perf/core: Replace zero-length array with flexible-array
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gvt / scheduler.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35
36 #include <linux/kthread.h>
37
38 #include "gem/i915_gem_pm.h"
39 #include "gt/intel_context.h"
40 #include "gt/intel_ring.h"
41
42 #include "i915_drv.h"
43 #include "i915_gem_gtt.h"
44 #include "gvt.h"
45
46 #define RING_CTX_OFF(x) \
47         offsetof(struct execlist_ring_context, x)
48
49 static void set_context_pdp_root_pointer(
50                 struct execlist_ring_context *ring_context,
51                 u32 pdp[8])
52 {
53         int i;
54
55         for (i = 0; i < 8; i++)
56                 ring_context->pdps[i].val = pdp[7 - i];
57 }
58
59 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
60 {
61         struct drm_i915_gem_object *ctx_obj =
62                 workload->req->context->state->obj;
63         struct execlist_ring_context *shadow_ring_context;
64         struct page *page;
65
66         if (WARN_ON(!workload->shadow_mm))
67                 return;
68
69         if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
70                 return;
71
72         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
73         shadow_ring_context = kmap(page);
74         set_context_pdp_root_pointer(shadow_ring_context,
75                         (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
76         kunmap(page);
77 }
78
79 /*
80  * when populating shadow ctx from guest, we should not overrride oa related
81  * registers, so that they will not be overlapped by guest oa configs. Thus
82  * made it possible to capture oa data from host for both host and guests.
83  */
84 static void sr_oa_regs(struct intel_vgpu_workload *workload,
85                 u32 *reg_state, bool save)
86 {
87         struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915;
88         u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
89         u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
90         int i = 0;
91         u32 flex_mmio[] = {
92                 i915_mmio_reg_offset(EU_PERF_CNTL0),
93                 i915_mmio_reg_offset(EU_PERF_CNTL1),
94                 i915_mmio_reg_offset(EU_PERF_CNTL2),
95                 i915_mmio_reg_offset(EU_PERF_CNTL3),
96                 i915_mmio_reg_offset(EU_PERF_CNTL4),
97                 i915_mmio_reg_offset(EU_PERF_CNTL5),
98                 i915_mmio_reg_offset(EU_PERF_CNTL6),
99         };
100
101         if (workload->engine->id != RCS0)
102                 return;
103
104         if (save) {
105                 workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
106
107                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
108                         u32 state_offset = ctx_flexeu0 + i * 2;
109
110                         workload->flex_mmio[i] = reg_state[state_offset + 1];
111                 }
112         } else {
113                 reg_state[ctx_oactxctrl] =
114                         i915_mmio_reg_offset(GEN8_OACTXCONTROL);
115                 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
116
117                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
118                         u32 state_offset = ctx_flexeu0 + i * 2;
119                         u32 mmio = flex_mmio[i];
120
121                         reg_state[state_offset] = mmio;
122                         reg_state[state_offset + 1] = workload->flex_mmio[i];
123                 }
124         }
125 }
126
127 static int populate_shadow_context(struct intel_vgpu_workload *workload)
128 {
129         struct intel_vgpu *vgpu = workload->vgpu;
130         struct intel_gvt *gvt = vgpu->gvt;
131         struct drm_i915_gem_object *ctx_obj =
132                 workload->req->context->state->obj;
133         struct execlist_ring_context *shadow_ring_context;
134         struct page *page;
135         void *dst;
136         unsigned long context_gpa, context_page_num;
137         int i;
138
139         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
140         shadow_ring_context = kmap(page);
141
142         sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
143 #define COPY_REG(name) \
144         intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
145                 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
146 #define COPY_REG_MASKED(name) {\
147                 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
148                                               + RING_CTX_OFF(name.val),\
149                                               &shadow_ring_context->name.val, 4);\
150                 shadow_ring_context->name.val |= 0xffff << 16;\
151         }
152
153         COPY_REG_MASKED(ctx_ctrl);
154         COPY_REG(ctx_timestamp);
155
156         if (workload->engine->id == RCS0) {
157                 COPY_REG(bb_per_ctx_ptr);
158                 COPY_REG(rcs_indirect_ctx);
159                 COPY_REG(rcs_indirect_ctx_offset);
160         }
161 #undef COPY_REG
162 #undef COPY_REG_MASKED
163
164         intel_gvt_hypervisor_read_gpa(vgpu,
165                         workload->ring_context_gpa +
166                         sizeof(*shadow_ring_context),
167                         (void *)shadow_ring_context +
168                         sizeof(*shadow_ring_context),
169                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
170
171         sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
172         kunmap(page);
173
174         if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
175                 return 0;
176
177         gvt_dbg_sched("ring %s workload lrca %x",
178                       workload->engine->name,
179                       workload->ctx_desc.lrca);
180
181         context_page_num = workload->engine->context_size;
182         context_page_num = context_page_num >> PAGE_SHIFT;
183
184         if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0)
185                 context_page_num = 19;
186
187         i = 2;
188         while (i < context_page_num) {
189                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
190                                 (u32)((workload->ctx_desc.lrca + i) <<
191                                 I915_GTT_PAGE_SHIFT));
192                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
193                         gvt_vgpu_err("Invalid guest context descriptor\n");
194                         return -EFAULT;
195                 }
196
197                 page = i915_gem_object_get_page(ctx_obj, i);
198                 dst = kmap(page);
199                 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
200                                 I915_GTT_PAGE_SIZE);
201                 kunmap(page);
202                 i++;
203         }
204         return 0;
205 }
206
207 static inline bool is_gvt_request(struct i915_request *rq)
208 {
209         return intel_context_force_single_submission(rq->context);
210 }
211
212 static void save_ring_hw_state(struct intel_vgpu *vgpu,
213                                const struct intel_engine_cs *engine)
214 {
215         struct intel_uncore *uncore = engine->uncore;
216         i915_reg_t reg;
217
218         reg = RING_INSTDONE(engine->mmio_base);
219         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
220                 intel_uncore_read(uncore, reg);
221
222         reg = RING_ACTHD(engine->mmio_base);
223         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
224                 intel_uncore_read(uncore, reg);
225
226         reg = RING_ACTHD_UDW(engine->mmio_base);
227         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
