocation of said plane. This
4997                          * is done so that we don't end up touching cursor
4998                          * watermarks needlessly when some other plane reduces
4999                          * our max possible watermark level.
5000                          *
5001                          * Bspec has this to say about the PLANE_WM enable bit:
5002                          * "All the watermarks at this level for all enabled
5003                          *  planes must be enabled before the level will be used."
5004                          * So this is actually safe to do.
5005                          */
5006                         if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
5007                             wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
5008                                 memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
5009
5010                         /*
5011                          * Wa_1408961008:icl, ehl
5012                          * Underruns with WM1+ disabled
5013                          */
5014                         if (IS_GEN(dev_priv, 11) &&
5015                             level == 1 && wm->wm[0].plane_en) {
5016                                 wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
5017                                 wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
5018                                 wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
5019                         }
5020                 }
5021         }
5022
5023         /*
5024          * Go back and disable the transition watermark if it turns out we
5025          * don't have enough DDB blocks for it.
5026          */
5027         for_each_plane_id_on_crtc(crtc, plane_id) {
5028                 struct skl_plane_wm *wm =
5029                         &crtc_state->wm.skl.optimal.planes[plane_id];
5030
5031                 if (wm->trans_wm.plane_res_b >= total[plane_id])
5032                         memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
5033         }
5034
5035         return 0;
5036 }
5037
5038 /*
5039  * The max latency should be 257 (max the punit can code is 255 and we add 2us
5040  * for the read latency) and cpp should always be <= 8, so that
5041  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
5042  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
5043 */
5044 static uint_fixed_16_16_t
5045 skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
5046                u8 cpp, u32 latency, u32 dbuf_block_size)
5047 {
5048         u32 wm_intermediate_val;
5049         uint_fixed_16_16_t ret;
5050
5051         if (latency == 0)
5052                 return FP_16_16_MAX;
5053
5054         wm_intermediate_val = latency * pixel_rate * cpp;
5055         ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
5056
5057         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5058                 ret = add_fixed16_u32(ret, 1);
5059
5060         return ret;
5061 }
5062
5063 static uint_fixed_16_16_t
5064 skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
5065                uint_fixed_16_16_t plane_blocks_per_line)
5066 {
5067         u32 wm_intermediate_val;
5068         uint_fixed_16_16_t ret;
5069
5070         if (latency == 0)
5071                 return FP_16_16_MAX;
5072
5073         wm_intermediate_val = latency * pixel_rate;
5074         wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
5075                                            pipe_htotal * 1000);
5076         ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
5077         return ret;
5078 }
5079
5080 static uint_fixed_16_16_t
5081 intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
5082 {
5083         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5084         u32 pixel_rate;
5085         u32 crtc_htotal;
5086         uint_fixed_16_16_t linetime_us;
5087
5088         if (!crtc_state->hw.active)
5089                 return u32_to_fixed16(0);
5090
5091         pixel_rate = crtc_state->pixel_rate;
5092
5093         if (drm_WARN_ON(&dev_priv->drm, pixel_rate == 0))
5094                 return u32_to_fixed16(0);
5095
5096         crtc_htotal = crtc_state->hw.adjusted_mode.crtc_htotal;
5097         linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
5098
5099         return linetime_us;
5100 }
5101
5102 static u32
5103 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
5104                               const struct intel_plane_state *plane_state)
5105 {
5106         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5107         u64 adjusted_pixel_rate;
5108         uint_fixed_16_16_t downscale_amount;
5109
5110         /* Shouldn't reach here on disabled planes... */
5111         if (drm_WARN_ON(&dev_priv->drm,
5112                         !intel_wm_plane_visible(crtc_state, plane_state)))
5113                 return 0;
5114
5115         /*
5116          * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
5117          * with additional adjustments for plane-specific scaling.
5118          */
5119         adjusted_pixel_rate = crtc_state->pixel_rate;
5120         downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
5121
5122         return mul_round_up_u32_fixed16(adjusted_pixel_rate,
5123                                             downscale_amount);
5124 }
5125
5126 static int
5127 skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
5128                       int width, const struct drm_format_info *format,
5129                       u64 modifier, unsigned int rotation,
5130                       u32 plane_pixel_rate, struct skl_wm_params *wp,
5131                       int color_plane)
5132 {
5133         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5134         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5135         u32 interm_pbpl;
5136
5137         /* only planar format has two planes */
5138         if (color_plane == 1 &&
5139             !intel_format_info_is_yuv_semiplanar(format, modifier)) {
5140                 drm_dbg_kms(&dev_priv->drm,
5141                             "Non planar format have single plane\n");
5142                 return -EINVAL;
5143         }
5144
5145         wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
5146                       modifier == I915_FORMAT_MOD_Yf_TILED ||
5147                       modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
5148                       modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
5149         wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
5150         wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
5151                          modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
5152         wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
5153
5154         wp->width = width;
5155         if (color_plane == 1 && wp->is_planar)
5156                 wp->width /= 2;
5157
5158         wp->cpp = format->cpp[color_plane];
5159         wp->plane_pixel_rate = plane_pixel_rate;
5160
5161         if (INTEL_GEN(dev_priv) >= 11 &&
5162             modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
5163                 wp->dbuf_block_size = 256;
5164         else
5165                 wp->dbuf_block_size = 512;
5166
5167         if (drm_rotation_90_or_270(rotation)) {
5168                 switch (wp->cpp) {
5169                 case 1:
5170                         wp->y_min_scanlines = 16;
5171                         break;
5172                 case 2:
5173                         wp->y_min_scanlines = 8;
5174                         break;
5175                 case 4:
5176                         wp->y_min_scanlines = 4;
5177                         break;
5178                 default:
5179                         MISSING_CASE(wp->cpp);
5180                         return -EINVAL;
5181                 }
5182         } else {
5183                 wp->y_min_scanlines = 4;
5184         }
5185
5186         if (skl_needs_memory_bw_wa(dev_priv))
5187                 wp->y_min_scanlines *= 2;
5188
5189         wp->plane_bytes_per_line = wp->width * wp->cpp;
5190         if (wp->y_tiled) {
5191                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
5192                                            wp->y_min_scanlines,
5193                                            wp->dbuf_block_size);
5194
5195                 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5196                         interm_pbpl++;
5197
5198                 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
5199                                                         wp->y_min_scanlines);
5200         } else {
5201                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
5202                                            wp->dbuf_block_size);
5203
5204                 if (!wp->x_tiled ||
5205                     INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5206                         interm_pbpl++;
5207
5208                 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
5209         }
5210
5211         wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
5212                                              wp->plane_blocks_per_line);
5213
5214         wp->linetime_us = fixed16_to_u32_round_up(
5215                                         intel_get_linetime_us(crtc_state));
5216
5217         return 0;
5218 }
5219
5220 static int
5221 skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
5222                             const struct intel_plane_state *plane_state,
5223                             struct skl_wm_params *wp, int color_plane)
5224 {
5225         const struct drm_framebuffer *fb = plane_state->hw.fb;
5226         int width;
5227
5228         /*
5229          * Src coordinates are already rotated by 270 degrees for
5230          * the 90/270 degree plane rotation cases (to match the
5231          * GTT mapping), hence no need to account for rotation here.
5232          */
5233         width = drm_rect_width(&plane_state->uapi.src) >> 16;
5234
5235         return skl_compute_wm_params(crtc_state, width,
5236                                      fb->format, fb->modifier,
5237                                      plane_state->hw.rotation,
5238                                      skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
5239                                      wp, color_plane);
5240 }
5241
5242 static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
5243 {
5244         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
5245                 return true;
5246
5247         /* The number of lines are ignored for the level 0 watermark. */
5248         return level > 0;
5249 }
5250
5251 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
5252                                  int level,
5253                                  unsigned int latency,
5254                                  const struct skl_wm_params *wp,
5255                                  const struct skl_wm_level *result_prev,
5256                                  struct skl_wm_level *result /* out */)
5257 {
5258         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5259         uint_fixed_16_16_t method1, method2;
5260         uint_fixed_16_16_t selected_result;
5261         u32 res_blocks, res_lines, min_ddb_alloc = 0;
5262
5263         if (latency == 0) {
5264                 /* reject it */
5265                 result->min_ddb_alloc = U16_MAX;
5266                 return;
5267         }
5268
5269         /*
5270          * WaIncreaseLatencyIPCEnabled: kbl,cfl
5271          * Display WA #1141: kbl,cfl
5272          */
5273         if ((IS_KABYLAKE(dev_priv) ||
5274              IS_COFFEELAKE(dev_priv) ||
5275              IS_COMETLAKE(dev_priv)) &&
5276             dev_priv->ipc_enabled)
5277                 latency += 4;
5278
5279         if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
5280                 latency += 15;
5281
5282         method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
5283                                  wp->cpp, latency, wp->dbuf_block_size);
5284         method2 = skl_wm_method2(wp->plane_pixel_rate,
5285                                  crtc_state->hw.adjusted_mode.crtc_htotal,
5286                                  latency,
5287                                  wp->plane_blocks_per_line);
5288
5289         if (wp->y_tiled) {
5290                 selected_result = max_fixed16(method2, wp->y_tile_minimum);
5291         } else {
5292                 if ((wp->cpp * crtc_state->hw.adjusted_mode.crtc_htotal /
5293                      wp->dbuf_block_size < 1) &&
5294                      (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
5295                         selected_result = method2;
5296                 } else if (latency >= wp->linetime_us) {
5297                         if (IS_GEN(dev_priv, 9) &&
5298                             !IS_GEMINILAKE(dev_priv))
5299                                 selected_result = min_fixed16(method1, method2);
5300                         else
5301                                 selected_result = method2;
5302                 } else {
5303                         selected_result = method1;
5304                 }
5305         }
5306
5307         res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
5308         res_lines = div_round_up_fixed16(selected_result,
5309                                          wp->plane_blocks_per_line);
5310
5311         if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
5312                 /* Display WA #1125: skl,bxt,kbl */
5313                 if (level == 0 && wp->rc_surface)
5314                         res_blocks +=
5315                                 fixed16_to_u32_round_up(wp->y_tile_minimum);
5316
5317                 /* Display WA #1126: skl,bxt,kbl */
5318                 if (level >= 1 && level <= 7) {
5319                         if (wp->y_tiled) {
5320                                 res_blocks +=
5321                                     fixed16_to_u32_round_up(wp->y_tile_minimum);
5322                                 res_lines += wp->y_min_scanlines;
5323                         } else {
5324                                 res_blocks++;
5325                         }
5326
5327                         /*
5328                          * Make sure result blocks for higher latency levels are
5329                          * atleast as high as level below the current level.
5330                          * Assumption in DDB algorithm optimization for special
5331                          * cases. Also covers Display WA #1125 for RC.
