xen/events: reset active flag for lateeoi events later
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drm_vma_manager.h>
29 #include <linux/dma-fence-array.h>
30 #include <linux/kthread.h>
31 #include <linux/dma-resv.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/slab.h>
34 #include <linux/stop_machine.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38 #include <linux/mman.h>
39
40 #include "display/intel_display.h"
41 #include "display/intel_frontbuffer.h"
42
43 #include "gem/i915_gem_clflush.h"
44 #include "gem/i915_gem_context.h"
45 #include "gem/i915_gem_ioctls.h"
46 #include "gem/i915_gem_mman.h"
47 #include "gem/i915_gem_region.h"
48 #include "gt/intel_engine_user.h"
49 #include "gt/intel_gt.h"
50 #include "gt/intel_gt_pm.h"
51 #include "gt/intel_workarounds.h"
52
53 #include "i915_drv.h"
54 #include "i915_trace.h"
55 #include "i915_vgpu.h"
56
57 #include "intel_pm.h"
58
59 static int
60 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
61 {
62         int err;
63
64         err = mutex_lock_interruptible(&ggtt->vm.mutex);
65         if (err)
66                 return err;
67
68         memset(node, 0, sizeof(*node));
69         err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
70                                           size, 0, I915_COLOR_UNEVICTABLE,
71                                           0, ggtt->mappable_end,
72                                           DRM_MM_INSERT_LOW);
73
74         mutex_unlock(&ggtt->vm.mutex);
75
76         return err;
77 }
78
79 static void
80 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
81 {
82         mutex_lock(&ggtt->vm.mutex);
83         drm_mm_remove_node(node);
84         mutex_unlock(&ggtt->vm.mutex);
85 }
86
87 int
88 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
89                             struct drm_file *file)
90 {
91         struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
92         struct drm_i915_gem_get_aperture *args = data;
93         struct i915_vma *vma;
94         u64 pinned;
95
96         if (mutex_lock_interruptible(&ggtt->vm.mutex))
97                 return -EINTR;
98
99         pinned = ggtt->vm.reserved;
100         list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
101                 if (i915_vma_is_pinned(vma))
102                         pinned += vma->node.size;
103
104         mutex_unlock(&ggtt->vm.mutex);
105
106         args->aper_size = ggtt->vm.total;
107         args->aper_available_size = args->aper_size - pinned;
108
109         return 0;
110 }
111
112 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
113                            unsigned long flags)
114 {
115         struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
116         LIST_HEAD(still_in_list);
117         intel_wakeref_t wakeref;
118         struct i915_vma *vma;
119         int ret;
120
121         if (list_empty(&obj->vma.list))
122                 return 0;
123
124         /*
125          * As some machines use ACPI to handle runtime-resume callbacks, and
126          * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
127          * as they are required by the shrinker. Ergo, we wake the device up
128          * first just in case.
129          */
130         wakeref = intel_runtime_pm_get(rpm);
131
132 try_again:
133         ret = 0;
134         spin_lock(&obj->vma.lock);
135         while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
136                                                        struct i915_vma,
137                                                        obj_link))) {
138                 struct i915_address_space *vm = vma->vm;
139
140                 list_move_tail(&vma->obj_link, &still_in_list);
141                 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
142                         continue;
143
144                 if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
145                         ret = -EBUSY;
146                         break;
147                 }
148
149                 ret = -EAGAIN;
150                 if (!i915_vm_tryopen(vm))
151                         break;
152
153                 /* Prevent vma being freed by i915_vma_parked as we unbind */
154                 vma = __i915_vma_get(vma);
155                 spin_unlock(&obj->vma.lock);
156
157                 if (vma) {
158                         ret = -EBUSY;
159                         if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
160                             !i915_vma_is_active(vma))
161                                 ret = i915_vma_unbind(vma);
162
163                         __i915_vma_put(vma);
164                 }
165
166                 i915_vm_close(vm);
167                 spin_lock(&obj->vma.lock);
168         }
169         list_splice_init(&still_in_list, &obj->vma.list);
170         spin_unlock(&obj->vma.lock);
171
172         if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
173                 rcu_barrier(); /* flush the i915_vm_release() */
174                 goto try_again;
175         }
176
177         intel_runtime_pm_put(rpm, wakeref);
178
179         return ret;
180 }
181
182 static int
183 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
184             bool needs_clflush)
185 {
186         char *vaddr;
187         int ret;
188
189         vaddr = kmap(page);
190
191         if (needs_clflush)
192                 drm_clflush_virt_range(vaddr + offset, len);
193
194         ret = __copy_to_user(user_data, vaddr + offset, len);
195
196         kunmap(page);
197
198         return ret ? -EFAULT : 0;
199 }
200
201 static int
