Merge tag 'drm-intel-next-2018-04-13' of git://anongit.freedesktop.org/drm/drm-intel...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_atomic_helper.h>
47 #include <drm/i915_drm.h>
48
49 #include "i915_drv.h"
50 #include "i915_trace.h"
51 #include "i915_pmu.h"
52 #include "i915_query.h"
53 #include "i915_vgpu.h"
54 #include "intel_drv.h"
55 #include "intel_uc.h"
56
57 static struct drm_driver driver;
58
59 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
60 static unsigned int i915_load_fail_count;
61
62 bool __i915_inject_load_failure(const char *func, int line)
63 {
64         if (i915_load_fail_count >= i915_modparams.inject_load_failure)
65                 return false;
66
67         if (++i915_load_fail_count == i915_modparams.inject_load_failure) {
68                 DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
69                          i915_modparams.inject_load_failure, func, line);
70                 return true;
71         }
72
73         return false;
74 }
75 #endif
76
77 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
78 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
79                     "providing the dmesg log by booting with drm.debug=0xf"
80
81 void
82 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
83               const char *fmt, ...)
84 {
85         static bool shown_bug_once;
86         struct device *kdev = dev_priv->drm.dev;
87         bool is_error = level[1] <= KERN_ERR[1];
88         bool is_debug = level[1] == KERN_DEBUG[1];
89         struct va_format vaf;
90         va_list args;
91
92         if (is_debug && !(drm_debug & DRM_UT_DRIVER))
93                 return;
94
95         va_start(args, fmt);
96
97         vaf.fmt = fmt;
98         vaf.va = &args;
99
100         dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
101                    __builtin_return_address(0), &vaf);
102
103         if (is_error && !shown_bug_once) {
104                 dev_notice(kdev, "%s", FDO_BUG_MSG);
105                 shown_bug_once = true;
106         }
107
108         va_end(args);
109 }
110
111 static bool i915_error_injected(struct drm_i915_private *dev_priv)
112 {
113 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
114         return i915_modparams.inject_load_failure &&
115                i915_load_fail_count == i915_modparams.inject_load_failure;
116 #else
117         return false;
118 #endif
119 }
120
121 #define i915_load_error(dev_priv, fmt, ...)                                  \
122         __i915_printk(dev_priv,                                              \
123                       i915_error_injected(dev_priv) ? KERN_DEBUG : KERN_ERR, \
124                       fmt, ##__VA_ARGS__)
125
126 /* Map PCH device id to PCH type, or PCH_NONE if unknown. */
127 static enum intel_pch
128 intel_pch_type(const struct drm_i915_private *dev_priv, unsigned short id)
129 {
130         switch (id) {
131         case INTEL_PCH_IBX_DEVICE_ID_TYPE:
132                 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
133                 WARN_ON(!IS_GEN5(dev_priv));
134                 return PCH_IBX;
135         case INTEL_PCH_CPT_DEVICE_ID_TYPE:
136                 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
137                 WARN_ON(!IS_GEN6(dev_priv) && !IS_IVYBRIDGE(dev_priv));
138                 return PCH_CPT;
139         case INTEL_PCH_PPT_DEVICE_ID_TYPE:
140                 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
141                 WARN_ON(!IS_GEN6(dev_priv) && !IS_IVYBRIDGE(dev_priv));
142                 /* PantherPoint is CPT compatible */
143                 return PCH_CPT;
144         case INTEL_PCH_LPT_DEVICE_ID_TYPE:
145                 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
146                 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
147                 WARN_ON(IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv));
148                 return PCH_LPT;
149         case INTEL_PCH_LPT_LP_DEVICE_ID_TYPE:
150                 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
151                 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
152                 WARN_ON(!IS_HSW_ULT(dev_priv) && !IS_BDW_ULT(dev_priv));
153                 return PCH_LPT;
154         case INTEL_PCH_WPT_DEVICE_ID_TYPE:
155                 DRM_DEBUG_KMS("Found WildcatPoint PCH\n");
156                 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
157                 WARN_ON(IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv));
158                 /* WildcatPoint is LPT compatible */
159                 return PCH_LPT;
160         case INTEL_PCH_WPT_LP_DEVICE_ID_TYPE:
161                 DRM_DEBUG_KMS("Found WildcatPoint LP PCH\n");
162                 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
163                 WARN_ON(!IS_HSW_ULT(dev_priv) && !IS_BDW_ULT(dev_priv));
164                 /* WildcatPoint is LPT compatible */
165                 return PCH_LPT;
166         case INTEL_PCH_SPT_DEVICE_ID_TYPE:
167                 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
168                 WARN_ON(!IS_SKYLAKE(dev_priv) && !IS_KABYLAKE(dev_priv));
169                 return PCH_SPT;
170         case INTEL_PCH_SPT_LP_DEVICE_ID_TYPE:
171                 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
172                 WARN_ON(!IS_SKYLAKE(dev_priv) && !IS_KABYLAKE(dev_priv));
173                 return PCH_SPT;
174         case INTEL_PCH_KBP_DEVICE_ID_TYPE:
175                 DRM_DEBUG_KMS("Found Kaby Lake PCH (KBP)\n");
176                 WARN_ON(!IS_SKYLAKE(dev_priv) && !IS_KABYLAKE(dev_priv) &&
177                         !IS_COFFEELAKE(dev_priv));
178                 return PCH_KBP;
179         case INTEL_PCH_CNP_DEVICE_ID_TYPE:
180                 DRM_DEBUG_KMS("Found Cannon Lake PCH (CNP)\n");
181                 WARN_ON(!IS_CANNONLAKE(dev_priv) && !IS_COFFEELAKE(dev_priv));
182                 return PCH_CNP;
183         case INTEL_PCH_CNP_LP_DEVICE_ID_TYPE:
184                 DRM_DEBUG_KMS("Found Cannon Lake LP PCH (CNP-LP)\n");
185                 WARN_ON(!IS_CANNONLAKE(dev_priv) && !IS_COFFEELAKE(dev_priv));
186                 return PCH_CNP;
187         case INTEL_PCH_ICP_DEVICE_ID_TYPE:
188                 DRM_DEBUG_KMS("Found Ice Lake PCH\n");
189                 WARN_ON(!IS_ICELAKE(dev_priv));
190                 return PCH_ICP;
191         default:
192                 return PCH_NONE;
193         }
194 }
195
196 static bool intel_is_virt_pch(unsigned short id,
197                               unsigned short svendor, unsigned short sdevice)
198 {
199         return (id == INTEL_PCH_P2X_DEVICE_ID_TYPE ||
200                 id == INTEL_PCH_P3X_DEVICE_ID_TYPE ||
201                 (id == INTEL_PCH_QEMU_DEVICE_ID_TYPE &&
202                  svendor == PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
203                  sdevice == PCI_SUBDEVICE_ID_QEMU));
204 }
205
206 static unsigned short
207 intel_virt_detect_pch(const struct drm_i915_private *dev_priv)
208 {
209         unsigned short id = 0;
210
211         /*
212          * In a virtualized passthrough environment we can be in a
213          * setup where the ISA bridge is not able to be passed through.
214          * In this case, a south bridge can be emulated and we have to
215          * make an educated guess as to which PCH is really there.
216          */
217
218         if (IS_GEN5(dev_priv))
219                 id = INTEL_PCH_IBX_DEVICE_ID_TYPE;
220         else if (IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
221                 id = INTEL_PCH_CPT_DEVICE_ID_TYPE;
222         else if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
223                 id = INTEL_PCH_LPT_LP_DEVICE_ID_TYPE;
224         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
225                 id = INTEL_PCH_LPT_DEVICE_ID_TYPE;
226         else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
227                 id = INTEL_PCH_SPT_DEVICE_ID_TYPE;
228         else if (IS_COFFEELAKE(dev_priv) || IS_CANNONLAKE(dev_priv))
229                 id = INTEL_PCH_CNP_DEVICE_ID_TYPE;
230
231         if (id)
232                 DRM_DEBUG_KMS("Assuming PCH ID %04x\n", id);
233         else
234                 DRM_DEBUG_KMS("Assuming no PCH\n");
235
236         return id;
237 }
238
239 static void intel_detect_pch(struct drm_i915_private *dev_priv)
240 {
241         struct pci_dev *pch = NULL;
242
243         /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
244          * (which really amounts to a PCH but no South Display).
245          */
246         if (INTEL_INFO(dev_priv)->num_pipes == 0) {
247                 dev_priv->pch_type = PCH_NOP;
248                 return;
249         }
250
251         /*
252          * The reason to probe ISA bridge instead of Dev31:Fun0 is to
253          * make graphics device passthrough work easy for VMM, that only
254          * need to expose ISA bridge to let driver know the real hardware
255          * underneath. This is a requirement from virtualization team.
256          *
257          * In some virtualized environments (e.g. XEN), there is irrelevant
258          * ISA bridge in the system. To work reliably, we should scan trhough
259          * all the ISA bridge devices and check for the first match, instead
260          * of only checking the first one.
261          */
262         while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
263                 unsigned short id;
264                 enum intel_pch pch_type;
265
266                 if (pch->vendor != PCI_VENDOR_ID_INTEL)
267                         continue;
268
269                 id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
270
271                 pch_type = intel_pch_type(dev_priv, id);
272                 if (pch_type != PCH_NONE) {
273                         dev_priv->pch_type = pch_type;
274                         dev_priv->pch_id = id;
275                         break;
276                 } else if (intel_is_virt_pch(id, pch->subsystem_vendor,
277                                          pch->subsystem_device)) {
278                         id = intel_virt_detect_pch(dev_priv);
279                         if (id) {
280                                 pch_type = intel_pch_type(dev_priv, id);
281                                 if (WARN_ON(pch_type == PCH_NONE))
282                                         pch_type = PCH_NOP;
283                         } else {
284                                 pch_type = PCH_NOP;
285                         }
286                         dev_priv->pch_type = pch_type;
287                         dev_priv->pch_id = id;
288                         break;
289                 }
290         }
291         if (!pch)
292                 DRM_DEBUG_KMS("No PCH found.\n");
293
294         pci_dev_put(pch);
295 }
296
297 static int i915_getparam_ioctl(struct drm_device *dev, void *data,
298                                struct drm_file *file_priv)
299 {
300         struct drm_i915_private *dev_priv = to_i915(dev);
301         struct pci_dev *pdev = dev_priv->drm.pdev;
302         drm_i915_getparam_t *param = data;
303         int value;
304
305         switch (param->param) {
306         case I915_PARAM_IRQ_ACTIVE:
307         case I915_PARAM_ALLOW_BATCHBUFFER:
308         case I915_PARAM_LAST_DISPATCH:
309         case I915_PARAM_HAS_EXEC_CONSTANTS:
310                 /* Reject all old ums/dri params. */
311                 return -ENODEV;
312         case I915_PARAM_CHIPSET_ID:
313                 value = pdev->device;
314                 break;
315         case I915_PARAM_REVISION:
316                 value = pdev->revision;
317                 break;
318         case I915_PARAM_NUM_FENCES_AVAIL:
319                 value = dev_priv->num_fence_regs;
320                 break;
321         case I915_PARAM_HAS_OVERLAY:
322                 value = dev_priv->overlay ? 1 : 0;
323                 break;
324         case I915_PARAM_HAS_BSD:
325                 value = !!dev_priv->engine[VCS];
326                 break;
327         case I915_PARAM_HAS_BLT:
328                 value = !!dev_priv->engine[BCS];
329                 break;
330         case I915_PARAM_HAS_VEBOX:
331                 value = !!dev_priv->engine[VECS];
332                 break;
333         case I915_PARAM_HAS_BSD2:
334                 value = !!dev_priv->engine[VCS2];
335                 break;
336         case I915_PARAM_HAS_LLC:
337                 value = HAS_LLC(dev_priv);
338                 break;
339         case I915_PARAM_HAS_WT:
340                 value = HAS_WT(dev_priv);
341                 break;
342         case I915_PARAM_HAS_ALIASING_PPGTT:
343                 value = USES_PPGTT(dev_priv);
344                 break;
345         case I915_PARAM_HAS_SEMAPHORES:
346                 value = HAS_LEGACY_SEMAPHORES(dev_priv);
347                 break;
348         case I915_PARAM_HAS_SECURE_BATCHES:
349                 value = capable(CAP_SYS_ADMIN);
350                 break;
351         case I915_PARAM_CMD_PARSER_VERSION:
352                 value = i915_cmd_parser_get_version(dev_priv);
353                 break;
354         case I915_PARAM_SUBSLICE_TOTAL:
355                 value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
356                 if (!value)
357                         return -ENODEV;
358                 break;
359         case I915_PARAM_EU_TOTAL:
360                 value = INTEL_INFO(dev_priv)->sseu.eu_total;
361                 if (!value)
362                         return -ENODEV;
363                 break;
364         case I915_PARAM_HAS_GPU_RESET:
365                 value = i915_modparams.enable_hangcheck &&
366                         intel_has_gpu_reset(dev_priv);
367                 if (value && intel_has_reset_engine(dev_priv))
368                         value = 2;
369                 break;
370         case I915_PARAM_HAS_RESOURCE_STREAMER:
371                 value = HAS_RESOURCE_STREAMER(dev_priv);
372                 break;
373         case I915_PARAM_HAS_POOLED_EU:
374                 value = HAS_POOLED_EU(dev_priv);
375                 break;
376         case I915_PARAM_MIN_EU_IN_POOL:
377                 value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
378                 break;
379         case I915_PARAM_HUC_STATUS:
380                 value = intel_huc_check_status(&dev_priv->huc);
381                 if (value < 0)
382                         return value;
383                 break;
384         case I915_PARAM_MMAP_GTT_VERSION:
385                 /* Though we've started our numbering from 1, and so class all
386                  * earlier versions as 0, in effect their value is undefined as
387                  * the ioctl will report EINVAL for the unknown param!