228                 intel_uncore_read(uncore, reg);
229 }
230
231 static int shadow_context_status_change(struct notifier_block *nb,
232                 unsigned long action, void *data)
233 {
234         struct i915_request *rq = data;
235         struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
236                                 shadow_ctx_notifier_block[rq->engine->id]);
237         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
238         enum intel_engine_id ring_id = rq->engine->id;
239         struct intel_vgpu_workload *workload;
240         unsigned long flags;
241
242         if (!is_gvt_request(rq)) {
243                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
244                 if (action == INTEL_CONTEXT_SCHEDULE_IN &&
245                     scheduler->engine_owner[ring_id]) {
246                         /* Switch ring from vGPU to host. */
247                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
248                                               NULL, rq->engine);
249                         scheduler->engine_owner[ring_id] = NULL;
250                 }
251                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
252
253                 return NOTIFY_OK;
254         }
255
256         workload = scheduler->current_workload[ring_id];
257         if (unlikely(!workload))
258                 return NOTIFY_OK;
259
260         switch (action) {
261         case INTEL_CONTEXT_SCHEDULE_IN:
262                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
263                 if (workload->vgpu != scheduler->engine_owner[ring_id]) {
264                         /* Switch ring from host to vGPU or vGPU to vGPU. */
265                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
266                                               workload->vgpu, rq->engine);
267                         scheduler->engine_owner[ring_id] = workload->vgpu;
268                 } else
269                         gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
270                                       ring_id, workload->vgpu->id);
271                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
272                 atomic_set(&workload->shadow_ctx_active, 1);
273                 break;
274         case INTEL_CONTEXT_SCHEDULE_OUT:
275                 save_ring_hw_state(workload->vgpu, rq->engine);
276                 atomic_set(&workload->shadow_ctx_active, 0);
277                 break;
278         case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
279                 save_ring_hw_state(workload->vgpu, rq->engine);
280                 break;
281         default:
282                 WARN_ON(1);
283                 return NOTIFY_OK;
284         }
285         wake_up(&workload->shadow_ctx_status_wq);
286         return NOTIFY_OK;
287 }
288
289 static void
290 shadow_context_descriptor_update(struct intel_context *ce,
291                                  struct intel_vgpu_workload *workload)
292 {
293         u64 desc = ce->lrc_desc;
294
295         /*
296          * Update bits 0-11 of the context descriptor which includes flags
297          * like GEN8_CTX_* cached in desc_template
298          */
299         desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT);
300         desc |= (u64)workload->ctx_desc.addressing_mode <<
301                 GEN8_CTX_ADDRESSING_MODE_SHIFT;
302
303         ce->lrc_desc = desc;
304 }
305
306 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
307 {
308         struct intel_vgpu *vgpu = workload->vgpu;
309         struct i915_request *req = workload->req;
310         void *shadow_ring_buffer_va;
311         u32 *cs;
312         int err;
313
314         if (IS_GEN(req->i915, 9) && is_inhibit_context(req->context))
315                 intel_vgpu_restore_inhibit_context(vgpu, req);
316
317         /*
318          * To track whether a request has started on HW, we can emit a
319          * breadcrumb at the beginning of the request and check its
320          * timeline's HWSP to see if the breadcrumb has advanced past the
321          * start of this request. Actually, the request must have the
322          * init_breadcrumb if its timeline set has_init_bread_crumb, or the
323          * scheduler might get a wrong state of it during reset. Since the
324          * requests from gvt always set the has_init_breadcrumb flag, here
325          * need to do the emit_init_breadcrumb for all the requests.
326          */
327         if (req->engine->emit_init_breadcrumb) {
328                 err = req->engine->emit_init_breadcrumb(req);
329                 if (err) {
330                         gvt_vgpu_err("fail to emit init breadcrumb\n");
331                         return err;
332                 }
333         }
334
335         /* allocate shadow ring buffer */
336         cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
337         if (IS_ERR(cs)) {
338                 gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
339                         workload->rb_len);
340                 return PTR_ERR(cs);
341         }
342
343         shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
344
345         /* get shadow ring buffer va */
346         workload->shadow_ring_buffer_va = cs;
347
348         memcpy(cs, shadow_ring_buffer_va,
349                         workload->rb_len);
350
351         cs += workload->rb_len / sizeof(u32);
352         intel_ring_advance(workload->req, cs);
353
354         return 0;
355 }
356
357 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
358 {
359         if (!wa_ctx->indirect_ctx.obj)
360                 return;
361
362         i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
363         i915_gem_object_put(wa_ctx->indirect_ctx.obj);
364
365         wa_ctx->indirect_ctx.obj = NULL;
366         wa_ctx->indirect_ctx.shadow_va = NULL;
367 }
368
369 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
370                                           struct intel_context *ce)
371 {
372         struct intel_vgpu_mm *mm = workload->shadow_mm;
373         struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
374         int i = 0;
375
376         if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
377                 px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0];
378         } else {
379                 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
380                         struct i915_page_directory * const pd =
381                                 i915_pd_entry(ppgtt->pd, i);
382
383                         px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i];
384                 }
385         }
386 }
387
388 static int
389 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
390 {
391         struct intel_vgpu *vgpu = workload->vgpu;
392         struct intel_vgpu_submission *s = &vgpu->submission;
393         struct i915_request *rq;
394
395         if (workload->req)
396                 return 0;
397
398         rq = i915_request_create(s->shadow[workload->engine->id]);
399         if (IS_ERR(rq)) {
400                 gvt_vgpu_err("fail to allocate gem request\n");
401                 return PTR_ERR(rq);
402         }
403
404         workload->req = i915_request_get(rq);
405         return 0;
406 }
407
408 /**
409  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
410  * shadow it as well, include ringbuffer,wa_ctx and ctx.
411  * @workload: an abstract entity for each execlist submission.
412  *
413  * This function is called before the workload submitting to i915, to make
414  * sure the content of the workload is valid.