202 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
203                      struct drm_i915_gem_pread *args)
204 {
205         unsigned int needs_clflush;
206         unsigned int idx, offset;
207         char __user *user_data;
208         u64 remain;
209         int ret;
210
211         ret = i915_gem_object_lock_interruptible(obj, NULL);
212         if (ret)
213                 return ret;
214
215         ret = i915_gem_object_pin_pages(obj);
216         if (ret)
217                 goto err_unlock;
218
219         ret = i915_gem_object_prepare_read(obj, &needs_clflush);
220         if (ret)
221                 goto err_unpin;
222
223         i915_gem_object_finish_access(obj);
224         i915_gem_object_unlock(obj);
225
226         remain = args->size;
227         user_data = u64_to_user_ptr(args->data_ptr);
228         offset = offset_in_page(args->offset);
229         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
230                 struct page *page = i915_gem_object_get_page(obj, idx);
231                 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
232
233                 ret = shmem_pread(page, offset, length, user_data,
234                                   needs_clflush);
235                 if (ret)
236                         break;
237
238                 remain -= length;
239                 user_data += length;
240                 offset = 0;
241         }
242
243         i915_gem_object_unpin_pages(obj);
244         return ret;
245
246 err_unpin:
247         i915_gem_object_unpin_pages(obj);
248 err_unlock:
249         i915_gem_object_unlock(obj);
250         return ret;
251 }
252
253 static inline bool
254 gtt_user_read(struct io_mapping *mapping,
255               loff_t base, int offset,
256               char __user *user_data, int length)
257 {
258         void __iomem *vaddr;
259         unsigned long unwritten;
260
261         /* We can use the cpu mem copy function because this is X86. */
262         vaddr = io_mapping_map_atomic_wc(mapping, base);
263         unwritten = __copy_to_user_inatomic(user_data,
264                                             (void __force *)vaddr + offset,
265                                             length);
266         io_mapping_unmap_atomic(vaddr);
267         if (unwritten) {
268                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
269                 unwritten = copy_to_user(user_data,
270                                          (void __force *)vaddr + offset,
271                                          length);
272                 io_mapping_unmap(vaddr);
273         }
274         return unwritten;
275 }
276
277 static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
278                                              struct drm_mm_node *node,
279                                              bool write)
280 {
281         struct drm_i915_private *i915 = to_i915(obj->base.dev);
282         struct i915_ggtt *ggtt = &i915->ggtt;
283         struct i915_vma *vma;
284         struct i915_gem_ww_ctx ww;
285         int ret;
286
287         i915_gem_ww_ctx_init(&ww, true);
288 retry:
289         vma = ERR_PTR(-ENODEV);
290         ret = i915_gem_object_lock(obj, &ww);
291         if (ret)
292                 goto err_ww;
293
294         ret = i915_gem_object_set_to_gtt_domain(obj, write);
295         if (ret)
296                 goto err_ww;
297
298         if (!i915_gem_object_is_tiled(obj))
299                 vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
300                                                   PIN_MAPPABLE |
301                                                   PIN_NONBLOCK /* NOWARN */ |
302                                                   PIN_NOEVICT);
303         if (vma == ERR_PTR(-EDEADLK)) {
304                 ret = -EDEADLK;
305                 goto err_ww;
306         } else if (!IS_ERR(vma)) {
307                 node->start = i915_ggtt_offset(vma);
308                 node->flags = 0;
309         } else {
310                 ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
311                 if (ret)
312                         goto err_ww;
313                 GEM_BUG_ON(!drm_mm_node_allocated(node));
314                 vma = NULL;
315         }
316
317         ret = i915_gem_object_pin_pages(obj);
318         if (ret) {
319                 if (drm_mm_node_allocated(node)) {
320                         ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
321                         remove_mappable_node(ggtt, node);
322                 } else {
323                         i915_vma_unpin(vma);
324                 }
325         }
326
327 err_ww:
328         if (ret == -EDEADLK) {
329                 ret = i915_gem_ww_ctx_backoff(&ww);
330                 if (!ret)
331                         goto retry;
332         }
333         i915_gem_ww_ctx_fini(&ww);
334
335         return ret ? ERR_PTR(ret) : vma;
336 }
337
338 static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
339                                  struct drm_mm_node *node,
340                                  struct i915_vma *vma)
341 {
342         struct drm_i915_private *i915 = to_i915(obj->base.dev);
343         struct i915_ggtt *ggtt = &i915->ggtt;
344
345         i915_gem_object_unpin_pages(obj);
346         if (drm_mm_node_allocated(node)) {
347                 ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
348                 remove_mappable_node(ggtt, node);
349         } else {
350                 i915_vma_unpin(vma);
351         }
352 }
353
354 static int
355 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
