Merge tag 'compat-ioctl-fix' of git://git.kernel.org:/pub/scm/linux/kernel/git/arnd...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gvt / scheduler.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35
36 #include <linux/kthread.h>
37
38 #include "gem/i915_gem_pm.h"
39 #include "gt/intel_context.h"
40 #include "gt/intel_ring.h"
41
42 #include "i915_drv.h"
43 #include "i915_gem_gtt.h"
44 #include "gvt.h"
45
46 #define RING_CTX_OFF(x) \
47         offsetof(struct execlist_ring_context, x)
48
49 static void set_context_pdp_root_pointer(
50                 struct execlist_ring_context *ring_context,
51                 u32 pdp[8])
52 {
53         int i;
54
55         for (i = 0; i < 8; i++)
56                 ring_context->pdps[i].val = pdp[7 - i];
57 }
58
59 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
60 {
61         struct drm_i915_gem_object *ctx_obj =
62                 workload->req->context->state->obj;
63         struct execlist_ring_context *shadow_ring_context;
64         struct page *page;
65
66         if (WARN_ON(!workload->shadow_mm))
67                 return;
68
69         if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
70                 return;
71
72         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
73         shadow_ring_context = kmap(page);
74         set_context_pdp_root_pointer(shadow_ring_context,
75                         (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
76         kunmap(page);
77 }
78
79 /*
80  * when populating shadow ctx from guest, we should not overrride oa related
81  * registers, so that they will not be overlapped by guest oa configs. Thus
82  * made it possible to capture oa data from host for both host and guests.
83  */
84 static void sr_oa_regs(struct intel_vgpu_workload *workload,
85                 u32 *reg_state, bool save)
86 {
87         struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
88         u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
89         u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
90         int i = 0;
91         u32 flex_mmio[] = {
92                 i915_mmio_reg_offset(EU_PERF_CNTL0),
93                 i915_mmio_reg_offset(EU_PERF_CNTL1),
94                 i915_mmio_reg_offset(EU_PERF_CNTL2),
95                 i915_mmio_reg_offset(EU_PERF_CNTL3),
96                 i915_mmio_reg_offset(EU_PERF_CNTL4),
97                 i915_mmio_reg_offset(EU_PERF_CNTL5),
98                 i915_mmio_reg_offset(EU_PERF_CNTL6),
99         };
100
101         if (workload->ring_id != RCS0)
102                 return;
103
104         if (save) {
105                 workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
106
107                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
108                         u32 state_offset = ctx_flexeu0 + i * 2;
109
110                         workload->flex_mmio[i] = reg_state[state_offset + 1];
111                 }
112         } else {
113                 reg_state[ctx_oactxctrl] =
114                         i915_mmio_reg_offset(GEN8_OACTXCONTROL);
115                 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
116
117                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
118                         u32 state_offset = ctx_flexeu0 + i * 2;
119                         u32 mmio = flex_mmio[i];
120
121                         reg_state[state_offset] = mmio;
122                         reg_state[state_offset + 1] = workload->flex_mmio[i];
123                 }
124         }
125 }
126
127 static int populate_shadow_context(struct intel_vgpu_workload *workload)
128 {
129         struct intel_vgpu *vgpu = workload->vgpu;
130         struct intel_gvt *gvt = vgpu->gvt;
131         int ring_id = workload->ring_id;
132         struct drm_i915_gem_object *ctx_obj =
133                 workload->req->context->state->obj;
134         struct execlist_ring_context *shadow_ring_context;
135         struct page *page;
136         void *dst;
137         unsigned long context_gpa, context_page_num;
138         int i;
139
140         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
141         shadow_ring_context = kmap(page);
142
143         sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
144 #define COPY_REG(name) \
145         intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
146                 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
147 #define COPY_REG_MASKED(name) {\
148                 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
149                                               + RING_CTX_OFF(name.val),\
150                                               &shadow_ring_context->name.val, 4);\
151                 shadow_ring_context->name.val |= 0xffff << 16;\
152         }
153
154         COPY_REG_MASKED(ctx_ctrl);
155         COPY_REG(ctx_timestamp);
156
157         if (ring_id == RCS0) {
158                 COPY_REG(bb_per_ctx_ptr);
159                 COPY_REG(rcs_indirect_ctx);
160                 COPY_REG(rcs_indirect_ctx_offset);
161         }
162 #undef COPY_REG
163 #undef COPY_REG_MASKED
164
165         intel_gvt_hypervisor_read_gpa(vgpu,
166                         workload->ring_context_gpa +
167                         sizeof(*shadow_ring_context),
168                         (void *)shadow_ring_context +
169                         sizeof(*shadow_ring_context),
170                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
171
172         sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
173         kunmap(page);
174
175         if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
176                 return 0;
177
178         gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
179                         workload->ctx_desc.lrca);
180
181         context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
182
183         context_page_num = context_page_num >> PAGE_SHIFT;
184
185         if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0)
186                 context_page_num = 19;
187
188         i = 2;
189         while (i < context_page_num) {
190                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
191                                 (u32)((workload->ctx_desc.lrca + i) <<
192                                 I915_GTT_PAGE_SHIFT));
193                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
194                         gvt_vgpu_err("Invalid guest context descriptor\n");
195                         return -EFAULT;
196                 }
197
198                 page = i915_gem_object_get_page(ctx_obj, i);
199                 dst = kmap(page);
200                 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
201                                 I915_GTT_PAGE_SIZE);
202                 kunmap(page);
203                 i++;
204         }
205         return 0;
206 }
207
208 static inline bool is_gvt_request(struct i915_request *rq)
209 {
210         return intel_context_force_single_submission(rq->context);
211 }
212
213 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
214 {
215         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
216         u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
217         i915_reg_t reg;
218
219         reg = RING_INSTDONE(ring_base);
220         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
221         reg = RING_ACTHD(ring_base);
222         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
223         reg = RING_ACTHD_UDW(ring_base);
224         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
225 }
226
227 static int shadow_context_status_change(struct notifier_block *nb,
228                 unsigned long action, void *data)
229 {
230         struct i915_request *req = data;
231         struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
232                                 shadow_ctx_notifier_block[req->engine->id]);
233         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
234         enum intel_engine_id ring_id = req->engine->id;
235         struct intel_vgpu_workload *workload;
236         unsigned long flags;
237
238         if (!is_gvt_request(req)) {
239                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
240                 if (action == INTEL_CONTEXT_SCHEDULE_IN &&
241                     scheduler->engine_owner[ring_id]) {
242                         /* Switch ring from vGPU to host. */
243                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
