Merge tag 'nds32-for-linus-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "i915_gem_render_state.h"
140 #include "intel_lrc_reg.h"
141 #include "intel_mocs.h"
142 #include "intel_workarounds.h"
143
144 #define RING_EXECLIST_QFULL             (1 << 0x2)
145 #define RING_EXECLIST1_VALID            (1 << 0x3)
146 #define RING_EXECLIST0_VALID            (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
157
158 #define GEN8_CTX_STATUS_COMPLETED_MASK \
159          (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
160
161 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
162 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
163 #define WA_TAIL_DWORDS 2
164 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
165
166 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
167                                             struct intel_engine_cs *engine);
168 static void execlists_init_reg_state(u32 *reg_state,
169                                      struct i915_gem_context *ctx,
170                                      struct intel_engine_cs *engine,
171                                      struct intel_ring *ring);
172
173 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
174 {
175         return rb_entry(rb, struct i915_priolist, node);
176 }
177
178 static inline int rq_prio(const struct i915_request *rq)
179 {
180         return rq->sched.attr.priority;
181 }
182
183 static inline bool need_preempt(const struct intel_engine_cs *engine,
184                                 const struct i915_request *last,
185                                 int prio)
186 {
187         return (intel_engine_has_preemption(engine) &&
188                 __execlists_need_preempt(prio, rq_prio(last)) &&
189                 !i915_request_completed(last));
190 }
191
192 /**
193  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
194  *                                        descriptor for a pinned context
195  * @ctx: Context to work on
196  * @engine: Engine the descriptor will be used with
197  *
198  * The context descriptor encodes various attributes of a context,
199  * including its GTT address and some flags. Because it's fairly
200  * expensive to calculate, we'll just do it once and cache the result,
201  * which remains valid until the context is unpinned.
202  *
203  * This is what a descriptor looks like, from LSB to MSB::
204  *
205  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
206  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
207  *      bits 32-52:    ctx ID, a globally unique tag
208  *      bits 53-54:    mbz, reserved for use by hardware
209  *      bits 55-63:    group ID, currently unused and set to 0
210  *
211  * Starting from Gen11, the upper dword of the descriptor has a new format:
212  *
213  *      bits 32-36:    reserved
214  *      bits 37-47:    SW context ID
215  *      bits 48:53:    engine instance
216  *      bit 54:        mbz, reserved for use by hardware
217  *      bits 55-60:    SW counter
218  *      bits 61-63:    engine class
219  *
220  * engine info, SW context ID and SW counter need to form a unique number
221  * (Context ID) per lrc.
222  */
223 static void
224 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
225                                    struct intel_engine_cs *engine)
226 {
227         struct intel_context *ce = to_intel_context(ctx, engine);
228         u64 desc;
229
230         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
231         BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
232
233         desc = ctx->desc_template;                              /* bits  0-11 */
234         GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
235
236         desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
237                                                                 /* bits 12-31 */
238         GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
239
240         if (INTEL_GEN(ctx->i915) >= 11) {
241                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
242                 desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
243                                                                 /* bits 37-47 */
244
245                 desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
246                                                                 /* bits 48-53 */
247
248                 /* TODO: decide what to do with SW counter (bits 55-60) */
249
250                 desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
251                                                                 /* bits 61-63 */
252         } else {
253                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
254                 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;   /* bits 32-52 */
255         }
256
257         ce->lrc_desc = desc;
258 }
259
260 static struct i915_priolist *
261 lookup_priolist(struct intel_engine_cs *engine, int prio)
262 {
263         struct intel_engine_execlists * const execlists = &engine->execlists;
264         struct i915_priolist *p;
265         struct rb_node **parent, *rb;
266         bool first = true;
267
268         if (unlikely(execlists->no_priolist))
269                 prio = I915_PRIORITY_NORMAL;
270
271 find_priolist:
272         /* most positive priority is scheduled first, equal priorities fifo */
273         rb = NULL;
274         parent = &execlists->queue.rb_node;
275         while (*parent) {
276                 rb = *parent;
277                 p = to_priolist(rb);
278                 if (prio > p->priority) {
279                         parent = &rb->rb_left;
280                 } else if (prio < p->priority) {
281                         parent = &rb->rb_right;
282                         first = false;
283                 } else {
284                         return p;
285                 }
286         }
287
288         if (prio == I915_PRIORITY_NORMAL) {
289                 p = &execlists->default_priolist;
290         } else {
291                 p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
292                 /* Convert an allocation failure to a priority bump */
293                 if (unlikely(!p)) {
294                         prio = I915_PRIORITY_NORMAL; /* recurses just once */
295
296                         /* To maintain ordering with all rendering, after an
297                          * allocation failure we have to disable all scheduling.
298                          * Requests will then be executed in fifo, and schedule
299                          * will ensure that dependencies are emitted in fifo.
300                          * There will be still some reordering with existing
301                          * requests, so if userspace lied about their
302                          * dependencies that reordering may be visible.
303                          */
304                         execlists->no_priolist = true;
305                         goto find_priolist;
306                 }
307         }
308
309         p->priority = prio;
310         INIT_LIST_HEAD(&p->requests);
311         rb_link_node(&p->node, rb, parent);
312         rb_insert_color(&p->node, &execlists->queue);
313
314         if (first)
315                 execlists->first = &p->node;
316
317         return p;
318 }
319
320 static void unwind_wa_tail(struct i915_request *rq)
321 {
322         rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
323         assert_ring_tail_valid(rq->ring, rq->tail);
324 }
325
326 static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
327 {
328         struct i915_request *rq, *rn;
329         struct i915_priolist *uninitialized_var(p);
330         int last_prio = I915_PRIORITY_INVALID;
331
332         lockdep_assert_held(&engine->timeline.lock);
333
334         list_for_each_entry_safe_reverse(rq, rn,
335                                          &engine->timeline.requests,
336                                          link) {
337                 if (i915_request_completed(rq))
338                         return;
339
340                 __i915_request_unsubmit(rq);
341                 unwind_wa_tail(rq);
342
343                 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
344                 if (rq_prio(rq) != last_prio) {
345                         last_prio = rq_prio(rq);
346                         p = lookup_priolist(engine, last_prio);
347                 }
348
349                 GEM_BUG_ON(p->priority != rq_prio(rq));
350                 list_add(&rq->sched.link, &p->requests);
351         }
352 }
353
354 void
355 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
356 {
357         struct intel_engine_cs *engine =
358                 container_of(execlists, typeof(*engine), execlists);
359         unsigned long flags;
360
361         spin_lock_irqsave(&engine->timeline.lock, flags);
362
363         __unwind_incomplete_requests(engine);
364
365         spin_unlock_irqrestore(&engine->timeline.lock, flags);
366 }
367
368 static inline void
369 execlists_context_status_change(struct i915_request *rq, unsigned long status)
370 {
371         /*
372          * Only used when GVT-g is enabled now. When GVT-g is disabled,
373          * The compiler should eliminate this function as dead-code.
374          */
375         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
376                 return;
377
378         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
379                                    status, rq);
380 }
381
382 inline void
383 execlists_user_begin(struct intel_engine_execlists *execlists,
384                      const struct execlist_port *port)
385 {
386         execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
387 }
388
389 inline void
390 execlists_user_end(struct intel_engine_execlists *execlists)
391 {
392         execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
393 }
394
395 static inline void
396 execlists_context_schedule_in(struct i915_request *rq)
397 {
398         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
399         intel_engine_context_in(rq->engine);
400 }
401
402 static inline void
403 execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
404 {
405         intel_engine_context_out(rq->engine);
406         execlists_context_status_change(rq, status);
407         trace_i915_request_out(rq);
408 }
409
410 static void
411 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
412 {
413         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
414         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
415         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
416         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
417 }
418
419 static u64 execlists_update_context(struct i915_request *rq)
420 {
421         struct intel_context *ce = to_intel_context(rq->ctx, rq->engine);
422         struct i915_hw_ppgtt *ppgtt =
423                 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
424         u32 *reg_state = ce->lrc_reg_state;
425
426         reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
427
428         /* True 32b PPGTT with dynamic page allocation: update PDP
429          * registers and point the unallocated PDPs to scratch page.
430          * PML4 is allocated during ppgtt init, so this is not needed
431          * in 48-bit mode.
432          */
433         if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
434                 execlists_update_context_pdps(ppgtt, reg_state);
435
436         return ce->lrc_desc;
437 }
438
439 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
440 {
441         if (execlists->ctrl_reg) {
442                 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
443                 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
444         } else {
445                 writel(upper_32_bits(desc), execlists->submit_reg);
446                 writel(lower_32_bits(desc), execlists->submit_reg);
447         }
448 }
449
450 static void execlists_submit_ports(struct intel_engine_cs *engine)
451 {
452         struct intel_engine_execlists *execlists = &engine->execlists;
453         struct execlist_port *port = execlists->port;
454         unsigned int n;
455
456         /*
457          * ELSQ note: the submit queue is not cleared after being submitted
458          * to the HW so we need to make sure we always clean it up. This is
459          * currently ensured by the fact that we always write the same number
460          * of elsq entries, keep this in mind before changing the loop below.
461          */
462         for (n = execlists_num_ports(execlists); n--; ) {
463                 struct i915_request *rq;
464                 unsigned int count;
465                 u64 desc;
466
467                 rq = port_unpack(&port[n], &count);
468                 if (rq) {
469                         GEM_BUG_ON(count > !n);
470                         if (!count++)
471                                 execlists_context_schedule_in(rq);
472                         port_set(&port[n], port_pack(rq, count));
473                         desc = execlists_update_context(rq);
474                         GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
475
476                         GEM_TRACE("%s in[%d]:  ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
477                                   engine->name, n,
478                                   port[n].context_id, count,
479                                   rq->global_seqno,
480                                   rq->fence.context, rq->fence.seqno,
481                                   intel_engine_get_seqno(engine),
482                                   rq_prio(rq));
483                 } else {
484                         GEM_BUG_ON(!n);
485                         desc = 0;
486                 }
487
488                 write_desc(execlists, desc, n);
489         }
490
491         /* we need to manually load the submit queue */
492         if (execlists->ctrl_reg)
493                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
494
495         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
496 }
497
498 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
499 {
500         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
501                 i915_gem_context_force_single_submission(ctx));
502 }
503
504 static bool can_merge_ctx(const struct i915_gem_context *prev,
505                           const struct i915_gem_context *next)
506 {
507         if (prev != next)
508                 return false;
509
510         if (ctx_single_port_submission(prev))
511                 return false;
512
513         return true;
514 }
515
516 static void port_assign(struct execlist_port *port, struct i915_request *rq)
517 {
518         GEM_BUG_ON(rq == port_request(port));
519
520         if (port_isset(port))
521                 i915_request_put(port_request(port));
522
523         port_set(port, port_pack(i915_request_get(rq), port_count(port)));
524 }
525
526 static void inject_preempt_context(struct intel_engine_cs *engine)
527 {
528         struct intel_engine_execlists *execlists = &engine->execlists;
529         struct intel_context *ce =
530                 to_intel_context(engine->i915->preempt_context, engine);
531         unsigned int n;
532
533         GEM_BUG_ON(execlists->preempt_complete_status !=
534                    upper_32_bits(ce->lrc_desc));
535         GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
536                     _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
537                                        CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
538                    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
539                                       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));
540
541         /*
542          * Switch to our empty preempt context so
543          * the state of the GPU is known (idle).
