Merge tag 'drm-misc-next-2020-11-05' of git://anongit.freedesktop.org/drm/drm-misc...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/circ_buf.h>
32 #include <linux/slab.h>
33 #include <linux/sysrq.h>
34
35 #include <drm/drm_drv.h>
36 #include <drm/drm_irq.h>
37
38 #include "display/intel_display_types.h"
39 #include "display/intel_fifo_underrun.h"
40 #include "display/intel_hotplug.h"
41 #include "display/intel_lpe_audio.h"
42 #include "display/intel_psr.h"
43
44 #include "gt/intel_breadcrumbs.h"
45 #include "gt/intel_gt.h"
46 #include "gt/intel_gt_irq.h"
47 #include "gt/intel_gt_pm_irq.h"
48 #include "gt/intel_rps.h"
49
50 #include "i915_drv.h"
51 #include "i915_irq.h"
52 #include "i915_trace.h"
53 #include "intel_pm.h"
54
55 /**
56  * DOC: interrupt handling
57  *
58  * These functions provide the basic support for enabling and disabling the
59  * interrupt handling support. There's a lot more functionality in i915_irq.c
60  * and related files, but that will be described in separate chapters.
61  */
62
63 typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
64 typedef u32 (*hotplug_enables_func)(struct drm_i915_private *i915,
65                                     enum hpd_pin pin);
66
67 static const u32 hpd_ilk[HPD_NUM_PINS] = {
68         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
69 };
70
71 static const u32 hpd_ivb[HPD_NUM_PINS] = {
72         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
73 };
74
75 static const u32 hpd_bdw[HPD_NUM_PINS] = {
76         [HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A),
77 };
78
79 static const u32 hpd_ibx[HPD_NUM_PINS] = {
80         [HPD_CRT] = SDE_CRT_HOTPLUG,
81         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
82         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
83         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
84         [HPD_PORT_D] = SDE_PORTD_HOTPLUG,
85 };
86
87 static const u32 hpd_cpt[HPD_NUM_PINS] = {
88         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
89         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
90         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
91         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
92         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
93 };
94
95 static const u32 hpd_spt[HPD_NUM_PINS] = {
96         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
97         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
98         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
99         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
100         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT,
101 };
102
103 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
104         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
105         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
106         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
107         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
108         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
109         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN,
110 };
111
112 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
113         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
114         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
115         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
116         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
117         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
118         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
119 };
120
121 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
122         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
123         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
124         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
125         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
126         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
127         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
128 };
129
130 static const u32 hpd_bxt[HPD_NUM_PINS] = {
131         [HPD_PORT_A] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_A),
132         [HPD_PORT_B] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_B),
133         [HPD_PORT_C] = GEN8_DE_PORT_HOTPLUG(HPD_PORT_C),
134 };
135
136 static const u32 hpd_gen11[HPD_NUM_PINS] = {
137         [HPD_PORT_TC1] = GEN11_TC_HOTPLUG(HPD_PORT_TC1) | GEN11_TBT_HOTPLUG(HPD_PORT_TC1),
138         [HPD_PORT_TC2] = GEN11_TC_HOTPLUG(HPD_PORT_TC2) | GEN11_TBT_HOTPLUG(HPD_PORT_TC2),
139         [HPD_PORT_TC3] = GEN11_TC_HOTPLUG(HPD_PORT_TC3) | GEN11_TBT_HOTPLUG(HPD_PORT_TC3),
140         [HPD_PORT_TC4] = GEN11_TC_HOTPLUG(HPD_PORT_TC4) | GEN11_TBT_HOTPLUG(HPD_PORT_TC4),
141         [HPD_PORT_TC5] = GEN11_TC_HOTPLUG(HPD_PORT_TC5) | GEN11_TBT_HOTPLUG(HPD_PORT_TC5),
142         [HPD_PORT_TC6] = GEN11_TC_HOTPLUG(HPD_PORT_TC6) | GEN11_TBT_HOTPLUG(HPD_PORT_TC6),
143 };
144
145 static const u32 hpd_icp[HPD_NUM_PINS] = {
146         [HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A),
147         [HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B),
148         [HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C),
149         [HPD_PORT_TC1] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC1),
150         [HPD_PORT_TC2] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC2),
151         [HPD_PORT_TC3] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC3),
152         [HPD_PORT_TC4] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC4),
153         [HPD_PORT_TC5] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC5),
154         [HPD_PORT_TC6] = SDE_TC_HOTPLUG_ICP(HPD_PORT_TC6),
155 };
156
157 static const u32 hpd_sde_dg1[HPD_NUM_PINS] = {
158         [HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_A),
159         [HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_B),
160         [HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_C),
161         [HPD_PORT_D] = SDE_DDI_HOTPLUG_ICP(HPD_PORT_D),
162 };
163
164 static void intel_hpd_init_pins(struct drm_i915_private *dev_priv)
165 {
166         struct i915_hotplug *hpd = &dev_priv->hotplug;
167
168         if (HAS_GMCH(dev_priv)) {
169                 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
170                     IS_CHERRYVIEW(dev_priv))
171                         hpd->hpd = hpd_status_g4x;
172                 else
173                         hpd->hpd = hpd_status_i915;
174                 return;
175         }
176
177         if (INTEL_GEN(dev_priv) >= 11)
178                 hpd->hpd = hpd_gen11;
179         else if (IS_GEN9_LP(dev_priv))
180                 hpd->hpd = hpd_bxt;
181         else if (INTEL_GEN(dev_priv) >= 8)
182                 hpd->hpd = hpd_bdw;
183         else if (INTEL_GEN(dev_priv) >= 7)
184                 hpd->hpd = hpd_ivb;
185         else
186                 hpd->hpd = hpd_ilk;
187
188         if ((INTEL_PCH_TYPE(dev_priv) < PCH_DG1) &&
189             (!HAS_PCH_SPLIT(dev_priv) || HAS_PCH_NOP(dev_priv)))
190                 return;
191
192         if (HAS_PCH_DG1(dev_priv))
193                 hpd->pch_hpd = hpd_sde_dg1;
194         else if (HAS_PCH_TGP(dev_priv) || HAS_PCH_JSP(dev_priv) ||
195                  HAS_PCH_ICP(dev_priv) || HAS_PCH_MCC(dev_priv))
196                 hpd->pch_hpd = hpd_icp;
197         else if (HAS_PCH_CNP(dev_priv) || HAS_PCH_SPT(dev_priv))
198                 hpd->pch_hpd = hpd_spt;
199         else if (HAS_PCH_LPT(dev_priv) || HAS_PCH_CPT(dev_priv))
200                 hpd->pch_hpd = hpd_cpt;
201         else if (HAS_PCH_IBX(dev_priv))
202                 hpd->pch_hpd = hpd_ibx;
203         else
204                 MISSING_CASE(INTEL_PCH_TYPE(dev_priv));
205 }
206
207 static void
208 intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe)
209 {
210         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
211
212         drm_crtc_handle_vblank(&crtc->base);
213 }
214
215 void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
216                     i915_reg_t iir, i915_reg_t ier)
217 {
218         intel_uncore_write(uncore, imr, 0xffffffff);
219         intel_uncore_posting_read(uncore, imr);
220
221         intel_uncore_write(uncore, ier, 0);
222
223         /* IIR can theoretically queue up two events. Be paranoid. */
224         intel_uncore_write(uncore, iir, 0xffffffff);
225         intel_uncore_posting_read(uncore, iir);
226         intel_uncore_write(uncore, iir, 0xffffffff);
227         intel_uncore_posting_read(uncore, iir);
228 }
229
230 void gen2_irq_reset(struct intel_uncore *uncore)
231 {
232         intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
233         intel_uncore_posting_read16(uncore, GEN2_IMR);
234
235         intel_uncore_write16(uncore, GEN2_IER, 0);
236
237         /* IIR can theoretically queue up two events. Be paranoid. */
238         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
239         intel_uncore_posting_read16(uncore, GEN2_IIR);
240         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
241         intel_uncore_posting_read16(uncore, GEN2_IIR);
242 }
243
244 /*
245  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
246  */
247 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
248 {
249         u32 val = intel_uncore_read(uncore, reg);
250
251         if (val == 0)
252                 return;
253
254         drm_WARN(&uncore->i915->drm, 1,
255                  "Interrupt register 0x%x is not zero: 0x%08x\n",
256                  i915_mmio_reg_offset(reg), val);
257         intel_uncore_write(uncore, reg, 0xffffffff);
258         intel_uncore_posting_read(uncore, reg);
259         intel_uncore_write(uncore, reg, 0xffffffff);
260         intel_uncore_posting_read(uncore, reg);
261 }
262
263 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
264 {
265         u16 val = intel_uncore_read16(uncore, GEN2_IIR);
266
267         if (val == 0)
268                 return;
269
270         drm_WARN(&uncore->i915->drm, 1,
271                  "Interrupt register 0x%x is not zero: 0x%08x\n",
272                  i915_mmio_reg_offset(GEN2_IIR), val);
273         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
274         intel_uncore_posting_read16(uncore, GEN2_IIR);
275         intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
276         intel_uncore_posting_read16(uncore, GEN2_IIR);
277 }
278
279 void gen3_irq_init(struct intel_uncore *uncore,
280                    i915_reg_t imr, u32 imr_val,
281                    i915_reg_t ier, u32 ier_val,
282                    i915_reg_t iir)
283 {
284         gen3_assert_iir_is_zero(uncore, iir);
285
286         intel_uncore_write(uncore, ier, ier_val);
287         intel_uncore_write(uncore, imr, imr_val);
288         intel_uncore_posting_read(uncore, imr);
289 }
290
291 void gen2_irq_init(struct intel_uncore *uncore,
292                    u32 imr_val, u32 ier_val)
293 {
294         gen2_assert_iir_is_zero(uncore);
295
296         intel_uncore_write16(uncore, GEN2_IER, ier_val);
297         intel_uncore_write16(uncore, GEN2_IMR, imr_val);
298         intel_uncore_posting_read16(uncore, GEN2_IMR);
299 }
300
301 /* For display hotplug interrupt */
302 static inline void
303 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
304                                      u32 mask,
305                                      u32 bits)
306 {
307         u32 val;
308
309         lockdep_assert_held(&dev_priv->irq_lock);
310         drm_WARN_ON(&dev_priv->drm, bits & ~mask);
311
312         val = I915_READ(PORT_HOTPLUG_EN);
313         val &= ~mask;
314         val |= bits;
315         I915_WRITE(PORT_HOTPLUG_EN, val);
316 }
317
318 /**
319  * i915_hotplug_interrupt_update - update hotplug interrupt enable
320  * @dev_priv: driver private
321  * @mask: bits to update
322  * @bits: bits to enable
323  * NOTE: the HPD enable bits are modified both inside and outside
324  * of an interrupt context. To avoid that read-modify-write cycles
325  * interfer, these bits are protected by a spinlock. Since this
326  * function is usually not called from a context where the lock is
327  * held already, this function acquires the lock itself. A non-locking
328  * version is also available.
329  */
330 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
331                                    u32 mask,
332                                    u32 bits)
333 {
334         spin_lock_irq(&dev_priv->irq_lock);
335         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
336         spin_unlock_irq(&dev_priv->irq_lock);
337 }
338
339 /**
340  * ilk_update_display_irq - update DEIMR
341  * @dev_priv: driver private
342  * @interrupt_mask: mask of interrupt bits to update
343  * @enabled_irq_mask: mask of interrupt bits to enable
344  */
345 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
346                             u32 interrupt_mask,
347                             u32 enabled_irq_mask)
348 {
349         u32 new_val;
350
351         lockdep_assert_held(&dev_priv->irq_lock);
352         drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
353
354         new_val = dev_priv->irq_mask;
355         new_val &= ~interrupt_mask;
356         new_val |= (~enabled_irq_mask & interrupt_mask);
357
358         if (new_val != dev_priv->irq_mask &&
359             !drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv))) {
360                 dev_priv->irq_mask = new_val;
361                 I915_WRITE(DEIMR, dev_priv->irq_mask);
362                 POSTING_READ(DEIMR);
363         }
364 }
365
366 /**
367  * bdw_update_port_irq - update DE port interrupt
368  * @dev_priv: driver private
369  * @interrupt_mask: mask of interrupt bits to update
370  * @enabled_irq_mask: mask of interrupt bits to enable
371  */
372 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
373                                 u32 interrupt_mask,
374                                 u32 enabled_irq_mask)
375 {
376         u32 new_val;
377         u32 old_val;
378
379         lockdep_assert_held(&dev_priv->irq_lock);
380
381         drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
382
383         if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
384                 return;
385
386         old_val = I915_READ(GEN8_DE_PORT_IMR);
387
388         new_val = old_val;
389         new_val &= ~interrupt_mask;
390         new_val |= (~enabled_irq_mask & interrupt_mask);
391
392         if (new_val != old_val) {
393                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
394                 POSTING_READ(GEN8_DE_PORT_IMR);
395         }
396 }
397
398 /**
399  * bdw_update_pipe_irq - update DE pipe interrupt
400  * @dev_priv: driver private
401  * @pipe: pipe whose interrupt to update
402  * @interrupt_mask: mask of interrupt bits to update
403  * @enabled_irq_mask: mask of interrupt bits to enable
404  */
405 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
406                          enum pipe pipe,
407                          u32 interrupt_mask,
408                          u32 enabled_irq_mask)
409 {
410         u32 new_val;
411
412         lockdep_assert_held(&dev_priv->irq_lock);
413
414         drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
415
416         if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
417                 return;
418
419         new_val = dev_priv->de_irq_mask[pipe];
420         new_val &= ~interrupt_mask;
421         new_val |= (~enabled_irq_mask & interrupt_mask);
422
423         if (new_val != dev_priv->de_irq_mask[pipe]) {
424                 dev_priv->de_irq_mask[pipe] = new_val;
425                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
426                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
427         }
428 }
429
430 /**
431  * ibx_display_interrupt_update - update SDEIMR
432  * @dev_priv: driver private
433  * @interrupt_mask: mask of interrupt bits to update
434  * @enabled_irq_mask: mask of interrupt bits to enable
435  */
436 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
437                                   u32 interrupt_mask,
438                                   u32 enabled_irq_mask)
439 {
440         u32 sdeimr = I915_READ(SDEIMR);
441         sdeimr &= ~interrupt_mask;
442         sdeimr |= (~enabled_irq_mask & interrupt_mask);
443
444         drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
445
446         lockdep_assert_held(&dev_priv->irq_lock);
447
448         if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
449                 return;
450
451         I915_WRITE(SDEIMR, sdeimr);
452         POSTING_READ(SDEIMR);
453 }
454
455 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
456                               enum pipe pipe)
457 {
458         u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
459         u32 enable_mask = status_mask << 16;
460
461         lockdep_assert_held(&dev_priv->irq_lock);
462
463         if (INTEL_GEN(dev_priv) < 5)
464                 goto out;
465
466         /*
467          * On pipe A we don't support the PSR interrupt yet,
468          * on pipe B and C the same bit MBZ.
469          */
470         if (drm_WARN_ON_ONCE(&dev_priv->drm,
471                              status_mask & PIPE_A_PSR_STATUS_VLV))
472                 return 0;
473         /*
474          * On pipe B and C we don't support the PSR interrupt yet, on pipe
475          * A the same bit is for perf counters which we don't use either.
476          */
477         if (drm_WARN_ON_ONCE(&dev_priv->drm,
478                              status_mask & PIPE_B_PSR_STATUS_VLV))
479                 return 0;
480
481         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
482                          SPRITE0_FLIP_DONE_INT_EN_VLV |
483                          SPRITE1_FLIP_DONE_INT_EN_VLV);
484         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
485                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
486         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
487                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
488
489 out:
490         drm_WARN_ONCE(&dev_priv->drm,
491                       enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
492                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
493                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
494                       pipe_name(pipe), enable_mask, status_mask);
495
496         return enable_mask;
497 }
498
499 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
500                           enum pipe pipe, u32 status_mask)
501 {
502         i915_reg_t reg = PIPESTAT(pipe);
503         u32 enable_mask;
504
505         drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
506                       "pipe %c: status_mask=0x%x\n",
507                       pipe_name(pipe), status_mask);
508
509         lockdep_assert_held(&dev_priv->irq_lock);
510         drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
511
512         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
513                 return;
514
515         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
516         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
517
518         I915_WRITE(reg, enable_mask | status_mask);
519         POSTING_READ(reg);
520 }
521
522 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
523                            enum pipe pipe, u32 status_mask)
524 {
525         i915_reg_t reg = PIPESTAT(pipe);
526         u32 enable_mask;
527
528         drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
529                       "pipe %c: status_mask=0x%x\n",
530                       pipe_name(pipe), status_mask);
531
532         lockdep_assert_held(&dev_priv->irq_lock);
533         drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
534
535         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
536                 return;
537
538         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
539         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
540
541         I915_WRITE(reg, enable_mask | status_mask);
542         POSTING_READ(reg);
543 }
544
545 static bool i915_has_asle(struct drm_i915_private *dev_priv)
546 {
547         if (!dev_priv->opregion.asle)
548                 return false;
549
550         return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
551 }
552
553 /**
554  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
555  * @dev_priv: i915 device private
556  */
557 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
558 {
559         if (!i915_has_asle(dev_priv))
560                 return;
561
562         spin_lock_irq(&dev_priv->irq_lock);
563
564         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
565         if (INTEL_GEN(dev_priv) >= 4)
566                 i915_enable_pipestat(dev_priv, PIPE_A,
567                                      PIPE_LEGACY_BLC_EVENT_STATUS);
568
569         spin_unlock_irq(&dev_priv->irq_lock);
570 }
571
572 /*
573  * This timing diagram depicts the video signal in and
574  * around the vertical blanking period.