244                                               NULL, ring_id);
245                         scheduler->engine_owner[ring_id] = NULL;
246                 }
247                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
248
249                 return NOTIFY_OK;
250         }
251
252         workload = scheduler->current_workload[ring_id];
253         if (unlikely(!workload))
254                 return NOTIFY_OK;
255
256         switch (action) {
257         case INTEL_CONTEXT_SCHEDULE_IN:
258                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
259                 if (workload->vgpu != scheduler->engine_owner[ring_id]) {
260                         /* Switch ring from host to vGPU or vGPU to vGPU. */
261                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
262                                               workload->vgpu, ring_id);
263                         scheduler->engine_owner[ring_id] = workload->vgpu;
264                 } else
265                         gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
266                                       ring_id, workload->vgpu->id);
267                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
268                 atomic_set(&workload->shadow_ctx_active, 1);
269                 break;
270         case INTEL_CONTEXT_SCHEDULE_OUT:
271                 save_ring_hw_state(workload->vgpu, ring_id);
272                 atomic_set(&workload->shadow_ctx_active, 0);
273                 break;
274         case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
275                 save_ring_hw_state(workload->vgpu, ring_id);
276                 break;
277         default:
278                 WARN_ON(1);
279                 return NOTIFY_OK;
280         }
281         wake_up(&workload->shadow_ctx_status_wq);
282         return NOTIFY_OK;
283 }
284
285 static void
286 shadow_context_descriptor_update(struct intel_context *ce,
287                                  struct intel_vgpu_workload *workload)
288 {
289         u64 desc = ce->lrc_desc;
290
291         /*
292          * Update bits 0-11 of the context descriptor which includes flags
293          * like GEN8_CTX_* cached in desc_template
294          */
295         desc &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
296         desc |= workload->ctx_desc.addressing_mode <<
297                 GEN8_CTX_ADDRESSING_MODE_SHIFT;
298
299         ce->lrc_desc = desc;
300 }
301
302 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
303 {
304         struct intel_vgpu *vgpu = workload->vgpu;
305         struct i915_request *req = workload->req;
306         void *shadow_ring_buffer_va;
307         u32 *cs;
308         int err;
309
310         if (IS_GEN(req->i915, 9) && is_inhibit_context(req->context))
311                 intel_vgpu_restore_inhibit_context(vgpu, req);
312
313         /*
314          * To track whether a request has started on HW, we can emit a
315          * breadcrumb at the beginning of the request and check its
316          * timeline's HWSP to see if the breadcrumb has advanced past the
317          * start of this request. Actually, the request must have the
318          * init_breadcrumb if its timeline set has_init_bread_crumb, or the
319          * scheduler might get a wrong state of it during reset. Since the
320          * requests from gvt always set the has_init_breadcrumb flag, here
321          * need to do the emit_init_breadcrumb for all the requests.
322          */
323         if (req->engine->emit_init_breadcrumb) {
324                 err = req->engine->emit_init_breadcrumb(req);
325                 if (err) {
326                         gvt_vgpu_err("fail to emit init breadcrumb\n");
327                         return err;
328                 }
329         }
330
331         /* allocate shadow ring buffer */
332         cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
333         if (IS_ERR(cs)) {
334                 gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
335                         workload->rb_len);
336                 return PTR_ERR(cs);
337         }
338
339         shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
340
341         /* get shadow ring buffer va */
342         workload->shadow_ring_buffer_va = cs;
343
344         memcpy(cs, shadow_ring_buffer_va,
345                         workload->rb_len);
346
347         cs += workload->rb_len / sizeof(u32);
348         intel_ring_advance(workload->req, cs);
349
350         return 0;
351 }
352
353 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
354 {
355         if (!wa_ctx->indirect_ctx.obj)
356                 return;
357
358         i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
359         i915_gem_object_put(wa_ctx->indirect_ctx.obj);
360
361         wa_ctx->indirect_ctx.obj = NULL;
362         wa_ctx->indirect_ctx.shadow_va = NULL;
363 }
364
365 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
366                                           struct intel_context *ce)
367 {
368         struct intel_vgpu_mm *mm = workload->shadow_mm;
369         struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
370         int i = 0;
371
372         if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
373                 px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0];
374         } else {
375                 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
376                         struct i915_page_directory * const pd =
377                                 i915_pd_entry(ppgtt->pd, i);
378
379                         px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i];
380                 }
381         }
382 }
383
384 static int
385 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
386 {
387         struct intel_vgpu *vgpu = workload->vgpu;
388         struct intel_vgpu_submission *s = &vgpu->submission;
389         struct i915_request *rq;
390
391         if (workload->req)
392                 return 0;
393
394         rq = i915_request_create(s->shadow[workload->ring_id]);
395         if (IS_ERR(rq)) {
396                 gvt_vgpu_err("fail to allocate gem request\n");
397                 return PTR_ERR(rq);
398         }
399
400         workload->req = i915_request_get(rq);
401         return 0;
402 }
403
404 /**
405  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
406  * shadow it as well, include ringbuffer,wa_ctx and ctx.
407  * @workload: an abstract entity for each execlist submission.
408  *
409  * This function is called before the workload submitting to i915, to make
410  * sure the content of the workload is valid.
411  */
412 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
413 {
414         struct intel_vgpu *vgpu = workload->vgpu;
415         struct intel_vgpu_submission *s = &vgpu->submission;
416         int ret;
417
418         lockdep_assert_held(&vgpu->vgpu_lock);
419
420         if (workload->shadow)
421                 return 0;
422
423         if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
424                 shadow_context_descriptor_update(s->shadow[workload->ring_id],
425                                                  workload);
426
427         ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
428         if (ret)
429                 return ret;
430
431         if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) {
432                 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
433                 if (ret)
434                         goto err_shadow;
435         }
436
437         workload->shadow = true;
438         return 0;
439 err_shadow:
440         release_shadow_wa_ctx(&workload->wa_ctx);
441         return ret;
442 }
443
444 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
445
446 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
447 {
448         struct intel_gvt *gvt = workload->vgpu->gvt;
449         const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
450         struct intel_vgpu_shadow_bb *bb;
451         int ret;
452
453         list_for_each_entry(bb, &workload->shadow_bb, list) {
454                 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
455                  * is only updated into ring_scan_buffer, not real ring address
456                  * allocated in later copy_workload_to_ring_buffer. pls be noted
457                  * shadow_ring_buffer_va is now pointed to real ring buffer va
458                  * in copy_workload_to_ring_buffer.