544          */
545         GEM_TRACE("%s\n", engine->name);
546         for (n = execlists_num_ports(execlists); --n; )
547                 write_desc(execlists, 0, n);
548
549         write_desc(execlists, ce->lrc_desc, n);
550
551         /* we need to manually load the submit queue */
552         if (execlists->ctrl_reg)
553                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
554
555         execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
556         execlists_set_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT);
557 }
558
559 static bool __execlists_dequeue(struct intel_engine_cs *engine)
560 {
561         struct intel_engine_execlists * const execlists = &engine->execlists;
562         struct execlist_port *port = execlists->port;
563         const struct execlist_port * const last_port =
564                 &execlists->port[execlists->port_mask];
565         struct i915_request *last = port_request(port);
566         struct rb_node *rb;
567         bool submit = false;
568
569         lockdep_assert_held(&engine->timeline.lock);
570
571         /* Hardware submission is through 2 ports. Conceptually each port
572          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
573          * static for a context, and unique to each, so we only execute
574          * requests belonging to a single context from each ring. RING_HEAD
575          * is maintained by the CS in the context image, it marks the place
576          * where it got up to last time, and through RING_TAIL we tell the CS
577          * where we want to execute up to this time.
578          *
579          * In this list the requests are in order of execution. Consecutive
580          * requests from the same context are adjacent in the ringbuffer. We
581          * can combine these requests into a single RING_TAIL update:
582          *
583          *              RING_HEAD...req1...req2
584          *                                    ^- RING_TAIL
585          * since to execute req2 the CS must first execute req1.
586          *
587          * Our goal then is to point each port to the end of a consecutive
588          * sequence of requests as being the most optimal (fewest wake ups
589          * and context switches) submission.
590          */
591
592         rb = execlists->first;
593         GEM_BUG_ON(rb_first(&execlists->queue) != rb);
594
595         if (last) {
596                 /*
597                  * Don't resubmit or switch until all outstanding
598                  * preemptions (lite-restore) are seen. Then we
599                  * know the next preemption status we see corresponds
600                  * to this ELSP update.
601                  */
602                 GEM_BUG_ON(!execlists_is_active(execlists,
603                                                 EXECLISTS_ACTIVE_USER));
604                 GEM_BUG_ON(!port_count(&port[0]));
605                 if (port_count(&port[0]) > 1)
606                         return false;
607
608                 /*
609                  * If we write to ELSP a second time before the HW has had
610                  * a chance to respond to the previous write, we can confuse
611                  * the HW and hit "undefined behaviour". After writing to ELSP,
612                  * we must then wait until we see a context-switch event from
613                  * the HW to indicate that it has had a chance to respond.
614                  */
615                 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
616                         return false;
617
618                 if (need_preempt(engine, last, execlists->queue_priority)) {
619                         inject_preempt_context(engine);
620                         return false;
621                 }
622
623                 /*
624                  * In theory, we could coalesce more requests onto
625                  * the second port (the first port is active, with
626                  * no preemptions pending). However, that means we
627                  * then have to deal with the possible lite-restore
628                  * of the second port (as we submit the ELSP, there
629                  * may be a context-switch) but also we may complete
630                  * the resubmission before the context-switch. Ergo,
631                  * coalescing onto the second port will cause a
632                  * preemption event, but we cannot predict whether
633                  * that will affect port[0] or port[1].
634                  *
635                  * If the second port is already active, we can wait
636                  * until the next context-switch before contemplating
637                  * new requests. The GPU will be busy and we should be
638                  * able to resubmit the new ELSP before it idles,
639                  * avoiding pipeline bubbles (momentary pauses where
640                  * the driver is unable to keep up the supply of new
641                  * work). However, we have to double check that the
642                  * priorities of the ports haven't been switch.
643                  */
644                 if (port_count(&port[1]))
645                         return false;
646
647                 /*
648                  * WaIdleLiteRestore:bdw,skl
649                  * Apply the wa NOOPs to prevent
650                  * ring:HEAD == rq:TAIL as we resubmit the
651                  * request. See gen8_emit_breadcrumb() for
652                  * where we prepare the padding after the
653                  * end of the request.
654                  */
655                 last->tail = last->wa_tail;
656         }
657
658         while (rb) {
659                 struct i915_priolist *p = to_priolist(rb);
660                 struct i915_request *rq, *rn;
661
662                 list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
663                         /*
664                          * Can we combine this request with the current port?
665                          * It has to be the same context/ringbuffer and not
666                          * have any exceptions (e.g. GVT saying never to
667                          * combine contexts).
668                          *
669                          * If we can combine the requests, we can execute both
670                          * by updating the RING_TAIL to point to the end of the
671                          * second request, and so we never need to tell the
672                          * hardware about the first.
673                          */
674                         if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
675                                 /*
676                                  * If we are on the second port and cannot
677                                  * combine this request with the last, then we
678                                  * are done.
679                                  */
680                                 if (port == last_port) {
681                                         __list_del_many(&p->requests,
682                                                         &rq->sched.link);
683                                         goto done;
684                                 }
685
686                                 /*
687                                  * If GVT overrides us we only ever submit
688                                  * port[0], leaving port[1] empty. Note that we
689                                  * also have to be careful that we don't queue
690                                  * the same context (even though a different
691                                  * request) to the second port.
692                                  */
693                                 if (ctx_single_port_submission(last->ctx) ||
694                                     ctx_single_port_submission(rq->ctx)) {
695                                         __list_del_many(&p->requests,
696                                                         &rq->sched.link);
697                                         goto done;
698                                 }
699
700                                 GEM_BUG_ON(last->ctx == rq->ctx);
701
702                                 if (submit)
703                                         port_assign(port, last);
704                                 port++;
705
706                                 GEM_BUG_ON(port_isset(port));
707                         }
708
709                         INIT_LIST_HEAD(&rq->sched.link);
710                         __i915_request_submit(rq);
711                         trace_i915_request_in(rq, port_index(port, execlists));
712                         last = rq;
713                         submit = true;
714                 }
715
716                 rb = rb_next(rb);
717                 rb_erase(&p->node, &execlists->queue);
718                 INIT_LIST_HEAD(&p->requests);
719                 if (p->priority != I915_PRIORITY_NORMAL)
720                         kmem_cache_free(engine->i915->priorities, p);
721         }
722
723 done:
724         /*
725          * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
726          *
727          * We choose queue_priority such that if we add a request of greater
728          * priority than this, we kick the submission tasklet to decide on
729          * the right order of submitting the requests to hardware. We must
730          * also be prepared to reorder requests as they are in-flight on the
731          * HW. We derive the queue_priority then as the first "hole" in
732          * the HW submission ports and if there are no available slots,
733          * the priority of the lowest executing request, i.e. last.
734          *
735          * When we do receive a higher priority request ready to run from the
736          * user, see queue_request(), the queue_priority is bumped to that
737          * request triggering preemption on the next dequeue (or subsequent
738          * interrupt for secondary ports).
739          */
740         execlists->queue_priority =
741                 port != execlists->port ? rq_prio(last) : INT_MIN;
742
743         execlists->first = rb;
744         if (submit)
745                 port_assign(port, last);
746
747         /* We must always keep the beast fed if we have work piled up */
748         GEM_BUG_ON(execlists->first && !port_isset(execlists->port));
749
750         /* Re-evaluate the executing context setup after each preemptive kick */
751         if (last)
752                 execlists_user_begin(execlists, execlists->port);
753
754         return submit;
755 }
756
757 static void execlists_dequeue(struct intel_engine_cs *engine)
758 {
759         struct intel_engine_execlists * const execlists = &engine->execlists;
760         unsigned long flags;
761         bool submit;
762
763         spin_lock_irqsave(&engine->timeline.lock, flags);
764         submit = __execlists_dequeue(engine);
765         spin_unlock_irqrestore(&engine->timeline.lock, flags);
766
767         if (submit)
768                 execlists_submit_ports(engine);
769
770         GEM_BUG_ON(port_isset(execlists->port) &&
771                    !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
772 }
773
774 void
775 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
776 {
777         struct execlist_port *port = execlists->port;
778         unsigned int num_ports = execlists_num_ports(execlists);
779
780         while (num_ports-- && port_isset(port)) {
781                 struct i915_request *rq = port_request(port);
782
783                 GEM_TRACE("%s:port%u global=%d (fence %llx:%d), (current %d)\n",
784                           rq->engine->name,
785                           (unsigned int)(port - execlists->port),
786                           rq->global_seqno,
787                           rq->fence.context, rq->fence.seqno,
788                           intel_engine_get_seqno(rq->engine));
789
790                 GEM_BUG_ON(!execlists->active);
791                 execlists_context_schedule_out(rq,
792                                                i915_request_completed(rq) ?
793                                                INTEL_CONTEXT_SCHEDULE_OUT :
794                                                INTEL_CONTEXT_SCHEDULE_PREEMPTED);
795
796                 i915_request_put(rq);
797
798                 memset(port, 0, sizeof(*port));
799                 port++;
800         }
801
802         execlists_user_end(execlists);
803 }
804
805 static void clear_gtiir(struct intel_engine_cs *engine)
806 {
807         struct drm_i915_private *dev_priv = engine->i915;
808         int i;
809
810         /*
811          * Clear any pending interrupt state.