415  */
416 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
417 {
418         struct intel_vgpu *vgpu = workload->vgpu;
419         struct intel_vgpu_submission *s = &vgpu->submission;
420         int ret;
421
422         lockdep_assert_held(&vgpu->vgpu_lock);
423
424         if (workload->shadow)
425                 return 0;
426
427         if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated))
428                 shadow_context_descriptor_update(s->shadow[workload->engine->id],
429                                                  workload);
430
431         ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
432         if (ret)
433                 return ret;
434
435         if (workload->engine->id == RCS0 &&
436             workload->wa_ctx.indirect_ctx.size) {
437                 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
438                 if (ret)
439                         goto err_shadow;
440         }
441
442         workload->shadow = true;
443         return 0;
444
445 err_shadow:
446         release_shadow_wa_ctx(&workload->wa_ctx);
447         return ret;
448 }
449
450 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
451
452 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
453 {
454         struct intel_gvt *gvt = workload->vgpu->gvt;
455         const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
456         struct intel_vgpu_shadow_bb *bb;
457         int ret;
458
459         list_for_each_entry(bb, &workload->shadow_bb, list) {
460                 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
461                  * is only updated into ring_scan_buffer, not real ring address
462                  * allocated in later copy_workload_to_ring_buffer. pls be noted
463                  * shadow_ring_buffer_va is now pointed to real ring buffer va
464                  * in copy_workload_to_ring_buffer.
465                  */
466
467                 if (bb->bb_offset)
468                         bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
469                                 + bb->bb_offset;
470
471                 if (bb->ppgtt) {
472                         /* for non-priv bb, scan&shadow is only for
473                          * debugging purpose, so the content of shadow bb
474                          * is the same as original bb. Therefore,
475                          * here, rather than switch to shadow bb's gma
476                          * address, we directly use original batch buffer's
477                          * gma address, and send original bb to hardware
478                          * directly
479                          */
480                         if (bb->clflush & CLFLUSH_AFTER) {
481                                 drm_clflush_virt_range(bb->va,
482                                                 bb->obj->base.size);
483                                 bb->clflush &= ~CLFLUSH_AFTER;
484                         }
485                         i915_gem_object_finish_access(bb->obj);
486                         bb->accessing = false;
487
488                 } else {
489                         bb->vma = i915_gem_object_ggtt_pin(bb->obj,
490                                         NULL, 0, 0, 0);
491                         if (IS_ERR(bb->vma)) {
492                                 ret = PTR_ERR(bb->vma);
493                                 goto err;
494                         }
495
496                         /* relocate shadow batch buffer */
497                         bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
498                         if (gmadr_bytes == 8)
499                                 bb->bb_start_cmd_va[2] = 0;
500
501                         /* No one is going to touch shadow bb from now on. */
502                         if (bb->clflush & CLFLUSH_AFTER) {
503                                 drm_clflush_virt_range(bb->va,
504                                                 bb->obj->base.size);
505                                 bb->clflush &= ~CLFLUSH_AFTER;
506                         }
507
508                         ret = i915_gem_object_set_to_gtt_domain(bb->obj,
509                                                                 false);
510                         if (ret)
511                                 goto err;
512
513                         ret = i915_vma_move_to_active(bb->vma,
514                                                       workload->req,
515                                                       0);
516                         if (ret)
517                                 goto err;
518
519                         i915_gem_object_finish_access(bb->obj);
520                         bb->accessing = false;
521                 }
522         }
523         return 0;
524 err:
525         release_shadow_batch_buffer(workload);
526         return ret;
527 }
528
529 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
530 {
531         struct intel_vgpu_workload *workload =
532                 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
533         struct i915_request *rq = workload->req;
534         struct execlist_ring_context *shadow_ring_context =
535                 (struct execlist_ring_context *)rq->context->lrc_reg_state;
536
537         shadow_ring_context->bb_per_ctx_ptr.val =
538                 (shadow_ring_context->bb_per_ctx_ptr.val &
539                 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
540         shadow_ring_context->rcs_indirect_ctx.val =
541                 (shadow_ring_context->rcs_indirect_ctx.val &
542                 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
543 }
544
545 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
546 {
547         struct i915_vma *vma;
548         unsigned char *per_ctx_va =
549                 (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
550                 wa_ctx->indirect_ctx.size;
551
552         if (wa_ctx->indirect_ctx.size == 0)
553                 return 0;
554
555         vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
556                                        0, CACHELINE_BYTES, 0);
557         if (IS_ERR(vma))
558                 return PTR_ERR(vma);
559
560         /* FIXME: we are not tracking our pinned VMA leaving it
561          * up to the core to fix up the stray pin_count upon
562          * free.