459                  */
460
461                 if (bb->bb_offset)
462                         bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
463                                 + bb->bb_offset;
464
465                 if (bb->ppgtt) {
466                         /* for non-priv bb, scan&shadow is only for
467                          * debugging purpose, so the content of shadow bb
468                          * is the same as original bb. Therefore,
469                          * here, rather than switch to shadow bb's gma
470                          * address, we directly use original batch buffer's
471                          * gma address, and send original bb to hardware
472                          * directly
473                          */
474                         if (bb->clflush & CLFLUSH_AFTER) {
475                                 drm_clflush_virt_range(bb->va,
476                                                 bb->obj->base.size);
477                                 bb->clflush &= ~CLFLUSH_AFTER;
478                         }
479                         i915_gem_object_finish_access(bb->obj);
480                         bb->accessing = false;
481
482                 } else {
483                         bb->vma = i915_gem_object_ggtt_pin(bb->obj,
484                                         NULL, 0, 0, 0);
485                         if (IS_ERR(bb->vma)) {
486                                 ret = PTR_ERR(bb->vma);
487                                 goto err;
488                         }
489
490                         /* relocate shadow batch buffer */
491                         bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
492                         if (gmadr_bytes == 8)
493                                 bb->bb_start_cmd_va[2] = 0;
494
495                         /* No one is going to touch shadow bb from now on. */
496                         if (bb->clflush & CLFLUSH_AFTER) {
497                                 drm_clflush_virt_range(bb->va,
498                                                 bb->obj->base.size);
499                                 bb->clflush &= ~CLFLUSH_AFTER;
500                         }
501
502                         ret = i915_gem_object_set_to_gtt_domain(bb->obj,
503                                                                 false);
504                         if (ret)
505                                 goto err;
506
507                         ret = i915_vma_move_to_active(bb->vma,
508                                                       workload->req,
509                                                       0);
510                         if (ret)
511                                 goto err;
512
513                         i915_gem_object_finish_access(bb->obj);
514                         bb->accessing = false;
515                 }
516         }
517         return 0;
518 err:
519         release_shadow_batch_buffer(workload);
520         return ret;
521 }
522
523 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
524 {
525         struct intel_vgpu_workload *workload =
526                 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
527         struct i915_request *rq = workload->req;
528         struct execlist_ring_context *shadow_ring_context =
529                 (struct execlist_ring_context *)rq->context->lrc_reg_state;
530
531         shadow_ring_context->bb_per_ctx_ptr.val =
532                 (shadow_ring_context->bb_per_ctx_ptr.val &
533                 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
534         shadow_ring_context->rcs_indirect_ctx.val =
535                 (shadow_ring_context->rcs_indirect_ctx.val &
536                 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
537 }
538
539 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
540 {
541         struct i915_vma *vma;
542         unsigned char *per_ctx_va =
543                 (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
544                 wa_ctx->indirect_ctx.size;
545
546         if (wa_ctx->indirect_ctx.size == 0)
547                 return 0;
548
549         vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
550                                        0, CACHELINE_BYTES, 0);
551         if (IS_ERR(vma))
552                 return PTR_ERR(vma);
553
554         /* FIXME: we are not tracking our pinned VMA leaving it
555          * up to the core to fix up the stray pin_count upon
556          * free.
557          */
558
559         wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
560
561         wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
562         memset(per_ctx_va, 0, CACHELINE_BYTES);
563
564         update_wa_ctx_2_shadow_ctx(wa_ctx);
565         return 0;
566 }
567
568 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
569 {
570         struct intel_vgpu *vgpu = workload->vgpu;
571         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
572         u32 ring_base;
573
574         ring_base = dev_priv->engine[workload->ring_id]->mmio_base;
575         vgpu_vreg_t(vgpu, RING_START(ring_base)) = workload->rb_start;
576 }
577
578 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
579 {
580         struct intel_vgpu_shadow_bb *bb, *pos;
581
582         if (list_empty(&workload->shadow_bb))
583                 return;
584
585         bb = list_first_entry(&workload->shadow_bb,
586                         struct intel_vgpu_shadow_bb, list);
587
588         list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
589                 if (bb->obj) {
590                         if (bb->accessing)
591                                 i915_gem_object_finish_access(bb->obj);
592
593                         if (bb->va && !IS_ERR(bb->va))
594                                 i915_gem_object_unpin_map(bb->obj);
595
596                         if (bb->vma && !IS_ERR(bb->vma)) {
597                                 i915_vma_unpin(bb->vma);
598                                 i915_vma_close(bb->vma);
599                         }
600                         i915_gem_object_put(bb->obj);
601                 }
602                 list_del(&bb->list);
603                 kfree(bb);
604         }
605 }
606
607 static int prepare_workload(struct intel_vgpu_workload *workload)
608 {
609         struct intel_vgpu *vgpu = workload->vgpu;
610         struct intel_vgpu_submission *s = &vgpu->submission;
611         int ring = workload->ring_id;
612         int ret = 0;
613
614         ret = intel_vgpu_pin_mm(workload->shadow_mm);
615         if (ret) {
616                 gvt_vgpu_err("fail to vgpu pin mm\n");
617                 return ret;
618         }
619
620         if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
621             !workload->shadow_mm->ppgtt_mm.shadowed) {
622                 gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
623                 return -EINVAL;
624         }
625
626         update_shadow_pdps(workload);
627
628         set_context_ppgtt_from_shadow(workload, s->shadow[ring]);
629
630         ret = intel_vgpu_sync_oos_pages(workload->vgpu);
631         if (ret) {
632                 gvt_vgpu_err("fail to vgpu sync oos pages\n");
633                 goto err_unpin_mm;
634         }
635
636         ret = intel_vgpu_flush_post_shadow(workload->vgpu);
637         if (ret) {
638                 gvt_vgpu_err("fail to flush post shadow\n");
639                 goto err_unpin_mm;
640         }
641
642         ret = copy_workload_to_ring_buffer(workload);
643         if (ret) {
644                 gvt_vgpu_err("fail to generate request\n");
645                 goto err_unpin_mm;
646         }
647
648         ret = prepare_shadow_batch_buffer(workload);
649         if (ret) {
650                 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
651                 goto err_unpin_mm;
652         }
653
654         ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
655         if (ret) {
656                 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
657                 goto err_shadow_batch;
658         }
659
660         if (workload->prepare) {
661                 ret = workload->prepare(workload);
662                 if (ret)
663                         goto err_shadow_wa_ctx;
664         }
665
666         return 0;
667 err_shadow_wa_ctx:
668         release_shadow_wa_ctx(&workload->wa_ctx);
669 err_shadow_batch:
670         release_shadow_batch_buffer(workload);
671 err_unpin_mm:
672         intel_vgpu_unpin_mm(workload->shadow_mm);
673         return ret;
674 }
675
676 static int dispatch_workload(struct intel_vgpu_workload *workload)
677 {