575  *
576  * Assumptions about the fictitious mode used in this example:
577  *  vblank_start >= 3
578  *  vsync_start = vblank_start + 1
579  *  vsync_end = vblank_start + 2
580  *  vtotal = vblank_start + 3
581  *
582  *           start of vblank:
583  *           latch double buffered registers
584  *           increment frame counter (ctg+)
585  *           generate start of vblank interrupt (gen4+)
586  *           |
587  *           |          frame start:
588  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
589  *           |          may be shifted forward 1-3 extra lines via PIPECONF
590  *           |          |
591  *           |          |  start of vsync:
592  *           |          |  generate vsync interrupt
593  *           |          |  |
594  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
595  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
596  * ----va---> <-----------------vb--------------------> <--------va-------------
597  *       |          |       <----vs----->                     |
598  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
599  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
600  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
601  *       |          |                                         |
602  *       last visible pixel                                   first visible pixel
603  *                  |                                         increment frame counter (gen3/4)
604  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
605  *
606  * x  = horizontal active
607  * _  = horizontal blanking
608  * hs = horizontal sync
609  * va = vertical active
610  * vb = vertical blanking
611  * vs = vertical sync
612  * vbs = vblank_start (number)
613  *
614  * Summary:
615  * - most events happen at the start of horizontal sync
616  * - frame start happens at the start of horizontal blank, 1-4 lines
617  *   (depending on PIPECONF settings) after the start of vblank
618  * - gen3/4 pixel and frame counter are synchronized with the start
619  *   of horizontal active on the first line of vertical active
620  */
621
622 /* Called from drm generic code, passed a 'crtc', which
623  * we use as a pipe index
624  */
625 u32 i915_get_vblank_counter(struct drm_crtc *crtc)
626 {
627         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
628         struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
629         const struct drm_display_mode *mode = &vblank->hwmode;
630         enum pipe pipe = to_intel_crtc(crtc)->pipe;
631         i915_reg_t high_frame, low_frame;
632         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
633         unsigned long irqflags;
634
635         /*
636          * On i965gm TV output the frame counter only works up to
637          * the point when we enable the TV encoder. After that the
638          * frame counter ceases to work and reads zero. We need a
639          * vblank wait before enabling the TV encoder and so we
640          * have to enable vblank interrupts while the frame counter
641          * is still in a working state. However the core vblank code
642          * does not like us returning non-zero frame counter values
643          * when we've told it that we don't have a working frame
644          * counter. Thus we must stop non-zero values leaking out.
645          */
646         if (!vblank->max_vblank_count)
647                 return 0;
648
649         htotal = mode->crtc_htotal;
650         hsync_start = mode->crtc_hsync_start;
651         vbl_start = mode->crtc_vblank_start;
652         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
653                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
654
655         /* Convert to pixel count */
656         vbl_start *= htotal;
657
658         /* Start of vblank event occurs at start of hsync */
659         vbl_start -= htotal - hsync_start;
660
661         high_frame = PIPEFRAME(pipe);
662         low_frame = PIPEFRAMEPIXEL(pipe);
663
664         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
665
666         /*
667          * High & low register fields aren't synchronized, so make sure
668          * we get a low value that's stable across two reads of the high
669          * register.
670          */
671         do {
672                 high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
673                 low   = intel_de_read_fw(dev_priv, low_frame);
674                 high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
675         } while (high1 != high2);
676
677         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
678
679         high1 >>= PIPE_FRAME_HIGH_SHIFT;
680         pixel = low & PIPE_PIXEL_MASK;
681         low >>= PIPE_FRAME_LOW_SHIFT;
682
683         /*
684          * The frame counter increments at beginning of active.
685          * Cook up a vblank counter by also checking the pixel
686          * counter against vblank start.
687          */
688         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
689 }
690
691 u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
692 {
693         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
694         struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
695         enum pipe pipe = to_intel_crtc(crtc)->pipe;
696
697         if (!vblank->max_vblank_count)
698                 return 0;
699
700         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
701 }
702
703 /*
704  * On certain encoders on certain platforms, pipe
705  * scanline register will not work to get the scanline,
706  * since the timings are driven from the PORT or issues
707  * with scanline register updates.
708  * This function will use Framestamp and current
709  * timestamp registers to calculate the scanline.
710  */
711 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
712 {
713         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
714         struct drm_vblank_crtc *vblank =
715                 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
716         const struct drm_display_mode *mode = &vblank->hwmode;
717         u32 vblank_start = mode->crtc_vblank_start;
718         u32 vtotal = mode->crtc_vtotal;
719         u32 htotal = mode->crtc_htotal;
720         u32 clock = mode->crtc_clock;
721         u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
722
723         /*
724          * To avoid the race condition where we might cross into the
725          * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
726          * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
727          * during the same frame.
728          */
729         do {
730                 /*
731                  * This field provides read back of the display
732                  * pipe frame time stamp. The time stamp value
733                  * is sampled at every start of vertical blank.
734                  */
735                 scan_prev_time = intel_de_read_fw(dev_priv,
736                                                   PIPE_FRMTMSTMP(crtc->pipe));
737
738                 /*
739                  * The TIMESTAMP_CTR register has the current
740                  * time stamp value.
741                  */
742                 scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR);
743
744                 scan_post_time = intel_de_read_fw(dev_priv,
745                                                   PIPE_FRMTMSTMP(crtc->pipe));
746         } while (scan_post_time != scan_prev_time);
747
748         scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
749                                         clock), 1000 * htotal);
750         scanline = min(scanline, vtotal - 1);
751         scanline = (scanline + vblank_start) % vtotal;
752
753         return scanline;
754 }
755
756 /*
757  * intel_de_read_fw(), only for fast reads of display block, no need for
758  * forcewake etc.
759  */
760 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
761 {
762         struct drm_device *dev = crtc->base.dev;
763         struct drm_i915_private *dev_priv = to_i915(dev);
764         const struct drm_display_mode *mode;
765         struct drm_vblank_crtc *vblank;
766         enum pipe pipe = crtc->pipe;
767         int position, vtotal;
768
769         if (!crtc->active)
770                 return -1;
771
772         vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
773         mode = &vblank->hwmode;
774
775         if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
776                 return __intel_get_crtc_scanline_from_timestamp(crtc);
777
778         vtotal = mode->crtc_vtotal;
779         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
780                 vtotal /= 2;
781
782         if (IS_GEN(dev_priv, 2))
783                 position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
784         else
785                 position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
786
787         /*
788          * On HSW, the DSL reg (0x70000) appears to return 0 if we
789          * read it just before the start of vblank.  So try it again
790          * so we don't accidentally end up spanning a vblank frame
791          * increment, causing the pipe_update_end() code to squak at us.
792          *
793          * The nature of this problem means we can't simply check the ISR
794          * bit and return the vblank start value; nor can we use the scanline
795          * debug register in the transcoder as it appears to have the same
796          * problem.  We may need to extend this to include other platforms,
797          * but so far testing only shows the problem on HSW.
798          */
799         if (HAS_DDI(dev_priv) && !position) {
800                 int i, temp;
801
802                 for (i = 0; i < 100; i++) {
803                         udelay(1);
804                         temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
805                         if (temp != position) {
806                                 position = temp;
807                                 break;
808                         }
809                 }
810         }
811
812         /*
813          * See update_scanline_offset() for the details on the
814          * scanline_offset adjustment.
815          */
816         return (position + crtc->scanline_offset) % vtotal;
817 }
818
819 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
820                                      bool in_vblank_irq,
821                                      int *vpos, int *hpos,
822                                      ktime_t *stime, ktime_t *etime,
823                                      const struct drm_display_mode *mode)
824 {
825         struct drm_device *dev = _crtc->dev;
826         struct drm_i915_private *dev_priv = to_i915(dev);
827         struct intel_crtc *crtc = to_intel_crtc(_crtc);
828         enum pipe pipe = crtc->pipe;
829         int position;
830         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
831         unsigned long irqflags;
832         bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
833                 IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
834                 crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
835
836         if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) {
837                 drm_dbg(&dev_priv->drm,
838                         "trying to get scanoutpos for disabled "
839                         "pipe %c\n", pipe_name(pipe));
840                 return false;
841         }
842
843         htotal = mode->crtc_htotal;
844         hsync_start = mode->crtc_hsync_start;
845         vtotal = mode->crtc_vtotal;
846         vbl_start = mode->crtc_vblank_start;
847         vbl_end = mode->crtc_vblank_end;
848
849         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
850                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
851                 vbl_end /= 2;
852                 vtotal /= 2;
853         }
854
855         /*
856          * Lock uncore.lock, as we will do multiple timing critical raw
857          * register reads, potentially with preemption disabled, so the
858          * following code must not block on uncore.lock.
859          */
860         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
861
862         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
863
864         /* Get optional system timestamp before query. */
865         if (stime)
866                 *stime = ktime_get();
867
868         if (use_scanline_counter) {
869                 /* No obvious pixelcount register. Only query vertical
870                  * scanout position from Display scan line register.
871                  */
872                 position = __intel_get_crtc_scanline(crtc);
873         } else {
874                 /* Have access to pixelcount since start of frame.
875                  * We can split this into vertical and horizontal
876                  * scanout position.
877                  */
878                 position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
879
880                 /* convert to pixel counts */
881                 vbl_start *= htotal;
882                 vbl_end *= htotal;
883                 vtotal *= htotal;
884
885                 /*
886                  * In interlaced modes, the pixel counter counts all pixels,
887                  * so one field will have htotal more pixels. In order to avoid
888                  * the reported position from jumping backwards when the pixel
889                  * counter is beyond the length of the shorter field, just
890                  * clamp the position the length of the shorter field. This
891                  * matches how the scanline counter based position works since
892                  * the scanline counter doesn't count the two half lines.
893                  */
894                 if (position >= vtotal)
895                         position = vtotal - 1;
896
897                 /*
898                  * Start of vblank interrupt is triggered at start of hsync,
899                  * just prior to the first active line of vblank. However we
900                  * consider lines to start at the leading edge of horizontal
901                  * active. So, should we get here before we've crossed into
902                  * the horizontal active of the first line in vblank, we would
903                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
904                  * always add htotal-hsync_start to the current pixel position.
905                  */
906                 position = (position + htotal - hsync_start) % vtotal;
907         }
908
909         /* Get optional system timestamp after query. */
910         if (etime)
911                 *etime = ktime_get();
912
913         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
914
915         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
916
917         /*
918          * While in vblank, position will be negative
919          * counting up towards 0 at vbl_end. And outside
920          * vblank, position will be positive counting
921          * up since vbl_end.
922          */
923         if (position >= vbl_start)
924                 position -= vbl_end;
925         else
926                 position += vtotal - vbl_end;
927
928         if (use_scanline_counter) {
929                 *vpos = position;
930                 *hpos = 0;
931         } else {
932                 *vpos = position / htotal;
933                 *hpos = position - (*vpos * htotal);
934         }
935
936         return true;
937 }
938
939 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
940                                      ktime_t *vblank_time, bool in_vblank_irq)
941 {
942         return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
943                 crtc, max_error, vblank_time, in_vblank_irq,
944                 i915_get_crtc_scanoutpos);
945 }
946
947 int intel_get_crtc_scanline(struct intel_crtc *crtc)
948 {
949         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
950         unsigned long irqflags;
951         int position;
952
953         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
954         position = __intel_get_crtc_scanline(crtc);
955         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
956
957         return position;
958 }
959
960 /**
961  * ivb_parity_work - Workqueue called when a parity error interrupt
962  * occurred.
963  * @work: workqueue struct
964  *
965  * Doesn't actually do anything except notify userspace. As a consequence of
966  * this event, userspace should try to remap the bad rows since statistically
967  * it is likely the same row is more likely to go bad again.
968  */
969 static void ivb_parity_work(struct work_struct *work)
970 {
971         struct drm_i915_private *dev_priv =
972                 container_of(work, typeof(*dev_priv), l3_parity.error_work);
973         struct intel_gt *gt = &dev_priv->gt;
974         u32 error_status, row, bank, subbank;
975         char *parity_event[6];
976         u32 misccpctl;
977         u8 slice = 0;
978
979         /* We must turn off DOP level clock gating to access the L3 registers.
980          * In order to prevent a get/put style interface, acquire struct mutex
981          * any time we access those registers.
982          */
983         mutex_lock(&dev_priv->drm.struct_mutex);
984
985         /* If we've screwed up tracking, just let the interrupt fire again */
986         if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice))
987                 goto out;
988
989         misccpctl = I915_READ(GEN7_MISCCPCTL);
990         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
991         POSTING_READ(GEN7_MISCCPCTL);
992
993         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
994                 i915_reg_t reg;
995
996                 slice--;
997                 if (drm_WARN_ON_ONCE(&dev_priv->drm,
998                                      slice >= NUM_L3_SLICES(dev_priv)))
999                         break;
1000
1001                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1002
1003                 reg = GEN7_L3CDERRST1(slice);
1004
1005                 error_status = I915_READ(reg);
1006                 row = GEN7_PARITY_ERROR_ROW(error_status);
1007                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1008                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1009
1010                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1011                 POSTING_READ(reg);
1012
1013                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1014                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1015                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1016                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1017                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1018                 parity_event[5] = NULL;
1019
1020                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1021                                    KOBJ_CHANGE, parity_event);
1022
1023                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1024                           slice, row, bank, subbank);
1025
1026                 kfree(parity_event[4]);
1027                 kfree(parity_event[3]);
1028                 kfree(parity_event[2]);
1029                 kfree(parity_event[1]);
1030         }
1031
1032         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1033
1034 out:
1035         drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice);
1036         spin_lock_irq(&gt->irq_lock);
1037         gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1038         spin_unlock_irq(&gt->irq_lock);
1039
1040         mutex_unlock(&dev_priv->drm.struct_mutex);
1041 }
1042
1043 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1044 {
1045         switch (pin) {
1046         case HPD_PORT_TC1:
1047                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC1);
1048         case HPD_PORT_TC2:
1049                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC2);
1050         case HPD_PORT_TC3:
1051                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC3);
1052         case HPD_PORT_TC4:
1053                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC4);
1054         case HPD_PORT_TC5:
1055                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC5);
1056         case HPD_PORT_TC6:
1057                 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(HPD_PORT_TC6);
1058         default:
1059                 return false;
1060         }
1061 }
1062
1063 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1064 {
1065         switch (pin) {
1066         case HPD_PORT_A:
1067                 return val & PORTA_HOTPLUG_LONG_DETECT;
1068         case HPD_PORT_B:
1069                 return val & PORTB_HOTPLUG_LONG_DETECT;
1070         case HPD_PORT_C:
1071                 return val & PORTC_HOTPLUG_LONG_DETECT;
1072         default:
1073                 return false;
1074         }
1075 }
1076
1077 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1078 {
1079         switch (pin) {
1080         case HPD_PORT_A:
1081                 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(HPD_PORT_A);
1082         case HPD_PORT_B:
1083                 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(HPD_PORT_B);
1084         case HPD_PORT_C:
1085                 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(HPD_PORT_C);
1086         case HPD_PORT_D:
1087                 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(HPD_PORT_D);
1088         default:
1089                 return false;
1090         }
1091 }
1092
1093 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1094 {
1095         switch (pin) {
1096         case HPD_PORT_TC1:
1097                 return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC1);
1098         case HPD_PORT_TC2:
1099                 return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC2);
1100         case HPD_PORT_TC3:
1101                 return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC3);
1102         case HPD_PORT_TC4:
1103                 return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC4);
1104         case HPD_PORT_TC5:
1105                 return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC5);
1106         case HPD_PORT_TC6:
1107                 return val & ICP_TC_HPD_LONG_DETECT(HPD_PORT_TC6);
1108         default:
1109                 return false;
1110         }
1111 }
1112
1113 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1114 {
1115         switch (pin) {
1116         case HPD_PORT_E:
1117                 return val & PORTE_HOTPLUG_LONG_DETECT;
1118         default:
1119                 return false;
1120         }
1121 }
1122
1123 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1124 {
1125         switch (pin) {
1126         case HPD_PORT_A:
1127                 return val & PORTA_HOTPLUG_LONG_DETECT;
1128         case HPD_PORT_B:
1129                 return val & PORTB_HOTPLUG_LONG_DETECT;
1130         case HPD_PORT_C:
1131                 return val & PORTC_HOTPLUG_LONG_DETECT;
1132         case HPD_PORT_D:
1133                 return val & PORTD_HOTPLUG_LONG_DETECT;
1134         default:
1135                 return false;
1136         }
1137 }
1138
1139 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1140 {
1141         switch (pin) {
1142         case HPD_PORT_A:
1143                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1144         default:
1145                 return false;
1146         }
1147 }
1148
1149 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1150 {
1151         switch (pin) {
1152         case HPD_PORT_B:
1153                 return val & PORTB_HOTPLUG_LONG_DETECT;
1154         case HPD_PORT_C:
1155                 return val & PORTC_HOTPLUG_LONG_DETECT;
1156         case HPD_PORT_D:
1157                 return val & PORTD_HOTPLUG_LONG_DETECT;
1158         default:
1159                 return false;
1160         }
1161 }
1162
1163 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1164 {
1165         switch (pin) {
1166         case HPD_PORT_B:
1167                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1168         case HPD_PORT_C:
1169                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1170         case HPD_PORT_D:
1171                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1172         default:
1173                 return false;
1174         }
1175 }
1176
1177 /*
1178  * Get a bit mask of pins that have triggered, and which ones may be long.