5332                          */
5333                         if (result_prev->plane_res_b > res_blocks)
5334                                 res_blocks = result_prev->plane_res_b;
5335                 }
5336         }
5337
5338         if (INTEL_GEN(dev_priv) >= 11) {
5339                 if (wp->y_tiled) {
5340                         int extra_lines;
5341
5342                         if (res_lines % wp->y_min_scanlines == 0)
5343                                 extra_lines = wp->y_min_scanlines;
5344                         else
5345                                 extra_lines = wp->y_min_scanlines * 2 -
5346                                         res_lines % wp->y_min_scanlines;
5347
5348                         min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
5349                                                                  wp->plane_blocks_per_line);
5350                 } else {
5351                         min_ddb_alloc = res_blocks +
5352                                 DIV_ROUND_UP(res_blocks, 10);
5353                 }
5354         }
5355
5356         if (!skl_wm_has_lines(dev_priv, level))
5357                 res_lines = 0;
5358
5359         if (res_lines > 31) {
5360                 /* reject it */
5361                 result->min_ddb_alloc = U16_MAX;
5362                 return;
5363         }
5364
5365         /*
5366          * If res_lines is valid, assume we can use this watermark level
5367          * for now.  We'll come back and disable it after we calculate the
5368          * DDB allocation if it turns out we don't actually have enough
5369          * blocks to satisfy it.
5370          */
5371         result->plane_res_b = res_blocks;
5372         result->plane_res_l = res_lines;
5373         /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
5374         result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
5375         result->plane_en = true;
5376 }
5377
5378 static void
5379 skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
5380                       const struct skl_wm_params *wm_params,
5381                       struct skl_wm_level *levels)
5382 {
5383         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5384         int level, max_level = ilk_wm_max_level(dev_priv);
5385         struct skl_wm_level *result_prev = &levels[0];
5386
5387         for (level = 0; level <= max_level; level++) {
5388                 struct skl_wm_level *result = &levels[level];
5389                 unsigned int latency = dev_priv->wm.skl_latency[level];
5390
5391                 skl_compute_plane_wm(crtc_state, level, latency,
5392                                      wm_params, result_prev, result);
5393
5394                 result_prev = result;
5395         }
5396 }
5397
5398 static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state,
5399                                 const struct skl_wm_params *wm_params,
5400                                 struct skl_plane_wm *plane_wm)
5401 {
5402         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5403         struct skl_wm_level *sagv_wm = &plane_wm->sagv_wm0;
5404         struct skl_wm_level *levels = plane_wm->wm;
5405         unsigned int latency = dev_priv->wm.skl_latency[0] + dev_priv->sagv_block_time_us;
5406
5407         skl_compute_plane_wm(crtc_state, 0, latency,
5408                              wm_params, &levels[0],
5409                              sagv_wm);
5410 }
5411
5412 static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
5413                                       const struct skl_wm_params *wp,
5414                                       struct skl_plane_wm *wm)
5415 {
5416         struct drm_device *dev = crtc_state->uapi.crtc->dev;
5417         const struct drm_i915_private *dev_priv = to_i915(dev);
5418         u16 trans_min, trans_amount, trans_y_tile_min;
5419         u16 wm0_sel_res_b, trans_offset_b, res_blocks;
5420
5421         /* Transition WM don't make any sense if ipc is disabled */
5422         if (!dev_priv->ipc_enabled)
5423                 return;
5424
5425         /*
5426          * WaDisableTWM:skl,kbl,cfl,bxt
5427          * Transition WM are not recommended by HW team for GEN9
5428          */
5429         if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
5430                 return;
5431
5432         if (INTEL_GEN(dev_priv) >= 11)
5433                 trans_min = 4;
5434         else
5435                 trans_min = 14;
5436
5437         /* Display WA #1140: glk,cnl */
5438         if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv))
5439                 trans_amount = 0;
5440         else
5441                 trans_amount = 10; /* This is configurable amount */
5442
5443         trans_offset_b = trans_min + trans_amount;
5444
5445         /*
5446          * The spec asks for Selected Result Blocks for wm0 (the real value),
5447          * not Result Blocks (the integer value). Pay attention to the capital
5448          * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
5449          * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
5450          * and since we later will have to get the ceiling of the sum in the
5451          * transition watermarks calculation, we can just pretend Selected
5452          * Result Blocks is Result Blocks minus 1 and it should work for the
5453          * current platforms.
5454          */
5455         wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
5456
5457         if (wp->y_tiled) {
5458                 trans_y_tile_min =
5459                         (u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
5460                 res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
5461                                 trans_offset_b;
5462         } else {
5463                 res_blocks = wm0_sel_res_b + trans_offset_b;
5464         }
5465
5466         /*
5467          * Just assume we can enable the transition watermark.  After
5468          * computing the DDB we'll come back and disable it if that
5469          * assumption turns out to be false.
5470          */
5471         wm->trans_wm.plane_res_b = res_blocks + 1;
5472         wm->trans_wm.plane_en = true;
5473 }
5474
5475 static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
5476                                      const struct intel_plane_state *plane_state,
5477                                      enum plane_id plane_id, int color_plane)
5478 {
5479         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5480         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5481         struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5482         struct skl_wm_params wm_params;
5483         int ret;
5484
5485         ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5486                                           &wm_params, color_plane);
5487         if (ret)
5488                 return ret;
5489
5490         skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5491
5492         if (INTEL_GEN(dev_priv) >= 12)
5493                 tgl_compute_sagv_wm(crtc_state, &wm_params, wm);
5494
5495         skl_compute_transition_wm(crtc_state, &wm_params, wm);
5496
5497         return 0;
5498 }
5499
5500 static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5501                                  const struct intel_plane_state *plane_state,
5502                                  enum plane_id plane_id)
5503 {
5504         struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5505         struct skl_wm_params wm_params;
5506         int ret;
5507
5508         wm->is_planar = true;
5509
5510         /* uv plane watermarks must also be validated for NV12/Planar */
5511         ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5512                                           &wm_params, 1);
5513         if (ret)
5514                 return ret;
5515
5516         skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5517
5518         return 0;
5519 }
5520
5521 static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5522                               const struct intel_plane_state *plane_state)
5523 {
5524         struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
5525         const struct drm_framebuffer *fb = plane_state->hw.fb;
5526         enum plane_id plane_id = plane->id;
5527         int ret;
5528
5529         if (!intel_wm_plane_visible(crtc_state, plane_state))
5530                 return 0;
5531
5532         ret = skl_build_plane_wm_single(crtc_state, plane_state,
5533                                         plane_id, 0);
5534         if (ret)
5535                 return ret;
5536
5537         if (fb->format->is_yuv && fb->format->num_planes > 1) {
5538                 ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5539                                             plane_id);
5540                 if (ret)
5541                         return ret;
5542         }
5543
5544         return 0;
5545 }
5546
5547 static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5548                               const struct intel_plane_state *plane_state)
5549 {
5550         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5551         enum plane_id plane_id = to_intel_plane(plane_state->uapi.plane)->id;
5552         int ret;
5553
5554         /* Watermarks calculated in master */
5555         if (plane_state->planar_slave)
5556                 return 0;
5557
5558         if (plane_state->planar_linked_plane) {
5559                 const struct drm_framebuffer *fb = plane_state->hw.fb;
5560                 enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
5561
5562                 drm_WARN_ON(&dev_priv->drm,
5563                             !intel_wm_plane_visible(crtc_state, plane_state));
5564                 drm_WARN_ON(&dev_priv->drm, !fb->format->is_yuv ||
5565                             fb->format->num_planes == 1);
5566
5567                 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5568                                                 y_plane_id, 0);
5569                 if (ret)
5570                         return ret;
5571
5572                 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5573                                                 plane_id, 1);
5574                 if (ret)
5575                         return ret;
5576         } else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5577                 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5578                                                 plane_id, 0);
5579                 if (ret)
5580                         return ret;
5581         }
5582
5583         return 0;
5584 }
5585
5586 static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
5587 {
5588         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
5589         struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5590         struct intel_plane *plane;
5591         const struct intel_plane_state *plane_state;
5592         int ret;
5593
5594         /*
5595          * We'll only calculate watermarks for planes that are actually
5596          * enabled, so make sure all other planes are set as disabled.
5597          */
5598         memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
5599
5600         intel_atomic_crtc_state_for_each_plane_state(plane, plane_state,
5601                                                      crtc_state) {
5602
5603                 if (INTEL_GEN(dev_priv) >= 11)
5604                         ret = icl_build_plane_wm(crtc_state, plane_state);
5605                 else
5606                         ret = skl_build_plane_wm(crtc_state, plane_state);
5607                 if (ret)
5608                         return ret;
5609         }
5610
5611         return 0;
5612 }
5613
5614 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
5615                                 i915_reg_t reg,
5616                                 const struct skl_ddb_entry *entry)
5617 {
5618         if (entry->end)
5619                 intel_de_write_fw(dev_priv, reg,
5620                                   (entry->end - 1) << 16 | entry->start);
5621         else
5622                 intel_de_write_fw(dev_priv, reg, 0);
5623 }
5624
5625 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
5626                                i915_reg_t reg,
5627                                const struct skl_wm_level *level)
5628 {
5629         u32 val = 0;
5630
5631         if (level->plane_en)
5632                 val |= PLANE_WM_EN;
5633         if (level->ignore_lines)
5634                 val |= PLANE_WM_IGNORE_LINES;
5635         val |= level->plane_res_b;
5636         val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5637
5638         intel_de_write_fw(dev_priv, reg, val);
5639 }
5640
5641 void skl_write_plane_wm(struct intel_plane *plane,
5642                         const struct intel_crtc_state *crtc_state)
5643 {
5644         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5645         int level, max_level = ilk_wm_max_level(dev_priv);
5646         enum plane_id plane_id = plane->id;
5647         enum pipe pipe = plane->pipe;
5648         const struct skl_plane_wm *wm =
5649                 &crtc_state->wm.skl.optimal.planes[plane_id];
5650         const struct skl_ddb_entry *ddb_y =
5651                 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5652         const struct skl_ddb_entry *ddb_uv =
5653                 &crtc_state->wm.skl.plane_ddb_uv[plane_id];
5654
5655         for (level = 0; level <= max_level; level++) {
5656                 const struct skl_wm_level *wm_level;
5657
5658                 wm_level = skl_plane_wm_level(crtc_state, plane_id, level);
5659
5660                 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5661                                    wm_level);
5662         }
5663         skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5664                            &wm->trans_wm);
5665
5666         if (INTEL_GEN(dev_priv) >= 11) {
5667                 skl_ddb_entry_write(dev_priv,
5668                                     PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5669                 return;
5670         }
5671
5672         if (wm->is_planar)
5673                 swap(ddb_y, ddb_uv);
5674
5675         skl_ddb_entry_write(dev_priv,
5676                             PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5677         skl_ddb_entry_write(dev_priv,
5678                             PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5679 }
5680
5681 void skl_write_cursor_wm(struct intel_plane *plane,
5682                          const struct intel_crtc_state *crtc_state)
5683 {
5684         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5685         int level, max_level = ilk_wm_max_level(dev_priv);
5686         enum plane_id plane_id = plane->id;
5687         enum pipe pipe = plane->pipe;
5688         const struct skl_plane_wm *wm =
5689                 &crtc_state->wm.skl.optimal.planes[plane_id];
5690         const struct skl_ddb_entry *ddb =
5691                 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5692
5693         for (level = 0; level <= max_level; level++) {
5694                 const struct skl_wm_level *wm_level;
5695
5696                 wm_level = skl_plane_wm_level(crtc_state, plane_id, level);
5697
5698                 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5699                                    wm_level);
5700         }
5701         skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5702
5703         skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5704 }
5705
5706 bool skl_wm_level_equals(const struct skl_wm_level *l1,
5707                          const struct skl_wm_level *l2)
5708 {
5709         return l1->plane_en == l2->plane_en &&
5710                 l1->ignore_lines == l2->ignore_lines &&
5711                 l1->plane_res_l == l2->plane_res_l &&
5712                 l1->plane_res_b == l2->plane_res_b;
5713 }
5714
5715 static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
5716                                 const struct skl_plane_wm *wm1,
5717                                 const struct skl_plane_wm *wm2)
5718 {
5719         int level, max_level = ilk_wm_max_level(dev_priv);
5720
5721         for (level = 0; level <= max_level; level++) {
5722                 /*
5723                  * We don't check uv_wm as the hardware doesn't actually
5724                  * use it. It only gets used for calculating the required
5725                  * ddb allocation.
