Merge tag 'drm-intel-fixes-2020-10-29' into gvt-fixes
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gvt / scheduler.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35
36 #include <linux/kthread.h>
37
38 #include "gem/i915_gem_pm.h"
39 #include "gt/intel_context.h"
40 #include "gt/intel_ring.h"
41
42 #include "i915_drv.h"
43 #include "i915_gem_gtt.h"
44 #include "gvt.h"
45
46 #define RING_CTX_OFF(x) \
47         offsetof(struct execlist_ring_context, x)
48
49 static void set_context_pdp_root_pointer(
50                 struct execlist_ring_context *ring_context,
51                 u32 pdp[8])
52 {
53         int i;
54
55         for (i = 0; i < 8; i++)
56                 ring_context->pdps[i].val = pdp[7 - i];
57 }
58
59 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
60 {
61         struct execlist_ring_context *shadow_ring_context;
62         struct intel_context *ctx = workload->req->context;
63
64         if (WARN_ON(!workload->shadow_mm))
65                 return;
66
67         if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
68                 return;
69
70         shadow_ring_context = (struct execlist_ring_context *)ctx->lrc_reg_state;
71         set_context_pdp_root_pointer(shadow_ring_context,
72                         (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
73 }
74
75 /*
76  * when populating shadow ctx from guest, we should not overrride oa related
77  * registers, so that they will not be overlapped by guest oa configs. Thus
78  * made it possible to capture oa data from host for both host and guests.
79  */
80 static void sr_oa_regs(struct intel_vgpu_workload *workload,
81                 u32 *reg_state, bool save)
82 {
83         struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915;
84         u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
85         u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
86         int i = 0;
87         u32 flex_mmio[] = {
88                 i915_mmio_reg_offset(EU_PERF_CNTL0),
89                 i915_mmio_reg_offset(EU_PERF_CNTL1),
90                 i915_mmio_reg_offset(EU_PERF_CNTL2),
91                 i915_mmio_reg_offset(EU_PERF_CNTL3),
92                 i915_mmio_reg_offset(EU_PERF_CNTL4),
93                 i915_mmio_reg_offset(EU_PERF_CNTL5),
94                 i915_mmio_reg_offset(EU_PERF_CNTL6),
95         };
96
97         if (workload->engine->id != RCS0)
98                 return;
99
100         if (save) {
101                 workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
102
103                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
104                         u32 state_offset = ctx_flexeu0 + i * 2;
105
106                         workload->flex_mmio[i] = reg_state[state_offset + 1];
107                 }
108         } else {
109                 reg_state[ctx_oactxctrl] =
110                         i915_mmio_reg_offset(GEN8_OACTXCONTROL);
111                 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
112
113                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
114                         u32 state_offset = ctx_flexeu0 + i * 2;
115                         u32 mmio = flex_mmio[i];
116
117                         reg_state[state_offset] = mmio;
118                         reg_state[state_offset + 1] = workload->flex_mmio[i];
119                 }
120         }
121 }
122
123 static int populate_shadow_context(struct intel_vgpu_workload *workload)
124 {
125         struct intel_vgpu *vgpu = workload->vgpu;
126         struct intel_gvt *gvt = vgpu->gvt;
127         struct intel_context *ctx = workload->req->context;
128         struct execlist_ring_context *shadow_ring_context;
129         void *dst;
130         void *context_base;
131         unsigned long context_gpa, context_page_num;
132         unsigned long gpa_base; /* first gpa of consecutive GPAs */
133         unsigned long gpa_size; /* size of consecutive GPAs */
134         struct intel_vgpu_submission *s = &vgpu->submission;
135         int i;
136         bool skip = false;
137         int ring_id = workload->engine->id;
138
139         GEM_BUG_ON(!intel_context_is_pinned(ctx));
140
141         context_base = (void *) ctx->lrc_reg_state -
142                                 (LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
143
144         shadow_ring_context = (void *) ctx->lrc_reg_state;
145
146         sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
147 #define COPY_REG(name) \
148         intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
149                 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
150 #define COPY_REG_MASKED(name) {\