1179  * This can be called multiple times with the same masks to accumulate
1180  * hotplug detection results from several registers.
1181  *
1182  * Note that the caller is expected to zero out the masks initially.
1183  */
1184 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1185                                u32 *pin_mask, u32 *long_mask,
1186                                u32 hotplug_trigger, u32 dig_hotplug_reg,
1187                                const u32 hpd[HPD_NUM_PINS],
1188                                bool long_pulse_detect(enum hpd_pin pin, u32 val))
1189 {
1190         enum hpd_pin pin;
1191
1192         BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1193
1194         for_each_hpd_pin(pin) {
1195                 if ((hpd[pin] & hotplug_trigger) == 0)
1196                         continue;
1197
1198                 *pin_mask |= BIT(pin);
1199
1200                 if (long_pulse_detect(pin, dig_hotplug_reg))
1201                         *long_mask |= BIT(pin);
1202         }
1203
1204         drm_dbg(&dev_priv->drm,
1205                 "hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1206                 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1207
1208 }
1209
1210 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
1211                                   const u32 hpd[HPD_NUM_PINS])
1212 {
1213         struct intel_encoder *encoder;
1214         u32 enabled_irqs = 0;
1215
1216         for_each_intel_encoder(&dev_priv->drm, encoder)
1217                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
1218                         enabled_irqs |= hpd[encoder->hpd_pin];
1219
1220         return enabled_irqs;
1221 }
1222
1223 static u32 intel_hpd_hotplug_irqs(struct drm_i915_private *dev_priv,
1224                                   const u32 hpd[HPD_NUM_PINS])
1225 {
1226         struct intel_encoder *encoder;
1227         u32 hotplug_irqs = 0;
1228
1229         for_each_intel_encoder(&dev_priv->drm, encoder)
1230                 hotplug_irqs |= hpd[encoder->hpd_pin];
1231
1232         return hotplug_irqs;
1233 }
1234
1235 static u32 intel_hpd_hotplug_enables(struct drm_i915_private *i915,
1236                                      hotplug_enables_func hotplug_enables)
1237 {
1238         struct intel_encoder *encoder;
1239         u32 hotplug = 0;
1240
1241         for_each_intel_encoder(&i915->drm, encoder)
1242                 hotplug |= hotplug_enables(i915, encoder->hpd_pin);
1243
1244         return hotplug;
1245 }
1246
1247 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1248 {
1249         wake_up_all(&dev_priv->gmbus_wait_queue);
1250 }
1251
1252 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1253 {
1254         wake_up_all(&dev_priv->gmbus_wait_queue);
1255 }
1256
1257 #if defined(CONFIG_DEBUG_FS)
1258 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1259                                          enum pipe pipe,
1260                                          u32 crc0, u32 crc1,
1261                                          u32 crc2, u32 crc3,
1262                                          u32 crc4)
1263 {
1264         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1265         struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc;
1266         u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1267
1268         trace_intel_pipe_crc(crtc, crcs);
1269
1270         spin_lock(&pipe_crc->lock);
1271         /*
1272          * For some not yet identified reason, the first CRC is
1273          * bonkers. So let's just wait for the next vblank and read
1274          * out the buggy result.
1275          *
1276          * On GEN8+ sometimes the second CRC is bonkers as well, so
1277          * don't trust that one either.
1278          */
1279         if (pipe_crc->skipped <= 0 ||
1280             (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1281                 pipe_crc->skipped++;
1282                 spin_unlock(&pipe_crc->lock);
1283                 return;
1284         }
1285         spin_unlock(&pipe_crc->lock);
1286
1287         drm_crtc_add_crc_entry(&crtc->base, true,
1288                                 drm_crtc_accurate_vblank_count(&crtc->base),
1289                                 crcs);
1290 }
1291 #else
1292 static inline void
1293 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1294                              enum pipe pipe,
1295                              u32 crc0, u32 crc1,
1296                              u32 crc2, u32 crc3,
1297                              u32 crc4) {}
1298 #endif
1299
1300 static void flip_done_handler(struct drm_i915_private *i915,
1301                               enum pipe pipe)
1302 {
1303         struct intel_crtc *crtc = intel_get_crtc_for_pipe(i915, pipe);
1304         struct drm_crtc_state *crtc_state = crtc->base.state;
1305         struct drm_pending_vblank_event *e = crtc_state->event;
1306         struct drm_device *dev = &i915->drm;
1307         unsigned long irqflags;
1308
1309         spin_lock_irqsave(&dev->event_lock, irqflags);
1310
1311         crtc_state->event = NULL;
1312
1313         drm_crtc_send_vblank_event(&crtc->base, e);
1314
1315         spin_unlock_irqrestore(&dev->event_lock, irqflags);
1316 }
1317
1318 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1319                                      enum pipe pipe)
1320 {
1321         display_pipe_crc_irq_handler(dev_priv, pipe,
1322                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1323                                      0, 0, 0, 0);
1324 }
1325
1326 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1327                                      enum pipe pipe)
1328 {
1329         display_pipe_crc_irq_handler(dev_priv, pipe,
1330                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1331                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1332                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1333                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1334                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1335 }
1336
1337 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1338                                       enum pipe pipe)
1339 {
1340         u32 res1, res2;
1341
1342         if (INTEL_GEN(dev_priv) >= 3)
1343                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1344         else
1345                 res1 = 0;
1346
1347         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1348                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1349         else
1350                 res2 = 0;
1351
1352         display_pipe_crc_irq_handler(dev_priv, pipe,
1353                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1354                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1355                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1356                                      res1, res2);
1357 }
1358
1359 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1360 {
1361         enum pipe pipe;
1362
1363         for_each_pipe(dev_priv, pipe) {
1364                 I915_WRITE(PIPESTAT(pipe),
1365                            PIPESTAT_INT_STATUS_MASK |
1366                            PIPE_FIFO_UNDERRUN_STATUS);
1367
1368                 dev_priv->pipestat_irq_mask[pipe] = 0;
1369         }
1370 }
1371
1372 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1373                                   u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1374 {
1375         enum pipe pipe;
1376
1377         spin_lock(&dev_priv->irq_lock);
1378
1379         if (!dev_priv->display_irqs_enabled) {
1380                 spin_unlock(&dev_priv->irq_lock);
1381                 return;
1382         }
1383
1384         for_each_pipe(dev_priv, pipe) {
1385                 i915_reg_t reg;
1386                 u32 status_mask, enable_mask, iir_bit = 0;
1387
1388                 /*
1389                  * PIPESTAT bits get signalled even when the interrupt is
1390                  * disabled with the mask bits, and some of the status bits do
1391                  * not generate interrupts at all (like the underrun bit). Hence
1392                  * we need to be careful that we only handle what we want to
1393                  * handle.
1394                  */
1395
1396                 /* fifo underruns are filterered in the underrun handler. */
1397                 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1398
1399                 switch (pipe) {
1400                 default:
1401                 case PIPE_A:
1402                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1403                         break;
1404                 case PIPE_B:
1405                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1406                         break;
1407                 case PIPE_C:
1408                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1409                         break;
1410                 }
1411                 if (iir & iir_bit)
1412                         status_mask |= dev_priv->pipestat_irq_mask[pipe];
1413
1414                 if (!status_mask)
1415                         continue;
1416
1417                 reg = PIPESTAT(pipe);
1418                 pipe_stats[pipe] = I915_READ(reg) & status_mask;
1419                 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1420
1421                 /*
1422                  * Clear the PIPE*STAT regs before the IIR
1423                  *
1424                  * Toggle the enable bits to make sure we get an
1425                  * edge in the ISR pipe event bit if we don't clear
1426                  * all the enabled status bits. Otherwise the edge
1427                  * triggered IIR on i965/g4x wouldn't notice that
1428                  * an interrupt is still pending.
1429                  */
1430                 if (pipe_stats[pipe]) {
1431                         I915_WRITE(reg, pipe_stats[pipe]);
1432                         I915_WRITE(reg, enable_mask);
1433                 }
1434         }
1435         spin_unlock(&dev_priv->irq_lock);
1436 }
1437
1438 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1439                                       u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1440 {
1441         enum pipe pipe;
1442
1443         for_each_pipe(dev_priv, pipe) {
1444                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1445                         intel_handle_vblank(dev_priv, pipe);
1446
1447                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1448                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1449
1450                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1451                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1452         }
1453 }
1454
1455 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1456                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1457 {
1458         bool blc_event = false;
1459         enum pipe pipe;
1460
1461         for_each_pipe(dev_priv, pipe) {
1462                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1463                         intel_handle_vblank(dev_priv, pipe);
1464
1465                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1466                         blc_event = true;
1467
1468                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1469                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1470
1471                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1472                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1473         }
1474
1475         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1476                 intel_opregion_asle_intr(dev_priv);
1477 }
1478
1479 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1480                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1481 {
1482         bool blc_event = false;
1483         enum pipe pipe;
1484
1485         for_each_pipe(dev_priv, pipe) {
1486                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1487                         intel_handle_vblank(dev_priv, pipe);
1488
1489                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1490                         blc_event = true;
1491
1492                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1493                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1494
1495                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1496                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1497         }
1498
1499         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1500                 intel_opregion_asle_intr(dev_priv);
1501
1502         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1503                 gmbus_irq_handler(dev_priv);
1504 }
1505
1506 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1507                                             u32 pipe_stats[I915_MAX_PIPES])
1508 {
1509         enum pipe pipe;
1510
1511         for_each_pipe(dev_priv, pipe) {
1512                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1513                         intel_handle_vblank(dev_priv, pipe);
1514
1515                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1516                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1517
1518                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1519                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1520         }
1521
1522         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1523                 gmbus_irq_handler(dev_priv);
1524 }
1525
1526 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1527 {
1528         u32 hotplug_status = 0, hotplug_status_mask;
1529         int i;
1530
1531         if (IS_G4X(dev_priv) ||
1532             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1533                 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1534                         DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1535         else
1536                 hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1537
1538         /*
1539          * We absolutely have to clear all the pending interrupt
1540          * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1541          * interrupt bit won't have an edge, and the i965/g4x
1542          * edge triggered IIR will not notice that an interrupt
1543          * is still pending. We can't use PORT_HOTPLUG_EN to
1544          * guarantee the edge as the act of toggling the enable
1545          * bits can itself generate a new hotplug interrupt :(
1546          */
1547         for (i = 0; i < 10; i++) {
1548                 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1549
1550                 if (tmp == 0)
1551                         return hotplug_status;
1552
1553                 hotplug_status |= tmp;
1554                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1555         }
1556
1557         drm_WARN_ONCE(&dev_priv->drm, 1,
1558                       "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1559                       I915_READ(PORT_HOTPLUG_STAT));
1560
1561         return hotplug_status;
1562 }
1563
1564 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1565                                  u32 hotplug_status)
1566 {
1567         u32 pin_mask = 0, long_mask = 0;
1568         u32 hotplug_trigger;
1569
1570         if (IS_G4X(dev_priv) ||
1571             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1572                 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1573         else
1574                 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1575
1576         if (hotplug_trigger) {
1577                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1578                                    hotplug_trigger, hotplug_trigger,
1579                                    dev_priv->hotplug.hpd,
1580                                    i9xx_port_hotplug_long_detect);
1581
1582                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1583         }
1584
1585         if ((IS_G4X(dev_priv) ||
1586              IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1587             hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1588                 dp_aux_irq_handler(dev_priv);
1589 }
1590
1591 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1592 {
1593         struct drm_i915_private *dev_priv = arg;
1594         irqreturn_t ret = IRQ_NONE;
1595
1596         if (!intel_irqs_enabled(dev_priv))
1597                 return IRQ_NONE;
1598
1599         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1600         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1601
1602         do {
1603                 u32 iir, gt_iir, pm_iir;
1604                 u32 pipe_stats[I915_MAX_PIPES] = {};
1605                 u32 hotplug_status = 0;
1606                 u32 ier = 0;
1607
1608                 gt_iir = I915_READ(GTIIR);
1609                 pm_iir = I915_READ(GEN6_PMIIR);
1610                 iir = I915_READ(VLV_IIR);
1611
1612                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1613                         break;
1614
1615                 ret = IRQ_HANDLED;
1616
1617                 /*
1618                  * Theory on interrupt generation, based on empirical evidence:
1619                  *
1620                  * x = ((VLV_IIR & VLV_IER) ||
1621                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1622                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1623                  *
1624                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1625                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1626                  * guarantee the CPU interrupt will be raised again even if we
1627                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1628                  * bits this time around.
1629                  */
1630                 I915_WRITE(VLV_MASTER_IER, 0);
1631                 ier = I915_READ(VLV_IER);
1632                 I915_WRITE(VLV_IER, 0);
1633
1634                 if (gt_iir)
1635                         I915_WRITE(GTIIR, gt_iir);
1636                 if (pm_iir)
1637                         I915_WRITE(GEN6_PMIIR, pm_iir);
1638
1639                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1640                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1641
1642                 /* Call regardless, as some status bits might not be
1643                  * signalled in iir */
1644                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1645
1646                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1647                            I915_LPE_PIPE_B_INTERRUPT))
1648                         intel_lpe_audio_irq_handler(dev_priv);
1649
1650                 /*
1651                  * VLV_IIR is single buffered, and reflects the level
1652                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1653                  */
1654                 if (iir)
1655                         I915_WRITE(VLV_IIR, iir);
1656
1657                 I915_WRITE(VLV_IER, ier);
1658                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1659
1660                 if (gt_iir)
1661                         gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
1662                 if (pm_iir)
1663                         gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
1664
1665                 if (hotplug_status)
1666                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1667
1668                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1669         } while (0);
1670
1671         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1672
1673         return ret;
1674 }
1675
1676 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1677 {
1678         struct drm_i915_private *dev_priv = arg;
1679         irqreturn_t ret = IRQ_NONE;
1680
1681         if (!intel_irqs_enabled(dev_priv))
1682                 return IRQ_NONE;
1683
1684         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1685         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1686
1687         do {
1688                 u32 master_ctl, iir;
1689                 u32 pipe_stats[I915_MAX_PIPES] = {};
1690                 u32 hotplug_status = 0;
1691                 u32 ier = 0;
1692
1693                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1694                 iir = I915_READ(VLV_IIR);
1695
1696                 if (master_ctl == 0 && iir == 0)
1697                         break;
1698
1699                 ret = IRQ_HANDLED;
1700
1701                 /*
1702                  * Theory on interrupt generation, based on empirical evidence:
1703                  *
1704                  * x = ((VLV_IIR & VLV_IER) ||
1705                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1706                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1707                  *
1708                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1709                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1710                  * guarantee the CPU interrupt will be raised again even if we
1711                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1712                  * bits this time around.
1713                  */
1714                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1715                 ier = I915_READ(VLV_IER);
1716                 I915_WRITE(VLV_IER, 0);
1717
1718                 gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
1719
1720                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1721                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1722
1723                 /* Call regardless, as some status bits might not be
1724                  * signalled in iir */
1725                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1726
1727                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1728                            I915_LPE_PIPE_B_INTERRUPT |
1729                            I915_LPE_PIPE_C_INTERRUPT))
1730                         intel_lpe_audio_irq_handler(dev_priv);
1731
1732                 /*
1733                  * VLV_IIR is single buffered, and reflects the level
1734                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1735                  */
1736                 if (iir)
1737                         I915_WRITE(VLV_IIR, iir);
1738
1739                 I915_WRITE(VLV_IER, ier);
1740                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1741
1742                 if (hotplug_status)
1743                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1744
1745                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1746         } while (0);
1747
1748         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1749
1750         return ret;
1751 }
1752
1753 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1754                                 u32 hotplug_trigger)
1755 {
1756         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1757
1758         /*
1759          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1760          * unless we touch the hotplug register, even if hotplug_trigger is
1761          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1762          * errors.