678         struct intel_vgpu *vgpu = workload->vgpu;
679         struct i915_request *rq;
680         int ring_id = workload->ring_id;
681         int ret;
682
683         gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
684                 ring_id, workload);
685
686         mutex_lock(&vgpu->vgpu_lock);
687
688         ret = intel_gvt_workload_req_alloc(workload);
689         if (ret)
690                 goto err_req;
691
692         ret = intel_gvt_scan_and_shadow_workload(workload);
693         if (ret)
694                 goto out;
695
696         ret = populate_shadow_context(workload);
697         if (ret) {
698                 release_shadow_wa_ctx(&workload->wa_ctx);
699                 goto out;
700         }
701
702         ret = prepare_workload(workload);
703 out:
704         if (ret) {
705                 /* We might still need to add request with
706                  * clean ctx to retire it properly..
707                  */
708                 rq = fetch_and_zero(&workload->req);
709                 i915_request_put(rq);
710         }
711
712         if (!IS_ERR_OR_NULL(workload->req)) {
713                 gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
714                                 ring_id, workload->req);
715                 i915_request_add(workload->req);
716                 workload->dispatched = true;
717         }
718 err_req:
719         if (ret)
720                 workload->status = ret;
721         mutex_unlock(&vgpu->vgpu_lock);
722         return ret;
723 }
724
725 static struct intel_vgpu_workload *pick_next_workload(
726                 struct intel_gvt *gvt, int ring_id)
727 {
728         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
729         struct intel_vgpu_workload *workload = NULL;
730
731         mutex_lock(&gvt->sched_lock);
732
733         /*
734          * no current vgpu / will be scheduled out / no workload
735          * bail out
736          */
737         if (!scheduler->current_vgpu) {
738                 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
739                 goto out;
740         }
741
742         if (scheduler->need_reschedule) {
743                 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
744                 goto out;
745         }
746
747         if (!scheduler->current_vgpu->active ||
748             list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
749                 goto out;
750
751         /*
752          * still have current workload, maybe the workload disptacher
753          * fail to submit it for some reason, resubmit it.
754          */
755         if (scheduler->current_workload[ring_id]) {
756                 workload = scheduler->current_workload[ring_id];
757                 gvt_dbg_sched("ring id %d still have current workload %p\n",
758                                 ring_id, workload);
759                 goto out;
760         }
761
762         /*
763          * pick a workload as current workload
764          * once current workload is set, schedule policy routines
765          * will wait the current workload is finished when trying to
766          * schedule out a vgpu.
767          */
768         scheduler->current_workload[ring_id] = container_of(
769                         workload_q_head(scheduler->current_vgpu, ring_id)->next,
770                         struct intel_vgpu_workload, list);
771
772         workload = scheduler->current_workload[ring_id];
773
774         gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
775
776         atomic_inc(&workload->vgpu->submission.running_workload_num);
777 out:
778         mutex_unlock(&gvt->sched_lock);
779         return workload;
780 }
781
782 static void update_guest_context(struct intel_vgpu_workload *workload)
783 {
784         struct i915_request *rq = workload->req;
785         struct intel_vgpu *vgpu = workload->vgpu;
786         struct intel_gvt *gvt = vgpu->gvt;
787         struct drm_i915_gem_object *ctx_obj = rq->context->state->obj;
788         struct execlist_ring_context *shadow_ring_context;
789         struct page *page;
790         void *src;
791         unsigned long context_gpa, context_page_num;
792         int i;
793         struct drm_i915_private *dev_priv = gvt->dev_priv;
794         u32 ring_base;
795         u32 head, tail;
796         u16 wrap_count;
797
798         gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
799                       workload->ctx_desc.lrca);
800
801         head = workload->rb_head;
802         tail = workload->rb_tail;
803         wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
804
805         if (tail < head) {
806                 if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
807                         wrap_count = 0;
808                 else
809                         wrap_count += 1;
810         }
811
812         head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
813
814         ring_base = dev_priv->engine[workload->ring_id]->mmio_base;
815         vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
816         vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
817
818         context_page_num = rq->engine->context_size;
819         context_page_num = context_page_num >> PAGE_SHIFT;
820
821         if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0)
822                 context_page_num = 19;
823
824         i = 2;
825
826         while (i < context_page_num) {
827                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
828                                 (u32)((workload->ctx_desc.lrca + i) <<
829                                         I915_GTT_PAGE_SHIFT));
830                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
831                         gvt_vgpu_err("invalid guest context descriptor\n");
832                         return;
833                 }
834
835                 page = i915_gem_object_get_page(ctx_obj, i);
836                 src = kmap(page);
837                 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
838                                 I915_GTT_PAGE_SIZE);
839                 kunmap(page);
840                 i++;
841         }
842
843         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
844                 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
845
846         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
847         shadow_ring_context = kmap(page);
848
849 #define COPY_REG(name) \
850         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
851                 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
852
853         COPY_REG(ctx_ctrl);
854         COPY_REG(ctx_timestamp);
855
856 #undef COPY_REG
857
858         intel_gvt_hypervisor_write_gpa(vgpu,
859                         workload->ring_context_gpa +
860                         sizeof(*shadow_ring_context),
861                         (void *)shadow_ring_context +
862                         sizeof(*shadow_ring_context),
863                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
864
865         kunmap(page);
866 }
867
868 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
869                                 intel_engine_mask_t engine_mask)
870 {
871         struct intel_vgpu_submission *s = &vgpu->submission;
872         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
873         struct intel_engine_cs *engine;
874         struct intel_vgpu_workload *pos, *n;
875         intel_engine_mask_t tmp;
876
877         /* free the unsubmited workloads in the queues. */
878         for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) {
879                 list_for_each_entry_safe(pos, n,
880                         &s->workload_q_head[engine->id], list) {
881                         list_del_init(&pos->list);
882                         intel_vgpu_destroy_workload(pos);
883                 }
884                 clear_bit(engine->id, s->shadow_ctx_desc_updated);
885         }
886 }
887
888 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
889 {
890         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
891         struct intel_vgpu_workload *workload =
892                 scheduler->current_workload[ring_id];
893         struct intel_vgpu *vgpu = workload->vgpu;
894         struct intel_vgpu_submission *s = &vgpu->submission;
895         struct i915_request *rq = workload->req;
896         int event;
897
898         mutex_lock(&vgpu->vgpu_lock);
899         mutex_lock(&gvt->sched_lock);
900
901         /* For the workload w/ request, needs to wait for the context
902          * switch to make sure request is completed.