563          */
564
565         wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
566
567         wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
568         memset(per_ctx_va, 0, CACHELINE_BYTES);
569
570         update_wa_ctx_2_shadow_ctx(wa_ctx);
571         return 0;
572 }
573
574 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
575 {
576         vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) =
577                 workload->rb_start;
578 }
579
580 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
581 {
582         struct intel_vgpu_shadow_bb *bb, *pos;
583
584         if (list_empty(&workload->shadow_bb))
585                 return;
586
587         bb = list_first_entry(&workload->shadow_bb,
588                         struct intel_vgpu_shadow_bb, list);
589
590         list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
591                 if (bb->obj) {
592                         if (bb->accessing)
593                                 i915_gem_object_finish_access(bb->obj);
594
595                         if (bb->va && !IS_ERR(bb->va))
596                                 i915_gem_object_unpin_map(bb->obj);
597
598                         if (bb->vma && !IS_ERR(bb->vma)) {
599                                 i915_vma_unpin(bb->vma);
600                                 i915_vma_close(bb->vma);
601                         }
602                         i915_gem_object_put(bb->obj);
603                 }
604                 list_del(&bb->list);
605                 kfree(bb);
606         }
607 }
608
609 static int prepare_workload(struct intel_vgpu_workload *workload)
610 {
611         struct intel_vgpu *vgpu = workload->vgpu;
612         struct intel_vgpu_submission *s = &vgpu->submission;
613         int ret = 0;
614
615         ret = intel_vgpu_pin_mm(workload->shadow_mm);
616         if (ret) {
617                 gvt_vgpu_err("fail to vgpu pin mm\n");
618                 return ret;
619         }
620
621         if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
622             !workload->shadow_mm->ppgtt_mm.shadowed) {
623                 gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
624                 return -EINVAL;
625         }
626
627         update_shadow_pdps(workload);
628
629         set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]);
630
631         ret = intel_vgpu_sync_oos_pages(workload->vgpu);
632         if (ret) {
633                 gvt_vgpu_err("fail to vgpu sync oos pages\n");
634                 goto err_unpin_mm;
635         }
636
637         ret = intel_vgpu_flush_post_shadow(workload->vgpu);
638         if (ret) {
639                 gvt_vgpu_err("fail to flush post shadow\n");
640                 goto err_unpin_mm;
641         }
642
643         ret = copy_workload_to_ring_buffer(workload);
644         if (ret) {
645                 gvt_vgpu_err("fail to generate request\n");
646                 goto err_unpin_mm;
647         }
648
649         ret = prepare_shadow_batch_buffer(workload);
650         if (ret) {
651                 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
652                 goto err_unpin_mm;
653         }
654
655         ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
656         if (ret) {
657                 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
658                 goto err_shadow_batch;
659         }
660
661         if (workload->prepare) {
662                 ret = workload->prepare(workload);
663                 if (ret)
664                         goto err_shadow_wa_ctx;
665         }
666
667         return 0;
668 err_shadow_wa_ctx:
669         release_shadow_wa_ctx(&workload->wa_ctx);
670 err_shadow_batch:
671         release_shadow_batch_buffer(workload);
672 err_unpin_mm:
673         intel_vgpu_unpin_mm(workload->shadow_mm);
674         return ret;
675 }
676
677 static int dispatch_workload(struct intel_vgpu_workload *workload)
678 {
679         struct intel_vgpu *vgpu = workload->vgpu;
680         struct i915_request *rq;
681         int ret;
682
683         gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n",
684                       workload->engine->name, workload);
685
686         mutex_lock(&vgpu->vgpu_lock);
687
688         ret = intel_gvt_workload_req_alloc(workload);
689         if (ret)
690                 goto err_req;
691
692         ret = intel_gvt_scan_and_shadow_workload(workload);
693         if (ret)
694                 goto out;
695
696         ret = populate_shadow_context(workload);
697         if (ret) {
698                 release_shadow_wa_ctx(&workload->wa_ctx);
699                 goto out;
700         }
701
702         ret = prepare_workload(workload);
703 out:
704         if (ret) {
705                 /* We might still need to add request with
706                  * clean ctx to retire it properly..
707                  */
708                 rq = fetch_and_zero(&workload->req);
709                 i915_request_put(rq);
710         }
711
712         if (!IS_ERR_OR_NULL(workload->req)) {
713                 gvt_dbg_sched("ring id %s submit workload to i915 %p\n",
714                               workload->engine->name, workload->req);
715                 i915_request_add(workload->req);
716                 workload->dispatched = true;
717         }
718 err_req:
719         if (ret)
720                 workload->status = ret;
721         mutex_unlock(&vgpu->vgpu_lock);
722         return ret;
723 }
724
725 static struct intel_vgpu_workload *
726 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine)
727 {
728         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
729         struct intel_vgpu_workload *workload = NULL;
730
731         mutex_lock(&gvt->sched_lock);
732
733         /*
734          * no current vgpu / will be scheduled out / no workload
735          * bail out
736          */
737         if (!scheduler->current_vgpu) {
738                 gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name);
739                 goto out;
740         }
741
742         if (scheduler->need_reschedule) {
743                 gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name);
744                 goto out;
745         }
746
747         if (!scheduler->current_vgpu->active ||
748             list_empty(workload_q_head(scheduler->current_vgpu, engine)))
749                 goto out;
750
751         /*
752          * still have current workload, maybe the workload disptacher
753          * fail to submit it for some reason, resubmit it.
754          */
755         if (scheduler->current_workload[engine->id]) {
756                 workload = scheduler->current_workload[engine->id];
757                 gvt_dbg_sched("ring %s still have current workload %p\n",
758                               engine->name, workload);
759                 goto out;
760         }
761
762         /*
763          * pick a workload as current workload
764          * once current workload is set, schedule policy routines
765          * will wait the current workload is finished when trying to
766          * schedule out a vgpu.
767          */
768         scheduler->current_workload[engine->id] =
769                 list_first_entry(workload_q_head(scheduler->current_vgpu,
770                                                  engine),
771                                  struct intel_vgpu_workload, list);
772
773         workload = scheduler->current_workload[engine->id];
774
775         gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload);
776
777         atomic_inc(&workload->vgpu->submission.running_workload_num);
778 out:
779         mutex_unlock(&gvt->sched_lock);
780         return workload;
781 }
782
783 static void update_guest_context(struct intel_vgpu_workload *workload)
784 {
785         struct i915_request *rq = workload->req;
786         struct intel_vgpu *vgpu = workload->vgpu;
787         struct drm_i915_gem_object *ctx_obj = rq->context->state->obj;
788         struct execlist_ring_context *shadow_ring_context;
789         struct page *page;
790         void *src;
791         unsigned long context_gpa, context_page_num;
792         int i;
793         u32 ring_base;
794         u32 head, tail;
795         u16 wrap_count;
796
797         gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
798                       workload->ctx_desc.lrca);
799
800         head = workload->rb_head;
801         tail = workload->rb_tail;
802         wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
803
804         if (tail < head) {
805                 if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
806                         wrap_count = 0;
807                 else
808                         wrap_count += 1;
809         }
810
811         head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
812
813         ring_base = rq->engine->mmio_base;
814         vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
815         vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
816
817         context_page_num = rq->engine->context_size;
818         context_page_num = context_page_num >> PAGE_SHIFT;
819
820         if (IS_BROADWELL(rq->i915) && rq->engine->id == RCS0)
821                 context_page_num = 19;
822
823         i = 2;
824
825         while (i < context_page_num) {
826                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
827                                 (u32)((workload->ctx_desc.lrca + i) <<
828                                         I915_GTT_PAGE_SHIFT));
829                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
830                         gvt_vgpu_err("invalid guest context descriptor\n");
831                         return;
832                 }
833
834                 page = i915_gem_object_get_page(ctx_obj, i);
835                 src = kmap(page);
836                 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
837                                 I915_GTT_PAGE_SIZE);
838                 kunmap(page);
839                 i++;
840         }
841
842         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
843                 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
844
845         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
846         shadow_ring_context = kmap(page);
847
848 #define COPY_REG(name) \
849         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
850                 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
851
852         COPY_REG(ctx_ctrl);
853         COPY_REG(ctx_timestamp);
854
855 #undef COPY_REG
856
857         intel_gvt_hypervisor_write_gpa(vgpu,
858                         workload->ring_context_gpa +
859                         sizeof(*shadow_ring_context),
860                         (void *)shadow_ring_context +
861                         sizeof(*shadow_ring_context),
862                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
863
864         kunmap(page);
865 }
866
867 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
868                                 intel_engine_mask_t engine_mask)
869 {
870         struct intel_vgpu_submission *s = &vgpu->submission;
871         struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
872         struct intel_engine_cs *engine;
873         struct intel_vgpu_workload *pos, *n;
874         intel_engine_mask_t tmp;
875
876         /* free the unsubmited workloads in the queues. */
877         for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) {
878                 list_for_each_entry_safe(pos, n,
879                         &s->workload_q_head[engine->id], list) {
880                         list_del_init(&pos->list);
881                         intel_vgpu_destroy_workload(pos);
882                 }
883                 clear_bit(engine->id, s->shadow_ctx_desc_updated);
884         }
885 }
886
887 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
888 {
889         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
890         struct intel_vgpu_workload *workload =
891                 scheduler->current_workload[ring_id];
892         struct intel_vgpu *vgpu = workload->vgpu;
893         struct intel_vgpu_submission *s = &vgpu->submission;
894         struct i915_request *rq = workload->req;
895         int event;
896
897         mutex_lock(&vgpu->vgpu_lock);
898         mutex_lock(&gvt->sched_lock);
899
900         /* For the workload w/ request, needs to wait for the context
901          * switch to make sure request is completed.