1763          */
1764         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1765         if (!hotplug_trigger) {
1766                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1767                         PORTD_HOTPLUG_STATUS_MASK |
1768                         PORTC_HOTPLUG_STATUS_MASK |
1769                         PORTB_HOTPLUG_STATUS_MASK;
1770                 dig_hotplug_reg &= ~mask;
1771         }
1772
1773         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1774         if (!hotplug_trigger)
1775                 return;
1776
1777         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1778                            hotplug_trigger, dig_hotplug_reg,
1779                            dev_priv->hotplug.pch_hpd,
1780                            pch_port_hotplug_long_detect);
1781
1782         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1783 }
1784
1785 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1786 {
1787         enum pipe pipe;
1788         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1789
1790         ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1791
1792         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1793                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1794                                SDE_AUDIO_POWER_SHIFT);
1795                 drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n",
1796                         port_name(port));
1797         }
1798
1799         if (pch_iir & SDE_AUX_MASK)
1800                 dp_aux_irq_handler(dev_priv);
1801
1802         if (pch_iir & SDE_GMBUS)
1803                 gmbus_irq_handler(dev_priv);
1804
1805         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1806                 drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n");
1807
1808         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1809                 drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n");
1810
1811         if (pch_iir & SDE_POISON)
1812                 drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1813
1814         if (pch_iir & SDE_FDI_MASK) {
1815                 for_each_pipe(dev_priv, pipe)
1816                         drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1817                                 pipe_name(pipe),
1818                                 I915_READ(FDI_RX_IIR(pipe)));
1819         }
1820
1821         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1822                 drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n");
1823
1824         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1825                 drm_dbg(&dev_priv->drm,
1826                         "PCH transcoder CRC error interrupt\n");
1827
1828         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1829                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
1830
1831         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1832                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
1833 }
1834
1835 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1836 {
1837         u32 err_int = I915_READ(GEN7_ERR_INT);
1838         enum pipe pipe;
1839
1840         if (err_int & ERR_INT_POISON)
1841                 drm_err(&dev_priv->drm, "Poison interrupt\n");
1842
1843         for_each_pipe(dev_priv, pipe) {
1844                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1845                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1846
1847                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1848                         if (IS_IVYBRIDGE(dev_priv))
1849                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
1850                         else
1851                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
1852                 }
1853         }
1854
1855         I915_WRITE(GEN7_ERR_INT, err_int);
1856 }
1857
1858 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
1859 {
1860         u32 serr_int = I915_READ(SERR_INT);
1861         enum pipe pipe;
1862
1863         if (serr_int & SERR_INT_POISON)
1864                 drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1865
1866         for_each_pipe(dev_priv, pipe)
1867                 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
1868                         intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
1869
1870         I915_WRITE(SERR_INT, serr_int);
1871 }
1872
1873 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1874 {
1875         enum pipe pipe;
1876         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1877
1878         ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1879
1880         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1881                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1882                                SDE_AUDIO_POWER_SHIFT_CPT);
1883                 drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n",
1884                         port_name(port));
1885         }
1886
1887         if (pch_iir & SDE_AUX_MASK_CPT)
1888                 dp_aux_irq_handler(dev_priv);
1889
1890         if (pch_iir & SDE_GMBUS_CPT)
1891                 gmbus_irq_handler(dev_priv);
1892
1893         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1894                 drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n");
1895
1896         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1897                 drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n");
1898
1899         if (pch_iir & SDE_FDI_MASK_CPT) {
1900                 for_each_pipe(dev_priv, pipe)
1901                         drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1902                                 pipe_name(pipe),
1903                                 I915_READ(FDI_RX_IIR(pipe)));
1904         }
1905
1906         if (pch_iir & SDE_ERROR_CPT)
1907                 cpt_serr_int_handler(dev_priv);
1908 }
1909
1910 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1911 {
1912         u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_HOTPLUG_MASK_ICP;
1913         u32 tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_MASK_ICP;
1914         u32 pin_mask = 0, long_mask = 0;
1915
1916         if (ddi_hotplug_trigger) {
1917                 u32 dig_hotplug_reg;
1918
1919                 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
1920                 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
1921
1922                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1923                                    ddi_hotplug_trigger, dig_hotplug_reg,
1924                                    dev_priv->hotplug.pch_hpd,
1925                                    icp_ddi_port_hotplug_long_detect);
1926         }
1927
1928         if (tc_hotplug_trigger) {
1929                 u32 dig_hotplug_reg;
1930
1931                 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
1932                 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
1933
1934                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1935                                    tc_hotplug_trigger, dig_hotplug_reg,
1936                                    dev_priv->hotplug.pch_hpd,
1937                                    icp_tc_port_hotplug_long_detect);
1938         }
1939
1940         if (pin_mask)
1941                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1942
1943         if (pch_iir & SDE_GMBUS_ICP)
1944                 gmbus_irq_handler(dev_priv);
1945 }
1946
1947 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1948 {
1949         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1950                 ~SDE_PORTE_HOTPLUG_SPT;
1951         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1952         u32 pin_mask = 0, long_mask = 0;
1953
1954         if (hotplug_trigger) {
1955                 u32 dig_hotplug_reg;
1956
1957                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1958                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1959
1960                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1961                                    hotplug_trigger, dig_hotplug_reg,
1962                                    dev_priv->hotplug.pch_hpd,
1963                                    spt_port_hotplug_long_detect);
1964         }
1965
1966         if (hotplug2_trigger) {
1967                 u32 dig_hotplug_reg;
1968
1969                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1970                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
1971
1972                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1973                                    hotplug2_trigger, dig_hotplug_reg,
1974                                    dev_priv->hotplug.pch_hpd,
1975                                    spt_port_hotplug2_long_detect);
1976         }
1977
1978         if (pin_mask)
1979                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1980
1981         if (pch_iir & SDE_GMBUS_CPT)
1982                 gmbus_irq_handler(dev_priv);
1983 }
1984
1985 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
1986                                 u32 hotplug_trigger)
1987 {
1988         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1989
1990         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
1991         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
1992
1993         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1994                            hotplug_trigger, dig_hotplug_reg,
1995                            dev_priv->hotplug.hpd,
1996                            ilk_port_hotplug_long_detect);
1997
1998         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1999 }
2000
2001 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2002                                     u32 de_iir)
2003 {
2004         enum pipe pipe;
2005         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2006
2007         if (hotplug_trigger)
2008                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2009
2010         if (de_iir & DE_AUX_CHANNEL_A)
2011                 dp_aux_irq_handler(dev_priv);
2012
2013         if (de_iir & DE_GSE)
2014                 intel_opregion_asle_intr(dev_priv);
2015
2016         if (de_iir & DE_POISON)
2017                 drm_err(&dev_priv->drm, "Poison interrupt\n");
2018
2019         for_each_pipe(dev_priv, pipe) {
2020                 if (de_iir & DE_PIPE_VBLANK(pipe))
2021                         intel_handle_vblank(dev_priv, pipe);
2022
2023                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2024                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2025
2026                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2027                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2028         }
2029
2030         /* check event from PCH */
2031         if (de_iir & DE_PCH_EVENT) {
2032                 u32 pch_iir = I915_READ(SDEIIR);
2033
2034                 if (HAS_PCH_CPT(dev_priv))
2035                         cpt_irq_handler(dev_priv, pch_iir);
2036                 else
2037                         ibx_irq_handler(dev_priv, pch_iir);
2038
2039                 /* should clear PCH hotplug event before clear CPU irq */
2040                 I915_WRITE(SDEIIR, pch_iir);
2041         }
2042
2043         if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2044                 gen5_rps_irq_handler(&dev_priv->gt.rps);
2045 }
2046
2047 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2048                                     u32 de_iir)
2049 {
2050         enum pipe pipe;
2051         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2052
2053         if (hotplug_trigger)
2054                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2055
2056         if (de_iir & DE_ERR_INT_IVB)
2057                 ivb_err_int_handler(dev_priv);
2058
2059         if (de_iir & DE_EDP_PSR_INT_HSW) {
2060                 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2061
2062                 intel_psr_irq_handler(dev_priv, psr_iir);
2063                 I915_WRITE(EDP_PSR_IIR, psr_iir);
2064         }
2065
2066         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2067                 dp_aux_irq_handler(dev_priv);
2068
2069         if (de_iir & DE_GSE_IVB)
2070                 intel_opregion_asle_intr(dev_priv);
2071
2072         for_each_pipe(dev_priv, pipe) {
2073                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2074                         intel_handle_vblank(dev_priv, pipe);
2075         }
2076
2077         /* check event from PCH */
2078         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2079                 u32 pch_iir = I915_READ(SDEIIR);
2080
2081                 cpt_irq_handler(dev_priv, pch_iir);
2082
2083                 /* clear PCH hotplug event before clear CPU irq */
2084                 I915_WRITE(SDEIIR, pch_iir);
2085         }
2086 }
2087
2088 /*
2089  * To handle irqs with the minimum potential races with fresh interrupts, we:
2090  * 1 - Disable Master Interrupt Control.
2091  * 2 - Find the source(s) of the interrupt.
2092  * 3 - Clear the Interrupt Identity bits (IIR).
2093  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2094  * 5 - Re-enable Master Interrupt Control.
2095  */
2096 static irqreturn_t ilk_irq_handler(int irq, void *arg)
2097 {
2098         struct drm_i915_private *i915 = arg;
2099         void __iomem * const regs = i915->uncore.regs;
2100         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2101         irqreturn_t ret = IRQ_NONE;
2102
2103         if (unlikely(!intel_irqs_enabled(i915)))
2104                 return IRQ_NONE;
2105
2106         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2107         disable_rpm_wakeref_asserts(&i915->runtime_pm);
2108
2109         /* disable master interrupt before clearing iir  */
2110         de_ier = raw_reg_read(regs, DEIER);
2111         raw_reg_write(regs, DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2112
2113         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2114          * interrupts will will be stored on its back queue, and then we'll be
2115          * able to process them after we restore SDEIER (as soon as we restore
2116          * it, we'll get an interrupt if SDEIIR still has something to process
2117          * due to its back queue). */
2118         if (!HAS_PCH_NOP(i915)) {
2119                 sde_ier = raw_reg_read(regs, SDEIER);
2120                 raw_reg_write(regs, SDEIER, 0);
2121         }
2122
2123         /* Find, clear, then process each source of interrupt */
2124
2125         gt_iir = raw_reg_read(regs, GTIIR);
2126         if (gt_iir) {
2127                 raw_reg_write(regs, GTIIR, gt_iir);
2128                 if (INTEL_GEN(i915) >= 6)
2129                         gen6_gt_irq_handler(&i915->gt, gt_iir);
2130                 else
2131                         gen5_gt_irq_handler(&i915->gt, gt_iir);
2132                 ret = IRQ_HANDLED;
2133         }
2134
2135         de_iir = raw_reg_read(regs, DEIIR);
2136         if (de_iir) {
2137                 raw_reg_write(regs, DEIIR, de_iir);
2138                 if (INTEL_GEN(i915) >= 7)
2139                         ivb_display_irq_handler(i915, de_iir);
2140                 else
2141                         ilk_display_irq_handler(i915, de_iir);
2142                 ret = IRQ_HANDLED;
2143         }
2144
2145         if (INTEL_GEN(i915) >= 6) {
2146                 u32 pm_iir = raw_reg_read(regs, GEN6_PMIIR);
2147                 if (pm_iir) {
2148                         raw_reg_write(regs, GEN6_PMIIR, pm_iir);
2149                         gen6_rps_irq_handler(&i915->gt.rps, pm_iir);
2150                         ret = IRQ_HANDLED;
2151                 }
2152         }
2153
2154         raw_reg_write(regs, DEIER, de_ier);
2155         if (sde_ier)
2156                 raw_reg_write(regs, SDEIER, sde_ier);
2157
2158         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2159         enable_rpm_wakeref_asserts(&i915->runtime_pm);
2160
2161         return ret;
2162 }
2163
2164 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2165                                 u32 hotplug_trigger)
2166 {
2167         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2168
2169         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2170         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2171
2172         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2173                            hotplug_trigger, dig_hotplug_reg,
2174                            dev_priv->hotplug.hpd,
2175                            bxt_port_hotplug_long_detect);
2176
2177         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2178 }
2179
2180 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2181 {
2182         u32 pin_mask = 0, long_mask = 0;
2183         u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2184         u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2185
2186         if (trigger_tc) {
2187                 u32 dig_hotplug_reg;
2188
2189                 dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2190                 I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2191
2192                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2193                                    trigger_tc, dig_hotplug_reg,
2194                                    dev_priv->hotplug.hpd,
2195                                    gen11_port_hotplug_long_detect);
2196         }
2197
2198         if (trigger_tbt) {
2199                 u32 dig_hotplug_reg;
2200
2201                 dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2202                 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2203
2204                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2205                                    trigger_tbt, dig_hotplug_reg,
2206                                    dev_priv->hotplug.hpd,
2207                                    gen11_port_hotplug_long_detect);
2208         }
2209
2210         if (pin_mask)
2211                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2212         else
2213                 drm_err(&dev_priv->drm,
2214                         "Unexpected DE HPD interrupt 0x%08x\n", iir);
2215 }
2216
2217 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2218 {
2219         u32 mask;
2220
2221         if (INTEL_GEN(dev_priv) >= 12)
2222                 return TGL_DE_PORT_AUX_DDIA |
2223                         TGL_DE_PORT_AUX_DDIB |
2224                         TGL_DE_PORT_AUX_DDIC |
2225                         TGL_DE_PORT_AUX_USBC1 |
2226                         TGL_DE_PORT_AUX_USBC2 |
2227                         TGL_DE_PORT_AUX_USBC3 |
2228                         TGL_DE_PORT_AUX_USBC4 |
2229                         TGL_DE_PORT_AUX_USBC5 |
2230                         TGL_DE_PORT_AUX_USBC6;
2231
2232
2233         mask = GEN8_AUX_CHANNEL_A;
2234         if (INTEL_GEN(dev_priv) >= 9)
2235                 mask |= GEN9_AUX_CHANNEL_B |
2236                         GEN9_AUX_CHANNEL_C |
2237                         GEN9_AUX_CHANNEL_D;
2238
2239         if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2240                 mask |= CNL_AUX_CHANNEL_F;
2241
2242         if (IS_GEN(dev_priv, 11))
2243                 mask |= ICL_AUX_CHANNEL_E;
2244
2245         return mask;
2246 }
2247
2248 static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2249 {
2250         if (IS_ROCKETLAKE(dev_priv))
2251                 return RKL_DE_PIPE_IRQ_FAULT_ERRORS;
2252         else if (INTEL_GEN(dev_priv) >= 11)
2253                 return GEN11_DE_PIPE_IRQ_FAULT_ERRORS;
2254         else if (INTEL_GEN(dev_priv) >= 9)
2255                 return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2256         else
2257                 return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2258 }
2259
2260 static void
2261 gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2262 {
2263         bool found = false;
2264
2265         if (iir & GEN8_DE_MISC_GSE) {
2266                 intel_opregion_asle_intr(dev_priv);
2267                 found = true;
2268         }
2269
2270         if (iir & GEN8_DE_EDP_PSR) {
2271                 u32 psr_iir;
2272                 i915_reg_t iir_reg;
2273
2274                 if (INTEL_GEN(dev_priv) >= 12)
2275                         iir_reg = TRANS_PSR_IIR(dev_priv->psr.transcoder);
2276                 else
2277                         iir_reg = EDP_PSR_IIR;
2278
2279                 psr_iir = I915_READ(iir_reg);
2280                 I915_WRITE(iir_reg, psr_iir);
2281
2282                 if (psr_iir)
2283                         found = true;
2284
2285                 intel_psr_irq_handler(dev_priv, psr_iir);
2286         }
2287
2288         if (!found)
2289                 drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n");
2290 }
2291
2292 static void gen11_dsi_te_interrupt_handler(struct drm_i915_private *dev_priv,
2293                                            u32 te_trigger)
2294 {
2295         enum pipe pipe = INVALID_PIPE;
2296         enum transcoder dsi_trans;
2297         enum port port;
2298         u32 val, tmp;
2299
2300         /*
2301          * Incase of dual link, TE comes from DSI_1
2302          * this is to check if dual link is enabled
2303          */
2304         val = I915_READ(TRANS_DDI_FUNC_CTL2(TRANSCODER_DSI_0));
2305         val &= PORT_SYNC_MODE_ENABLE;
2306
2307         /*
2308          * if dual link is enabled, then read DSI_0
2309          * transcoder registers
2310          */
2311         port = ((te_trigger & DSI1_TE && val) || (te_trigger & DSI0_TE)) ?