5726                  */
5727                 if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
5728                         return false;
5729         }
5730
5731         return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5732 }
5733
5734 static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5735                                     const struct skl_ddb_entry *b)
5736 {
5737         return a->start < b->end && b->start < a->end;
5738 }
5739
5740 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5741                                  const struct skl_ddb_entry *entries,
5742                                  int num_entries, int ignore_idx)
5743 {
5744         int i;
5745
5746         for (i = 0; i < num_entries; i++) {
5747                 if (i != ignore_idx &&
5748                     skl_ddb_entries_overlap(ddb, &entries[i]))
5749                         return true;
5750         }
5751
5752         return false;
5753 }
5754
5755 static int
5756 skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
5757                             struct intel_crtc_state *new_crtc_state)
5758 {
5759         struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
5760         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
5761         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5762         struct intel_plane *plane;
5763
5764         for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5765                 struct intel_plane_state *plane_state;
5766                 enum plane_id plane_id = plane->id;
5767
5768                 if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
5769                                         &new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
5770                     skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
5771                                         &new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5772                         continue;
5773
5774                 plane_state = intel_atomic_get_plane_state(state, plane);
5775                 if (IS_ERR(plane_state))
5776                         return PTR_ERR(plane_state);
5777
5778                 new_crtc_state->update_planes |= BIT(plane_id);
5779         }
5780
5781         return 0;
5782 }
5783
5784 static int
5785 skl_compute_ddb(struct intel_atomic_state *state)
5786 {
5787         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5788         const struct intel_dbuf_state *old_dbuf_state;
5789         const struct intel_dbuf_state *new_dbuf_state;
5790         const struct intel_crtc_state *old_crtc_state;
5791         struct intel_crtc_state *new_crtc_state;
5792         struct intel_crtc *crtc;
5793         int ret, i;
5794
5795         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5796                                             new_crtc_state, i) {
5797                 ret = skl_allocate_pipe_ddb(new_crtc_state);
5798                 if (ret)
5799                         return ret;
5800
5801                 ret = skl_ddb_add_affected_planes(old_crtc_state,
5802                                                   new_crtc_state);
5803                 if (ret)
5804                         return ret;
5805         }
5806
5807         old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
5808         new_dbuf_state = intel_atomic_get_new_dbuf_state(state);
5809
5810         if (new_dbuf_state &&
5811             new_dbuf_state->enabled_slices != old_dbuf_state->enabled_slices)
5812                 drm_dbg_kms(&dev_priv->drm,
5813                             "Enabled dbuf slices 0x%x -> 0x%x (out of %d dbuf slices)\n",
5814                             old_dbuf_state->enabled_slices,
5815                             new_dbuf_state->enabled_slices,
5816                             INTEL_INFO(dev_priv)->num_supported_dbuf_slices);
5817
5818         return 0;
5819 }
5820
5821 static char enast(bool enable)
5822 {
5823         return enable ? '*' : ' ';
5824 }
5825
5826 static void
5827 skl_print_wm_changes(struct intel_atomic_state *state)
5828 {
5829         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5830         const struct intel_crtc_state *old_crtc_state;
5831         const struct intel_crtc_state *new_crtc_state;
5832         struct intel_plane *plane;
5833         struct intel_crtc *crtc;
5834         int i;
5835
5836         if (!drm_debug_enabled(DRM_UT_KMS))
5837                 return;
5838
5839         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5840                                             new_crtc_state, i) {
5841                 const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
5842
5843                 old_pipe_wm = &old_crtc_state->wm.skl.optimal;
5844                 new_pipe_wm = &new_crtc_state->wm.skl.optimal;
5845
5846                 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5847                         enum plane_id plane_id = plane->id;
5848                         const struct skl_ddb_entry *old, *new;
5849
5850                         old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
5851                         new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5852
5853                         if (skl_ddb_entry_equal(old, new))
5854                                 continue;
5855
5856                         drm_dbg_kms(&dev_priv->drm,
5857                                     "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
5858                                     plane->base.base.id, plane->base.name,
5859                                     old->start, old->end, new->start, new->end,
5860                                     skl_ddb_entry_size(old), skl_ddb_entry_size(new));
5861                 }
5862
5863                 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5864                         enum plane_id plane_id = plane->id;
5865                         const struct skl_plane_wm *old_wm, *new_wm;
5866
5867                         old_wm = &old_pipe_wm->planes[plane_id];
5868                         new_wm = &new_pipe_wm->planes[plane_id];
5869
5870                         if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
5871                                 continue;
5872
5873                         drm_dbg_kms(&dev_priv->drm,
5874                                     "[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm"
5875                                     " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm\n",
5876                                     plane->base.base.id, plane->base.name,
5877                                     enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
5878                                     enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
5879                                     enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
5880                                     enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
5881                                     enast(old_wm->trans_wm.plane_en),
5882                                     enast(old_wm->sagv_wm0.plane_en),
5883                                     enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
5884                                     enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
5885                                     enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
5886                                     enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
5887                                     enast(new_wm->trans_wm.plane_en),
5888                                     enast(new_wm->sagv_wm0.plane_en));
5889
5890                         drm_dbg_kms(&dev_priv->drm,
5891                                     "[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
5892                                       " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5893                                     plane->base.base.id, plane->base.name,
5894                                     enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
5895                                     enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
5896                                     enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
5897                                     enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
5898                                     enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
5899                                     enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
5900                                     enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
5901                                     enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
5902                                     enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,
5903                                     enast(old_wm->sagv_wm0.ignore_lines), old_wm->sagv_wm0.plane_res_l,
5904
5905                                     enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
5906                                     enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
5907                                     enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
5908                                     enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
5909                                     enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
5910                                     enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
5911                                     enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
5912                                     enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
5913                                     enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l,
5914                                     enast(new_wm->sagv_wm0.ignore_lines), new_wm->sagv_wm0.plane_res_l);
5915
5916                         drm_dbg_kms(&dev_priv->drm,
5917                                     "[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5918                                     " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5919                                     plane->base.base.id, plane->base.name,
5920                                     old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
5921                                     old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
5922                                     old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
5923                                     old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
5924                                     old_wm->trans_wm.plane_res_b,
5925                                     old_wm->sagv_wm0.plane_res_b,
5926                                     new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
5927                                     new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
5928                                     new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
5929                                     new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
5930                                     new_wm->trans_wm.plane_res_b,
5931                                     new_wm->sagv_wm0.plane_res_b);
5932
5933                         drm_dbg_kms(&dev_priv->drm,
5934                                     "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5935                                     " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5936                                     plane->base.base.id, plane->base.name,
5937                                     old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
5938                                     old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
5939                                     old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
5940                                     old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
5941                                     old_wm->trans_wm.min_ddb_alloc,
5942                                     old_wm->sagv_wm0.min_ddb_alloc,
5943                                     new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
5944                                     new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
5945                                     new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
5946                                     new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
5947                                     new_wm->trans_wm.min_ddb_alloc,
5948                                     new_wm->sagv_wm0.min_ddb_alloc);
5949                 }
5950         }
5951 }
5952
5953 static int intel_add_affected_pipes(struct intel_atomic_state *state,
5954                                     u8 pipe_mask)
5955 {
5956         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5957         struct intel_crtc *crtc;
5958
5959         for_each_intel_crtc(&dev_priv->drm, crtc) {
5960                 struct intel_crtc_state *crtc_state;
5961
5962                 if ((pipe_mask & BIT(crtc->pipe)) == 0)
5963                         continue;
5964
5965                 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
5966                 if (IS_ERR(crtc_state))
5967                         return PTR_ERR(crtc_state);
5968         }
5969
5970         return 0;
5971 }
5972
5973 static int
5974 skl_ddb_add_affected_pipes(struct intel_atomic_state *state)
5975 {
5976         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5977         struct intel_crtc_state *crtc_state;
5978         struct intel_crtc *crtc;
5979         int i, ret;
5980
5981         if (dev_priv->wm.distrust_bios_wm) {
5982                 /*
5983                  * skl_ddb_get_pipe_allocation_limits() currently requires
5984                  * all active pipes to be included in the state so that
5985                  * it can redistribute the dbuf among them, and it really
5986                  * wants to recompute things when distrust_bios_wm is set
5987                  * so we add all the pipes to the state.
5988                  */
5989                 ret = intel_add_affected_pipes(state, ~0);
5990                 if (ret)
5991                         return ret;
5992         }
5993
5994         for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
5995                 struct intel_dbuf_state *new_dbuf_state;
5996                 const struct intel_dbuf_state *old_dbuf_state;
5997
5998                 new_dbuf_state = intel_atomic_get_dbuf_state(state);
5999                 if (IS_ERR(new_dbuf_state))
6000                         return PTR_ERR(new_dbuf_state);
6001
6002                 old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
6003
6004                 new_dbuf_state->active_pipes =
6005                         intel_calc_active_pipes(state, old_dbuf_state->active_pipes);
6006
6007                 if (old_dbuf_state->active_pipes == new_dbuf_state->active_pipes)
6008                         break;
6009
6010                 ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
6011                 if (ret)
6012                         return ret;
6013
6014                 /*
6015                  * skl_ddb_get_pipe_allocation_limits() currently requires
6016                  * all active pipes to be included in the state so that
6017                  * it can redistribute the dbuf among them.
6018                  */
6019                 ret = intel_add_affected_pipes(state,
6020                                                new_dbuf_state->active_pipes);
6021                 if (ret)
6022                         return ret;
6023
6024                 break;
6025         }
6026
6027         return 0;
6028 }
6029
6030 /*
6031  * To make sure the cursor watermark registers are always consistent
6032  * with our computed state the following scenario needs special
6033  * treatment:
6034  *
6035  * 1. enable cursor
6036  * 2. move cursor entirely offscreen
6037  * 3. disable cursor
6038  *
6039  * Step 2. does call .disable_plane() but does not zero the watermarks
6040  * (since we consider an offscreen cursor still active for the purposes
6041  * of watermarks). Step 3. would not normally call .disable_plane()
6042  * because the actual plane visibility isn't changing, and we don't
6043  * deallocate the cursor ddb until the pipe gets disabled. So we must
6044  * force step 3. to call .disable_plane() to update the watermark
6045  * registers properly.
6046  *
6047  * Other planes do not suffer from this issues as their watermarks are
6048  * calculated based on the actual plane visibility. The only time this
6049  * can trigger for the other planes is during the initial readout as the
6050  * default value of the watermarks registers is not zero.
6051  */
6052 static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
6053                                       struct intel_crtc *crtc)
6054 {
6055         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6056         const struct intel_crtc_state *old_crtc_state =
6057                 intel_atomic_get_old_crtc_state(state, crtc);
6058         struct intel_crtc_state *new_crtc_state =
6059                 intel_atomic_get_new_crtc_state(state, crtc);
6060         struct intel_plane *plane;
6061
6062         for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
6063                 struct intel_plane_state *plane_state;
6064                 enum plane_id plane_id = plane->id;
6065
6066                 /*
6067                  * Force a full wm update for every plane on modeset.