903          * For the workload w/o request, directly complete the workload.
904          */
905         if (rq) {
906                 wait_event(workload->shadow_ctx_status_wq,
907                            !atomic_read(&workload->shadow_ctx_active));
908
909                 /* If this request caused GPU hang, req->fence.error will
910                  * be set to -EIO. Use -EIO to set workload status so
911                  * that when this request caused GPU hang, didn't trigger
912                  * context switch interrupt to guest.
913                  */
914                 if (likely(workload->status == -EINPROGRESS)) {
915                         if (workload->req->fence.error == -EIO)
916                                 workload->status = -EIO;
917                         else
918                                 workload->status = 0;
919                 }
920
921                 if (!workload->status &&
922                     !(vgpu->resetting_eng & BIT(ring_id))) {
923                         update_guest_context(workload);
924
925                         for_each_set_bit(event, workload->pending_events,
926                                          INTEL_GVT_EVENT_MAX)
927                                 intel_vgpu_trigger_virtual_event(vgpu, event);
928                 }
929
930                 i915_request_put(fetch_and_zero(&workload->req));
931         }
932
933         gvt_dbg_sched("ring id %d complete workload %p status %d\n",
934                         ring_id, workload, workload->status);
935
936         scheduler->current_workload[ring_id] = NULL;
937
938         list_del_init(&workload->list);
939
940         if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
941                 /* if workload->status is not successful means HW GPU
942                  * has occurred GPU hang or something wrong with i915/GVT,
943                  * and GVT won't inject context switch interrupt to guest.
944                  * So this error is a vGPU hang actually to the guest.
945                  * According to this we should emunlate a vGPU hang. If
946                  * there are pending workloads which are already submitted
947                  * from guest, we should clean them up like HW GPU does.
948                  *
949                  * if it is in middle of engine resetting, the pending
950                  * workloads won't be submitted to HW GPU and will be
951                  * cleaned up during the resetting process later, so doing
952                  * the workload clean up here doesn't have any impact.
953                  **/
954                 intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
955         }
956
957         workload->complete(workload);
958
959         atomic_dec(&s->running_workload_num);
960         wake_up(&scheduler->workload_complete_wq);
961
962         if (gvt->scheduler.need_reschedule)
963                 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
964
965         mutex_unlock(&gvt->sched_lock);
966         mutex_unlock(&vgpu->vgpu_lock);
967 }
968
969 struct workload_thread_param {
970         struct intel_gvt *gvt;
971         int ring_id;
972 };
973
974 static int workload_thread(void *priv)
975 {
976         struct workload_thread_param *p = (struct workload_thread_param *)priv;
977         struct intel_gvt *gvt = p->gvt;
978         int ring_id = p->ring_id;
979         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
980         struct intel_vgpu_workload *workload = NULL;
981         struct intel_vgpu *vgpu = NULL;
982         int ret;
983         bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9);
984         DEFINE_WAIT_FUNC(wait, woken_wake_function);
985         struct intel_runtime_pm *rpm = &gvt->dev_priv->runtime_pm;
986
987         kfree(p);
988
989         gvt_dbg_core("workload thread for ring %d started\n", ring_id);
990
991         while (!kthread_should_stop()) {
992                 add_wait_queue(&scheduler->waitq[ring_id], &wait);
993                 do {
994                         workload = pick_next_workload(gvt, ring_id);
995                         if (workload)
996                                 break;
997                         wait_woken(&wait, TASK_INTERRUPTIBLE,
998                                    MAX_SCHEDULE_TIMEOUT);
999                 } while (!kthread_should_stop());
1000                 remove_wait_queue(&scheduler->waitq[ring_id], &wait);
1001
1002                 if (!workload)
1003                         break;
1004
1005                 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
1006                                 workload->ring_id, workload,
1007                                 workload->vgpu->id);
1008
1009                 intel_runtime_pm_get(rpm);
1010
1011                 gvt_dbg_sched("ring id %d will dispatch workload %p\n",
1012                                 workload->ring_id, workload);
1013
1014                 if (need_force_wake)
1015                         intel_uncore_forcewake_get(&gvt->dev_priv->uncore,
1016                                         FORCEWAKE_ALL);
1017                 /*
1018                  * Update the vReg of the vGPU which submitted this
1019                  * workload. The vGPU may use these registers for checking
1020                  * the context state. The value comes from GPU commands
1021                  * in this workload.