2312                                                   PORT_A : PORT_B;
2313         dsi_trans = (port == PORT_A) ? TRANSCODER_DSI_0 : TRANSCODER_DSI_1;
2314
2315         /* Check if DSI configured in command mode */
2316         val = I915_READ(DSI_TRANS_FUNC_CONF(dsi_trans));
2317         val = val & OP_MODE_MASK;
2318
2319         if (val != CMD_MODE_NO_GATE && val != CMD_MODE_TE_GATE) {
2320                 drm_err(&dev_priv->drm, "DSI trancoder not configured in command mode\n");
2321                 return;
2322         }
2323
2324         /* Get PIPE for handling VBLANK event */
2325         val = I915_READ(TRANS_DDI_FUNC_CTL(dsi_trans));
2326         switch (val & TRANS_DDI_EDP_INPUT_MASK) {
2327         case TRANS_DDI_EDP_INPUT_A_ON:
2328                 pipe = PIPE_A;
2329                 break;
2330         case TRANS_DDI_EDP_INPUT_B_ONOFF:
2331                 pipe = PIPE_B;
2332                 break;
2333         case TRANS_DDI_EDP_INPUT_C_ONOFF:
2334                 pipe = PIPE_C;
2335                 break;
2336         default:
2337                 drm_err(&dev_priv->drm, "Invalid PIPE\n");
2338                 return;
2339         }
2340
2341         intel_handle_vblank(dev_priv, pipe);
2342
2343         /* clear TE in dsi IIR */
2344         port = (te_trigger & DSI1_TE) ? PORT_B : PORT_A;
2345         tmp = I915_READ(DSI_INTR_IDENT_REG(port));
2346         I915_WRITE(DSI_INTR_IDENT_REG(port), tmp);
2347 }
2348
2349 static irqreturn_t
2350 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2351 {
2352         irqreturn_t ret = IRQ_NONE;
2353         u32 iir;
2354         enum pipe pipe;
2355
2356         if (master_ctl & GEN8_DE_MISC_IRQ) {
2357                 iir = I915_READ(GEN8_DE_MISC_IIR);
2358                 if (iir) {
2359                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2360                         ret = IRQ_HANDLED;
2361                         gen8_de_misc_irq_handler(dev_priv, iir);
2362                 } else {
2363                         drm_err(&dev_priv->drm,
2364                                 "The master control interrupt lied (DE MISC)!\n");
2365                 }
2366         }
2367
2368         if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2369                 iir = I915_READ(GEN11_DE_HPD_IIR);
2370                 if (iir) {
2371                         I915_WRITE(GEN11_DE_HPD_IIR, iir);
2372                         ret = IRQ_HANDLED;
2373                         gen11_hpd_irq_handler(dev_priv, iir);
2374                 } else {
2375                         drm_err(&dev_priv->drm,
2376                                 "The master control interrupt lied, (DE HPD)!\n");
2377                 }
2378         }
2379
2380         if (master_ctl & GEN8_DE_PORT_IRQ) {
2381                 iir = I915_READ(GEN8_DE_PORT_IIR);
2382                 if (iir) {
2383                         bool found = false;
2384
2385                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2386                         ret = IRQ_HANDLED;
2387
2388                         if (iir & gen8_de_port_aux_mask(dev_priv)) {
2389                                 dp_aux_irq_handler(dev_priv);
2390                                 found = true;
2391                         }
2392
2393                         if (IS_GEN9_LP(dev_priv)) {
2394                                 u32 hotplug_trigger = iir & BXT_DE_PORT_HOTPLUG_MASK;
2395
2396                                 if (hotplug_trigger) {
2397                                         bxt_hpd_irq_handler(dev_priv, hotplug_trigger);
2398                                         found = true;
2399                                 }
2400                         } else if (IS_BROADWELL(dev_priv)) {
2401                                 u32 hotplug_trigger = iir & BDW_DE_PORT_HOTPLUG_MASK;
2402
2403                                 if (hotplug_trigger) {
2404                                         ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2405                                         found = true;
2406                                 }
2407                         }
2408
2409                         if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2410                                 gmbus_irq_handler(dev_priv);
2411                                 found = true;
2412                         }
2413
2414                         if (INTEL_GEN(dev_priv) >= 11) {
2415                                 u32 te_trigger = iir & (DSI0_TE | DSI1_TE);
2416
2417                                 if (te_trigger) {
2418                                         gen11_dsi_te_interrupt_handler(dev_priv, te_trigger);
2419                                         found = true;
2420                                 }
2421                         }
2422
2423                         if (!found)
2424                                 drm_err(&dev_priv->drm,
2425                                         "Unexpected DE Port interrupt\n");
2426                 }
2427                 else
2428                         drm_err(&dev_priv->drm,
2429                                 "The master control interrupt lied (DE PORT)!\n");
2430         }
2431
2432         for_each_pipe(dev_priv, pipe) {
2433                 u32 fault_errors;
2434
2435                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2436                         continue;
2437
2438                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2439                 if (!iir) {
2440                         drm_err(&dev_priv->drm,
2441                                 "The master control interrupt lied (DE PIPE)!\n");
2442                         continue;
2443                 }
2444
2445                 ret = IRQ_HANDLED;
2446                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2447
2448                 if (iir & GEN8_PIPE_VBLANK)
2449                         intel_handle_vblank(dev_priv, pipe);
2450
2451                 if (iir & GEN9_PIPE_PLANE1_FLIP_DONE)
2452                         flip_done_handler(dev_priv, pipe);
2453
2454                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2455                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2456
2457                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2458                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2459
2460                 fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2461                 if (fault_errors)
2462                         drm_err(&dev_priv->drm,
2463                                 "Fault errors on pipe %c: 0x%08x\n",
2464                                 pipe_name(pipe),
2465                                 fault_errors);
2466         }
2467
2468         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2469             master_ctl & GEN8_DE_PCH_IRQ) {
2470                 /*
2471                  * FIXME(BDW): Assume for now that the new interrupt handling
2472                  * scheme also closed the SDE interrupt handling race we've seen
2473                  * on older pch-split platforms. But this needs testing.
2474                  */
2475                 iir = I915_READ(SDEIIR);
2476                 if (iir) {
2477                         I915_WRITE(SDEIIR, iir);
2478                         ret = IRQ_HANDLED;
2479
2480                         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2481                                 icp_irq_handler(dev_priv, iir);
2482                         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2483                                 spt_irq_handler(dev_priv, iir);
2484                         else
2485                                 cpt_irq_handler(dev_priv, iir);
2486                 } else {
2487                         /*
2488                          * Like on previous PCH there seems to be something
2489                          * fishy going on with forwarding PCH interrupts.
2490                          */
2491                         drm_dbg(&dev_priv->drm,
2492                                 "The master control interrupt lied (SDE)!\n");
2493                 }
2494         }
2495
2496         return ret;
2497 }
2498
2499 static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2500 {
2501         raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2502
2503         /*
2504          * Now with master disabled, get a sample of level indications
2505          * for this interrupt. Indications will be cleared on related acks.
2506          * New indications can and will light up during processing,
2507          * and will generate new interrupt after enabling master.
2508          */
2509         return raw_reg_read(regs, GEN8_MASTER_IRQ);
2510 }
2511
2512 static inline void gen8_master_intr_enable(void __iomem * const regs)
2513 {
2514         raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2515 }
2516
2517 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2518 {
2519         struct drm_i915_private *dev_priv = arg;
2520         void __iomem * const regs = dev_priv->uncore.regs;
2521         u32 master_ctl;
2522
2523         if (!intel_irqs_enabled(dev_priv))
2524                 return IRQ_NONE;
2525
2526         master_ctl = gen8_master_intr_disable(regs);
2527         if (!master_ctl) {
2528                 gen8_master_intr_enable(regs);
2529                 return IRQ_NONE;
2530         }
2531
2532         /* Find, queue (onto bottom-halves), then clear each source */
2533         gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
2534
2535         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2536         if (master_ctl & ~GEN8_GT_IRQS) {
2537                 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2538                 gen8_de_irq_handler(dev_priv, master_ctl);
2539                 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2540         }
2541
2542         gen8_master_intr_enable(regs);
2543
2544         return IRQ_HANDLED;
2545 }
2546
2547 static u32
2548 gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2549 {
2550         void __iomem * const regs = gt->uncore->regs;
2551         u32 iir;
2552
2553         if (!(master_ctl & GEN11_GU_MISC_IRQ))
2554                 return 0;
2555
2556         iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2557         if (likely(iir))
2558                 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2559
2560         return iir;
2561 }
2562
2563 static void
2564 gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2565 {
2566         if (iir & GEN11_GU_MISC_GSE)
2567                 intel_opregion_asle_intr(gt->i915);
2568 }
2569
2570 static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2571 {
2572         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2573
2574         /*
2575          * Now with master disabled, get a sample of level indications
2576          * for this interrupt. Indications will be cleared on related acks.
2577          * New indications can and will light up during processing,
2578          * and will generate new interrupt after enabling master.
2579          */
2580         return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2581 }
2582
2583 static inline void gen11_master_intr_enable(void __iomem * const regs)
2584 {
2585         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2586 }
2587
2588 static void
2589 gen11_display_irq_handler(struct drm_i915_private *i915)
2590 {
2591         void __iomem * const regs = i915->uncore.regs;
2592         const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2593
2594         disable_rpm_wakeref_asserts(&i915->runtime_pm);
2595         /*
2596          * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2597          * for the display related bits.
2598          */
2599         raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0);
2600         gen8_de_irq_handler(i915, disp_ctl);
2601         raw_reg_write(regs, GEN11_DISPLAY_INT_CTL,
2602                       GEN11_DISPLAY_IRQ_ENABLE);
2603
2604         enable_rpm_wakeref_asserts(&i915->runtime_pm);
2605 }
2606
2607 static __always_inline irqreturn_t
2608 __gen11_irq_handler(struct drm_i915_private * const i915,
2609                     u32 (*intr_disable)(void __iomem * const regs),
2610                     void (*intr_enable)(void __iomem * const regs))
2611 {
2612         void __iomem * const regs = i915->uncore.regs;
2613         struct intel_gt *gt = &i915->gt;
2614         u32 master_ctl;
2615         u32 gu_misc_iir;
2616
2617         if (!intel_irqs_enabled(i915))
2618                 return IRQ_NONE;
2619
2620         master_ctl = intr_disable(regs);
2621         if (!master_ctl) {
2622                 intr_enable(regs);
2623                 return IRQ_NONE;
2624         }
2625
2626         /* Find, queue (onto bottom-halves), then clear each source */
2627         gen11_gt_irq_handler(gt, master_ctl);
2628
2629         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2630         if (master_ctl & GEN11_DISPLAY_IRQ)
2631                 gen11_display_irq_handler(i915);
2632
2633         gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2634
2635         intr_enable(regs);
2636
2637         gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2638
2639         return IRQ_HANDLED;
2640 }
2641
2642 static irqreturn_t gen11_irq_handler(int irq, void *arg)
2643 {
2644         return __gen11_irq_handler(arg,
2645                                    gen11_master_intr_disable,
2646                                    gen11_master_intr_enable);
2647 }
2648
2649 static u32 dg1_master_intr_disable_and_ack(void __iomem * const regs)
2650 {
2651         u32 val;
2652
2653         /* First disable interrupts */
2654         raw_reg_write(regs, DG1_MSTR_UNIT_INTR, 0);
2655
2656         /* Get the indication levels and ack the master unit */
2657         val = raw_reg_read(regs, DG1_MSTR_UNIT_INTR);
2658         if (unlikely(!val))
2659                 return 0;
2660
2661         raw_reg_write(regs, DG1_MSTR_UNIT_INTR, val);
2662
2663         /*
2664          * Now with master disabled, get a sample of level indications
2665          * for this interrupt and ack them right away - we keep GEN11_MASTER_IRQ
2666          * out as this bit doesn't exist anymore for DG1
2667          */
2668         val = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ) & ~GEN11_MASTER_IRQ;
2669         if (unlikely(!val))
2670                 return 0;
2671
2672         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, val);
2673
2674         return val;
2675 }
2676
2677 static inline void dg1_master_intr_enable(void __iomem * const regs)
2678 {
2679         raw_reg_write(regs, DG1_MSTR_UNIT_INTR, DG1_MSTR_IRQ);
2680 }
2681
2682 static irqreturn_t dg1_irq_handler(int irq, void *arg)
2683 {
2684         return __gen11_irq_handler(arg,
2685                                    dg1_master_intr_disable_and_ack,
2686                                    dg1_master_intr_enable);
2687 }
2688
2689 /* Called from drm generic code, passed 'crtc' which
2690  * we use as a pipe index
2691  */
2692 int i8xx_enable_vblank(struct drm_crtc *crtc)
2693 {
2694         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2695         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2696         unsigned long irqflags;
2697
2698         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2699         i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2700         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2701
2702         return 0;
2703 }
2704
2705 int i915gm_enable_vblank(struct drm_crtc *crtc)
2706 {
2707         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2708
2709         /*
2710          * Vblank interrupts fail to wake the device up from C2+.
2711          * Disabling render clock gating during C-states avoids
2712          * the problem. There is a small power cost so we do this
2713          * only when vblank interrupts are actually enabled.
2714          */
2715         if (dev_priv->vblank_enabled++ == 0)
2716                 I915_WRITE(SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2717
2718         return i8xx_enable_vblank(crtc);
2719 }
2720
2721 int i965_enable_vblank(struct drm_crtc *crtc)
2722 {
2723         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2724         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2725         unsigned long irqflags;
2726
2727         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2728         i915_enable_pipestat(dev_priv, pipe,
2729                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2730         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2731
2732         return 0;
2733 }
2734
2735 int ilk_enable_vblank(struct drm_crtc *crtc)
2736 {
2737         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2738         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2739         unsigned long irqflags;
2740         u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2741                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2742
2743         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2744         ilk_enable_display_irq(dev_priv, bit);
2745         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2746
2747         /* Even though there is no DMC, frame counter can get stuck when
2748          * PSR is active as no frames are generated.
2749          */
2750         if (HAS_PSR(dev_priv))
2751                 drm_crtc_vblank_restore(crtc);
2752
2753         return 0;
2754 }
2755
2756 static bool gen11_dsi_configure_te(struct intel_crtc *intel_crtc,
2757                                    bool enable)
2758 {
2759         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
2760         enum port port;
2761         u32 tmp;
2762
2763         if (!(intel_crtc->mode_flags &
2764             (I915_MODE_FLAG_DSI_USE_TE1 | I915_MODE_FLAG_DSI_USE_TE0)))
2765                 return false;
2766
2767         /* for dual link cases we consider TE from slave */
2768         if (intel_crtc->mode_flags & I915_MODE_FLAG_DSI_USE_TE1)
2769                 port = PORT_B;
2770         else
2771                 port = PORT_A;
2772
2773         tmp =  I915_READ(DSI_INTR_MASK_REG(port));
2774         if (enable)
2775                 tmp &= ~DSI_TE_EVENT;
2776         else
2777                 tmp |= DSI_TE_EVENT;
2778
2779         I915_WRITE(DSI_INTR_MASK_REG(port), tmp);
2780
2781         tmp = I915_READ(DSI_INTR_IDENT_REG(port));
2782         I915_WRITE(DSI_INTR_IDENT_REG(port), tmp);
2783
2784         return true;
2785 }
2786
2787 int bdw_enable_vblank(struct drm_crtc *crtc)
2788 {
2789         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2790         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2791         enum pipe pipe = intel_crtc->pipe;
2792         unsigned long irqflags;
2793
2794         if (gen11_dsi_configure_te(intel_crtc, true))
2795                 return 0;
2796
2797         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2798         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2799         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2800
2801         /* Even if there is no DMC, frame counter can get stuck when
2802          * PSR is active as no frames are generated, so check only for PSR.