356                    const struct drm_i915_gem_pread *args)
357 {
358         struct drm_i915_private *i915 = to_i915(obj->base.dev);
359         struct i915_ggtt *ggtt = &i915->ggtt;
360         intel_wakeref_t wakeref;
361         struct drm_mm_node node;
362         void __user *user_data;
363         struct i915_vma *vma;
364         u64 remain, offset;
365         int ret = 0;
366
367         wakeref = intel_runtime_pm_get(&i915->runtime_pm);
368
369         vma = i915_gem_gtt_prepare(obj, &node, false);
370         if (IS_ERR(vma)) {
371                 ret = PTR_ERR(vma);
372                 goto out_rpm;
373         }
374
375         user_data = u64_to_user_ptr(args->data_ptr);
376         remain = args->size;
377         offset = args->offset;
378
379         while (remain > 0) {
380                 /* Operation in this page
381                  *
382                  * page_base = page offset within aperture
383                  * page_offset = offset within page
384                  * page_length = bytes to copy for this page
385                  */
386                 u32 page_base = node.start;
387                 unsigned page_offset = offset_in_page(offset);
388                 unsigned page_length = PAGE_SIZE - page_offset;
389                 page_length = remain < page_length ? remain : page_length;
390                 if (drm_mm_node_allocated(&node)) {
391                         ggtt->vm.insert_page(&ggtt->vm,
392                                              i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
393                                              node.start, I915_CACHE_NONE, 0);
394                 } else {
395                         page_base += offset & PAGE_MASK;
396                 }
397
398                 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
399                                   user_data, page_length)) {
400                         ret = -EFAULT;
401                         break;
402                 }
403
404                 remain -= page_length;
405                 user_data += page_length;
406                 offset += page_length;
407         }
408
409         i915_gem_gtt_cleanup(obj, &node, vma);
410 out_rpm:
411         intel_runtime_pm_put(&i915->runtime_pm, wakeref);
412         return ret;
413 }
414
415 /**
416  * Reads data from the object referenced by handle.
417  * @dev: drm device pointer
418  * @data: ioctl data blob
419  * @file: drm file pointer
420  *
421  * On error, the contents of *data are undefined.
422  */
423 int
424 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
425                      struct drm_file *file)
426 {
427         struct drm_i915_private *i915 = to_i915(dev);
428         struct drm_i915_gem_pread *args = data;
429         struct drm_i915_gem_object *obj;
430         int ret;
431
432         /* PREAD is disallowed for all platforms after TGL-LP.  This also
433          * covers all platforms with local memory.
434          */
435         if (INTEL_GEN(i915) >= 12 && !IS_TIGERLAKE(i915))
436                 return -EOPNOTSUPP;
437
438         if (args->size == 0)
439                 return 0;
440
441         if (!access_ok(u64_to_user_ptr(args->data_ptr),
442                        args->size))
443                 return -EFAULT;
444
445         obj = i915_gem_object_lookup(file, args->handle);
446         if (!obj)
447                 return -ENOENT;
448
449         /* Bounds check source.  */
450         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
451                 ret = -EINVAL;
452                 goto out;
453         }
454
455         trace_i915_gem_object_pread(obj, args->offset, args->size);
456         ret = -ENODEV;
457         if (obj->ops->pread)
458                 ret = obj->ops->pread(obj, args);
459         if (ret != -ENODEV)
460                 goto out;
461
462         ret = -ENODEV;
463         if (obj->ops->pread)
464                 ret = obj->ops->pread(obj, args);
465         if (ret != -ENODEV)
466                 goto out;
467
468         ret = i915_gem_object_wait(obj,
469                                    I915_WAIT_INTERRUPTIBLE,
470                                    MAX_SCHEDULE_TIMEOUT);
471         if (ret)
472                 goto out;
473
474         ret = i915_gem_shmem_pread(obj, args);
475         if (ret == -EFAULT || ret == -ENODEV)
476                 ret = i915_gem_gtt_pread(obj, args);
477
478 out:
479         i915_gem_object_put(obj);
480         return ret;
481 }
482
483 /* This is the fast write path which cannot handle
484  * page faults in the source data
485  */
486
487 static inline bool
488 ggtt_write(struct io_mapping *mapping,
489            loff_t base, int offset,
490            char __user *user_data, int length)
491 {
492         void __iomem *vaddr;
493         unsigned long unwritten;
494
495         /* We can use the cpu mem copy function because this is X86. */
496         vaddr = io_mapping_map_atomic_wc(mapping, base);
497         unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
498                                                       user_data, length);
499         io_mapping_unmap_atomic(vaddr);
500         if (unwritten) {
501                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
502                 unwritten = copy_from_user((void __force *)vaddr + offset,
503                                            user_data, length);
504                 io_mapping_unmap(vaddr);
505         }
506
507         return unwritten;
508 }
509
510 /**
511  * This is the fast pwrite path, where we copy the data directly from the
512  * user into the GTT, uncached.