6068                  * Required because the reset value of the wm registers
6069                  * is non-zero, whereas we want all disabled planes to
6070                  * have zero watermarks. So if we turn off the relevant
6071                  * power well the hardware state will go out of sync
6072                  * with the software state.
6073                  */
6074                 if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
6075                     skl_plane_wm_equals(dev_priv,
6076                                         &old_crtc_state->wm.skl.optimal.planes[plane_id],
6077                                         &new_crtc_state->wm.skl.optimal.planes[plane_id]))
6078                         continue;
6079
6080                 plane_state = intel_atomic_get_plane_state(state, plane);
6081                 if (IS_ERR(plane_state))
6082                         return PTR_ERR(plane_state);
6083
6084                 new_crtc_state->update_planes |= BIT(plane_id);
6085         }
6086
6087         return 0;
6088 }
6089
6090 static int
6091 skl_compute_wm(struct intel_atomic_state *state)
6092 {
6093         struct intel_crtc *crtc;
6094         struct intel_crtc_state *new_crtc_state;
6095         struct intel_crtc_state *old_crtc_state;
6096         int ret, i;
6097
6098         ret = skl_ddb_add_affected_pipes(state);
6099         if (ret)
6100                 return ret;
6101
6102         /*
6103          * Calculate WM's for all pipes that are part of this transaction.
6104          * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
6105          * weren't otherwise being modified if pipe allocations had to change.
6106          */
6107         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
6108                                             new_crtc_state, i) {
6109                 ret = skl_build_pipe_wm(new_crtc_state);
6110                 if (ret)
6111                         return ret;
6112         }
6113
6114         ret = skl_compute_ddb(state);
6115         if (ret)
6116                 return ret;
6117
6118         ret = intel_compute_sagv_mask(state);
6119         if (ret)
6120                 return ret;
6121
6122         /*
6123          * skl_compute_ddb() will have adjusted the final watermarks
6124          * based on how much ddb is available. Now we can actually
6125          * check if the final watermarks changed.
6126          */
6127         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
6128                                             new_crtc_state, i) {
6129                 ret = skl_wm_add_affected_planes(state, crtc);
6130                 if (ret)
6131                         return ret;
6132         }
6133
6134         skl_print_wm_changes(state);
6135
6136         return 0;
6137 }
6138
6139 static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
6140                                   struct intel_wm_config *config)
6141 {
6142         struct intel_crtc *crtc;
6143
6144         /* Compute the currently _active_ config */
6145         for_each_intel_crtc(&dev_priv->drm, crtc) {
6146                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
6147
6148                 if (!wm->pipe_enabled)
6149                         continue;
6150
6151                 config->sprites_enabled |= wm->sprites_enabled;
6152                 config->sprites_scaled |= wm->sprites_scaled;
6153                 config->num_pipes_active++;
6154         }
6155 }
6156
6157 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
6158 {
6159         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
6160         struct ilk_wm_maximums max;
6161         struct intel_wm_config config = {};
6162         struct ilk_wm_values results = {};
6163         enum intel_ddb_partitioning partitioning;
6164
6165         ilk_compute_wm_config(dev_priv, &config);
6166
6167         ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
6168         ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
6169
6170         /* 5/6 split only in single pipe config on IVB+ */
6171         if (INTEL_GEN(dev_priv) >= 7 &&
6172             config.num_pipes_active == 1 && config.sprites_enabled) {
6173                 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
6174                 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
6175
6176                 best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
6177         } else {
6178                 best_lp_wm = &lp_wm_1_2;
6179         }
6180
6181         partitioning = (best_lp_wm == &lp_wm_1_2) ?
6182                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
6183
6184         ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
6185
6186         ilk_write_wm_values(dev_priv, &results);
6187 }
6188
6189 static void ilk_initial_watermarks(struct intel_atomic_state *state,
6190                                    struct intel_crtc *crtc)
6191 {
6192         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6193         const struct intel_crtc_state *crtc_state =
6194                 intel_atomic_get_new_crtc_state(state, crtc);
6195
6196         mutex_lock(&dev_priv->wm.wm_mutex);
6197         crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
6198         ilk_program_watermarks(dev_priv);
6199         mutex_unlock(&dev_priv->wm.wm_mutex);
6200 }
6201
6202 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
6203                                     struct intel_crtc *crtc)
6204 {
6205         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6206         const struct intel_crtc_state *crtc_state =
6207                 intel_atomic_get_new_crtc_state(state, crtc);
6208
6209         if (!crtc_state->wm.need_postvbl_update)
6210                 return;
6211
6212         mutex_lock(&dev_priv->wm.wm_mutex);
6213         crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
6214         ilk_program_watermarks(dev_priv);
6215         mutex_unlock(&dev_priv->wm.wm_mutex);
6216 }
6217
6218 static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
6219 {
6220         level->plane_en = val & PLANE_WM_EN;
6221         level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
6222         level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
6223         level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
6224                 PLANE_WM_LINES_MASK;
6225 }
6226
6227 void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
6228                               struct skl_pipe_wm *out)
6229 {
6230         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6231         enum pipe pipe = crtc->pipe;
6232         int level, max_level;
6233         enum plane_id plane_id;
6234         u32 val;
6235
6236         max_level = ilk_wm_max_level(dev_priv);
6237
6238         for_each_plane_id_on_crtc(crtc, plane_id) {
6239                 struct skl_plane_wm *wm = &out->planes[plane_id];
6240
6241                 for (level = 0; level <= max_level; level++) {
6242                         if (plane_id != PLANE_CURSOR)
6243                                 val = I915_READ(PLANE_WM(pipe, plane_id, level));
6244                         else
6245                                 val = I915_READ(CUR_WM(pipe, level));
6246
6247                         skl_wm_level_from_reg_val(val, &wm->wm[level]);
6248                 }
6249
6250                 if (INTEL_GEN(dev_priv) >= 12)
6251                         wm->sagv_wm0 = wm->wm[0];
6252
6253                 if (plane_id != PLANE_CURSOR)
6254                         val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
6255                 else
6256                         val = I915_READ(CUR_WM_TRANS(pipe));
6257
6258                 skl_wm_level_from_reg_val(val, &wm->trans_wm);
6259         }
6260
6261         if (!crtc->active)
6262                 return;
6263 }
6264
6265 void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
6266 {
6267         struct intel_crtc *crtc;
6268         struct intel_crtc_state *crtc_state;
6269
6270         for_each_intel_crtc(&dev_priv->drm, crtc) {
6271                 crtc_state = to_intel_crtc_state(crtc->base.state);
6272
6273                 skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
6274         }
6275
6276         if (dev_priv->active_pipes) {
6277                 /* Fully recompute DDB on first atomic commit */
6278                 dev_priv->wm.distrust_bios_wm = true;
6279         }
6280 }
6281
6282 static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
6283 {
6284         struct drm_device *dev = crtc->base.dev;
6285         struct drm_i915_private *dev_priv = to_i915(dev);
6286         struct ilk_wm_values *hw = &dev_priv->wm.hw;
6287         struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
6288         struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
6289         enum pipe pipe = crtc->pipe;
6290
6291         hw->wm_pipe[pipe] = I915_READ(WM0_PIPE_ILK(pipe));
6292
6293         memset(active, 0, sizeof(*active));
6294
6295         active->pipe_enabled = crtc->active;
6296
6297         if (active->pipe_enabled) {
6298                 u32 tmp = hw->wm_pipe[pipe];
6299
6300                 /*
6301                  * For active pipes LP0 watermark is marked as
6302                  * enabled, and LP1+ watermaks as disabled since
6303                  * we can't really reverse compute them in case
6304                  * multiple pipes are active.
6305                  */
6306                 active->wm[0].enable = true;
6307                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
6308                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
6309                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
6310         } else {
6311                 int level, max_level = ilk_wm_max_level(dev_priv);
6312
6313                 /*
6314                  * For inactive pipes, all watermark levels
6315                  * should be marked as enabled but zeroed,
6316                  * which is what we'd compute them to.