388                  */
389                 value = i915_gem_mmap_gtt_version();
390                 break;
391         case I915_PARAM_HAS_SCHEDULER:
392                 value = dev_priv->caps.scheduler;
393                 break;
394
395         case I915_PARAM_MMAP_VERSION:
396                 /* Remember to bump this if the version changes! */
397         case I915_PARAM_HAS_GEM:
398         case I915_PARAM_HAS_PAGEFLIPPING:
399         case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
400         case I915_PARAM_HAS_RELAXED_FENCING:
401         case I915_PARAM_HAS_COHERENT_RINGS:
402         case I915_PARAM_HAS_RELAXED_DELTA:
403         case I915_PARAM_HAS_GEN7_SOL_RESET:
404         case I915_PARAM_HAS_WAIT_TIMEOUT:
405         case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
406         case I915_PARAM_HAS_PINNED_BATCHES:
407         case I915_PARAM_HAS_EXEC_NO_RELOC:
408         case I915_PARAM_HAS_EXEC_HANDLE_LUT:
409         case I915_PARAM_HAS_COHERENT_PHYS_GTT:
410         case I915_PARAM_HAS_EXEC_SOFTPIN:
411         case I915_PARAM_HAS_EXEC_ASYNC:
412         case I915_PARAM_HAS_EXEC_FENCE:
413         case I915_PARAM_HAS_EXEC_CAPTURE:
414         case I915_PARAM_HAS_EXEC_BATCH_FIRST:
415         case I915_PARAM_HAS_EXEC_FENCE_ARRAY:
416                 /* For the time being all of these are always true;
417                  * if some supported hardware does not have one of these
418                  * features this value needs to be provided from
419                  * INTEL_INFO(), a feature macro, or similar.
420                  */
421                 value = 1;
422                 break;
423         case I915_PARAM_HAS_CONTEXT_ISOLATION:
424                 value = intel_engines_has_context_isolation(dev_priv);
425                 break;
426         case I915_PARAM_SLICE_MASK:
427                 value = INTEL_INFO(dev_priv)->sseu.slice_mask;
428                 if (!value)
429                         return -ENODEV;
430                 break;
431         case I915_PARAM_SUBSLICE_MASK:
432                 value = INTEL_INFO(dev_priv)->sseu.subslice_mask[0];
433                 if (!value)
434                         return -ENODEV;
435                 break;
436         case I915_PARAM_CS_TIMESTAMP_FREQUENCY:
437                 value = 1000 * INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz;
438                 break;
439         default:
440                 DRM_DEBUG("Unknown parameter %d\n", param->param);
441                 return -EINVAL;
442         }
443
444         if (put_user(value, param->value))
445                 return -EFAULT;
446
447         return 0;
448 }
449
450 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
451 {
452         int domain = pci_domain_nr(dev_priv->drm.pdev->bus);
453
454         dev_priv->bridge_dev =
455                 pci_get_domain_bus_and_slot(domain, 0, PCI_DEVFN(0, 0));
456         if (!dev_priv->bridge_dev) {
457                 DRM_ERROR("bridge device not found\n");
458                 return -1;
459         }
460         return 0;
461 }
462
463 /* Allocate space for the MCH regs if needed, return nonzero on error */
464 static int
465 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
466 {
467         int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
468         u32 temp_lo, temp_hi = 0;
469         u64 mchbar_addr;
470         int ret;
471
472         if (INTEL_GEN(dev_priv) >= 4)
473                 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
474         pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
475         mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
476
477         /* If ACPI doesn't have it, assume we need to allocate it ourselves */
478 #ifdef CONFIG_PNP
479         if (mchbar_addr &&
480             pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
481                 return 0;
482 #endif
483
484         /* Get some space for it */
485         dev_priv->mch_res.name = "i915 MCHBAR";
486         dev_priv->mch_res.flags = IORESOURCE_MEM;
487         ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
488                                      &dev_priv->mch_res,
489                                      MCHBAR_SIZE, MCHBAR_SIZE,
490                                      PCIBIOS_MIN_MEM,
491                                      0, pcibios_align_resource,
492                                      dev_priv->bridge_dev);
493         if (ret) {
494                 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
495                 dev_priv->mch_res.start = 0;
496                 return ret;
497         }
498
499         if (INTEL_GEN(dev_priv) >= 4)
500                 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
501                                        upper_32_bits(dev_priv->mch_res.start));
502
503         pci_write_config_dword(dev_priv->bridge_dev, reg,
504                                lower_32_bits(dev_priv->mch_res.start));
505         return 0;
506 }
507
508 /* Setup MCHBAR if possible, return true if we should disable it again */
509 static void
510 intel_setup_mchbar(struct drm_i915_private *dev_priv)
511 {
512         int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
513         u32 temp;
514         bool enabled;
515
516         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
517                 return;
518
519         dev_priv->mchbar_need_disable = false;
520
521         if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
522                 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
523                 enabled = !!(temp & DEVEN_MCHBAR_EN);
524         } else {
525                 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
526                 enabled = temp & 1;
527         }
528
529         /* If it's already enabled, don't have to do anything */
530         if (enabled)
531                 return;
532
533         if (intel_alloc_mchbar_resource(dev_priv))
534                 return;
535
536         dev_priv->mchbar_need_disable = true;
537
538         /* Space is allocated or reserved, so enable it. */
539         if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
540                 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
541                                        temp | DEVEN_MCHBAR_EN);
542         } else {
543                 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
544                 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
545         }
546 }
547
548 static void
549 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
550 {
551         int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
552
553         if (dev_priv->mchbar_need_disable) {
554                 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
555                         u32 deven_val;
556
557                         pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
558                                               &deven_val);
559                         deven_val &= ~DEVEN_MCHBAR_EN;
560                         pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
561                                                deven_val);
562                 } else {
563                         u32 mchbar_val;
564
565                         pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
566                                               &mchbar_val);
567                         mchbar_val &= ~1;
568                         pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
569                                                mchbar_val);
570                 }
571         }
572
573         if (dev_priv->mch_res.start)
574                 release_resource(&dev_priv->mch_res);
575 }
576
577 /* true = enable decode, false = disable decoder */
578 static unsigned int i915_vga_set_decode(void *cookie, bool state)
579 {
580         struct drm_i915_private *dev_priv = cookie;
581
582         intel_modeset_vga_set_state(dev_priv, state);
583         if (state)
584                 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
585                        VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
586         else
587                 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
588 }
589
590 static int i915_resume_switcheroo(struct drm_device *dev);
591 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
592
593 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
594 {
595         struct drm_device *dev = pci_get_drvdata(pdev);
596         pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
597
598         if (state == VGA_SWITCHEROO_ON) {
599                 pr_info("switched on\n");
600                 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
601                 /* i915 resume handler doesn't set to D0 */
602                 pci_set_power_state(pdev, PCI_D0);
603                 i915_resume_switcheroo(dev);
604                 dev->switch_power_state = DRM_SWITCH_POWER_ON;
605         } else {
606                 pr_info("switched off\n");
607                 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
608                 i915_suspend_switcheroo(dev, pmm);
609                 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
610         }
611 }
612
613 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
614 {
615         struct drm_device *dev = pci_get_drvdata(pdev);
616
617         /*
618          * FIXME: open_count is protected by drm_global_mutex but that would lead to
619          * locking inversion with the driver load path. And the access here is
620          * completely racy anyway. So don't bother with locking for now.
621          */
622         return dev->open_count == 0;
623 }
624
625 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
626         .set_gpu_state = i915_switcheroo_set_state,
627         .reprobe = NULL,
628         .can_switch = i915_switcheroo_can_switch,
629 };
630
631 static void i915_gem_fini(struct drm_i915_private *dev_priv)
632 {
633         /* Flush any outstanding unpin_work. */
634         i915_gem_drain_workqueue(dev_priv);
635
636         mutex_lock(&dev_priv->drm.struct_mutex);
637         intel_uc_fini_hw(dev_priv);
638         intel_uc_fini(dev_priv);
639         i915_gem_cleanup_engines(dev_priv);
640         i915_gem_contexts_fini(dev_priv);
641         mutex_unlock(&dev_priv->drm.struct_mutex);
642
643         intel_uc_fini_misc(dev_priv);
644         i915_gem_cleanup_userptr(dev_priv);
645
646         i915_gem_drain_freed_objects(dev_priv);
647
648         WARN_ON(!list_empty(&dev_priv->contexts.list));
649 }
650
651 static int i915_load_modeset_init(struct drm_device *dev)
652 {
653         struct drm_i915_private *dev_priv = to_i915(dev);
654         struct pci_dev *pdev = dev_priv->drm.pdev;
655         int ret;
656
657         if (i915_inject_load_failure())
658                 return -ENODEV;
659
660         intel_bios_init(dev_priv);
661
662         /* If we have > 1 VGA cards, then we need to arbitrate access
663          * to the common VGA resources.
664          *
665          * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
666          * then we do not take part in VGA arbitration and the
667          * vga_client_register() fails with -ENODEV.