513  * @obj: i915 GEM object
514  * @args: pwrite arguments structure
515  */
516 static int
517 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
518                          const struct drm_i915_gem_pwrite *args)
519 {
520         struct drm_i915_private *i915 = to_i915(obj->base.dev);
521         struct i915_ggtt *ggtt = &i915->ggtt;
522         struct intel_runtime_pm *rpm = &i915->runtime_pm;
523         intel_wakeref_t wakeref;
524         struct drm_mm_node node;
525         struct i915_vma *vma;
526         u64 remain, offset;
527         void __user *user_data;
528         int ret = 0;
529
530         if (i915_gem_object_has_struct_page(obj)) {
531                 /*
532                  * Avoid waking the device up if we can fallback, as
533                  * waking/resuming is very slow (worst-case 10-100 ms
534                  * depending on PCI sleeps and our own resume time).
535                  * This easily dwarfs any performance advantage from
536                  * using the cache bypass of indirect GGTT access.
537                  */
538                 wakeref = intel_runtime_pm_get_if_in_use(rpm);
539                 if (!wakeref)
540                         return -EFAULT;
541         } else {
542                 /* No backing pages, no fallback, we must force GGTT access */
543                 wakeref = intel_runtime_pm_get(rpm);
544         }
545
546         vma = i915_gem_gtt_prepare(obj, &node, true);
547         if (IS_ERR(vma)) {
548                 ret = PTR_ERR(vma);
549                 goto out_rpm;
550         }
551
552         i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
553
554         user_data = u64_to_user_ptr(args->data_ptr);
555         offset = args->offset;
556         remain = args->size;
557         while (remain) {
558                 /* Operation in this page
559                  *
560                  * page_base = page offset within aperture
561                  * page_offset = offset within page
562                  * page_length = bytes to copy for this page
563                  */
564                 u32 page_base = node.start;
565                 unsigned int page_offset = offset_in_page(offset);
566                 unsigned int page_length = PAGE_SIZE - page_offset;
567                 page_length = remain < page_length ? remain : page_length;
568                 if (drm_mm_node_allocated(&node)) {
569                         /* flush the write before we modify the GGTT */
570                         intel_gt_flush_ggtt_writes(ggtt->vm.gt);
571                         ggtt->vm.insert_page(&ggtt->vm,
572                                              i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
573                                              node.start, I915_CACHE_NONE, 0);
574                         wmb(); /* flush modifications to the GGTT (insert_page) */
575                 } else {
576                         page_base += offset & PAGE_MASK;
577                 }
578                 /* If we get a fault while copying data, then (presumably) our
579                  * source page isn't available.  Return the error and we'll
580                  * retry in the slow path.
581                  * If the object is non-shmem backed, we retry again with the
582                  * path that handles page fault.
583                  */
584                 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
585                                user_data, page_length)) {
586                         ret = -EFAULT;
587                         break;
588                 }
589
590                 remain -= page_length;
591                 user_data += page_length;
592                 offset += page_length;
593         }
594
595         intel_gt_flush_ggtt_writes(ggtt->vm.gt);
596         i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
597
598         i915_gem_gtt_cleanup(obj, &node, vma);
599 out_rpm:
600         intel_runtime_pm_put(rpm, wakeref);
601         return ret;
602 }
603
604 /* Per-page copy function for the shmem pwrite fastpath.
605  * Flushes invalid cachelines before writing to the target if
606  * needs_clflush_before is set and flushes out any written cachelines after
607  * writing if needs_clflush is set.
608  */
609 static int
610 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
611              bool needs_clflush_before,
612              bool needs_clflush_after)
613 {
614         char *vaddr;
615         int ret;
616
617         vaddr = kmap(page);
618
619         if (needs_clflush_before)
620                 drm_clflush_virt_range(vaddr + offset, len);
621
622         ret = __copy_from_user(vaddr + offset, user_data, len);
623         if (!ret && needs_clflush_after)
624                 drm_clflush_virt_range(vaddr + offset, len);
625
626         kunmap(page);
627
628         return ret ? -EFAULT : 0;
629 }
630
631 static int
632 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
633                       const struct drm_i915_gem_pwrite *args)
634 {
635         unsigned int partial_cacheline_write;
636         unsigned int needs_clflush;
637         unsigned int offset, idx;
638         void __user *user_data;
639         u64 remain;
640         int ret;
641
642         ret = i915_gem_object_lock_interruptible(obj, NULL);
643         if (ret)
644                 return ret;
645
646         ret = i915_gem_object_pin_pages(obj);
647         if (ret)
648                 goto err_unlock;
649
650         ret = i915_gem_object_prepare_write(obj, &needs_clflush);
651         if (ret)
652                 goto err_unpin;
653
654         i915_gem_object_finish_access(obj);
655         i915_gem_object_unlock(obj);
656
657         /* If we don't overwrite a cacheline completely we need to be
658          * careful to have up-to-date data by first clflushing. Don't
659          * overcomplicate things and flush the entire patch.