812          *
813          * We do it twice out of paranoia that some of the IIR are
814          * double buffered, and so if we only reset it once there may
815          * still be an interrupt pending.
816          */
817         if (INTEL_GEN(dev_priv) >= 11) {
818                 static const struct {
819                         u8 bank;
820                         u8 bit;
821                 } gen11_gtiir[] = {
822                         [RCS] = {0, GEN11_RCS0},
823                         [BCS] = {0, GEN11_BCS},
824                         [_VCS(0)] = {1, GEN11_VCS(0)},
825                         [_VCS(1)] = {1, GEN11_VCS(1)},
826                         [_VCS(2)] = {1, GEN11_VCS(2)},
827                         [_VCS(3)] = {1, GEN11_VCS(3)},
828                         [_VECS(0)] = {1, GEN11_VECS(0)},
829                         [_VECS(1)] = {1, GEN11_VECS(1)},
830                 };
831                 unsigned long irqflags;
832
833                 GEM_BUG_ON(engine->id >= ARRAY_SIZE(gen11_gtiir));
834
835                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
836                 for (i = 0; i < 2; i++) {
837                         gen11_reset_one_iir(dev_priv,
838                                             gen11_gtiir[engine->id].bank,
839                                             gen11_gtiir[engine->id].bit);
840                 }
841                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
842         } else {
843                 static const u8 gtiir[] = {
844                         [RCS]  = 0,
845                         [BCS]  = 0,
846                         [VCS]  = 1,
847                         [VCS2] = 1,
848                         [VECS] = 3,
849                 };
850
851                 GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));
852
853                 for (i = 0; i < 2; i++) {
854                         I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
855                                    engine->irq_keep_mask);
856                         POSTING_READ(GEN8_GT_IIR(gtiir[engine->id]));
857                 }
858                 GEM_BUG_ON(I915_READ(GEN8_GT_IIR(gtiir[engine->id])) &
859                            engine->irq_keep_mask);
860         }
861 }
862
863 static void reset_irq(struct intel_engine_cs *engine)
864 {
865         /* Mark all CS interrupts as complete */
866         smp_store_mb(engine->execlists.active, 0);
867         synchronize_hardirq(engine->i915->drm.irq);
868
869         clear_gtiir(engine);
870
871         /*
872          * The port is checked prior to scheduling a tasklet, but
873          * just in case we have suspended the tasklet to do the
874          * wedging make sure that when it wakes, it decides there
875          * is no work to do by clearing the irq_posted bit.
876          */
877         clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
878 }
879
880 static void execlists_cancel_requests(struct intel_engine_cs *engine)
881 {
882         struct intel_engine_execlists * const execlists = &engine->execlists;
883         struct i915_request *rq, *rn;
884         struct rb_node *rb;
885         unsigned long flags;
886
887         GEM_TRACE("%s current %d\n",
888                   engine->name, intel_engine_get_seqno(engine));
889
890         /*
891          * Before we call engine->cancel_requests(), we should have exclusive
892          * access to the submission state. This is arranged for us by the
893          * caller disabling the interrupt generation, the tasklet and other
894          * threads that may then access the same state, giving us a free hand
895          * to reset state. However, we still need to let lockdep be aware that
896          * we know this state may be accessed in hardirq context, so we
897          * disable the irq around this manipulation and we want to keep
898          * the spinlock focused on its duties and not accidentally conflate
899          * coverage to the submission's irq state. (Similarly, although we
900          * shouldn't need to disable irq around the manipulation of the
901          * submission's irq state, we also wish to remind ourselves that
902          * it is irq state.)
903          */
904         local_irq_save(flags);
905
906         /* Cancel the requests on the HW and clear the ELSP tracker. */
907         execlists_cancel_port_requests(execlists);
908         reset_irq(engine);
909
910         spin_lock(&engine->timeline.lock);
911
912         /* Mark all executing requests as skipped. */
913         list_for_each_entry(rq, &engine->timeline.requests, link) {
914                 GEM_BUG_ON(!rq->global_seqno);
915                 if (!i915_request_completed(rq))
916                         dma_fence_set_error(&rq->fence, -EIO);
917         }
918
919         /* Flush the queued requests to the timeline list (for retiring). */
920         rb = execlists->first;
921         while (rb) {
922                 struct i915_priolist *p = to_priolist(rb);
923
924                 list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
925                         INIT_LIST_HEAD(&rq->sched.link);
926
927                         dma_fence_set_error(&rq->fence, -EIO);
928                         __i915_request_submit(rq);
929                 }
930
931                 rb = rb_next(rb);
932                 rb_erase(&p->node, &execlists->queue);
933                 INIT_LIST_HEAD(&p->requests);
934                 if (p->priority != I915_PRIORITY_NORMAL)
935                         kmem_cache_free(engine->i915->priorities, p);
936         }
937
938         /* Remaining _unready_ requests will be nop'ed when submitted */
939
940         execlists->queue_priority = INT_MIN;
941         execlists->queue = RB_ROOT;
942         execlists->first = NULL;
943         GEM_BUG_ON(port_isset(execlists->port));
944
945         spin_unlock(&engine->timeline.lock);
946
947         local_irq_restore(flags);
948 }
949
950 /*
951  * Check the unread Context Status Buffers and manage the submission of new
952  * contexts to the ELSP accordingly.
953  */
954 static void execlists_submission_tasklet(unsigned long data)
955 {
956         struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
957         struct intel_engine_execlists * const execlists = &engine->execlists;
958         struct execlist_port *port = execlists->port;
959         struct drm_i915_private *dev_priv = engine->i915;
960         bool fw = false;
961
962         /*
963          * We can skip acquiring intel_runtime_pm_get() here as it was taken
964          * on our behalf by the request (see i915_gem_mark_busy()) and it will
965          * not be relinquished until the device is idle (see
966          * i915_gem_idle_work_handler()). As a precaution, we make sure
967          * that all ELSP are drained i.e. we have processed the CSB,
968          * before allowing ourselves to idle and calling intel_runtime_pm_put().
969          */
970         GEM_BUG_ON(!dev_priv->gt.awake);
971
972         /*
973          * Prefer doing test_and_clear_bit() as a two stage operation to avoid
974          * imposing the cost of a locked atomic transaction when submitting a
975          * new request (outside of the context-switch interrupt).
976          */
977         while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
978                 /* The HWSP contains a (cacheable) mirror of the CSB */
979                 const u32 *buf =
980                         &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
981                 unsigned int head, tail;
982
983                 if (unlikely(execlists->csb_use_mmio)) {
984                         buf = (u32 * __force)
985                                 (dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
986                         execlists->csb_head = -1; /* force mmio read of CSB ptrs */
987                 }
988
989                 /* Clear before reading to catch new interrupts */
990                 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
991                 smp_mb__after_atomic();
992
993                 if (unlikely(execlists->csb_head == -1)) { /* following a reset */
994                         if (!fw) {
995                                 intel_uncore_forcewake_get(dev_priv,
996                                                            execlists->fw_domains);
997                                 fw = true;
998                         }
999
1000                         head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
1001                         tail = GEN8_CSB_WRITE_PTR(head);
1002                         head = GEN8_CSB_READ_PTR(head);
1003                         execlists->csb_head = head;
1004                 } else {
1005                         const int write_idx =
1006                                 intel_hws_csb_write_index(dev_priv) -
1007                                 I915_HWS_CSB_BUF0_INDEX;
1008
1009                         head = execlists->csb_head;
1010                         tail = READ_ONCE(buf[write_idx]);
1011                         rmb(); /* Hopefully paired with a wmb() in HW */
1012                 }
1013                 GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
1014                           engine->name,
1015                           head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
1016                           tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
1017
1018                 while (head != tail) {
1019                         struct i915_request *rq;
1020                         unsigned int status;
1021                         unsigned int count;
1022
1023                         if (++head == GEN8_CSB_ENTRIES)
1024                                 head = 0;
1025
1026                         /* We are flying near dragons again.
1027                          *
1028                          * We hold a reference to the request in execlist_port[]
1029                          * but no more than that. We are operating in softirq
1030                          * context and so cannot hold any mutex or sleep. That
1031                          * prevents us stopping the requests we are processing
1032                          * in port[] from being retired simultaneously (the
1033                          * breadcrumb will be complete before we see the
1034                          * context-switch). As we only hold the reference to the
1035                          * request, any pointer chasing underneath the request
1036                          * is subject to a potential use-after-free. Thus we
1037                          * store all of the bookkeeping within port[] as
1038                          * required, and avoid using unguarded pointers beneath
1039                          * request itself. The same applies to the atomic
1040                          * status notifier.
1041                          */
1042
1043                         status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
1044                         GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
1045                                   engine->name, head,
1046                                   status, buf[2*head + 1],
1047                                   execlists->active);
1048
1049                         if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
1050                                       GEN8_CTX_STATUS_PREEMPTED))
1051                                 execlists_set_active(execlists,
1052                                                      EXECLISTS_ACTIVE_HWACK);
1053                         if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
1054                                 execlists_clear_active(execlists,
1055                                                        EXECLISTS_ACTIVE_HWACK);
1056
1057                         if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
1058                                 continue;
1059
1060                         /* We should never get a COMPLETED | IDLE_ACTIVE! */
1061                         GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
1062
1063                         if (status & GEN8_CTX_STATUS_COMPLETE &&
1064                             buf[2*head + 1] == execlists->preempt_complete_status) {
1065                                 GEM_TRACE("%s preempt-idle\n", engine->name);
1066
1067                                 execlists_cancel_port_requests(execlists);
1068                                 execlists_unwind_incomplete_requests(execlists);
1069
1070                                 GEM_BUG_ON(!execlists_is_active(execlists,
1071                                                                 EXECLISTS_ACTIVE_PREEMPT));
1072                                 execlists_clear_active(execlists,
1073                                                        EXECLISTS_ACTIVE_PREEMPT);
1074                                 continue;
1075                         }
1076
1077                         if (status & GEN8_CTX_STATUS_PREEMPTED &&
1078                             execlists_is_active(execlists,
1079                                                 EXECLISTS_ACTIVE_PREEMPT))
1080                                 continue;
1081
1082                         GEM_BUG_ON(!execlists_is_active(execlists,
1083                                                         EXECLISTS_ACTIVE_USER));
1084
1085                         rq = port_unpack(port, &count);
1086                         GEM_TRACE("%s out[0]: ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
1087                                   engine->name,
1088                                   port->context_id, count,
1089                                   rq ? rq->global_seqno : 0,
1090                                   rq ? rq->fence.context : 0,
1091                                   rq ? rq->fence.seqno : 0,
1092                                   intel_engine_get_seqno(engine),
1093                                   rq ? rq_prio(rq) : 0);
1094
1095                         /* Check the context/desc id for this event matches */
1096                         GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
1097
1098                         GEM_BUG_ON(count == 0);
1099                         if (--count == 0) {
1100                                 /*
1101                                  * On the final event corresponding to the
1102                                  * submission of this context, we expect either
1103                                  * an element-switch event or a completion
1104                                  * event (and on completion, the active-idle
1105                                  * marker). No more preemptions, lite-restore
1106                                  * or otherwise.