668          */
669         ret = vga_client_register(pdev, dev_priv, NULL, i915_vga_set_decode);
670         if (ret && ret != -ENODEV)
671                 goto out;
672
673         intel_register_dsm_handler();
674
675         ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
676         if (ret)
677                 goto cleanup_vga_client;
678
679         /* must happen before intel_power_domains_init_hw() on VLV/CHV */
680         intel_update_rawclk(dev_priv);
681
682         intel_power_domains_init_hw(dev_priv, false);
683
684         intel_csr_ucode_init(dev_priv);
685
686         ret = intel_irq_install(dev_priv);
687         if (ret)
688                 goto cleanup_csr;
689
690         intel_setup_gmbus(dev_priv);
691
692         /* Important: The output setup functions called by modeset_init need
693          * working irqs for e.g. gmbus and dp aux transfers. */
694         ret = intel_modeset_init(dev);
695         if (ret)
696                 goto cleanup_irq;
697
698         ret = i915_gem_init(dev_priv);
699         if (ret)
700                 goto cleanup_irq;
701
702         intel_setup_overlay(dev_priv);
703
704         if (INTEL_INFO(dev_priv)->num_pipes == 0)
705                 return 0;
706
707         ret = intel_fbdev_init(dev);
708         if (ret)
709                 goto cleanup_gem;
710
711         /* Only enable hotplug handling once the fbdev is fully set up. */
712         intel_hpd_init(dev_priv);
713
714         return 0;
715
716 cleanup_gem:
717         if (i915_gem_suspend(dev_priv))
718                 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
719         i915_gem_fini(dev_priv);
720 cleanup_irq:
721         drm_irq_uninstall(dev);
722         intel_teardown_gmbus(dev_priv);
723 cleanup_csr:
724         intel_csr_ucode_fini(dev_priv);
725         intel_power_domains_fini(dev_priv);
726         vga_switcheroo_unregister_client(pdev);
727 cleanup_vga_client:
728         vga_client_register(pdev, NULL, NULL, NULL);
729 out:
730         return ret;
731 }
732
733 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
734 {
735         struct apertures_struct *ap;
736         struct pci_dev *pdev = dev_priv->drm.pdev;
737         struct i915_ggtt *ggtt = &dev_priv->ggtt;
738         bool primary;
739         int ret;
740
741         ap = alloc_apertures(1);
742         if (!ap)
743                 return -ENOMEM;
744
745         ap->ranges[0].base = ggtt->gmadr.start;
746         ap->ranges[0].size = ggtt->mappable_end;
747
748         primary =
749                 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
750
751         ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
752
753         kfree(ap);
754
755         return ret;
756 }
757
758 #if !defined(CONFIG_VGA_CONSOLE)
759 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
760 {
761         return 0;
762 }
763 #elif !defined(CONFIG_DUMMY_CONSOLE)
764 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
765 {
766         return -ENODEV;
767 }
768 #else
769 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
770 {
771         int ret = 0;
772
773         DRM_INFO("Replacing VGA console driver\n");
774
775         console_lock();
776         if (con_is_bound(&vga_con))
777                 ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
778         if (ret == 0) {
779                 ret = do_unregister_con_driver(&vga_con);
780
781                 /* Ignore "already unregistered". */
782                 if (ret == -ENODEV)
783                         ret = 0;
784         }
785         console_unlock();
786
787         return ret;
788 }
789 #endif
790
791 static void intel_init_dpio(struct drm_i915_private *dev_priv)
792 {
793         /*
794          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
795          * CHV x1 PHY (DP/HDMI D)
796          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
797          */
798         if (IS_CHERRYVIEW(dev_priv)) {
799                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
800                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
801         } else if (IS_VALLEYVIEW(dev_priv)) {
802                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
803         }
804 }
805
806 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
807 {
808         /*
809          * The i915 workqueue is primarily used for batched retirement of
810          * requests (and thus managing bo) once the task has been completed
811          * by the GPU. i915_retire_requests() is called directly when we
812          * need high-priority retirement, such as waiting for an explicit
813          * bo.
814          *
815          * It is also used for periodic low-priority events, such as
816          * idle-timers and recording error state.
817          *
818          * All tasks on the workqueue are expected to acquire the dev mutex
819          * so there is no point in running more than one instance of the
820          * workqueue at any time.  Use an ordered one.
821          */
822         dev_priv->wq = alloc_ordered_workqueue("i915", 0);
823         if (dev_priv->wq == NULL)
824                 goto out_err;
825
826         dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
827         if (dev_priv->hotplug.dp_wq == NULL)
828                 goto out_free_wq;
829
830         return 0;
831
832 out_free_wq:
833         destroy_workqueue(dev_priv->wq);
834 out_err:
835         DRM_ERROR("Failed to allocate workqueues.\n");
836
837         return -ENOMEM;
838 }
839
840 static void i915_engines_cleanup(struct drm_i915_private *i915)
841 {
842         struct intel_engine_cs *engine;
843         enum intel_engine_id id;
844
845         for_each_engine(engine, i915, id)
846                 kfree(engine);
847 }
848
849 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
850 {
851         destroy_workqueue(dev_priv->hotplug.dp_wq);
852         destroy_workqueue(dev_priv->wq);
853 }
854
855 /*
856  * We don't keep the workarounds for pre-production hardware, so we expect our
857  * driver to fail on these machines in one way or another. A little warning on
858  * dmesg may help both the user and the bug triagers.
859  *
860  * Our policy for removing pre-production workarounds is to keep the
861  * current gen workarounds as a guide to the bring-up of the next gen
862  * (workarounds have a habit of persisting!). Anything older than that
863  * should be removed along with the complications they introduce.
864  */
865 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
866 {
867         bool pre = false;
868
869         pre |= IS_HSW_EARLY_SDV(dev_priv);
870         pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
871         pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
872
873         if (pre) {
874                 DRM_ERROR("This is a pre-production stepping. "
875                           "It may not be fully functional.\n");
876                 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
877         }
878 }
879
880 /**
881  * i915_driver_init_early - setup state not requiring device access
882  * @dev_priv: device private
883  * @ent: the matching pci_device_id
884  *
885  * Initialize everything that is a "SW-only" state, that is state not
886  * requiring accessing the device or exposing the driver via kernel internal
887  * or userspace interfaces. Example steps belonging here: lock initialization,
888  * system memory allocation, setting up device specific attributes and
889  * function hooks not requiring accessing the device.
890  */
891 static int i915_driver_init_early(struct drm_i915_private *dev_priv,
892                                   const struct pci_device_id *ent)
893 {
894         const struct intel_device_info *match_info =
895                 (struct intel_device_info *)ent->driver_data;
896         struct intel_device_info *device_info;
897         int ret = 0;
898
899         if (i915_inject_load_failure())
900                 return -ENODEV;
901
902         /* Setup the write-once "constant" device info */
903         device_info = mkwrite_device_info(dev_priv);
904         memcpy(device_info, match_info, sizeof(*device_info));
905         device_info->device_id = dev_priv->drm.pdev->device;
906
907         BUILD_BUG_ON(INTEL_MAX_PLATFORMS >
908                      sizeof(device_info->platform_mask) * BITS_PER_BYTE);
909         BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
910         spin_lock_init(&dev_priv->irq_lock);
911         spin_lock_init(&dev_priv->gpu_error.lock);
912         mutex_init(&dev_priv->backlight_lock);
913         spin_lock_init(&dev_priv->uncore.lock);
914
915         mutex_init(&dev_priv->sb_lock);
916         mutex_init(&dev_priv->modeset_restore_lock);
917         mutex_init(&dev_priv->av_mutex);
918         mutex_init(&dev_priv->wm.wm_mutex);
919         mutex_init(&dev_priv->pps_mutex);
920
921         i915_memcpy_init_early(dev_priv);
922
923         ret = i915_workqueues_init(dev_priv);
924         if (ret < 0)
925                 goto err_engines;
926
927         ret = i915_gem_init_early(dev_priv);
928         if (ret < 0)
929                 goto err_workqueues;
930
931         /* This must be called before any calls to HAS_PCH_* */
932         intel_detect_pch(dev_priv);
933
934         intel_wopcm_init_early(&dev_priv->wopcm);
935         intel_uc_init_early(dev_priv);
936         intel_pm_setup(dev_priv);
937         intel_init_dpio(dev_priv);
938         intel_power_domains_init(dev_priv);
939         intel_irq_init(dev_priv);
940         intel_hangcheck_init(dev_priv);
941         intel_init_display_hooks(dev_priv);
942         intel_init_clock_gating_hooks(dev_priv);
943         intel_init_audio_hooks(dev_priv);
944         intel_display_crc_init(dev_priv);
945
946         intel_detect_preproduction_hw(dev_priv);
947
948         return 0;
949
950 err_workqueues:
951         i915_workqueues_cleanup(dev_priv);
952 err_engines:
953         i915_engines_cleanup(dev_priv);
954         return ret;
955 }
956
957 /**
958  * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
959  * @dev_priv: device private
960  */
961 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
962 {
963         intel_irq_fini(dev_priv);
964         intel_uc_cleanup_early(dev_priv);
965         i915_gem_cleanup_early(dev_priv);
966         i915_workqueues_cleanup(dev_priv);
967         i915_engines_cleanup(dev_priv);
968 }
969
970 static int i915_mmio_setup(struct drm_i915_private *dev_priv)
971 {
972         struct pci_dev *pdev = dev_priv->drm.pdev;
973         int mmio_bar;
974         int mmio_size;
975
976         mmio_bar = IS_GEN2(dev_priv) ? 1 : 0;
977         /*
978          * Before gen4, the registers and the GTT are behind different BARs.
979          * However, from gen4 onwards, the registers and the GTT are shared
980          * in the same BAR, so we want to restrict this ioremap from
981          * clobbering the GTT which we want ioremap_wc instead. Fortunately,
982          * the register BAR remains the same size for all the earlier
983          * generations up to Ironlake.
984          */
985         if (INTEL_GEN(dev_priv) < 5)
986                 mmio_size = 512 * 1024;
987         else
988                 mmio_size = 2 * 1024 * 1024;
989         dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
990         if (dev_priv->regs == NULL) {
991                 DRM_ERROR("failed to map registers\n");
992
993                 return -EIO;
994         }
995
996         /* Try to make sure MCHBAR is enabled before poking at it */
997         intel_setup_mchbar(dev_priv);
998
999         return 0;
1000 }
1001
1002 static void i915_mmio_cleanup(struct drm_i915_private *dev_priv)
1003 {
1004         struct pci_dev *pdev = dev_priv->drm.pdev;
1005
1006         intel_teardown_mchbar(dev_priv);
1007         pci_iounmap(pdev, dev_priv->regs);
1008 }
1009
1010 /**
1011  * i915_driver_init_mmio - setup device MMIO
1012  * @dev_priv: device private
1013  *
1014  * Setup minimal device state necessary for MMIO accesses later in the
1015  * initialization sequence. The setup here should avoid any other device-wide
1016  * side effects or exposing the driver via kernel internal or user space
1017  * interfaces.
1018  */
1019 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
1020 {
1021         int ret;
1022
1023         if (i915_inject_load_failure())
1024                 return -ENODEV;
1025
1026         if (i915_get_bridge_dev(dev_priv))
1027                 return -EIO;
1028
1029         ret = i915_mmio_setup(dev_priv);
1030         if (ret < 0)
1031                 goto err_bridge;
1032
1033         intel_uncore_init(dev_priv);
1034
1035         intel_device_info_init_mmio(dev_priv);
1036
1037         intel_uncore_prune(dev_priv);
1038
1039         intel_uc_init_mmio(dev_priv);
1040
1041         ret = intel_engines_init_mmio(dev_priv);
1042         if (ret)
1043                 goto err_uncore;
1044
1045         i915_gem_init_mmio(dev_priv);
1046
1047         return 0;
1048
1049 err_uncore:
1050         intel_uncore_fini(dev_priv);
1051 err_bridge:
1052         pci_dev_put(dev_priv->bridge_dev);
1053
1054         return ret;
1055 }
1056
1057 /**
1058  * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
1059  * @dev_priv: device private
1060  */
1061 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
1062 {
1063         intel_uncore_fini(dev_priv);
1064         i915_mmio_cleanup(dev_priv);
1065         pci_dev_put(dev_priv->bridge_dev);
1066 }
1067
1068 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
1069 {
1070         /*
1071          * i915.enable_ppgtt is read-only, so do an early pass to validate the
1072          * user's requested state against the hardware/driver capabilities.  We
1073          * do this now so that we can print out any log messages once rather
1074          * than every time we check intel_enable_ppgtt().
1075          */
1076         i915_modparams.enable_ppgtt =
1077                 intel_sanitize_enable_ppgtt(dev_priv,
1078                                             i915_modparams.enable_ppgtt);
1079         DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915_modparams.enable_ppgtt);
1080
1081         intel_gvt_sanitize_options(dev_priv);
1082 }
1083
1084 /**
1085  * i915_driver_init_hw - setup state requiring device access
1086  * @dev_priv: device private
1087  *
1088  * Setup state that requires accessing the device, but doesn't require
1089  * exposing the driver via kernel internal or userspace interfaces.
1090  */
1091 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
1092 {
1093         struct pci_dev *pdev = dev_priv->drm.pdev;
1094         int ret;
1095
1096         if (i915_inject_load_failure())
1097                 return -ENODEV;
1098
1099         intel_device_info_runtime_init(mkwrite_device_info(dev_priv));
1100
1101         intel_sanitize_options(dev_priv);
1102
1103         i915_perf_init(dev_priv);
1104
1105         ret = i915_ggtt_probe_hw(dev_priv);
1106         if (ret)
1107                 goto err_perf;
1108
1109         /*
1110          * WARNING: Apparently we must kick fbdev drivers before vgacon,
1111          * otherwise the vga fbdev driver falls over.
