Merge tag 'drm-intel-next-2016-10-24' of git://anongit.freedesktop.org/drm-intel...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
44 {
45         return to_i915(node->minor->dev);
46 }
47
48 /* As the drm_debugfs_init() routines are called before dev->dev_private is
49  * allocated we need to hook into the minor for release. */
50 static int
51 drm_add_fake_info_node(struct drm_minor *minor,
52                        struct dentry *ent,
53                        const void *key)
54 {
55         struct drm_info_node *node;
56
57         node = kmalloc(sizeof(*node), GFP_KERNEL);
58         if (node == NULL) {
59                 debugfs_remove(ent);
60                 return -ENOMEM;
61         }
62
63         node->minor = minor;
64         node->dent = ent;
65         node->info_ent = (void *)key;
66
67         mutex_lock(&minor->debugfs_lock);
68         list_add(&node->list, &minor->debugfs_list);
69         mutex_unlock(&minor->debugfs_lock);
70
71         return 0;
72 }
73
74 static int i915_capabilities(struct seq_file *m, void *data)
75 {
76         struct drm_i915_private *dev_priv = node_to_i915(m->private);
77         const struct intel_device_info *info = INTEL_INFO(dev_priv);
78
79         seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
80         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
81 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
82         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
83 #undef PRINT_FLAG
84
85         return 0;
86 }
87
88 static char get_active_flag(struct drm_i915_gem_object *obj)
89 {
90         return i915_gem_object_is_active(obj) ? '*' : ' ';
91 }
92
93 static char get_pin_flag(struct drm_i915_gem_object *obj)
94 {
95         return obj->pin_display ? 'p' : ' ';
96 }
97
98 static char get_tiling_flag(struct drm_i915_gem_object *obj)
99 {
100         switch (i915_gem_object_get_tiling(obj)) {
101         default:
102         case I915_TILING_NONE: return ' ';
103         case I915_TILING_X: return 'X';
104         case I915_TILING_Y: return 'Y';
105         }
106 }
107
108 static char get_global_flag(struct drm_i915_gem_object *obj)
109 {
110         return obj->fault_mappable ? 'g' : ' ';
111 }
112
113 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
114 {
115         return obj->mapping ? 'M' : ' ';
116 }
117
118 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
119 {
120         u64 size = 0;
121         struct i915_vma *vma;
122
123         list_for_each_entry(vma, &obj->vma_list, obj_link) {
124                 if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
125                         size += vma->node.size;
126         }
127
128         return size;
129 }
130
131 static void
132 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
133 {
134         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
135         struct intel_engine_cs *engine;
136         struct i915_vma *vma;
137         unsigned int frontbuffer_bits;
138         int pin_count = 0;
139         enum intel_engine_id id;
140
141         lockdep_assert_held(&obj->base.dev->struct_mutex);
142
143         seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x [ ",
144                    &obj->base,
145                    get_active_flag(obj),
146                    get_pin_flag(obj),
147                    get_tiling_flag(obj),
148                    get_global_flag(obj),
149                    get_pin_mapped_flag(obj),
150                    obj->base.size / 1024,
151                    obj->base.read_domains,
152                    obj->base.write_domain);
153         for_each_engine(engine, dev_priv, id)
154                 seq_printf(m, "%x ",
155                            i915_gem_active_get_seqno(&obj->last_read[id],
156                                                      &obj->base.dev->struct_mutex));
157         seq_printf(m, "] %x %s%s%s",
158                    i915_gem_active_get_seqno(&obj->last_write,
159                                              &obj->base.dev->struct_mutex),
160                    i915_cache_level_str(dev_priv, obj->cache_level),
161                    obj->dirty ? " dirty" : "",
162                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
163         if (obj->base.name)
164                 seq_printf(m, " (name: %d)", obj->base.name);
165         list_for_each_entry(vma, &obj->vma_list, obj_link) {
166                 if (i915_vma_is_pinned(vma))
167                         pin_count++;
168         }
169         seq_printf(m, " (pinned x %d)", pin_count);
170         if (obj->pin_display)
171                 seq_printf(m, " (display)");
172         list_for_each_entry(vma, &obj->vma_list, obj_link) {
173                 if (!drm_mm_node_allocated(&vma->node))
174                         continue;
175
176                 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
177                            i915_vma_is_ggtt(vma) ? "g" : "pp",
178                            vma->node.start, vma->node.size);
179                 if (i915_vma_is_ggtt(vma))
180                         seq_printf(m, ", type: %u", vma->ggtt_view.type);
181                 if (vma->fence)
182                         seq_printf(m, " , fence: %d%s",
183                                    vma->fence->id,
184                                    i915_gem_active_isset(&vma->last_fence) ? "*" : "");
185                 seq_puts(m, ")");
186         }
187         if (obj->stolen)
188                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
189
190         engine = i915_gem_active_get_engine(&obj->last_write,
191                                             &dev_priv->drm.struct_mutex);
192         if (engine)
193                 seq_printf(m, " (%s)", engine->name);
194
195         frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
196         if (frontbuffer_bits)
197                 seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
198 }
199
200 static int obj_rank_by_stolen(void *priv,
201                               struct list_head *A, struct list_head *B)
202 {
203         struct drm_i915_gem_object *a =
204                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
205         struct drm_i915_gem_object *b =
206                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
207
208         if (a->stolen->start < b->stolen->start)
209                 return -1;
210         if (a->stolen->start > b->stolen->start)
211                 return 1;
212         return 0;
213 }
214
215 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
216 {
217         struct drm_i915_private *dev_priv = node_to_i915(m->private);
218         struct drm_device *dev = &dev_priv->drm;
219         struct drm_i915_gem_object *obj;
220         u64 total_obj_size, total_gtt_size;
221         LIST_HEAD(stolen);
222         int count, ret;
223
224         ret = mutex_lock_interruptible(&dev->struct_mutex);
225         if (ret)
226                 return ret;
227
228         total_obj_size = total_gtt_size = count = 0;
229         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
230                 if (obj->stolen == NULL)
231                         continue;
232
233                 list_add(&obj->obj_exec_link, &stolen);
234
235                 total_obj_size += obj->base.size;
236                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
237                 count++;
238         }
239         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
240                 if (obj->stolen == NULL)
241                         continue;
242
243                 list_add(&obj->obj_exec_link, &stolen);
244
245                 total_obj_size += obj->base.size;
246                 count++;
247         }
248         list_sort(NULL, &stolen, obj_rank_by_stolen);
249         seq_puts(m, "Stolen:\n");
250         while (!list_empty(&stolen)) {
251                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
252                 seq_puts(m, "   ");
253                 describe_obj(m, obj);
254                 seq_putc(m, '\n');
255                 list_del_init(&obj->obj_exec_link);
256         }
257         mutex_unlock(&dev->struct_mutex);
258
259         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
260                    count, total_obj_size, total_gtt_size);
261         return 0;
262 }
263
264 struct file_stats {
265         struct drm_i915_file_private *file_priv;
266         unsigned long count;
267         u64 total, unbound;
268         u64 global, shared;
269         u64 active, inactive;
270 };
271
272 static int per_file_stats(int id, void *ptr, void *data)
273 {
274         struct drm_i915_gem_object *obj = ptr;
275         struct file_stats *stats = data;
276         struct i915_vma *vma;
277
278         stats->count++;
279         stats->total += obj->base.size;
280         if (!obj->bind_count)
281                 stats->unbound += obj->base.size;
282         if (obj->base.name || obj->base.dma_buf)
283                 stats->shared += obj->base.size;
284
285         list_for_each_entry(vma, &obj->vma_list, obj_link) {
286                 if (!drm_mm_node_allocated(&vma->node))
287                         continue;
288
289                 if (i915_vma_is_ggtt(vma)) {
290                         stats->global += vma->node.size;
291                 } else {
292                         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
293
294                         if (ppgtt->base.file != stats->file_priv)
295                                 continue;
296                 }
297
298                 if (i915_vma_is_active(vma))
299                         stats->active += vma->node.size;
300                 else
301                         stats->inactive += vma->node.size;
302         }
303
304         return 0;
305 }
306
307 #define print_file_stats(m, name, stats) do { \
308         if (stats.count) \
309                 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
310                            name, \
311                            stats.count, \
312                            stats.total, \
313                            stats.active, \
314                            stats.inactive, \
315                            stats.global, \
316                            stats.shared, \
317                            stats.unbound); \
318 } while (0)
319
320 static void print_batch_pool_stats(struct seq_file *m,
321                                    struct drm_i915_private *dev_priv)
322 {
323         struct drm_i915_gem_object *obj;
324         struct file_stats stats;
325         struct intel_engine_cs *engine;
326         enum intel_engine_id id;
327         int j;
328
329         memset(&stats, 0, sizeof(stats));
330
331         for_each_engine(engine, dev_priv, id) {
332                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
333                         list_for_each_entry(obj,
334                                             &engine->batch_pool.cache_list[j],
335                                             batch_pool_link)
336                                 per_file_stats(0, obj, &stats);
337                 }
338         }
339
340         print_file_stats(m, "[k]batch pool", stats);
341 }
342
343 static int per_file_ctx_stats(int id, void *ptr, void *data)
344 {
345         struct i915_gem_context *ctx = ptr;
346         int n;
347
348         for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
349                 if (ctx->engine[n].state)
350                         per_file_stats(0, ctx->engine[n].state->obj, data);
351                 if (ctx->engine[n].ring)
352                         per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
353         }
354
355         return 0;
356 }
357
358 static void print_context_stats(struct seq_file *m,
359                                 struct drm_i915_private *dev_priv)
360 {
361         struct drm_device *dev = &dev_priv->drm;
362         struct file_stats stats;
363         struct drm_file *file;
364
365         memset(&stats, 0, sizeof(stats));
366
367         mutex_lock(&dev->struct_mutex);
368         if (dev_priv->kernel_context)
369                 per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
370
371         list_for_each_entry(file, &dev->filelist, lhead) {
372                 struct drm_i915_file_private *fpriv = file->driver_priv;
373                 idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
374         }
375         mutex_unlock(&dev->struct_mutex);
376
377         print_file_stats(m, "[k]contexts", stats);
378 }
379
380 static int i915_gem_object_info(struct seq_file *m, void *data)
381 {
382         struct drm_i915_private *dev_priv = node_to_i915(m->private);
383         struct drm_device *dev = &dev_priv->drm;
384         struct i915_ggtt *ggtt = &dev_priv->ggtt;
385         u32 count, mapped_count, purgeable_count, dpy_count;
386         u64 size, mapped_size, purgeable_size, dpy_size;
387         struct drm_i915_gem_object *obj;
388         struct drm_file *file;
389         int ret;
390
391         ret = mutex_lock_interruptible(&dev->struct_mutex);
392         if (ret)
393                 return ret;
394
395         seq_printf(m, "%u objects, %llu bytes\n",
396                    dev_priv->mm.object_count,
397                    dev_priv->mm.object_memory);
398
399         size = count = 0;
400         mapped_size = mapped_count = 0;
401         purgeable_size = purgeable_count = 0;
402         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
403                 size += obj->base.size;
404                 ++count;
405
406                 if (obj->madv == I915_MADV_DONTNEED) {
407                         purgeable_size += obj->base.size;
408                         ++purgeable_count;
409                 }
410
411                 if (obj->mapping) {
412                         mapped_count++;
413                         mapped_size += obj->base.size;
414                 }
415         }
416         seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
417
418         size = count = dpy_size = dpy_count = 0;
419         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
420                 size += obj->base.size;
421                 ++count;
422
423                 if (obj->pin_display) {
424                         dpy_size += obj->base.size;
425                         ++dpy_count;
426                 }
427
428                 if (obj->madv == I915_MADV_DONTNEED) {
429                         purgeable_size += obj->base.size;
430                         ++purgeable_count;
431                 }
432
433                 if (obj->mapping) {
434                         mapped_count++;
435                         mapped_size += obj->base.size;
436                 }
437         }
438         seq_printf(m, "%u bound objects, %llu bytes\n",
439                    count, size);
440         seq_printf(m, "%u purgeable objects, %llu bytes\n",
441                    purgeable_count, purgeable_size);
442         seq_printf(m, "%u mapped objects, %llu bytes\n",
443                    mapped_count, mapped_size);
444         seq_printf(m, "%u display objects (pinned), %llu bytes\n",
445                    dpy_count, dpy_size);
446
447         seq_printf(m, "%llu [%llu] gtt total\n",
448                    ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
449
450         seq_putc(m, '\n');
451         print_batch_pool_stats(m, dev_priv);
452         mutex_unlock(&dev->struct_mutex);
453
454         mutex_lock(&dev->filelist_mutex);
455         print_context_stats(m, dev_priv);
456         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
457                 struct file_stats stats;
458                 struct drm_i915_file_private *file_priv = file->driver_priv;
459                 struct drm_i915_gem_request *request;
460                 struct task_struct *task;
461
462                 memset(&stats, 0, sizeof(stats));
463                 stats.file_priv = file->driver_priv;
464                 spin_lock(&file->table_lock);
465                 idr_for_each(&file->object_idr, per_file_stats, &stats);
466                 spin_unlock(&file->table_lock);
467                 /*
468                  * Although we have a valid reference on file->pid, that does
469                  * not guarantee that the task_struct who called get_pid() is
470                  * still alive (e.g. get_pid(current) => fork() => exit()).
471                  * Therefore, we need to protect this ->comm access using RCU.
472                  */
473                 mutex_lock(&dev->struct_mutex);
474                 request = list_first_entry_or_null(&file_priv->mm.request_list,
475                                                    struct drm_i915_gem_request,
476                                                    client_list);
477                 rcu_read_lock();
478                 task = pid_task(request && request->ctx->pid ?
479                                 request->ctx->pid : file->pid,
480                                 PIDTYPE_PID);
481                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
482                 rcu_read_unlock();
483                 mutex_unlock(&dev->struct_mutex);
484         }
485         mutex_unlock(&dev->filelist_mutex);
486
487         return 0;
488 }
489
490 static int i915_gem_gtt_info(struct seq_file *m, void *data)
491 {
492         struct drm_info_node *node = m->private;
493         struct drm_i915_private *dev_priv = node_to_i915(node);
494         struct drm_device *dev = &dev_priv->drm;
495         bool show_pin_display_only = !!node->info_ent->data;
496         struct drm_i915_gem_object *obj;
497         u64 total_obj_size, total_gtt_size;
498         int count, ret;
499
500         ret = mutex_lock_interruptible(&dev->struct_mutex);
501         if (ret)
502                 return ret;
503
504         total_obj_size = total_gtt_size = count = 0;
505         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
506                 if (show_pin_display_only && !obj->pin_display)
507                         continue;
508
509                 seq_puts(m, "   ");
510                 describe_obj(m, obj);
511                 seq_putc(m, '\n');
512                 total_obj_size += obj->base.size;
513                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
514                 count++;
515         }
516
517         mutex_unlock(&dev->struct_mutex);
518
519         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
520                    count, total_obj_size, total_gtt_size);
521
522         return 0;
523 }
524
525 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
526 {
527         struct drm_i915_private *dev_priv = node_to_i915(m->private);
528         struct drm_device *dev = &dev_priv->drm;
529         struct intel_crtc *crtc;
530         int ret;
531
532         ret = mutex_lock_interruptible(&dev->struct_mutex);
533         if (ret)
534                 return ret;
535
536         for_each_intel_crtc(dev, crtc) {
537                 const char pipe = pipe_name(crtc->pipe);
538                 const char plane = plane_name(crtc->plane);
539                 struct intel_flip_work *work;
540
541                 spin_lock_irq(&dev->event_lock);
542                 work = crtc->flip_work;
543                 if (work == NULL) {
544                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
545                                    pipe, plane);
546                 } else {
547                         u32 pending;
548                         u32 addr;
549
550                         pending = atomic_read(&work->pending);
551                         if (pending) {
552                                 seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
553                                            pipe, plane);
554                         } else {
555                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
556                                            pipe, plane);
557                         }
558                         if (work->flip_queued_req) {
559                                 struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
560
561                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
562                                            engine->name,
563                                            i915_gem_request_get_seqno(work->flip_queued_req),
564                                            dev_priv->next_seqno,
565                                            intel_engine_get_seqno(engine),
566                                            i915_gem_request_completed(work->flip_queued_req));
567                         } else
568                                 seq_printf(m, "Flip not associated with any ring\n");
569                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
570                                    work->flip_queued_vblank,
571                                    work->flip_ready_vblank,
572                                    intel_crtc_get_vblank_counter(crtc));
573                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
574
575                         if (INTEL_GEN(dev_priv) >= 4)
576                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
577                         else
578                                 addr = I915_READ(DSPADDR(crtc->plane));
579                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
580
581                         if (work->pending_flip_obj) {
582                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
583                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
584                         }
585                 }
586                 spin_unlock_irq(&dev->event_lock);
587         }
588
589         mutex_unlock(&dev->struct_mutex);
590
591         return 0;
592 }
593
594 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
595 {
596         struct drm_i915_private *dev_priv = node_to_i915(m->private);
597         struct drm_device *dev = &dev_priv->drm;
598         struct drm_i915_gem_object *obj;
599         struct intel_engine_cs *engine;
600         enum intel_engine_id id;
601         int total = 0;
602         int ret, j;
603
604         ret = mutex_lock_interruptible(&dev->struct_mutex);
605         if (ret)
606                 return ret;
607
608         for_each_engine(engine, dev_priv, id) {
609                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
610                         int count;
611
612                         count = 0;
613                         list_for_each_entry(obj,
614                                             &engine->batch_pool.cache_list[j],
615                                             batch_pool_link)
616                                 count++;
617                         seq_printf(m, "%s cache[%d]: %d objects\n",
618                                    engine->name, j, count);
619
620                         list_for_each_entry(obj,
621                                             &engine->batch_pool.cache_list[j],
622                                             batch_pool_link) {
623                                 seq_puts(m, "   ");
624                                 describe_obj(m, obj);
625                                 seq_putc(m, '\n');
626                         }
627
628                         total += count;
629                 }
630         }
631
632         seq_printf(m, "total: %d\n", total);
633
634         mutex_unlock(&dev->struct_mutex);
635
636         return 0;
637 }
638
639 static void print_request(struct seq_file *m,
640                           struct drm_i915_gem_request *rq,
641                           const char *prefix)
642 {
643         struct pid *pid = rq->ctx->pid;
644         struct task_struct *task;
645
646         rcu_read_lock();
647         task = pid ? pid_task(pid, PIDTYPE_PID) : NULL;
648         seq_printf(m, "%s%x [%x:%x] @ %d: %s [%d]\n", prefix,
649                    rq->fence.seqno, rq->ctx->hw_id, rq->fence.seqno,
650                    jiffies_to_msecs(jiffies - rq->emitted_jiffies),
651                    task ? task->comm : "<unknown>",
652                    task ? task->pid : -1);
653         rcu_read_unlock();
654 }
655
656 static int i915_gem_request_info(struct seq_file *m, void *data)
657 {
658         struct drm_i915_private *dev_priv = node_to_i915(m->private);
659         struct drm_device *dev = &dev_priv->drm;
660         struct drm_i915_gem_request *req;
661         struct intel_engine_cs *engine;
662         enum intel_engine_id id;
663         int ret, any;
664
665         ret = mutex_lock_interruptible(&dev->struct_mutex);
666         if (ret)
667                 return ret;
668
669         any = 0;
670         for_each_engine(engine, dev_priv, id) {
671                 int count;
672
673                 count = 0;
674                 list_for_each_entry(req, &engine->request_list, link)
675                         count++;
676                 if (count == 0)
677                         continue;
678
679                 seq_printf(m, "%s requests: %d\n", engine->name, count);
680                 list_for_each_entry(req, &engine->request_list, link)
681                         print_request(m, req, "    ");
682
683                 any++;
684         }
685         mutex_unlock(&dev->struct_mutex);
686
687         if (any == 0)
688                 seq_puts(m, "No requests\n");
689
690         return 0;
691 }
692
693 static void i915_ring_seqno_info(struct seq_file *m,
694                                  struct intel_engine_cs *engine)
695 {
696         struct intel_breadcrumbs *b = &engine->breadcrumbs;
697         struct rb_node *rb;
698
699         seq_printf(m, "Current sequence (%s): %x\n",
700                    engine->name, intel_engine_get_seqno(engine));
701
702         spin_lock(&b->lock);
703         for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
704                 struct intel_wait *w = container_of(rb, typeof(*w), node);
705
706                 seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
707                            engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
708         }
709         spin_unlock(&b->lock);
710 }
711
712 static int i915_gem_seqno_info(struct seq_file *m, void *data)
713 {
714         struct drm_i915_private *dev_priv = node_to_i915(m->private);
715         struct intel_engine_cs *engine;
716         enum intel_engine_id id;
717
718         for_each_engine(engine, dev_priv, id)
719                 i915_ring_seqno_info(m, engine);
720
721         return 0;
722 }
723
724
725 static int i915_interrupt_info(struct seq_file *m, void *data)
726 {
727         struct drm_i915_private *dev_priv = node_to_i915(m->private);
728         struct intel_engine_cs *engine;
729         enum intel_engine_id id;
730         int i, pipe;
731
732         intel_runtime_pm_get(dev_priv);
733
734         if (IS_CHERRYVIEW(dev_priv)) {
735                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
736                            I915_READ(GEN8_MASTER_IRQ));
737
738                 seq_printf(m, "Display IER:\t%08x\n",
739                            I915_READ(VLV_IER));
740                 seq_printf(m, "Display IIR:\t%08x\n",
741                            I915_READ(VLV_IIR));
742                 seq_printf(m, "Display IIR_RW:\t%08x\n",
743                            I915_READ(VLV_IIR_RW));
744                 seq_printf(m, "Display IMR:\t%08x\n",
745                            I915_READ(VLV_IMR));
746                 for_each_pipe(dev_priv, pipe)
747                         seq_printf(m, "Pipe %c stat:\t%08x\n",
748                                    pipe_name(pipe),
749                                    I915_READ(PIPESTAT(pipe)));
750
751                 seq_printf(m, "Port hotplug:\t%08x\n",
752                            I915_READ(PORT_HOTPLUG_EN));
753                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
754                            I915_READ(VLV_DPFLIPSTAT));
755                 seq_printf(m, "DPINVGTT:\t%08x\n",
756                            I915_READ(DPINVGTT));
757
758                 for (i = 0; i < 4; i++) {
759                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
760                                    i, I915_READ(GEN8_GT_IMR(i)));
761                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
762                                    i, I915_READ(GEN8_GT_IIR(i)));
763                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
764                                    i, I915_READ(GEN8_GT_IER(i)));
765                 }
766
767                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
768                            I915_READ(GEN8_PCU_IMR));
769                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
770                            I915_READ(GEN8_PCU_IIR));
771                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
772                            I915_READ(GEN8_PCU_IER));
773         } else if (INTEL_GEN(dev_priv) >= 8) {
774                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
775                            I915_READ(GEN8_MASTER_IRQ));
776
777                 for (i = 0; i < 4; i++) {
778                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
779                                    i, I915_READ(GEN8_GT_IMR(i)));
780                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
781                                    i, I915_READ(GEN8_GT_IIR(i)));
782                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
783                                    i, I915_READ(GEN8_GT_IER(i)));
784                 }
785
786                 for_each_pipe(dev_priv, pipe) {
787                         enum intel_display_power_domain power_domain;
788
789                         power_domain = POWER_DOMAIN_PIPE(pipe);
790                         if (!intel_display_power_get_if_enabled(dev_priv,
791                                                                 power_domain)) {
792                                 seq_printf(m, "Pipe %c power disabled\n",
793                                            pipe_name(pipe));