660          */
661         partial_cacheline_write = 0;
662         if (needs_clflush & CLFLUSH_BEFORE)
663                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
664
665         user_data = u64_to_user_ptr(args->data_ptr);
666         remain = args->size;
667         offset = offset_in_page(args->offset);
668         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
669                 struct page *page = i915_gem_object_get_page(obj, idx);
670                 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
671
672                 ret = shmem_pwrite(page, offset, length, user_data,
673                                    (offset | length) & partial_cacheline_write,
674                                    needs_clflush & CLFLUSH_AFTER);
675                 if (ret)
676                         break;
677
678                 remain -= length;
679                 user_data += length;
680                 offset = 0;
681         }
682
683         i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
684
685         i915_gem_object_unpin_pages(obj);
686         return ret;
687
688 err_unpin:
689         i915_gem_object_unpin_pages(obj);
690 err_unlock:
691         i915_gem_object_unlock(obj);
692         return ret;
693 }
694
695 /**
696  * Writes data to the object referenced by handle.
697  * @dev: drm device
698  * @data: ioctl data blob
699  * @file: drm file
700  *
701  * On error, the contents of the buffer that were to be modified are undefined.
702  */
703 int
704 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
705                       struct drm_file *file)
706 {
707         struct drm_i915_private *i915 = to_i915(dev);
708         struct drm_i915_gem_pwrite *args = data;
709         struct drm_i915_gem_object *obj;
710         int ret;
711
712         /* PWRITE is disallowed for all platforms after TGL-LP.  This also
713          * covers all platforms with local memory.
714          */
715         if (INTEL_GEN(i915) >= 12 && !IS_TIGERLAKE(i915))
716                 return -EOPNOTSUPP;
717
718         if (args->size == 0)
719                 return 0;
720
721         if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
722                 return -EFAULT;
723
724         obj = i915_gem_object_lookup(file, args->handle);
725         if (!obj)
726                 return -ENOENT;
727
728         /* Bounds check destination. */
729         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
730                 ret = -EINVAL;
731                 goto err;
732         }
733
734         /* Writes not allowed into this read-only object */
735         if (i915_gem_object_is_readonly(obj)) {
736                 ret = -EINVAL;
737                 goto err;
738         }
739
740         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
741
742         ret = -ENODEV;
743         if (obj->ops->pwrite)
744                 ret = obj->ops->pwrite(obj, args);
745         if (ret != -ENODEV)
746                 goto err;
747
748         ret = i915_gem_object_wait(obj,
749                                    I915_WAIT_INTERRUPTIBLE |
750                                    I915_WAIT_ALL,
751                                    MAX_SCHEDULE_TIMEOUT);
752         if (ret)
753                 goto err;
754
755         ret = -EFAULT;
756         /* We can only do the GTT pwrite on untiled buffers, as otherwise
757          * it would end up going through the fenced access, and we'll get
758          * different detiling behavior between reading and writing.
759          * pread/pwrite currently are reading and writing from the CPU
760          * perspective, requiring manual detiling by the client.
761          */
762         if (!i915_gem_object_has_struct_page(obj) ||
763             cpu_write_needs_clflush(obj))
764                 /* Note that the gtt paths might fail with non-page-backed user
765                  * pointers (e.g. gtt mappings when moving data between
766                  * textures). Fallback to the shmem path in that case.
767                  */
768                 ret = i915_gem_gtt_pwrite_fast(obj, args);
769
770         if (ret == -EFAULT || ret == -ENOSPC) {
771                 if (i915_gem_object_has_struct_page(obj))
772                         ret = i915_gem_shmem_pwrite(obj, args);
773         }
774
775 err:
776         i915_gem_object_put(obj);
777         return ret;
778 }
779
780 /**
781  * Called when user space has done writes to this buffer
782  * @dev: drm device
783  * @data: ioctl data blob
784  * @file: drm file
785  */
786 int
787 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
788                          struct drm_file *file)
789 {
790         struct drm_i915_gem_sw_finish *args = data;
791         struct drm_i915_gem_object *obj;
792
793         obj = i915_gem_object_lookup(file, args->handle);
794         if (!obj)
795                 return -ENOENT;
796
797         /*
798          * Proxy objects are barred from CPU access, so there is no
799          * need to ban sw_finish as it is a nop.
800          */
801
802         /* Pinned buffers may be scanout, so flush the cache */
803         i915_gem_object_flush_if_display(obj);
804         i915_gem_object_put(obj);
805
806         return 0;
807 }
808
809 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
810 {
811         struct drm_i915_gem_object *obj, *on;
812         int i;
813
814         /*
815          * Only called during RPM suspend. All users of the userfault_list
816          * must be holding an RPM wakeref to ensure that this can not
817          * run concurrently with themselves (and use the struct_mutex for
818          * protection between themselves).