1022                  */
1023                 update_vreg_in_ctx(workload);
1024
1025                 ret = dispatch_workload(workload);
1026
1027                 if (ret) {
1028                         vgpu = workload->vgpu;
1029                         gvt_vgpu_err("fail to dispatch workload, skip\n");
1030                         goto complete;
1031                 }
1032
1033                 gvt_dbg_sched("ring id %d wait workload %p\n",
1034                                 workload->ring_id, workload);
1035                 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1036
1037 complete:
1038                 gvt_dbg_sched("will complete workload %p, status: %d\n",
1039                                 workload, workload->status);
1040
1041                 complete_current_workload(gvt, ring_id);
1042
1043                 if (need_force_wake)
1044                         intel_uncore_forcewake_put(&gvt->dev_priv->uncore,
1045                                         FORCEWAKE_ALL);
1046
1047                 intel_runtime_pm_put_unchecked(rpm);
1048                 if (ret && (vgpu_is_vm_unhealthy(ret)))
1049                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1050         }
1051         return 0;
1052 }
1053
1054 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1055 {
1056         struct intel_vgpu_submission *s = &vgpu->submission;
1057         struct intel_gvt *gvt = vgpu->gvt;
1058         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1059
1060         if (atomic_read(&s->running_workload_num)) {
1061                 gvt_dbg_sched("wait vgpu idle\n");
1062
1063                 wait_event(scheduler->workload_complete_wq,
1064                                 !atomic_read(&s->running_workload_num));
1065         }
1066 }
1067
1068 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1069 {
1070         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1071         struct intel_engine_cs *engine;
1072         enum intel_engine_id i;
1073
1074         gvt_dbg_core("clean workload scheduler\n");
1075
1076         for_each_engine(engine, gvt->dev_priv, i) {
1077                 atomic_notifier_chain_unregister(
1078                                         &engine->context_status_notifier,
1079                                         &gvt->shadow_ctx_notifier_block[i]);
1080                 kthread_stop(scheduler->thread[i]);
1081         }
1082 }
1083
1084 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1085 {
1086         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1087         struct workload_thread_param *param = NULL;
1088         struct intel_engine_cs *engine;
1089         enum intel_engine_id i;
1090         int ret;
1091
1092         gvt_dbg_core("init workload scheduler\n");
1093
1094         init_waitqueue_head(&scheduler->workload_complete_wq);
1095
1096         for_each_engine(engine, gvt->dev_priv, i) {
1097                 init_waitqueue_head(&scheduler->waitq[i]);
1098
1099                 param = kzalloc(sizeof(*param), GFP_KERNEL);
1100                 if (!param) {
1101                         ret = -ENOMEM;
1102                         goto err;
1103                 }
1104
1105                 param->gvt = gvt;
1106                 param->ring_id = i;
1107
1108                 scheduler->thread[i] = kthread_run(workload_thread, param,
1109                         "gvt workload %d", i);
1110                 if (IS_ERR(scheduler->thread[i])) {
1111                         gvt_err("fail to create workload thread\n");
1112                         ret = PTR_ERR(scheduler->thread[i]);
1113                         goto err;
1114                 }
1115
1116                 gvt->shadow_ctx_notifier_block[i].notifier_call =
1117                                         shadow_context_status_change;
1118                 atomic_notifier_chain_register(&engine->context_status_notifier,
1119                                         &gvt->shadow_ctx_notifier_block[i]);
1120         }
1121         return 0;
1122 err:
1123         intel_gvt_clean_workload_scheduler(gvt);
1124         kfree(param);
1125         param = NULL;
1126         return ret;
1127 }
1128
1129 static void
1130 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1131                                 struct i915_ppgtt *ppgtt)
1132 {
1133         int i;
1134
1135         if (i915_vm_is_4lvl(&ppgtt->vm)) {
1136                 px_dma(ppgtt->pd) = s->i915_context_pml4;
1137         } else {
1138                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1139                         struct i915_page_directory * const pd =
1140                                 i915_pd_entry(ppgtt->pd, i);
1141
1142                         px_dma(pd) = s->i915_context_pdps[i];
1143                 }
1144         }
1145 }
1146
1147 /**
1148  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1149  * @vgpu: a vGPU
1150  *
1151  * This function is called when a vGPU is being destroyed.
1152  *
1153  */
1154 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1155 {
1156         struct intel_vgpu_submission *s = &vgpu->submission;
1157         struct intel_engine_cs *engine;
1158         enum intel_engine_id id;
1159
1160         intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1161
1162         i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1163         for_each_engine(engine, vgpu->gvt->dev_priv, id)
1164                 intel_context_unpin(s->shadow[id]);
1165
1166         kmem_cache_destroy(s->workloads);
1167 }
1168
1169
1170 /**
1171  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1172  * @vgpu: a vGPU
1173  * @engine_mask: engines expected to be reset
1174  *
1175  * This function is called when a vGPU is being destroyed.
1176  *
1177  */
1178 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1179                                  intel_engine_mask_t engine_mask)
1180 {
1181         struct intel_vgpu_submission *s = &vgpu->submission;
1182
1183         if (!s->active)
1184                 return;
1185
1186         intel_vgpu_clean_workloads(vgpu, engine_mask);
1187         s->ops->reset(vgpu, engine_mask);
1188 }
1189
1190 static void
1191 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1192                              struct i915_ppgtt *ppgtt)
1193 {
1194         int i;
1195
1196         if (i915_vm_is_4lvl(&ppgtt->vm)) {
1197                 s->i915_context_pml4 = px_dma(ppgtt->pd);
1198         } else {
1199                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1200                         struct i915_page_directory * const pd =
1201                                 i915_pd_entry(ppgtt->pd, i);
1202
1203                         s->i915_context_pdps[i] = px_dma(pd);
1204                 }
1205         }
1206 }
1207
1208 /**
1209  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1210  * @vgpu: a vGPU
1211  *
1212  * This function is called when a vGPU is being created.
1213  *
1214  * Returns:
1215  * Zero on success, negative error code if failed.