794                                 continue;
795                         }
796                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
797                                    pipe_name(pipe),
798                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
799                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
800                                    pipe_name(pipe),
801                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
802                         seq_printf(m, "Pipe %c IER:\t%08x\n",
803                                    pipe_name(pipe),
804                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
805
806                         intel_display_power_put(dev_priv, power_domain);
807                 }
808
809                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
810                            I915_READ(GEN8_DE_PORT_IMR));
811                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
812                            I915_READ(GEN8_DE_PORT_IIR));
813                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
814                            I915_READ(GEN8_DE_PORT_IER));
815
816                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
817                            I915_READ(GEN8_DE_MISC_IMR));
818                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
819                            I915_READ(GEN8_DE_MISC_IIR));
820                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
821                            I915_READ(GEN8_DE_MISC_IER));
822
823                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
824                            I915_READ(GEN8_PCU_IMR));
825                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
826                            I915_READ(GEN8_PCU_IIR));
827                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
828                            I915_READ(GEN8_PCU_IER));
829         } else if (IS_VALLEYVIEW(dev_priv)) {
830                 seq_printf(m, "Display IER:\t%08x\n",
831                            I915_READ(VLV_IER));
832                 seq_printf(m, "Display IIR:\t%08x\n",
833                            I915_READ(VLV_IIR));
834                 seq_printf(m, "Display IIR_RW:\t%08x\n",
835                            I915_READ(VLV_IIR_RW));
836                 seq_printf(m, "Display IMR:\t%08x\n",
837                            I915_READ(VLV_IMR));
838                 for_each_pipe(dev_priv, pipe)
839                         seq_printf(m, "Pipe %c stat:\t%08x\n",
840                                    pipe_name(pipe),
841                                    I915_READ(PIPESTAT(pipe)));
842
843                 seq_printf(m, "Master IER:\t%08x\n",
844                            I915_READ(VLV_MASTER_IER));
845
846                 seq_printf(m, "Render IER:\t%08x\n",
847                            I915_READ(GTIER));
848                 seq_printf(m, "Render IIR:\t%08x\n",
849                            I915_READ(GTIIR));
850                 seq_printf(m, "Render IMR:\t%08x\n",
851                            I915_READ(GTIMR));
852
853                 seq_printf(m, "PM IER:\t\t%08x\n",
854                            I915_READ(GEN6_PMIER));
855                 seq_printf(m, "PM IIR:\t\t%08x\n",
856                            I915_READ(GEN6_PMIIR));
857                 seq_printf(m, "PM IMR:\t\t%08x\n",
858                            I915_READ(GEN6_PMIMR));
859
860                 seq_printf(m, "Port hotplug:\t%08x\n",
861                            I915_READ(PORT_HOTPLUG_EN));
862                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
863                            I915_READ(VLV_DPFLIPSTAT));
864                 seq_printf(m, "DPINVGTT:\t%08x\n",
865                            I915_READ(DPINVGTT));
866
867         } else if (!HAS_PCH_SPLIT(dev_priv)) {
868                 seq_printf(m, "Interrupt enable:    %08x\n",
869                            I915_READ(IER));
870                 seq_printf(m, "Interrupt identity:  %08x\n",
871                            I915_READ(IIR));
872                 seq_printf(m, "Interrupt mask:      %08x\n",
873                            I915_READ(IMR));
874                 for_each_pipe(dev_priv, pipe)
875                         seq_printf(m, "Pipe %c stat:         %08x\n",
876                                    pipe_name(pipe),
877                                    I915_READ(PIPESTAT(pipe)));
878         } else {
879                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
880                            I915_READ(DEIER));
881                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
882                            I915_READ(DEIIR));
883                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
884                            I915_READ(DEIMR));
885                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
886                            I915_READ(SDEIER));
887                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
888                            I915_READ(SDEIIR));
889                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
890                            I915_READ(SDEIMR));
891                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
892                            I915_READ(GTIER));
893                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
894                            I915_READ(GTIIR));
895                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
896                            I915_READ(GTIMR));
897         }
898         for_each_engine(engine, dev_priv, id) {
899                 if (INTEL_GEN(dev_priv) >= 6) {
900                         seq_printf(m,
901                                    "Graphics Interrupt mask (%s):       %08x\n",
902                                    engine->name, I915_READ_IMR(engine));
903                 }
904                 i915_ring_seqno_info(m, engine);
905         }
906         intel_runtime_pm_put(dev_priv);
907
908         return 0;
909 }
910
911 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
912 {
913         struct drm_i915_private *dev_priv = node_to_i915(m->private);
914         struct drm_device *dev = &dev_priv->drm;
915         int i, ret;
916
917         ret = mutex_lock_interruptible(&dev->struct_mutex);
918         if (ret)
919                 return ret;
920
921         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
922         for (i = 0; i < dev_priv->num_fence_regs; i++) {
923                 struct i915_vma *vma = dev_priv->fence_regs[i].vma;
924
925                 seq_printf(m, "Fence %d, pin count = %d, object = ",
926                            i, dev_priv->fence_regs[i].pin_count);
927                 if (!vma)
928                         seq_puts(m, "unused");
929                 else
930                         describe_obj(m, vma->obj);
931                 seq_putc(m, '\n');
932         }
933
934         mutex_unlock(&dev->struct_mutex);
935         return 0;
936 }
937
938 static int i915_hws_info(struct seq_file *m, void *data)
939 {
940         struct drm_info_node *node = m->private;
941         struct drm_i915_private *dev_priv = node_to_i915(node);
942         struct intel_engine_cs *engine;
943         const u32 *hws;
944         int i;
945
946         engine = dev_priv->engine[(uintptr_t)node->info_ent->data];
947         hws = engine->status_page.page_addr;
948         if (hws == NULL)
949                 return 0;
950
951         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
952                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
953                            i * 4,
954                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
955         }
956         return 0;
957 }
958
959 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
960
961 static ssize_t
962 i915_error_state_write(struct file *filp,
963                        const char __user *ubuf,
964                        size_t cnt,
965                        loff_t *ppos)
966 {
967         struct i915_error_state_file_priv *error_priv = filp->private_data;
968
969         DRM_DEBUG_DRIVER("Resetting error state\n");
970         i915_destroy_error_state(error_priv->dev);
971
972         return cnt;
973 }
974
975 static int i915_error_state_open(struct inode *inode, struct file *file)
976 {
977         struct drm_i915_private *dev_priv = inode->i_private;
978         struct i915_error_state_file_priv *error_priv;
979
980         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
981         if (!error_priv)
982                 return -ENOMEM;
983
984         error_priv->dev = &dev_priv->drm;
985
986         i915_error_state_get(&dev_priv->drm, error_priv);
987
988         file->private_data = error_priv;
989
990         return 0;
991 }
992
993 static int i915_error_state_release(struct inode *inode, struct file *file)
994 {
995         struct i915_error_state_file_priv *error_priv = file->private_data;
996
997         i915_error_state_put(error_priv);
998         kfree(error_priv);
999
1000         return 0;
1001 }
1002
1003 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1004                                      size_t count, loff_t *pos)
1005 {
1006         struct i915_error_state_file_priv *error_priv = file->private_data;
1007         struct drm_i915_error_state_buf error_str;
1008         loff_t tmp_pos = 0;
1009         ssize_t ret_count = 0;
1010         int ret;
1011
1012         ret = i915_error_state_buf_init(&error_str,
1013                                         to_i915(error_priv->dev), count, *pos);
1014         if (ret)
1015                 return ret;
1016
1017         ret = i915_error_state_to_str(&error_str, error_priv);
1018         if (ret)
1019                 goto out;
1020
1021         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1022                                             error_str.buf,
1023                                             error_str.bytes);
1024
1025         if (ret_count < 0)
1026                 ret = ret_count;
1027         else
1028                 *pos = error_str.start + ret_count;
1029 out:
1030         i915_error_state_buf_release(&error_str);
1031         return ret ?: ret_count;
1032 }
1033
1034 static const struct file_operations i915_error_state_fops = {
1035         .owner = THIS_MODULE,
1036         .open = i915_error_state_open,
1037         .read = i915_error_state_read,
1038         .write = i915_error_state_write,
1039         .llseek = default_llseek,
1040         .release = i915_error_state_release,
1041 };
1042
1043 #endif
1044
1045 static int
1046 i915_next_seqno_get(void *data, u64 *val)
1047 {
1048         struct drm_i915_private *dev_priv = data;
1049         int ret;
1050
1051         ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
1052         if (ret)
1053                 return ret;
1054
1055         *val = dev_priv->next_seqno;
1056         mutex_unlock(&dev_priv->drm.struct_mutex);
1057
1058         return 0;
1059 }
1060
1061 static int
1062 i915_next_seqno_set(void *data, u64 val)
1063 {
1064         struct drm_i915_private *dev_priv = data;
1065         struct drm_device *dev = &dev_priv->drm;
1066         int ret;
1067
1068         ret = mutex_lock_interruptible(&dev->struct_mutex);
1069         if (ret)
1070                 return ret;
1071
1072         ret = i915_gem_set_seqno(dev, val);
1073         mutex_unlock(&dev->struct_mutex);
1074
1075         return ret;
1076 }
1077
1078 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1079                         i915_next_seqno_get, i915_next_seqno_set,
1080                         "0x%llx\n");
1081
1082 static int i915_frequency_info(struct seq_file *m, void *unused)
1083 {
1084         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1085         struct drm_device *dev = &dev_priv->drm;
1086         int ret = 0;
1087
1088         intel_runtime_pm_get(dev_priv);
1089
1090         if (IS_GEN5(dev_priv)) {
1091                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1092                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1093
1094                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1095                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1096                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1097                            MEMSTAT_VID_SHIFT);
1098                 seq_printf(m, "Current P-state: %d\n",
1099                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1100         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1101                 u32 freq_sts;
1102
1103                 mutex_lock(&dev_priv->rps.hw_lock);
1104                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1105                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1106                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1107
1108                 seq_printf(m, "actual GPU freq: %d MHz\n",
1109                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1110
1111                 seq_printf(m, "current GPU freq: %d MHz\n",
1112                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1113
1114                 seq_printf(m, "max GPU freq: %d MHz\n",
1115                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1116
1117                 seq_printf(m, "min GPU freq: %d MHz\n",
1118                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1119
1120                 seq_printf(m, "idle GPU freq: %d MHz\n",
1121                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1122
1123                 seq_printf(m,
1124                            "efficient (RPe) frequency: %d MHz\n",
1125                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1126                 mutex_unlock(&dev_priv->rps.hw_lock);
1127         } else if (INTEL_GEN(dev_priv) >= 6) {
1128                 u32 rp_state_limits;
1129                 u32 gt_perf_status;
1130                 u32 rp_state_cap;
1131                 u32 rpmodectl, rpinclimit, rpdeclimit;
1132                 u32 rpstat, cagf, reqf;
1133                 u32 rpupei, rpcurup, rpprevup;
1134                 u32 rpdownei, rpcurdown, rpprevdown;
1135                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1136                 int max_freq;
1137
1138                 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1139                 if (IS_BROXTON(dev_priv)) {
1140                         rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1141                         gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1142                 } else {
1143                         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1144                         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1145                 }
1146
1147                 /* RPSTAT1 is in the GT power well */
1148                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1149                 if (ret)
1150                         goto out;
1151
1152                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1153
1154                 reqf = I915_READ(GEN6_RPNSWREQ);
1155                 if (IS_GEN9(dev_priv))
1156                         reqf >>= 23;
1157                 else {
1158                         reqf &= ~GEN6_TURBO_DISABLE;
1159                         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1160                                 reqf >>= 24;
1161                         else
1162                                 reqf >>= 25;
1163                 }
1164                 reqf = intel_gpu_freq(dev_priv, reqf);
1165
1166                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1167                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1168                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1169
1170                 rpstat = I915_READ(GEN6_RPSTAT1);
1171                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1172                 rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1173                 rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1174                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1175                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1176                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1177                 if (IS_GEN9(dev_priv))
1178                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1179                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1180                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1181                 else
1182                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1183                 cagf = intel_gpu_freq(dev_priv, cagf);
1184
1185                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1186                 mutex_unlock(&dev->struct_mutex);
1187
1188                 if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
1189                         pm_ier = I915_READ(GEN6_PMIER);
1190                         pm_imr = I915_READ(GEN6_PMIMR);
1191                         pm_isr = I915_READ(GEN6_PMISR);
1192                         pm_iir = I915_READ(GEN6_PMIIR);
1193                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1194                 } else {
1195                         pm_ier = I915_READ(GEN8_GT_IER(2));
1196                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1197                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1198                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1199                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1200                 }
1201                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1202                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1203                 seq_printf(m, "pm_intr_keep: 0x%08x\n", dev_priv->rps.pm_intr_keep);
1204                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1205                 seq_printf(m, "Render p-state ratio: %d\n",
1206                            (gt_perf_status & (IS_GEN9(dev_priv) ? 0x1ff00 : 0xff00)) >> 8);
1207                 seq_printf(m, "Render p-state VID: %d\n",
1208                            gt_perf_status & 0xff);
1209                 seq_printf(m, "Render p-state limit: %d\n",
1210                            rp_state_limits & 0xff);
1211                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1212                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1213                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1214                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1215                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1216                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1217                 seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1218                            rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1219                 seq_printf(m, "RP CUR UP: %d (%dus)\n",
1220                            rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1221                 seq_printf(m, "RP PREV UP: %d (%dus)\n",
1222                            rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1223                 seq_printf(m, "Up threshold: %d%%\n",
1224                            dev_priv->rps.up_threshold);
1225
1226                 seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1227                            rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1228                 seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1229                            rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1230                 seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1231                            rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1232                 seq_printf(m, "Down threshold: %d%%\n",
1233                            dev_priv->rps.down_threshold);
1234
1235                 max_freq = (IS_BROXTON(dev_priv) ? rp_state_cap >> 0 :
1236                             rp_state_cap >> 16) & 0xff;
1237                 max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1238                              GEN9_FREQ_SCALER : 1);
1239                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1240                            intel_gpu_freq(dev_priv, max_freq));
1241
1242                 max_freq = (rp_state_cap & 0xff00) >> 8;
1243                 max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1244                              GEN9_FREQ_SCALER : 1);
1245                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1246                            intel_gpu_freq(dev_priv, max_freq));
1247
1248                 max_freq = (IS_BROXTON(dev_priv) ? rp_state_cap >> 16 :
1249                             rp_state_cap >> 0) & 0xff;
1250                 max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1251                              GEN9_FREQ_SCALER : 1);
1252                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1253                            intel_gpu_freq(dev_priv, max_freq));
1254                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1255                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1256
1257                 seq_printf(m, "Current freq: %d MHz\n",
1258                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1259                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1260                 seq_printf(m, "Idle freq: %d MHz\n",
1261                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1262                 seq_printf(m, "Min freq: %d MHz\n",
1263                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1264                 seq_printf(m, "Boost freq: %d MHz\n",
1265                            intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
1266                 seq_printf(m, "Max freq: %d MHz\n",
1267                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1268                 seq_printf(m,
1269                            "efficient (RPe) frequency: %d MHz\n",
1270                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1271         } else {
1272                 seq_puts(m, "no P-state info available\n");
1273         }
1274
1275         seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1276         seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1277         seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1278
1279 out:
1280         intel_runtime_pm_put(dev_priv);
1281         return ret;
1282 }
1283
1284 static void i915_instdone_info(struct drm_i915_private *dev_priv,
1285                                struct seq_file *m,
1286                                struct intel_instdone *instdone)
1287 {
1288         int slice;
1289         int subslice;
1290
1291         seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
1292                    instdone->instdone);
1293
1294         if (INTEL_GEN(dev_priv) <= 3)
1295                 return;
1296
1297         seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
1298                    instdone->slice_common);
1299
1300         if (INTEL_GEN(dev_priv) <= 6)
1301                 return;
1302
1303         for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1304                 seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
1305                            slice, subslice, instdone->sampler[slice][subslice]);
1306
1307         for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1308                 seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
1309                            slice, subslice, instdone->row[slice][subslice]);
1310 }
1311
1312 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1313 {
1314         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1315         struct intel_engine_cs *engine;
1316         u64 acthd[I915_NUM_ENGINES];
1317         u32 seqno[I915_NUM_ENGINES];
1318         struct intel_instdone instdone;
1319         enum intel_engine_id id;
1320
1321         if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
1322                 seq_printf(m, "Wedged\n");
1323         if (test_bit(I915_RESET_IN_PROGRESS, &dev_priv->gpu_error.flags))
1324                 seq_printf(m, "Reset in progress\n");
1325         if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
1326                 seq_printf(m, "Waiter holding struct mutex\n");
1327         if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
1328                 seq_printf(m, "struct_mutex blocked for reset\n");
1329
1330         if (!i915.enable_hangcheck) {
1331                 seq_printf(m, "Hangcheck disabled\n");
1332                 return 0;
1333         }
1334
1335         intel_runtime_pm_get(dev_priv);
1336
1337         for_each_engine(engine, dev_priv, id) {
1338                 acthd[id] = intel_engine_get_active_head(engine);
1339                 seqno[id] = intel_engine_get_seqno(engine);
1340         }
1341
1342         intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
1343
1344         intel_runtime_pm_put(dev_priv);
1345
1346         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1347                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1348                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1349                                             jiffies));
1350         } else
1351                 seq_printf(m, "Hangcheck inactive\n");
1352
1353         for_each_engine(engine, dev_priv, id) {
1354                 struct intel_breadcrumbs *b = &engine->breadcrumbs;
1355                 struct rb_node *rb;
1356
1357                 seq_printf(m, "%s:\n", engine->name);
1358                 seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
1359                            engine->hangcheck.seqno,
1360                            seqno[id],
1361                            engine->last_submitted_seqno);
1362                 seq_printf(m, "\twaiters? %s, fake irq active? %s\n",
1363                            yesno(intel_engine_has_waiter(engine)),
1364                            yesno(test_bit(engine->id,
1365                                           &dev_priv->gpu_error.missed_irq_rings)));
1366                 spin_lock(&b->lock);
1367                 for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
1368                         struct intel_wait *w = container_of(rb, typeof(*w), node);
1369
1370                         seq_printf(m, "\t%s [%d] waiting for %x\n",
1371                                    w->tsk->comm, w->tsk->pid, w->seqno);
1372                 }
1373                 spin_unlock(&b->lock);
1374
1375                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1376                            (long long)engine->hangcheck.acthd,
1377                            (long long)acthd[id]);
1378                 seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
1379                 seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
1380
1381                 if (engine->id == RCS) {
1382                         seq_puts(m, "\tinstdone read =\n");
1383
1384                         i915_instdone_info(dev_priv, m, &instdone);
1385
1386                         seq_puts(m, "\tinstdone accu =\n");
1387
1388                         i915_instdone_info(dev_priv, m,
1389                                            &engine->hangcheck.instdone);
1390                 }
1391         }
1392
1393         return 0;
1394 }
1395
1396 static int ironlake_drpc_info(struct seq_file *m)
1397 {
1398         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1399         struct drm_device *dev = &dev_priv->drm;
1400         u32 rgvmodectl, rstdbyctl;
1401         u16 crstandvid;
1402         int ret;
1403
1404         ret = mutex_lock_interruptible(&dev->struct_mutex);
1405         if (ret)
1406                 return ret;
1407         intel_runtime_pm_get(dev_priv);
1408
1409         rgvmodectl = I915_READ(MEMMODECTL);
1410         rstdbyctl = I915_READ(RSTDBYCTL);
1411         crstandvid = I915_READ16(CRSTANDVID);
1412
1413         intel_runtime_pm_put(dev_priv);
1414         mutex_unlock(&dev->struct_mutex);
1415
1416         seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1417         seq_printf(m, "Boost freq: %d\n",
1418                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1419                    MEMMODE_BOOST_FREQ_SHIFT);
1420         seq_printf(m, "HW control enabled: %s\n",
1421                    yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1422         seq_printf(m, "SW control enabled: %s\n",
1423                    yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1424         seq_printf(m, "Gated voltage change: %s\n",
1425                    yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1426         seq_printf(m, "Starting frequency: P%d\n",
1427                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1428         seq_printf(m, "Max P-state: P%d\n",
1429                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1430         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1431         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1432         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1433         seq_printf(m, "Render standby enabled: %s\n",
1434                    yesno(!(rstdbyctl & RCX_SW_EXIT)));
1435         seq_puts(m, "Current RS state: ");
1436         switch (rstdbyctl & RSX_STATUS_MASK) {
1437         case RSX_STATUS_ON:
1438                 seq_puts(m, "on\n");
1439                 break;
1440         case RSX_STATUS_RC1:
1441                 seq_puts(m, "RC1\n");
1442                 break;
1443         case RSX_STATUS_RC1E:
1444                 seq_puts(m, "RC1E\n");
1445                 break;
1446         case RSX_STATUS_RS1:
1447                 seq_puts(m, "RS1\n");
1448                 break;
1449         case RSX_STATUS_RS2:
1450                 seq_puts(m, "RS2 (RC6)\n");