1112          */
1113         ret = i915_kick_out_firmware_fb(dev_priv);
1114         if (ret) {
1115                 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1116                 goto err_ggtt;
1117         }
1118
1119         ret = i915_kick_out_vgacon(dev_priv);
1120         if (ret) {
1121                 DRM_ERROR("failed to remove conflicting VGA console\n");
1122                 goto err_ggtt;
1123         }
1124
1125         ret = i915_ggtt_init_hw(dev_priv);
1126         if (ret)
1127                 goto err_ggtt;
1128
1129         ret = i915_ggtt_enable_hw(dev_priv);
1130         if (ret) {
1131                 DRM_ERROR("failed to enable GGTT\n");
1132                 goto err_ggtt;
1133         }
1134
1135         pci_set_master(pdev);
1136
1137         /* overlay on gen2 is broken and can't address above 1G */
1138         if (IS_GEN2(dev_priv)) {
1139                 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1140                 if (ret) {
1141                         DRM_ERROR("failed to set DMA mask\n");
1142
1143                         goto err_ggtt;
1144                 }
1145         }
1146
1147         /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1148          * using 32bit addressing, overwriting memory if HWS is located
1149          * above 4GB.
1150          *
1151          * The documentation also mentions an issue with undefined
1152          * behaviour if any general state is accessed within a page above 4GB,
1153          * which also needs to be handled carefully.
1154          */
1155         if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1156                 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1157
1158                 if (ret) {
1159                         DRM_ERROR("failed to set DMA mask\n");
1160
1161                         goto err_ggtt;
1162                 }
1163         }
1164
1165         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1166                            PM_QOS_DEFAULT_VALUE);
1167
1168         intel_uncore_sanitize(dev_priv);
1169
1170         intel_opregion_setup(dev_priv);
1171
1172         i915_gem_load_init_fences(dev_priv);
1173
1174         /* On the 945G/GM, the chipset reports the MSI capability on the
1175          * integrated graphics even though the support isn't actually there
1176          * according to the published specs.  It doesn't appear to function
1177          * correctly in testing on 945G.
1178          * This may be a side effect of MSI having been made available for PEG
1179          * and the registers being closely associated.
1180          *
1181          * According to chipset errata, on the 965GM, MSI interrupts may
1182          * be lost or delayed, and was defeatured. MSI interrupts seem to
1183          * get lost on g4x as well, and interrupt delivery seems to stay
1184          * properly dead afterwards. So we'll just disable them for all
1185          * pre-gen5 chipsets.
1186          */
1187         if (INTEL_GEN(dev_priv) >= 5) {
1188                 if (pci_enable_msi(pdev) < 0)
1189                         DRM_DEBUG_DRIVER("can't enable MSI");
1190         }
1191
1192         ret = intel_gvt_init(dev_priv);
1193         if (ret)
1194                 goto err_ggtt;
1195
1196         return 0;
1197
1198 err_ggtt:
1199         i915_ggtt_cleanup_hw(dev_priv);
1200 err_perf:
1201         i915_perf_fini(dev_priv);
1202         return ret;
1203 }
1204
1205 /**
1206  * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1207  * @dev_priv: device private
1208  */
1209 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1210 {
1211         struct pci_dev *pdev = dev_priv->drm.pdev;
1212
1213         i915_perf_fini(dev_priv);
1214
1215         if (pdev->msi_enabled)
1216                 pci_disable_msi(pdev);
1217
1218         pm_qos_remove_request(&dev_priv->pm_qos);
1219         i915_ggtt_cleanup_hw(dev_priv);
1220 }
1221
1222 /**
1223  * i915_driver_register - register the driver with the rest of the system
1224  * @dev_priv: device private
1225  *
1226  * Perform any steps necessary to make the driver available via kernel
1227  * internal or userspace interfaces.
1228  */
1229 static void i915_driver_register(struct drm_i915_private *dev_priv)
1230 {
1231         struct drm_device *dev = &dev_priv->drm;
1232
1233         i915_gem_shrinker_register(dev_priv);
1234         i915_pmu_register(dev_priv);
1235
1236         /*
1237          * Notify a valid surface after modesetting,
1238          * when running inside a VM.
1239          */
1240         if (intel_vgpu_active(dev_priv))
1241                 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1242
1243         /* Reveal our presence to userspace */
1244         if (drm_dev_register(dev, 0) == 0) {
1245                 i915_debugfs_register(dev_priv);
1246                 i915_setup_sysfs(dev_priv);
1247
1248                 /* Depends on sysfs having been initialized */
1249                 i915_perf_register(dev_priv);
1250         } else
1251                 DRM_ERROR("Failed to register driver for userspace access!\n");
1252
1253         if (INTEL_INFO(dev_priv)->num_pipes) {
1254                 /* Must be done after probing outputs */
1255                 intel_opregion_register(dev_priv);
1256                 acpi_video_register();
1257         }
1258
1259         if (IS_GEN5(dev_priv))
1260                 intel_gpu_ips_init(dev_priv);
1261
1262         intel_audio_init(dev_priv);
1263
1264         /*
1265          * Some ports require correctly set-up hpd registers for detection to
1266          * work properly (leading to ghost connected connector status), e.g. VGA
1267          * on gm45.  Hence we can only set up the initial fbdev config after hpd
1268          * irqs are fully enabled. We do it last so that the async config
1269          * cannot run before the connectors are registered.
1270          */
1271         intel_fbdev_initial_config_async(dev);
1272
1273         /*
1274          * We need to coordinate the hotplugs with the asynchronous fbdev
1275          * configuration, for which we use the fbdev->async_cookie.
1276          */
1277         if (INTEL_INFO(dev_priv)->num_pipes)
1278                 drm_kms_helper_poll_init(dev);
1279 }
1280
1281 /**
1282  * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1283  * @dev_priv: device private
1284  */
1285 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1286 {
1287         intel_fbdev_unregister(dev_priv);
1288         intel_audio_deinit(dev_priv);
1289
1290         /*
1291          * After flushing the fbdev (incl. a late async config which will
1292          * have delayed queuing of a hotplug event), then flush the hotplug
1293          * events.
1294          */
1295         drm_kms_helper_poll_fini(&dev_priv->drm);
1296
1297         intel_gpu_ips_teardown();
1298         acpi_video_unregister();
1299         intel_opregion_unregister(dev_priv);
1300
1301         i915_perf_unregister(dev_priv);
1302         i915_pmu_unregister(dev_priv);
1303
1304         i915_teardown_sysfs(dev_priv);
1305         drm_dev_unregister(&dev_priv->drm);
1306
1307         i915_gem_shrinker_unregister(dev_priv);
1308 }
1309
1310 static void i915_welcome_messages(struct drm_i915_private *dev_priv)
1311 {
1312         if (drm_debug & DRM_UT_DRIVER) {
1313                 struct drm_printer p = drm_debug_printer("i915 device info:");
1314
1315                 intel_device_info_dump(&dev_priv->info, &p);
1316                 intel_device_info_dump_runtime(&dev_priv->info, &p);
1317         }
1318
1319         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1320                 DRM_INFO("DRM_I915_DEBUG enabled\n");
1321         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1322                 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1323 }
1324
1325 /**
1326  * i915_driver_load - setup chip and create an initial config
1327  * @pdev: PCI device
1328  * @ent: matching PCI ID entry
1329  *
1330  * The driver load routine has to do several things:
1331  *   - drive output discovery via intel_modeset_init()
1332  *   - initialize the memory manager
1333  *   - allocate initial config memory
1334  *   - setup the DRM framebuffer with the allocated memory
1335  */
1336 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1337 {
1338         const struct intel_device_info *match_info =
1339                 (struct intel_device_info *)ent->driver_data;
1340         struct drm_i915_private *dev_priv;
1341         int ret;
1342
1343         /* Enable nuclear pageflip on ILK+ */
1344         if (!i915_modparams.nuclear_pageflip && match_info->gen < 5)
1345                 driver.driver_features &= ~DRIVER_ATOMIC;
1346
1347         ret = -ENOMEM;
1348         dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
1349         if (dev_priv)
1350                 ret = drm_dev_init(&dev_priv->drm, &driver, &pdev->dev);
1351         if (ret) {
1352                 DRM_DEV_ERROR(&pdev->dev, "allocation failed\n");
1353                 goto out_free;
1354         }
1355
1356         dev_priv->drm.pdev = pdev;
1357         dev_priv->drm.dev_private = dev_priv;
1358
1359         ret = pci_enable_device(pdev);
1360         if (ret)
1361                 goto out_fini;
1362
1363         pci_set_drvdata(pdev, &dev_priv->drm);
1364         /*
1365          * Disable the system suspend direct complete optimization, which can
1366          * leave the device suspended skipping the driver's suspend handlers
1367          * if the device was already runtime suspended. This is needed due to
1368          * the difference in our runtime and system suspend sequence and
1369          * becaue the HDA driver may require us to enable the audio power
1370          * domain during system suspend.
1371          */
1372         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
1373
1374         ret = i915_driver_init_early(dev_priv, ent);
1375         if (ret < 0)
1376                 goto out_pci_disable;
1377
1378         intel_runtime_pm_get(dev_priv);
1379
1380         ret = i915_driver_init_mmio(dev_priv);
1381         if (ret < 0)
1382                 goto out_runtime_pm_put;
1383
1384         ret = i915_driver_init_hw(dev_priv);
1385         if (ret < 0)
1386                 goto out_cleanup_mmio;
1387
1388         /*
1389          * TODO: move the vblank init and parts of modeset init steps into one
1390          * of the i915_driver_init_/i915_driver_register functions according
1391          * to the role/effect of the given init step.
1392          */
1393         if (INTEL_INFO(dev_priv)->num_pipes) {
1394                 ret = drm_vblank_init(&dev_priv->drm,
1395                                       INTEL_INFO(dev_priv)->num_pipes);
1396                 if (ret)
1397                         goto out_cleanup_hw;
1398         }
1399
1400         ret = i915_load_modeset_init(&dev_priv->drm);
1401         if (ret < 0)
1402                 goto out_cleanup_hw;
1403
1404         i915_driver_register(dev_priv);
1405
1406         intel_runtime_pm_enable(dev_priv);
1407
1408         intel_init_ipc(dev_priv);
1409
1410         intel_runtime_pm_put(dev_priv);
1411
1412         i915_welcome_messages(dev_priv);
1413
1414         return 0;
1415
1416 out_cleanup_hw:
1417         i915_driver_cleanup_hw(dev_priv);
1418 out_cleanup_mmio:
1419         i915_driver_cleanup_mmio(dev_priv);
1420 out_runtime_pm_put:
1421         intel_runtime_pm_put(dev_priv);
1422         i915_driver_cleanup_early(dev_priv);
1423 out_pci_disable:
1424         pci_disable_device(pdev);
1425 out_fini:
1426         i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1427         drm_dev_fini(&dev_priv->drm);
1428 out_free:
1429         kfree(dev_priv);
1430         return ret;
1431 }
1432
1433 void i915_driver_unload(struct drm_device *dev)
1434 {
1435         struct drm_i915_private *dev_priv = to_i915(dev);
1436         struct pci_dev *pdev = dev_priv->drm.pdev;
1437
1438         i915_driver_unregister(dev_priv);
1439
1440         if (i915_gem_suspend(dev_priv))
1441                 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1442
1443         intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1444
1445         drm_atomic_helper_shutdown(dev);
1446
1447         intel_gvt_cleanup(dev_priv);
1448
1449         intel_modeset_cleanup(dev);
1450
1451         intel_bios_cleanup(dev_priv);
1452
1453         vga_switcheroo_unregister_client(pdev);
1454         vga_client_register(pdev, NULL, NULL, NULL);
1455
1456         intel_csr_ucode_fini(dev_priv);
1457
1458         /* Free error state after interrupts are fully disabled. */
1459         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1460         i915_reset_error_state(dev_priv);
1461
1462         i915_gem_fini(dev_priv);
1463         intel_fbc_cleanup_cfb(dev_priv);
1464
1465         intel_power_domains_fini(dev_priv);
1466
1467         i915_driver_cleanup_hw(dev_priv);
1468         i915_driver_cleanup_mmio(dev_priv);
1469
1470         intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1471 }
1472
1473 static void i915_driver_release(struct drm_device *dev)
1474 {
1475         struct drm_i915_private *dev_priv = to_i915(dev);
1476
1477         i915_driver_cleanup_early(dev_priv);
1478         drm_dev_fini(&dev_priv->drm);
1479
1480         kfree(dev_priv);
1481 }
1482
1483 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1484 {
1485         struct drm_i915_private *i915 = to_i915(dev);
1486         int ret;
1487
1488         ret = i915_gem_open(i915, file);
1489         if (ret)
1490                 return ret;
1491
1492         return 0;
1493 }
1494
1495 /**
1496  * i915_driver_lastclose - clean up after all DRM clients have exited
1497  * @dev: DRM device
1498  *
1499  * Take care of cleaning up after all DRM clients have exited.  In the
1500  * mode setting case, we want to restore the kernel's initial mode (just
1501  * in case the last client left us in a bad state).