1107                                  */
1108                                 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
1109                                 GEM_BUG_ON(port_isset(&port[1]) &&
1110                                            !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
1111                                 GEM_BUG_ON(!port_isset(&port[1]) &&
1112                                            !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1113
1114                                 /*
1115                                  * We rely on the hardware being strongly
1116                                  * ordered, that the breadcrumb write is
1117                                  * coherent (visible from the CPU) before the
1118                                  * user interrupt and CSB is processed.
1119                                  */
1120                                 GEM_BUG_ON(!i915_request_completed(rq));
1121
1122                                 execlists_context_schedule_out(rq,
1123                                                                INTEL_CONTEXT_SCHEDULE_OUT);
1124                                 i915_request_put(rq);
1125
1126                                 GEM_TRACE("%s completed ctx=%d\n",
1127                                           engine->name, port->context_id);
1128
1129                                 port = execlists_port_complete(execlists, port);
1130                                 if (port_isset(port))
1131                                         execlists_user_begin(execlists, port);
1132                                 else
1133                                         execlists_user_end(execlists);
1134                         } else {
1135                                 port_set(port, port_pack(rq, count));
1136                         }
1137                 }
1138
1139                 if (head != execlists->csb_head) {
1140                         execlists->csb_head = head;
1141                         writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
1142                                dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
1143                 }
1144         }
1145
1146         if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
1147                 execlists_dequeue(engine);
1148
1149         if (fw)
1150                 intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
1151
1152         /* If the engine is now idle, so should be the flag; and vice versa. */
1153         GEM_BUG_ON(execlists_is_active(&engine->execlists,
1154                                        EXECLISTS_ACTIVE_USER) ==
1155                    !port_isset(engine->execlists.port));
1156 }
1157
1158 static void queue_request(struct intel_engine_cs *engine,
1159                           struct i915_sched_node *node,
1160                           int prio)
1161 {
1162         list_add_tail(&node->link,
1163                       &lookup_priolist(engine, prio)->requests);
1164 }
1165
1166 static void __submit_queue(struct intel_engine_cs *engine, int prio)
1167 {
1168         engine->execlists.queue_priority = prio;
1169         tasklet_hi_schedule(&engine->execlists.tasklet);
1170 }
1171
1172 static void submit_queue(struct intel_engine_cs *engine, int prio)
1173 {
1174         if (prio > engine->execlists.queue_priority)
1175                 __submit_queue(engine, prio);
1176 }
1177
1178 static void execlists_submit_request(struct i915_request *request)
1179 {
1180         struct intel_engine_cs *engine = request->engine;
1181         unsigned long flags;
1182
1183         /* Will be called from irq-context when using foreign fences. */
1184         spin_lock_irqsave(&engine->timeline.lock, flags);
1185
1186         queue_request(engine, &request->sched, rq_prio(request));
1187         submit_queue(engine, rq_prio(request));
1188
1189         GEM_BUG_ON(!engine->execlists.first);
1190         GEM_BUG_ON(list_empty(&request->sched.link));
1191
1192         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1193 }
1194
1195 static struct i915_request *sched_to_request(struct i915_sched_node *node)
1196 {
1197         return container_of(node, struct i915_request, sched);
1198 }
1199
1200 static struct intel_engine_cs *
1201 sched_lock_engine(struct i915_sched_node *node, struct intel_engine_cs *locked)
1202 {
1203         struct intel_engine_cs *engine = sched_to_request(node)->engine;
1204
1205         GEM_BUG_ON(!locked);
1206
1207         if (engine != locked) {
1208                 spin_unlock(&locked->timeline.lock);
1209                 spin_lock(&engine->timeline.lock);
1210         }
1211
1212         return engine;
1213 }
1214
1215 static void execlists_schedule(struct i915_request *request,
1216                                const struct i915_sched_attr *attr)
1217 {
1218         struct i915_priolist *uninitialized_var(pl);
1219         struct intel_engine_cs *engine, *last;
1220         struct i915_dependency *dep, *p;
1221         struct i915_dependency stack;
1222         const int prio = attr->priority;
1223         LIST_HEAD(dfs);
1224
1225         GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
1226
1227         if (i915_request_completed(request))
1228                 return;
1229
1230         if (prio <= READ_ONCE(request->sched.attr.priority))
1231                 return;
1232
1233         /* Need BKL in order to use the temporary link inside i915_dependency */
1234         lockdep_assert_held(&request->i915->drm.struct_mutex);
1235
1236         stack.signaler = &request->sched;
1237         list_add(&stack.dfs_link, &dfs);
1238
1239         /*
1240          * Recursively bump all dependent priorities to match the new request.
1241          *
1242          * A naive approach would be to use recursion:
1243          * static void update_priorities(struct i915_sched_node *node, prio) {
1244          *      list_for_each_entry(dep, &node->signalers_list, signal_link)
1245          *              update_priorities(dep->signal, prio)
1246          *      queue_request(node);
1247          * }
1248          * but that may have unlimited recursion depth and so runs a very
1249          * real risk of overunning the kernel stack. Instead, we build
1250          * a flat list of all dependencies starting with the current request.
1251          * As we walk the list of dependencies, we add all of its dependencies
1252          * to the end of the list (this may include an already visited
1253          * request) and continue to walk onwards onto the new dependencies. The
1254          * end result is a topological list of requests in reverse order, the
1255          * last element in the list is the request we must execute first.
1256          */
1257         list_for_each_entry(dep, &dfs, dfs_link) {
1258                 struct i915_sched_node *node = dep->signaler;
1259
1260                 /*
1261                  * Within an engine, there can be no cycle, but we may
1262                  * refer to the same dependency chain multiple times
1263                  * (redundant dependencies are not eliminated) and across
1264                  * engines.
1265                  */
1266                 list_for_each_entry(p, &node->signalers_list, signal_link) {
1267                         GEM_BUG_ON(p == dep); /* no cycles! */
1268
1269                         if (i915_sched_node_signaled(p->signaler))
1270                                 continue;
1271
1272                         GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority);
1273                         if (prio > READ_ONCE(p->signaler->attr.priority))
1274                                 list_move_tail(&p->dfs_link, &dfs);
1275                 }
1276         }
1277
1278         /*
1279          * If we didn't need to bump any existing priorities, and we haven't
1280          * yet submitted this request (i.e. there is no potential race with
1281          * execlists_submit_request()), we can set our own priority and skip
1282          * acquiring the engine locks.
1283          */
1284         if (request->sched.attr.priority == I915_PRIORITY_INVALID) {
1285                 GEM_BUG_ON(!list_empty(&request->sched.link));
1286                 request->sched.attr = *attr;
1287                 if (stack.dfs_link.next == stack.dfs_link.prev)
1288                         return;
1289                 __list_del_entry(&stack.dfs_link);
1290         }
1291
1292         last = NULL;
1293         engine = request->engine;
1294         spin_lock_irq(&engine->timeline.lock);
1295
1296         /* Fifo and depth-first replacement ensure our deps execute before us */
1297         list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1298                 struct i915_sched_node *node = dep->signaler;
1299
1300                 INIT_LIST_HEAD(&dep->dfs_link);
1301
1302                 engine = sched_lock_engine(node, engine);
1303
1304                 if (prio <= node->attr.priority)
1305                         continue;
1306
1307                 node->attr.priority = prio;
1308                 if (!list_empty(&node->link)) {
1309                         if (last != engine) {
1310                                 pl = lookup_priolist(engine, prio);
1311                                 last = engine;
1312                         }
1313                         GEM_BUG_ON(pl->priority != prio);
1314                         list_move_tail(&node->link, &pl->requests);
1315                 }
1316
1317                 if (prio > engine->execlists.queue_priority &&
1318                     i915_sw_fence_done(&sched_to_request(node)->submit))
1319                         __submit_queue(engine, prio);
1320         }
1321
1322         spin_unlock_irq(&engine->timeline.lock);
1323 }
1324
1325 static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1326 {
1327         unsigned int flags;
1328         int err;
1329
1330         /*
1331          * Clear this page out of any CPU caches for coherent swap-in/out.
1332          * We only want to do this on the first bind so that we do not stall
1333          * on an active context (which by nature is already on the GPU).