1451                 break;
1452         case RSX_STATUS_RS3:
1453                 seq_puts(m, "RC3 (RC6+)\n");
1454                 break;
1455         default:
1456                 seq_puts(m, "unknown\n");
1457                 break;
1458         }
1459
1460         return 0;
1461 }
1462
1463 static int i915_forcewake_domains(struct seq_file *m, void *data)
1464 {
1465         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1466         struct intel_uncore_forcewake_domain *fw_domain;
1467
1468         spin_lock_irq(&dev_priv->uncore.lock);
1469         for_each_fw_domain(fw_domain, dev_priv) {
1470                 seq_printf(m, "%s.wake_count = %u\n",
1471                            intel_uncore_forcewake_domain_to_str(fw_domain->id),
1472                            fw_domain->wake_count);
1473         }
1474         spin_unlock_irq(&dev_priv->uncore.lock);
1475
1476         return 0;
1477 }
1478
1479 static int vlv_drpc_info(struct seq_file *m)
1480 {
1481         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1482         u32 rpmodectl1, rcctl1, pw_status;
1483
1484         intel_runtime_pm_get(dev_priv);
1485
1486         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1487         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1488         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1489
1490         intel_runtime_pm_put(dev_priv);
1491
1492         seq_printf(m, "Video Turbo Mode: %s\n",
1493                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1494         seq_printf(m, "Turbo enabled: %s\n",
1495                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1496         seq_printf(m, "HW control enabled: %s\n",
1497                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1498         seq_printf(m, "SW control enabled: %s\n",
1499                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1500                           GEN6_RP_MEDIA_SW_MODE));
1501         seq_printf(m, "RC6 Enabled: %s\n",
1502                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1503                                         GEN6_RC_CTL_EI_MODE(1))));
1504         seq_printf(m, "Render Power Well: %s\n",
1505                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1506         seq_printf(m, "Media Power Well: %s\n",
1507                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1508
1509         seq_printf(m, "Render RC6 residency since boot: %u\n",
1510                    I915_READ(VLV_GT_RENDER_RC6));
1511         seq_printf(m, "Media RC6 residency since boot: %u\n",
1512                    I915_READ(VLV_GT_MEDIA_RC6));
1513
1514         return i915_forcewake_domains(m, NULL);
1515 }
1516
1517 static int gen6_drpc_info(struct seq_file *m)
1518 {
1519         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1520         struct drm_device *dev = &dev_priv->drm;
1521         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1522         u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
1523         unsigned forcewake_count;
1524         int count = 0, ret;
1525
1526         ret = mutex_lock_interruptible(&dev->struct_mutex);
1527         if (ret)
1528                 return ret;
1529         intel_runtime_pm_get(dev_priv);
1530
1531         spin_lock_irq(&dev_priv->uncore.lock);
1532         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1533         spin_unlock_irq(&dev_priv->uncore.lock);
1534
1535         if (forcewake_count) {
1536                 seq_puts(m, "RC information inaccurate because somebody "
1537                             "holds a forcewake reference \n");
1538         } else {
1539                 /* NB: we cannot use forcewake, else we read the wrong values */
1540                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1541                         udelay(10);
1542                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1543         }
1544
1545         gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1546         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1547
1548         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1549         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1550         if (INTEL_GEN(dev_priv) >= 9) {
1551                 gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
1552                 gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
1553         }
1554         mutex_unlock(&dev->struct_mutex);
1555         mutex_lock(&dev_priv->rps.hw_lock);
1556         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1557         mutex_unlock(&dev_priv->rps.hw_lock);
1558
1559         intel_runtime_pm_put(dev_priv);
1560
1561         seq_printf(m, "Video Turbo Mode: %s\n",
1562                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1563         seq_printf(m, "HW control enabled: %s\n",
1564                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1565         seq_printf(m, "SW control enabled: %s\n",
1566                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1567                           GEN6_RP_MEDIA_SW_MODE));
1568         seq_printf(m, "RC1e Enabled: %s\n",
1569                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1570         seq_printf(m, "RC6 Enabled: %s\n",
1571                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1572         if (INTEL_GEN(dev_priv) >= 9) {
1573                 seq_printf(m, "Render Well Gating Enabled: %s\n",
1574                         yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
1575                 seq_printf(m, "Media Well Gating Enabled: %s\n",
1576                         yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
1577         }
1578         seq_printf(m, "Deep RC6 Enabled: %s\n",
1579                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1580         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1581                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1582         seq_puts(m, "Current RC state: ");
1583         switch (gt_core_status & GEN6_RCn_MASK) {
1584         case GEN6_RC0:
1585                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1586                         seq_puts(m, "Core Power Down\n");
1587                 else
1588                         seq_puts(m, "on\n");
1589                 break;
1590         case GEN6_RC3:
1591                 seq_puts(m, "RC3\n");
1592                 break;
1593         case GEN6_RC6:
1594                 seq_puts(m, "RC6\n");
1595                 break;
1596         case GEN6_RC7:
1597                 seq_puts(m, "RC7\n");
1598                 break;
1599         default:
1600                 seq_puts(m, "Unknown\n");
1601                 break;
1602         }
1603
1604         seq_printf(m, "Core Power Down: %s\n",
1605                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1606         if (INTEL_GEN(dev_priv) >= 9) {
1607                 seq_printf(m, "Render Power Well: %s\n",
1608                         (gen9_powergate_status &
1609                          GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
1610                 seq_printf(m, "Media Power Well: %s\n",
1611                         (gen9_powergate_status &
1612                          GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
1613         }
1614
1615         /* Not exactly sure what this is */
1616         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1617                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1618         seq_printf(m, "RC6 residency since boot: %u\n",
1619                    I915_READ(GEN6_GT_GFX_RC6));
1620         seq_printf(m, "RC6+ residency since boot: %u\n",
1621                    I915_READ(GEN6_GT_GFX_RC6p));
1622         seq_printf(m, "RC6++ residency since boot: %u\n",
1623                    I915_READ(GEN6_GT_GFX_RC6pp));
1624
1625         seq_printf(m, "RC6   voltage: %dmV\n",
1626                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1627         seq_printf(m, "RC6+  voltage: %dmV\n",
1628                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1629         seq_printf(m, "RC6++ voltage: %dmV\n",
1630                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1631         return i915_forcewake_domains(m, NULL);
1632 }
1633
1634 static int i915_drpc_info(struct seq_file *m, void *unused)
1635 {
1636         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1637
1638         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1639                 return vlv_drpc_info(m);
1640         else if (INTEL_GEN(dev_priv) >= 6)
1641                 return gen6_drpc_info(m);
1642         else
1643                 return ironlake_drpc_info(m);
1644 }
1645
1646 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1647 {
1648         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1649
1650         seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1651                    dev_priv->fb_tracking.busy_bits);
1652
1653         seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1654                    dev_priv->fb_tracking.flip_bits);
1655
1656         return 0;
1657 }
1658
1659 static int i915_fbc_status(struct seq_file *m, void *unused)
1660 {
1661         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1662
1663         if (!HAS_FBC(dev_priv)) {
1664                 seq_puts(m, "FBC unsupported on this chipset\n");
1665                 return 0;
1666         }
1667
1668         intel_runtime_pm_get(dev_priv);
1669         mutex_lock(&dev_priv->fbc.lock);
1670
1671         if (intel_fbc_is_active(dev_priv))
1672                 seq_puts(m, "FBC enabled\n");
1673         else
1674                 seq_printf(m, "FBC disabled: %s\n",
1675                            dev_priv->fbc.no_fbc_reason);
1676
1677         if (intel_fbc_is_active(dev_priv) &&
1678             INTEL_GEN(dev_priv) >= 7)
1679                 seq_printf(m, "Compressing: %s\n",
1680                            yesno(I915_READ(FBC_STATUS2) &
1681                                  FBC_COMPRESSION_MASK));
1682
1683         mutex_unlock(&dev_priv->fbc.lock);
1684         intel_runtime_pm_put(dev_priv);
1685
1686         return 0;
1687 }
1688
1689 static int i915_fbc_fc_get(void *data, u64 *val)
1690 {
1691         struct drm_i915_private *dev_priv = data;
1692
1693         if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1694                 return -ENODEV;
1695
1696         *val = dev_priv->fbc.false_color;
1697
1698         return 0;
1699 }
1700
1701 static int i915_fbc_fc_set(void *data, u64 val)
1702 {
1703         struct drm_i915_private *dev_priv = data;
1704         u32 reg;
1705
1706         if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1707                 return -ENODEV;
1708
1709         mutex_lock(&dev_priv->fbc.lock);
1710
1711         reg = I915_READ(ILK_DPFC_CONTROL);
1712         dev_priv->fbc.false_color = val;
1713
1714         I915_WRITE(ILK_DPFC_CONTROL, val ?
1715                    (reg | FBC_CTL_FALSE_COLOR) :
1716                    (reg & ~FBC_CTL_FALSE_COLOR));
1717
1718         mutex_unlock(&dev_priv->fbc.lock);
1719         return 0;
1720 }
1721
1722 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1723                         i915_fbc_fc_get, i915_fbc_fc_set,
1724                         "%llu\n");
1725
1726 static int i915_ips_status(struct seq_file *m, void *unused)
1727 {
1728         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1729
1730         if (!HAS_IPS(dev_priv)) {
1731                 seq_puts(m, "not supported\n");
1732                 return 0;
1733         }
1734
1735         intel_runtime_pm_get(dev_priv);
1736
1737         seq_printf(m, "Enabled by kernel parameter: %s\n",
1738                    yesno(i915.enable_ips));
1739
1740         if (INTEL_GEN(dev_priv) >= 8) {
1741                 seq_puts(m, "Currently: unknown\n");
1742         } else {
1743                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1744                         seq_puts(m, "Currently: enabled\n");
1745                 else
1746                         seq_puts(m, "Currently: disabled\n");
1747         }
1748
1749         intel_runtime_pm_put(dev_priv);
1750
1751         return 0;
1752 }
1753
1754 static int i915_sr_status(struct seq_file *m, void *unused)
1755 {
1756         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1757         bool sr_enabled = false;
1758
1759         intel_runtime_pm_get(dev_priv);
1760
1761         if (HAS_PCH_SPLIT(dev_priv))
1762                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1763         else if (IS_CRESTLINE(dev_priv) || IS_G4X(dev_priv) ||
1764                  IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1765                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1766         else if (IS_I915GM(dev_priv))
1767                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1768         else if (IS_PINEVIEW(dev_priv))
1769                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1770         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1771                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1772
1773         intel_runtime_pm_put(dev_priv);
1774
1775         seq_printf(m, "self-refresh: %s\n",
1776                    sr_enabled ? "enabled" : "disabled");
1777
1778         return 0;
1779 }
1780
1781 static int i915_emon_status(struct seq_file *m, void *unused)
1782 {
1783         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1784         struct drm_device *dev = &dev_priv->drm;
1785         unsigned long temp, chipset, gfx;
1786         int ret;
1787
1788         if (!IS_GEN5(dev_priv))
1789                 return -ENODEV;
1790
1791         ret = mutex_lock_interruptible(&dev->struct_mutex);
1792         if (ret)
1793                 return ret;
1794
1795         temp = i915_mch_val(dev_priv);
1796         chipset = i915_chipset_val(dev_priv);
1797         gfx = i915_gfx_val(dev_priv);
1798         mutex_unlock(&dev->struct_mutex);
1799
1800         seq_printf(m, "GMCH temp: %ld\n", temp);
1801         seq_printf(m, "Chipset power: %ld\n", chipset);
1802         seq_printf(m, "GFX power: %ld\n", gfx);
1803         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1804
1805         return 0;
1806 }
1807
1808 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1809 {
1810         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1811         int ret = 0;
1812         int gpu_freq, ia_freq;
1813         unsigned int max_gpu_freq, min_gpu_freq;
1814
1815         if (!HAS_LLC(dev_priv)) {
1816                 seq_puts(m, "unsupported on this chipset\n");
1817                 return 0;
1818         }
1819
1820         intel_runtime_pm_get(dev_priv);
1821
1822         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1823         if (ret)
1824                 goto out;
1825
1826         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1827                 /* Convert GT frequency to 50 HZ units */
1828                 min_gpu_freq =
1829                         dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1830                 max_gpu_freq =
1831                         dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1832         } else {
1833                 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1834                 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1835         }
1836
1837         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1838
1839         for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1840                 ia_freq = gpu_freq;
1841                 sandybridge_pcode_read(dev_priv,
1842                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1843                                        &ia_freq);
1844                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1845                            intel_gpu_freq(dev_priv, (gpu_freq *
1846                                 (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1847                                  GEN9_FREQ_SCALER : 1))),
1848                            ((ia_freq >> 0) & 0xff) * 100,
1849                            ((ia_freq >> 8) & 0xff) * 100);
1850         }
1851
1852         mutex_unlock(&dev_priv->rps.hw_lock);
1853
1854 out:
1855         intel_runtime_pm_put(dev_priv);
1856         return ret;
1857 }
1858
1859 static int i915_opregion(struct seq_file *m, void *unused)
1860 {
1861         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1862         struct drm_device *dev = &dev_priv->drm;
1863         struct intel_opregion *opregion = &dev_priv->opregion;
1864         int ret;
1865
1866         ret = mutex_lock_interruptible(&dev->struct_mutex);
1867         if (ret)
1868                 goto out;
1869
1870         if (opregion->header)
1871                 seq_write(m, opregion->header, OPREGION_SIZE);
1872
1873         mutex_unlock(&dev->struct_mutex);
1874
1875 out:
1876         return 0;
1877 }
1878
1879 static int i915_vbt(struct seq_file *m, void *unused)
1880 {
1881         struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
1882
1883         if (opregion->vbt)
1884                 seq_write(m, opregion->vbt, opregion->vbt_size);
1885
1886         return 0;
1887 }
1888
1889 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1890 {
1891         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1892         struct drm_device *dev = &dev_priv->drm;
1893         struct intel_framebuffer *fbdev_fb = NULL;
1894         struct drm_framebuffer *drm_fb;
1895         int ret;
1896
1897         ret = mutex_lock_interruptible(&dev->struct_mutex);
1898         if (ret)
1899                 return ret;
1900
1901 #ifdef CONFIG_DRM_FBDEV_EMULATION
1902         if (dev_priv->fbdev) {
1903                 fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
1904
1905                 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1906                            fbdev_fb->base.width,
1907                            fbdev_fb->base.height,
1908                            fbdev_fb->base.depth,
1909                            fbdev_fb->base.bits_per_pixel,
1910                            fbdev_fb->base.modifier[0],
1911                            drm_framebuffer_read_refcount(&fbdev_fb->base));
1912                 describe_obj(m, fbdev_fb->obj);
1913                 seq_putc(m, '\n');
1914         }
1915 #endif
1916
1917         mutex_lock(&dev->mode_config.fb_lock);
1918         drm_for_each_fb(drm_fb, dev) {
1919                 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1920                 if (fb == fbdev_fb)
1921                         continue;
1922
1923                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1924                            fb->base.width,
1925                            fb->base.height,
1926                            fb->base.depth,
1927                            fb->base.bits_per_pixel,
1928                            fb->base.modifier[0],
1929                            drm_framebuffer_read_refcount(&fb->base));
1930                 describe_obj(m, fb->obj);
1931                 seq_putc(m, '\n');
1932         }
1933         mutex_unlock(&dev->mode_config.fb_lock);
1934         mutex_unlock(&dev->struct_mutex);
1935
1936         return 0;
1937 }
1938
1939 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
1940 {
1941         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1942                    ring->space, ring->head, ring->tail,
1943                    ring->last_retired_head);
1944 }
1945
1946 static int i915_context_status(struct seq_file *m, void *unused)
1947 {
1948         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1949         struct drm_device *dev = &dev_priv->drm;
1950         struct intel_engine_cs *engine;
1951         struct i915_gem_context *ctx;
1952         enum intel_engine_id id;
1953         int ret;
1954
1955         ret = mutex_lock_interruptible(&dev->struct_mutex);
1956         if (ret)
1957                 return ret;
1958
1959         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1960                 seq_printf(m, "HW context %u ", ctx->hw_id);
1961                 if (ctx->pid) {
1962                         struct task_struct *task;
1963
1964                         task = get_pid_task(ctx->pid, PIDTYPE_PID);
1965                         if (task) {
1966                                 seq_printf(m, "(%s [%d]) ",
1967                                            task->comm, task->pid);
1968                                 put_task_struct(task);
1969                         }
1970                 } else if (IS_ERR(ctx->file_priv)) {
1971                         seq_puts(m, "(deleted) ");
1972                 } else {
1973                         seq_puts(m, "(kernel) ");
1974                 }
1975
1976                 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
1977                 seq_putc(m, '\n');
1978
1979                 for_each_engine(engine, dev_priv, id) {
1980                         struct intel_context *ce = &ctx->engine[engine->id];
1981
1982                         seq_printf(m, "%s: ", engine->name);
1983                         seq_putc(m, ce->initialised ? 'I' : 'i');
1984                         if (ce->state)
1985                                 describe_obj(m, ce->state->obj);
1986                         if (ce->ring)
1987                                 describe_ctx_ring(m, ce->ring);
1988                         seq_putc(m, '\n');
1989                 }
1990
1991                 seq_putc(m, '\n');
1992         }
1993
1994         mutex_unlock(&dev->struct_mutex);
1995
1996         return 0;
1997 }
1998
1999 static void i915_dump_lrc_obj(struct seq_file *m,
2000                               struct i915_gem_context *ctx,
2001                               struct intel_engine_cs *engine)
2002 {
2003         struct i915_vma *vma = ctx->engine[engine->id].state;
2004         struct page *page;
2005         int j;
2006
2007         seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
2008
2009         if (!vma) {
2010                 seq_puts(m, "\tFake context\n");
2011                 return;
2012         }
2013
2014         if (vma->flags & I915_VMA_GLOBAL_BIND)
2015                 seq_printf(m, "\tBound in GGTT at 0x%08x\n",
2016                            i915_ggtt_offset(vma));
2017
2018         if (i915_gem_object_get_pages(vma->obj)) {
2019                 seq_puts(m, "\tFailed to get pages for context object\n\n");
2020                 return;
2021         }
2022
2023         page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
2024         if (page) {
2025                 u32 *reg_state = kmap_atomic(page);
2026
2027                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2028                         seq_printf(m,
2029                                    "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2030                                    j * 4,
2031                                    reg_state[j], reg_state[j + 1],
2032                                    reg_state[j + 2], reg_state[j + 3]);
2033                 }
2034                 kunmap_atomic(reg_state);
2035         }
2036
2037         seq_putc(m, '\n');
2038 }
2039
2040 static int i915_dump_lrc(struct seq_file *m, void *unused)
2041 {
2042         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2043         struct drm_device *dev = &dev_priv->drm;
2044         struct intel_engine_cs *engine;
2045         struct i915_gem_context *ctx;
2046         enum intel_engine_id id;
2047         int ret;
2048
2049         if (!i915.enable_execlists) {
2050                 seq_printf(m, "Logical Ring Contexts are disabled\n");
2051                 return 0;
2052         }
2053
2054         ret = mutex_lock_interruptible(&dev->struct_mutex);
2055         if (ret)
2056                 return ret;
2057
2058         list_for_each_entry(ctx, &dev_priv->context_list, link)
2059                 for_each_engine(engine, dev_priv, id)
2060                         i915_dump_lrc_obj(m, ctx, engine);
2061
2062         mutex_unlock(&dev->struct_mutex);
2063
2064         return 0;
2065 }
2066
2067 static const char *swizzle_string(unsigned swizzle)
2068 {
2069         switch (swizzle) {
2070         case I915_BIT_6_SWIZZLE_NONE:
2071                 return "none";
2072         case I915_BIT_6_SWIZZLE_9:
2073                 return "bit9";
2074         case I915_BIT_6_SWIZZLE_9_10:
2075                 return "bit9/bit10";
2076         case I915_BIT_6_SWIZZLE_9_11:
2077                 return "bit9/bit11";
2078         case I915_BIT_6_SWIZZLE_9_10_11:
2079                 return "bit9/bit10/bit11";
2080         case I915_BIT_6_SWIZZLE_9_17:
2081                 return "bit9/bit17";
2082         case I915_BIT_6_SWIZZLE_9_10_17:
2083                 return "bit9/bit10/bit17";
2084         case I915_BIT_6_SWIZZLE_UNKNOWN:
2085                 return "unknown";
2086         }
2087
2088         return "bug";
2089 }
2090
2091 static int i915_swizzle_info(struct seq_file *m, void *data)
2092 {
2093         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2094         struct drm_device *dev = &dev_priv->drm;
2095         int ret;
2096
2097         ret = mutex_lock_interruptible(&dev->struct_mutex);
2098         if (ret)
2099                 return ret;
2100         intel_runtime_pm_get(dev_priv);
2101
2102         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2103                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2104         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2105                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2106
2107         if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
2108                 seq_printf(m, "DDC = 0x%08x\n",
2109                            I915_READ(DCC));
2110                 seq_printf(m, "DDC2 = 0x%08x\n",
2111                            I915_READ(DCC2));
2112                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2113                            I915_READ16(C0DRB3));
2114                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2115                            I915_READ16(C1DRB3));
2116         } else if (INTEL_GEN(dev_priv) >= 6) {
2117                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2118                            I915_READ(MAD_DIMM_C0));
2119                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2120                            I915_READ(MAD_DIMM_C1));
2121                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2122                            I915_READ(MAD_DIMM_C2));
2123                 seq_printf(m, "TILECTL = 0x%08x\n",
2124                            I915_READ(TILECTL));
2125                 if (INTEL_GEN(dev_priv) >= 8)
2126                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2127                                    I915_READ(GAMTARBMODE));
2128                 else
2129                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2130                                    I915_READ(ARB_MODE));
2131                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2132                            I915_READ(DISP_ARB_CTL));
2133         }
2134
2135         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2136                 seq_puts(m, "L-shaped memory detected\n");
2137
2138         intel_runtime_pm_put(dev_priv);
2139         mutex_unlock(&dev->struct_mutex);
2140
2141         return 0;
2142 }
2143
2144 static int per_file_ctx(int id, void *ptr, void *data)
2145 {
2146         struct i915_gem_context *ctx = ptr;
2147         struct seq_file *m = data;
2148         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2149
2150         if (!ppgtt) {
2151                 seq_printf(m, "  no ppgtt for context %d\n",
2152                            ctx->user_handle);
2153                 return 0;
2154         }
2155
2156         if (i915_gem_context_is_default(ctx))
2157                 seq_puts(m, "  default context:\n");
2158         else
2159                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2160         ppgtt->debug_dump(ppgtt, m);
2161
2162         return 0;
2163 }
2164
2165 static void gen8_ppgtt_info(struct seq_file *m,
2166                             struct drm_i915_private *dev_priv)
2167 {
2168         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2169         struct intel_engine_cs *engine;
2170         enum intel_engine_id id;
2171         int i;
2172
2173         if (!ppgtt)
2174                 return;
2175
2176         for_each_engine(engine, dev_priv, id) {
2177                 seq_printf(m, "%s\n", engine->name);
2178                 for (i = 0; i < 4; i++) {
2179                         u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2180                         pdp <<= 32;
2181                         pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2182                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2183                 }
2184         }
2185 }
2186
2187 static void gen6_ppgtt_info(struct seq_file *m,
2188                             struct drm_i915_private *dev_priv)
2189 {
2190         struct intel_engine_cs *engine;
2191         enum intel_engine_id id;
2192
2193         if (IS_GEN6(dev_priv))
2194                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2195
2196         for_each_engine(engine, dev_priv, id) {
2197                 seq_printf(m, "%s\n", engine->name);
2198                 if (IS_GEN7(dev_priv))
2199                         seq_printf(m, "GFX_MODE: 0x%08x\n",
2200                                    I915_READ(RING_MODE_GEN7(engine)));
2201                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2202                            I915_READ(RING_PP_DIR_BASE(engine)));
2203                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2204                            I915_READ(RING_PP_DIR_BASE_READ(engine)));
2205                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2206                            I915_READ(RING_PP_DIR_DCLV(engine)));