819          */
820
821         list_for_each_entry_safe(obj, on,
822                                  &i915->ggtt.userfault_list, userfault_link)
823                 __i915_gem_object_release_mmap_gtt(obj);
824
825         /*
826          * The fence will be lost when the device powers down. If any were
827          * in use by hardware (i.e. they are pinned), we should not be powering
828          * down! All other fences will be reacquired by the user upon waking.
829          */
830         for (i = 0; i < i915->ggtt.num_fences; i++) {
831                 struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
832
833                 /*
834                  * Ideally we want to assert that the fence register is not
835                  * live at this point (i.e. that no piece of code will be
836                  * trying to write through fence + GTT, as that both violates
837                  * our tracking of activity and associated locking/barriers,
838                  * but also is illegal given that the hw is powered down).
839                  *
840                  * Previously we used reg->pin_count as a "liveness" indicator.
841                  * That is not sufficient, and we need a more fine-grained
842                  * tool if we want to have a sanity check here.
843                  */
844
845                 if (!reg->vma)
846                         continue;
847
848                 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
849                 reg->dirty = true;
850         }
851 }
852
853 static void discard_ggtt_vma(struct i915_vma *vma)
854 {
855         struct drm_i915_gem_object *obj = vma->obj;
856
857         spin_lock(&obj->vma.lock);
858         if (!RB_EMPTY_NODE(&vma->obj_node)) {
859                 rb_erase(&vma->obj_node, &obj->vma.tree);
860                 RB_CLEAR_NODE(&vma->obj_node);
861         }
862         spin_unlock(&obj->vma.lock);
863 }
864
865 struct i915_vma *
866 i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
867                             struct i915_gem_ww_ctx *ww,
868                             const struct i915_ggtt_view *view,
869                             u64 size, u64 alignment, u64 flags)
870 {
871         struct drm_i915_private *i915 = to_i915(obj->base.dev);
872         struct i915_ggtt *ggtt = &i915->ggtt;
873         struct i915_vma *vma;
874         int ret;
875
876         if (flags & PIN_MAPPABLE &&
877             (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
878                 /*
879                  * If the required space is larger than the available
880                  * aperture, we will not able to find a slot for the
881                  * object and unbinding the object now will be in
882                  * vain. Worse, doing so may cause us to ping-pong
883                  * the object in and out of the Global GTT and
884                  * waste a lot of cycles under the mutex.
885                  */
886                 if (obj->base.size > ggtt->mappable_end)
887                         return ERR_PTR(-E2BIG);
888
889                 /*
890                  * If NONBLOCK is set the caller is optimistically
891                  * trying to cache the full object within the mappable
892                  * aperture, and *must* have a fallback in place for
893                  * situations where we cannot bind the object. We
894                  * can be a little more lax here and use the fallback
895                  * more often to avoid costly migrations of ourselves
896                  * and other objects within the aperture.
897                  *
898                  * Half-the-aperture is used as a simple heuristic.
899                  * More interesting would to do search for a free
900                  * block prior to making the commitment to unbind.
901                  * That caters for the self-harm case, and with a
902                  * little more heuristics (e.g. NOFAULT, NOEVICT)
903                  * we could try to minimise harm to others.
904                  */
905                 if (flags & PIN_NONBLOCK &&
906                     obj->base.size > ggtt->mappable_end / 2)
907                         return ERR_PTR(-ENOSPC);
908         }
909
910 new_vma:
911         vma = i915_vma_instance(obj, &ggtt->vm, view);
912         if (IS_ERR(vma))
913                 return vma;
914
915         if (i915_vma_misplaced(vma, size, alignment, flags)) {
916                 if (flags & PIN_NONBLOCK) {
917                         if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
918                                 return ERR_PTR(-ENOSPC);
919
920                         if (flags & PIN_MAPPABLE &&
921                             vma->fence_size > ggtt->mappable_end / 2)
922                                 return ERR_PTR(-ENOSPC);
923                 }
924
925                 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
926                         discard_ggtt_vma(vma);
927                         goto new_vma;
928                 }
929
930                 ret = i915_vma_unbind(vma);
931                 if (ret)
932                         return ERR_PTR(ret);
933         }
934
935         if (ww)
936                 ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
937         else
938                 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
939
940         if (ret)
941                 return ERR_PTR(ret);
942
943         if (vma->fence && !i915_gem_object_is_tiled(obj)) {