2803          */
2804         if (HAS_PSR(dev_priv))
2805                 drm_crtc_vblank_restore(crtc);
2806
2807         return 0;
2808 }
2809
2810 void skl_enable_flip_done(struct intel_crtc *crtc)
2811 {
2812         struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2813         enum pipe pipe = crtc->pipe;
2814         unsigned long irqflags;
2815
2816         spin_lock_irqsave(&i915->irq_lock, irqflags);
2817
2818         bdw_enable_pipe_irq(i915, pipe, GEN9_PIPE_PLANE1_FLIP_DONE);
2819
2820         spin_unlock_irqrestore(&i915->irq_lock, irqflags);
2821 }
2822
2823 /* Called from drm generic code, passed 'crtc' which
2824  * we use as a pipe index
2825  */
2826 void i8xx_disable_vblank(struct drm_crtc *crtc)
2827 {
2828         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2829         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2830         unsigned long irqflags;
2831
2832         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2833         i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2834         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2835 }
2836
2837 void i915gm_disable_vblank(struct drm_crtc *crtc)
2838 {
2839         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2840
2841         i8xx_disable_vblank(crtc);
2842
2843         if (--dev_priv->vblank_enabled == 0)
2844                 I915_WRITE(SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2845 }
2846
2847 void i965_disable_vblank(struct drm_crtc *crtc)
2848 {
2849         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2850         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2851         unsigned long irqflags;
2852
2853         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2854         i915_disable_pipestat(dev_priv, pipe,
2855                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2856         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2857 }
2858
2859 void ilk_disable_vblank(struct drm_crtc *crtc)
2860 {
2861         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2862         enum pipe pipe = to_intel_crtc(crtc)->pipe;
2863         unsigned long irqflags;
2864         u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2865                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2866
2867         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2868         ilk_disable_display_irq(dev_priv, bit);
2869         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2870 }
2871
2872 void bdw_disable_vblank(struct drm_crtc *crtc)
2873 {
2874         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2875         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2876         enum pipe pipe = intel_crtc->pipe;
2877         unsigned long irqflags;
2878
2879         if (gen11_dsi_configure_te(intel_crtc, false))
2880                 return;
2881
2882         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2883         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2884         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2885 }
2886
2887 void skl_disable_flip_done(struct intel_crtc *crtc)
2888 {
2889         struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2890         enum pipe pipe = crtc->pipe;
2891         unsigned long irqflags;
2892
2893         spin_lock_irqsave(&i915->irq_lock, irqflags);
2894
2895         bdw_disable_pipe_irq(i915, pipe, GEN9_PIPE_PLANE1_FLIP_DONE);
2896
2897         spin_unlock_irqrestore(&i915->irq_lock, irqflags);
2898 }
2899
2900 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2901 {
2902         struct intel_uncore *uncore = &dev_priv->uncore;
2903
2904         if (HAS_PCH_NOP(dev_priv))
2905                 return;
2906
2907         GEN3_IRQ_RESET(uncore, SDE);
2908
2909         if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2910                 I915_WRITE(SERR_INT, 0xffffffff);
2911 }
2912
2913 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2914 {
2915         struct intel_uncore *uncore = &dev_priv->uncore;
2916
2917         if (IS_CHERRYVIEW(dev_priv))
2918                 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2919         else
2920                 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
2921
2922         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2923         intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2924
2925         i9xx_pipestat_irq_reset(dev_priv);
2926
2927         GEN3_IRQ_RESET(uncore, VLV_);
2928         dev_priv->irq_mask = ~0u;
2929 }
2930
2931 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2932 {
2933         struct intel_uncore *uncore = &dev_priv->uncore;
2934
2935         u32 pipestat_mask;
2936         u32 enable_mask;
2937         enum pipe pipe;
2938
2939         pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
2940
2941         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2942         for_each_pipe(dev_priv, pipe)
2943                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2944
2945         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2946                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2947                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2948                 I915_LPE_PIPE_A_INTERRUPT |
2949                 I915_LPE_PIPE_B_INTERRUPT;
2950
2951         if (IS_CHERRYVIEW(dev_priv))
2952                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2953                         I915_LPE_PIPE_C_INTERRUPT;
2954
2955         drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u);
2956
2957         dev_priv->irq_mask = ~enable_mask;
2958
2959         GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
2960 }
2961
2962 /* drm_dma.h hooks
2963 */
2964 static void ilk_irq_reset(struct drm_i915_private *dev_priv)
2965 {
2966         struct intel_uncore *uncore = &dev_priv->uncore;
2967
2968         GEN3_IRQ_RESET(uncore, DE);
2969         dev_priv->irq_mask = ~0u;
2970
2971         if (IS_GEN(dev_priv, 7))
2972                 intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
2973
2974         if (IS_HASWELL(dev_priv)) {
2975                 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2976                 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2977         }
2978
2979         gen5_gt_irq_reset(&dev_priv->gt);
2980
2981         ibx_irq_reset(dev_priv);
2982 }
2983
2984 static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
2985 {
2986         I915_WRITE(VLV_MASTER_IER, 0);
2987         POSTING_READ(VLV_MASTER_IER);
2988
2989         gen5_gt_irq_reset(&dev_priv->gt);
2990
2991         spin_lock_irq(&dev_priv->irq_lock);
2992         if (dev_priv->display_irqs_enabled)
2993                 vlv_display_irq_reset(dev_priv);
2994         spin_unlock_irq(&dev_priv->irq_lock);
2995 }
2996
2997 static void gen8_irq_reset(struct drm_i915_private *dev_priv)
2998 {
2999         struct intel_uncore *uncore = &dev_priv->uncore;
3000         enum pipe pipe;
3001
3002         gen8_master_intr_disable(dev_priv->uncore.regs);
3003
3004         gen8_gt_irq_reset(&dev_priv->gt);
3005
3006         intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3007         intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3008
3009         for_each_pipe(dev_priv, pipe)
3010                 if (intel_display_power_is_enabled(dev_priv,
3011                                                    POWER_DOMAIN_PIPE(pipe)))
3012                         GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3013
3014         GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3015         GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3016         GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3017
3018         if (HAS_PCH_SPLIT(dev_priv))
3019                 ibx_irq_reset(dev_priv);
3020 }
3021
3022 static void gen11_display_irq_reset(struct drm_i915_private *dev_priv)
3023 {
3024         struct intel_uncore *uncore = &dev_priv->uncore;
3025         enum pipe pipe;
3026         u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3027                 BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3028
3029         intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
3030
3031         if (INTEL_GEN(dev_priv) >= 12) {
3032                 enum transcoder trans;
3033
3034                 for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3035                         enum intel_display_power_domain domain;
3036
3037                         domain = POWER_DOMAIN_TRANSCODER(trans);
3038                         if (!intel_display_power_is_enabled(dev_priv, domain))
3039                                 continue;
3040
3041                         intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff);
3042                         intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff);
3043                 }
3044         } else {
3045                 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3046                 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3047         }
3048
3049         for_each_pipe(dev_priv, pipe)
3050                 if (intel_display_power_is_enabled(dev_priv,
3051                                                    POWER_DOMAIN_PIPE(pipe)))
3052                         GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3053
3054         GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3055         GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3056         GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
3057
3058         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3059                 GEN3_IRQ_RESET(uncore, SDE);
3060
3061         /* Wa_14010685332:icl,jsl,ehl,tgl,rkl */
3062         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) {
3063                 intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
3064                                  SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
3065                 intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
3066                                  SBCLK_RUN_REFCLK_DIS, 0);
3067         }
3068 }
3069
3070 static void gen11_irq_reset(struct drm_i915_private *dev_priv)
3071 {
3072         struct intel_uncore *uncore = &dev_priv->uncore;
3073
3074         if (HAS_MASTER_UNIT_IRQ(dev_priv))
3075                 dg1_master_intr_disable_and_ack(dev_priv->uncore.regs);
3076         else
3077                 gen11_master_intr_disable(dev_priv->uncore.regs);
3078
3079         gen11_gt_irq_reset(&dev_priv->gt);
3080         gen11_display_irq_reset(dev_priv);
3081
3082         GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
3083         GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3084 }
3085
3086 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3087                                      u8 pipe_mask)
3088 {
3089         struct intel_uncore *uncore = &dev_priv->uncore;
3090
3091         u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3092         enum pipe pipe;
3093
3094         if (INTEL_GEN(dev_priv) >= 9)
3095                 extra_ier |= GEN9_PIPE_PLANE1_FLIP_DONE;
3096
3097         spin_lock_irq(&dev_priv->irq_lock);
3098
3099         if (!intel_irqs_enabled(dev_priv)) {
3100                 spin_unlock_irq(&dev_priv->irq_lock);
3101                 return;
3102         }
3103
3104         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3105                 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3106                                   dev_priv->de_irq_mask[pipe],
3107                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3108
3109         spin_unlock_irq(&dev_priv->irq_lock);
3110 }
3111
3112 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3113                                      u8 pipe_mask)
3114 {
3115         struct intel_uncore *uncore = &dev_priv->uncore;
3116         enum pipe pipe;
3117
3118         spin_lock_irq(&dev_priv->irq_lock);
3119
3120         if (!intel_irqs_enabled(dev_priv)) {
3121                 spin_unlock_irq(&dev_priv->irq_lock);
3122                 return;
3123         }
3124
3125         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3126                 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3127
3128         spin_unlock_irq(&dev_priv->irq_lock);
3129
3130         /* make sure we're done processing display irqs */
3131         intel_synchronize_irq(dev_priv);
3132 }
3133
3134 static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
3135 {
3136         struct intel_uncore *uncore = &dev_priv->uncore;
3137
3138         I915_WRITE(GEN8_MASTER_IRQ, 0);
3139         POSTING_READ(GEN8_MASTER_IRQ);
3140
3141         gen8_gt_irq_reset(&dev_priv->gt);
3142
3143         GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3144
3145         spin_lock_irq(&dev_priv->irq_lock);
3146         if (dev_priv->display_irqs_enabled)
3147                 vlv_display_irq_reset(dev_priv);
3148         spin_unlock_irq(&dev_priv->irq_lock);
3149 }
3150
3151 static u32 ibx_hotplug_enables(struct drm_i915_private *i915,
3152                                enum hpd_pin pin)
3153 {
3154         switch (pin) {
3155         case HPD_PORT_A:
3156                 /*
3157                  * When CPU and PCH are on the same package, port A
3158                  * HPD must be enabled in both north and south.
3159                  */
3160                 return HAS_PCH_LPT_LP(i915) ?
3161                         PORTA_HOTPLUG_ENABLE : 0;
3162         case HPD_PORT_B:
3163                 return PORTB_HOTPLUG_ENABLE |
3164                         PORTB_PULSE_DURATION_2ms;
3165         case HPD_PORT_C:
3166                 return PORTC_HOTPLUG_ENABLE |
3167                         PORTC_PULSE_DURATION_2ms;
3168         case HPD_PORT_D:
3169                 return PORTD_HOTPLUG_ENABLE |
3170                         PORTD_PULSE_DURATION_2ms;
3171         default:
3172                 return 0;
3173         }
3174 }
3175
3176 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3177 {
3178         u32 hotplug;
3179
3180         /*
3181          * Enable digital hotplug on the PCH, and configure the DP short pulse
3182          * duration to 2ms (which is the minimum in the Display Port spec).
3183          * The pulse duration bits are reserved on LPT+.
3184          */
3185         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3186         hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3187                      PORTB_HOTPLUG_ENABLE |
3188                      PORTC_HOTPLUG_ENABLE |
3189                      PORTD_HOTPLUG_ENABLE |
3190                      PORTB_PULSE_DURATION_MASK |
3191                      PORTC_PULSE_DURATION_MASK |
3192                      PORTD_PULSE_DURATION_MASK);
3193         hotplug |= intel_hpd_hotplug_enables(dev_priv, ibx_hotplug_enables);
3194         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3195 }
3196
3197 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3198 {
3199         u32 hotplug_irqs, enabled_irqs;
3200
3201         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3202         hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3203
3204         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3205
3206         ibx_hpd_detection_setup(dev_priv);
3207 }
3208
3209 static u32 icp_ddi_hotplug_enables(struct drm_i915_private *i915,
3210                                    enum hpd_pin pin)
3211 {
3212         switch (pin) {
3213         case HPD_PORT_A:
3214         case HPD_PORT_B:
3215         case HPD_PORT_C:
3216         case HPD_PORT_D:
3217                 return SHOTPLUG_CTL_DDI_HPD_ENABLE(pin);
3218         default:
3219                 return 0;
3220         }
3221 }
3222
3223 static u32 icp_tc_hotplug_enables(struct drm_i915_private *i915,
3224                                   enum hpd_pin pin)
3225 {
3226         switch (pin) {
3227         case HPD_PORT_TC1:
3228         case HPD_PORT_TC2:
3229         case HPD_PORT_TC3:
3230         case HPD_PORT_TC4:
3231         case HPD_PORT_TC5:
3232         case HPD_PORT_TC6:
3233                 return ICP_TC_HPD_ENABLE(pin);
3234         default:
3235                 return 0;
3236         }
3237 }
3238
3239 static void icp_ddi_hpd_detection_setup(struct drm_i915_private *dev_priv)
3240 {
3241         u32 hotplug;
3242
3243         hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3244         hotplug &= ~(SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_A) |
3245                      SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_B) |
3246                      SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_C) |
3247                      SHOTPLUG_CTL_DDI_HPD_ENABLE(HPD_PORT_D));
3248         hotplug |= intel_hpd_hotplug_enables(dev_priv, icp_ddi_hotplug_enables);
3249         I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3250 }
3251
3252 static void icp_tc_hpd_detection_setup(struct drm_i915_private *dev_priv)
3253 {
3254         u32 hotplug;
3255
3256         hotplug = I915_READ(SHOTPLUG_CTL_TC);
3257         hotplug &= ~(ICP_TC_HPD_ENABLE(HPD_PORT_TC1) |
3258                      ICP_TC_HPD_ENABLE(HPD_PORT_TC2) |
3259                      ICP_TC_HPD_ENABLE(HPD_PORT_TC3) |
3260                      ICP_TC_HPD_ENABLE(HPD_PORT_TC4) |
3261                      ICP_TC_HPD_ENABLE(HPD_PORT_TC5) |
3262                      ICP_TC_HPD_ENABLE(HPD_PORT_TC6));
3263         hotplug |= intel_hpd_hotplug_enables(dev_priv, icp_tc_hotplug_enables);
3264         I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3265 }
3266
3267 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3268 {
3269         u32 hotplug_irqs, enabled_irqs;
3270
3271         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3272         hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3273
3274         if (INTEL_PCH_TYPE(dev_priv) <= PCH_TGP)
3275                 I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3276
3277         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3278
3279         icp_ddi_hpd_detection_setup(dev_priv);
3280         icp_tc_hpd_detection_setup(dev_priv);
3281 }
3282
3283 static u32 gen11_hotplug_enables(struct drm_i915_private *i915,
3284                                  enum hpd_pin pin)
3285 {
3286         switch (pin) {
3287         case HPD_PORT_TC1:
3288         case HPD_PORT_TC2:
3289         case HPD_PORT_TC3:
3290         case HPD_PORT_TC4:
3291         case HPD_PORT_TC5:
3292         case HPD_PORT_TC6:
3293                 return GEN11_HOTPLUG_CTL_ENABLE(pin);
3294         default:
3295                 return 0;
3296         }
3297 }
3298
3299 static void dg1_hpd_irq_setup(struct drm_i915_private *dev_priv)
3300 {
3301         u32 val;
3302
3303         val = I915_READ(SOUTH_CHICKEN1);
3304         val |= (INVERT_DDIA_HPD |
3305                 INVERT_DDIB_HPD |
3306                 INVERT_DDIC_HPD |
3307                 INVERT_DDID_HPD);
3308         I915_WRITE(SOUTH_CHICKEN1, val);
3309
3310         icp_hpd_irq_setup(dev_priv);
3311 }
3312
3313 static void gen11_tc_hpd_detection_setup(struct drm_i915_private *dev_priv)
3314 {
3315         u32 hotplug;
3316
3317         hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3318         hotplug &= ~(GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) |
3319                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) |
3320                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) |
3321                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) |
3322                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) |
3323                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6));
3324         hotplug |= intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables);
3325         I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3326 }
3327
3328 static void gen11_tbt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3329 {
3330         u32 hotplug;
3331
3332         hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3333         hotplug &= ~(GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC1) |
3334                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC2) |
3335                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC3) |
3336                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC4) |
3337                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC5) |
3338                      GEN11_HOTPLUG_CTL_ENABLE(HPD_PORT_TC6));
3339         hotplug |= intel_hpd_hotplug_enables(dev_priv, gen11_hotplug_enables);
3340         I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3341 }
3342
3343 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3344 {
3345         u32 hotplug_irqs, enabled_irqs;
3346         u32 val;
3347
3348         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3349         hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3350
3351         val = I915_READ(GEN11_DE_HPD_IMR);
3352         val &= ~hotplug_irqs;
3353         val |= ~enabled_irqs & hotplug_irqs;
3354         I915_WRITE(GEN11_DE_HPD_IMR, val);
3355         POSTING_READ(GEN11_DE_HPD_IMR);
3356
3357         gen11_tc_hpd_detection_setup(dev_priv);
3358         gen11_tbt_hpd_detection_setup(dev_priv);
3359
3360         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3361                 icp_hpd_irq_setup(dev_priv);
3362 }
3363
3364 static u32 spt_hotplug_enables(struct drm_i915_private *i915,
3365                                enum hpd_pin pin)
3366 {
3367         switch (pin) {
3368         case HPD_PORT_A:
3369                 return PORTA_HOTPLUG_ENABLE;
3370         case HPD_PORT_B:
3371                 return PORTB_HOTPLUG_ENABLE;
3372         case HPD_PORT_C:
3373                 return PORTC_HOTPLUG_ENABLE;
3374         case HPD_PORT_D:
3375                 return PORTD_HOTPLUG_ENABLE;
3376         default:
3377                 return 0;
3378         }
3379 }
3380
3381 static u32 spt_hotplug2_enables(struct drm_i915_private *i915,
3382                                 enum hpd_pin pin)
3383 {
3384         switch (pin) {
3385         case HPD_PORT_E:
3386                 return PORTE_HOTPLUG_ENABLE;
3387         default:
3388                 return 0;
3389         }
3390 }
3391
3392 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3393 {
3394         u32 val, hotplug;
3395
3396         /* Display WA #1179 WaHardHangonHotPlug: cnp */
3397         if (HAS_PCH_CNP(dev_priv)) {
3398                 val = I915_READ(SOUTH_CHICKEN1);
3399                 val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3400                 val |= CHASSIS_CLK_REQ_DURATION(0xf);
3401                 I915_WRITE(SOUTH_CHICKEN1, val);
3402         }
3403
3404         /* Enable digital hotplug on the PCH */
3405         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3406         hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3407                      PORTB_HOTPLUG_ENABLE |
3408                      PORTC_HOTPLUG_ENABLE |
3409                      PORTD_HOTPLUG_ENABLE);
3410         hotplug |= intel_hpd_hotplug_enables(dev_priv, spt_hotplug_enables);
3411         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3412
3413         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3414         hotplug &= ~PORTE_HOTPLUG_ENABLE;
3415         hotplug |= intel_hpd_hotplug_enables(dev_priv, spt_hotplug2_enables);
3416         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3417 }
3418
3419 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3420 {
3421         u32 hotplug_irqs, enabled_irqs;
3422
3423         if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3424                 I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3425
3426         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3427         hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3428
3429         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3430
3431         spt_hpd_detection_setup(dev_priv);
3432 }
3433
3434 static u32 ilk_hotplug_enables(struct drm_i915_private *i915,
3435                                enum hpd_pin pin)
3436 {
3437         switch (pin) {
3438         case HPD_PORT_A:
3439                 return DIGITAL_PORTA_HOTPLUG_ENABLE |
3440                         DIGITAL_PORTA_PULSE_DURATION_2ms;
3441         default:
3442                 return 0;
3443         }
3444 }
3445
3446 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3447 {
3448         u32 hotplug;
3449
3450         /*
3451          * Enable digital hotplug on the CPU, and configure the DP short pulse
3452          * duration to 2ms (which is the minimum in the Display Port spec)
3453          * The pulse duration bits are reserved on HSW+.