6317                  */
6318                 for (level = 0; level <= max_level; level++)
6319                         active->wm[level].enable = true;
6320         }
6321
6322         crtc->wm.active.ilk = *active;
6323 }
6324
6325 #define _FW_WM(value, plane) \
6326         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
6327 #define _FW_WM_VLV(value, plane) \
6328         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
6329
6330 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
6331                                struct g4x_wm_values *wm)
6332 {
6333         u32 tmp;
6334
6335         tmp = I915_READ(DSPFW1);
6336         wm->sr.plane = _FW_WM(tmp, SR);
6337         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
6338         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
6339         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
6340
6341         tmp = I915_READ(DSPFW2);
6342         wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
6343         wm->sr.fbc = _FW_WM(tmp, FBC_SR);
6344         wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
6345         wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
6346         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
6347         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
6348
6349         tmp = I915_READ(DSPFW3);
6350         wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
6351         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
6352         wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
6353         wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
6354 }
6355
6356 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
6357                                struct vlv_wm_values *wm)
6358 {
6359         enum pipe pipe;
6360         u32 tmp;
6361
6362         for_each_pipe(dev_priv, pipe) {
6363                 tmp = I915_READ(VLV_DDL(pipe));
6364
6365                 wm->ddl[pipe].plane[PLANE_PRIMARY] =
6366                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6367                 wm->ddl[pipe].plane[PLANE_CURSOR] =
6368                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6369                 wm->ddl[pipe].plane[PLANE_SPRITE0] =
6370                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6371                 wm->ddl[pipe].plane[PLANE_SPRITE1] =
6372                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
6373         }
6374
6375         tmp = I915_READ(DSPFW1);
6376         wm->sr.plane = _FW_WM(tmp, SR);
6377         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
6378         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
6379         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
6380
6381         tmp = I915_READ(DSPFW2);
6382         wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
6383         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
6384         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
6385
6386         tmp = I915_READ(DSPFW3);
6387         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
6388
6389         if (IS_CHERRYVIEW(dev_priv)) {
6390                 tmp = I915_READ(DSPFW7_CHV);
6391                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
6392                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6393
6394                 tmp = I915_READ(DSPFW8_CHV);
6395                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
6396                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
6397
6398                 tmp = I915_READ(DSPFW9_CHV);
6399                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
6400                 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
6401
6402                 tmp = I915_READ(DSPHOWM);
6403                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6404                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
6405                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
6406                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
6407                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
6408                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
6409                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
6410                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
6411                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
6412                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6413         } else {
6414                 tmp = I915_READ(DSPFW7);
6415                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
6416                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
6417
6418                 tmp = I915_READ(DSPHOWM);
6419                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
6420                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
6421                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
6422                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
6423                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
6424                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
6425                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
6426         }
6427 }
6428
6429 #undef _FW_WM
6430 #undef _FW_WM_VLV
6431
6432 void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
6433 {
6434         struct g4x_wm_values *wm = &dev_priv->wm.g4x;
6435         struct intel_crtc *crtc;
6436
6437         g4x_read_wm_values(dev_priv, wm);
6438
6439         wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
6440
6441         for_each_intel_crtc(&dev_priv->drm, crtc) {
6442                 struct intel_crtc_state *crtc_state =
6443                         to_intel_crtc_state(crtc->base.state);
6444                 struct g4x_wm_state *active = &crtc->wm.active.g4x;
6445                 struct g4x_pipe_wm *raw;
6446                 enum pipe pipe = crtc->pipe;
6447                 enum plane_id plane_id;
6448                 int level, max_level;
6449
6450                 active->cxsr = wm->cxsr;
6451                 active->hpll_en = wm->hpll_en;
6452                 active->fbc_en = wm->fbc_en;
6453
6454                 active->sr = wm->sr;
6455                 active->hpll = wm->hpll;
6456
6457                 for_each_plane_id_on_crtc(crtc, plane_id) {
6458                         active->wm.plane[plane_id] =
6459                                 wm->pipe[pipe].plane[plane_id];
6460                 }
6461
6462                 if (wm->cxsr && wm->hpll_en)
6463                         max_level = G4X_WM_LEVEL_HPLL;
6464                 else if (wm->cxsr)
6465                         max_level = G4X_WM_LEVEL_SR;
6466                 else
6467                         max_level = G4X_WM_LEVEL_NORMAL;
6468
6469                 level = G4X_WM_LEVEL_NORMAL;
6470                 raw = &crtc_state->wm.g4x.raw[level];
6471                 for_each_plane_id_on_crtc(crtc, plane_id)
6472                         raw->plane[plane_id] = active->wm.plane[plane_id];
6473
6474                 if (++level > max_level)
6475                         goto out;
6476
6477                 raw = &crtc_state->wm.g4x.raw[level];
6478                 raw->plane[PLANE_PRIMARY] = active->sr.plane;
6479                 raw->plane[PLANE_CURSOR] = active->sr.cursor;
6480                 raw->plane[PLANE_SPRITE0] = 0;
6481                 raw->fbc = active->sr.fbc;
6482
6483                 if (++level > max_level)
6484                         goto out;
6485
6486                 raw = &crtc_state->wm.g4x.raw[level];
6487                 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
6488                 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
6489                 raw->plane[PLANE_SPRITE0] = 0;
6490                 raw->fbc = active->hpll.fbc;
6491
6492         out:
6493                 for_each_plane_id_on_crtc(crtc, plane_id)
6494                         g4x_raw_plane_wm_set(crtc_state, level,
6495                                              plane_id, USHRT_MAX);
6496                 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
6497
6498                 crtc_state->wm.g4x.optimal = *active;
6499                 crtc_state->wm.g4x.intermediate = *active;
6500
6501                 drm_dbg_kms(&dev_priv->drm,
6502                             "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
6503                             pipe_name(pipe),
6504                             wm->pipe[pipe].plane[PLANE_PRIMARY],
6505                             wm->pipe[pipe].plane[PLANE_CURSOR],
6506                             wm->pipe[pipe].plane[PLANE_SPRITE0]);
6507         }
6508
6509         drm_dbg_kms(&dev_priv->drm,
6510                     "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
6511                     wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
6512         drm_dbg_kms(&dev_priv->drm,
6513                     "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
6514                     wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
6515         drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
6516                     yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6517 }
6518
6519 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
6520 {
6521         struct intel_plane *plane;
6522         struct intel_crtc *crtc;
6523
6524         mutex_lock(&dev_priv->wm.wm_mutex);
6525
6526         for_each_intel_plane(&dev_priv->drm, plane) {
6527                 struct intel_crtc *crtc =
6528                         intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6529                 struct intel_crtc_state *crtc_state =
6530                         to_intel_crtc_state(crtc->base.state);
6531                 struct intel_plane_state *plane_state =
6532                         to_intel_plane_state(plane->base.state);
6533                 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
6534                 enum plane_id plane_id = plane->id;
6535                 int level;
6536
6537                 if (plane_state->uapi.visible)
6538                         continue;
6539
6540                 for (level = 0; level < 3; level++) {
6541                         struct g4x_pipe_wm *raw =
6542                                 &crtc_state->wm.g4x.raw[level];
6543
6544                         raw->plane[plane_id] = 0;
6545                         wm_state->wm.plane[plane_id] = 0;
6546                 }
6547
6548                 if (plane_id == PLANE_PRIMARY) {
6549                         for (level = 0; level < 3; level++) {
6550                                 struct g4x_pipe_wm *raw =
6551                                         &crtc_state->wm.g4x.raw[level];
6552                                 raw->fbc = 0;
6553                         }
6554
6555                         wm_state->sr.fbc = 0;
6556                         wm_state->hpll.fbc = 0;
6557                         wm_state->fbc_en = false;
6558                 }
6559         }
6560
6561         for_each_intel_crtc(&dev_priv->drm, crtc) {
6562                 struct intel_crtc_state *crtc_state =
6563                         to_intel_crtc_state(crtc->base.state);
6564
6565                 crtc_state->wm.g4x.intermediate =
6566                         crtc_state->wm.g4x.optimal;
6567                 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
6568         }
6569
6570         g4x_program_watermarks(dev_priv);
6571
6572         mutex_unlock(&dev_priv->wm.wm_mutex);
6573 }
6574
6575 void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6576 {
6577         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6578         struct intel_crtc *crtc;
6579         u32 val;
6580
6581         vlv_read_wm_values(dev_priv, wm);
6582
6583         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
6584         wm->level = VLV_WM_LEVEL_PM2;
6585
6586         if (IS_CHERRYVIEW(dev_priv)) {
6587                 vlv_punit_get(dev_priv);
6588
6589                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6590                 if (val & DSP_MAXFIFO_PM5_ENABLE)
6591                         wm->level = VLV_WM_LEVEL_PM5;
6592
6593                 /*
6594                  * If DDR DVFS is disabled in the BIOS, Punit
6595                  * will never ack the request. So if that happens
6596                  * assume we don't have to enable/disable DDR DVFS
6597                  * dynamically. To test that just set the REQ_ACK
6598                  * bit to poke the Punit, but don't change the
6599                  * HIGH/LOW bits so that we don't actually change
6600                  * the current state.
6601                  */
6602                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6603                 val |= FORCE_DDR_FREQ_REQ_ACK;
6604                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
6605
6606                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
6607                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6608                         drm_dbg_kms(&dev_priv->drm,
6609                                     "Punit not acking DDR DVFS request, "
6610                                     "assuming DDR DVFS is disabled\n");
6611                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
6612                 } else {
6613                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6614                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
6615                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
6616                 }
6617
6618                 vlv_punit_put(dev_priv);
6619         }
6620
6621         for_each_intel_crtc(&dev_priv->drm, crtc) {
6622                 struct intel_crtc_state *crtc_state =
6623                         to_intel_crtc_state(crtc->base.state);
6624                 struct vlv_wm_state *active = &crtc->wm.active.vlv;
6625                 const struct vlv_fifo_state *fifo_state =
6626                         &crtc_state->wm.vlv.fifo_state;
6627                 enum pipe pipe = crtc->pipe;
6628                 enum plane_id plane_id;
6629                 int level;
6630
6631                 vlv_get_fifo_size(crtc_state);
6632
6633                 active->num_levels = wm->level + 1;
6634                 active->cxsr = wm->cxsr;
6635
6636                 for (level = 0; level < active->num_levels; level++) {
6637                         struct g4x_pipe_wm *raw =
6638                                 &crtc_state->wm.vlv.raw[level];
6639
6640                         active->sr[level].plane = wm->sr.plane;
6641                         active->sr[level].cursor = wm->sr.cursor;
6642
6643                         for_each_plane_id_on_crtc(crtc, plane_id) {
6644                                 active->wm[level].plane[plane_id] =
6645                                         wm->pipe[pipe].plane[plane_id];
6646
6647                                 raw->plane[plane_id] =
6648                                         vlv_invert_wm_value(active->wm[level].plane[plane_id],
6649                                                             fifo_state->plane[plane_id]);
6650                         }
6651                 }
6652
6653                 for_each_plane_id_on_crtc(crtc, plane_id)
6654                         vlv_raw_plane_wm_set(crtc_state, level,
6655                                              plane_id, USHRT_MAX);
6656                 vlv_invalidate_wms(crtc, active, level);
6657
6658                 crtc_state->wm.vlv.optimal = *active;
6659                 crtc_state->wm.vlv.intermediate = *active;
6660
6661                 drm_dbg_kms(&dev_priv->drm,
6662                             "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6663                             pipe_name(pipe),
6664                             wm->pipe[pipe].plane[PLANE_PRIMARY],
6665                             wm->pipe[pipe].plane[PLANE_CURSOR],
6666                             wm->pipe[pipe].plane[PLANE_SPRITE0],
6667                             wm->pipe[pipe].plane[PLANE_SPRITE1]);
6668         }
6669
6670         drm_dbg_kms(&dev_priv->drm,
6671                     "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
6672                     wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
6673 }
6674
6675 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
6676 {
6677         struct intel_plane *plane;
6678         struct intel_crtc *crtc;
6679
6680         mutex_lock(&dev_priv->wm.wm_mutex);
6681
6682         for_each_intel_plane(&dev_priv->drm, plane) {
6683                 struct intel_crtc *crtc =
6684                         intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6685                 struct intel_crtc_state *crtc_state =
6686                         to_intel_crtc_state(crtc->base.state);
6687                 struct intel_plane_state *plane_state =
6688                         to_intel_plane_state(plane->base.state);
6689                 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
6690                 const struct vlv_fifo_state *fifo_state =
6691                         &crtc_state->wm.vlv.fifo_state;
6692                 enum plane_id plane_id = plane->id;
6693                 int level;
6694
6695                 if (plane_state->uapi.visible)
6696                         continue;
6697
6698                 for (level = 0; level < wm_state->num_levels; level++) {
6699                         struct g4x_pipe_wm *raw =
6700                                 &crtc_state->wm.vlv.raw[level];
6701
6702                         raw->plane[plane_id] = 0;
6703
6704                         wm_state->wm[level].plane[plane_id] =
6705                                 vlv_invert_wm_value(raw->plane[plane_id],
6706                                                     fifo_state->plane[plane_id]);
6707                 }
6708         }
6709
6710         for_each_intel_crtc(&dev_priv->drm, crtc) {
6711                 struct intel_crtc_state *crtc_state =
6712                         to_intel_crtc_state(crtc->base.state);
6713
6714                 crtc_state->wm.vlv.intermediate =
6715                         crtc_state->wm.vlv.optimal;
6716                 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
6717         }
6718
6719         vlv_program_watermarks(dev_priv);
6720
6721         mutex_unlock(&dev_priv->wm.wm_mutex);
6722 }
6723
6724 /*
6725  * FIXME should probably kill this and improve
6726  * the real watermark readout/sanitation instead
6727  */
6728 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6729 {
6730         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6731         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6732         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6733
6734         /*
6735          * Don't touch WM1S_LP_EN here.
6736          * Doing so could cause underruns.
6737          */
6738 }
6739
6740 void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6741 {
6742         struct ilk_wm_values *hw = &dev_priv->wm.hw;
6743         struct intel_crtc *crtc;
6744
6745         ilk_init_lp_watermarks(dev_priv);
6746
6747         for_each_intel_crtc(&dev_priv->drm, crtc)
6748                 ilk_pipe_wm_get_hw_state(crtc);
6749
6750         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
6751         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
6752         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
6753
6754         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6755         if (INTEL_GEN(dev_priv) >= 7) {
6756                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
6757                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
6758         }
6759
6760         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6761                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6762                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6763         else if (IS_IVYBRIDGE(dev_priv))
6764                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6765                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6766
6767         hw->enable_fbc_wm =
6768                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6769 }
6770
6771 /**
6772  * intel_update_watermarks - update FIFO watermark values based on current modes
6773  * @crtc: the #intel_crtc on which to compute the WM
6774  *
6775  * Calculate watermark values for the various WM regs based on current mode
6776  * and plane configuration.