944                 mutex_lock(&ggtt->vm.mutex);
945                 i915_vma_revoke_fence(vma);
946                 mutex_unlock(&ggtt->vm.mutex);
947         }
948
949         ret = i915_vma_wait_for_bind(vma);
950         if (ret) {
951                 i915_vma_unpin(vma);
952                 return ERR_PTR(ret);
953         }
954
955         return vma;
956 }
957
958 int
959 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
960                        struct drm_file *file_priv)
961 {
962         struct drm_i915_private *i915 = to_i915(dev);
963         struct drm_i915_gem_madvise *args = data;
964         struct drm_i915_gem_object *obj;
965         int err;
966
967         switch (args->madv) {
968         case I915_MADV_DONTNEED:
969         case I915_MADV_WILLNEED:
970             break;
971         default:
972             return -EINVAL;
973         }
974
975         obj = i915_gem_object_lookup(file_priv, args->handle);
976         if (!obj)
977                 return -ENOENT;
978
979         err = i915_gem_object_lock_interruptible(obj, NULL);
980         if (err)
981                 goto out;
982
983         if (i915_gem_object_has_pages(obj) &&
984             i915_gem_object_is_tiled(obj) &&
985             i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
986                 if (obj->mm.madv == I915_MADV_WILLNEED) {
987                         GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
988                         i915_gem_object_clear_tiling_quirk(obj);
989                         i915_gem_object_make_shrinkable(obj);
990                 }
991                 if (args->madv == I915_MADV_WILLNEED) {
992                         GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
993                         i915_gem_object_make_unshrinkable(obj);
994                         i915_gem_object_set_tiling_quirk(obj);
995                 }
996         }
997
998         if (obj->mm.madv != __I915_MADV_PURGED)
999                 obj->mm.madv = args->madv;
1000
1001         if (i915_gem_object_has_pages(obj)) {
1002                 struct list_head *list;
1003
1004                 if (i915_gem_object_is_shrinkable(obj)) {
1005                         unsigned long flags;
1006
1007                         spin_lock_irqsave(&i915->mm.obj_lock, flags);
1008
1009                         if (obj->mm.madv != I915_MADV_WILLNEED)
1010                                 list = &i915->mm.purge_list;
1011                         else
1012                                 list = &i915->mm.shrink_list;
1013                         list_move_tail(&obj->mm.link, list);
1014
1015                         spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1016                 }
1017         }
1018
1019         /* if the object is no longer attached, discard its backing storage */
1020         if (obj->mm.madv == I915_MADV_DONTNEED &&
1021             !i915_gem_object_has_pages(obj))
1022                 i915_gem_object_truncate(obj);
1023
1024         args->retained = obj->mm.madv != __I915_MADV_PURGED;
1025
1026         i915_gem_object_unlock(obj);
1027 out:
1028         i915_gem_object_put(obj);
1029         return err;
1030 }
1031
1032 int i915_gem_init(struct drm_i915_private *dev_priv)
1033 {
1034         int ret;
1035
1036         /* We need to fallback to 4K pages if host doesn't support huge gtt. */
1037         if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1038                 mkwrite_device_info(dev_priv)->page_sizes =
1039                         I915_GTT_PAGE_SIZE_4K;
1040
1041         ret = i915_gem_init_userptr(dev_priv);
1042         if (ret)
1043                 return ret;
1044
1045         intel_uc_fetch_firmwares(&dev_priv->gt.uc);
1046         intel_wopcm_init(&dev_priv->wopcm);
1047
1048         ret = i915_init_ggtt(dev_priv);
1049         if (ret) {
1050                 GEM_BUG_ON(ret == -EIO);
1051                 goto err_unlock;
1052         }
1053
1054         /*
1055          * Despite its name intel_init_clock_gating applies both display
1056          * clock gating workarounds; GT mmio workarounds and the occasional
1057          * GT power context workaround. Worse, sometimes it includes a context
1058          * register workaround which we need to apply before we record the
1059          * default HW state for all contexts.
1060          *
1061          * FIXME: break up the workarounds and apply them at the right time!
1062          */
1063         intel_init_clock_gating(dev_priv);
1064
1065         ret = intel_gt_init(&dev_priv->gt);
1066         if (ret)
1067                 goto err_unlock;
1068
1069         return 0;
1070
1071         /*
1072          * Unwinding is complicated by that we want to handle -EIO to mean
1073          * disable GPU submission but keep KMS alive. We want to mark the
1074          * HW as irrevisibly wedged, but keep enough state around that the
1075          * driver doesn't explode during runtime.
1076          */
1077 err_unlock:
1078         i915_gem_drain_workqueue(dev_priv);
1079
1080         if (ret != -EIO)
1081                 intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1082
1083         if (ret == -EIO) {
1084                 /*
1085                  * Allow engines or uC initialisation to fail by marking the GPU
1086                  * as wedged. But we only want to do this when the GPU is angry,
1087                  * for all other failure, such as an allocation failure, bail.