151                 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
152                                               + RING_CTX_OFF(name.val),\
153                                               &shadow_ring_context->name.val, 4);\
154                 shadow_ring_context->name.val |= 0xffff << 16;\
155         }
156
157         COPY_REG_MASKED(ctx_ctrl);
158         COPY_REG(ctx_timestamp);
159
160         if (workload->engine->id == RCS0) {
161                 COPY_REG(bb_per_ctx_ptr);
162                 COPY_REG(rcs_indirect_ctx);
163                 COPY_REG(rcs_indirect_ctx_offset);
164         }
165 #undef COPY_REG
166 #undef COPY_REG_MASKED
167
168         intel_gvt_hypervisor_read_gpa(vgpu,
169                         workload->ring_context_gpa +
170                         sizeof(*shadow_ring_context),
171                         (void *)shadow_ring_context +
172                         sizeof(*shadow_ring_context),
173                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
174
175         sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
176
177         gvt_dbg_sched("ring %s workload lrca %x, ctx_id %x, ctx gpa %llx",
178                         workload->engine->name, workload->ctx_desc.lrca,
179                         workload->ctx_desc.context_id,
180                         workload->ring_context_gpa);
181
182         /* only need to ensure this context is not pinned/unpinned during the
183          * period from last submission to this this submission.
184          * Upon reaching this function, the currently submitted context is not
185          * supposed to get unpinned. If a misbehaving guest driver ever does
186          * this, it would corrupt itself.
187          */
188         if (s->last_ctx[ring_id].valid &&
189                         (s->last_ctx[ring_id].lrca ==
190                                 workload->ctx_desc.lrca) &&
191                         (s->last_ctx[ring_id].ring_context_gpa ==
192                                 workload->ring_context_gpa))
193                 skip = true;
194
195         s->last_ctx[ring_id].lrca = workload->ctx_desc.lrca;
196         s->last_ctx[ring_id].ring_context_gpa = workload->ring_context_gpa;
197
198         if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val) || skip)
199                 return 0;
200
201         s->last_ctx[ring_id].valid = false;
202         context_page_num = workload->engine->context_size;
203         context_page_num = context_page_num >> PAGE_SHIFT;
204
205         if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0)
206                 context_page_num = 19;
207
208         /* find consecutive GPAs from gma until the first inconsecutive GPA.
209          * read from the continuous GPAs into dst virtual address
210          */
211         gpa_size = 0;
212         for (i = 2; i < context_page_num; i++) {
213                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
214                                 (u32)((workload->ctx_desc.lrca + i) <<
215                                 I915_GTT_PAGE_SHIFT));
216                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
217                         gvt_vgpu_err("Invalid guest context descriptor\n");
218                         return -EFAULT;
219                 }
220
221                 if (gpa_size == 0) {
222                         gpa_base = context_gpa;
223                         dst = context_base + (i << I915_GTT_PAGE_SHIFT);
224                 } else if (context_gpa != gpa_base + gpa_size)
225                         goto read;
226
227                 gpa_size += I915_GTT_PAGE_SIZE;
228
229                 if (i == context_page_num - 1)
230                         goto read;
231
232                 continue;
233
234 read:
235                 intel_gvt_hypervisor_read_gpa(vgpu, gpa_base, dst, gpa_size);
236                 gpa_base = context_gpa;
237                 gpa_size = I915_GTT_PAGE_SIZE;
238                 dst = context_base + (i << I915_GTT_PAGE_SHIFT);
239         }
240         s->last_ctx[ring_id].valid = true;
241         return 0;
242 }
243
244 static inline bool is_gvt_request(struct i915_request *rq)
245 {
246         return intel_context_force_single_submission(rq->context);
247 }
248
249 static void save_ring_hw_state(struct intel_vgpu *vgpu,
250                                const struct intel_engine_cs *engine)
251 {
252         struct intel_uncore *uncore = engine->uncore;
253         i915_reg_t reg;
254
255         reg = RING_INSTDONE(engine->mmio_base);
256         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
257                 intel_uncore_read(uncore, reg);
258
259         reg = RING_ACTHD(engine->mmio_base);