1334          */
1335         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1336                 err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1337                 if (err)
1338                         return err;
1339         }
1340
1341         flags = PIN_GLOBAL | PIN_HIGH;
1342         if (ctx->ggtt_offset_bias)
1343                 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
1344
1345         return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
1346 }
1347
1348 static struct intel_ring *
1349 execlists_context_pin(struct intel_engine_cs *engine,
1350                       struct i915_gem_context *ctx)
1351 {
1352         struct intel_context *ce = to_intel_context(ctx, engine);
1353         void *vaddr;
1354         int ret;
1355
1356         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1357
1358         if (likely(ce->pin_count++))
1359                 goto out;
1360         GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1361
1362         ret = execlists_context_deferred_alloc(ctx, engine);
1363         if (ret)
1364                 goto err;
1365         GEM_BUG_ON(!ce->state);
1366
1367         ret = __context_pin(ctx, ce->state);
1368         if (ret)
1369                 goto err;
1370
1371         vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1372         if (IS_ERR(vaddr)) {
1373                 ret = PTR_ERR(vaddr);
1374                 goto unpin_vma;
1375         }
1376
1377         ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1378         if (ret)
1379                 goto unpin_map;
1380
1381         intel_lr_context_descriptor_update(ctx, engine);
1382
1383         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1384         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1385                 i915_ggtt_offset(ce->ring->vma);
1386         ce->lrc_reg_state[CTX_RING_HEAD+1] = ce->ring->head;
1387
1388         ce->state->obj->pin_global++;
1389         i915_gem_context_get(ctx);
1390 out:
1391         return ce->ring;
1392
1393 unpin_map:
1394         i915_gem_object_unpin_map(ce->state->obj);
1395 unpin_vma:
1396         __i915_vma_unpin(ce->state);
1397 err:
1398         ce->pin_count = 0;
1399         return ERR_PTR(ret);
1400 }
1401
1402 static void execlists_context_unpin(struct intel_engine_cs *engine,
1403                                     struct i915_gem_context *ctx)
1404 {
1405         struct intel_context *ce = to_intel_context(ctx, engine);
1406
1407         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1408         GEM_BUG_ON(ce->pin_count == 0);
1409
1410         if (--ce->pin_count)
1411                 return;
1412
1413         intel_ring_unpin(ce->ring);
1414
1415         ce->state->obj->pin_global--;
1416         i915_gem_object_unpin_map(ce->state->obj);
1417         i915_vma_unpin(ce->state);
1418
1419         i915_gem_context_put(ctx);
1420 }
1421
1422 static int execlists_request_alloc(struct i915_request *request)
1423 {
1424         struct intel_context *ce =
1425                 to_intel_context(request->ctx, request->engine);
1426         int ret;
1427
1428         GEM_BUG_ON(!ce->pin_count);
1429
1430         /* Flush enough space to reduce the likelihood of waiting after
1431          * we start building the request - in which case we will just
1432          * have to repeat work.
1433          */
1434         request->reserved_space += EXECLISTS_REQUEST_SIZE;
1435
1436         ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1437         if (ret)
1438                 return ret;
1439
1440         /* Note that after this point, we have committed to using
1441          * this request as it is being used to both track the
1442          * state of engine initialisation and liveness of the
1443          * golden renderstate above. Think twice before you try
1444          * to cancel/unwind this request now.
1445          */
1446
1447         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1448         return 0;
1449 }
1450
1451 /*
1452  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1453  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1454  * but there is a slight complication as this is applied in WA batch where the
1455  * values are only initialized once so we cannot take register value at the
1456  * beginning and reuse it further; hence we save its value to memory, upload a
1457  * constant value with bit21 set and then we restore it back with the saved value.
1458  * To simplify the WA, a constant value is formed by using the default value
1459  * of this register. This shouldn't be a problem because we are only modifying
1460  * it for a short period and this batch in non-premptible. We can ofcourse
1461  * use additional instructions that read the actual value of the register
1462  * at that time and set our bit of interest but it makes the WA complicated.
1463  *
1464  * This WA is also required for Gen9 so extracting as a function avoids
1465  * code duplication.
1466  */
1467 static u32 *
1468 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1469 {
1470         *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1471         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1472         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1473         *batch++ = 0;
1474
1475         *batch++ = MI_LOAD_REGISTER_IMM(1);
1476         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1477         *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1478
1479         batch = gen8_emit_pipe_control(batch,
1480                                        PIPE_CONTROL_CS_STALL |
1481                                        PIPE_CONTROL_DC_FLUSH_ENABLE,
1482                                        0);
1483
1484         *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1485         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1486         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1487         *batch++ = 0;
1488
1489         return batch;
1490 }
1491
1492 /*
1493  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1494  * initialized at the beginning and shared across all contexts but this field
1495  * helps us to have multiple batches at different offsets and select them based
1496  * on a criteria. At the moment this batch always start at the beginning of the page
1497  * and at this point we don't have multiple wa_ctx batch buffers.
1498  *
1499  * The number of WA applied are not known at the beginning; we use this field
1500  * to return the no of DWORDS written.
1501  *
1502  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1503  * so it adds NOOPs as padding to make it cacheline aligned.
1504  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1505  * makes a complete batch buffer.
1506  */
1507 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1508 {
1509         /* WaDisableCtxRestoreArbitration:bdw,chv */
1510         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1511
1512         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1513         if (IS_BROADWELL(engine->i915))
1514                 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1515
1516         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1517         /* Actual scratch location is at 128 bytes offset */
1518         batch = gen8_emit_pipe_control(batch,
1519                                        PIPE_CONTROL_FLUSH_L3 |
1520                                        PIPE_CONTROL_GLOBAL_GTT_IVB |
1521                                        PIPE_CONTROL_CS_STALL |
1522                                        PIPE_CONTROL_QW_WRITE,
1523                                        i915_ggtt_offset(engine->scratch) +
1524                                        2 * CACHELINE_BYTES);
1525
1526         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1527
1528         /* Pad to end of cacheline */
1529         while ((unsigned long)batch % CACHELINE_BYTES)
1530                 *batch++ = MI_NOOP;
1531
1532         /*
1533          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1534          * execution depends on the length specified in terms of cache lines
1535          * in the register CTX_RCS_INDIRECT_CTX
1536          */
1537
1538         return batch;
1539 }
1540
1541 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1542 {
1543         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1544
1545         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1546         batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1547
1548         *batch++ = MI_LOAD_REGISTER_IMM(3);
1549
1550         /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1551         *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1552         *batch++ = _MASKED_BIT_DISABLE(
1553                         GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1554
1555         /* BSpec: 11391 */
1556         *batch++ = i915_mmio_reg_offset(FF_SLICE_CHICKEN);
1557         *batch++ = _MASKED_BIT_ENABLE(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX);
1558
1559         /* BSpec: 11299 */
1560         *batch++ = i915_mmio_reg_offset(_3D_CHICKEN3);
1561         *batch++ = _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX);
1562
1563         *batch++ = MI_NOOP;
1564
1565         /* WaClearSlmSpaceAtContextSwitch:kbl */
1566         /* Actual scratch location is at 128 bytes offset */
1567         if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1568                 batch = gen8_emit_pipe_control(batch,
1569                                                PIPE_CONTROL_FLUSH_L3 |
1570                                                PIPE_CONTROL_GLOBAL_GTT_IVB |
1571                                                PIPE_CONTROL_CS_STALL |
1572                                                PIPE_CONTROL_QW_WRITE,
1573                                                i915_ggtt_offset(engine->scratch)
1574                                                + 2 * CACHELINE_BYTES);
1575         }
1576
1577         /* WaMediaPoolStateCmdInWABB:bxt,glk */
1578         if (HAS_POOLED_EU(engine->i915)) {
1579                 /*
1580                  * EU pool configuration is setup along with golden context
1581                  * during context initialization. This value depends on
1582                  * device type (2x6 or 3x6) and needs to be updated based
1583                  * on which subslice is disabled especially for 2x6
1584                  * devices, however it is safe to load default
1585                  * configuration of 3x6 device instead of masking off
1586                  * corresponding bits because HW ignores bits of a disabled
1587                  * subslice and drops down to appropriate config. Please
1588                  * see render_state_setup() in i915_gem_render_state.c for
1589                  * possible configurations, to avoid duplication they are
1590                  * not shown here again.
1591                  */
1592                 *batch++ = GEN9_MEDIA_POOL_STATE;
1593                 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1594                 *batch++ = 0x00777000;
1595                 *batch++ = 0;
1596                 *batch++ = 0;
1597                 *batch++ = 0;
1598         }
1599
1600         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1601
1602         /* Pad to end of cacheline */
1603         while ((unsigned long)batch % CACHELINE_BYTES)
1604                 *batch++ = MI_NOOP;
1605
1606         return batch;
1607 }
1608
1609 static u32 *
1610 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1611 {
1612         int i;
1613
1614         /*
1615          * WaPipeControlBefore3DStateSamplePattern: cnl
1616          *
1617          * Ensure the engine is idle prior to programming a
1618          * 3DSTATE_SAMPLE_PATTERN during a context restore.
1619          */
1620         batch = gen8_emit_pipe_control(batch,
1621                                        PIPE_CONTROL_CS_STALL,
1622                                        0);
1623         /*
1624          * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1625          * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1626          * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1627          * confusing. Since gen8_emit_pipe_control() already advances the
1628          * batch by 6 dwords, we advance the other 10 here, completing a
1629          * cacheline. It's not clear if the workaround requires this padding
1630          * before other commands, or if it's just the regular padding we would
1631          * already have for the workaround bb, so leave it here for now.
1632          */
1633         for (i = 0; i < 10; i++)
1634                 *batch++ = MI_NOOP;
1635
1636         /* Pad to end of cacheline */
1637         while ((unsigned long)batch % CACHELINE_BYTES)
1638                 *batch++ = MI_NOOP;
1639
1640         return batch;
1641 }
1642
1643 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1644
1645 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1646 {
1647         struct drm_i915_gem_object *obj;
1648         struct i915_vma *vma;
1649         int err;
1650
1651         obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1652         if (IS_ERR(obj))
1653                 return PTR_ERR(obj);
1654
1655         vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1656         if (IS_ERR(vma)) {
1657                 err = PTR_ERR(vma);
1658                 goto err;
1659         }
1660
1661         err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1662         if (err)
1663                 goto err;
1664
1665         engine->wa_ctx.vma = vma;
1666         return 0;
1667
1668 err:
1669         i915_gem_object_put(obj);
1670         return err;
1671 }
1672
1673 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1674 {
1675         i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1676 }
1677
1678 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1679
1680 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1681 {
1682         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1683         struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1684                                             &wa_ctx->per_ctx };
1685         wa_bb_func_t wa_bb_fn[2];
1686         struct page *page;
1687         void *batch, *batch_ptr;
1688         unsigned int i;
1689         int ret;
1690
1691         if (GEM_WARN_ON(engine->id != RCS))
1692                 return -EINVAL;
1693
1694         switch (INTEL_GEN(engine->i915)) {
1695         case 11:
1696                 return 0;
1697         case 10:
1698                 wa_bb_fn[0] = gen10_init_indirectctx_bb;
1699                 wa_bb_fn[1] = NULL;
1700                 break;
1701         case 9:
1702                 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1703                 wa_bb_fn[1] = NULL;
1704                 break;
1705         case 8:
1706                 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1707                 wa_bb_fn[1] = NULL;
1708                 break;
1709         default:
1710                 MISSING_CASE(INTEL_GEN(engine->i915));
1711                 return 0;
1712         }
1713
1714         ret = lrc_setup_wa_ctx(engine);
1715         if (ret) {
1716                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1717                 return ret;
1718         }
1719
1720         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1721         batch = batch_ptr = kmap_atomic(page);
1722
1723         /*
1724          * Emit the two workaround batch buffers, recording the offset from the
1725          * start of the workaround batch buffer object for each and their
1726          * respective sizes.