3454          */
3455         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3456         hotplug &= ~(DIGITAL_PORTA_HOTPLUG_ENABLE |
3457                      DIGITAL_PORTA_PULSE_DURATION_MASK);
3458         hotplug |= intel_hpd_hotplug_enables(dev_priv, ilk_hotplug_enables);
3459         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3460 }
3461
3462 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3463 {
3464         u32 hotplug_irqs, enabled_irqs;
3465
3466         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3467         hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3468
3469         if (INTEL_GEN(dev_priv) >= 8)
3470                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3471         else
3472                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3473
3474         ilk_hpd_detection_setup(dev_priv);
3475
3476         ibx_hpd_irq_setup(dev_priv);
3477 }
3478
3479 static u32 bxt_hotplug_enables(struct drm_i915_private *i915,
3480                                enum hpd_pin pin)
3481 {
3482         u32 hotplug;
3483
3484         switch (pin) {
3485         case HPD_PORT_A:
3486                 hotplug = PORTA_HOTPLUG_ENABLE;
3487                 if (intel_bios_is_port_hpd_inverted(i915, PORT_A))
3488                         hotplug |= BXT_DDIA_HPD_INVERT;
3489                 return hotplug;
3490         case HPD_PORT_B:
3491                 hotplug = PORTB_HOTPLUG_ENABLE;
3492                 if (intel_bios_is_port_hpd_inverted(i915, PORT_B))
3493                         hotplug |= BXT_DDIB_HPD_INVERT;
3494                 return hotplug;
3495         case HPD_PORT_C:
3496                 hotplug = PORTC_HOTPLUG_ENABLE;
3497                 if (intel_bios_is_port_hpd_inverted(i915, PORT_C))
3498                         hotplug |= BXT_DDIC_HPD_INVERT;
3499                 return hotplug;
3500         default:
3501                 return 0;
3502         }
3503 }
3504
3505 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3506 {
3507         u32 hotplug;
3508
3509         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3510         hotplug &= ~(PORTA_HOTPLUG_ENABLE |
3511                      PORTB_HOTPLUG_ENABLE |
3512                      PORTC_HOTPLUG_ENABLE |
3513                      BXT_DDIA_HPD_INVERT |
3514                      BXT_DDIB_HPD_INVERT |
3515                      BXT_DDIC_HPD_INVERT);
3516         hotplug |= intel_hpd_hotplug_enables(dev_priv, bxt_hotplug_enables);
3517         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3518 }
3519
3520 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3521 {
3522         u32 hotplug_irqs, enabled_irqs;
3523
3524         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3525         hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3526
3527         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3528
3529         bxt_hpd_detection_setup(dev_priv);
3530 }
3531
3532 /*
3533  * SDEIER is also touched by the interrupt handler to work around missed PCH
3534  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3535  * instead we unconditionally enable all PCH interrupt sources here, but then
3536  * only unmask them as needed with SDEIMR.
3537  *
3538  * Note that we currently do this after installing the interrupt handler,
3539  * but before we enable the master interrupt. That should be sufficient
3540  * to avoid races with the irq handler, assuming we have MSI. Shared legacy
3541  * interrupts could still race.
3542  */
3543 static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3544 {
3545         struct intel_uncore *uncore = &dev_priv->uncore;
3546         u32 mask;
3547
3548         if (HAS_PCH_NOP(dev_priv))
3549                 return;
3550
3551         if (HAS_PCH_IBX(dev_priv))
3552                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3553         else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3554                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3555         else
3556                 mask = SDE_GMBUS_CPT;
3557
3558         GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff);
3559 }
3560
3561 static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
3562 {
3563         struct intel_uncore *uncore = &dev_priv->uncore;
3564         u32 display_mask, extra_mask;
3565
3566         if (INTEL_GEN(dev_priv) >= 7) {
3567                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3568                                 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3569                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3570                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3571                               DE_DP_A_HOTPLUG_IVB);
3572         } else {
3573                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3574                                 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3575                                 DE_PIPEA_CRC_DONE | DE_POISON);
3576                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK |
3577                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3578                               DE_DP_A_HOTPLUG);
3579         }
3580
3581         if (IS_HASWELL(dev_priv)) {
3582                 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3583                 display_mask |= DE_EDP_PSR_INT_HSW;
3584         }
3585
3586         if (IS_IRONLAKE_M(dev_priv))
3587                 extra_mask |= DE_PCU_EVENT;
3588
3589         dev_priv->irq_mask = ~display_mask;
3590
3591         ibx_irq_postinstall(dev_priv);
3592
3593         gen5_gt_irq_postinstall(&dev_priv->gt);
3594
3595         GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3596                       display_mask | extra_mask);
3597 }
3598
3599 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3600 {
3601         lockdep_assert_held(&dev_priv->irq_lock);
3602
3603         if (dev_priv->display_irqs_enabled)
3604                 return;
3605
3606         dev_priv->display_irqs_enabled = true;
3607
3608         if (intel_irqs_enabled(dev_priv)) {
3609                 vlv_display_irq_reset(dev_priv);
3610                 vlv_display_irq_postinstall(dev_priv);
3611         }
3612 }
3613
3614 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3615 {
3616         lockdep_assert_held(&dev_priv->irq_lock);
3617
3618         if (!dev_priv->display_irqs_enabled)
3619                 return;
3620
3621         dev_priv->display_irqs_enabled = false;
3622
3623         if (intel_irqs_enabled(dev_priv))
3624                 vlv_display_irq_reset(dev_priv);
3625 }
3626
3627
3628 static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3629 {
3630         gen5_gt_irq_postinstall(&dev_priv->gt);
3631
3632         spin_lock_irq(&dev_priv->irq_lock);
3633         if (dev_priv->display_irqs_enabled)
3634                 vlv_display_irq_postinstall(dev_priv);
3635         spin_unlock_irq(&dev_priv->irq_lock);
3636
3637         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3638         POSTING_READ(VLV_MASTER_IER);
3639 }
3640
3641 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3642 {
3643         struct intel_uncore *uncore = &dev_priv->uncore;
3644
3645         u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) |
3646                 GEN8_PIPE_CDCLK_CRC_DONE;
3647         u32 de_pipe_enables;
3648         u32 de_port_masked = gen8_de_port_aux_mask(dev_priv);
3649         u32 de_port_enables;
3650         u32 de_misc_masked = GEN8_DE_EDP_PSR;
3651         u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3652                 BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3653         enum pipe pipe;
3654
3655         if (INTEL_GEN(dev_priv) <= 10)
3656                 de_misc_masked |= GEN8_DE_MISC_GSE;
3657
3658         if (IS_GEN9_LP(dev_priv))
3659                 de_port_masked |= BXT_DE_PORT_GMBUS;
3660
3661         if (INTEL_GEN(dev_priv) >= 11) {
3662                 enum port port;
3663
3664                 if (intel_bios_is_dsi_present(dev_priv, &port))
3665                         de_port_masked |= DSI0_TE | DSI1_TE;
3666         }
3667
3668         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3669                                            GEN8_PIPE_FIFO_UNDERRUN;
3670
3671         if (INTEL_GEN(dev_priv) >= 9)
3672                 de_pipe_enables |= GEN9_PIPE_PLANE1_FLIP_DONE;
3673
3674         de_port_enables = de_port_masked;
3675         if (IS_GEN9_LP(dev_priv))
3676                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3677         else if (IS_BROADWELL(dev_priv))
3678                 de_port_enables |= BDW_DE_PORT_HOTPLUG_MASK;
3679
3680         if (INTEL_GEN(dev_priv) >= 12) {
3681                 enum transcoder trans;
3682
3683                 for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3684                         enum intel_display_power_domain domain;
3685
3686                         domain = POWER_DOMAIN_TRANSCODER(trans);
3687                         if (!intel_display_power_is_enabled(dev_priv, domain))
3688                                 continue;
3689
3690                         gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans));
3691                 }
3692         } else {
3693                 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3694         }
3695
3696         for_each_pipe(dev_priv, pipe) {
3697                 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3698
3699                 if (intel_display_power_is_enabled(dev_priv,
3700                                 POWER_DOMAIN_PIPE(pipe)))
3701                         GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3702                                           dev_priv->de_irq_mask[pipe],
3703                                           de_pipe_enables);
3704         }
3705
3706         GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3707         GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3708
3709         if (INTEL_GEN(dev_priv) >= 11) {
3710                 u32 de_hpd_masked = 0;
3711                 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3712                                      GEN11_DE_TBT_HOTPLUG_MASK;
3713
3714                 GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3715                               de_hpd_enables);
3716         }
3717 }
3718
3719 static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3720 {
3721         if (HAS_PCH_SPLIT(dev_priv))
3722                 ibx_irq_postinstall(dev_priv);
3723
3724         gen8_gt_irq_postinstall(&dev_priv->gt);
3725         gen8_de_irq_postinstall(dev_priv);
3726
3727         gen8_master_intr_enable(dev_priv->uncore.regs);
3728 }
3729
3730 static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3731 {
3732         struct intel_uncore *uncore = &dev_priv->uncore;
3733         u32 mask = SDE_GMBUS_ICP;
3734
3735         GEN3_IRQ_INIT(uncore, SDE, ~mask, 0xffffffff);
3736 }
3737
3738 static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3739 {
3740         struct intel_uncore *uncore = &dev_priv->uncore;
3741         u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3742
3743         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3744                 icp_irq_postinstall(dev_priv);
3745
3746         gen11_gt_irq_postinstall(&dev_priv->gt);
3747         gen8_de_irq_postinstall(dev_priv);
3748
3749         GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3750
3751         I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3752
3753         if (HAS_MASTER_UNIT_IRQ(dev_priv)) {
3754                 dg1_master_intr_enable(uncore->regs);
3755                 POSTING_READ(DG1_MSTR_UNIT_INTR);
3756         } else {
3757                 gen11_master_intr_enable(uncore->regs);
3758                 POSTING_READ(GEN11_GFX_MSTR_IRQ);
3759         }
3760 }
3761
3762 static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3763 {
3764         gen8_gt_irq_postinstall(&dev_priv->gt);
3765
3766         spin_lock_irq(&dev_priv->irq_lock);
3767         if (dev_priv->display_irqs_enabled)
3768                 vlv_display_irq_postinstall(dev_priv);
3769         spin_unlock_irq(&dev_priv->irq_lock);
3770
3771         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3772         POSTING_READ(GEN8_MASTER_IRQ);
3773 }
3774
3775 static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3776 {
3777         struct intel_uncore *uncore = &dev_priv->uncore;
3778
3779         i9xx_pipestat_irq_reset(dev_priv);
3780
3781         GEN2_IRQ_RESET(uncore);
3782         dev_priv->irq_mask = ~0u;
3783 }
3784
3785 static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3786 {
3787         struct intel_uncore *uncore = &dev_priv->uncore;
3788         u16 enable_mask;
3789
3790         intel_uncore_write16(uncore,
3791                              EMR,
3792                              ~(I915_ERROR_PAGE_TABLE |
3793                                I915_ERROR_MEMORY_REFRESH));
3794
3795         /* Unmask the interrupts that we always want on. */
3796         dev_priv->irq_mask =
3797                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3798                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3799                   I915_MASTER_ERROR_INTERRUPT);
3800
3801         enable_mask =
3802                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3803                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3804                 I915_MASTER_ERROR_INTERRUPT |
3805                 I915_USER_INTERRUPT;
3806
3807         GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3808
3809         /* Interrupt setup is already guaranteed to be single-threaded, this is
3810          * just to make the assert_spin_locked check happy. */
3811         spin_lock_irq(&dev_priv->irq_lock);
3812         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3813         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3814         spin_unlock_irq(&dev_priv->irq_lock);
3815 }
3816
3817 static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3818                                u16 *eir, u16 *eir_stuck)
3819 {
3820         struct intel_uncore *uncore = &i915->uncore;
3821         u16 emr;
3822
3823         *eir = intel_uncore_read16(uncore, EIR);
3824
3825         if (*eir)
3826                 intel_uncore_write16(uncore, EIR, *eir);
3827
3828         *eir_stuck = intel_uncore_read16(uncore, EIR);
3829         if (*eir_stuck == 0)
3830                 return;
3831
3832         /*
3833          * Toggle all EMR bits to make sure we get an edge
3834          * in the ISR master error bit if we don't clear
3835          * all the EIR bits. Otherwise the edge triggered
3836          * IIR on i965/g4x wouldn't notice that an interrupt
3837          * is still pending. Also some EIR bits can't be
3838          * cleared except by handling the underlying error
3839          * (or by a GPU reset) so we mask any bit that
3840          * remains set.
3841          */
3842         emr = intel_uncore_read16(uncore, EMR);
3843         intel_uncore_write16(uncore, EMR, 0xffff);
3844         intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3845 }
3846
3847 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3848                                    u16 eir, u16 eir_stuck)
3849 {
3850         DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3851
3852         if (eir_stuck)
3853                 drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n",
3854                         eir_stuck);
3855 }
3856
3857 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3858                                u32 *eir, u32 *eir_stuck)
3859 {
3860         u32 emr;
3861
3862         *eir = I915_READ(EIR);
3863
3864         I915_WRITE(EIR, *eir);
3865
3866         *eir_stuck = I915_READ(EIR);
3867         if (*eir_stuck == 0)
3868                 return;
3869
3870         /*
3871          * Toggle all EMR bits to make sure we get an edge
3872          * in the ISR master error bit if we don't clear
3873          * all the EIR bits. Otherwise the edge triggered
3874          * IIR on i965/g4x wouldn't notice that an interrupt
3875          * is still pending. Also some EIR bits can't be
3876          * cleared except by handling the underlying error
3877          * (or by a GPU reset) so we mask any bit that
3878          * remains set.