260         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
261                 intel_uncore_read(uncore, reg);
262
263         reg = RING_ACTHD_UDW(engine->mmio_base);
264         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
265                 intel_uncore_read(uncore, reg);
266 }
267
268 static int shadow_context_status_change(struct notifier_block *nb,
269                 unsigned long action, void *data)
270 {
271         struct i915_request *rq = data;
272         struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
273                                 shadow_ctx_notifier_block[rq->engine->id]);
274         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
275         enum intel_engine_id ring_id = rq->engine->id;
276         struct intel_vgpu_workload *workload;
277         unsigned long flags;
278
279         if (!is_gvt_request(rq)) {
280                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
281                 if (action == INTEL_CONTEXT_SCHEDULE_IN &&
282                     scheduler->engine_owner[ring_id]) {
283                         /* Switch ring from vGPU to host. */
284                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
285                                               NULL, rq->engine);
286                         scheduler->engine_owner[ring_id] = NULL;
287                 }
288                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
289
290                 return NOTIFY_OK;
291         }
292
293         workload = scheduler->current_workload[ring_id];
294         if (unlikely(!workload))
295                 return NOTIFY_OK;
296
297         switch (action) {
298         case INTEL_CONTEXT_SCHEDULE_IN:
299                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
300                 if (workload->vgpu != scheduler->engine_owner[ring_id]) {
301                         /* Switch ring from host to vGPU or vGPU to vGPU. */
302                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
303                                               workload->vgpu, rq->engine);
304                         scheduler->engine_owner[ring_id] = workload->vgpu;
305                 } else
306                         gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
307                                       ring_id, workload->vgpu->id);
308                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
309                 atomic_set(&workload->shadow_ctx_active, 1);
310                 break;
311         case INTEL_CONTEXT_SCHEDULE_OUT:
312                 save_ring_hw_state(workload->vgpu, rq->engine);
313                 atomic_set(&workload->shadow_ctx_active, 0);
314                 break;
315         case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
316                 save_ring_hw_state(workload->vgpu, rq->engine);
317                 break;
318         default:
319                 WARN_ON(1);
320                 return NOTIFY_OK;
321         }
322         wake_up(&workload->shadow_ctx_status_wq);
323         return NOTIFY_OK;
324 }
325
326 static void
327 shadow_context_descriptor_update(struct intel_context *ce,
328                                  struct intel_vgpu_workload *workload)
329 {
330         u64 desc = ce->lrc.desc;
331
332         /*
333          * Update bits 0-11 of the context descriptor which includes flags
334          * like GEN8_CTX_* cached in desc_template
335          */
336         desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT);
337         desc |= (u64)workload->ctx_desc.addressing_mode <<
338                 GEN8_CTX_ADDRESSING_MODE_SHIFT;
339
340         ce->lrc.desc = desc;
341 }
342
343 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
344 {
345         struct intel_vgpu *vgpu = workload->vgpu;
346         struct i915_request *req = workload->req;
347         void *shadow_ring_buffer_va;
348         u32 *cs;
349         int err;
350
351         if (IS_GEN(req->engine->i915, 9) && is_inhibit_context(req->context))
352                 intel_vgpu_restore_inhibit_context(vgpu, req);
353
354         /*
355          * To track whether a request has started on HW, we can emit a
356          * breadcrumb at the beginning of the request and check its
357          * timeline's HWSP to see if the breadcrumb has advanced past the
358          * start of this request. Actually, the request must have the
359          * init_breadcrumb if its timeline set has_init_bread_crumb, or the
360          * scheduler might get a wrong state of it during reset. Since the
361          * requests from gvt always set the has_init_breadcrumb flag, here
362          * need to do the emit_init_breadcrumb for all the requests.