902          * For the workload w/o request, directly complete the workload.
903          */
904         if (rq) {
905                 wait_event(workload->shadow_ctx_status_wq,
906                            !atomic_read(&workload->shadow_ctx_active));
907
908                 /* If this request caused GPU hang, req->fence.error will
909                  * be set to -EIO. Use -EIO to set workload status so
910                  * that when this request caused GPU hang, didn't trigger
911                  * context switch interrupt to guest.
912                  */
913                 if (likely(workload->status == -EINPROGRESS)) {
914                         if (workload->req->fence.error == -EIO)
915                                 workload->status = -EIO;
916                         else
917                                 workload->status = 0;
918                 }
919
920                 if (!workload->status &&
921                     !(vgpu->resetting_eng & BIT(ring_id))) {
922                         update_guest_context(workload);
923
924                         for_each_set_bit(event, workload->pending_events,
925                                          INTEL_GVT_EVENT_MAX)
926                                 intel_vgpu_trigger_virtual_event(vgpu, event);
927                 }
928
929                 i915_request_put(fetch_and_zero(&workload->req));
930         }
931
932         gvt_dbg_sched("ring id %d complete workload %p status %d\n",
933                         ring_id, workload, workload->status);
934
935         scheduler->current_workload[ring_id] = NULL;
936
937         list_del_init(&workload->list);
938
939         if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
940                 /* if workload->status is not successful means HW GPU
941                  * has occurred GPU hang or something wrong with i915/GVT,
942                  * and GVT won't inject context switch interrupt to guest.
943                  * So this error is a vGPU hang actually to the guest.
944                  * According to this we should emunlate a vGPU hang. If
945                  * there are pending workloads which are already submitted
946                  * from guest, we should clean them up like HW GPU does.
947                  *
948                  * if it is in middle of engine resetting, the pending
949                  * workloads won't be submitted to HW GPU and will be
950                  * cleaned up during the resetting process later, so doing
951                  * the workload clean up here doesn't have any impact.
952                  **/
953                 intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
954         }
955
956         workload->complete(workload);
957
958         atomic_dec(&s->running_workload_num);
959         wake_up(&scheduler->workload_complete_wq);
960
961         if (gvt->scheduler.need_reschedule)
962                 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
963
964         mutex_unlock(&gvt->sched_lock);
965         mutex_unlock(&vgpu->vgpu_lock);
966 }
967
968 static int workload_thread(void *arg)
969 {
970         struct intel_engine_cs *engine = arg;
971         const bool need_force_wake = INTEL_GEN(engine->i915) >= 9;
972         struct intel_gvt *gvt = engine->i915->gvt;
973         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
974         struct intel_vgpu_workload *workload = NULL;
975         struct intel_vgpu *vgpu = NULL;
976         int ret;
977         DEFINE_WAIT_FUNC(wait, woken_wake_function);
978
979         gvt_dbg_core("workload thread for ring %s started\n", engine->name);
980
981         while (!kthread_should_stop()) {
982                 intel_wakeref_t wakeref;
983
984                 add_wait_queue(&scheduler->waitq[engine->id], &wait);
985                 do {
986                         workload = pick_next_workload(gvt, engine);
987                         if (workload)
988                                 break;
989                         wait_woken(&wait, TASK_INTERRUPTIBLE,
990                                    MAX_SCHEDULE_TIMEOUT);
991                 } while (!kthread_should_stop());
992                 remove_wait_queue(&scheduler->waitq[engine->id], &wait);
993
994                 if (!workload)
995                         break;
996
997                 gvt_dbg_sched("ring %s next workload %p vgpu %d\n",
998                               engine->name, workload,
999                               workload->vgpu->id);
1000
1001                 wakeref = intel_runtime_pm_get(engine->uncore->rpm);
1002
1003                 gvt_dbg_sched("ring %s will dispatch workload %p\n",
1004                               engine->name, workload);
1005
1006                 if (need_force_wake)
1007                         intel_uncore_forcewake_get(engine->uncore,
1008                                                    FORCEWAKE_ALL);
1009                 /*
1010                  * Update the vReg of the vGPU which submitted this
1011                  * workload. The vGPU may use these registers for checking
1012                  * the context state. The value comes from GPU commands
1013                  * in this workload.