1216  *
1217  */
1218 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1219 {
1220         struct drm_i915_private *i915 = vgpu->gvt->dev_priv;
1221         struct intel_vgpu_submission *s = &vgpu->submission;
1222         struct intel_engine_cs *engine;
1223         struct i915_ppgtt *ppgtt;
1224         enum intel_engine_id i;
1225         int ret;
1226
1227         ppgtt = i915_ppgtt_create(&i915->gt);
1228         if (IS_ERR(ppgtt))
1229                 return PTR_ERR(ppgtt);
1230
1231         i915_context_ppgtt_root_save(s, ppgtt);
1232
1233         for_each_engine(engine, i915, i) {
1234                 struct intel_context *ce;
1235
1236                 INIT_LIST_HEAD(&s->workload_q_head[i]);
1237                 s->shadow[i] = ERR_PTR(-EINVAL);
1238
1239                 ce = intel_context_create(engine);
1240                 if (IS_ERR(ce)) {
1241                         ret = PTR_ERR(ce);
1242                         goto out_shadow_ctx;
1243                 }
1244
1245                 i915_vm_put(ce->vm);
1246                 ce->vm = i915_vm_get(&ppgtt->vm);
1247                 intel_context_set_single_submission(ce);
1248
1249                 if (!USES_GUC_SUBMISSION(i915)) { /* Max ring buffer size */
1250                         const unsigned int ring_size = 512 * SZ_4K;
1251
1252                         ce->ring = __intel_context_ring_size(ring_size);
1253                 }
1254
1255                 ret = intel_context_pin(ce);
1256                 intel_context_put(ce);
1257                 if (ret)
1258                         goto out_shadow_ctx;
1259
1260                 s->shadow[i] = ce;
1261         }
1262
1263         bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1264
1265         s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1266                                                   sizeof(struct intel_vgpu_workload), 0,
1267                                                   SLAB_HWCACHE_ALIGN,
1268                                                   offsetof(struct intel_vgpu_workload, rb_tail),
1269                                                   sizeof_field(struct intel_vgpu_workload, rb_tail),
1270                                                   NULL);
1271
1272         if (!s->workloads) {
1273                 ret = -ENOMEM;
1274                 goto out_shadow_ctx;
1275         }
1276
1277         atomic_set(&s->running_workload_num, 0);
1278         bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1279
1280         i915_vm_put(&ppgtt->vm);
1281         return 0;
1282
1283 out_shadow_ctx:
1284         i915_context_ppgtt_root_restore(s, ppgtt);
1285         for_each_engine(engine, i915, i) {
1286                 if (IS_ERR(s->shadow[i]))
1287                         break;
1288
1289                 intel_context_unpin(s->shadow[i]);
1290                 intel_context_put(s->shadow[i]);
1291         }
1292         i915_vm_put(&ppgtt->vm);
1293         return ret;
1294 }
1295
1296 /**
1297  * intel_vgpu_select_submission_ops - select virtual submission interface
1298  * @vgpu: a vGPU
1299  * @engine_mask: either ALL_ENGINES or target engine mask
1300  * @interface: expected vGPU virtual submission interface
1301  *
1302  * This function is called when guest configures submission interface.
1303  *
1304  * Returns:
1305  * Zero on success, negative error code if failed.
1306  *
1307  */
1308 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1309                                      intel_engine_mask_t engine_mask,
1310                                      unsigned int interface)
1311 {
1312         struct intel_vgpu_submission *s = &vgpu->submission;
1313         const struct intel_vgpu_submission_ops *ops[] = {
1314                 [INTEL_VGPU_EXECLIST_SUBMISSION] =
1315                         &intel_vgpu_execlist_submission_ops,
1316         };
1317         int ret;
1318
1319         if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1320                 return -EINVAL;
1321
1322         if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1323                 return -EINVAL;
1324
1325         if (s->active)
1326                 s->ops->clean(vgpu, engine_mask);
1327
1328         if (interface == 0) {
1329                 s->ops = NULL;
1330                 s->virtual_submission_interface = 0;
1331                 s->active = false;
1332                 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1333                 return 0;
1334         }
1335
1336         ret = ops[interface]->init(vgpu, engine_mask);
1337         if (ret)
1338                 return ret;
1339
1340         s->ops = ops[interface];
1341         s->virtual_submission_interface = interface;
1342         s->active = true;
1343
1344         gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1345                         vgpu->id, s->ops->name);
1346
1347         return 0;
1348 }
1349
1350 /**
1351  * intel_vgpu_destroy_workload - destroy a vGPU workload
1352  * @workload: workload to destroy
1353  *
1354  * This function is called when destroy a vGPU workload.
1355  *
1356  */
1357 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1358 {
1359         struct intel_vgpu_submission *s = &workload->vgpu->submission;
1360
1361         release_shadow_batch_buffer(workload);
1362         release_shadow_wa_ctx(&workload->wa_ctx);
1363
1364         if (workload->shadow_mm)
1365                 intel_vgpu_mm_put(workload->shadow_mm);
1366
1367         kmem_cache_free(s->workloads, workload);
1368 }
1369
1370 static struct intel_vgpu_workload *
1371 alloc_workload(struct intel_vgpu *vgpu)
1372 {
1373         struct intel_vgpu_submission *s = &vgpu->submission;
1374         struct intel_vgpu_workload *workload;
1375
1376         workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1377         if (!workload)
1378                 return ERR_PTR(-ENOMEM);
1379
1380         INIT_LIST_HEAD(&workload->list);
1381         INIT_LIST_HEAD(&workload->shadow_bb);
1382
1383         init_waitqueue_head(&workload->shadow_ctx_status_wq);
1384         atomic_set(&workload->shadow_ctx_active, 0);
1385
1386         workload->status = -EINPROGRESS;
1387         workload->vgpu = vgpu;
1388
1389         return workload;
1390 }
1391
1392 #define RING_CTX_OFF(x) \
1393         offsetof(struct execlist_ring_context, x)
1394
1395 static void read_guest_pdps(struct intel_vgpu *vgpu,
1396                 u64 ring_context_gpa, u32 pdp[8])
1397 {
1398         u64 gpa;
1399         int i;
1400
1401         gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1402
1403         for (i = 0; i < 8; i++)
1404                 intel_gvt_hypervisor_read_gpa(vgpu,
1405                                 gpa + i * 8, &pdp[7 - i], 4);
1406 }
1407
1408 static int prepare_mm(struct intel_vgpu_workload *workload)
1409 {
1410         struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1411         struct intel_vgpu_mm *mm;
1412         struct intel_vgpu *vgpu = workload->vgpu;
1413         enum intel_gvt_gtt_type root_entry_type;
1414         u64 pdps[GVT_RING_CTX_NR_PDPS];
1415
1416         switch (desc->addressing_mode) {
1417         case 1: /* legacy 32-bit */
1418                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1419                 break;
1420         case 3: /* legacy 64-bit */
1421                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1422                 break;
1423         default:
1424                 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1425                 return -EINVAL;
1426         }
1427
1428         read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1429
1430         mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1431         if (IS_ERR(mm))
1432                 return PTR_ERR(mm);
1433
1434         workload->shadow_mm = mm;
1435         return 0;
1436 }
1437
1438 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1439                 ((a)->lrca == (b)->lrca))
1440
1441 /**
1442  * intel_vgpu_create_workload - create a vGPU workload
1443  * @vgpu: a vGPU
1444  * @ring_id: ring index
1445  * @desc: a guest context descriptor
1446  *
1447  * This function is called when creating a vGPU workload.