1502  *
1503  * Additionally, in the non-mode setting case, we'll tear down the GTT
1504  * and DMA structures, since the kernel won't be using them, and clea
1505  * up any GEM state.
1506  */
1507 static void i915_driver_lastclose(struct drm_device *dev)
1508 {
1509         intel_fbdev_restore_mode(dev);
1510         vga_switcheroo_process_delayed_switch();
1511 }
1512
1513 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1514 {
1515         struct drm_i915_file_private *file_priv = file->driver_priv;
1516
1517         mutex_lock(&dev->struct_mutex);
1518         i915_gem_context_close(file);
1519         i915_gem_release(dev, file);
1520         mutex_unlock(&dev->struct_mutex);
1521
1522         kfree(file_priv);
1523 }
1524
1525 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1526 {
1527         struct drm_device *dev = &dev_priv->drm;
1528         struct intel_encoder *encoder;
1529
1530         drm_modeset_lock_all(dev);
1531         for_each_intel_encoder(dev, encoder)
1532                 if (encoder->suspend)
1533                         encoder->suspend(encoder);
1534         drm_modeset_unlock_all(dev);
1535 }
1536
1537 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1538                               bool rpm_resume);
1539 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1540
1541 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1542 {
1543 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1544         if (acpi_target_system_state() < ACPI_STATE_S3)
1545                 return true;
1546 #endif
1547         return false;
1548 }
1549
1550 static int i915_drm_suspend(struct drm_device *dev)
1551 {
1552         struct drm_i915_private *dev_priv = to_i915(dev);
1553         struct pci_dev *pdev = dev_priv->drm.pdev;
1554         pci_power_t opregion_target_state;
1555         int error;
1556
1557         /* ignore lid events during suspend */
1558         mutex_lock(&dev_priv->modeset_restore_lock);
1559         dev_priv->modeset_restore = MODESET_SUSPENDED;
1560         mutex_unlock(&dev_priv->modeset_restore_lock);
1561
1562         disable_rpm_wakeref_asserts(dev_priv);
1563
1564         /* We do a lot of poking in a lot of registers, make sure they work
1565          * properly. */
1566         intel_display_set_init_power(dev_priv, true);
1567
1568         drm_kms_helper_poll_disable(dev);
1569
1570         pci_save_state(pdev);
1571
1572         error = i915_gem_suspend(dev_priv);
1573         if (error) {
1574                 dev_err(&pdev->dev,
1575                         "GEM idle failed, resume might fail\n");
1576                 goto out;
1577         }
1578
1579         intel_display_suspend(dev);
1580
1581         intel_dp_mst_suspend(dev);
1582
1583         intel_runtime_pm_disable_interrupts(dev_priv);
1584         intel_hpd_cancel_work(dev_priv);
1585
1586         intel_suspend_encoders(dev_priv);
1587
1588         intel_suspend_hw(dev_priv);
1589
1590         i915_gem_suspend_gtt_mappings(dev_priv);
1591
1592         i915_save_state(dev_priv);
1593
1594         opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1595         intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1596
1597         intel_uncore_suspend(dev_priv);
1598         intel_opregion_unregister(dev_priv);
1599
1600         intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1601
1602         dev_priv->suspend_count++;
1603
1604         intel_csr_ucode_suspend(dev_priv);
1605
1606 out:
1607         enable_rpm_wakeref_asserts(dev_priv);
1608
1609         return error;
1610 }
1611
1612 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1613 {
1614         struct drm_i915_private *dev_priv = to_i915(dev);
1615         struct pci_dev *pdev = dev_priv->drm.pdev;
1616         int ret;
1617
1618         disable_rpm_wakeref_asserts(dev_priv);
1619
1620         intel_display_set_init_power(dev_priv, false);
1621
1622         /*
1623          * In case of firmware assisted context save/restore don't manually
1624          * deinit the power domains. This also means the CSR/DMC firmware will
1625          * stay active, it will power down any HW resources as required and
1626          * also enable deeper system power states that would be blocked if the
1627          * firmware was inactive.
1628          */
1629         if (IS_GEN9_LP(dev_priv) || hibernation || !suspend_to_idle(dev_priv) ||
1630             dev_priv->csr.dmc_payload == NULL) {
1631                 intel_power_domains_suspend(dev_priv);
1632                 dev_priv->power_domains_suspended = true;
1633         }
1634
1635         ret = 0;
1636         if (IS_GEN9_LP(dev_priv))
1637                 bxt_enable_dc9(dev_priv);
1638         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1639                 hsw_enable_pc8(dev_priv);
1640         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1641                 ret = vlv_suspend_complete(dev_priv);
1642
1643         if (ret) {
1644                 DRM_ERROR("Suspend complete failed: %d\n", ret);
1645                 if (dev_priv->power_domains_suspended) {
1646                         intel_power_domains_init_hw(dev_priv, true);
1647                         dev_priv->power_domains_suspended = false;
1648                 }
1649
1650                 goto out;
1651         }
1652
1653         pci_disable_device(pdev);
1654         /*
1655          * During hibernation on some platforms the BIOS may try to access
1656          * the device even though it's already in D3 and hang the machine. So
1657          * leave the device in D0 on those platforms and hope the BIOS will
1658          * power down the device properly. The issue was seen on multiple old
1659          * GENs with different BIOS vendors, so having an explicit blacklist
1660          * is inpractical; apply the workaround on everything pre GEN6. The
1661          * platforms where the issue was seen:
1662          * Lenovo Thinkpad X301, X61s, X60, T60, X41
1663          * Fujitsu FSC S7110
1664          * Acer Aspire 1830T
1665          */
1666         if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1667                 pci_set_power_state(pdev, PCI_D3hot);
1668
1669 out:
1670         enable_rpm_wakeref_asserts(dev_priv);
1671
1672         return ret;
1673 }
1674
1675 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1676 {
1677         int error;
1678
1679         if (!dev) {
1680                 DRM_ERROR("dev: %p\n", dev);
1681                 DRM_ERROR("DRM not initialized, aborting suspend.\n");
1682                 return -ENODEV;
1683         }
1684
1685         if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1686                          state.event != PM_EVENT_FREEZE))
1687                 return -EINVAL;
1688
1689         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1690                 return 0;
1691
1692         error = i915_drm_suspend(dev);
1693         if (error)
1694                 return error;
1695
1696         return i915_drm_suspend_late(dev, false);
1697 }
1698
1699 static int i915_drm_resume(struct drm_device *dev)
1700 {
1701         struct drm_i915_private *dev_priv = to_i915(dev);
1702         int ret;
1703
1704         disable_rpm_wakeref_asserts(dev_priv);
1705         intel_sanitize_gt_powersave(dev_priv);
1706
1707         ret = i915_ggtt_enable_hw(dev_priv);
1708         if (ret)
1709                 DRM_ERROR("failed to re-enable GGTT\n");
1710
1711         intel_csr_ucode_resume(dev_priv);
1712
1713         i915_restore_state(dev_priv);
1714         intel_pps_unlock_regs_wa(dev_priv);
1715         intel_opregion_setup(dev_priv);
1716
1717         intel_init_pch_refclk(dev_priv);
1718
1719         /*
1720          * Interrupts have to be enabled before any batches are run. If not the
1721          * GPU will hang. i915_gem_init_hw() will initiate batches to
1722          * update/restore the context.
1723          *
1724          * drm_mode_config_reset() needs AUX interrupts.
1725          *
1726          * Modeset enabling in intel_modeset_init_hw() also needs working
1727          * interrupts.
1728          */
1729         intel_runtime_pm_enable_interrupts(dev_priv);
1730
1731         drm_mode_config_reset(dev);
1732
1733         i915_gem_resume(dev_priv);
1734
1735         intel_modeset_init_hw(dev);
1736         intel_init_clock_gating(dev_priv);
1737
1738         spin_lock_irq(&dev_priv->irq_lock);
1739         if (dev_priv->display.hpd_irq_setup)
1740                 dev_priv->display.hpd_irq_setup(dev_priv);
1741         spin_unlock_irq(&dev_priv->irq_lock);
1742
1743         intel_dp_mst_resume(dev);
1744
1745         intel_display_resume(dev);
1746
1747         drm_kms_helper_poll_enable(dev);
1748
1749         /*
1750          * ... but also need to make sure that hotplug processing
1751          * doesn't cause havoc. Like in the driver load code we don't
1752          * bother with the tiny race here where we might loose hotplug
1753          * notifications.
1754          * */
1755         intel_hpd_init(dev_priv);
1756
1757         intel_opregion_register(dev_priv);
1758
1759         intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1760
1761         mutex_lock(&dev_priv->modeset_restore_lock);
1762         dev_priv->modeset_restore = MODESET_DONE;
1763         mutex_unlock(&dev_priv->modeset_restore_lock);
1764
1765         intel_opregion_notify_adapter(dev_priv, PCI_D0);
1766
1767         enable_rpm_wakeref_asserts(dev_priv);
1768
1769         return 0;
1770 }
1771
1772 static int i915_drm_resume_early(struct drm_device *dev)
1773 {
1774         struct drm_i915_private *dev_priv = to_i915(dev);
1775         struct pci_dev *pdev = dev_priv->drm.pdev;
1776         int ret;
1777
1778         /*
1779          * We have a resume ordering issue with the snd-hda driver also
1780          * requiring our device to be power up. Due to the lack of a
1781          * parent/child relationship we currently solve this with an early
1782          * resume hook.
1783          *
1784          * FIXME: This should be solved with a special hdmi sink device or
1785          * similar so that power domains can be employed.
1786          */
1787
1788         /*
1789          * Note that we need to set the power state explicitly, since we
1790          * powered off the device during freeze and the PCI core won't power
1791          * it back up for us during thaw. Powering off the device during
1792          * freeze is not a hard requirement though, and during the
1793          * suspend/resume phases the PCI core makes sure we get here with the
1794          * device powered on. So in case we change our freeze logic and keep
1795          * the device powered we can also remove the following set power state
1796          * call.
1797          */
1798         ret = pci_set_power_state(pdev, PCI_D0);
1799         if (ret) {
1800                 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
1801                 goto out;
1802         }
1803
1804         /*
1805          * Note that pci_enable_device() first enables any parent bridge
1806          * device and only then sets the power state for this device. The
1807          * bridge enabling is a nop though, since bridge devices are resumed
1808          * first. The order of enabling power and enabling the device is
1809          * imposed by the PCI core as described above, so here we preserve the
1810          * same order for the freeze/thaw phases.
1811          *
1812          * TODO: eventually we should remove pci_disable_device() /
1813          * pci_enable_enable_device() from suspend/resume. Due to how they
1814          * depend on the device enable refcount we can't anyway depend on them
1815          * disabling/enabling the device.