1014                  */
1015                 update_vreg_in_ctx(workload);
1016
1017                 ret = dispatch_workload(workload);
1018
1019                 if (ret) {
1020                         vgpu = workload->vgpu;
1021                         gvt_vgpu_err("fail to dispatch workload, skip\n");
1022                         goto complete;
1023                 }
1024
1025                 gvt_dbg_sched("ring %s wait workload %p\n",
1026                               engine->name, workload);
1027                 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1028
1029 complete:
1030                 gvt_dbg_sched("will complete workload %p, status: %d\n",
1031                               workload, workload->status);
1032
1033                 complete_current_workload(gvt, engine->id);
1034
1035                 if (need_force_wake)
1036                         intel_uncore_forcewake_put(engine->uncore,
1037                                                    FORCEWAKE_ALL);
1038
1039                 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1040                 if (ret && (vgpu_is_vm_unhealthy(ret)))
1041                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1042         }
1043         return 0;
1044 }
1045
1046 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1047 {
1048         struct intel_vgpu_submission *s = &vgpu->submission;
1049         struct intel_gvt *gvt = vgpu->gvt;
1050         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1051
1052         if (atomic_read(&s->running_workload_num)) {
1053                 gvt_dbg_sched("wait vgpu idle\n");
1054
1055                 wait_event(scheduler->workload_complete_wq,
1056                                 !atomic_read(&s->running_workload_num));
1057         }
1058 }
1059
1060 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1061 {
1062         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1063         struct intel_engine_cs *engine;
1064         enum intel_engine_id i;
1065
1066         gvt_dbg_core("clean workload scheduler\n");
1067
1068         for_each_engine(engine, gvt->gt, i) {
1069                 atomic_notifier_chain_unregister(
1070                                         &engine->context_status_notifier,
1071                                         &gvt->shadow_ctx_notifier_block[i]);
1072                 kthread_stop(scheduler->thread[i]);
1073         }
1074 }
1075
1076 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1077 {
1078         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1079         struct intel_engine_cs *engine;
1080         enum intel_engine_id i;
1081         int ret;
1082
1083         gvt_dbg_core("init workload scheduler\n");
1084
1085         init_waitqueue_head(&scheduler->workload_complete_wq);
1086
1087         for_each_engine(engine, gvt->gt, i) {
1088                 init_waitqueue_head(&scheduler->waitq[i]);
1089
1090                 scheduler->thread[i] = kthread_run(workload_thread, engine,
1091                                                    "gvt:%s", engine->name);
1092                 if (IS_ERR(scheduler->thread[i])) {
1093                         gvt_err("fail to create workload thread\n");
1094                         ret = PTR_ERR(scheduler->thread[i]);
1095                         goto err;
1096                 }
1097
1098                 gvt->shadow_ctx_notifier_block[i].notifier_call =
1099                                         shadow_context_status_change;
1100                 atomic_notifier_chain_register(&engine->context_status_notifier,
1101                                         &gvt->shadow_ctx_notifier_block[i]);
1102         }
1103
1104         return 0;
1105
1106 err:
1107         intel_gvt_clean_workload_scheduler(gvt);
1108         return ret;
1109 }
1110
1111 static void
1112 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1113                                 struct i915_ppgtt *ppgtt)
1114 {
1115         int i;
1116
1117         if (i915_vm_is_4lvl(&ppgtt->vm)) {
1118                 px_dma(ppgtt->pd) = s->i915_context_pml4;
1119         } else {
1120                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1121                         struct i915_page_directory * const pd =
1122                                 i915_pd_entry(ppgtt->pd, i);
1123
1124                         px_dma(pd) = s->i915_context_pdps[i];
1125                 }
1126         }
1127 }
1128
1129 /**
1130  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1131  * @vgpu: a vGPU
1132  *
1133  * This function is called when a vGPU is being destroyed.
1134  *
1135  */
1136 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1137 {
1138         struct intel_vgpu_submission *s = &vgpu->submission;
1139         struct intel_engine_cs *engine;
1140         enum intel_engine_id id;
1141
1142         intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1143
1144         i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1145         for_each_engine(engine, vgpu->gvt->gt, id)
1146                 intel_context_unpin(s->shadow[id]);
1147
1148         kmem_cache_destroy(s->workloads);
1149 }
1150
1151
1152 /**
1153  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1154  * @vgpu: a vGPU
1155  * @engine_mask: engines expected to be reset
1156  *
1157  * This function is called when a vGPU is being destroyed.
1158  *
1159  */
1160 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1161                                  intel_engine_mask_t engine_mask)
1162 {
1163         struct intel_vgpu_submission *s = &vgpu->submission;
1164
1165         if (!s->active)
1166                 return;
1167
1168         intel_vgpu_clean_workloads(vgpu, engine_mask);
1169         s->ops->reset(vgpu, engine_mask);
1170 }
1171
1172 static void
1173 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1174                              struct i915_ppgtt *ppgtt)
1175 {
1176         int i;
1177
1178         if (i915_vm_is_4lvl(&ppgtt->vm)) {
1179                 s->i915_context_pml4 = px_dma(ppgtt->pd);
1180         } else {
1181                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1182                         struct i915_page_directory * const pd =
1183                                 i915_pd_entry(ppgtt->pd, i);
1184
1185                         s->i915_context_pdps[i] = px_dma(pd);
1186                 }
1187         }
1188 }
1189
1190 /**
1191  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1192  * @vgpu: a vGPU
1193  *
1194  * This function is called when a vGPU is being created.
1195  *
1196  * Returns:
1197  * Zero on success, negative error code if failed.