1727          */
1728         for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1729                 wa_bb[i]->offset = batch_ptr - batch;
1730                 if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1731                                             CACHELINE_BYTES))) {
1732                         ret = -EINVAL;
1733                         break;
1734                 }
1735                 if (wa_bb_fn[i])
1736                         batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1737                 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1738         }
1739
1740         BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1741
1742         kunmap_atomic(batch);
1743         if (ret)
1744                 lrc_destroy_wa_ctx(engine);
1745
1746         return ret;
1747 }
1748
1749 static void enable_execlists(struct intel_engine_cs *engine)
1750 {
1751         struct drm_i915_private *dev_priv = engine->i915;
1752
1753         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1754
1755         /*
1756          * Make sure we're not enabling the new 12-deep CSB
1757          * FIFO as that requires a slightly updated handling
1758          * in the ctx switch irq. Since we're currently only
1759          * using only 2 elements of the enhanced execlists the
1760          * deeper FIFO it's not needed and it's not worth adding
1761          * more statements to the irq handler to support it.
1762          */
1763         if (INTEL_GEN(dev_priv) >= 11)
1764                 I915_WRITE(RING_MODE_GEN7(engine),
1765                            _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1766         else
1767                 I915_WRITE(RING_MODE_GEN7(engine),
1768                            _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1769
1770         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1771                    engine->status_page.ggtt_offset);
1772         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1773
1774         /* Following the reset, we need to reload the CSB read/write pointers */
1775         engine->execlists.csb_head = -1;
1776 }
1777
1778 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1779 {
1780         struct intel_engine_execlists * const execlists = &engine->execlists;
1781         int ret;
1782
1783         ret = intel_mocs_init_engine(engine);
1784         if (ret)
1785                 return ret;
1786
1787         intel_engine_reset_breadcrumbs(engine);
1788         intel_engine_init_hangcheck(engine);
1789
1790         enable_execlists(engine);
1791
1792         /* After a GPU reset, we may have requests to replay */
1793         if (execlists->first)
1794                 tasklet_schedule(&execlists->tasklet);
1795
1796         return 0;
1797 }
1798
1799 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1800 {
1801         struct drm_i915_private *dev_priv = engine->i915;
1802         int ret;
1803
1804         ret = gen8_init_common_ring(engine);
1805         if (ret)
1806                 return ret;
1807
1808         intel_whitelist_workarounds_apply(engine);
1809
1810         /* We need to disable the AsyncFlip performance optimisations in order
1811          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1812          * programmed to '1' on all products.
1813          *
1814          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1815          */
1816         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1817
1818         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1819
1820         return 0;
1821 }
1822
1823 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1824 {
1825         int ret;
1826
1827         ret = gen8_init_common_ring(engine);
1828         if (ret)
1829                 return ret;
1830
1831         intel_whitelist_workarounds_apply(engine);
1832
1833         return 0;
1834 }
1835
1836 static void reset_common_ring(struct intel_engine_cs *engine,
1837                               struct i915_request *request)
1838 {
1839         struct intel_engine_execlists * const execlists = &engine->execlists;
1840         unsigned long flags;
1841         u32 *regs;
1842
1843         GEM_TRACE("%s request global=%x, current=%d\n",
1844                   engine->name, request ? request->global_seqno : 0,
1845                   intel_engine_get_seqno(engine));
1846
1847         /* See execlists_cancel_requests() for the irq/spinlock split. */
1848         local_irq_save(flags);
1849
1850         /*
1851          * Catch up with any missed context-switch interrupts.
1852          *
1853          * Ideally we would just read the remaining CSB entries now that we
1854          * know the gpu is idle. However, the CSB registers are sometimes^W
1855          * often trashed across a GPU reset! Instead we have to rely on
1856          * guessing the missed context-switch events by looking at what
1857          * requests were completed.
1858          */
1859         execlists_cancel_port_requests(execlists);
1860         reset_irq(engine);
1861
1862         /* Push back any incomplete requests for replay after the reset. */
1863         spin_lock(&engine->timeline.lock);
1864         __unwind_incomplete_requests(engine);
1865         spin_unlock(&engine->timeline.lock);
1866
1867         local_irq_restore(flags);
1868
1869         /*
1870          * If the request was innocent, we leave the request in the ELSP
1871          * and will try to replay it on restarting. The context image may
1872          * have been corrupted by the reset, in which case we may have
1873          * to service a new GPU hang, but more likely we can continue on
1874          * without impact.
1875          *
1876          * If the request was guilty, we presume the context is corrupt
1877          * and have to at least restore the RING register in the context
1878          * image back to the expected values to skip over the guilty request.
1879          */
1880         if (!request || request->fence.error != -EIO)
1881                 return;
1882
1883         /*
1884          * We want a simple context + ring to execute the breadcrumb update.
1885          * We cannot rely on the context being intact across the GPU hang,
1886          * so clear it and rebuild just what we need for the breadcrumb.
1887          * All pending requests for this context will be zapped, and any
1888          * future request will be after userspace has had the opportunity
1889          * to recreate its own state.
1890          */
1891         regs = to_intel_context(request->ctx, engine)->lrc_reg_state;
1892         if (engine->default_state) {
1893                 void *defaults;
1894
1895                 defaults = i915_gem_object_pin_map(engine->default_state,
1896                                                    I915_MAP_WB);
1897                 if (!IS_ERR(defaults)) {
1898                         memcpy(regs, /* skip restoring the vanilla PPHWSP */
1899                                defaults + LRC_STATE_PN * PAGE_SIZE,
1900                                engine->context_size - PAGE_SIZE);
1901                         i915_gem_object_unpin_map(engine->default_state);
1902                 }
1903         }
1904         execlists_init_reg_state(regs, request->ctx, engine, request->ring);
1905
1906         /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1907         regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(request->ring->vma);
1908         regs[CTX_RING_HEAD + 1] = request->postfix;
1909
1910         request->ring->head = request->postfix;
1911         intel_ring_update_space(request->ring);
1912
1913         /* Reset WaIdleLiteRestore:bdw,skl as well */
1914         unwind_wa_tail(request);
1915 }
1916
1917 static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1918 {
1919         struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
1920         struct intel_engine_cs *engine = rq->engine;
1921         const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1922         u32 *cs;
1923         int i;
1924
1925         cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
1926         if (IS_ERR(cs))
1927                 return PTR_ERR(cs);
1928
1929         *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1930         for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1931                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1932
1933                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1934                 *cs++ = upper_32_bits(pd_daddr);
1935                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1936                 *cs++ = lower_32_bits(pd_daddr);
1937         }
1938
1939         *cs++ = MI_NOOP;
1940         intel_ring_advance(rq, cs);
1941
1942         return 0;
1943 }
1944
1945 static int gen8_emit_bb_start(struct i915_request *rq,
1946                               u64 offset, u32 len,
1947                               const unsigned int flags)
1948 {
1949         u32 *cs;
1950         int ret;
1951
1952         /* Don't rely in hw updating PDPs, specially in lite-restore.
1953          * Ideally, we should set Force PD Restore in ctx descriptor,
1954          * but we can't. Force Restore would be a second option, but
1955          * it is unsafe in case of lite-restore (because the ctx is
1956          * not idle). PML4 is allocated during ppgtt init so this is
1957          * not needed in 48-bit.*/
1958         if (rq->ctx->ppgtt &&
1959             (intel_engine_flag(rq->engine) & rq->ctx->ppgtt->pd_dirty_rings) &&
1960             !i915_vm_is_48bit(&rq->ctx->ppgtt->base) &&
1961             !intel_vgpu_active(rq->i915)) {
1962                 ret = intel_logical_ring_emit_pdps(rq);
1963                 if (ret)
1964                         return ret;
1965
1966                 rq->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
1967         }
1968
1969         cs = intel_ring_begin(rq, 6);
1970         if (IS_ERR(cs))
1971                 return PTR_ERR(cs);
1972
1973         /*
1974          * WaDisableCtxRestoreArbitration:bdw,chv
1975          *
1976          * We don't need to perform MI_ARB_ENABLE as often as we do (in
1977          * particular all the gen that do not need the w/a at all!), if we
1978          * took care to make sure that on every switch into this context
1979          * (both ordinary and for preemption) that arbitrartion was enabled
1980          * we would be fine. However, there doesn't seem to be a downside to
1981          * being paranoid and making sure it is set before each batch and
1982          * every context-switch.
1983          *
1984          * Note that if we fail to enable arbitration before the request
1985          * is complete, then we do not see the context-switch interrupt and
1986          * the engine hangs (with RING_HEAD == RING_TAIL).
1987          *
1988          * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
1989          */
1990         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1991
1992         /* FIXME(BDW): Address space and security selectors. */
1993         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1994                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1995                 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1996         *cs++ = lower_32_bits(offset);
1997         *cs++ = upper_32_bits(offset);
1998
1999         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2000         *cs++ = MI_NOOP;
2001         intel_ring_advance(rq, cs);
2002
2003         return 0;
2004 }
2005
2006 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2007 {
2008         struct drm_i915_private *dev_priv = engine->i915;
2009         I915_WRITE_IMR(engine,
2010                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
2011         POSTING_READ_FW(RING_IMR(engine->mmio_base));
2012 }
2013
2014 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2015 {
2016         struct drm_i915_private *dev_priv = engine->i915;
2017         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
2018 }
2019
2020 static int gen8_emit_flush(struct i915_request *request, u32 mode)
2021 {
2022         u32 cmd, *cs;
2023
2024         cs = intel_ring_begin(request, 4);
2025         if (IS_ERR(cs))
2026                 return PTR_ERR(cs);
2027
2028         cmd = MI_FLUSH_DW + 1;
2029
2030         /* We always require a command barrier so that subsequent
2031          * commands, such as breadcrumb interrupts, are strictly ordered
2032          * wrt the contents of the write cache being flushed to memory
2033          * (and thus being coherent from the CPU).