1088                  */
1089                 if (!intel_gt_is_wedged(&dev_priv->gt)) {
1090                         i915_probe_error(dev_priv,
1091                                          "Failed to initialize GPU, declaring it wedged!\n");
1092                         intel_gt_set_wedged(&dev_priv->gt);
1093                 }
1094
1095                 /* Minimal basic recovery for KMS */
1096                 ret = i915_ggtt_enable_hw(dev_priv);
1097                 i915_ggtt_resume(&dev_priv->ggtt);
1098                 intel_init_clock_gating(dev_priv);
1099         }
1100
1101         i915_gem_drain_freed_objects(dev_priv);
1102         return ret;
1103 }
1104
1105 void i915_gem_driver_register(struct drm_i915_private *i915)
1106 {
1107         i915_gem_driver_register__shrinker(i915);
1108
1109         intel_engines_driver_register(i915);
1110 }
1111
1112 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1113 {
1114         i915_gem_driver_unregister__shrinker(i915);
1115 }
1116
1117 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1118 {
1119         intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1120
1121         i915_gem_suspend_late(dev_priv);
1122         intel_gt_driver_remove(&dev_priv->gt);
1123         dev_priv->uabi_engines = RB_ROOT;
1124
1125         /* Flush any outstanding unpin_work. */
1126         i915_gem_drain_workqueue(dev_priv);
1127
1128         i915_gem_drain_freed_objects(dev_priv);
1129 }
1130
1131 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1132 {
1133         intel_gt_driver_release(&dev_priv->gt);
1134
1135         intel_wa_list_free(&dev_priv->gt_wa_list);
1136
1137         intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1138
1139         i915_gem_drain_freed_objects(dev_priv);
1140
1141         drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1142 }
1143
1144 static void i915_gem_init__mm(struct drm_i915_private *i915)
1145 {
1146         spin_lock_init(&i915->mm.obj_lock);
1147
1148         init_llist_head(&i915->mm.free_list);
1149
1150         INIT_LIST_HEAD(&i915->mm.purge_list);
1151         INIT_LIST_HEAD(&i915->mm.shrink_list);
1152
1153         i915_gem_init__objects(i915);
1154 }
1155
1156 void i915_gem_init_early(struct drm_i915_private *dev_priv)
1157 {
1158         i915_gem_init__mm(dev_priv);
1159         i915_gem_init__contexts(dev_priv);
1160
1161         spin_lock_init(&dev_priv->fb_tracking.lock);
1162 }
1163
1164 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1165 {
1166         i915_gem_drain_freed_objects(dev_priv);
1167         GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1168         GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1169         drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1170 }
1171
1172 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1173 {
1174         struct drm_i915_file_private *file_priv;
1175         int ret;
1176
1177         DRM_DEBUG("\n");
1178
1179         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1180         if (!file_priv)
1181                 return -ENOMEM;
1182
1183         file->driver_priv = file_priv;
1184         file_priv->dev_priv = i915;
1185         file_priv->file = file;
1186
1187         file_priv->bsd_engine = -1;
1188         file_priv->hang_timestamp = jiffies;
1189
1190         ret = i915_gem_context_open(i915, file);
1191         if (ret)
1192                 kfree(file_priv);
1193
1194         return ret;
1195 }
1196
1197 void i915_gem_ww_ctx_init(struct i915_gem_ww_ctx *ww, bool intr)
1198 {
1199         ww_acquire_init(&ww->ctx, &reservation_ww_class);
1200         INIT_LIST_HEAD(&ww->obj_list);
1201         ww->intr = intr;
1202         ww->contended = NULL;
1203 }
1204
1205 static void i915_gem_ww_ctx_unlock_all(struct i915_gem_ww_ctx *ww)
1206 {
1207         struct drm_i915_gem_object *obj;
1208
1209         while ((obj = list_first_entry_or_null(&ww->obj_list, struct drm_i915_gem_object, obj_link))) {
1210                 list_del(&obj->obj_link);
1211                 i915_gem_object_unlock(obj);
1212         }
1213 }
1214
1215 void i915_gem_ww_unlock_single(struct drm_i915_gem_object *obj)
1216 {
1217         list_del(&obj->obj_link);
1218         i915_gem_object_unlock(obj);
1219 }
1220
1221 void i915_gem_ww_ctx_fini(struct i915_gem_ww_ctx *ww)
1222 {
1223         i915_gem_ww_ctx_unlock_all(ww);
1224         WARN_ON(ww->contended);
1225         ww_acquire_fini(&ww->ctx);
1226 }
1227
1228 int __must_check i915_gem_ww_ctx_backoff(struct i915_gem_ww_ctx *ww)
1229 {
1230         int ret = 0;
1231
1232         if (WARN_ON(!ww->contended))
1233                 return -EINVAL;
1234
1235         i915_gem_ww_ctx_unlock_all(ww);
1236         if (ww->intr)
1237                 ret = dma_resv_lock_slow_interruptible(ww->contended->base.resv, &ww->ctx);
1238         else
1239                 dma_resv_lock_slow(ww->contended->base.resv, &ww->ctx);
1240
1241         if (!ret)
1242                 list_add_tail(&ww->contended->obj_link, &ww->obj_list);
1243
1244         ww->contended = NULL;
1245
1246         return ret;
1247 }
1248
1249 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1250 #include "selftests/mock_gem_device.c"
1251 #include "selftests/i915_gem.c"
1252 #endif