3879          */
3880         emr = I915_READ(EMR);
3881         I915_WRITE(EMR, 0xffffffff);
3882         I915_WRITE(EMR, emr | *eir_stuck);
3883 }
3884
3885 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
3886                                    u32 eir, u32 eir_stuck)
3887 {
3888         DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
3889
3890         if (eir_stuck)
3891                 drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n",
3892                         eir_stuck);
3893 }
3894
3895 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3896 {
3897         struct drm_i915_private *dev_priv = arg;
3898         irqreturn_t ret = IRQ_NONE;
3899
3900         if (!intel_irqs_enabled(dev_priv))
3901                 return IRQ_NONE;
3902
3903         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3904         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3905
3906         do {
3907                 u32 pipe_stats[I915_MAX_PIPES] = {};
3908                 u16 eir = 0, eir_stuck = 0;
3909                 u16 iir;
3910
3911                 iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
3912                 if (iir == 0)
3913                         break;
3914
3915                 ret = IRQ_HANDLED;
3916
3917                 /* Call regardless, as some status bits might not be
3918                  * signalled in iir */
3919                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3920
3921                 if (iir & I915_MASTER_ERROR_INTERRUPT)
3922                         i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3923
3924                 intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
3925
3926                 if (iir & I915_USER_INTERRUPT)
3927                         intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3928
3929                 if (iir & I915_MASTER_ERROR_INTERRUPT)
3930                         i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
3931
3932                 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3933         } while (0);
3934
3935         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3936
3937         return ret;
3938 }
3939
3940 static void i915_irq_reset(struct drm_i915_private *dev_priv)
3941 {
3942         struct intel_uncore *uncore = &dev_priv->uncore;
3943
3944         if (I915_HAS_HOTPLUG(dev_priv)) {
3945                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3946                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3947         }
3948
3949         i9xx_pipestat_irq_reset(dev_priv);
3950
3951         GEN3_IRQ_RESET(uncore, GEN2_);
3952         dev_priv->irq_mask = ~0u;
3953 }
3954
3955 static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
3956 {
3957         struct intel_uncore *uncore = &dev_priv->uncore;
3958         u32 enable_mask;
3959
3960         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
3961                           I915_ERROR_MEMORY_REFRESH));
3962
3963         /* Unmask the interrupts that we always want on. */
3964         dev_priv->irq_mask =
3965                 ~(I915_ASLE_INTERRUPT |
3966                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3967                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3968                   I915_MASTER_ERROR_INTERRUPT);
3969
3970         enable_mask =
3971                 I915_ASLE_INTERRUPT |
3972                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3973                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3974                 I915_MASTER_ERROR_INTERRUPT |
3975                 I915_USER_INTERRUPT;
3976
3977         if (I915_HAS_HOTPLUG(dev_priv)) {
3978                 /* Enable in IER... */
3979                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3980                 /* and unmask in IMR */
3981                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3982         }
3983
3984         GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3985
3986         /* Interrupt setup is already guaranteed to be single-threaded, this is
3987          * just to make the assert_spin_locked check happy. */
3988         spin_lock_irq(&dev_priv->irq_lock);
3989         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3990         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3991         spin_unlock_irq(&dev_priv->irq_lock);
3992
3993         i915_enable_asle_pipestat(dev_priv);
3994 }
3995
3996 static irqreturn_t i915_irq_handler(int irq, void *arg)
3997 {
3998         struct drm_i915_private *dev_priv = arg;
3999         irqreturn_t ret = IRQ_NONE;
4000
4001         if (!intel_irqs_enabled(dev_priv))
4002                 return IRQ_NONE;
4003
4004         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4005         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4006
4007         do {
4008                 u32 pipe_stats[I915_MAX_PIPES] = {};
4009                 u32 eir = 0, eir_stuck = 0;
4010                 u32 hotplug_status = 0;
4011                 u32 iir;
4012
4013                 iir = I915_READ(GEN2_IIR);
4014                 if (iir == 0)
4015                         break;
4016
4017                 ret = IRQ_HANDLED;
4018
4019                 if (I915_HAS_HOTPLUG(dev_priv) &&
4020                     iir & I915_DISPLAY_PORT_INTERRUPT)
4021                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4022
4023                 /* Call regardless, as some status bits might not be
4024                  * signalled in iir */
4025                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4026
4027                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4028                         i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4029
4030                 I915_WRITE(GEN2_IIR, iir);
4031
4032                 if (iir & I915_USER_INTERRUPT)
4033                         intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
4034
4035                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4036                         i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4037
4038                 if (hotplug_status)
4039                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4040
4041                 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4042         } while (0);
4043
4044         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4045
4046         return ret;
4047 }
4048
4049 static void i965_irq_reset(struct drm_i915_private *dev_priv)
4050 {
4051         struct intel_uncore *uncore = &dev_priv->uncore;
4052
4053         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4054         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4055
4056         i9xx_pipestat_irq_reset(dev_priv);
4057
4058         GEN3_IRQ_RESET(uncore, GEN2_);
4059         dev_priv->irq_mask = ~0u;
4060 }
4061
4062 static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
4063 {
4064         struct intel_uncore *uncore = &dev_priv->uncore;
4065         u32 enable_mask;
4066         u32 error_mask;
4067
4068         /*
4069          * Enable some error detection, note the instruction error mask
4070          * bit is reserved, so we leave it masked.
4071          */
4072         if (IS_G4X(dev_priv)) {
4073                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4074                                GM45_ERROR_MEM_PRIV |
4075                                GM45_ERROR_CP_PRIV |
4076                                I915_ERROR_MEMORY_REFRESH);
4077         } else {
4078                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4079                                I915_ERROR_MEMORY_REFRESH);
4080         }
4081         I915_WRITE(EMR, error_mask);
4082
4083         /* Unmask the interrupts that we always want on. */
4084         dev_priv->irq_mask =
4085                 ~(I915_ASLE_INTERRUPT |
4086                   I915_DISPLAY_PORT_INTERRUPT |
4087                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4088                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4089                   I915_MASTER_ERROR_INTERRUPT);
4090
4091         enable_mask =
4092                 I915_ASLE_INTERRUPT |
4093                 I915_DISPLAY_PORT_INTERRUPT |
4094                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4095                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4096                 I915_MASTER_ERROR_INTERRUPT |
4097                 I915_USER_INTERRUPT;
4098
4099         if (IS_G4X(dev_priv))
4100                 enable_mask |= I915_BSD_USER_INTERRUPT;
4101
4102         GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4103
4104         /* Interrupt setup is already guaranteed to be single-threaded, this is
4105          * just to make the assert_spin_locked check happy. */
4106         spin_lock_irq(&dev_priv->irq_lock);
4107         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4108         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4109         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4110         spin_unlock_irq(&dev_priv->irq_lock);
4111
4112         i915_enable_asle_pipestat(dev_priv);
4113 }
4114
4115 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4116 {
4117         u32 hotplug_en;
4118
4119         lockdep_assert_held(&dev_priv->irq_lock);
4120
4121         /* Note HDMI and DP share hotplug bits */
4122         /* enable bits are the same for all generations */
4123         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4124         /* Programming the CRT detection parameters tends
4125            to generate a spurious hotplug event about three
4126            seconds later.  So just do it once.
4127         */
4128         if (IS_G4X(dev_priv))
4129                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4130         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4131
4132         /* Ignore TV since it's buggy */
4133         i915_hotplug_interrupt_update_locked(dev_priv,
4134                                              HOTPLUG_INT_EN_MASK |
4135                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4136                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4137                                              hotplug_en);
4138 }
4139
4140 static irqreturn_t i965_irq_handler(int irq, void *arg)
4141 {
4142         struct drm_i915_private *dev_priv = arg;
4143         irqreturn_t ret = IRQ_NONE;
4144
4145         if (!intel_irqs_enabled(dev_priv))
4146                 return IRQ_NONE;
4147
4148         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4149         disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4150
4151         do {
4152                 u32 pipe_stats[I915_MAX_PIPES] = {};
4153                 u32 eir = 0, eir_stuck = 0;
4154                 u32 hotplug_status = 0;
4155                 u32 iir;
4156
4157                 iir = I915_READ(GEN2_IIR);
4158                 if (iir == 0)
4159                         break;
4160
4161                 ret = IRQ_HANDLED;
4162
4163                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4164                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4165
4166                 /* Call regardless, as some status bits might not be
4167                  * signalled in iir */
4168                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4169
4170                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4171                         i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4172
4173                 I915_WRITE(GEN2_IIR, iir);
4174
4175                 if (iir & I915_USER_INTERRUPT)
4176                         intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
4177
4178                 if (iir & I915_BSD_USER_INTERRUPT)
4179                         intel_engine_signal_breadcrumbs(dev_priv->gt.engine[VCS0]);
4180
4181                 if (iir & I915_MASTER_ERROR_INTERRUPT)
4182                         i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4183
4184                 if (hotplug_status)
4185                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4186
4187                 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4188         } while (0);
4189
4190         enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4191
4192         return ret;
4193 }
4194
4195 /**
4196  * intel_irq_init - initializes irq support
4197  * @dev_priv: i915 device instance
4198  *
4199  * This function initializes all the irq support including work items, timers
4200  * and all the vtables. It does not setup the interrupt itself though.
4201  */
4202 void intel_irq_init(struct drm_i915_private *dev_priv)
4203 {
4204         struct drm_device *dev = &dev_priv->drm;
4205         int i;
4206
4207         intel_hpd_init_pins(dev_priv);
4208
4209         intel_hpd_init_work(dev_priv);
4210
4211         INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
4212         for (i = 0; i < MAX_L3_SLICES; ++i)
4213                 dev_priv->l3_parity.remap_info[i] = NULL;
4214
4215         /* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
4216         if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
4217                 dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
4218
4219         dev->vblank_disable_immediate = true;
4220
4221         /* Most platforms treat the display irq block as an always-on
4222          * power domain. vlv/chv can disable it at runtime and need
4223          * special care to avoid writing any of the display block registers
4224          * outside of the power domain. We defer setting up the display irqs
4225          * in this case to the runtime pm.
4226          */
4227         dev_priv->display_irqs_enabled = true;
4228         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4229                 dev_priv->display_irqs_enabled = false;
4230
4231         dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4232         /* If we have MST support, we want to avoid doing short HPD IRQ storm
4233          * detection, as short HPD storms will occur as a natural part of
4234          * sideband messaging with MST.
4235          * On older platforms however, IRQ storms can occur with both long and
4236          * short pulses, as seen on some G4x systems.
4237          */
4238         dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4239
4240         if (HAS_GMCH(dev_priv)) {
4241                 if (I915_HAS_HOTPLUG(dev_priv))
4242                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4243         } else {
4244                 if (HAS_PCH_DG1(dev_priv))
4245                         dev_priv->display.hpd_irq_setup = dg1_hpd_irq_setup;
4246                 else if (INTEL_GEN(dev_priv) >= 11)
4247                         dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4248                 else if (IS_GEN9_LP(dev_priv))
4249                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4250                 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4251                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4252                 else
4253                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4254         }
4255 }
4256
4257 /**
4258  * intel_irq_fini - deinitializes IRQ support
4259  * @i915: i915 device instance
4260  *
4261  * This function deinitializes all the IRQ support.
4262  */
4263 void intel_irq_fini(struct drm_i915_private *i915)
4264 {
4265         int i;
4266
4267         for (i = 0; i < MAX_L3_SLICES; ++i)
4268                 kfree(i915->l3_parity.remap_info[i]);
4269 }
4270
4271 static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4272 {
4273         if (HAS_GMCH(dev_priv)) {
4274                 if (IS_CHERRYVIEW(dev_priv))
4275                         return cherryview_irq_handler;
4276                 else if (IS_VALLEYVIEW(dev_priv))
4277                         return valleyview_irq_handler;
4278                 else if (IS_GEN(dev_priv, 4))
4279                         return i965_irq_handler;
4280                 else if (IS_GEN(dev_priv, 3))
4281                         return i915_irq_handler;
4282                 else
4283                         return i8xx_irq_handler;
4284         } else {
4285                 if (HAS_MASTER_UNIT_IRQ(dev_priv))
4286                         return dg1_irq_handler;
4287                 if (INTEL_GEN(dev_priv) >= 11)
4288                         return gen11_irq_handler;
4289                 else if (INTEL_GEN(dev_priv) >= 8)
4290                         return gen8_irq_handler;
4291                 else
4292                         return ilk_irq_handler;
4293         }
4294 }
4295
4296 static void intel_irq_reset(struct drm_i915_private *dev_priv)
4297 {
4298         if (HAS_GMCH(dev_priv)) {
4299                 if (IS_CHERRYVIEW(dev_priv))
4300                         cherryview_irq_reset(dev_priv);
4301                 else if (IS_VALLEYVIEW(dev_priv))
4302                         valleyview_irq_reset(dev_priv);
4303                 else if (IS_GEN(dev_priv, 4))
4304                         i965_irq_reset(dev_priv);
4305                 else if (IS_GEN(dev_priv, 3))
4306                         i915_irq_reset(dev_priv);
4307                 else
4308                         i8xx_irq_reset(dev_priv);
4309         } else {
4310                 if (INTEL_GEN(dev_priv) >= 11)
4311                         gen11_irq_reset(dev_priv);
4312                 else if (INTEL_GEN(dev_priv) >= 8)
4313                         gen8_irq_reset(dev_priv);
4314                 else
4315                         ilk_irq_reset(dev_priv);
4316         }
4317 }
4318
4319 static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4320 {
4321         if (HAS_GMCH(dev_priv)) {
4322                 if (IS_CHERRYVIEW(dev_priv))
4323                         cherryview_irq_postinstall(dev_priv);
4324                 else if (IS_VALLEYVIEW(dev_priv))
4325                         valleyview_irq_postinstall(dev_priv);
4326                 else if (IS_GEN(dev_priv, 4))
4327                         i965_irq_postinstall(dev_priv);
4328                 else if (IS_GEN(dev_priv, 3))
4329                         i915_irq_postinstall(dev_priv);
4330                 else
4331                         i8xx_irq_postinstall(dev_priv);
4332         } else {
4333                 if (INTEL_GEN(dev_priv) >= 11)
4334                         gen11_irq_postinstall(dev_priv);
4335                 else if (INTEL_GEN(dev_priv) >= 8)
4336                         gen8_irq_postinstall(dev_priv);
4337                 else
4338                         ilk_irq_postinstall(dev_priv);
4339         }
4340 }
4341
4342 /**
4343  * intel_irq_install - enables the hardware interrupt
4344  * @dev_priv: i915 device instance
4345  *
4346  * This function enables the hardware interrupt handling, but leaves the hotplug
4347  * handling still disabled. It is called after intel_irq_init().
4348  *
4349  * In the driver load and resume code we need working interrupts in a few places
4350  * but don't want to deal with the hassle of concurrent probe and hotplug
4351  * workers. Hence the split into this two-stage approach.
4352  */
4353 int intel_irq_install(struct drm_i915_private *dev_priv)
4354 {
4355         int irq = dev_priv->drm.pdev->irq;
4356         int ret;
4357
4358         /*
4359          * We enable some interrupt sources in our postinstall hooks, so mark
4360          * interrupts as enabled _before_ actually enabling them to avoid
4361          * special cases in our ordering checks.
4362          */
4363         dev_priv->runtime_pm.irqs_enabled = true;
4364
4365         dev_priv->drm.irq_enabled = true;
4366
4367         intel_irq_reset(dev_priv);
4368
4369         ret = request_irq(irq, intel_irq_handler(dev_priv),
4370                           IRQF_SHARED, DRIVER_NAME, dev_priv);
4371         if (ret < 0) {
4372                 dev_priv->drm.irq_enabled = false;
4373                 return ret;
4374         }
4375
4376         intel_irq_postinstall(dev_priv);
4377
4378         return ret;
4379 }
4380
4381 /**
4382  * intel_irq_uninstall - finilizes all irq handling
4383  * @dev_priv: i915 device instance
4384  *
4385  * This stops interrupt and hotplug handling and unregisters and frees all
4386  * resources acquired in the init functions.
4387  */
4388 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4389 {
4390         int irq = dev_priv->drm.pdev->irq;
4391
4392         /*
4393          * FIXME we can get called twice during driver probe
4394          * error handling as well as during driver remove due to
4395          * intel_modeset_driver_remove() calling us out of sequence.
4396          * Would be nice if it didn't do that...
4397          */
4398         if (!dev_priv->drm.irq_enabled)
4399                 return;
4400
4401         dev_priv->drm.irq_enabled = false;
4402
4403         intel_irq_reset(dev_priv);
4404
4405         free_irq(irq, dev_priv);
4406
4407         intel_hpd_cancel_work(dev_priv);
4408         dev_priv->runtime_pm.irqs_enabled = false;
4409 }
4410
4411 /**
4412  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4413  * @dev_priv: i915 device instance
4414  *
4415  * This function is used to disable interrupts at runtime, both in the runtime
4416  * pm and the system suspend/resume code.
4417  */
4418 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4419 {
4420         intel_irq_reset(dev_priv);
4421         dev_priv->runtime_pm.irqs_enabled = false;
4422         intel_synchronize_irq(dev_priv);
4423 }
4424
4425 /**
4426  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4427  * @dev_priv: i915 device instance
4428  *
4429  * This function is used to enable interrupts at runtime, both in the runtime
4430  * pm and the system suspend/resume code.
4431  */
4432 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4433 {
4434         dev_priv->runtime_pm.irqs_enabled = true;
4435         intel_irq_reset(dev_priv);
4436         intel_irq_postinstall(dev_priv);
4437 }
4438
4439 bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4440 {
4441         /*
4442          * We only use drm_irq_uninstall() at unload and VT switch, so
4443          * this is the only thing we need to check.
4444          */
4445         return dev_priv->runtime_pm.irqs_enabled;
4446 }
4447
4448 void intel_synchronize_irq(struct drm_i915_private *i915)
4449 {
4450         synchronize_irq(i915->drm.pdev->irq);
4451 }