2207         }
2208         if (dev_priv->mm.aliasing_ppgtt) {
2209                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2210
2211                 seq_puts(m, "aliasing PPGTT:\n");
2212                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2213
2214                 ppgtt->debug_dump(ppgtt, m);
2215         }
2216
2217         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2218 }
2219
2220 static int i915_ppgtt_info(struct seq_file *m, void *data)
2221 {
2222         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2223         struct drm_device *dev = &dev_priv->drm;
2224         struct drm_file *file;
2225         int ret;
2226
2227         mutex_lock(&dev->filelist_mutex);
2228         ret = mutex_lock_interruptible(&dev->struct_mutex);
2229         if (ret)
2230                 goto out_unlock;
2231
2232         intel_runtime_pm_get(dev_priv);
2233
2234         if (INTEL_GEN(dev_priv) >= 8)
2235                 gen8_ppgtt_info(m, dev_priv);
2236         else if (INTEL_GEN(dev_priv) >= 6)
2237                 gen6_ppgtt_info(m, dev_priv);
2238
2239         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2240                 struct drm_i915_file_private *file_priv = file->driver_priv;
2241                 struct task_struct *task;
2242
2243                 task = get_pid_task(file->pid, PIDTYPE_PID);
2244                 if (!task) {
2245                         ret = -ESRCH;
2246                         goto out_rpm;
2247                 }
2248                 seq_printf(m, "\nproc: %s\n", task->comm);
2249                 put_task_struct(task);
2250                 idr_for_each(&file_priv->context_idr, per_file_ctx,
2251                              (void *)(unsigned long)m);
2252         }
2253
2254 out_rpm:
2255         intel_runtime_pm_put(dev_priv);
2256         mutex_unlock(&dev->struct_mutex);
2257 out_unlock:
2258         mutex_unlock(&dev->filelist_mutex);
2259         return ret;
2260 }
2261
2262 static int count_irq_waiters(struct drm_i915_private *i915)
2263 {
2264         struct intel_engine_cs *engine;
2265         enum intel_engine_id id;
2266         int count = 0;
2267
2268         for_each_engine(engine, i915, id)
2269                 count += intel_engine_has_waiter(engine);
2270
2271         return count;
2272 }
2273
2274 static const char *rps_power_to_str(unsigned int power)
2275 {
2276         static const char * const strings[] = {
2277                 [LOW_POWER] = "low power",
2278                 [BETWEEN] = "mixed",
2279                 [HIGH_POWER] = "high power",
2280         };
2281
2282         if (power >= ARRAY_SIZE(strings) || !strings[power])
2283                 return "unknown";
2284
2285         return strings[power];
2286 }
2287
2288 static int i915_rps_boost_info(struct seq_file *m, void *data)
2289 {
2290         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2291         struct drm_device *dev = &dev_priv->drm;
2292         struct drm_file *file;
2293
2294         seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2295         seq_printf(m, "GPU busy? %s [%x]\n",
2296                    yesno(dev_priv->gt.awake), dev_priv->gt.active_engines);
2297         seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2298         seq_printf(m, "Frequency requested %d\n",
2299                    intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
2300         seq_printf(m, "  min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2301                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2302                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2303                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2304                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2305         seq_printf(m, "  idle:%d, efficient:%d, boost:%d\n",
2306                    intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
2307                    intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
2308                    intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
2309
2310         mutex_lock(&dev->filelist_mutex);
2311         spin_lock(&dev_priv->rps.client_lock);
2312         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2313                 struct drm_i915_file_private *file_priv = file->driver_priv;
2314                 struct task_struct *task;
2315
2316                 rcu_read_lock();
2317                 task = pid_task(file->pid, PIDTYPE_PID);
2318                 seq_printf(m, "%s [%d]: %d boosts%s\n",
2319                            task ? task->comm : "<unknown>",
2320                            task ? task->pid : -1,
2321                            file_priv->rps.boosts,
2322                            list_empty(&file_priv->rps.link) ? "" : ", active");
2323                 rcu_read_unlock();
2324         }
2325         seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
2326         spin_unlock(&dev_priv->rps.client_lock);
2327         mutex_unlock(&dev->filelist_mutex);
2328
2329         if (INTEL_GEN(dev_priv) >= 6 &&
2330             dev_priv->rps.enabled &&
2331             dev_priv->gt.active_engines) {
2332                 u32 rpup, rpupei;
2333                 u32 rpdown, rpdownei;
2334
2335                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2336                 rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
2337                 rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
2338                 rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
2339                 rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
2340                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2341
2342                 seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
2343                            rps_power_to_str(dev_priv->rps.power));
2344                 seq_printf(m, "  Avg. up: %d%% [above threshold? %d%%]\n",
2345                            100 * rpup / rpupei,
2346                            dev_priv->rps.up_threshold);
2347                 seq_printf(m, "  Avg. down: %d%% [below threshold? %d%%]\n",
2348                            100 * rpdown / rpdownei,
2349                            dev_priv->rps.down_threshold);
2350         } else {
2351                 seq_puts(m, "\nRPS Autotuning inactive\n");
2352         }
2353
2354         return 0;
2355 }
2356
2357 static int i915_llc(struct seq_file *m, void *data)
2358 {
2359         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2360         const bool edram = INTEL_GEN(dev_priv) > 8;
2361
2362         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
2363         seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2364                    intel_uncore_edram_size(dev_priv)/1024/1024);
2365
2366         return 0;
2367 }
2368
2369 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2370 {
2371         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2372         struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2373         u32 tmp, i;
2374
2375         if (!HAS_GUC_UCODE(dev_priv))
2376                 return 0;
2377
2378         seq_printf(m, "GuC firmware status:\n");
2379         seq_printf(m, "\tpath: %s\n",
2380                 guc_fw->guc_fw_path);
2381         seq_printf(m, "\tfetch: %s\n",
2382                 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2383         seq_printf(m, "\tload: %s\n",
2384                 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2385         seq_printf(m, "\tversion wanted: %d.%d\n",
2386                 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2387         seq_printf(m, "\tversion found: %d.%d\n",
2388                 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2389         seq_printf(m, "\theader: offset is %d; size = %d\n",
2390                 guc_fw->header_offset, guc_fw->header_size);
2391         seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2392                 guc_fw->ucode_offset, guc_fw->ucode_size);
2393         seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2394                 guc_fw->rsa_offset, guc_fw->rsa_size);
2395
2396         tmp = I915_READ(GUC_STATUS);
2397
2398         seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2399         seq_printf(m, "\tBootrom status = 0x%x\n",
2400                 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2401         seq_printf(m, "\tuKernel status = 0x%x\n",
2402                 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2403         seq_printf(m, "\tMIA Core status = 0x%x\n",
2404                 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2405         seq_puts(m, "\nScratch registers:\n");
2406         for (i = 0; i < 16; i++)
2407                 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2408
2409         return 0;
2410 }
2411
2412 static void i915_guc_client_info(struct seq_file *m,
2413                                  struct drm_i915_private *dev_priv,
2414                                  struct i915_guc_client *client)
2415 {
2416         struct intel_engine_cs *engine;
2417         enum intel_engine_id id;
2418         uint64_t tot = 0;
2419
2420         seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2421                 client->priority, client->ctx_index, client->proc_desc_offset);
2422         seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2423                 client->doorbell_id, client->doorbell_offset, client->cookie);
2424         seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2425                 client->wq_size, client->wq_offset, client->wq_tail);
2426
2427         seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
2428         seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2429         seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2430
2431         for_each_engine(engine, dev_priv, id) {
2432                 u64 submissions = client->submissions[id];
2433                 tot += submissions;
2434                 seq_printf(m, "\tSubmissions: %llu %s\n",
2435                                 submissions, engine->name);
2436         }
2437         seq_printf(m, "\tTotal: %llu\n", tot);
2438 }
2439
2440 static int i915_guc_info(struct seq_file *m, void *data)
2441 {
2442         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2443         struct drm_device *dev = &dev_priv->drm;
2444         struct intel_guc guc;
2445         struct i915_guc_client client = {};
2446         struct intel_engine_cs *engine;
2447         enum intel_engine_id id;
2448         u64 total = 0;
2449
2450         if (!HAS_GUC_SCHED(dev_priv))
2451                 return 0;
2452
2453         if (mutex_lock_interruptible(&dev->struct_mutex))
2454                 return 0;
2455
2456         /* Take a local copy of the GuC data, so we can dump it at leisure */
2457         guc = dev_priv->guc;
2458         if (guc.execbuf_client)
2459                 client = *guc.execbuf_client;
2460
2461         mutex_unlock(&dev->struct_mutex);
2462
2463         seq_printf(m, "Doorbell map:\n");
2464         seq_printf(m, "\t%*pb\n", GUC_MAX_DOORBELLS, guc.doorbell_bitmap);
2465         seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc.db_cacheline);
2466
2467         seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2468         seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2469         seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2470         seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2471         seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2472
2473         seq_printf(m, "\nGuC submissions:\n");
2474         for_each_engine(engine, dev_priv, id) {
2475                 u64 submissions = guc.submissions[id];
2476                 total += submissions;
2477                 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2478                         engine->name, submissions, guc.last_seqno[id]);
2479         }
2480         seq_printf(m, "\t%s: %llu\n", "Total", total);
2481
2482         seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2483         i915_guc_client_info(m, dev_priv, &client);
2484
2485         /* Add more as required ... */
2486
2487         return 0;
2488 }
2489
2490 static int i915_guc_log_dump(struct seq_file *m, void *data)
2491 {
2492         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2493         struct drm_i915_gem_object *obj;
2494         int i = 0, pg;
2495
2496         if (!dev_priv->guc.log_vma)
2497                 return 0;
2498
2499         obj = dev_priv->guc.log_vma->obj;
2500         for (pg = 0; pg < obj->base.size / PAGE_SIZE; pg++) {
2501                 u32 *log = kmap_atomic(i915_gem_object_get_page(obj, pg));
2502
2503                 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2504                         seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2505                                    *(log + i), *(log + i + 1),
2506                                    *(log + i + 2), *(log + i + 3));
2507
2508                 kunmap_atomic(log);
2509         }
2510
2511         seq_putc(m, '\n');
2512
2513         return 0;
2514 }
2515
2516 static int i915_edp_psr_status(struct seq_file *m, void *data)
2517 {
2518         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2519         u32 psrperf = 0;
2520         u32 stat[3];
2521         enum pipe pipe;
2522         bool enabled = false;
2523
2524         if (!HAS_PSR(dev_priv)) {
2525                 seq_puts(m, "PSR not supported\n");
2526                 return 0;
2527         }
2528
2529         intel_runtime_pm_get(dev_priv);
2530
2531         mutex_lock(&dev_priv->psr.lock);
2532         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2533         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2534         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2535         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2536         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2537                    dev_priv->psr.busy_frontbuffer_bits);
2538         seq_printf(m, "Re-enable work scheduled: %s\n",
2539                    yesno(work_busy(&dev_priv->psr.work.work)));
2540
2541         if (HAS_DDI(dev_priv))
2542                 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2543         else {
2544                 for_each_pipe(dev_priv, pipe) {
2545                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2546                                 VLV_EDP_PSR_CURR_STATE_MASK;
2547                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2548                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2549                                 enabled = true;
2550                 }
2551         }
2552
2553         seq_printf(m, "Main link in standby mode: %s\n",
2554                    yesno(dev_priv->psr.link_standby));
2555
2556         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2557
2558         if (!HAS_DDI(dev_priv))
2559                 for_each_pipe(dev_priv, pipe) {
2560                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2561                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2562                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2563                 }
2564         seq_puts(m, "\n");
2565
2566         /*
2567          * VLV/CHV PSR has no kind of performance counter
2568          * SKL+ Perf counter is reset to 0 everytime DC state is entered
2569          */
2570         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2571                 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2572                         EDP_PSR_PERF_CNT_MASK;
2573
2574                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2575         }
2576         mutex_unlock(&dev_priv->psr.lock);
2577
2578         intel_runtime_pm_put(dev_priv);
2579         return 0;
2580 }
2581
2582 static int i915_sink_crc(struct seq_file *m, void *data)
2583 {
2584         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2585         struct drm_device *dev = &dev_priv->drm;
2586         struct intel_connector *connector;
2587         struct intel_dp *intel_dp = NULL;
2588         int ret;
2589         u8 crc[6];
2590
2591         drm_modeset_lock_all(dev);
2592         for_each_intel_connector(dev, connector) {
2593                 struct drm_crtc *crtc;
2594
2595                 if (!connector->base.state->best_encoder)
2596                         continue;
2597
2598                 crtc = connector->base.state->crtc;
2599                 if (!crtc->state->active)
2600                         continue;
2601
2602                 if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2603                         continue;
2604
2605                 intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
2606
2607                 ret = intel_dp_sink_crc(intel_dp, crc);
2608                 if (ret)
2609                         goto out;
2610
2611                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2612                            crc[0], crc[1], crc[2],
2613                            crc[3], crc[4], crc[5]);
2614                 goto out;
2615         }
2616         ret = -ENODEV;
2617 out:
2618         drm_modeset_unlock_all(dev);
2619         return ret;
2620 }
2621
2622 static int i915_energy_uJ(struct seq_file *m, void *data)
2623 {
2624         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2625         u64 power;
2626         u32 units;
2627
2628         if (INTEL_GEN(dev_priv) < 6)
2629                 return -ENODEV;
2630
2631         intel_runtime_pm_get(dev_priv);
2632
2633         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2634         power = (power & 0x1f00) >> 8;
2635         units = 1000000 / (1 << power); /* convert to uJ */
2636         power = I915_READ(MCH_SECP_NRG_STTS);
2637         power *= units;
2638
2639         intel_runtime_pm_put(dev_priv);
2640
2641         seq_printf(m, "%llu", (long long unsigned)power);
2642
2643         return 0;
2644 }
2645
2646 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2647 {
2648         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2649         struct pci_dev *pdev = dev_priv->drm.pdev;
2650
2651         if (!HAS_RUNTIME_PM(dev_priv))
2652                 seq_puts(m, "Runtime power management not supported\n");
2653
2654         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
2655         seq_printf(m, "IRQs disabled: %s\n",
2656                    yesno(!intel_irqs_enabled(dev_priv)));
2657 #ifdef CONFIG_PM
2658         seq_printf(m, "Usage count: %d\n",
2659                    atomic_read(&dev_priv->drm.dev->power.usage_count));
2660 #else
2661         seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2662 #endif
2663         seq_printf(m, "PCI device power state: %s [%d]\n",
2664                    pci_power_name(pdev->current_state),
2665                    pdev->current_state);
2666
2667         return 0;
2668 }
2669
2670 static int i915_power_domain_info(struct seq_file *m, void *unused)
2671 {
2672         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2673         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2674         int i;
2675
2676         mutex_lock(&power_domains->lock);
2677
2678         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2679         for (i = 0; i < power_domains->power_well_count; i++) {
2680                 struct i915_power_well *power_well;
2681                 enum intel_display_power_domain power_domain;
2682
2683                 power_well = &power_domains->power_wells[i];
2684                 seq_printf(m, "%-25s %d\n", power_well->name,
2685                            power_well->count);
2686
2687                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2688                      power_domain++) {
2689                         if (!(BIT(power_domain) & power_well->domains))
2690                                 continue;
2691
2692                         seq_printf(m, "  %-23s %d\n",
2693                                  intel_display_power_domain_str(power_domain),
2694                                  power_domains->domain_use_count[power_domain]);
2695                 }
2696         }
2697
2698         mutex_unlock(&power_domains->lock);
2699
2700         return 0;
2701 }
2702
2703 static int i915_dmc_info(struct seq_file *m, void *unused)
2704 {
2705         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2706         struct intel_csr *csr;
2707
2708         if (!HAS_CSR(dev_priv)) {
2709                 seq_puts(m, "not supported\n");
2710                 return 0;
2711         }
2712
2713         csr = &dev_priv->csr;
2714
2715         intel_runtime_pm_get(dev_priv);
2716
2717         seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2718         seq_printf(m, "path: %s\n", csr->fw_path);
2719
2720         if (!csr->dmc_payload)
2721                 goto out;
2722
2723         seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2724                    CSR_VERSION_MINOR(csr->version));
2725
2726         if (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6)) {
2727                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2728                            I915_READ(SKL_CSR_DC3_DC5_COUNT));
2729                 seq_printf(m, "DC5 -> DC6 count: %d\n",
2730                            I915_READ(SKL_CSR_DC5_DC6_COUNT));
2731         } else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
2732                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2733                            I915_READ(BXT_CSR_DC3_DC5_COUNT));
2734         }
2735
2736 out:
2737         seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2738         seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2739         seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2740
2741         intel_runtime_pm_put(dev_priv);
2742
2743         return 0;
2744 }
2745
2746 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2747                                  struct drm_display_mode *mode)
2748 {
2749         int i;
2750
2751         for (i = 0; i < tabs; i++)
2752                 seq_putc(m, '\t');
2753
2754         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2755                    mode->base.id, mode->name,
2756                    mode->vrefresh, mode->clock,
2757                    mode->hdisplay, mode->hsync_start,
2758                    mode->hsync_end, mode->htotal,
2759                    mode->vdisplay, mode->vsync_start,
2760                    mode->vsync_end, mode->vtotal,
2761                    mode->type, mode->flags);
2762 }
2763
2764 static void intel_encoder_info(struct seq_file *m,
2765                                struct intel_crtc *intel_crtc,
2766                                struct intel_encoder *intel_encoder)
2767 {
2768         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2769         struct drm_device *dev = &dev_priv->drm;
2770         struct drm_crtc *crtc = &intel_crtc->base;
2771         struct intel_connector *intel_connector;
2772         struct drm_encoder *encoder;
2773
2774         encoder = &intel_encoder->base;
2775         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2776                    encoder->base.id, encoder->name);
2777         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2778                 struct drm_connector *connector = &intel_connector->base;
2779                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2780                            connector->base.id,
2781                            connector->name,
2782                            drm_get_connector_status_name(connector->status));
2783                 if (connector->status == connector_status_connected) {
2784                         struct drm_display_mode *mode = &crtc->mode;
2785                         seq_printf(m, ", mode:\n");
2786                         intel_seq_print_mode(m, 2, mode);
2787                 } else {
2788                         seq_putc(m, '\n');
2789                 }
2790         }
2791 }
2792
2793 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2794 {
2795         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2796         struct drm_device *dev = &dev_priv->drm;
2797         struct drm_crtc *crtc = &intel_crtc->base;
2798         struct intel_encoder *intel_encoder;
2799         struct drm_plane_state *plane_state = crtc->primary->state;
2800         struct drm_framebuffer *fb = plane_state->fb;
2801
2802         if (fb)
2803                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2804                            fb->base.id, plane_state->src_x >> 16,
2805                            plane_state->src_y >> 16, fb->width, fb->height);
2806         else
2807                 seq_puts(m, "\tprimary plane disabled\n");
2808         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2809                 intel_encoder_info(m, intel_crtc, intel_encoder);
2810 }
2811
2812 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2813 {
2814         struct drm_display_mode *mode = panel->fixed_mode;
2815
2816         seq_printf(m, "\tfixed mode:\n");
2817         intel_seq_print_mode(m, 2, mode);
2818 }
2819
2820 static void intel_dp_info(struct seq_file *m,
2821                           struct intel_connector *intel_connector)
2822 {
2823         struct intel_encoder *intel_encoder = intel_connector->encoder;
2824         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2825
2826         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2827         seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2828         if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
2829                 intel_panel_info(m, &intel_connector->panel);
2830
2831         drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
2832                                 &intel_dp->aux);
2833 }
2834
2835 static void intel_hdmi_info(struct seq_file *m,
2836                             struct intel_connector *intel_connector)
2837 {
2838         struct intel_encoder *intel_encoder = intel_connector->encoder;
2839         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2840
2841         seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2842 }
2843
2844 static void intel_lvds_info(struct seq_file *m,
2845                             struct intel_connector *intel_connector)
2846 {
2847         intel_panel_info(m, &intel_connector->panel);
2848 }
2849
2850 static void intel_connector_info(struct seq_file *m,
2851                                  struct drm_connector *connector)
2852 {
2853         struct intel_connector *intel_connector = to_intel_connector(connector);
2854         struct intel_encoder *intel_encoder = intel_connector->encoder;
2855         struct drm_display_mode *mode;
2856
2857         seq_printf(m, "connector %d: type %s, status: %s\n",
2858                    connector->base.id, connector->name,
2859                    drm_get_connector_status_name(connector->status));
2860         if (connector->status == connector_status_connected) {
2861                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2862                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2863                            connector->display_info.width_mm,
2864                            connector->display_info.height_mm);
2865                 seq_printf(m, "\tsubpixel order: %s\n",
2866                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2867                 seq_printf(m, "\tCEA rev: %d\n",
2868                            connector->display_info.cea_rev);
2869         }
2870
2871         if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
2872                 return;
2873
2874         switch (connector->connector_type) {
2875         case DRM_MODE_CONNECTOR_DisplayPort:
2876         case DRM_MODE_CONNECTOR_eDP:
2877                 intel_dp_info(m, intel_connector);
2878                 break;
2879         case DRM_MODE_CONNECTOR_LVDS:
2880                 if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2881                         intel_lvds_info(m, intel_connector);
2882                 break;
2883         case DRM_MODE_CONNECTOR_HDMIA:
2884                 if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
2885                     intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
2886                         intel_hdmi_info(m, intel_connector);
2887                 break;
2888         default:
2889                 break;
2890         }
2891
2892         seq_printf(m, "\tmodes:\n");
2893         list_for_each_entry(mode, &connector->modes, head)
2894                 intel_seq_print_mode(m, 2, mode);
2895 }
2896
2897 static bool cursor_active(struct drm_i915_private *dev_priv, int pipe)
2898 {
2899         u32 state;
2900
2901         if (IS_845G(dev_priv) || IS_I865G(dev_priv))
2902                 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2903         else
2904                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2905
2906         return state;
2907 }
2908
2909 static bool cursor_position(struct drm_i915_private *dev_priv,
2910                             int pipe, int *x, int *y)
2911 {
2912         u32 pos;
2913
2914         pos = I915_READ(CURPOS(pipe));
2915
2916         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2917         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2918                 *x = -*x;
2919
2920         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2921         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2922                 *y = -*y;
2923
2924         return cursor_active(dev_priv, pipe);
2925 }
2926
2927 static const char *plane_type(enum drm_plane_type type)
2928 {
2929         switch (type) {
2930         case DRM_PLANE_TYPE_OVERLAY:
2931                 return "OVL";
2932         case DRM_PLANE_TYPE_PRIMARY:
2933                 return "PRI";
2934         case DRM_PLANE_TYPE_CURSOR:
2935                 return "CUR";
2936         /*
2937          * Deliberately omitting default: to generate compiler warnings
2938          * when a new drm_plane_type gets added.