6777  *
6778  * There are several cases to deal with here:
6779  *   - normal (i.e. non-self-refresh)
6780  *   - self-refresh (SR) mode
6781  *   - lines are large relative to FIFO size (buffer can hold up to 2)
6782  *   - lines are small relative to FIFO size (buffer can hold more than 2
6783  *     lines), so need to account for TLB latency
6784  *
6785  *   The normal calculation is:
6786  *     watermark = dotclock * bytes per pixel * latency
6787  *   where latency is platform & configuration dependent (we assume pessimal
6788  *   values here).
6789  *
6790  *   The SR calculation is:
6791  *     watermark = (trunc(latency/line time)+1) * surface width *
6792  *       bytes per pixel
6793  *   where
6794  *     line time = htotal / dotclock
6795  *     surface width = hdisplay for normal plane and 64 for cursor
6796  *   and latency is assumed to be high, as above.
6797  *
6798  * The final value programmed to the register should always be rounded up,
6799  * and include an extra 2 entries to account for clock crossings.
6800  *
6801  * We don't use the sprite, so we can ignore that.  And on Crestline we have
6802  * to set the non-SR watermarks to 8.
6803  */
6804 void intel_update_watermarks(struct intel_crtc *crtc)
6805 {
6806         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6807
6808         if (dev_priv->display.update_wm)
6809                 dev_priv->display.update_wm(crtc);
6810 }
6811
6812 void intel_enable_ipc(struct drm_i915_private *dev_priv)
6813 {
6814         u32 val;
6815
6816         if (!HAS_IPC(dev_priv))
6817                 return;
6818
6819         val = I915_READ(DISP_ARB_CTL2);
6820
6821         if (dev_priv->ipc_enabled)
6822                 val |= DISP_IPC_ENABLE;
6823         else
6824                 val &= ~DISP_IPC_ENABLE;
6825
6826         I915_WRITE(DISP_ARB_CTL2, val);
6827 }
6828
6829 static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
6830 {
6831         /* Display WA #0477 WaDisableIPC: skl */
6832         if (IS_SKYLAKE(dev_priv))
6833                 return false;
6834
6835         /* Display WA #1141: SKL:all KBL:all CFL */
6836         if (IS_KABYLAKE(dev_priv) ||
6837             IS_COFFEELAKE(dev_priv) ||
6838             IS_COMETLAKE(dev_priv))
6839                 return dev_priv->dram_info.symmetric_memory;
6840
6841         return true;
6842 }
6843
6844 void intel_init_ipc(struct drm_i915_private *dev_priv)
6845 {
6846         if (!HAS_IPC(dev_priv))
6847                 return;
6848
6849         dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6850
6851         intel_enable_ipc(dev_priv);
6852 }
6853
6854 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6855 {
6856         /*
6857          * On Ibex Peak and Cougar Point, we need to disable clock
6858          * gating for the panel power sequencer or it will fail to
6859          * start up when no ports are active.
6860          */
6861         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6862 }
6863
6864 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6865 {
6866         enum pipe pipe;
6867
6868         for_each_pipe(dev_priv, pipe) {
6869                 I915_WRITE(DSPCNTR(pipe),
6870                            I915_READ(DSPCNTR(pipe)) |
6871                            DISPPLANE_TRICKLE_FEED_DISABLE);
6872
6873                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6874                 POSTING_READ(DSPSURF(pipe));
6875         }
6876 }
6877
6878 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
6879 {
6880         u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6881
6882         /*
6883          * Required for FBC
6884          * WaFbcDisableDpfcClockGating:ilk
6885          */
6886         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6887                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6888                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6889
6890         I915_WRITE(PCH_3DCGDIS0,
6891                    MARIUNIT_CLOCK_GATE_DISABLE |
6892                    SVSMUNIT_CLOCK_GATE_DISABLE);
6893         I915_WRITE(PCH_3DCGDIS1,
6894                    VFMUNIT_CLOCK_GATE_DISABLE);
6895
6896         /*
6897          * According to the spec the following bits should be set in
6898          * order to enable memory self-refresh
6899          * The bit 22/21 of 0x42004
6900          * The bit 5 of 0x42020
6901          * The bit 15 of 0x45000
6902          */
6903         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6904                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
6905                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6906         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6907         I915_WRITE(DISP_ARB_CTL,
6908                    (I915_READ(DISP_ARB_CTL) |
6909                     DISP_FBC_WM_DIS));
6910
6911         /*
6912          * Based on the document from hardware guys the following bits
6913          * should be set unconditionally in order to enable FBC.
6914          * The bit 22 of 0x42000
6915          * The bit 22 of 0x42004
6916          * The bit 7,8,9 of 0x42020.
6917          */
6918         if (IS_IRONLAKE_M(dev_priv)) {
6919                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6920                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6921                            I915_READ(ILK_DISPLAY_CHICKEN1) |
6922                            ILK_FBCQ_DIS);
6923                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6924                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6925                            ILK_DPARB_GATE);
6926         }
6927
6928         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6929
6930         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6931                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6932                    ILK_ELPIN_409_SELECT);
6933
6934         g4x_disable_trickle_feed(dev_priv);
6935
6936         ibx_init_clock_gating(dev_priv);
6937 }
6938
6939 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6940 {
6941         enum pipe pipe;
6942         u32 val;
6943
6944         /*
6945          * On Ibex Peak and Cougar Point, we need to disable clock
6946          * gating for the panel power sequencer or it will fail to
6947          * start up when no ports are active.
6948          */
6949         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6950                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6951                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
6952         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6953                    DPLS_EDP_PPS_FIX_DIS);
6954         /* The below fixes the weird display corruption, a few pixels shifted
6955          * downward, on (only) LVDS of some HP laptops with IVY.
6956          */
6957         for_each_pipe(dev_priv, pipe) {
6958                 val = I915_READ(TRANS_CHICKEN2(pipe));
6959                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6960                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6961                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6962                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6963                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6964                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6965                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6966         }
6967         /* WADP0ClockGatingDisable */
6968         for_each_pipe(dev_priv, pipe) {
6969                 I915_WRITE(TRANS_CHICKEN1(pipe),
6970                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6971         }
6972 }
6973
6974 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6975 {
6976         u32 tmp;
6977
6978         tmp = I915_READ(MCH_SSKPD);
6979         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6980                 drm_dbg_kms(&dev_priv->drm,
6981                             "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6982                             tmp);
6983 }
6984
6985 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
6986 {
6987         u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6988
6989         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6990
6991         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6992                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6993                    ILK_ELPIN_409_SELECT);
6994
6995         I915_WRITE(GEN6_UCGCTL1,
6996                    I915_READ(GEN6_UCGCTL1) |
6997                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6998                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6999
7000         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
7001          * gating disable must be set.  Failure to set it results in
7002          * flickering pixels due to Z write ordering failures after
7003          * some amount of runtime in the Mesa "fire" demo, and Unigine
7004          * Sanctuary and Tropics, and apparently anything else with
7005          * alpha test or pixel discard.
7006          *
7007          * According to the spec, bit 11 (RCCUNIT) must also be set,
7008          * but we didn't debug actual testcases to find it out.
7009          *
7010          * WaDisableRCCUnitClockGating:snb
7011          * WaDisableRCPBUnitClockGating:snb
7012          */
7013         I915_WRITE(GEN6_UCGCTL2,
7014                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
7015                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
7016
7017         /*
7018          * According to the spec the following bits should be
7019          * set in order to enable memory self-refresh and fbc:
7020          * The bit21 and bit22 of 0x42000
7021          * The bit21 and bit22 of 0x42004
7022          * The bit5 and bit7 of 0x42020
7023          * The bit14 of 0x70180
7024          * The bit14 of 0x71180
7025          *
7026          * WaFbcAsynchFlipDisableFbcQueue:snb
7027          */
7028         I915_WRITE(ILK_DISPLAY_CHICKEN1,
7029                    I915_READ(ILK_DISPLAY_CHICKEN1) |
7030                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7031         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7032                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7033                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7034         I915_WRITE(ILK_DSPCLK_GATE_D,
7035                    I915_READ(ILK_DSPCLK_GATE_D) |
7036                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
7037                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7038
7039         g4x_disable_trickle_feed(dev_priv);
7040
7041         cpt_init_clock_gating(dev_priv);
7042
7043         gen6_check_mch_setup(dev_priv);
7044 }
7045
7046 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7047 {
7048         /*
7049          * TODO: this bit should only be enabled when really needed, then
7050          * disabled when not needed anymore in order to save power.
7051          */
7052         if (HAS_PCH_LPT_LP(dev_priv))
7053                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
7054                            I915_READ(SOUTH_DSPCLK_GATE_D) |
7055                            PCH_LP_PARTITION_LEVEL_DISABLE);
7056
7057         /* WADPOClockGatingDisable:hsw */
7058         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
7059                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7060                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7061 }
7062
7063 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7064 {
7065         if (HAS_PCH_LPT_LP(dev_priv)) {
7066                 u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7067
7068                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7069                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7070         }
7071 }
7072
7073 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7074                                    int general_prio_credits,
7075                                    int high_prio_credits)
7076 {
7077         u32 misccpctl;
7078         u32 val;
7079
7080         /* WaTempDisableDOPClkGating:bdw */
7081         misccpctl = I915_READ(GEN7_MISCCPCTL);
7082         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7083
7084         val = I915_READ(GEN8_L3SQCREG1);
7085         val &= ~L3_PRIO_CREDITS_MASK;
7086         val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
7087         val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
7088         I915_WRITE(GEN8_L3SQCREG1, val);
7089
7090         /*
7091          * Wait at least 100 clocks before re-enabling clock gating.
7092          * See the definition of L3SQCREG1 in BSpec.