2034          */
2035         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2036
2037         if (mode & EMIT_INVALIDATE) {
2038                 cmd |= MI_INVALIDATE_TLB;
2039                 if (request->engine->id == VCS)
2040                         cmd |= MI_INVALIDATE_BSD;
2041         }
2042
2043         *cs++ = cmd;
2044         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2045         *cs++ = 0; /* upper addr */
2046         *cs++ = 0; /* value */
2047         intel_ring_advance(request, cs);
2048
2049         return 0;
2050 }
2051
2052 static int gen8_emit_flush_render(struct i915_request *request,
2053                                   u32 mode)
2054 {
2055         struct intel_engine_cs *engine = request->engine;
2056         u32 scratch_addr =
2057                 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
2058         bool vf_flush_wa = false, dc_flush_wa = false;
2059         u32 *cs, flags = 0;
2060         int len;
2061
2062         flags |= PIPE_CONTROL_CS_STALL;
2063
2064         if (mode & EMIT_FLUSH) {
2065                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2066                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2067                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2068                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
2069         }
2070
2071         if (mode & EMIT_INVALIDATE) {
2072                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
2073                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2074                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2075                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2076                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2077                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2078                 flags |= PIPE_CONTROL_QW_WRITE;
2079                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2080
2081                 /*
2082                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
2083                  * pipe control.
2084                  */
2085                 if (IS_GEN9(request->i915))
2086                         vf_flush_wa = true;
2087
2088                 /* WaForGAMHang:kbl */
2089                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
2090                         dc_flush_wa = true;
2091         }
2092
2093         len = 6;
2094
2095         if (vf_flush_wa)
2096                 len += 6;
2097
2098         if (dc_flush_wa)
2099                 len += 12;
2100
2101         cs = intel_ring_begin(request, len);
2102         if (IS_ERR(cs))
2103                 return PTR_ERR(cs);
2104
2105         if (vf_flush_wa)
2106                 cs = gen8_emit_pipe_control(cs, 0, 0);
2107
2108         if (dc_flush_wa)
2109                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
2110                                             0);
2111
2112         cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2113
2114         if (dc_flush_wa)
2115                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
2116
2117         intel_ring_advance(request, cs);
2118
2119         return 0;
2120 }
2121
2122 /*
2123  * Reserve space for 2 NOOPs at the end of each request to be
2124  * used as a workaround for not being allowed to do lite
2125  * restore with HEAD==TAIL (WaIdleLiteRestore).
2126  */
2127 static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2128 {
2129         /* Ensure there's always at least one preemption point per-request. */
2130         *cs++ = MI_ARB_CHECK;
2131         *cs++ = MI_NOOP;
2132         request->wa_tail = intel_ring_offset(request, cs);
2133 }
2134
2135 static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
2136 {
2137         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
2138         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
2139
2140         cs = gen8_emit_ggtt_write(cs, request->global_seqno,
2141                                   intel_hws_seqno_address(request->engine));
2142         *cs++ = MI_USER_INTERRUPT;
2143         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2144         request->tail = intel_ring_offset(request, cs);
2145         assert_ring_tail_valid(request->ring, request->tail);
2146
2147         gen8_emit_wa_tail(request, cs);
2148 }
2149 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
2150
2151 static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2152 {
2153         /* We're using qword write, seqno should be aligned to 8 bytes. */
2154         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
2155
2156         cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
2157                                       intel_hws_seqno_address(request->engine));
2158         *cs++ = MI_USER_INTERRUPT;
2159         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2160         request->tail = intel_ring_offset(request, cs);
2161         assert_ring_tail_valid(request->ring, request->tail);
2162
2163         gen8_emit_wa_tail(request, cs);
2164 }
2165 static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2166
2167 static int gen8_init_rcs_context(struct i915_request *rq)
2168 {
2169         int ret;
2170
2171         ret = intel_ctx_workarounds_emit(rq);
2172         if (ret)
2173                 return ret;
2174
2175         ret = intel_rcs_context_init_mocs(rq);
2176         /*
2177          * Failing to program the MOCS is non-fatal.The system will not
2178          * run at peak performance. So generate an error and carry on.
2179          */
2180         if (ret)
2181                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2182
2183         return i915_gem_render_state_emit(rq);
2184 }
2185
2186 /**
2187  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2188  * @engine: Engine Command Streamer.
2189  */
2190 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2191 {
2192         struct drm_i915_private *dev_priv;
2193
2194         /*
2195          * Tasklet cannot be active at this point due intel_mark_active/idle
2196          * so this is just for documentation.
2197          */
2198         if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
2199                              &engine->execlists.tasklet.state)))
2200                 tasklet_kill(&engine->execlists.tasklet);
2201
2202         dev_priv = engine->i915;
2203
2204         if (engine->buffer) {
2205                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2206         }
2207
2208         if (engine->cleanup)
2209                 engine->cleanup(engine);
2210
2211         intel_engine_cleanup_common(engine);
2212
2213         lrc_destroy_wa_ctx(engine);
2214
2215         engine->i915 = NULL;
2216         dev_priv->engine[engine->id] = NULL;
2217         kfree(engine);
2218 }
2219
2220 static void execlists_set_default_submission(struct intel_engine_cs *engine)
2221 {
2222         engine->submit_request = execlists_submit_request;
2223         engine->cancel_requests = execlists_cancel_requests;
2224         engine->schedule = execlists_schedule;
2225         engine->execlists.tasklet.func = execlists_submission_tasklet;
2226
2227         engine->park = NULL;
2228         engine->unpark = NULL;
2229
2230         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2231         if (engine->i915->preempt_context)
2232                 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2233
2234         engine->i915->caps.scheduler =
2235                 I915_SCHEDULER_CAP_ENABLED |
2236                 I915_SCHEDULER_CAP_PRIORITY;
2237         if (intel_engine_has_preemption(engine))
2238                 engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2239 }
2240
2241 static void
2242 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2243 {
2244         /* Default vfuncs which can be overriden by each engine. */
2245         engine->init_hw = gen8_init_common_ring;
2246         engine->reset_hw = reset_common_ring;
2247
2248         engine->context_pin = execlists_context_pin;
2249         engine->context_unpin = execlists_context_unpin;
2250
2251         engine->request_alloc = execlists_request_alloc;
2252
2253         engine->emit_flush = gen8_emit_flush;
2254         engine->emit_breadcrumb = gen8_emit_breadcrumb;
2255         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2256
2257         engine->set_default_submission = execlists_set_default_submission;
2258
2259         if (INTEL_GEN(engine->i915) < 11) {
2260                 engine->irq_enable = gen8_logical_ring_enable_irq;
2261                 engine->irq_disable = gen8_logical_ring_disable_irq;
2262         } else {
2263                 /*
2264                  * TODO: On Gen11 interrupt masks need to be clear
2265                  * to allow C6 entry. Keep interrupts enabled at
2266                  * and take the hit of generating extra interrupts
2267                  * until a more refined solution exists.
2268                  */
2269         }
2270         engine->emit_bb_start = gen8_emit_bb_start;
2271 }
2272
2273 static inline void
2274 logical_ring_default_irqs(struct intel_engine_cs *engine)
2275 {
2276         unsigned int shift = 0;
2277
2278         if (INTEL_GEN(engine->i915) < 11) {
2279                 const u8 irq_shifts[] = {
2280                         [RCS]  = GEN8_RCS_IRQ_SHIFT,
2281                         [BCS]  = GEN8_BCS_IRQ_SHIFT,
2282                         [VCS]  = GEN8_VCS1_IRQ_SHIFT,
2283                         [VCS2] = GEN8_VCS2_IRQ_SHIFT,
2284                         [VECS] = GEN8_VECS_IRQ_SHIFT,
2285                 };
2286
2287                 shift = irq_shifts[engine->id];
2288         }
2289
2290         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2291         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2292 }
2293
2294 static void
2295 logical_ring_setup(struct intel_engine_cs *engine)
2296 {
2297         struct drm_i915_private *dev_priv = engine->i915;
2298         enum forcewake_domains fw_domains;
2299
2300         intel_engine_setup_common(engine);
2301
2302         /* Intentionally left blank. */
2303         engine->buffer = NULL;
2304
2305         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2306                                                     RING_ELSP(engine),
2307                                                     FW_REG_WRITE);
2308
2309         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2310                                                      RING_CONTEXT_STATUS_PTR(engine),
2311                                                      FW_REG_READ | FW_REG_WRITE);
2312
2313         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2314                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
2315                                                      FW_REG_READ);
2316
2317         engine->execlists.fw_domains = fw_domains;
2318
2319         tasklet_init(&engine->execlists.tasklet,
2320                      execlists_submission_tasklet, (unsigned long)engine);
2321
2322         logical_ring_default_vfuncs(engine);
2323         logical_ring_default_irqs(engine);
2324 }
2325
2326 static int logical_ring_init(struct intel_engine_cs *engine)
2327 {
2328         int ret;
2329
2330         ret = intel_engine_init_common(engine);
2331         if (ret)
2332                 goto error;
2333
2334         if (HAS_LOGICAL_RING_ELSQ(engine->i915)) {
2335                 engine->execlists.submit_reg = engine->i915->regs +
2336                         i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
2337                 engine->execlists.ctrl_reg = engine->i915->regs +
2338                         i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
2339         } else {
2340                 engine->execlists.submit_reg = engine->i915->regs +
2341                         i915_mmio_reg_offset(RING_ELSP(engine));
2342         }
2343
2344         engine->execlists.preempt_complete_status = ~0u;
2345         if (engine->i915->preempt_context) {
2346                 struct intel_context *ce =
2347                         to_intel_context(engine->i915->preempt_context, engine);
2348
2349                 engine->execlists.preempt_complete_status =
2350                         upper_32_bits(ce->lrc_desc);
2351         }
2352
2353         return 0;
2354
2355 error:
2356         intel_logical_ring_cleanup(engine);
2357         return ret;
2358 }
2359
2360 int logical_render_ring_init(struct intel_engine_cs *engine)
2361 {
2362         struct drm_i915_private *dev_priv = engine->i915;
2363         int ret;
2364
2365         logical_ring_setup(engine);
2366
2367         if (HAS_L3_DPF(dev_priv))
2368                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2369
2370         /* Override some for render ring. */
2371         if (INTEL_GEN(dev_priv) >= 9)
2372                 engine->init_hw = gen9_init_render_ring;
2373         else
2374                 engine->init_hw = gen8_init_render_ring;
2375         engine->init_context = gen8_init_rcs_context;
2376         engine->emit_flush = gen8_emit_flush_render;
2377         engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
2378         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2379
2380         ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2381         if (ret)
2382                 return ret;
2383
2384         ret = intel_init_workaround_bb(engine);
2385         if (ret) {
2386                 /*
2387                  * We continue even if we fail to initialize WA batch
2388                  * because we only expect rare glitches but nothing
2389                  * critical to prevent us from using GPU
2390                  */
2391                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2392                           ret);
2393         }
2394
2395         return logical_ring_init(engine);
2396 }
2397
2398 int logical_xcs_ring_init(struct intel_engine_cs *engine)
2399 {
2400         logical_ring_setup(engine);
2401
2402         return logical_ring_init(engine);
2403 }
2404
2405 static u32
2406 make_rpcs(struct drm_i915_private *dev_priv)
2407 {
2408         u32 rpcs = 0;
2409
2410         /*
2411          * No explicit RPCS request is needed to ensure full
2412          * slice/subslice/EU enablement prior to Gen9.