2939          */
2940         }
2941
2942         return "unknown";
2943 }
2944
2945 static const char *plane_rotation(unsigned int rotation)
2946 {
2947         static char buf[48];
2948         /*
2949          * According to doc only one DRM_ROTATE_ is allowed but this
2950          * will print them all to visualize if the values are misused
2951          */
2952         snprintf(buf, sizeof(buf),
2953                  "%s%s%s%s%s%s(0x%08x)",
2954                  (rotation & DRM_ROTATE_0) ? "0 " : "",
2955                  (rotation & DRM_ROTATE_90) ? "90 " : "",
2956                  (rotation & DRM_ROTATE_180) ? "180 " : "",
2957                  (rotation & DRM_ROTATE_270) ? "270 " : "",
2958                  (rotation & DRM_REFLECT_X) ? "FLIPX " : "",
2959                  (rotation & DRM_REFLECT_Y) ? "FLIPY " : "",
2960                  rotation);
2961
2962         return buf;
2963 }
2964
2965 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2966 {
2967         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2968         struct drm_device *dev = &dev_priv->drm;
2969         struct intel_plane *intel_plane;
2970
2971         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2972                 struct drm_plane_state *state;
2973                 struct drm_plane *plane = &intel_plane->base;
2974                 char *format_name;
2975
2976                 if (!plane->state) {
2977                         seq_puts(m, "plane->state is NULL!\n");
2978                         continue;
2979                 }
2980
2981                 state = plane->state;
2982
2983                 if (state->fb) {
2984                         format_name = drm_get_format_name(state->fb->pixel_format);
2985                 } else {
2986                         format_name = kstrdup("N/A", GFP_KERNEL);
2987                 }
2988
2989                 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
2990                            plane->base.id,
2991                            plane_type(intel_plane->base.type),
2992                            state->crtc_x, state->crtc_y,
2993                            state->crtc_w, state->crtc_h,
2994                            (state->src_x >> 16),
2995                            ((state->src_x & 0xffff) * 15625) >> 10,
2996                            (state->src_y >> 16),
2997                            ((state->src_y & 0xffff) * 15625) >> 10,
2998                            (state->src_w >> 16),
2999                            ((state->src_w & 0xffff) * 15625) >> 10,
3000                            (state->src_h >> 16),
3001                            ((state->src_h & 0xffff) * 15625) >> 10,
3002                            format_name,
3003                            plane_rotation(state->rotation));
3004
3005                 kfree(format_name);
3006         }
3007 }
3008
3009 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3010 {
3011         struct intel_crtc_state *pipe_config;
3012         int num_scalers = intel_crtc->num_scalers;
3013         int i;
3014
3015         pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3016
3017         /* Not all platformas have a scaler */
3018         if (num_scalers) {
3019                 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3020                            num_scalers,
3021                            pipe_config->scaler_state.scaler_users,
3022                            pipe_config->scaler_state.scaler_id);
3023
3024                 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3025                         struct intel_scaler *sc =
3026                                         &pipe_config->scaler_state.scalers[i];
3027
3028                         seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3029                                    i, yesno(sc->in_use), sc->mode);
3030                 }
3031                 seq_puts(m, "\n");
3032         } else {
3033                 seq_puts(m, "\tNo scalers available on this platform\n");
3034         }
3035 }
3036
3037 static int i915_display_info(struct seq_file *m, void *unused)
3038 {
3039         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3040         struct drm_device *dev = &dev_priv->drm;
3041         struct intel_crtc *crtc;
3042         struct drm_connector *connector;
3043
3044         intel_runtime_pm_get(dev_priv);
3045         drm_modeset_lock_all(dev);
3046         seq_printf(m, "CRTC info\n");
3047         seq_printf(m, "---------\n");
3048         for_each_intel_crtc(dev, crtc) {
3049                 bool active;
3050                 struct intel_crtc_state *pipe_config;
3051                 int x, y;
3052
3053                 pipe_config = to_intel_crtc_state(crtc->base.state);
3054
3055                 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3056                            crtc->base.base.id, pipe_name(crtc->pipe),
3057                            yesno(pipe_config->base.active),
3058                            pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3059                            yesno(pipe_config->dither), pipe_config->pipe_bpp);
3060
3061                 if (pipe_config->base.active) {
3062                         intel_crtc_info(m, crtc);
3063
3064                         active = cursor_position(dev_priv, crtc->pipe, &x, &y);
3065                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3066                                    yesno(crtc->cursor_base),
3067                                    x, y, crtc->base.cursor->state->crtc_w,
3068                                    crtc->base.cursor->state->crtc_h,
3069                                    crtc->cursor_addr, yesno(active));
3070                         intel_scaler_info(m, crtc);
3071                         intel_plane_info(m, crtc);
3072                 }
3073
3074                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3075                            yesno(!crtc->cpu_fifo_underrun_disabled),
3076                            yesno(!crtc->pch_fifo_underrun_disabled));
3077         }
3078
3079         seq_printf(m, "\n");
3080         seq_printf(m, "Connector info\n");
3081         seq_printf(m, "--------------\n");
3082         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3083                 intel_connector_info(m, connector);
3084         }
3085         drm_modeset_unlock_all(dev);
3086         intel_runtime_pm_put(dev_priv);
3087
3088         return 0;
3089 }
3090
3091 static int i915_engine_info(struct seq_file *m, void *unused)
3092 {
3093         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3094         struct intel_engine_cs *engine;
3095         enum intel_engine_id id;
3096
3097         for_each_engine(engine, dev_priv, id) {
3098                 struct intel_breadcrumbs *b = &engine->breadcrumbs;
3099                 struct drm_i915_gem_request *rq;
3100                 struct rb_node *rb;
3101                 u64 addr;
3102
3103                 seq_printf(m, "%s\n", engine->name);
3104                 seq_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [score %d]\n",
3105                            intel_engine_get_seqno(engine),
3106                            engine->last_submitted_seqno,
3107                            engine->hangcheck.seqno,
3108                            engine->hangcheck.score);
3109
3110                 rcu_read_lock();
3111
3112                 seq_printf(m, "\tRequests:\n");
3113
3114                 rq = list_first_entry(&engine->request_list,
3115                                 struct drm_i915_gem_request, link);
3116                 if (&rq->link != &engine->request_list)
3117                         print_request(m, rq, "\t\tfirst  ");
3118
3119                 rq = list_last_entry(&engine->request_list,
3120                                 struct drm_i915_gem_request, link);
3121                 if (&rq->link != &engine->request_list)
3122                         print_request(m, rq, "\t\tlast   ");
3123
3124                 rq = i915_gem_find_active_request(engine);
3125                 if (rq) {
3126                         print_request(m, rq, "\t\tactive ");
3127                         seq_printf(m,
3128                                    "\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n",
3129                                    rq->head, rq->postfix, rq->tail,
3130                                    rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
3131                                    rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
3132                 }
3133
3134                 seq_printf(m, "\tRING_START: 0x%08x [0x%08x]\n",
3135                            I915_READ(RING_START(engine->mmio_base)),
3136                            rq ? i915_ggtt_offset(rq->ring->vma) : 0);
3137                 seq_printf(m, "\tRING_HEAD:  0x%08x [0x%08x]\n",
3138                            I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR,
3139                            rq ? rq->ring->head : 0);
3140                 seq_printf(m, "\tRING_TAIL:  0x%08x [0x%08x]\n",
3141                            I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR,
3142                            rq ? rq->ring->tail : 0);
3143                 seq_printf(m, "\tRING_CTL:   0x%08x [%s]\n",
3144                            I915_READ(RING_CTL(engine->mmio_base)),
3145                            I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? "waiting" : "");
3146
3147                 rcu_read_unlock();
3148
3149                 addr = intel_engine_get_active_head(engine);
3150                 seq_printf(m, "\tACTHD:  0x%08x_%08x\n",
3151                            upper_32_bits(addr), lower_32_bits(addr));
3152                 addr = intel_engine_get_last_batch_head(engine);
3153                 seq_printf(m, "\tBBADDR: 0x%08x_%08x\n",
3154                            upper_32_bits(addr), lower_32_bits(addr));
3155
3156                 if (i915.enable_execlists) {
3157                         u32 ptr, read, write;
3158
3159                         seq_printf(m, "\tExeclist status: 0x%08x %08x\n",
3160                                    I915_READ(RING_EXECLIST_STATUS_LO(engine)),
3161                                    I915_READ(RING_EXECLIST_STATUS_HI(engine)));
3162
3163                         ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
3164                         read = GEN8_CSB_READ_PTR(ptr);
3165                         write = GEN8_CSB_WRITE_PTR(ptr);
3166                         seq_printf(m, "\tExeclist CSB read %d, write %d\n",
3167                                    read, write);
3168                         if (read >= GEN8_CSB_ENTRIES)
3169                                 read = 0;
3170                         if (write >= GEN8_CSB_ENTRIES)
3171                                 write = 0;
3172                         if (read > write)
3173                                 write += GEN8_CSB_ENTRIES;
3174                         while (read < write) {
3175                                 unsigned int idx = ++read % GEN8_CSB_ENTRIES;
3176
3177                                 seq_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
3178                                            idx,
3179                                            I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
3180                                            I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
3181                         }
3182
3183                         rcu_read_lock();
3184                         rq = READ_ONCE(engine->execlist_port[0].request);
3185                         if (rq)
3186                                 print_request(m, rq, "\t\tELSP[0] ");
3187                         else
3188                                 seq_printf(m, "\t\tELSP[0] idle\n");
3189                         rq = READ_ONCE(engine->execlist_port[1].request);
3190                         if (rq)
3191                                 print_request(m, rq, "\t\tELSP[1] ");
3192                         else
3193                                 seq_printf(m, "\t\tELSP[1] idle\n");
3194                         rcu_read_unlock();
3195                 } else if (INTEL_GEN(dev_priv) > 6) {
3196                         seq_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
3197                                    I915_READ(RING_PP_DIR_BASE(engine)));
3198                         seq_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
3199                                    I915_READ(RING_PP_DIR_BASE_READ(engine)));
3200                         seq_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
3201                                    I915_READ(RING_PP_DIR_DCLV(engine)));
3202                 }
3203
3204                 spin_lock(&b->lock);
3205                 for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
3206                         struct intel_wait *w = container_of(rb, typeof(*w), node);
3207
3208                         seq_printf(m, "\t%s [%d] waiting for %x\n",
3209                                    w->tsk->comm, w->tsk->pid, w->seqno);
3210                 }
3211                 spin_unlock(&b->lock);
3212
3213                 seq_puts(m, "\n");
3214         }
3215
3216         return 0;
3217 }
3218
3219 static int i915_semaphore_status(struct seq_file *m, void *unused)
3220 {
3221         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3222         struct drm_device *dev = &dev_priv->drm;
3223         struct intel_engine_cs *engine;
3224         int num_rings = INTEL_INFO(dev_priv)->num_rings;
3225         enum intel_engine_id id;
3226         int j, ret;
3227
3228         if (!i915.semaphores) {
3229                 seq_puts(m, "Semaphores are disabled\n");
3230                 return 0;
3231         }
3232
3233         ret = mutex_lock_interruptible(&dev->struct_mutex);
3234         if (ret)
3235                 return ret;
3236         intel_runtime_pm_get(dev_priv);
3237
3238         if (IS_BROADWELL(dev_priv)) {
3239                 struct page *page;
3240                 uint64_t *seqno;
3241
3242                 page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
3243
3244                 seqno = (uint64_t *)kmap_atomic(page);
3245                 for_each_engine(engine, dev_priv, id) {
3246                         uint64_t offset;
3247
3248                         seq_printf(m, "%s\n", engine->name);
3249
3250                         seq_puts(m, "  Last signal:");
3251                         for (j = 0; j < num_rings; j++) {
3252                                 offset = id * I915_NUM_ENGINES + j;
3253                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3254                                            seqno[offset], offset * 8);
3255                         }
3256                         seq_putc(m, '\n');
3257
3258                         seq_puts(m, "  Last wait:  ");
3259                         for (j = 0; j < num_rings; j++) {
3260                                 offset = id + (j * I915_NUM_ENGINES);
3261                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3262                                            seqno[offset], offset * 8);
3263                         }
3264                         seq_putc(m, '\n');
3265
3266                 }
3267                 kunmap_atomic(seqno);
3268         } else {
3269                 seq_puts(m, "  Last signal:");
3270                 for_each_engine(engine, dev_priv, id)
3271                         for (j = 0; j < num_rings; j++)
3272                                 seq_printf(m, "0x%08x\n",
3273                                            I915_READ(engine->semaphore.mbox.signal[j]));
3274                 seq_putc(m, '\n');
3275         }
3276
3277         seq_puts(m, "\nSync seqno:\n");
3278         for_each_engine(engine, dev_priv, id) {
3279                 for (j = 0; j < num_rings; j++)
3280                         seq_printf(m, "  0x%08x ",
3281                                    engine->semaphore.sync_seqno[j]);
3282                 seq_putc(m, '\n');
3283         }
3284         seq_putc(m, '\n');
3285
3286         intel_runtime_pm_put(dev_priv);
3287         mutex_unlock(&dev->struct_mutex);
3288         return 0;
3289 }
3290
3291 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3292 {
3293         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3294         struct drm_device *dev = &dev_priv->drm;
3295         int i;
3296
3297         drm_modeset_lock_all(dev);
3298         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3299                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3300
3301                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3302                 seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3303                            pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
3304                 seq_printf(m, " tracked hardware state:\n");
3305                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3306                 seq_printf(m, " dpll_md: 0x%08x\n",
3307                            pll->config.hw_state.dpll_md);
3308                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3309                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3310                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3311         }
3312         drm_modeset_unlock_all(dev);
3313
3314         return 0;
3315 }
3316
3317 static int i915_wa_registers(struct seq_file *m, void *unused)
3318 {
3319         int i;
3320         int ret;
3321         struct intel_engine_cs *engine;
3322         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3323         struct drm_device *dev = &dev_priv->drm;
3324         struct i915_workarounds *workarounds = &dev_priv->workarounds;
3325         enum intel_engine_id id;
3326
3327         ret = mutex_lock_interruptible(&dev->struct_mutex);
3328         if (ret)
3329                 return ret;
3330
3331         intel_runtime_pm_get(dev_priv);
3332
3333         seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3334         for_each_engine(engine, dev_priv, id)
3335                 seq_printf(m, "HW whitelist count for %s: %d\n",
3336                            engine->name, workarounds->hw_whitelist_count[id]);
3337         for (i = 0; i < workarounds->count; ++i) {
3338                 i915_reg_t addr;
3339                 u32 mask, value, read;
3340                 bool ok;
3341
3342                 addr = workarounds->reg[i].addr;
3343                 mask = workarounds->reg[i].mask;
3344                 value = workarounds->reg[i].value;
3345                 read = I915_READ(addr);
3346                 ok = (value & mask) == (read & mask);
3347                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3348                            i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3349         }
3350
3351         intel_runtime_pm_put(dev_priv);
3352         mutex_unlock(&dev->struct_mutex);
3353
3354         return 0;
3355 }
3356
3357 static int i915_ddb_info(struct seq_file *m, void *unused)
3358 {
3359         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3360         struct drm_device *dev = &dev_priv->drm;
3361         struct skl_ddb_allocation *ddb;
3362         struct skl_ddb_entry *entry;
3363         enum pipe pipe;
3364         int plane;
3365
3366         if (INTEL_GEN(dev_priv) < 9)
3367                 return 0;
3368
3369         drm_modeset_lock_all(dev);
3370
3371         ddb = &dev_priv->wm.skl_hw.ddb;
3372
3373         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3374
3375         for_each_pipe(dev_priv, pipe) {
3376                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3377
3378                 for_each_plane(dev_priv, pipe, plane) {
3379                         entry = &ddb->plane[pipe][plane];
3380                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3381                                    entry->start, entry->end,
3382                                    skl_ddb_entry_size(entry));
3383                 }
3384
3385                 entry = &ddb->plane[pipe][PLANE_CURSOR];
3386                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3387                            entry->end, skl_ddb_entry_size(entry));
3388         }
3389
3390         drm_modeset_unlock_all(dev);
3391
3392         return 0;
3393 }
3394
3395 static void drrs_status_per_crtc(struct seq_file *m,
3396                                  struct drm_device *dev,
3397                                  struct intel_crtc *intel_crtc)
3398 {
3399         struct drm_i915_private *dev_priv = to_i915(dev);
3400         struct i915_drrs *drrs = &dev_priv->drrs;
3401         int vrefresh = 0;
3402         struct drm_connector *connector;
3403
3404         drm_for_each_connector(connector, dev) {
3405                 if (connector->state->crtc != &intel_crtc->base)
3406                         continue;
3407
3408                 seq_printf(m, "%s:\n", connector->name);
3409         }
3410
3411         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3412                 seq_puts(m, "\tVBT: DRRS_type: Static");
3413         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3414                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3415         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3416                 seq_puts(m, "\tVBT: DRRS_type: None");
3417         else
3418                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3419
3420         seq_puts(m, "\n\n");
3421
3422         if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3423                 struct intel_panel *panel;
3424
3425                 mutex_lock(&drrs->mutex);
3426                 /* DRRS Supported */
3427                 seq_puts(m, "\tDRRS Supported: Yes\n");
3428
3429                 /* disable_drrs() will make drrs->dp NULL */
3430                 if (!drrs->dp) {
3431                         seq_puts(m, "Idleness DRRS: Disabled");
3432                         mutex_unlock(&drrs->mutex);
3433                         return;
3434                 }
3435
3436                 panel = &drrs->dp->attached_connector->panel;
3437                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3438                                         drrs->busy_frontbuffer_bits);
3439
3440                 seq_puts(m, "\n\t\t");
3441                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3442                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3443                         vrefresh = panel->fixed_mode->vrefresh;
3444                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3445                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3446                         vrefresh = panel->downclock_mode->vrefresh;
3447                 } else {
3448                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
3449                                                 drrs->refresh_rate_type);
3450                         mutex_unlock(&drrs->mutex);
3451                         return;
3452                 }
3453                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3454
3455                 seq_puts(m, "\n\t\t");
3456                 mutex_unlock(&drrs->mutex);
3457         } else {
3458                 /* DRRS not supported. Print the VBT parameter*/
3459                 seq_puts(m, "\tDRRS Supported : No");
3460         }
3461         seq_puts(m, "\n");
3462 }
3463
3464 static int i915_drrs_status(struct seq_file *m, void *unused)
3465 {
3466         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3467         struct drm_device *dev = &dev_priv->drm;
3468         struct intel_crtc *intel_crtc;
3469         int active_crtc_cnt = 0;
3470
3471         drm_modeset_lock_all(dev);
3472         for_each_intel_crtc(dev, intel_crtc) {
3473                 if (intel_crtc->base.state->active) {
3474                         active_crtc_cnt++;
3475                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3476
3477                         drrs_status_per_crtc(m, dev, intel_crtc);
3478                 }
3479         }
3480         drm_modeset_unlock_all(dev);
3481
3482         if (!active_crtc_cnt)
3483                 seq_puts(m, "No active crtc found\n");
3484
3485         return 0;
3486 }
3487
3488 struct pipe_crc_info {
3489         const char *name;
3490         struct drm_i915_private *dev_priv;
3491         enum pipe pipe;
3492 };
3493
3494 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3495 {
3496         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3497         struct drm_device *dev = &dev_priv->drm;
3498         struct intel_encoder *intel_encoder;
3499         struct intel_digital_port *intel_dig_port;
3500         struct drm_connector *connector;
3501
3502         drm_modeset_lock_all(dev);
3503         drm_for_each_connector(connector, dev) {
3504                 if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3505                         continue;
3506
3507                 intel_encoder = intel_attached_encoder(connector);
3508                 if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3509                         continue;
3510
3511                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3512                 if (!intel_dig_port->dp.can_mst)
3513                         continue;
3514
3515                 seq_printf(m, "MST Source Port %c\n",
3516                            port_name(intel_dig_port->port));
3517                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3518         }
3519         drm_modeset_unlock_all(dev);
3520         return 0;
3521 }
3522
3523 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3524 {
3525         struct pipe_crc_info *info = inode->i_private;
3526         struct drm_i915_private *dev_priv = info->dev_priv;
3527         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3528
3529         if (info->pipe >= INTEL_INFO(dev_priv)->num_pipes)
3530                 return -ENODEV;
3531
3532         spin_lock_irq(&pipe_crc->lock);
3533
3534         if (pipe_crc->opened) {
3535                 spin_unlock_irq(&pipe_crc->lock);
3536                 return -EBUSY; /* already open */
3537         }
3538
3539         pipe_crc->opened = true;
3540         filep->private_data = inode->i_private;
3541
3542         spin_unlock_irq(&pipe_crc->lock);
3543
3544         return 0;
3545 }
3546
3547 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3548 {
3549         struct pipe_crc_info *info = inode->i_private;
3550         struct drm_i915_private *dev_priv = info->dev_priv;
3551         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3552
3553         spin_lock_irq(&pipe_crc->lock);
3554         pipe_crc->opened = false;
3555         spin_unlock_irq(&pipe_crc->lock);
3556
3557         return 0;
3558 }
3559
3560 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3561 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
3562 /* account for \'0' */
3563 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
3564
3565 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3566 {
3567         assert_spin_locked(&pipe_crc->lock);
3568         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3569                         INTEL_PIPE_CRC_ENTRIES_NR);
3570 }
3571
3572 static ssize_t
3573 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3574                    loff_t *pos)
3575 {
3576         struct pipe_crc_info *info = filep->private_data;
3577         struct drm_i915_private *dev_priv = info->dev_priv;
3578         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3579         char buf[PIPE_CRC_BUFFER_LEN];
3580         int n_entries;
3581         ssize_t bytes_read;
3582
3583         /*
3584          * Don't allow user space to provide buffers not big enough to hold
3585          * a line of data.