1816          */
1817         if (pci_enable_device(pdev)) {
1818                 ret = -EIO;
1819                 goto out;
1820         }
1821
1822         pci_set_master(pdev);
1823
1824         disable_rpm_wakeref_asserts(dev_priv);
1825
1826         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1827                 ret = vlv_resume_prepare(dev_priv, false);
1828         if (ret)
1829                 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
1830                           ret);
1831
1832         intel_uncore_resume_early(dev_priv);
1833
1834         if (IS_GEN9_LP(dev_priv)) {
1835                 gen9_sanitize_dc_state(dev_priv);
1836                 bxt_disable_dc9(dev_priv);
1837         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1838                 hsw_disable_pc8(dev_priv);
1839         }
1840
1841         intel_uncore_sanitize(dev_priv);
1842
1843         if (dev_priv->power_domains_suspended)
1844                 intel_power_domains_init_hw(dev_priv, true);
1845         else
1846                 intel_display_set_init_power(dev_priv, true);
1847
1848         i915_gem_sanitize(dev_priv);
1849
1850         enable_rpm_wakeref_asserts(dev_priv);
1851
1852 out:
1853         dev_priv->power_domains_suspended = false;
1854
1855         return ret;
1856 }
1857
1858 static int i915_resume_switcheroo(struct drm_device *dev)
1859 {
1860         int ret;
1861
1862         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1863                 return 0;
1864
1865         ret = i915_drm_resume_early(dev);
1866         if (ret)
1867                 return ret;
1868
1869         return i915_drm_resume(dev);
1870 }
1871
1872 /**
1873  * i915_reset - reset chip after a hang
1874  * @i915: #drm_i915_private to reset
1875  * @stalled_mask: mask of the stalled engines with the guilty requests
1876  * @reason: user error message for why we are resetting
1877  *
1878  * Reset the chip.  Useful if a hang is detected. Marks the device as wedged
1879  * on failure.
1880  *
1881  * Caller must hold the struct_mutex.
1882  *
1883  * Procedure is fairly simple:
1884  *   - reset the chip using the reset reg
1885  *   - re-init context state
1886  *   - re-init hardware status page
1887  *   - re-init ring buffer
1888  *   - re-init interrupt state
1889  *   - re-init display
1890  */
1891 void i915_reset(struct drm_i915_private *i915,
1892                 unsigned int stalled_mask,
1893                 const char *reason)
1894 {
1895         struct i915_gpu_error *error = &i915->gpu_error;
1896         int ret;
1897         int i;
1898
1899         GEM_TRACE("flags=%lx\n", error->flags);
1900
1901         might_sleep();
1902         lockdep_assert_held(&i915->drm.struct_mutex);
1903         GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, &error->flags));
1904
1905         if (!test_bit(I915_RESET_HANDOFF, &error->flags))
1906                 return;
1907
1908         /* Clear any previous failed attempts at recovery. Time to try again. */
1909         if (!i915_gem_unset_wedged(i915))
1910                 goto wakeup;
1911
1912         if (reason)
1913                 dev_notice(i915->drm.dev, "Resetting chip for %s\n", reason);
1914         error->reset_count++;
1915
1916         disable_irq(i915->drm.irq);
1917         ret = i915_gem_reset_prepare(i915);
1918         if (ret) {
1919                 dev_err(i915->drm.dev, "GPU recovery failed\n");
1920                 goto taint;
1921         }
1922
1923         if (!intel_has_gpu_reset(i915)) {
1924                 if (i915_modparams.reset)
1925                         dev_err(i915->drm.dev, "GPU reset not supported\n");
1926                 else
1927                         DRM_DEBUG_DRIVER("GPU reset disabled\n");
1928                 goto error;
1929         }
1930
1931         for (i = 0; i < 3; i++) {
1932                 ret = intel_gpu_reset(i915, ALL_ENGINES);
1933                 if (ret == 0)
1934                         break;
1935
1936                 msleep(100);
1937         }
1938         if (ret) {
1939                 dev_err(i915->drm.dev, "Failed to reset chip\n");
1940                 goto taint;
1941         }
1942
1943         /* Ok, now get things going again... */
1944
1945         /*
1946          * Everything depends on having the GTT running, so we need to start
1947          * there.
1948          */
1949         ret = i915_ggtt_enable_hw(i915);
1950         if (ret) {
1951                 DRM_ERROR("Failed to re-enable GGTT following reset (%d)\n",
1952                           ret);
1953                 goto error;
1954         }
1955
1956         i915_gem_reset(i915, stalled_mask);
1957         intel_overlay_reset(i915);
1958
1959         /*
1960          * Next we need to restore the context, but we don't use those
1961          * yet either...
1962          *
1963          * Ring buffer needs to be re-initialized in the KMS case, or if X
1964          * was running at the time of the reset (i.e. we weren't VT
1965          * switched away).
1966          */
1967         ret = i915_gem_init_hw(i915);
1968         if (ret) {
1969                 DRM_ERROR("Failed to initialise HW following reset (%d)\n",
1970                           ret);
1971                 goto error;
1972         }
1973
1974         i915_queue_hangcheck(i915);
1975
1976 finish:
1977         i915_gem_reset_finish(i915);
1978         enable_irq(i915->drm.irq);
1979
1980 wakeup:
1981         clear_bit(I915_RESET_HANDOFF, &error->flags);
1982         wake_up_bit(&error->flags, I915_RESET_HANDOFF);
1983         return;
1984
1985 taint:
1986         /*
1987          * History tells us that if we cannot reset the GPU now, we
1988          * never will. This then impacts everything that is run
1989          * subsequently. On failing the reset, we mark the driver
1990          * as wedged, preventing further execution on the GPU.
1991          * We also want to go one step further and add a taint to the
1992          * kernel so that any subsequent faults can be traced back to
1993          * this failure. This is important for CI, where if the
1994          * GPU/driver fails we would like to reboot and restart testing
1995          * rather than continue on into oblivion. For everyone else,
1996          * the system should still plod along, but they have been warned!
1997          */
1998         add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1999 error:
2000         i915_gem_set_wedged(i915);
2001         i915_retire_requests(i915);
2002         goto finish;
2003 }
2004
2005 static inline int intel_gt_reset_engine(struct drm_i915_private *dev_priv,
2006                                         struct intel_engine_cs *engine)
2007 {
2008         return intel_gpu_reset(dev_priv, intel_engine_flag(engine));
2009 }
2010
2011 /**
2012  * i915_reset_engine - reset GPU engine to recover from a hang
2013  * @engine: engine to reset
2014  * @msg: reason for GPU reset; or NULL for no dev_notice()
2015  *
2016  * Reset a specific GPU engine. Useful if a hang is detected.
2017  * Returns zero on successful reset or otherwise an error code.
2018  *
2019  * Procedure is:
2020  *  - identifies the request that caused the hang and it is dropped
2021  *  - reset engine (which will force the engine to idle)
2022  *  - re-init/configure engine
2023  */
2024 int i915_reset_engine(struct intel_engine_cs *engine, const char *msg)
2025 {
2026         struct i915_gpu_error *error = &engine->i915->gpu_error;
2027         struct i915_request *active_request;
2028         int ret;
2029
2030         GEM_TRACE("%s flags=%lx\n", engine->name, error->flags);
2031         GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, &error->flags));
2032
2033         active_request = i915_gem_reset_prepare_engine(engine);
2034         if (IS_ERR_OR_NULL(active_request)) {
2035                 /* Either the previous reset failed, or we pardon the reset. */
2036                 ret = PTR_ERR(active_request);
2037                 goto out;
2038         }
2039
2040         if (msg)
2041                 dev_notice(engine->i915->drm.dev,
2042                            "Resetting %s for %s\n", engine->name, msg);
2043         error->reset_engine_count[engine->id]++;
2044
2045         if (!engine->i915->guc.execbuf_client)
2046                 ret = intel_gt_reset_engine(engine->i915, engine);
2047         else
2048                 ret = intel_guc_reset_engine(&engine->i915->guc, engine);
2049         if (ret) {
2050                 /* If we fail here, we expect to fallback to a global reset */
2051                 DRM_DEBUG_DRIVER("%sFailed to reset %s, ret=%d\n",
2052                                  engine->i915->guc.execbuf_client ? "GuC " : "",
2053                                  engine->name, ret);
2054                 goto out;
2055         }
2056
2057         /*
2058          * The request that caused the hang is stuck on elsp, we know the
2059          * active request and can drop it, adjust head to skip the offending
2060          * request to resume executing remaining requests in the queue.
2061          */
2062         i915_gem_reset_engine(engine, active_request, true);
2063
2064         /*
2065          * The engine and its registers (and workarounds in case of render)
2066          * have been reset to their default values. Follow the init_ring
2067          * process to program RING_MODE, HWSP and re-enable submission.
2068          */
2069         ret = engine->init_hw(engine);
2070         if (ret)
2071                 goto out;
2072
2073 out:
2074         i915_gem_reset_finish_engine(engine);
2075         return ret;
2076 }
2077
2078 static int i915_pm_suspend(struct device *kdev)
2079 {
2080         struct pci_dev *pdev = to_pci_dev(kdev);
2081         struct drm_device *dev = pci_get_drvdata(pdev);
2082
2083         if (!dev) {
2084                 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2085                 return -ENODEV;
2086         }
2087
2088         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2089                 return 0;
2090
2091         return i915_drm_suspend(dev);
2092 }
2093
2094 static int i915_pm_suspend_late(struct device *kdev)
2095 {
2096         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2097
2098         /*
2099          * We have a suspend ordering issue with the snd-hda driver also
2100          * requiring our device to be power up. Due to the lack of a
2101          * parent/child relationship we currently solve this with an late
2102          * suspend hook.
2103          *
2104          * FIXME: This should be solved with a special hdmi sink device or
2105          * similar so that power domains can be employed.
2106          */
2107         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2108                 return 0;
2109
2110         return i915_drm_suspend_late(dev, false);
2111 }
2112
2113 static int i915_pm_poweroff_late(struct device *kdev)
2114 {
2115         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2116
2117         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2118                 return 0;
2119
2120         return i915_drm_suspend_late(dev, true);
2121 }
2122
2123 static int i915_pm_resume_early(struct device *kdev)
2124 {
2125         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2126
2127         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2128                 return 0;
2129
2130         return i915_drm_resume_early(dev);
2131 }
2132
2133 static int i915_pm_resume(struct device *kdev)
2134 {
2135         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2136
2137         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2138                 return 0;
2139
2140         return i915_drm_resume(dev);
2141 }
2142
2143 /* freeze: before creating the hibernation_image */
2144 static int i915_pm_freeze(struct device *kdev)
2145 {
2146         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2147         int ret;
2148
2149         if (dev->switch_power_state != DRM_SWITCH_POWER_OFF) {
2150                 ret = i915_drm_suspend(dev);
2151                 if (ret)
2152                         return ret;
2153         }
2154
2155         ret = i915_gem_freeze(kdev_to_i915(kdev));
2156         if (ret)
2157                 return ret;
2158
2159         return 0;
2160 }
2161
2162 static int i915_pm_freeze_late(struct device *kdev)
2163 {
2164         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2165         int ret;
2166
2167         if (dev->switch_power_state != DRM_SWITCH_POWER_OFF) {
2168                 ret = i915_drm_suspend_late(dev, true);
2169                 if (ret)
2170                         return ret;
2171         }
2172
2173         ret = i915_gem_freeze_late(kdev_to_i915(kdev));
2174         if (ret)
2175                 return ret;
2176
2177         return 0;
2178 }
2179
2180 /* thaw: called after creating the hibernation image, but before turning off. */
2181 static int i915_pm_thaw_early(struct device *kdev)
2182 {
2183         return i915_pm_resume_early(kdev);
2184 }
2185
2186 static int i915_pm_thaw(struct device *kdev)
2187 {
2188         return i915_pm_resume(kdev);
2189 }
2190
2191 /* restore: called after loading the hibernation image. */
2192 static int i915_pm_restore_early(struct device *kdev)
2193 {
2194         return i915_pm_resume_early(kdev);
2195 }
2196
2197 static int i915_pm_restore(struct device *kdev)
2198 {
2199         return i915_pm_resume(kdev);
2200 }
2201
2202 /*
2203  * Save all Gunit registers that may be lost after a D3 and a subsequent
2204  * S0i[R123] transition. The list of registers needing a save/restore is
2205  * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
2206  * registers in the following way:
2207  * - Driver: saved/restored by the driver
2208  * - Punit : saved/restored by the Punit firmware
2209  * - No, w/o marking: no need to save/restore, since the register is R/O or
2210  *                    used internally by the HW in a way that doesn't depend
2211  *                    keeping the content across a suspend/resume.
2212  * - Debug : used for debugging
2213  *
2214  * We save/restore all registers marked with 'Driver', with the following
2215  * exceptions:
2216  * - Registers out of use, including also registers marked with 'Debug'.