1448  *
1449  * Returns:
1450  * struct intel_vgpu_workload * on success, negative error code in
1451  * pointer if failed.
1452  *
1453  */
1454 struct intel_vgpu_workload *
1455 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1456                            struct execlist_ctx_descriptor_format *desc)
1457 {
1458         struct intel_vgpu_submission *s = &vgpu->submission;
1459         struct list_head *q = workload_q_head(vgpu, ring_id);
1460         struct intel_vgpu_workload *last_workload = NULL;
1461         struct intel_vgpu_workload *workload = NULL;
1462         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1463         u64 ring_context_gpa;
1464         u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1465         u32 guest_head;
1466         int ret;
1467
1468         ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1469                         (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1470         if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1471                 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1472                 return ERR_PTR(-EINVAL);
1473         }
1474
1475         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1476                         RING_CTX_OFF(ring_header.val), &head, 4);
1477
1478         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1479                         RING_CTX_OFF(ring_tail.val), &tail, 4);
1480
1481         guest_head = head;
1482
1483         head &= RB_HEAD_OFF_MASK;
1484         tail &= RB_TAIL_OFF_MASK;
1485
1486         list_for_each_entry_reverse(last_workload, q, list) {
1487
1488                 if (same_context(&last_workload->ctx_desc, desc)) {
1489                         gvt_dbg_el("ring id %d cur workload == last\n",
1490                                         ring_id);
1491                         gvt_dbg_el("ctx head %x real head %lx\n", head,
1492                                         last_workload->rb_tail);
1493                         /*
1494                          * cannot use guest context head pointer here,
1495                          * as it might not be updated at this time
1496                          */
1497                         head = last_workload->rb_tail;
1498                         break;
1499                 }
1500         }
1501
1502         gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1503
1504         /* record some ring buffer register values for scan and shadow */
1505         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1506                         RING_CTX_OFF(rb_start.val), &start, 4);
1507         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1508                         RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1509         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1510                         RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1511
1512         if (!intel_gvt_ggtt_validate_range(vgpu, start,
1513                                 _RING_CTL_BUF_SIZE(ctl))) {
1514                 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1515                 return ERR_PTR(-EINVAL);
1516         }
1517
1518         workload = alloc_workload(vgpu);
1519         if (IS_ERR(workload))
1520                 return workload;
1521
1522         workload->ring_id = ring_id;
1523         workload->ctx_desc = *desc;
1524         workload->ring_context_gpa = ring_context_gpa;
1525         workload->rb_head = head;
1526         workload->guest_rb_head = guest_head;
1527         workload->rb_tail = tail;
1528         workload->rb_start = start;
1529         workload->rb_ctl = ctl;
1530
1531         if (ring_id == RCS0) {
1532                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1533                         RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1534                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1535                         RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1536
1537                 workload->wa_ctx.indirect_ctx.guest_gma =
1538                         indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1539                 workload->wa_ctx.indirect_ctx.size =
1540                         (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1541                         CACHELINE_BYTES;
1542
1543                 if (workload->wa_ctx.indirect_ctx.size != 0) {
1544                         if (!intel_gvt_ggtt_validate_range(vgpu,
1545                                 workload->wa_ctx.indirect_ctx.guest_gma,
1546                                 workload->wa_ctx.indirect_ctx.size)) {
1547                                 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1548                                     workload->wa_ctx.indirect_ctx.guest_gma);
1549                                 kmem_cache_free(s->workloads, workload);
1550                                 return ERR_PTR(-EINVAL);
1551                         }
1552                 }
1553
1554                 workload->wa_ctx.per_ctx.guest_gma =
1555                         per_ctx & PER_CTX_ADDR_MASK;
1556                 workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1557                 if (workload->wa_ctx.per_ctx.valid) {
1558                         if (!intel_gvt_ggtt_validate_range(vgpu,
1559                                 workload->wa_ctx.per_ctx.guest_gma,
1560                                 CACHELINE_BYTES)) {
1561                                 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1562                                         workload->wa_ctx.per_ctx.guest_gma);
1563                                 kmem_cache_free(s->workloads, workload);
1564                                 return ERR_PTR(-EINVAL);
1565                         }
1566                 }
1567         }
1568
1569         gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1570                         workload, ring_id, head, tail, start, ctl);
1571
1572         ret = prepare_mm(workload);
1573         if (ret) {
1574                 kmem_cache_free(s->workloads, workload);
1575                 return ERR_PTR(ret);
1576         }
1577
1578         /* Only scan and shadow the first workload in the queue
1579          * as there is only one pre-allocated buf-obj for shadow.
1580          */
1581         if (list_empty(workload_q_head(vgpu, ring_id))) {
1582                 intel_runtime_pm_get(&dev_priv->runtime_pm);
1583                 ret = intel_gvt_scan_and_shadow_workload(workload);
1584                 intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
1585         }
1586
1587         if (ret) {
1588                 if (vgpu_is_vm_unhealthy(ret))
1589                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1590                 intel_vgpu_destroy_workload(workload);
1591                 return ERR_PTR(ret);
1592         }
1593
1594         return workload;
1595 }
1596
1597 /**
1598  * intel_vgpu_queue_workload - Qeue a vGPU workload
1599  * @workload: the workload to queue in
1600  */
1601 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1602 {
1603         list_add_tail(&workload->list,
1604                 workload_q_head(workload->vgpu, workload->ring_id));
1605         intel_gvt_kick_schedule(workload->vgpu->gvt);
1606         wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1607 }