7093          */
7094         POSTING_READ(GEN8_L3SQCREG1);
7095         udelay(1);
7096         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
7097 }
7098
7099 static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
7100 {
7101         /* Wa_1409120013:icl,ehl */
7102         I915_WRITE(ILK_DPFC_CHICKEN,
7103                    ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL);
7104
7105         /* This is not an Wa. Enable to reduce Sampler power */
7106         I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
7107                    I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
7108
7109         /*Wa_14010594013:icl, ehl */
7110         intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
7111                          0, CNL_DELAY_PMRSP);
7112 }
7113
7114 static void tgl_init_clock_gating(struct drm_i915_private *dev_priv)
7115 {
7116         /* Wa_1409120013:tgl */
7117         I915_WRITE(ILK_DPFC_CHICKEN,
7118                    ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL);
7119
7120         /* Wa_1409825376:tgl (pre-prod)*/
7121         if (IS_TGL_DISP_REVID(dev_priv, TGL_REVID_A0, TGL_REVID_B1))
7122                 I915_WRITE(GEN9_CLKGATE_DIS_3, I915_READ(GEN9_CLKGATE_DIS_3) |
7123                            TGL_VRH_GATING_DIS);
7124
7125         /* Wa_14011059788:tgl */
7126         intel_uncore_rmw(&dev_priv->uncore, GEN10_DFR_RATIO_EN_AND_CHICKEN,
7127                          0, DFR_DISABLE);
7128 }
7129
7130 static void dg1_init_clock_gating(struct drm_i915_private *dev_priv)
7131 {
7132         /* Wa_1409836686:dg1[a0] */
7133         if (IS_DG1_REVID(dev_priv, DG1_REVID_A0, DG1_REVID_A0))
7134                 I915_WRITE(GEN9_CLKGATE_DIS_3, I915_READ(GEN9_CLKGATE_DIS_3) |
7135                            DPT_GATING_DIS);
7136 }
7137
7138 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
7139 {
7140         if (!HAS_PCH_CNP(dev_priv))
7141                 return;
7142
7143         /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
7144         I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
7145                    CNP_PWM_CGE_GATING_DISABLE);
7146 }
7147
7148 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
7149 {
7150         u32 val;
7151         cnp_init_clock_gating(dev_priv);
7152
7153         /* This is not an Wa. Enable for better image quality */
7154         I915_WRITE(_3D_CHICKEN3,
7155                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
7156
7157         /* WaEnableChickenDCPR:cnl */
7158         I915_WRITE(GEN8_CHICKEN_DCPR_1,
7159                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
7160
7161         /*
7162          * WaFbcWakeMemOn:cnl
7163          * Display WA #0859: cnl
7164          */
7165         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
7166                    DISP_FBC_MEMORY_WAKE);
7167
7168         val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
7169         /* ReadHitWriteOnlyDisable:cnl */
7170         val |= RCCUNIT_CLKGATE_DIS;
7171         I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
7172
7173         /* Wa_2201832410:cnl */
7174         val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
7175         val |= GWUNIT_CLKGATE_DIS;
7176         I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
7177
7178         /* WaDisableVFclkgate:cnl */
7179         /* WaVFUnitClockGatingDisable:cnl */
7180         val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
7181         val |= VFUNIT_CLKGATE_DIS;
7182         I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
7183 }
7184
7185 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
7186 {
7187         cnp_init_clock_gating(dev_priv);
7188         gen9_init_clock_gating(dev_priv);
7189
7190         /* WAC6entrylatency:cfl */
7191         I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7192                    FBC_LLC_FULLY_OPEN);
7193
7194         /*
7195          * WaFbcTurnOffFbcWatermark:cfl
7196          * Display WA #0562: cfl
7197          */
7198         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
7199                    DISP_FBC_WM_DIS);
7200
7201         /*
7202          * WaFbcNukeOnHostModify:cfl
7203          * Display WA #0873: cfl
7204          */
7205         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7206                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7207 }
7208
7209 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
7210 {
7211         gen9_init_clock_gating(dev_priv);
7212
7213         /* WAC6entrylatency:kbl */
7214         I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7215                    FBC_LLC_FULLY_OPEN);
7216
7217         /* WaDisableSDEUnitClockGating:kbl */
7218         if (IS_KBL_GT_REVID(dev_priv, 0, KBL_REVID_B0))
7219                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7220                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7221
7222         /* WaDisableGamClockGating:kbl */
7223         if (IS_KBL_GT_REVID(dev_priv, 0, KBL_REVID_B0))
7224                 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7225                            GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7226
7227         /*
7228          * WaFbcTurnOffFbcWatermark:kbl
7229          * Display WA #0562: kbl
7230          */
7231         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
7232                    DISP_FBC_WM_DIS);
7233
7234         /*
7235          * WaFbcNukeOnHostModify:kbl
7236          * Display WA #0873: kbl
7237          */
7238         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7239                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7240 }
7241
7242 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
7243 {
7244         gen9_init_clock_gating(dev_priv);
7245
7246         /* WaDisableDopClockGating:skl */
7247         I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL) &
7248                    ~GEN7_DOP_CLOCK_GATE_ENABLE);
7249
7250         /* WAC6entrylatency:skl */
7251         I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7252                    FBC_LLC_FULLY_OPEN);
7253
7254         /*
7255          * WaFbcTurnOffFbcWatermark:skl
7256          * Display WA #0562: skl
7257          */
7258         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
7259                    DISP_FBC_WM_DIS);
7260
7261         /*
7262          * WaFbcNukeOnHostModify:skl
7263          * Display WA #0873: skl
7264          */
7265         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7266                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7267
7268         /*
7269          * WaFbcHighMemBwCorruptionAvoidance:skl
7270          * Display WA #0883: skl
7271          */
7272         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7273                    ILK_DPFC_DISABLE_DUMMY0);
7274 }
7275
7276 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
7277 {
7278         enum pipe pipe;
7279
7280         /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
7281         I915_WRITE(CHICKEN_PIPESL_1(PIPE_A),
7282                    I915_READ(CHICKEN_PIPESL_1(PIPE_A)) |
7283                    HSW_FBCQ_DIS);
7284
7285         /* WaSwitchSolVfFArbitrationPriority:bdw */
7286         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7287
7288         /* WaPsrDPAMaskVBlankInSRD:bdw */
7289         I915_WRITE(CHICKEN_PAR1_1,
7290                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7291
7292         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7293         for_each_pipe(dev_priv, pipe) {
7294                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
7295                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
7296                            BDW_DPRS_MASK_VBLANK_SRD);
7297         }
7298
7299         /* WaVSRefCountFullforceMissDisable:bdw */
7300         /* WaDSRefCountFullforceMissDisable:bdw */
7301         I915_WRITE(GEN7_FF_THREAD_MODE,
7302                    I915_READ(GEN7_FF_THREAD_MODE) &
7303                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7304
7305         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7306                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7307
7308         /* WaDisableSDEUnitClockGating:bdw */
7309         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7310                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7311
7312         /* WaProgramL3SqcReg1Default:bdw */
7313         gen8_set_l3sqc_credits(dev_priv, 30, 2);
7314
7315         /* WaKVMNotificationOnConfigChange:bdw */
7316         I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
7317                    | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7318
7319         lpt_init_clock_gating(dev_priv);
7320
7321         /* WaDisableDopClockGating:bdw
7322          *
7323          * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
7324          * clock gating.
7325          */
7326         I915_WRITE(GEN6_UCGCTL1,
7327                    I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
7328 }
7329
7330 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
7331 {
7332         /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
7333         I915_WRITE(CHICKEN_PIPESL_1(PIPE_A),
7334                    I915_READ(CHICKEN_PIPESL_1(PIPE_A)) |
7335                    HSW_FBCQ_DIS);
7336
7337         /* This is required by WaCatErrorRejectionIssue:hsw */
7338         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7339                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7340                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7341
7342         /* WaSwitchSolVfFArbitrationPriority:hsw */
7343         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7344
7345         lpt_init_clock_gating(dev_priv);
7346 }
7347
7348 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
7349 {
7350         u32 snpcr;
7351
7352         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7353
7354         /* WaFbcAsynchFlipDisableFbcQueue:ivb */
7355         I915_WRITE(ILK_DISPLAY_CHICKEN1,
7356                    I915_READ(ILK_DISPLAY_CHICKEN1) |
7357                    ILK_FBCQ_DIS);
7358
7359         /* WaDisableBackToBackFlipFix:ivb */
7360         I915_WRITE(IVB_CHICKEN3,
7361                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7362                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7363
7364         if (IS_IVB_GT1(dev_priv))
7365                 I915_WRITE(GEN7_ROW_CHICKEN2,
7366                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7367         else {
7368                 /* must write both registers */
7369                 I915_WRITE(GEN7_ROW_CHICKEN2,
7370                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7371                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7372                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7373         }
7374
7375         /*
7376          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7377          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7378          */
7379         I915_WRITE(GEN6_UCGCTL2,
7380                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7381
7382         /* This is required by WaCatErrorRejectionIssue:ivb */
7383         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7384                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7385                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7386
7387         g4x_disable_trickle_feed(dev_priv);
7388
7389         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7390         snpcr &= ~GEN6_MBC_SNPCR_MASK;
7391         snpcr |= GEN6_MBC_SNPCR_MED;
7392         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7393
7394         if (!HAS_PCH_NOP(dev_priv))
7395                 cpt_init_clock_gating(dev_priv);
7396
7397         gen6_check_mch_setup(dev_priv);
7398 }
7399
7400 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
7401 {
7402         /* WaDisableBackToBackFlipFix:vlv */
7403         I915_WRITE(IVB_CHICKEN3,
7404                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7405                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7406
7407         /* WaDisableDopClockGating:vlv */
7408         I915_WRITE(GEN7_ROW_CHICKEN2,
7409                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7410
7411         /* This is required by WaCatErrorRejectionIssue:vlv */
7412         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7413                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7414                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7415
7416         /*
7417          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7418          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7419          */
7420         I915_WRITE(GEN6_UCGCTL2,
7421                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7422
7423         /* WaDisableL3Bank2xClockGate:vlv
7424          * Disabling L3 clock gating- MMIO 940c[25] = 1
7425          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7426         I915_WRITE(GEN7_UCGCTL4,
7427                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7428
7429         /*
7430          * WaDisableVLVClockGating_VBIIssue:vlv
7431          * Disable clock gating on th GCFG unit to prevent a delay
7432          * in the reporting of vblank events.
7433          */
7434         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7435 }
7436
7437 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
7438 {
7439         /* WaVSRefCountFullforceMissDisable:chv */
7440         /* WaDSRefCountFullforceMissDisable:chv */
7441         I915_WRITE(GEN7_FF_THREAD_MODE,
7442                    I915_READ(GEN7_FF_THREAD_MODE) &
7443                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7444
7445         /* WaDisableSemaphoreAndSyncFlipWait:chv */
7446         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7447                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7448
7449         /* WaDisableCSUnitClockGating:chv */
7450         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7451                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7452
7453         /* WaDisableSDEUnitClockGating:chv */
7454         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7455                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7456
7457         /*
7458          * WaProgramL3SqcReg1Default:chv
7459          * See gfxspecs/Related Documents/Performance Guide/
7460          * LSQC Setting Recommendations.
7461          */
7462         gen8_set_l3sqc_credits(dev_priv, 38, 2);
7463 }
7464
7465 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7466 {
7467         u32 dspclk_gate;
7468
7469         I915_WRITE(RENCLK_GATE_D1, 0);
7470         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7471                    GS_UNIT_CLOCK_GATE_DISABLE |
7472                    CL_UNIT_CLOCK_GATE_DISABLE);
7473         I915_WRITE(RAMCLK_GATE_D, 0);
7474         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7475                 OVRUNIT_CLOCK_GATE_DISABLE |
7476                 OVCUNIT_CLOCK_GATE_DISABLE;
7477         if (IS_GM45(dev_priv))
7478                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7479         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7480
7481         g4x_disable_trickle_feed(dev_priv);
7482 }
7483
7484 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
7485 {
7486         struct intel_uncore *uncore = &dev_priv->uncore;
7487
7488         intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7489         intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
7490         intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
7491         intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
7492         intel_uncore_write16(uncore, DEUC, 0);
7493         intel_uncore_write(uncore,
7494                            MI_ARB_STATE,
7495                            _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7496 }
7497
7498 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
7499 {
7500         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7501                    I965_RCC_CLOCK_GATE_DISABLE |
7502                    I965_RCPB_CLOCK_GATE_DISABLE |
7503                    I965_ISC_CLOCK_GATE_DISABLE |
7504                    I965_FBC_CLOCK_GATE_DISABLE);
7505         I915_WRITE(RENCLK_GATE_D2, 0);
7506         I915_WRITE(MI_ARB_STATE,
7507                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7508 }
7509
7510 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7511 {
7512         u32 dstate = I915_READ(D_STATE);
7513
7514         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7515                 DSTATE_DOT_CLOCK_GATING;
7516         I915_WRITE(D_STATE, dstate);
7517
7518         if (IS_PINEVIEW(dev_priv))
7519                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7520
7521         /* IIR "flip pending" means done if this bit is set */
7522         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7523
7524         /* interrupts should cause a wake up from C3 */
7525         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7526
7527         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7528         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7529
7530         I915_WRITE(MI_ARB_STATE,
7531                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7532 }
7533
7534 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7535 {
7536         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7537
7538         /* interrupts should cause a wake up from C3 */
7539         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7540                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7541
7542         I915_WRITE(MEM_MODE,
7543                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7544
7545         /*
7546          * Have FBC ignore 3D activity since we use software
7547          * render tracking, and otherwise a pure 3D workload
7548          * (even if it just renders a single frame and then does
7549          * abosultely nothing) would not allow FBC to recompress
7550          * until a 2D blit occurs.