363          */
364         if (req->engine->emit_init_breadcrumb) {
365                 err = req->engine->emit_init_breadcrumb(req);
366                 if (err) {
367                         gvt_vgpu_err("fail to emit init breadcrumb\n");
368                         return err;
369                 }
370         }
371
372         /* allocate shadow ring buffer */
373         cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
374         if (IS_ERR(cs)) {
375                 gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
376                         workload->rb_len);
377                 return PTR_ERR(cs);
378         }
379
380         shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
381
382         /* get shadow ring buffer va */
383         workload->shadow_ring_buffer_va = cs;
384
385         memcpy(cs, shadow_ring_buffer_va,
386                         workload->rb_len);
387
388         cs += workload->rb_len / sizeof(u32);
389         intel_ring_advance(workload->req, cs);
390
391         return 0;
392 }
393
394 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
395 {
396         if (!wa_ctx->indirect_ctx.obj)
397                 return;
398
399         i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
400         i915_gem_object_put(wa_ctx->indirect_ctx.obj);
401
402         wa_ctx->indirect_ctx.obj = NULL;
403         wa_ctx->indirect_ctx.shadow_va = NULL;
404 }
405
406 static void set_dma_address(struct i915_page_directory *pd, dma_addr_t addr)
407 {
408         struct scatterlist *sg = pd->pt.base->mm.pages->sgl;
409
410         /* This is not a good idea */
411         sg->dma_address = addr;
412 }
413
414 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
415                                           struct intel_context *ce)
416 {
417         struct intel_vgpu_mm *mm = workload->shadow_mm;
418         struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
419         int i = 0;
420
421         if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
422                 set_dma_address(ppgtt->pd, mm->ppgtt_mm.shadow_pdps[0]);
423         } else {
424                 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
425                         struct i915_page_directory * const pd =
426                                 i915_pd_entry(ppgtt->pd, i);
427                         /* skip now as current i915 ppgtt alloc won't allocate
428                            top level pdp for non 4-level table, won't impact
429                            shadow ppgtt. */
430                         if (!pd)
431                                 break;
432
433                         set_dma_address(pd, mm->ppgtt_mm.shadow_pdps[i]);
434                 }
435         }
436 }
437
438 static int
439 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
440 {
441         struct intel_vgpu *vgpu = workload->vgpu;
442         struct intel_vgpu_submission *s = &vgpu->submission;
443         struct i915_request *rq;
444
445         if (workload->req)
446                 return 0;
447
448         rq = i915_request_create(s->shadow[workload->engine->id]);
449         if (IS_ERR(rq)) {
450                 gvt_vgpu_err("fail to allocate gem request\n");
451                 return PTR_ERR(rq);
452         }
453
454         workload->req = i915_request_get(rq);
455         return 0;
456 }
457
458 /**
459  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
460  * shadow it as well, include ringbuffer,wa_ctx and ctx.
461  * @workload: an abstract entity for each execlist submission.
462  *
463  * This function is called before the workload submitting to i915, to make
464  * sure the content of the workload is valid.
465  */
466 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
467 {
468         struct intel_vgpu *vgpu = workload->vgpu;
469         struct intel_vgpu_submission *s = &vgpu->submission;
470         int ret;
471
472         lockdep_assert_held(&vgpu->vgpu_lock);
473
474         if (workload->shadow)
475                 return 0;
476
477         if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated))
478                 shadow_context_descriptor_update(s->shadow[workload->engine->id],
479                                                  workload);
480
481         ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
482         if (ret)
483                 return ret;
484
485         if (workload->engine->id == RCS0 &&
486             workload->wa_ctx.indirect_ctx.size) {
487                 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
488                 if (ret)
489                         goto err_shadow;
490         }
491
492         workload->shadow = true;
493         return 0;
494
495 err_shadow:
496         release_shadow_wa_ctx(&workload->wa_ctx);
497         return ret;
498 }
499
500 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
501
502 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
503 {
504         struct intel_gvt *gvt = workload->vgpu->gvt;
505         const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
506         struct intel_vgpu_shadow_bb *bb;
507         int ret;
508
509         list_for_each_entry(bb, &workload->shadow_bb, list) {
510                 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
511                  * is only updated into ring_scan_buffer, not real ring address
512                  * allocated in later copy_workload_to_ring_buffer. pls be noted
513                  * shadow_ring_buffer_va is now pointed to real ring buffer va
514                  * in copy_workload_to_ring_buffer.