1198  *
1199  */
1200 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1201 {
1202         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1203         struct intel_vgpu_submission *s = &vgpu->submission;
1204         struct intel_engine_cs *engine;
1205         struct i915_ppgtt *ppgtt;
1206         enum intel_engine_id i;
1207         int ret;
1208
1209         ppgtt = i915_ppgtt_create(&i915->gt);
1210         if (IS_ERR(ppgtt))
1211                 return PTR_ERR(ppgtt);
1212
1213         i915_context_ppgtt_root_save(s, ppgtt);
1214
1215         for_each_engine(engine, vgpu->gvt->gt, i) {
1216                 struct intel_context *ce;
1217
1218                 INIT_LIST_HEAD(&s->workload_q_head[i]);
1219                 s->shadow[i] = ERR_PTR(-EINVAL);
1220
1221                 ce = intel_context_create(engine);
1222                 if (IS_ERR(ce)) {
1223                         ret = PTR_ERR(ce);
1224                         goto out_shadow_ctx;
1225                 }
1226
1227                 i915_vm_put(ce->vm);
1228                 ce->vm = i915_vm_get(&ppgtt->vm);
1229                 intel_context_set_single_submission(ce);
1230
1231                 /* Max ring buffer size */
1232                 if (!intel_uc_wants_guc_submission(&engine->gt->uc)) {
1233                         const unsigned int ring_size = 512 * SZ_4K;
1234
1235                         ce->ring = __intel_context_ring_size(ring_size);
1236                 }
1237
1238                 ret = intel_context_pin(ce);
1239                 intel_context_put(ce);
1240                 if (ret)
1241                         goto out_shadow_ctx;
1242
1243                 s->shadow[i] = ce;
1244         }
1245
1246         bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1247
1248         s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1249                                                   sizeof(struct intel_vgpu_workload), 0,
1250                                                   SLAB_HWCACHE_ALIGN,
1251                                                   offsetof(struct intel_vgpu_workload, rb_tail),
1252                                                   sizeof_field(struct intel_vgpu_workload, rb_tail),
1253                                                   NULL);
1254
1255         if (!s->workloads) {
1256                 ret = -ENOMEM;
1257                 goto out_shadow_ctx;
1258         }
1259
1260         atomic_set(&s->running_workload_num, 0);
1261         bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1262
1263         i915_vm_put(&ppgtt->vm);
1264         return 0;
1265
1266 out_shadow_ctx:
1267         i915_context_ppgtt_root_restore(s, ppgtt);
1268         for_each_engine(engine, vgpu->gvt->gt, i) {
1269                 if (IS_ERR(s->shadow[i]))
1270                         break;
1271
1272                 intel_context_unpin(s->shadow[i]);
1273                 intel_context_put(s->shadow[i]);
1274         }
1275         i915_vm_put(&ppgtt->vm);
1276         return ret;
1277 }
1278
1279 /**
1280  * intel_vgpu_select_submission_ops - select virtual submission interface
1281  * @vgpu: a vGPU
1282  * @engine_mask: either ALL_ENGINES or target engine mask
1283  * @interface: expected vGPU virtual submission interface
1284  *
1285  * This function is called when guest configures submission interface.
1286  *
1287  * Returns:
1288  * Zero on success, negative error code if failed.
1289  *
1290  */
1291 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1292                                      intel_engine_mask_t engine_mask,
1293                                      unsigned int interface)
1294 {
1295         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1296         struct intel_vgpu_submission *s = &vgpu->submission;
1297         const struct intel_vgpu_submission_ops *ops[] = {
1298                 [INTEL_VGPU_EXECLIST_SUBMISSION] =
1299                         &intel_vgpu_execlist_submission_ops,
1300         };
1301         int ret;
1302
1303         if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops)))
1304                 return -EINVAL;
1305
1306         if (drm_WARN_ON(&i915->drm,
1307                         interface == 0 && engine_mask != ALL_ENGINES))
1308                 return -EINVAL;
1309
1310         if (s->active)
1311                 s->ops->clean(vgpu, engine_mask);
1312
1313         if (interface == 0) {
1314                 s->ops = NULL;
1315                 s->virtual_submission_interface = 0;
1316                 s->active = false;
1317                 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1318                 return 0;
1319         }
1320
1321         ret = ops[interface]->init(vgpu, engine_mask);
1322         if (ret)
1323                 return ret;
1324
1325         s->ops = ops[interface];
1326         s->virtual_submission_interface = interface;
1327         s->active = true;
1328
1329         gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1330                         vgpu->id, s->ops->name);
1331
1332         return 0;
1333 }
1334
1335 /**
1336  * intel_vgpu_destroy_workload - destroy a vGPU workload
1337  * @workload: workload to destroy
1338  *
1339  * This function is called when destroy a vGPU workload.
1340  *
1341  */
1342 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1343 {
1344         struct intel_vgpu_submission *s = &workload->vgpu->submission;
1345
1346         release_shadow_batch_buffer(workload);
1347         release_shadow_wa_ctx(&workload->wa_ctx);
1348
1349         if (workload->shadow_mm)
1350                 intel_vgpu_mm_put(workload->shadow_mm);
1351
1352         kmem_cache_free(s->workloads, workload);
1353 }
1354
1355 static struct intel_vgpu_workload *
1356 alloc_workload(struct intel_vgpu *vgpu)
1357 {
1358         struct intel_vgpu_submission *s = &vgpu->submission;
1359         struct intel_vgpu_workload *workload;
1360
1361         workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1362         if (!workload)
1363                 return ERR_PTR(-ENOMEM);
1364
1365         INIT_LIST_HEAD(&workload->list);
1366         INIT_LIST_HEAD(&workload->shadow_bb);
1367
1368         init_waitqueue_head(&workload->shadow_ctx_status_wq);
1369         atomic_set(&workload->shadow_ctx_active, 0);
1370
1371         workload->status = -EINPROGRESS;
1372         workload->vgpu = vgpu;
1373
1374         return workload;
1375 }
1376
1377 #define RING_CTX_OFF(x) \
1378         offsetof(struct execlist_ring_context, x)
1379
1380 static void read_guest_pdps(struct intel_vgpu *vgpu,
1381                 u64 ring_context_gpa, u32 pdp[8])
1382 {
1383         u64 gpa;
1384         int i;
1385
1386         gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1387
1388         for (i = 0; i < 8; i++)
1389                 intel_gvt_hypervisor_read_gpa(vgpu,
1390                                 gpa + i * 8, &pdp[7 - i], 4);
1391 }
1392
1393 static int prepare_mm(struct intel_vgpu_workload *workload)
1394 {
1395         struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1396         struct intel_vgpu_mm *mm;
1397         struct intel_vgpu *vgpu = workload->vgpu;
1398         enum intel_gvt_gtt_type root_entry_type;
1399         u64 pdps[GVT_RING_CTX_NR_PDPS];
1400
1401         switch (desc->addressing_mode) {
1402         case 1: /* legacy 32-bit */
1403                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1404                 break;
1405         case 3: /* legacy 64-bit */
1406                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1407                 break;
1408         default:
1409                 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1410                 return -EINVAL;
1411         }
1412
1413         read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1414
1415         mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1416         if (IS_ERR(mm))
1417                 return PTR_ERR(mm);
1418
1419         workload->shadow_mm = mm;
1420         return 0;
1421 }
1422
1423 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1424                 ((a)->lrca == (b)->lrca))
1425
1426 /**
1427  * intel_vgpu_create_workload - create a vGPU workload
1428  * @vgpu: a vGPU
1429  * @engine: the engine
1430  * @desc: a guest context descriptor
1431  *
1432  * This function is called when creating a vGPU workload.