7551          */
7552         I915_WRITE(SCPD0,
7553                    _MASKED_BIT_ENABLE(SCPD_FBC_IGNORE_3D));
7554 }
7555
7556 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7557 {
7558         I915_WRITE(MEM_MODE,
7559                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7560                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7561 }
7562
7563 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7564 {
7565         dev_priv->display.init_clock_gating(dev_priv);
7566 }
7567
7568 void intel_suspend_hw(struct drm_i915_private *dev_priv)
7569 {
7570         if (HAS_PCH_LPT(dev_priv))
7571                 lpt_suspend_hw(dev_priv);
7572 }
7573
7574 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7575 {
7576         drm_dbg_kms(&dev_priv->drm,
7577                     "No clock gating settings or workarounds applied.\n");
7578 }
7579
7580 /**
7581  * intel_init_clock_gating_hooks - setup the clock gating hooks
7582  * @dev_priv: device private
7583  *
7584  * Setup the hooks that configure which clocks of a given platform can be
7585  * gated and also apply various GT and display specific workarounds for these
7586  * platforms. Note that some GT specific workarounds are applied separately
7587  * when GPU contexts or batchbuffers start their execution.
7588  */
7589 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7590 {
7591         if (IS_DG1(dev_priv))
7592                 dev_priv->display.init_clock_gating = dg1_init_clock_gating;
7593         else if (IS_GEN(dev_priv, 12))
7594                 dev_priv->display.init_clock_gating = tgl_init_clock_gating;
7595         else if (IS_GEN(dev_priv, 11))
7596                 dev_priv->display.init_clock_gating = icl_init_clock_gating;
7597         else if (IS_CANNONLAKE(dev_priv))
7598                 dev_priv->display.init_clock_gating = cnl_init_clock_gating;
7599         else if (IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv))
7600                 dev_priv->display.init_clock_gating = cfl_init_clock_gating;
7601         else if (IS_SKYLAKE(dev_priv))
7602                 dev_priv->display.init_clock_gating = skl_init_clock_gating;
7603         else if (IS_KABYLAKE(dev_priv))
7604                 dev_priv->display.init_clock_gating = kbl_init_clock_gating;
7605         else if (IS_BROXTON(dev_priv))
7606                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7607         else if (IS_GEMINILAKE(dev_priv))
7608                 dev_priv->display.init_clock_gating = glk_init_clock_gating;
7609         else if (IS_BROADWELL(dev_priv))
7610                 dev_priv->display.init_clock_gating = bdw_init_clock_gating;
7611         else if (IS_CHERRYVIEW(dev_priv))
7612                 dev_priv->display.init_clock_gating = chv_init_clock_gating;
7613         else if (IS_HASWELL(dev_priv))
7614                 dev_priv->display.init_clock_gating = hsw_init_clock_gating;
7615         else if (IS_IVYBRIDGE(dev_priv))
7616                 dev_priv->display.init_clock_gating = ivb_init_clock_gating;
7617         else if (IS_VALLEYVIEW(dev_priv))
7618                 dev_priv->display.init_clock_gating = vlv_init_clock_gating;
7619         else if (IS_GEN(dev_priv, 6))
7620                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7621         else if (IS_GEN(dev_priv, 5))
7622                 dev_priv->display.init_clock_gating = ilk_init_clock_gating;
7623         else if (IS_G4X(dev_priv))
7624                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7625         else if (IS_I965GM(dev_priv))
7626                 dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
7627         else if (IS_I965G(dev_priv))
7628                 dev_priv->display.init_clock_gating = i965g_init_clock_gating;
7629         else if (IS_GEN(dev_priv, 3))
7630                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7631         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7632                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7633         else if (IS_GEN(dev_priv, 2))
7634                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7635         else {
7636                 MISSING_CASE(INTEL_DEVID(dev_priv));
7637                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7638         }
7639 }
7640
7641 /* Set up chip specific power management-related functions */
7642 void intel_init_pm(struct drm_i915_private *dev_priv)
7643 {
7644         /* For cxsr */
7645         if (IS_PINEVIEW(dev_priv))
7646                 pnv_get_mem_freq(dev_priv);
7647         else if (IS_GEN(dev_priv, 5))
7648                 ilk_get_mem_freq(dev_priv);
7649
7650         if (intel_has_sagv(dev_priv))
7651                 skl_setup_sagv_block_time(dev_priv);
7652
7653         /* For FIFO watermark updates */
7654         if (INTEL_GEN(dev_priv) >= 9) {
7655                 skl_setup_wm_latency(dev_priv);
7656                 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7657         } else if (HAS_PCH_SPLIT(dev_priv)) {
7658                 ilk_setup_wm_latency(dev_priv);
7659
7660                 if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
7661                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7662                     (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
7663                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7664                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7665                         dev_priv->display.compute_intermediate_wm =
7666                                 ilk_compute_intermediate_wm;
7667                         dev_priv->display.initial_watermarks =
7668                                 ilk_initial_watermarks;
7669                         dev_priv->display.optimize_watermarks =
7670                                 ilk_optimize_watermarks;
7671                 } else {
7672                         drm_dbg_kms(&dev_priv->drm,
7673                                     "Failed to read display plane latency. "
7674                                     "Disable CxSR\n");
7675                 }
7676         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7677                 vlv_setup_wm_latency(dev_priv);
7678                 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
7679                 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
7680                 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
7681                 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
7682                 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
7683         } else if (IS_G4X(dev_priv)) {
7684                 g4x_setup_wm_latency(dev_priv);
7685                 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
7686                 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
7687                 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
7688                 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
7689         } else if (IS_PINEVIEW(dev_priv)) {
7690                 if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
7691                                             dev_priv->is_ddr3,
7692                                             dev_priv->fsb_freq,
7693                                             dev_priv->mem_freq)) {
7694                         drm_info(&dev_priv->drm,
7695                                  "failed to find known CxSR latency "
7696                                  "(found ddr%s fsb freq %d, mem freq %d), "
7697                                  "disabling CxSR\n",
7698                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7699                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7700                         /* Disable CxSR and never update its watermark again */
7701                         intel_set_memory_cxsr(dev_priv, false);
7702                         dev_priv->display.update_wm = NULL;
7703                 } else
7704                         dev_priv->display.update_wm = pnv_update_wm;
7705         } else if (IS_GEN(dev_priv, 4)) {
7706                 dev_priv->display.update_wm = i965_update_wm;
7707         } else if (IS_GEN(dev_priv, 3)) {
7708                 dev_priv->display.update_wm = i9xx_update_wm;
7709                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7710         } else if (IS_GEN(dev_priv, 2)) {
7711                 if (INTEL_NUM_PIPES(dev_priv) == 1) {
7712                         dev_priv->display.update_wm = i845_update_wm;
7713                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7714                 } else {
7715                         dev_priv->display.update_wm = i9xx_update_wm;
7716                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7717                 }
7718         } else {
7719                 drm_err(&dev_priv->drm,
7720                         "unexpected fall-through in %s\n", __func__);
7721         }
7722 }
7723
7724 void intel_pm_setup(struct drm_i915_private *dev_priv)
7725 {
7726         dev_priv->runtime_pm.suspended = false;
7727         atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
7728 }
7729
7730 static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj)
7731 {
7732         struct intel_dbuf_state *dbuf_state;
7733
7734         dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL);
7735         if (!dbuf_state)
7736                 return NULL;
7737
7738         return &dbuf_state->base;
7739 }
7740
7741 static void intel_dbuf_destroy_state(struct intel_global_obj *obj,
7742                                      struct intel_global_state *state)
7743 {
7744         kfree(state);
7745 }
7746
7747 static const struct intel_global_state_funcs intel_dbuf_funcs = {
7748         .atomic_duplicate_state = intel_dbuf_duplicate_state,
7749         .atomic_destroy_state = intel_dbuf_destroy_state,
7750 };
7751
7752 struct intel_dbuf_state *
7753 intel_atomic_get_dbuf_state(struct intel_atomic_state *state)
7754 {
7755         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7756         struct intel_global_state *dbuf_state;
7757
7758         dbuf_state = intel_atomic_get_global_obj_state(state, &dev_priv->dbuf.obj);
7759         if (IS_ERR(dbuf_state))
7760                 return ERR_CAST(dbuf_state);
7761
7762         return to_intel_dbuf_state(dbuf_state);
7763 }
7764
7765 int intel_dbuf_init(struct drm_i915_private *dev_priv)
7766 {
7767         struct intel_dbuf_state *dbuf_state;
7768
7769         dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL);
7770         if (!dbuf_state)
7771                 return -ENOMEM;
7772
7773         intel_atomic_global_obj_init(dev_priv, &dev_priv->dbuf.obj,
7774                                      &dbuf_state->base, &intel_dbuf_funcs);
7775
7776         return 0;
7777 }
7778
7779 void intel_dbuf_pre_plane_update(struct intel_atomic_state *state)
7780 {
7781         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7782         const struct intel_dbuf_state *new_dbuf_state =
7783                 intel_atomic_get_new_dbuf_state(state);
7784         const struct intel_dbuf_state *old_dbuf_state =
7785                 intel_atomic_get_old_dbuf_state(state);
7786
7787         if (!new_dbuf_state ||
7788             new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
7789                 return;
7790
7791         WARN_ON(!new_dbuf_state->base.changed);
7792
7793         gen9_dbuf_slices_update(dev_priv,
7794                                 old_dbuf_state->enabled_slices |
7795                                 new_dbuf_state->enabled_slices);
7796 }
7797
7798 void intel_dbuf_post_plane_update(struct intel_atomic_state *state)
7799 {
7800         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7801         const struct intel_dbuf_state *new_dbuf_state =
7802                 intel_atomic_get_new_dbuf_state(state);
7803         const struct intel_dbuf_state *old_dbuf_state =
7804                 intel_atomic_get_old_dbuf_state(state);
7805
7806         if (!new_dbuf_state ||
7807             new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
7808                 return;
7809
7810         WARN_ON(!new_dbuf_state->base.changed);
7811
7812         gen9_dbuf_slices_update(dev_priv,
7813                                 new_dbuf_state->enabled_slices);
7814 }