2217  *   These have no effect on the driver's operation, so we don't save/restore
2218  *   them to reduce the overhead.
2219  * - Registers that are fully setup by an initialization function called from
2220  *   the resume path. For example many clock gating and RPS/RC6 registers.
2221  * - Registers that provide the right functionality with their reset defaults.
2222  *
2223  * TODO: Except for registers that based on the above 3 criteria can be safely
2224  * ignored, we save/restore all others, practically treating the HW context as
2225  * a black-box for the driver. Further investigation is needed to reduce the
2226  * saved/restored registers even further, by following the same 3 criteria.
2227  */
2228 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2229 {
2230         struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2231         int i;
2232
2233         /* GAM 0x4000-0x4770 */
2234         s->wr_watermark         = I915_READ(GEN7_WR_WATERMARK);
2235         s->gfx_prio_ctrl        = I915_READ(GEN7_GFX_PRIO_CTRL);
2236         s->arb_mode             = I915_READ(ARB_MODE);
2237         s->gfx_pend_tlb0        = I915_READ(GEN7_GFX_PEND_TLB0);
2238         s->gfx_pend_tlb1        = I915_READ(GEN7_GFX_PEND_TLB1);
2239
2240         for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2241                 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2242
2243         s->media_max_req_count  = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2244         s->gfx_max_req_count    = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2245
2246         s->render_hwsp          = I915_READ(RENDER_HWS_PGA_GEN7);
2247         s->ecochk               = I915_READ(GAM_ECOCHK);
2248         s->bsd_hwsp             = I915_READ(BSD_HWS_PGA_GEN7);
2249         s->blt_hwsp             = I915_READ(BLT_HWS_PGA_GEN7);
2250
2251         s->tlb_rd_addr          = I915_READ(GEN7_TLB_RD_ADDR);
2252
2253         /* MBC 0x9024-0x91D0, 0x8500 */
2254         s->g3dctl               = I915_READ(VLV_G3DCTL);
2255         s->gsckgctl             = I915_READ(VLV_GSCKGCTL);
2256         s->mbctl                = I915_READ(GEN6_MBCTL);
2257
2258         /* GCP 0x9400-0x9424, 0x8100-0x810C */
2259         s->ucgctl1              = I915_READ(GEN6_UCGCTL1);
2260         s->ucgctl3              = I915_READ(GEN6_UCGCTL3);
2261         s->rcgctl1              = I915_READ(GEN6_RCGCTL1);
2262         s->rcgctl2              = I915_READ(GEN6_RCGCTL2);
2263         s->rstctl               = I915_READ(GEN6_RSTCTL);
2264         s->misccpctl            = I915_READ(GEN7_MISCCPCTL);
2265
2266         /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2267         s->gfxpause             = I915_READ(GEN6_GFXPAUSE);
2268         s->rpdeuhwtc            = I915_READ(GEN6_RPDEUHWTC);
2269         s->rpdeuc               = I915_READ(GEN6_RPDEUC);
2270         s->ecobus               = I915_READ(ECOBUS);
2271         s->pwrdwnupctl          = I915_READ(VLV_PWRDWNUPCTL);
2272         s->rp_down_timeout      = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2273         s->rp_deucsw            = I915_READ(GEN6_RPDEUCSW);
2274         s->rcubmabdtmr          = I915_READ(GEN6_RCUBMABDTMR);
2275         s->rcedata              = I915_READ(VLV_RCEDATA);
2276         s->spare2gh             = I915_READ(VLV_SPAREG2H);
2277
2278         /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2279         s->gt_imr               = I915_READ(GTIMR);
2280         s->gt_ier               = I915_READ(GTIER);
2281         s->pm_imr               = I915_READ(GEN6_PMIMR);
2282         s->pm_ier               = I915_READ(GEN6_PMIER);
2283
2284         for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2285                 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2286
2287         /* GT SA CZ domain, 0x100000-0x138124 */
2288         s->tilectl              = I915_READ(TILECTL);
2289         s->gt_fifoctl           = I915_READ(GTFIFOCTL);
2290         s->gtlc_wake_ctrl       = I915_READ(VLV_GTLC_WAKE_CTRL);
2291         s->gtlc_survive         = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2292         s->pmwgicz              = I915_READ(VLV_PMWGICZ);
2293
2294         /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2295         s->gu_ctl0              = I915_READ(VLV_GU_CTL0);
2296         s->gu_ctl1              = I915_READ(VLV_GU_CTL1);
2297         s->pcbr                 = I915_READ(VLV_PCBR);
2298         s->clock_gate_dis2      = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2299
2300         /*
2301          * Not saving any of:
2302          * DFT,         0x9800-0x9EC0
2303          * SARB,        0xB000-0xB1FC
2304          * GAC,         0x5208-0x524C, 0x14000-0x14C000
2305          * PCI CFG
2306          */
2307 }
2308
2309 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2310 {
2311         struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2312         u32 val;
2313         int i;
2314
2315         /* GAM 0x4000-0x4770 */
2316         I915_WRITE(GEN7_WR_WATERMARK,   s->wr_watermark);
2317         I915_WRITE(GEN7_GFX_PRIO_CTRL,  s->gfx_prio_ctrl);
2318         I915_WRITE(ARB_MODE,            s->arb_mode | (0xffff << 16));
2319         I915_WRITE(GEN7_GFX_PEND_TLB0,  s->gfx_pend_tlb0);
2320         I915_WRITE(GEN7_GFX_PEND_TLB1,  s->gfx_pend_tlb1);
2321
2322         for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2323                 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2324
2325         I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2326         I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2327
2328         I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2329         I915_WRITE(GAM_ECOCHK,          s->ecochk);
2330         I915_WRITE(BSD_HWS_PGA_GEN7,    s->bsd_hwsp);
2331         I915_WRITE(BLT_HWS_PGA_GEN7,    s->blt_hwsp);
2332
2333         I915_WRITE(GEN7_TLB_RD_ADDR,    s->tlb_rd_addr);
2334
2335         /* MBC 0x9024-0x91D0, 0x8500 */
2336         I915_WRITE(VLV_G3DCTL,          s->g3dctl);
2337         I915_WRITE(VLV_GSCKGCTL,        s->gsckgctl);
2338         I915_WRITE(GEN6_MBCTL,          s->mbctl);
2339
2340         /* GCP 0x9400-0x9424, 0x8100-0x810C */
2341         I915_WRITE(GEN6_UCGCTL1,        s->ucgctl1);
2342         I915_WRITE(GEN6_UCGCTL3,        s->ucgctl3);
2343         I915_WRITE(GEN6_RCGCTL1,        s->rcgctl1);
2344         I915_WRITE(GEN6_RCGCTL2,        s->rcgctl2);
2345         I915_WRITE(GEN6_RSTCTL,         s->rstctl);
2346         I915_WRITE(GEN7_MISCCPCTL,      s->misccpctl);
2347
2348         /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2349         I915_WRITE(GEN6_GFXPAUSE,       s->gfxpause);
2350         I915_WRITE(GEN6_RPDEUHWTC,      s->rpdeuhwtc);
2351         I915_WRITE(GEN6_RPDEUC,         s->rpdeuc);
2352         I915_WRITE(ECOBUS,              s->ecobus);
2353         I915_WRITE(VLV_PWRDWNUPCTL,     s->pwrdwnupctl);
2354         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2355         I915_WRITE(GEN6_RPDEUCSW,       s->rp_deucsw);
2356         I915_WRITE(GEN6_RCUBMABDTMR,    s->rcubmabdtmr);
2357         I915_WRITE(VLV_RCEDATA,         s->rcedata);
2358         I915_WRITE(VLV_SPAREG2H,        s->spare2gh);
2359
2360         /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2361         I915_WRITE(GTIMR,               s->gt_imr);
2362         I915_WRITE(GTIER,               s->gt_ier);
2363         I915_WRITE(GEN6_PMIMR,          s->pm_imr);
2364         I915_WRITE(GEN6_PMIER,          s->pm_ier);
2365
2366         for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2367                 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2368
2369         /* GT SA CZ domain, 0x100000-0x138124 */
2370         I915_WRITE(TILECTL,                     s->tilectl);
2371         I915_WRITE(GTFIFOCTL,                   s->gt_fifoctl);
2372         /*
2373          * Preserve the GT allow wake and GFX force clock bit, they are not
2374          * be restored, as they are used to control the s0ix suspend/resume
2375          * sequence by the caller.
2376          */
2377         val = I915_READ(VLV_GTLC_WAKE_CTRL);
2378         val &= VLV_GTLC_ALLOWWAKEREQ;
2379         val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2380         I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2381
2382         val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2383         val &= VLV_GFX_CLK_FORCE_ON_BIT;
2384         val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2385         I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2386
2387         I915_WRITE(VLV_PMWGICZ,                 s->pmwgicz);
2388
2389         /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2390         I915_WRITE(VLV_GU_CTL0,                 s->gu_ctl0);
2391         I915_WRITE(VLV_GU_CTL1,                 s->gu_ctl1);
2392         I915_WRITE(VLV_PCBR,                    s->pcbr);
2393         I915_WRITE(VLV_GUNIT_CLOCK_GATE2,       s->clock_gate_dis2);
2394 }
2395
2396 static int vlv_wait_for_pw_status(struct drm_i915_private *dev_priv,
2397                                   u32 mask, u32 val)
2398 {
2399         /* The HW does not like us polling for PW_STATUS frequently, so
2400          * use the sleeping loop rather than risk the busy spin within
2401          * intel_wait_for_register().
2402          *
2403          * Transitioning between RC6 states should be at most 2ms (see
2404          * valleyview_enable_rps) so use a 3ms timeout.
2405          */
2406         return wait_for((I915_READ_NOTRACE(VLV_GTLC_PW_STATUS) & mask) == val,
2407                         3);
2408 }
2409
2410 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2411 {
2412         u32 val;
2413         int err;
2414
2415         val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2416         val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2417         if (force_on)
2418                 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2419         I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2420
2421         if (!force_on)
2422                 return 0;
2423
2424         err = intel_wait_for_register(dev_priv,
2425                                       VLV_GTLC_SURVIVABILITY_REG,
2426                                       VLV_GFX_CLK_STATUS_BIT,
2427                                       VLV_GFX_CLK_STATUS_BIT,
2428                                       20);
2429         if (err)
2430                 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2431                           I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2432
2433         return err;
2434 }
2435
2436 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2437 {
2438         u32 mask;
2439         u32 val;
2440         int err;
2441
2442         val = I915_READ(VLV_GTLC_WAKE_CTRL);
2443         val &= ~VLV_GTLC_ALLOWWAKEREQ;
2444         if (allow)
2445                 val |= VLV_GTLC_ALLOWWAKEREQ;
2446         I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2447         POSTING_READ(VLV_GTLC_WAKE_CTRL);
2448
2449         mask = VLV_GTLC_ALLOWWAKEACK;
2450         val = allow ? mask : 0;
2451
2452         err = vlv_wait_for_pw_status(dev_priv, mask, val);
2453         if (err)
2454                 DRM_ERROR("timeout disabling GT waking\n");
2455
2456         return err;
2457 }
2458
2459 static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2460                                   bool wait_for_on)
2461 {
2462         u32 mask;
2463         u32 val;
2464
2465         mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2466         val = wait_for_on ? mask : 0;
2467
2468         /*
2469          * RC6 transitioning can be delayed up to 2 msec (see
2470          * valleyview_enable_rps), use 3 msec for safety.
2471          */
2472         if (vlv_wait_for_pw_status(dev_priv, mask, val))
2473                 DRM_ERROR("timeout waiting for GT wells to go %s\n",
2474                           onoff(wait_for_on));
2475 }
2476
2477 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2478 {
2479         if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2480                 return;
2481
2482         DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2483         I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2484 }
2485
2486 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2487 {
2488         u32 mask;
2489         int err;
2490
2491         /*
2492          * Bspec defines the following GT well on flags as debug only, so
2493          * don't treat them as hard failures.