2413         */
2414         if (INTEL_GEN(dev_priv) < 9)
2415                 return 0;
2416
2417         /*
2418          * Starting in Gen9, render power gating can leave
2419          * slice/subslice/EU in a partially enabled state. We
2420          * must make an explicit request through RPCS for full
2421          * enablement.
2422         */
2423         if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2424                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2425                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2426                         GEN8_RPCS_S_CNT_SHIFT;
2427                 rpcs |= GEN8_RPCS_ENABLE;
2428         }
2429
2430         if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2431                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2432                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]) <<
2433                         GEN8_RPCS_SS_CNT_SHIFT;
2434                 rpcs |= GEN8_RPCS_ENABLE;
2435         }
2436
2437         if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2438                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2439                         GEN8_RPCS_EU_MIN_SHIFT;
2440                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2441                         GEN8_RPCS_EU_MAX_SHIFT;
2442                 rpcs |= GEN8_RPCS_ENABLE;
2443         }
2444
2445         return rpcs;
2446 }
2447
2448 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2449 {
2450         u32 indirect_ctx_offset;
2451
2452         switch (INTEL_GEN(engine->i915)) {
2453         default:
2454                 MISSING_CASE(INTEL_GEN(engine->i915));
2455                 /* fall through */
2456         case 11:
2457                 indirect_ctx_offset =
2458                         GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2459                 break;
2460         case 10:
2461                 indirect_ctx_offset =
2462                         GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2463                 break;
2464         case 9:
2465                 indirect_ctx_offset =
2466                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2467                 break;
2468         case 8:
2469                 indirect_ctx_offset =
2470                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2471                 break;
2472         }
2473
2474         return indirect_ctx_offset;
2475 }
2476
2477 static void execlists_init_reg_state(u32 *regs,
2478                                      struct i915_gem_context *ctx,
2479                                      struct intel_engine_cs *engine,
2480                                      struct intel_ring *ring)
2481 {
2482         struct drm_i915_private *dev_priv = engine->i915;
2483         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2484         u32 base = engine->mmio_base;
2485         bool rcs = engine->id == RCS;
2486
2487         /* A context is actually a big batch buffer with several
2488          * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2489          * values we are setting here are only for the first context restore:
2490          * on a subsequent save, the GPU will recreate this batchbuffer with new
2491          * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2492          * we are not initializing here).
2493          */
2494         regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2495                                  MI_LRI_FORCE_POSTED;
2496
2497         CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2498                 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2499                                     CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2500                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2501                                    (HAS_RESOURCE_STREAMER(dev_priv) ?
2502                                    CTX_CTRL_RS_CTX_ENABLE : 0)));
2503         CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2504         CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2505         CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2506         CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2507                 RING_CTL_SIZE(ring->size) | RING_VALID);
2508         CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2509         CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2510         CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2511         CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2512         CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2513         CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2514         if (rcs) {
2515                 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2516
2517                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2518                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2519                         RING_INDIRECT_CTX_OFFSET(base), 0);
2520                 if (wa_ctx->indirect_ctx.size) {
2521                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2522
2523                         regs[CTX_RCS_INDIRECT_CTX + 1] =
2524                                 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2525                                 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2526
2527                         regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2528                                 intel_lr_indirect_ctx_offset(engine) << 6;
2529                 }
2530
2531                 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2532                 if (wa_ctx->per_ctx.size) {
2533                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2534
2535                         regs[CTX_BB_PER_CTX_PTR + 1] =
2536                                 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2537                 }
2538         }
2539
2540         regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2541
2542         CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2543         /* PDP values well be assigned later if needed */
2544         CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2545         CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2546         CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2547         CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2548         CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2549         CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2550         CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2551         CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2552
2553         if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2554                 /* 64b PPGTT (48bit canonical)
2555                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2556                  * other PDP Descriptors are ignored.
2557                  */
2558                 ASSIGN_CTX_PML4(ppgtt, regs);
2559         }
2560
2561         if (rcs) {
2562                 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2563                 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2564                         make_rpcs(dev_priv));
2565
2566                 i915_oa_init_reg_state(engine, ctx, regs);
2567         }
2568 }
2569
2570 static int
2571 populate_lr_context(struct i915_gem_context *ctx,
2572                     struct drm_i915_gem_object *ctx_obj,
2573                     struct intel_engine_cs *engine,
2574                     struct intel_ring *ring)
2575 {
2576         void *vaddr;
2577         u32 *regs;
2578         int ret;
2579
2580         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2581         if (ret) {
2582                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2583                 return ret;
2584         }
2585
2586         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2587         if (IS_ERR(vaddr)) {
2588                 ret = PTR_ERR(vaddr);
2589                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2590                 return ret;
2591         }
2592         ctx_obj->mm.dirty = true;
2593
2594         if (engine->default_state) {
2595                 /*
2596                  * We only want to copy over the template context state;
2597                  * skipping over the headers reserved for GuC communication,
2598                  * leaving those as zero.
2599                  */
2600                 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2601                 void *defaults;
2602
2603                 defaults = i915_gem_object_pin_map(engine->default_state,
2604                                                    I915_MAP_WB);
2605                 if (IS_ERR(defaults)) {
2606                         ret = PTR_ERR(defaults);
2607                         goto err_unpin_ctx;
2608                 }
2609
2610                 memcpy(vaddr + start, defaults + start, engine->context_size);
2611                 i915_gem_object_unpin_map(engine->default_state);
2612         }
2613
2614         /* The second page of the context object contains some fields which must
2615          * be set up prior to the first execution. */
2616         regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2617         execlists_init_reg_state(regs, ctx, engine, ring);
2618         if (!engine->default_state)
2619                 regs[CTX_CONTEXT_CONTROL + 1] |=
2620                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2621         if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2622                 regs[CTX_CONTEXT_CONTROL + 1] |=
2623                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2624                                            CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2625
2626 err_unpin_ctx:
2627         i915_gem_object_unpin_map(ctx_obj);
2628         return ret;
2629 }
2630
2631 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2632                                             struct intel_engine_cs *engine)
2633 {
2634         struct drm_i915_gem_object *ctx_obj;
2635         struct intel_context *ce = to_intel_context(ctx, engine);
2636         struct i915_vma *vma;
2637         uint32_t context_size;
2638         struct intel_ring *ring;
2639         struct i915_timeline *timeline;
2640         int ret;
2641
2642         if (ce->state)
2643                 return 0;
2644
2645         context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2646
2647         /*
2648          * Before the actual start of the context image, we insert a few pages
2649          * for our own use and for sharing with the GuC.
2650          */
2651         context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2652
2653         ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2654         if (IS_ERR(ctx_obj))
2655                 return PTR_ERR(ctx_obj);
2656
2657         vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2658         if (IS_ERR(vma)) {
2659                 ret = PTR_ERR(vma);
2660                 goto error_deref_obj;
2661         }
2662
2663         timeline = i915_timeline_create(ctx->i915, ctx->name);
2664         if (IS_ERR(timeline)) {
2665                 ret = PTR_ERR(timeline);
2666                 goto error_deref_obj;
2667         }
2668
2669         ring = intel_engine_create_ring(engine, timeline, ctx->ring_size);
2670         i915_timeline_put(timeline);
2671         if (IS_ERR(ring)) {
2672                 ret = PTR_ERR(ring);
2673                 goto error_deref_obj;
2674         }
2675
2676         ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2677         if (ret) {
2678                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2679                 goto error_ring_free;
2680         }
2681
2682         ce->ring = ring;
2683         ce->state = vma;
2684
2685         return 0;
2686
2687 error_ring_free:
2688         intel_ring_free(ring);
2689 error_deref_obj:
2690         i915_gem_object_put(ctx_obj);
2691         return ret;
2692 }
2693
2694 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2695 {
2696         struct intel_engine_cs *engine;
2697         struct i915_gem_context *ctx;
2698         enum intel_engine_id id;
2699
2700         /* Because we emit WA_TAIL_DWORDS there may be a disparity
2701          * between our bookkeeping in ce->ring->head and ce->ring->tail and
2702          * that stored in context. As we only write new commands from
2703          * ce->ring->tail onwards, everything before that is junk. If the GPU
2704          * starts reading from its RING_HEAD from the context, it may try to
2705          * execute that junk and die.
2706          *
2707          * So to avoid that we reset the context images upon resume. For
2708          * simplicity, we just zero everything out.
2709          */
2710         list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2711                 for_each_engine(engine, dev_priv, id) {
2712                         struct intel_context *ce =
2713                                 to_intel_context(ctx, engine);
2714                         u32 *reg;
2715
2716                         if (!ce->state)
2717                                 continue;
2718
2719                         reg = i915_gem_object_pin_map(ce->state->obj,
2720                                                       I915_MAP_WB);
2721                         if (WARN_ON(IS_ERR(reg)))
2722                                 continue;
2723
2724                         reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2725                         reg[CTX_RING_HEAD+1] = 0;
2726                         reg[CTX_RING_TAIL+1] = 0;
2727
2728                         ce->state->obj->mm.dirty = true;
2729                         i915_gem_object_unpin_map(ce->state->obj);
2730
2731                         intel_ring_reset(ce->ring, 0);
2732                 }
2733         }
2734 }
2735
2736 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2737 #include "selftests/intel_lrc.c"
2738 #endif