3586          */
3587         if (count < PIPE_CRC_LINE_LEN)
3588                 return -EINVAL;
3589
3590         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3591                 return 0;
3592
3593         /* nothing to read */
3594         spin_lock_irq(&pipe_crc->lock);
3595         while (pipe_crc_data_count(pipe_crc) == 0) {
3596                 int ret;
3597
3598                 if (filep->f_flags & O_NONBLOCK) {
3599                         spin_unlock_irq(&pipe_crc->lock);
3600                         return -EAGAIN;
3601                 }
3602
3603                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3604                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3605                 if (ret) {
3606                         spin_unlock_irq(&pipe_crc->lock);
3607                         return ret;
3608                 }
3609         }
3610
3611         /* We now have one or more entries to read */
3612         n_entries = count / PIPE_CRC_LINE_LEN;
3613
3614         bytes_read = 0;
3615         while (n_entries > 0) {
3616                 struct intel_pipe_crc_entry *entry =
3617                         &pipe_crc->entries[pipe_crc->tail];
3618
3619                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3620                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3621                         break;
3622
3623                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3624                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3625
3626                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3627                                        "%8u %8x %8x %8x %8x %8x\n",
3628                                        entry->frame, entry->crc[0],
3629                                        entry->crc[1], entry->crc[2],
3630                                        entry->crc[3], entry->crc[4]);
3631
3632                 spin_unlock_irq(&pipe_crc->lock);
3633
3634                 if (copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN))
3635                         return -EFAULT;
3636
3637                 user_buf += PIPE_CRC_LINE_LEN;
3638                 n_entries--;
3639
3640                 spin_lock_irq(&pipe_crc->lock);
3641         }
3642
3643         spin_unlock_irq(&pipe_crc->lock);
3644
3645         return bytes_read;
3646 }
3647
3648 static const struct file_operations i915_pipe_crc_fops = {
3649         .owner = THIS_MODULE,
3650         .open = i915_pipe_crc_open,
3651         .read = i915_pipe_crc_read,
3652         .release = i915_pipe_crc_release,
3653 };
3654
3655 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3656         {
3657                 .name = "i915_pipe_A_crc",
3658                 .pipe = PIPE_A,
3659         },
3660         {
3661                 .name = "i915_pipe_B_crc",
3662                 .pipe = PIPE_B,
3663         },
3664         {
3665                 .name = "i915_pipe_C_crc",
3666                 .pipe = PIPE_C,
3667         },
3668 };
3669
3670 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3671                                 enum pipe pipe)
3672 {
3673         struct drm_i915_private *dev_priv = to_i915(minor->dev);
3674         struct dentry *ent;
3675         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3676
3677         info->dev_priv = dev_priv;
3678         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3679                                   &i915_pipe_crc_fops);
3680         if (!ent)
3681                 return -ENOMEM;
3682
3683         return drm_add_fake_info_node(minor, ent, info);
3684 }
3685
3686 static const char * const pipe_crc_sources[] = {
3687         "none",
3688         "plane1",
3689         "plane2",
3690         "pf",
3691         "pipe",
3692         "TV",
3693         "DP-B",
3694         "DP-C",
3695         "DP-D",
3696         "auto",
3697 };
3698
3699 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3700 {
3701         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3702         return pipe_crc_sources[source];
3703 }
3704
3705 static int display_crc_ctl_show(struct seq_file *m, void *data)
3706 {
3707         struct drm_i915_private *dev_priv = m->private;
3708         int i;
3709
3710         for (i = 0; i < I915_MAX_PIPES; i++)
3711                 seq_printf(m, "%c %s\n", pipe_name(i),
3712                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3713
3714         return 0;
3715 }
3716
3717 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3718 {
3719         return single_open(file, display_crc_ctl_show, inode->i_private);
3720 }
3721
3722 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3723                                  uint32_t *val)
3724 {
3725         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3726                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3727
3728         switch (*source) {
3729         case INTEL_PIPE_CRC_SOURCE_PIPE:
3730                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3731                 break;
3732         case INTEL_PIPE_CRC_SOURCE_NONE:
3733                 *val = 0;
3734                 break;
3735         default:
3736                 return -EINVAL;
3737         }
3738
3739         return 0;
3740 }
3741
3742 static int i9xx_pipe_crc_auto_source(struct drm_i915_private *dev_priv,
3743                                      enum pipe pipe,
3744                                      enum intel_pipe_crc_source *source)
3745 {
3746         struct drm_device *dev = &dev_priv->drm;
3747         struct intel_encoder *encoder;
3748         struct intel_crtc *crtc;
3749         struct intel_digital_port *dig_port;
3750         int ret = 0;
3751
3752         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3753
3754         drm_modeset_lock_all(dev);
3755         for_each_intel_encoder(dev, encoder) {
3756                 if (!encoder->base.crtc)
3757                         continue;
3758
3759                 crtc = to_intel_crtc(encoder->base.crtc);
3760
3761                 if (crtc->pipe != pipe)
3762                         continue;
3763
3764                 switch (encoder->type) {
3765                 case INTEL_OUTPUT_TVOUT:
3766                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3767                         break;
3768                 case INTEL_OUTPUT_DP:
3769                 case INTEL_OUTPUT_EDP:
3770                         dig_port = enc_to_dig_port(&encoder->base);
3771                         switch (dig_port->port) {
3772                         case PORT_B:
3773                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3774                                 break;
3775                         case PORT_C:
3776                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3777                                 break;
3778                         case PORT_D:
3779                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3780                                 break;
3781                         default:
3782                                 WARN(1, "nonexisting DP port %c\n",
3783                                      port_name(dig_port->port));
3784                                 break;
3785                         }
3786                         break;
3787                 default:
3788                         break;
3789                 }
3790         }
3791         drm_modeset_unlock_all(dev);
3792
3793         return ret;
3794 }
3795
3796 static int vlv_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
3797                                 enum pipe pipe,
3798                                 enum intel_pipe_crc_source *source,
3799                                 uint32_t *val)
3800 {
3801         bool need_stable_symbols = false;
3802
3803         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3804                 int ret = i9xx_pipe_crc_auto_source(dev_priv, pipe, source);
3805                 if (ret)
3806                         return ret;
3807         }
3808
3809         switch (*source) {
3810         case INTEL_PIPE_CRC_SOURCE_PIPE:
3811                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3812                 break;
3813         case INTEL_PIPE_CRC_SOURCE_DP_B:
3814                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3815                 need_stable_symbols = true;
3816                 break;
3817         case INTEL_PIPE_CRC_SOURCE_DP_C:
3818                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3819                 need_stable_symbols = true;
3820                 break;
3821         case INTEL_PIPE_CRC_SOURCE_DP_D:
3822                 if (!IS_CHERRYVIEW(dev_priv))
3823                         return -EINVAL;
3824                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3825                 need_stable_symbols = true;
3826                 break;
3827         case INTEL_PIPE_CRC_SOURCE_NONE:
3828                 *val = 0;
3829                 break;
3830         default:
3831                 return -EINVAL;
3832         }
3833
3834         /*
3835          * When the pipe CRC tap point is after the transcoders we need
3836          * to tweak symbol-level features to produce a deterministic series of
3837          * symbols for a given frame. We need to reset those features only once
3838          * a frame (instead of every nth symbol):
3839          *   - DC-balance: used to ensure a better clock recovery from the data
3840          *     link (SDVO)
3841          *   - DisplayPort scrambling: used for EMI reduction
3842          */
3843         if (need_stable_symbols) {
3844                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3845
3846                 tmp |= DC_BALANCE_RESET_VLV;
3847                 switch (pipe) {
3848                 case PIPE_A:
3849                         tmp |= PIPE_A_SCRAMBLE_RESET;
3850                         break;
3851                 case PIPE_B:
3852                         tmp |= PIPE_B_SCRAMBLE_RESET;
3853                         break;
3854                 case PIPE_C:
3855                         tmp |= PIPE_C_SCRAMBLE_RESET;
3856                         break;
3857                 default:
3858                         return -EINVAL;
3859                 }
3860                 I915_WRITE(PORT_DFT2_G4X, tmp);
3861         }
3862
3863         return 0;
3864 }
3865
3866 static int i9xx_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
3867                                  enum pipe pipe,
3868                                  enum intel_pipe_crc_source *source,
3869                                  uint32_t *val)
3870 {
3871         bool need_stable_symbols = false;
3872
3873         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3874                 int ret = i9xx_pipe_crc_auto_source(dev_priv, pipe, source);
3875                 if (ret)
3876                         return ret;
3877         }
3878
3879         switch (*source) {
3880         case INTEL_PIPE_CRC_SOURCE_PIPE:
3881                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3882                 break;
3883         case INTEL_PIPE_CRC_SOURCE_TV:
3884                 if (!SUPPORTS_TV(dev_priv))
3885                         return -EINVAL;
3886                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3887                 break;
3888         case INTEL_PIPE_CRC_SOURCE_DP_B:
3889                 if (!IS_G4X(dev_priv))
3890                         return -EINVAL;
3891                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3892                 need_stable_symbols = true;
3893                 break;
3894         case INTEL_PIPE_CRC_SOURCE_DP_C:
3895                 if (!IS_G4X(dev_priv))
3896                         return -EINVAL;
3897                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3898                 need_stable_symbols = true;
3899                 break;
3900         case INTEL_PIPE_CRC_SOURCE_DP_D:
3901                 if (!IS_G4X(dev_priv))
3902                         return -EINVAL;
3903                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3904                 need_stable_symbols = true;
3905                 break;
3906         case INTEL_PIPE_CRC_SOURCE_NONE:
3907                 *val = 0;
3908                 break;
3909         default:
3910                 return -EINVAL;
3911         }
3912
3913         /*
3914          * When the pipe CRC tap point is after the transcoders we need
3915          * to tweak symbol-level features to produce a deterministic series of
3916          * symbols for a given frame. We need to reset those features only once
3917          * a frame (instead of every nth symbol):
3918          *   - DC-balance: used to ensure a better clock recovery from the data
3919          *     link (SDVO)
3920          *   - DisplayPort scrambling: used for EMI reduction
3921          */
3922         if (need_stable_symbols) {
3923                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3924
3925                 WARN_ON(!IS_G4X(dev_priv));
3926
3927                 I915_WRITE(PORT_DFT_I9XX,
3928                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3929
3930                 if (pipe == PIPE_A)
3931                         tmp |= PIPE_A_SCRAMBLE_RESET;
3932                 else
3933                         tmp |= PIPE_B_SCRAMBLE_RESET;
3934
3935                 I915_WRITE(PORT_DFT2_G4X, tmp);
3936         }
3937
3938         return 0;
3939 }
3940
3941 static void vlv_undo_pipe_scramble_reset(struct drm_i915_private *dev_priv,
3942                                          enum pipe pipe)
3943 {
3944         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3945
3946         switch (pipe) {
3947         case PIPE_A:
3948                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3949                 break;
3950         case PIPE_B:
3951                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3952                 break;
3953         case PIPE_C:
3954                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3955                 break;
3956         default:
3957                 return;
3958         }
3959         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3960                 tmp &= ~DC_BALANCE_RESET_VLV;
3961         I915_WRITE(PORT_DFT2_G4X, tmp);
3962
3963 }
3964
3965 static void g4x_undo_pipe_scramble_reset(struct drm_i915_private *dev_priv,
3966                                          enum pipe pipe)
3967 {
3968         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3969
3970         if (pipe == PIPE_A)
3971                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3972         else
3973                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3974         I915_WRITE(PORT_DFT2_G4X, tmp);
3975
3976         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3977                 I915_WRITE(PORT_DFT_I9XX,
3978                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3979         }
3980 }
3981
3982 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3983                                 uint32_t *val)
3984 {
3985         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3986                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3987
3988         switch (*source) {
3989         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3990                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3991                 break;
3992         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3993                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3994                 break;
3995         case INTEL_PIPE_CRC_SOURCE_PIPE:
3996                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3997                 break;
3998         case INTEL_PIPE_CRC_SOURCE_NONE:
3999                 *val = 0;
4000                 break;
4001         default:
4002                 return -EINVAL;
4003         }
4004
4005         return 0;
4006 }
4007
4008 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_i915_private *dev_priv,
4009                                         bool enable)
4010 {
4011         struct drm_device *dev = &dev_priv->drm;
4012         struct intel_crtc *crtc =
4013                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
4014         struct intel_crtc_state *pipe_config;
4015         struct drm_atomic_state *state;
4016         int ret = 0;
4017
4018         drm_modeset_lock_all(dev);
4019         state = drm_atomic_state_alloc(dev);
4020         if (!state) {
4021                 ret = -ENOMEM;
4022                 goto out;
4023         }
4024
4025         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
4026         pipe_config = intel_atomic_get_crtc_state(state, crtc);
4027         if (IS_ERR(pipe_config)) {
4028                 ret = PTR_ERR(pipe_config);
4029                 goto out;
4030         }
4031
4032         pipe_config->pch_pfit.force_thru = enable;
4033         if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
4034             pipe_config->pch_pfit.enabled != enable)
4035                 pipe_config->base.connectors_changed = true;
4036
4037         ret = drm_atomic_commit(state);
4038 out:
4039         WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
4040         drm_modeset_unlock_all(dev);
4041         drm_atomic_state_put(state);
4042 }
4043
4044 static int ivb_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
4045                                 enum pipe pipe,
4046                                 enum intel_pipe_crc_source *source,
4047                                 uint32_t *val)
4048 {
4049         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
4050                 *source = INTEL_PIPE_CRC_SOURCE_PF;
4051
4052         switch (*source) {
4053         case INTEL_PIPE_CRC_SOURCE_PLANE1:
4054                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
4055                 break;
4056         case INTEL_PIPE_CRC_SOURCE_PLANE2:
4057                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
4058                 break;
4059         case INTEL_PIPE_CRC_SOURCE_PF:
4060                 if (IS_HASWELL(dev_priv) && pipe == PIPE_A)
4061                         hsw_trans_edp_pipe_A_crc_wa(dev_priv, true);
4062
4063                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
4064                 break;
4065         case INTEL_PIPE_CRC_SOURCE_NONE:
4066                 *val = 0;
4067                 break;
4068         default:
4069                 return -EINVAL;
4070         }
4071
4072         return 0;
4073 }
4074
4075 static int pipe_crc_set_source(struct drm_i915_private *dev_priv,
4076                                enum pipe pipe,
4077                                enum intel_pipe_crc_source source)
4078 {
4079         struct drm_device *dev = &dev_priv->drm;
4080         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4081         struct intel_crtc *crtc =
4082                         to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
4083         enum intel_display_power_domain power_domain;
4084         u32 val = 0; /* shut up gcc */
4085         int ret;
4086
4087         if (pipe_crc->source == source)
4088                 return 0;
4089
4090         /* forbid changing the source without going back to 'none' */
4091         if (pipe_crc->source && source)
4092                 return -EINVAL;
4093
4094         power_domain = POWER_DOMAIN_PIPE(pipe);
4095         if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4096                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4097                 return -EIO;
4098         }
4099
4100         if (IS_GEN2(dev_priv))
4101                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4102         else if (INTEL_GEN(dev_priv) < 5)
4103                 ret = i9xx_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4104         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4105                 ret = vlv_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4106         else if (IS_GEN5(dev_priv) || IS_GEN6(dev_priv))
4107                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4108         else
4109                 ret = ivb_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4110
4111         if (ret != 0)
4112                 goto out;
4113
4114         /* none -> real source transition */
4115         if (source) {
4116                 struct intel_pipe_crc_entry *entries;
4117
4118                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4119                                  pipe_name(pipe), pipe_crc_source_name(source));
4120
4121                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4122                                   sizeof(pipe_crc->entries[0]),
4123                                   GFP_KERNEL);
4124                 if (!entries) {
4125                         ret = -ENOMEM;
4126                         goto out;
4127                 }
4128
4129                 /*
4130                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4131                  * enabled and disabled dynamically based on package C states,
4132                  * user space can't make reliable use of the CRCs, so let's just
4133                  * completely disable it.