2494          */
2495         vlv_wait_for_gt_wells(dev_priv, false);
2496
2497         mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2498         WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2499
2500         vlv_check_no_gt_access(dev_priv);
2501
2502         err = vlv_force_gfx_clock(dev_priv, true);
2503         if (err)
2504                 goto err1;
2505
2506         err = vlv_allow_gt_wake(dev_priv, false);
2507         if (err)
2508                 goto err2;
2509
2510         if (!IS_CHERRYVIEW(dev_priv))
2511                 vlv_save_gunit_s0ix_state(dev_priv);
2512
2513         err = vlv_force_gfx_clock(dev_priv, false);
2514         if (err)
2515                 goto err2;
2516
2517         return 0;
2518
2519 err2:
2520         /* For safety always re-enable waking and disable gfx clock forcing */
2521         vlv_allow_gt_wake(dev_priv, true);
2522 err1:
2523         vlv_force_gfx_clock(dev_priv, false);
2524
2525         return err;
2526 }
2527
2528 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2529                                 bool rpm_resume)
2530 {
2531         int err;
2532         int ret;
2533
2534         /*
2535          * If any of the steps fail just try to continue, that's the best we
2536          * can do at this point. Return the first error code (which will also
2537          * leave RPM permanently disabled).
2538          */
2539         ret = vlv_force_gfx_clock(dev_priv, true);
2540
2541         if (!IS_CHERRYVIEW(dev_priv))
2542                 vlv_restore_gunit_s0ix_state(dev_priv);
2543
2544         err = vlv_allow_gt_wake(dev_priv, true);
2545         if (!ret)
2546                 ret = err;
2547
2548         err = vlv_force_gfx_clock(dev_priv, false);
2549         if (!ret)
2550                 ret = err;
2551
2552         vlv_check_no_gt_access(dev_priv);
2553
2554         if (rpm_resume)
2555                 intel_init_clock_gating(dev_priv);
2556
2557         return ret;
2558 }
2559
2560 static int intel_runtime_suspend(struct device *kdev)
2561 {
2562         struct pci_dev *pdev = to_pci_dev(kdev);
2563         struct drm_device *dev = pci_get_drvdata(pdev);
2564         struct drm_i915_private *dev_priv = to_i915(dev);
2565         int ret;
2566
2567         if (WARN_ON_ONCE(!(dev_priv->gt_pm.rc6.enabled && HAS_RC6(dev_priv))))
2568                 return -ENODEV;
2569
2570         if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2571                 return -ENODEV;
2572
2573         DRM_DEBUG_KMS("Suspending device\n");
2574
2575         disable_rpm_wakeref_asserts(dev_priv);
2576
2577         /*
2578          * We are safe here against re-faults, since the fault handler takes
2579          * an RPM reference.
2580          */
2581         i915_gem_runtime_suspend(dev_priv);
2582
2583         intel_uc_suspend(dev_priv);
2584
2585         intel_runtime_pm_disable_interrupts(dev_priv);
2586
2587         intel_uncore_suspend(dev_priv);
2588
2589         ret = 0;
2590         if (IS_GEN9_LP(dev_priv)) {
2591                 bxt_display_core_uninit(dev_priv);
2592                 bxt_enable_dc9(dev_priv);
2593         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2594                 hsw_enable_pc8(dev_priv);
2595         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2596                 ret = vlv_suspend_complete(dev_priv);
2597         }
2598
2599         if (ret) {
2600                 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2601                 intel_uncore_runtime_resume(dev_priv);
2602
2603                 intel_runtime_pm_enable_interrupts(dev_priv);
2604
2605                 intel_uc_resume(dev_priv);
2606
2607                 i915_gem_init_swizzling(dev_priv);
2608                 i915_gem_restore_fences(dev_priv);
2609
2610                 enable_rpm_wakeref_asserts(dev_priv);
2611
2612                 return ret;
2613         }
2614
2615         enable_rpm_wakeref_asserts(dev_priv);
2616         WARN_ON_ONCE(atomic_read(&dev_priv->runtime_pm.wakeref_count));
2617
2618         if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2619                 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2620
2621         dev_priv->runtime_pm.suspended = true;
2622
2623         /*
2624          * FIXME: We really should find a document that references the arguments
2625          * used below!
2626          */
2627         if (IS_BROADWELL(dev_priv)) {
2628                 /*
2629                  * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2630                  * being detected, and the call we do at intel_runtime_resume()
2631                  * won't be able to restore them. Since PCI_D3hot matches the
2632                  * actual specification and appears to be working, use it.
2633                  */
2634                 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2635         } else {
2636                 /*
2637                  * current versions of firmware which depend on this opregion
2638                  * notification have repurposed the D1 definition to mean
2639                  * "runtime suspended" vs. what you would normally expect (D3)
2640                  * to distinguish it from notifications that might be sent via
2641                  * the suspend path.
2642                  */
2643                 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2644         }
2645
2646         assert_forcewakes_inactive(dev_priv);
2647
2648         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2649                 intel_hpd_poll_init(dev_priv);
2650
2651         DRM_DEBUG_KMS("Device suspended\n");
2652         return 0;
2653 }
2654
2655 static int intel_runtime_resume(struct device *kdev)
2656 {
2657         struct pci_dev *pdev = to_pci_dev(kdev);
2658         struct drm_device *dev = pci_get_drvdata(pdev);
2659         struct drm_i915_private *dev_priv = to_i915(dev);
2660         int ret = 0;
2661
2662         if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2663                 return -ENODEV;
2664
2665         DRM_DEBUG_KMS("Resuming device\n");
2666
2667         WARN_ON_ONCE(atomic_read(&dev_priv->runtime_pm.wakeref_count));
2668         disable_rpm_wakeref_asserts(dev_priv);
2669
2670         intel_opregion_notify_adapter(dev_priv, PCI_D0);
2671         dev_priv->runtime_pm.suspended = false;
2672         if (intel_uncore_unclaimed_mmio(dev_priv))
2673                 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2674
2675         if (IS_GEN9_LP(dev_priv)) {
2676                 bxt_disable_dc9(dev_priv);
2677                 bxt_display_core_init(dev_priv, true);
2678                 if (dev_priv->csr.dmc_payload &&
2679                     (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2680                         gen9_enable_dc5(dev_priv);
2681         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2682                 hsw_disable_pc8(dev_priv);
2683         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2684                 ret = vlv_resume_prepare(dev_priv, true);
2685         }
2686
2687         intel_uncore_runtime_resume(dev_priv);
2688
2689         intel_runtime_pm_enable_interrupts(dev_priv);
2690
2691         intel_uc_resume(dev_priv);
2692
2693         /*
2694          * No point of rolling back things in case of an error, as the best
2695          * we can do is to hope that things will still work (and disable RPM).
2696          */
2697         i915_gem_init_swizzling(dev_priv);
2698         i915_gem_restore_fences(dev_priv);
2699
2700         /*
2701          * On VLV/CHV display interrupts are part of the display
2702          * power well, so hpd is reinitialized from there. For
2703          * everyone else do it here.
2704          */
2705         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2706                 intel_hpd_init(dev_priv);
2707
2708         intel_enable_ipc(dev_priv);
2709
2710         enable_rpm_wakeref_asserts(dev_priv);
2711
2712         if (ret)
2713                 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2714         else
2715                 DRM_DEBUG_KMS("Device resumed\n");
2716
2717         return ret;
2718 }
2719
2720 const struct dev_pm_ops i915_pm_ops = {
2721         /*
2722          * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2723          * PMSG_RESUME]
2724          */
2725         .suspend = i915_pm_suspend,
2726         .suspend_late = i915_pm_suspend_late,
2727         .resume_early = i915_pm_resume_early,
2728         .resume = i915_pm_resume,
2729
2730         /*
2731          * S4 event handlers
2732          * @freeze, @freeze_late    : called (1) before creating the
2733          *                            hibernation image [PMSG_FREEZE] and
2734          *                            (2) after rebooting, before restoring
2735          *                            the image [PMSG_QUIESCE]
2736          * @thaw, @thaw_early       : called (1) after creating the hibernation
2737          *                            image, before writing it [PMSG_THAW]
2738          *                            and (2) after failing to create or
2739          *                            restore the image [PMSG_RECOVER]
2740          * @poweroff, @poweroff_late: called after writing the hibernation
2741          *                            image, before rebooting [PMSG_HIBERNATE]
2742          * @restore, @restore_early : called after rebooting and restoring the
2743          *                            hibernation image [PMSG_RESTORE]
2744          */
2745         .freeze = i915_pm_freeze,
2746         .freeze_late = i915_pm_freeze_late,
2747         .thaw_early = i915_pm_thaw_early,
2748         .thaw = i915_pm_thaw,
2749         .poweroff = i915_pm_suspend,
2750         .poweroff_late = i915_pm_poweroff_late,
2751         .restore_early = i915_pm_restore_early,
2752         .restore = i915_pm_restore,
2753
2754         /* S0ix (via runtime suspend) event handlers */
2755         .runtime_suspend = intel_runtime_suspend,
2756         .runtime_resume = intel_runtime_resume,
2757 };
2758
2759 static const struct vm_operations_struct i915_gem_vm_ops = {
2760         .fault = i915_gem_fault,
2761         .open = drm_gem_vm_open,
2762         .close = drm_gem_vm_close,
2763 };
2764
2765 static const struct file_operations i915_driver_fops = {
2766         .owner = THIS_MODULE,
2767         .open = drm_open,
2768         .release = drm_release,
2769         .unlocked_ioctl = drm_ioctl,
2770         .mmap = drm_gem_mmap,
2771         .poll = drm_poll,
2772         .read = drm_read,
2773         .compat_ioctl = i915_compat_ioctl,
2774         .llseek = noop_llseek,
2775 };
2776
2777 static int
2778 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2779                           struct drm_file *file)
2780 {
2781         return -ENODEV;
2782 }
2783
2784 static const struct drm_ioctl_desc i915_ioctls[] = {
2785         DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2786         DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2787         DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2788         DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2789         DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2790         DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2791         DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2792         DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2793         DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2794         DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2795         DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2796         DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2797         DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP,  drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2798         DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE,  drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2799         DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE,  drm_noop, DRM_AUTH),
2800         DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2801         DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2802         DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2803         DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer_ioctl, DRM_AUTH),
2804         DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2805         DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2806         DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2807         DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2808         DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2809         DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2810         DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2811         DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2812         DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2813         DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2814         DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2815         DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2816         DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2817         DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2818         DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2819         DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2820         DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
2821         DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
2822         DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2823         DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id_ioctl, 0),
2824         DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2825         DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2826         DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2827         DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2828         DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER|DRM_CONTROL_ALLOW),
2829         DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2830         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2831         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2832         DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2833         DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2834         DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2835         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2836         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2837         DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2838         DRM_IOCTL_DEF_DRV(I915_PERF_ADD_CONFIG, i915_perf_add_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2839         DRM_IOCTL_DEF_DRV(I915_PERF_REMOVE_CONFIG, i915_perf_remove_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2840         DRM_IOCTL_DEF_DRV(I915_QUERY, i915_query_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2841 };
2842
2843 static struct drm_driver driver = {
2844         /* Don't use MTRRs here; the Xserver or userspace app should
2845          * deal with them for Intel hardware.
2846          */
2847         .driver_features =
2848             DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
2849             DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC | DRIVER_SYNCOBJ,
2850         .release = i915_driver_release,
2851         .open = i915_driver_open,
2852         .lastclose = i915_driver_lastclose,
2853         .postclose = i915_driver_postclose,
2854
2855         .gem_close_object = i915_gem_close_object,
2856         .gem_free_object_unlocked = i915_gem_free_object,
2857         .gem_vm_ops = &i915_gem_vm_ops,
2858
2859         .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2860         .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2861         .gem_prime_export = i915_gem_prime_export,
2862         .gem_prime_import = i915_gem_prime_import,
2863
2864         .dumb_create = i915_gem_dumb_create,
2865         .dumb_map_offset = i915_gem_mmap_gtt,
2866         .ioctls = i915_ioctls,
2867         .num_ioctls = ARRAY_SIZE(i915_ioctls),
2868         .fops = &i915_driver_fops,
2869         .name = DRIVER_NAME,
2870         .desc = DRIVER_DESC,
2871         .date = DRIVER_DATE,
2872         .major = DRIVER_MAJOR,
2873         .minor = DRIVER_MINOR,
2874         .patchlevel = DRIVER_PATCHLEVEL,
2875 };
2876
2877 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2878 #include "selftests/mock_drm.c"
2879 #endif