1433  *
1434  * Returns:
1435  * struct intel_vgpu_workload * on success, negative error code in
1436  * pointer if failed.
1437  *
1438  */
1439 struct intel_vgpu_workload *
1440 intel_vgpu_create_workload(struct intel_vgpu *vgpu,
1441                            const struct intel_engine_cs *engine,
1442                            struct execlist_ctx_descriptor_format *desc)
1443 {
1444         struct intel_vgpu_submission *s = &vgpu->submission;
1445         struct list_head *q = workload_q_head(vgpu, engine);
1446         struct intel_vgpu_workload *last_workload = NULL;
1447         struct intel_vgpu_workload *workload = NULL;
1448         u64 ring_context_gpa;
1449         u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1450         u32 guest_head;
1451         int ret;
1452
1453         ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1454                         (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1455         if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1456                 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1457                 return ERR_PTR(-EINVAL);
1458         }
1459
1460         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1461                         RING_CTX_OFF(ring_header.val), &head, 4);
1462
1463         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1464                         RING_CTX_OFF(ring_tail.val), &tail, 4);
1465
1466         guest_head = head;
1467
1468         head &= RB_HEAD_OFF_MASK;
1469         tail &= RB_TAIL_OFF_MASK;
1470
1471         list_for_each_entry_reverse(last_workload, q, list) {
1472
1473                 if (same_context(&last_workload->ctx_desc, desc)) {
1474                         gvt_dbg_el("ring %s cur workload == last\n",
1475                                    engine->name);
1476                         gvt_dbg_el("ctx head %x real head %lx\n", head,
1477                                    last_workload->rb_tail);
1478                         /*
1479                          * cannot use guest context head pointer here,
1480                          * as it might not be updated at this time
1481                          */
1482                         head = last_workload->rb_tail;
1483                         break;
1484                 }
1485         }
1486
1487         gvt_dbg_el("ring %s begin a new workload\n", engine->name);
1488
1489         /* record some ring buffer register values for scan and shadow */
1490         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1491                         RING_CTX_OFF(rb_start.val), &start, 4);
1492         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1493                         RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1494         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1495                         RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1496
1497         if (!intel_gvt_ggtt_validate_range(vgpu, start,
1498                                 _RING_CTL_BUF_SIZE(ctl))) {
1499                 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1500                 return ERR_PTR(-EINVAL);
1501         }
1502
1503         workload = alloc_workload(vgpu);
1504         if (IS_ERR(workload))
1505                 return workload;
1506
1507         workload->engine = engine;
1508         workload->ctx_desc = *desc;
1509         workload->ring_context_gpa = ring_context_gpa;
1510         workload->rb_head = head;
1511         workload->guest_rb_head = guest_head;
1512         workload->rb_tail = tail;
1513         workload->rb_start = start;
1514         workload->rb_ctl = ctl;
1515
1516         if (engine->id == RCS0) {
1517                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1518                         RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1519                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1520                         RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1521
1522                 workload->wa_ctx.indirect_ctx.guest_gma =
1523                         indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1524                 workload->wa_ctx.indirect_ctx.size =
1525                         (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1526                         CACHELINE_BYTES;
1527
1528                 if (workload->wa_ctx.indirect_ctx.size != 0) {
1529                         if (!intel_gvt_ggtt_validate_range(vgpu,
1530                                 workload->wa_ctx.indirect_ctx.guest_gma,
1531                                 workload->wa_ctx.indirect_ctx.size)) {
1532                                 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1533                                     workload->wa_ctx.indirect_ctx.guest_gma);
1534                                 kmem_cache_free(s->workloads, workload);
1535                                 return ERR_PTR(-EINVAL);
1536                         }
1537                 }
1538
1539                 workload->wa_ctx.per_ctx.guest_gma =
1540                         per_ctx & PER_CTX_ADDR_MASK;
1541                 workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1542                 if (workload->wa_ctx.per_ctx.valid) {
1543                         if (!intel_gvt_ggtt_validate_range(vgpu,
1544                                 workload->wa_ctx.per_ctx.guest_gma,
1545                                 CACHELINE_BYTES)) {
1546                                 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1547                                         workload->wa_ctx.per_ctx.guest_gma);
1548                                 kmem_cache_free(s->workloads, workload);
1549                                 return ERR_PTR(-EINVAL);
1550                         }
1551                 }
1552         }
1553
1554         gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n",
1555                    workload, engine->name, head, tail, start, ctl);
1556
1557         ret = prepare_mm(workload);
1558         if (ret) {
1559                 kmem_cache_free(s->workloads, workload);
1560                 return ERR_PTR(ret);
1561         }
1562
1563         /* Only scan and shadow the first workload in the queue
1564          * as there is only one pre-allocated buf-obj for shadow.
1565          */
1566         if (list_empty(q)) {
1567                 intel_wakeref_t wakeref;
1568
1569                 with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref)
1570                         ret = intel_gvt_scan_and_shadow_workload(workload);
1571         }
1572
1573         if (ret) {
1574                 if (vgpu_is_vm_unhealthy(ret))
1575                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1576                 intel_vgpu_destroy_workload(workload);
1577                 return ERR_PTR(ret);
1578         }
1579
1580         return workload;
1581 }
1582
1583 /**
1584  * intel_vgpu_queue_workload - Qeue a vGPU workload
1585  * @workload: the workload to queue in
1586  */
1587 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1588 {
1589         list_add_tail(&workload->list,
1590                       workload_q_head(workload->vgpu, workload->engine));
1591         intel_gvt_kick_schedule(workload->vgpu->gvt);
1592         wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]);
1593 }