4134                  */
4135                 hsw_disable_ips(crtc);
4136
4137                 spin_lock_irq(&pipe_crc->lock);
4138                 kfree(pipe_crc->entries);
4139                 pipe_crc->entries = entries;
4140                 pipe_crc->head = 0;
4141                 pipe_crc->tail = 0;
4142                 spin_unlock_irq(&pipe_crc->lock);
4143         }
4144
4145         pipe_crc->source = source;
4146
4147         I915_WRITE(PIPE_CRC_CTL(pipe), val);
4148         POSTING_READ(PIPE_CRC_CTL(pipe));
4149
4150         /* real source -> none transition */
4151         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4152                 struct intel_pipe_crc_entry *entries;
4153                 struct intel_crtc *crtc =
4154                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4155
4156                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4157                                  pipe_name(pipe));
4158
4159                 drm_modeset_lock(&crtc->base.mutex, NULL);
4160                 if (crtc->base.state->active)
4161                         intel_wait_for_vblank(dev, pipe);
4162                 drm_modeset_unlock(&crtc->base.mutex);
4163
4164                 spin_lock_irq(&pipe_crc->lock);
4165                 entries = pipe_crc->entries;
4166                 pipe_crc->entries = NULL;
4167                 pipe_crc->head = 0;
4168                 pipe_crc->tail = 0;
4169                 spin_unlock_irq(&pipe_crc->lock);
4170
4171                 kfree(entries);
4172
4173                 if (IS_G4X(dev_priv))
4174                         g4x_undo_pipe_scramble_reset(dev_priv, pipe);
4175                 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4176                         vlv_undo_pipe_scramble_reset(dev_priv, pipe);
4177                 else if (IS_HASWELL(dev_priv) && pipe == PIPE_A)
4178                         hsw_trans_edp_pipe_A_crc_wa(dev_priv, false);
4179
4180                 hsw_enable_ips(crtc);
4181         }
4182
4183         ret = 0;
4184
4185 out:
4186         intel_display_power_put(dev_priv, power_domain);
4187
4188         return ret;
4189 }
4190
4191 /*
4192  * Parse pipe CRC command strings:
4193  *   command: wsp* object wsp+ name wsp+ source wsp*
4194  *   object: 'pipe'
4195  *   name: (A | B | C)
4196  *   source: (none | plane1 | plane2 | pf)
4197  *   wsp: (#0x20 | #0x9 | #0xA)+
4198  *
4199  * eg.:
4200  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
4201  *  "pipe A none"    ->  Stop CRC
4202  */
4203 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4204 {
4205         int n_words = 0;
4206
4207         while (*buf) {
4208                 char *end;
4209
4210                 /* skip leading white space */
4211                 buf = skip_spaces(buf);
4212                 if (!*buf)
4213                         break;  /* end of buffer */
4214
4215                 /* find end of word */
4216                 for (end = buf; *end && !isspace(*end); end++)
4217                         ;
4218
4219                 if (n_words == max_words) {
4220                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4221                                          max_words);
4222                         return -EINVAL; /* ran out of words[] before bytes */
4223                 }
4224
4225                 if (*end)
4226                         *end++ = '\0';
4227                 words[n_words++] = buf;
4228                 buf = end;
4229         }
4230
4231         return n_words;
4232 }
4233
4234 enum intel_pipe_crc_object {
4235         PIPE_CRC_OBJECT_PIPE,
4236 };
4237
4238 static const char * const pipe_crc_objects[] = {
4239         "pipe",
4240 };
4241
4242 static int
4243 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4244 {
4245         int i;
4246
4247         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4248                 if (!strcmp(buf, pipe_crc_objects[i])) {
4249                         *o = i;
4250                         return 0;
4251                     }
4252
4253         return -EINVAL;
4254 }
4255
4256 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4257 {
4258         const char name = buf[0];
4259
4260         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4261                 return -EINVAL;
4262
4263         *pipe = name - 'A';
4264
4265         return 0;
4266 }
4267
4268 static int
4269 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4270 {
4271         int i;
4272
4273         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4274                 if (!strcmp(buf, pipe_crc_sources[i])) {
4275                         *s = i;
4276                         return 0;
4277                     }
4278
4279         return -EINVAL;
4280 }
4281
4282 static int display_crc_ctl_parse(struct drm_i915_private *dev_priv,
4283                                  char *buf, size_t len)
4284 {
4285 #define N_WORDS 3
4286         int n_words;
4287         char *words[N_WORDS];
4288         enum pipe pipe;
4289         enum intel_pipe_crc_object object;
4290         enum intel_pipe_crc_source source;
4291
4292         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4293         if (n_words != N_WORDS) {
4294                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4295                                  N_WORDS);
4296                 return -EINVAL;
4297         }
4298
4299         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4300                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4301                 return -EINVAL;
4302         }
4303
4304         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4305                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4306                 return -EINVAL;
4307         }
4308
4309         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4310                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4311                 return -EINVAL;
4312         }
4313
4314         return pipe_crc_set_source(dev_priv, pipe, source);
4315 }
4316
4317 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4318                                      size_t len, loff_t *offp)
4319 {
4320         struct seq_file *m = file->private_data;
4321         struct drm_i915_private *dev_priv = m->private;
4322         char *tmpbuf;
4323         int ret;
4324
4325         if (len == 0)
4326                 return 0;
4327
4328         if (len > PAGE_SIZE - 1) {
4329                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4330                                  PAGE_SIZE);
4331                 return -E2BIG;
4332         }
4333
4334         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4335         if (!tmpbuf)
4336                 return -ENOMEM;
4337
4338         if (copy_from_user(tmpbuf, ubuf, len)) {
4339                 ret = -EFAULT;
4340                 goto out;
4341         }
4342         tmpbuf[len] = '\0';
4343
4344         ret = display_crc_ctl_parse(dev_priv, tmpbuf, len);
4345
4346 out:
4347         kfree(tmpbuf);
4348         if (ret < 0)
4349                 return ret;
4350
4351         *offp += len;
4352         return len;
4353 }
4354
4355 static const struct file_operations i915_display_crc_ctl_fops = {
4356         .owner = THIS_MODULE,
4357         .open = display_crc_ctl_open,
4358         .read = seq_read,
4359         .llseek = seq_lseek,
4360         .release = single_release,
4361         .write = display_crc_ctl_write
4362 };
4363
4364 static ssize_t i915_displayport_test_active_write(struct file *file,
4365                                                   const char __user *ubuf,
4366                                                   size_t len, loff_t *offp)
4367 {
4368         char *input_buffer;
4369         int status = 0;
4370         struct drm_device *dev;
4371         struct drm_connector *connector;
4372         struct list_head *connector_list;
4373         struct intel_dp *intel_dp;
4374         int val = 0;
4375
4376         dev = ((struct seq_file *)file->private_data)->private;
4377
4378         connector_list = &dev->mode_config.connector_list;
4379
4380         if (len == 0)
4381                 return 0;
4382
4383         input_buffer = kmalloc(len + 1, GFP_KERNEL);
4384         if (!input_buffer)
4385                 return -ENOMEM;
4386
4387         if (copy_from_user(input_buffer, ubuf, len)) {
4388                 status = -EFAULT;
4389                 goto out;
4390         }
4391
4392         input_buffer[len] = '\0';
4393         DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4394
4395         list_for_each_entry(connector, connector_list, head) {
4396                 if (connector->connector_type !=
4397                     DRM_MODE_CONNECTOR_DisplayPort)
4398                         continue;
4399
4400                 if (connector->status == connector_status_connected &&
4401                     connector->encoder != NULL) {
4402                         intel_dp = enc_to_intel_dp(connector->encoder);
4403                         status = kstrtoint(input_buffer, 10, &val);
4404                         if (status < 0)
4405                                 goto out;
4406                         DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4407                         /* To prevent erroneous activation of the compliance
4408                          * testing code, only accept an actual value of 1 here
4409                          */
4410                         if (val == 1)
4411                                 intel_dp->compliance_test_active = 1;
4412                         else
4413                                 intel_dp->compliance_test_active = 0;
4414                 }
4415         }
4416 out:
4417         kfree(input_buffer);
4418         if (status < 0)
4419                 return status;
4420
4421         *offp += len;
4422         return len;
4423 }
4424
4425 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4426 {
4427         struct drm_device *dev = m->private;
4428         struct drm_connector *connector;
4429         struct list_head *connector_list = &dev->mode_config.connector_list;
4430         struct intel_dp *intel_dp;
4431
4432         list_for_each_entry(connector, connector_list, head) {
4433                 if (connector->connector_type !=
4434                     DRM_MODE_CONNECTOR_DisplayPort)
4435                         continue;
4436
4437                 if (connector->status == connector_status_connected &&
4438                     connector->encoder != NULL) {
4439                         intel_dp = enc_to_intel_dp(connector->encoder);
4440                         if (intel_dp->compliance_test_active)
4441                                 seq_puts(m, "1");
4442                         else
4443                                 seq_puts(m, "0");
4444                 } else
4445                         seq_puts(m, "0");
4446         }
4447
4448         return 0;
4449 }
4450
4451 static int i915_displayport_test_active_open(struct inode *inode,
4452                                              struct file *file)
4453 {
4454         struct drm_i915_private *dev_priv = inode->i_private;
4455
4456         return single_open(file, i915_displayport_test_active_show,
4457                            &dev_priv->drm);
4458 }
4459
4460 static const struct file_operations i915_displayport_test_active_fops = {
4461         .owner = THIS_MODULE,
4462         .open = i915_displayport_test_active_open,
4463         .read = seq_read,
4464         .llseek = seq_lseek,
4465         .release = single_release,
4466         .write = i915_displayport_test_active_write
4467 };
4468
4469 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4470 {
4471         struct drm_device *dev = m->private;
4472         struct drm_connector *connector;
4473         struct list_head *connector_list = &dev->mode_config.connector_list;
4474         struct intel_dp *intel_dp;
4475
4476         list_for_each_entry(connector, connector_list, head) {
4477                 if (connector->connector_type !=
4478                     DRM_MODE_CONNECTOR_DisplayPort)
4479                         continue;
4480
4481                 if (connector->status == connector_status_connected &&
4482                     connector->encoder != NULL) {
4483                         intel_dp = enc_to_intel_dp(connector->encoder);
4484                         seq_printf(m, "%lx", intel_dp->compliance_test_data);
4485                 } else
4486                         seq_puts(m, "0");
4487         }
4488
4489         return 0;
4490 }
4491 static int i915_displayport_test_data_open(struct inode *inode,
4492                                            struct file *file)
4493 {
4494         struct drm_i915_private *dev_priv = inode->i_private;
4495
4496         return single_open(file, i915_displayport_test_data_show,
4497                            &dev_priv->drm);
4498 }
4499
4500 static const struct file_operations i915_displayport_test_data_fops = {
4501         .owner = THIS_MODULE,
4502         .open = i915_displayport_test_data_open,
4503         .read = seq_read,
4504         .llseek = seq_lseek,
4505         .release = single_release
4506 };
4507
4508 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4509 {
4510         struct drm_device *dev = m->private;
4511         struct drm_connector *connector;
4512         struct list_head *connector_list = &dev->mode_config.connector_list;
4513         struct intel_dp *intel_dp;
4514
4515         list_for_each_entry(connector, connector_list, head) {
4516                 if (connector->connector_type !=
4517                     DRM_MODE_CONNECTOR_DisplayPort)
4518                         continue;
4519
4520                 if (connector->status == connector_status_connected &&
4521                     connector->encoder != NULL) {
4522                         intel_dp = enc_to_intel_dp(connector->encoder);
4523                         seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4524                 } else
4525                         seq_puts(m, "0");
4526         }
4527
4528         return 0;
4529 }
4530
4531 static int i915_displayport_test_type_open(struct inode *inode,
4532                                        struct file *file)
4533 {
4534         struct drm_i915_private *dev_priv = inode->i_private;
4535
4536         return single_open(file, i915_displayport_test_type_show,
4537                            &dev_priv->drm);
4538 }
4539
4540 static const struct file_operations i915_displayport_test_type_fops = {
4541         .owner = THIS_MODULE,
4542         .open = i915_displayport_test_type_open,
4543         .read = seq_read,
4544         .llseek = seq_lseek,
4545         .release = single_release
4546 };
4547
4548 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4549 {
4550         struct drm_i915_private *dev_priv = m->private;
4551         struct drm_device *dev = &dev_priv->drm;
4552         int level;
4553         int num_levels;
4554
4555         if (IS_CHERRYVIEW(dev_priv))
4556                 num_levels = 3;
4557         else if (IS_VALLEYVIEW(dev_priv))
4558                 num_levels = 1;
4559         else
4560                 num_levels = ilk_wm_max_level(dev_priv) + 1;
4561
4562         drm_modeset_lock_all(dev);
4563
4564         for (level = 0; level < num_levels; level++) {
4565                 unsigned int latency = wm[level];
4566
4567                 /*
4568                  * - WM1+ latency values in 0.5us units
4569                  * - latencies are in us on gen9/vlv/chv
4570                  */
4571                 if (INTEL_GEN(dev_priv) >= 9 || IS_VALLEYVIEW(dev_priv) ||
4572                     IS_CHERRYVIEW(dev_priv))
4573                         latency *= 10;
4574                 else if (level > 0)
4575                         latency *= 5;
4576
4577                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4578                            level, wm[level], latency / 10, latency % 10);
4579         }
4580
4581         drm_modeset_unlock_all(dev);
4582 }
4583
4584 static int pri_wm_latency_show(struct seq_file *m, void *data)
4585 {
4586         struct drm_i915_private *dev_priv = m->private;
4587         const uint16_t *latencies;
4588
4589         if (INTEL_GEN(dev_priv) >= 9)
4590                 latencies = dev_priv->wm.skl_latency;
4591         else
4592                 latencies = dev_priv->wm.pri_latency;
4593
4594         wm_latency_show(m, latencies);
4595
4596         return 0;
4597 }
4598
4599 static int spr_wm_latency_show(struct seq_file *m, void *data)
4600 {
4601         struct drm_i915_private *dev_priv = m->private;
4602         const uint16_t *latencies;
4603
4604         if (INTEL_GEN(dev_priv) >= 9)
4605                 latencies = dev_priv->wm.skl_latency;
4606         else
4607                 latencies = dev_priv->wm.spr_latency;
4608
4609         wm_latency_show(m, latencies);
4610
4611         return 0;
4612 }
4613
4614 static int cur_wm_latency_show(struct seq_file *m, void *data)
4615 {
4616         struct drm_i915_private *dev_priv = m->private;
4617         const uint16_t *latencies;
4618
4619         if (INTEL_GEN(dev_priv) >= 9)
4620                 latencies = dev_priv->wm.skl_latency;
4621         else
4622                 latencies = dev_priv->wm.cur_latency;
4623
4624         wm_latency_show(m, latencies);
4625
4626         return 0;
4627 }
4628
4629 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4630 {
4631         struct drm_i915_private *dev_priv = inode->i_private;
4632
4633         if (INTEL_GEN(dev_priv) < 5)
4634                 return -ENODEV;
4635
4636         return single_open(file, pri_wm_latency_show, dev_priv);
4637 }
4638
4639 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4640 {
4641         struct drm_i915_private *dev_priv = inode->i_private;
4642
4643         if (HAS_GMCH_DISPLAY(dev_priv))
4644                 return -ENODEV;
4645
4646         return single_open(file, spr_wm_latency_show, dev_priv);
4647 }
4648
4649 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4650 {
4651         struct drm_i915_private *dev_priv = inode->i_private;
4652
4653         if (HAS_GMCH_DISPLAY(dev_priv))
4654                 return -ENODEV;
4655
4656         return single_open(file, cur_wm_latency_show, dev_priv);
4657 }
4658
4659 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4660                                 size_t len, loff_t *offp, uint16_t wm[8])
4661 {
4662         struct seq_file *m = file->private_data;
4663         struct drm_i915_private *dev_priv = m->private;
4664         struct drm_device *dev = &dev_priv->drm;
4665         uint16_t new[8] = { 0 };
4666         int num_levels;
4667         int level;
4668         int ret;
4669         char tmp[32];
4670
4671         if (IS_CHERRYVIEW(dev_priv))
4672                 num_levels = 3;
4673         else if (IS_VALLEYVIEW(dev_priv))
4674                 num_levels = 1;
4675         else
4676                 num_levels = ilk_wm_max_level(dev_priv) + 1;
4677
4678         if (len >= sizeof(tmp))
4679                 return -EINVAL;
4680
4681         if (copy_from_user(tmp, ubuf, len))
4682                 return -EFAULT;
4683
4684         tmp[len] = '\0';
4685
4686         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4687                      &new[0], &new[1], &new[2], &new[3],
4688                      &new[4], &new[5], &new[6], &new[7]);
4689         if (ret != num_levels)
4690                 return -EINVAL;
4691
4692         drm_modeset_lock_all(dev);
4693
4694         for (level = 0; level < num_levels; level++)
4695                 wm[level] = new[level];
4696
4697         drm_modeset_unlock_all(dev);
4698
4699         return len;
4700 }
4701
4702
4703 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4704                                     size_t len, loff_t *offp)
4705 {
4706         struct seq_file *m = file->private_data;
4707         struct drm_i915_private *dev_priv = m->private;
4708         uint16_t *latencies;
4709
4710         if (INTEL_GEN(dev_priv) >= 9)
4711                 latencies = dev_priv->wm.skl_latency;
4712         else
4713                 latencies = dev_priv->wm.pri_latency;
4714
4715         return wm_latency_write(file, ubuf, len, offp, latencies);
4716 }
4717
4718 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4719                                     size_t len, loff_t *offp)
4720 {
4721         struct seq_file *m = file->private_data;
4722         struct drm_i915_private *dev_priv = m->private;
4723         uint16_t *latencies;
4724
4725         if (INTEL_GEN(dev_priv) >= 9)
4726                 latencies = dev_priv->wm.skl_latency;
4727         else
4728                 latencies = dev_priv->wm.spr_latency;
4729
4730         return wm_latency_write(file, ubuf, len, offp, latencies);
4731 }
4732
4733 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4734                                     size_t len, loff_t *offp)
4735 {
4736         struct seq_file *m = file->private_data;
4737         struct drm_i915_private *dev_priv = m->private;
4738         uint16_t *latencies;
4739
4740         if (INTEL_GEN(dev_priv) >= 9)
4741                 latencies = dev_priv->wm.skl_latency;
4742         else
4743                 latencies = dev_priv->wm.cur_latency;
4744
4745         return wm_latency_write(file, ubuf, len, offp, latencies);
4746 }
4747
4748 static const struct file_operations i915_pri_wm_latency_fops = {
4749         .owner = THIS_MODULE,
4750         .open = pri_wm_latency_open,
4751         .read = seq_read,
4752         .llseek = seq_lseek,
4753         .release = single_release,
4754         .write = pri_wm_latency_write
4755 };
4756
4757 static const struct file_operations i915_spr_wm_latency_fops = {
4758         .owner = THIS_MODULE,
4759         .open = spr_wm_latency_open,
4760         .read = seq_read,
4761         .llseek = seq_lseek,
4762         .release = single_release,
4763         .write = spr_wm_latency_write
4764 };
4765
4766 static const struct file_operations i915_cur_wm_latency_fops = {
4767         .owner = THIS_MODULE,
4768         .open = cur_wm_latency_open,
4769         .read = seq_read,
4770         .llseek = seq_lseek,
4771         .release = single_release,
4772         .write = cur_wm_latency_write
4773 };
4774
4775 static int
4776 i915_wedged_get(void *data, u64 *val)
4777 {
4778         struct drm_i915_private *dev_priv = data;
4779
4780         *val = i915_terminally_wedged(&dev_priv->gpu_error);
4781
4782         return 0;
4783 }
4784
4785 static int
4786 i915_wedged_set(void *data, u64 val)
4787 {
4788         struct drm_i915_private *dev_priv = data;
4789
4790         /*
4791          * There is no safeguard against this debugfs entry colliding
4792          * with the hangcheck calling same i915_handle_error() in
4793          * parallel, causing an explosion. For now we assume that the
4794          * test harness is responsible enough not to inject gpu hangs
4795          * while it is writing to 'i915_wedged'
4796          */
4797
4798         if (i915_reset_in_progress(&dev_priv->gpu_error))
4799                 return -EAGAIN;
4800
4801         intel_runtime_pm_get(dev_priv);
4802
4803         i915_handle_error(dev_priv, val,
4804                           "Manually setting wedged to %llu", val);
4805
4806         intel_runtime_pm_put(dev_priv);
4807
4808         return 0;
4809 }
4810
4811 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4812                         i915_wedged_get, i915_wedged_set,
4813                         "%llu\n");
4814
4815 static int
4816 i915_ring_missed_irq_get(void *data, u64 *val)
4817 {
4818         struct drm_i915_private *dev_priv = data;
4819
4820         *val = dev_priv->gpu_error.missed_irq_rings;
4821         return 0;
4822 }
4823
4824 static int
4825 i915_ring_missed_irq_set(void *data, u64 val)
4826 {
4827         struct drm_i915_private *dev_priv = data;
4828         struct drm_device *dev = &dev_priv->drm;
4829         int ret;
4830
4831         /* Lock against concurrent debugfs callers */
4832         ret = mutex_lock_interruptible(&dev->struct_mutex);
4833         if (ret)
4834                 return ret;
4835         dev_priv->gpu_error.missed_irq_rings = val;
4836         mutex_unlock(&dev->struct_mutex);
4837
4838         return 0;
4839 }
4840
4841 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4842                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4843                         "0x%08llx\n");
4844
4845 static int
4846 i915_ring_test_irq_get(void *data, u64 *val)
4847 {
4848         struct drm_i915_private *dev_priv = data;
4849
4850         *val = dev_priv->gpu_error.test_irq_rings;
4851
4852         return 0;
4853 }
4854
4855 static int
4856 i915_ring_test_irq_set(void *data, u64 val)
4857 {
4858         struct drm_i915_private *dev_priv = data;
4859
4860         val &= INTEL_INFO(dev_priv)->ring_mask;
4861         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4862         dev_priv->gpu_error.test_irq_rings = val;
4863
4864         return 0;
4865 }
4866
4867 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4868                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4869                         "0x%08llx\n");
4870
4871 #define DROP_UNBOUND 0x1
4872 #define DROP_BOUND 0x2
4873 #define DROP_RETIRE 0x4
4874 #define DROP_ACTIVE 0x8
4875 #define DROP_ALL (DROP_UNBOUND | \
4876                   DROP_BOUND | \
4877                   DROP_RETIRE | \
4878                   DROP_ACTIVE)
4879 static int
4880 i915_drop_caches_get(void *data, u64 *val)
4881 {
4882         *val = DROP_ALL;
4883
4884         return 0;
4885 }
4886
4887 static int
4888 i915_drop_caches_set(void *data, u64 val)
4889 {
4890         struct drm_i915_private *dev_priv = data;
4891         struct drm_device *dev = &dev_priv->drm;
4892         int ret;
4893
4894         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4895
4896         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4897          * on ioctls on -EAGAIN. */
4898         ret = mutex_lock_interruptible(&dev->struct_mutex);
4899         if (ret)
4900                 return ret;
4901
4902         if (val & DROP_ACTIVE) {
4903                 ret = i915_gem_wait_for_idle(dev_priv,
4904                                              I915_WAIT_INTERRUPTIBLE |
4905                                              I915_WAIT_LOCKED);
4906                 if (ret)
4907                         goto unlock;
4908         }
4909
4910         if (val & (DROP_RETIRE | DROP_ACTIVE))
4911                 i915_gem_retire_requests(dev_priv);
4912
4913         if (val & DROP_BOUND)
4914                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4915
4916         if (val & DROP_UNBOUND)
4917                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4918
4919 unlock:
4920         mutex_unlock(&dev->struct_mutex);
4921
4922         return ret;
4923 }
4924
4925 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4926                         i915_drop_caches_get, i915_drop_caches_set,
4927                         "0x%08llx\n");
4928
4929 static int
4930 i915_max_freq_get(void *data, u64 *val)
4931 {
4932         struct drm_i915_private *dev_priv = data;
4933
4934         if (INTEL_GEN(dev_priv) < 6)
4935                 return -ENODEV;
4936
4937         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4938         return 0;
4939 }
4940
4941 static int
4942 i915_max_freq_set(void *data, u64 val)
4943 {
4944         struct drm_i915_private *dev_priv = data;
4945         u32 hw_max, hw_min;
4946         int ret;
4947
4948         if (INTEL_GEN(dev_priv) < 6)
4949                 return -ENODEV;
4950
4951         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4952
4953         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4954         if (ret)
4955                 return ret;
4956
4957         /*
4958          * Turbo will still be enabled, but won't go above the set value.
4959          */
4960         val = intel_freq_opcode(dev_priv, val);
4961
4962         hw_max = dev_priv->rps.max_freq;
4963         hw_min = dev_priv->rps.min_freq;
4964
4965         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4966                 mutex_unlock(&dev_priv->rps.hw_lock);
4967                 return -EINVAL;
4968         }
4969
4970         dev_priv->rps.max_freq_softlimit = val;
4971
4972         intel_set_rps(dev_priv, val);
4973
4974         mutex_unlock(&dev_priv->rps.hw_lock);
4975
4976         return 0;
4977 }
4978
4979 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4980                         i915_max_freq_get, i915_max_freq_set,
4981                         "%llu\n");
4982
4983 static int
4984 i915_min_freq_get(void *data, u64 *val)
4985 {
4986         struct drm_i915_private *dev_priv = data;
4987
4988         if (INTEL_GEN(dev_priv) < 6)
4989                 return -ENODEV;
4990
4991         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4992         return 0;
4993 }
4994
4995 static int
4996 i915_min_freq_set(void *data, u64 val)
4997 {
4998         struct drm_i915_private *dev_priv = data;
4999         u32 hw_max, hw_min;
5000         int ret;
5001
5002         if (INTEL_GEN(dev_priv) < 6)
5003                 return -ENODEV;
5004
5005         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
5006
5007         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5008         if (ret)
5009                 return ret;
5010
5011         /*
5012          * Turbo will still be enabled, but won't go below the set value.
5013          */
5014         val = intel_freq_opcode(dev_priv, val);
5015
5016         hw_max = dev_priv->rps.max_freq;
5017         hw_min = dev_priv->rps.min_freq;
5018
5019         if (val < hw_min ||
5020             val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5021                 mutex_unlock(&dev_priv->rps.hw_lock);
5022                 return -EINVAL;
5023         }
5024
5025         dev_priv->rps.min_freq_softlimit = val;
5026
5027         intel_set_rps(dev_priv, val);
5028
5029         mutex_unlock(&dev_priv->rps.hw_lock);
5030
5031         return 0;
5032 }
5033
5034 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5035                         i915_min_freq_get, i915_min_freq_set,
5036                         "%llu\n");
5037
5038 static int
5039 i915_cache_sharing_get(void *data, u64 *val)
5040 {
5041         struct drm_i915_private *dev_priv = data;
5042         struct drm_device *dev = &dev_priv->drm;
5043         u32 snpcr;
5044         int ret;
5045
5046         if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
5047                 return -ENODEV;
5048
5049         ret = mutex_lock_interruptible(&dev->struct_mutex);
5050         if (ret)
5051                 return ret;
5052         intel_runtime_pm_get(dev_priv);
5053
5054         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5055
5056         intel_runtime_pm_put(dev_priv);
5057         mutex_unlock(&dev->struct_mutex);
5058
5059         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5060
5061         return 0;
5062 }
5063
5064 static int
5065 i915_cache_sharing_set(void *data, u64 val)
5066 {
5067         struct drm_i915_private *dev_priv = data;
5068         u32 snpcr;
5069
5070         if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
5071                 return -ENODEV;
5072
5073         if (val > 3)
5074                 return -EINVAL;
5075
5076         intel_runtime_pm_get(dev_priv);
5077         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5078
5079         /* Update the cache sharing policy here as well */
5080         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5081         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5082         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5083         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5084
5085         intel_runtime_pm_put(dev_priv);
5086         return 0;
5087 }
5088
5089 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5090                         i915_cache_sharing_get, i915_cache_sharing_set,
5091                         "%llu\n");
5092
5093 static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
5094                                           struct sseu_dev_info *sseu)
5095 {
5096         int ss_max = 2;
5097         int ss;
5098         u32 sig1[ss_max], sig2[ss_max];
5099
5100         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5101         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5102         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5103         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5104
5105         for (ss = 0; ss < ss_max; ss++) {
5106                 unsigned int eu_cnt;
5107
5108                 if (sig1[ss] & CHV_SS_PG_ENABLE)
5109                         /* skip disabled subslice */
5110                         continue;
5111
5112                 sseu->slice_mask = BIT(0);
5113                 sseu->subslice_mask |= BIT(ss);
5114                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5115                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5116                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5117                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5118                 sseu->eu_total += eu_cnt;
5119                 sseu->eu_per_subslice = max_t(unsigned int,
5120                                               sseu->eu_per_subslice, eu_cnt);
5121         }
5122 }
5123
5124 static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
5125                                     struct sseu_dev_info *sseu)
5126 {
5127         int s_max = 3, ss_max = 4;
5128         int s, ss;
5129         u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5130
5131         /* BXT has a single slice and at most 3 subslices. */
5132         if (IS_BROXTON(dev_priv)) {
5133                 s_max = 1;
5134                 ss_max = 3;
5135         }
5136
5137         for (s = 0; s < s_max; s++) {
5138                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5139                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5140                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5141         }
5142
5143         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5144                      GEN9_PGCTL_SSA_EU19_ACK |
5145                      GEN9_PGCTL_SSA_EU210_ACK |
5146                      GEN9_PGCTL_SSA_EU311_ACK;
5147         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5148                      GEN9_PGCTL_SSB_EU19_ACK |
5149                      GEN9_PGCTL_SSB_EU210_ACK |
5150                      GEN9_PGCTL_SSB_EU311_ACK;
5151
5152         for (s = 0; s < s_max; s++) {
5153                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5154                         /* skip disabled slice */
5155                         continue;
5156
5157                 sseu->slice_mask |= BIT(s);
5158
5159                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
5160                         sseu->subslice_mask =
5161                                 INTEL_INFO(dev_priv)->sseu.subslice_mask;
5162
5163                 for (ss = 0; ss < ss_max; ss++) {
5164                         unsigned int eu_cnt;
5165
5166                         if (IS_BROXTON(dev_priv)) {
5167                                 if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5168                                         /* skip disabled subslice */
5169                                         continue;
5170
5171                                 sseu->subslice_mask |= BIT(ss);
5172                         }
5173
5174                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5175                                                eu_mask[ss%2]);
5176                         sseu->eu_total += eu_cnt;
5177                         sseu->eu_per_subslice = max_t(unsigned int,
5178                                                       sseu->eu_per_subslice,
5179                                                       eu_cnt);
5180                 }
5181         }
5182 }
5183
5184 static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
5185                                          struct sseu_dev_info *sseu)
5186 {
5187         u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5188         int s;
5189
5190         sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
5191
5192         if (sseu->slice_mask) {
5193                 sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
5194                 sseu->eu_per_subslice =
5195                                 INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
5196                 sseu->eu_total = sseu->eu_per_subslice *
5197                                  sseu_subslice_total(sseu);
5198
5199                 /* subtract fused off EU(s) from enabled slice(s) */
5200                 for (s = 0; s < fls(sseu->slice_mask); s++) {
5201                         u8 subslice_7eu =
5202                                 INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
5203
5204                         sseu->eu_total -= hweight8(subslice_7eu);
5205                 }
5206         }
5207 }
5208
5209 static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
5210                                  const struct sseu_dev_info *sseu)
5211 {
5212         struct drm_i915_private *dev_priv = node_to_i915(m->private);
5213         const char *type = is_available_info ? "Available" : "Enabled";
5214
5215         seq_printf(m, "  %s Slice Mask: %04x\n", type,
5216                    sseu->slice_mask);
5217         seq_printf(m, "  %s Slice Total: %u\n", type,
5218                    hweight8(sseu->slice_mask));
5219         seq_printf(m, "  %s Subslice Total: %u\n", type,
5220                    sseu_subslice_total(sseu));
5221         seq_printf(m, "  %s Subslice Mask: %04x\n", type,
5222                    sseu->subslice_mask);
5223         seq_printf(m, "  %s Subslice Per Slice: %u\n", type,
5224                    hweight8(sseu->subslice_mask));
5225         seq_printf(m, "  %s EU Total: %u\n", type,
5226                    sseu->eu_total);
5227         seq_printf(m, "  %s EU Per Subslice: %u\n", type,
5228                    sseu->eu_per_subslice);
5229
5230         if (!is_available_info)
5231                 return;
5232
5233         seq_printf(m, "  Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
5234         if (HAS_POOLED_EU(dev_priv))
5235                 seq_printf(m, "  Min EU in pool: %u\n", sseu->min_eu_in_pool);
5236
5237         seq_printf(m, "  Has Slice Power Gating: %s\n",
5238                    yesno(sseu->has_slice_pg));
5239         seq_printf(m, "  Has Subslice Power Gating: %s\n",
5240                    yesno(sseu->has_subslice_pg));
5241         seq_printf(m, "  Has EU Power Gating: %s\n",
5242                    yesno(sseu->has_eu_pg));
5243 }
5244
5245 static int i915_sseu_status(struct seq_file *m, void *unused)
5246 {
5247         struct drm_i915_private *dev_priv = node_to_i915(m->private);
5248         struct sseu_dev_info sseu;
5249
5250         if (INTEL_GEN(dev_priv) < 8)
5251                 return -ENODEV;
5252
5253         seq_puts(m, "SSEU Device Info\n");
5254         i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
5255
5256         seq_puts(m, "SSEU Device Status\n");
5257         memset(&sseu, 0, sizeof(sseu));
5258
5259         intel_runtime_pm_get(dev_priv);
5260
5261         if (IS_CHERRYVIEW(dev_priv)) {
5262                 cherryview_sseu_device_status(dev_priv, &sseu);
5263         } else if (IS_BROADWELL(dev_priv)) {
5264                 broadwell_sseu_device_status(dev_priv, &sseu);
5265         } else if (INTEL_GEN(dev_priv) >= 9) {
5266                 gen9_sseu_device_status(dev_priv, &sseu);
5267         }
5268
5269         intel_runtime_pm_put(dev_priv);
5270
5271         i915_print_sseu_info(m, false, &sseu);
5272
5273         return 0;
5274 }
5275
5276 static int i915_forcewake_open(struct inode *inode, struct file *file)
5277 {
5278         struct drm_i915_private *dev_priv = inode->i_private;
5279
5280         if (INTEL_GEN(dev_priv) < 6)
5281                 return 0;
5282
5283         intel_runtime_pm_get(dev_priv);
5284         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5285
5286         return 0;
5287 }
5288
5289 static int i915_forcewake_release(struct inode *inode, struct file *file)
5290 {
5291         struct drm_i915_private *dev_priv = inode->i_private;
5292
5293         if (INTEL_GEN(dev_priv) < 6)
5294                 return 0;
5295
5296         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5297         intel_runtime_pm_put(dev_priv);
5298
5299         return 0;
5300 }
5301
5302 static const struct file_operations i915_forcewake_fops = {
5303         .owner = THIS_MODULE,
5304         .open = i915_forcewake_open,
5305         .release = i915_forcewake_release,
5306 };
5307
5308 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5309 {
5310         struct dentry *ent;
5311
5312         ent = debugfs_create_file("i915_forcewake_user",
5313                                   S_IRUSR,
5314                                   root, to_i915(minor->dev),
5315                                   &i915_forcewake_fops);
5316         if (!ent)
5317                 return -ENOMEM;
5318
5319         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5320 }
5321
5322 static int i915_debugfs_create(struct dentry *root,
5323                                struct drm_minor *minor,
5324                                const char *name,
5325                                const struct file_operations *fops)
5326 {
5327         struct dentry *ent;
5328
5329         ent = debugfs_create_file(name,
5330                                   S_IRUGO | S_IWUSR,
5331                                   root, to_i915(minor->dev),
5332                                   fops);
5333         if (!ent)
5334                 return -ENOMEM;
5335
5336         return drm_add_fake_info_node(minor, ent, fops);
5337 }
5338
5339 static const struct drm_info_list i915_debugfs_list[] = {
5340         {"i915_capabilities", i915_capabilities, 0},
5341         {"i915_gem_objects", i915_gem_object_info, 0},
5342         {"i915_gem_gtt", i915_gem_gtt_info, 0},
5343         {"i915_gem_pin_display", i915_gem_gtt_info, 0, (void *)1},
5344         {"i915_gem_stolen", i915_gem_stolen_list_info },
5345         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5346         {"i915_gem_request", i915_gem_request_info, 0},
5347         {"i915_gem_seqno", i915_gem_seqno_info, 0},
5348         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5349         {"i915_gem_interrupt", i915_interrupt_info, 0},
5350         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5351         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5352         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5353         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5354         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5355         {"i915_guc_info", i915_guc_info, 0},
5356         {"i915_guc_load_status", i915_guc_load_status_info, 0},
5357         {"i915_guc_log_dump", i915_guc_log_dump, 0},
5358         {"i915_frequency_info", i915_frequency_info, 0},
5359         {"i915_hangcheck_info", i915_hangcheck_info, 0},
5360         {"i915_drpc_info", i915_drpc_info, 0},
5361         {"i915_emon_status", i915_emon_status, 0},
5362         {"i915_ring_freq_table", i915_ring_freq_table, 0},
5363         {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5364         {"i915_fbc_status", i915_fbc_status, 0},
5365         {"i915_ips_status", i915_ips_status, 0},
5366         {"i915_sr_status", i915_sr_status, 0},
5367         {"i915_opregion", i915_opregion, 0},
5368         {"i915_vbt", i915_vbt, 0},
5369         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5370         {"i915_context_status", i915_context_status, 0},
5371         {"i915_dump_lrc", i915_dump_lrc, 0},
5372         {"i915_forcewake_domains", i915_forcewake_domains, 0},
5373         {"i915_swizzle_info", i915_swizzle_info, 0},
5374         {"i915_ppgtt_info", i915_ppgtt_info, 0},
5375         {"i915_llc", i915_llc, 0},
5376         {"i915_edp_psr_status", i915_edp_psr_status, 0},
5377         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5378         {"i915_energy_uJ", i915_energy_uJ, 0},
5379         {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5380         {"i915_power_domain_info", i915_power_domain_info, 0},
5381         {"i915_dmc_info", i915_dmc_info, 0},
5382         {"i915_display_info", i915_display_info, 0},
5383         {"i915_engine_info", i915_engine_info, 0},
5384         {"i915_semaphore_status", i915_semaphore_status, 0},
5385         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5386         {"i915_dp_mst_info", i915_dp_mst_info, 0},
5387         {"i915_wa_registers", i915_wa_registers, 0},
5388         {"i915_ddb_info", i915_ddb_info, 0},
5389         {"i915_sseu_status", i915_sseu_status, 0},
5390         {"i915_drrs_status", i915_drrs_status, 0},
5391         {"i915_rps_boost_info", i915_rps_boost_info, 0},
5392 };
5393 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5394
5395 static const struct i915_debugfs_files {
5396         const char *name;
5397         const struct file_operations *fops;
5398 } i915_debugfs_files[] = {
5399         {"i915_wedged", &i915_wedged_fops},
5400         {"i915_max_freq", &i915_max_freq_fops},
5401         {"i915_min_freq", &i915_min_freq_fops},
5402         {"i915_cache_sharing", &i915_cache_sharing_fops},
5403         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5404         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5405         {"i915_gem_drop_caches", &i915_drop_caches_fops},
5406 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
5407         {"i915_error_state", &i915_error_state_fops},
5408 #endif
5409         {"i915_next_seqno", &i915_next_seqno_fops},
5410         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5411         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5412         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5413         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5414         {"i915_fbc_false_color", &i915_fbc_fc_fops},
5415         {"i915_dp_test_data", &i915_displayport_test_data_fops},
5416         {"i915_dp_test_type", &i915_displayport_test_type_fops},
5417         {"i915_dp_test_active", &i915_displayport_test_active_fops}
5418 };
5419
5420 void intel_display_crc_init(struct drm_i915_private *dev_priv)
5421 {
5422         enum pipe pipe;
5423
5424         for_each_pipe(dev_priv, pipe) {
5425                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5426
5427                 pipe_crc->opened = false;
5428                 spin_lock_init(&pipe_crc->lock);
5429                 init_waitqueue_head(&pipe_crc->wq);
5430         }
5431 }
5432
5433 int i915_debugfs_register(struct drm_i915_private *dev_priv)
5434 {
5435         struct drm_minor *minor = dev_priv->drm.primary;
5436         int ret, i;
5437
5438         ret = i915_forcewake_create(minor->debugfs_root, minor);
5439         if (ret)
5440                 return ret;
5441
5442         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5443                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5444                 if (ret)
5445                         return ret;
5446         }
5447
5448         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5449                 ret = i915_debugfs_create(minor->debugfs_root, minor,
5450                                           i915_debugfs_files[i].name,
5451                                           i915_debugfs_files[i].fops);
5452                 if (ret)
5453                         return ret;
5454         }
5455
5456         return drm_debugfs_create_files(i915_debugfs_list,
5457                                         I915_DEBUGFS_ENTRIES,
5458                                         minor->debugfs_root, minor);
5459 }
5460
5461 void i915_debugfs_unregister(struct drm_i915_private *dev_priv)
5462 {
5463         struct drm_minor *minor = dev_priv->drm.primary;
5464         int i;
5465
5466         drm_debugfs_remove_files(i915_debugfs_list,
5467                                  I915_DEBUGFS_ENTRIES, minor);
5468
5469         drm_debugfs_remove_files((struct drm_info_list *)&i915_forcewake_fops,
5470                                  1, minor);
5471
5472         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5473                 struct drm_info_list *info_list =
5474                         (struct drm_info_list *)&i915_pipe_crc_data[i];
5475
5476                 drm_debugfs_remove_files(info_list, 1, minor);
5477         }
5478
5479         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5480                 struct drm_info_list *info_list =
5481                         (struct drm_info_list *)i915_debugfs_files[i].fops;
5482
5483                 drm_debugfs_remove_files(info_list, 1, minor);
5484         }
5485 }
5486
5487 struct dpcd_block {
5488         /* DPCD dump start address. */
5489         unsigned int offset;
5490         /* DPCD dump end address, inclusive. If unset, .size will be used. */
5491         unsigned int end;
5492         /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5493         size_t size;
5494         /* Only valid for eDP. */
5495         bool edp;
5496 };
5497
5498 static const struct dpcd_block i915_dpcd_debug[] = {
5499         { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5500         { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5501         { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5502         { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5503         { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5504         { .offset = DP_SET_POWER },
5505         { .offset = DP_EDP_DPCD_REV },
5506         { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5507         { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5508         { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5509 };
5510
5511 static int i915_dpcd_show(struct seq_file *m, void *data)
5512 {
5513         struct drm_connector *connector = m->private;
5514         struct intel_dp *intel_dp =
5515                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5516         uint8_t buf[16];
5517         ssize_t err;
5518         int i;
5519
5520         if (connector->status != connector_status_connected)
5521                 return -ENODEV;
5522
5523         for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5524                 const struct dpcd_block *b = &i915_dpcd_debug[i];
5525                 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5526
5527                 if (b->edp &&
5528                     connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5529                         continue;
5530
5531                 /* low tech for now */
5532                 if (WARN_ON(size > sizeof(buf)))
5533                         continue;
5534
5535                 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5536                 if (err <= 0) {
5537                         DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5538                                   size, b->offset, err);
5539                         continue;
5540                 }
5541
5542                 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5543         }
5544
5545         return 0;
5546 }
5547
5548 static int i915_dpcd_open(struct inode *inode, struct file *file)
5549 {
5550         return single_open(file, i915_dpcd_show, inode->i_private);
5551 }
5552
5553 static const struct file_operations i915_dpcd_fops = {
5554         .owner = THIS_MODULE,
5555         .open = i915_dpcd_open,
5556         .read = seq_read,
5557         .llseek = seq_lseek,
5558         .release = single_release,
5559 };
5560
5561 static int i915_panel_show(struct seq_file *m, void *data)
5562 {
5563         struct drm_connector *connector = m->private;
5564         struct intel_dp *intel_dp =
5565                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5566
5567         if (connector->status != connector_status_connected)
5568                 return -ENODEV;
5569
5570         seq_printf(m, "Panel power up delay: %d\n",
5571                    intel_dp->panel_power_up_delay);
5572         seq_printf(m, "Panel power down delay: %d\n",
5573                    intel_dp->panel_power_down_delay);
5574         seq_printf(m, "Backlight on delay: %d\n",
5575                    intel_dp->backlight_on_delay);
5576         seq_printf(m, "Backlight off delay: %d\n",
5577                    intel_dp->backlight_off_delay);
5578
5579         return 0;
5580 }
5581
5582 static int i915_panel_open(struct inode *inode, struct file *file)
5583 {
5584         return single_open(file, i915_panel_show, inode->i_private);
5585 }
5586
5587 static const struct file_operations i915_panel_fops = {
5588         .owner = THIS_MODULE,
5589         .open = i915_panel_open,
5590         .read = seq_read,
5591         .llseek = seq_lseek,
5592         .release = single_release,
5593 };
5594
5595 /**
5596  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5597  * @connector: pointer to a registered drm_connector
5598  *
5599  * Cleanup will be done by drm_connector_unregister() through a call to
5600  * drm_debugfs_connector_remove().
5601  *
5602  * Returns 0 on success, negative error codes on error.
5603  */
5604 int i915_debugfs_connector_add(struct drm_connector *connector)
5605 {
5606         struct dentry *root = connector->debugfs_entry;
5607
5608         /* The connector must have been registered beforehands. */
5609         if (!root)
5610                 return -ENODEV;
5611
5612         if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5613             connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5614                 debugfs_create_file("i915_dpcd", S_IRUGO, root,
5615                                     connector, &i915_dpcd_fops);
5616
5617         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5618                 debugfs_create_file("i915_panel_timings", S_IRUGO, root,
5619                                     connector, &i915_panel_fops);
5620
5621         return 0;
5622 }