515                  */
516
517                 if (bb->bb_offset)
518                         bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
519                                 + bb->bb_offset;
520
521                 /*
522                  * For non-priv bb, scan&shadow is only for
523                  * debugging purpose, so the content of shadow bb
524                  * is the same as original bb. Therefore,
525                  * here, rather than switch to shadow bb's gma
526                  * address, we directly use original batch buffer's
527                  * gma address, and send original bb to hardware
528                  * directly
529                  */
530                 if (!bb->ppgtt) {
531                         bb->vma = i915_gem_object_ggtt_pin(bb->obj,
532                                                            NULL, 0, 0, 0);
533                         if (IS_ERR(bb->vma)) {
534                                 ret = PTR_ERR(bb->vma);
535                                 goto err;
536                         }
537
538                         /* relocate shadow batch buffer */
539                         bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
540                         if (gmadr_bytes == 8)
541                                 bb->bb_start_cmd_va[2] = 0;
542
543                         ret = i915_vma_move_to_active(bb->vma,
544                                                       workload->req,
545                                                       0);
546                         if (ret)
547                                 goto err;
548                 }
549
550                 /* No one is going to touch shadow bb from now on. */
551                 i915_gem_object_flush_map(bb->obj);
552         }
553         return 0;
554 err:
555         release_shadow_batch_buffer(workload);
556         return ret;
557 }
558
559 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
560 {
561         struct intel_vgpu_workload *workload =
562                 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
563         struct i915_request *rq = workload->req;
564         struct execlist_ring_context *shadow_ring_context =
565                 (struct execlist_ring_context *)rq->context->lrc_reg_state;
566
567         shadow_ring_context->bb_per_ctx_ptr.val =
568                 (shadow_ring_context->bb_per_ctx_ptr.val &
569                 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
570         shadow_ring_context->rcs_indirect_ctx.val =
571                 (shadow_ring_context->rcs_indirect_ctx.val &
572                 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
573 }
574
575 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
576 {
577         struct i915_vma *vma;
578         unsigned char *per_ctx_va =
579                 (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
580                 wa_ctx->indirect_ctx.size;
581
582         if (wa_ctx->indirect_ctx.size == 0)
583                 return 0;
584
585         vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
586                                        0, CACHELINE_BYTES, 0);
587         if (IS_ERR(vma))
588                 return PTR_ERR(vma);
589
590         /* FIXME: we are not tracking our pinned VMA leaving it
591          * up to the core to fix up the stray pin_count upon
592          * free.
593          */
594
595         wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
596
597         wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
598         memset(per_ctx_va, 0, CACHELINE_BYTES);
599
600         update_wa_ctx_2_shadow_ctx(wa_ctx);
601         return 0;
602 }
603
604 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
605 {
606         vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) =
607                 workload->rb_start;
608 }
609
610 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
611 {
612         struct intel_vgpu_shadow_bb *bb, *pos;
613
614         if (list_empty(&workload->shadow_bb))
615                 return;
616
617         bb = list_first_entry(&workload->shadow_bb,
618                         struct intel_vgpu_shadow_bb, list);
619
620         list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
621                 if (bb->obj) {
622                         if (bb->va && !IS_ERR(bb->va))
623                                 i915_gem_object_unpin_map(bb->obj);
624
625                         if (bb->vma && !IS_ERR(bb->vma))
626                                 i915_vma_unpin(bb->vma);
627
628                         i915_gem_object_put(bb->obj);
629                 }
630                 list_del(&bb->list);
631                 kfree(bb);
632         }
633 }
634
635 static int
636 intel_vgpu_shadow_mm_pin(struct intel_vgpu_workload *workload)
637 {
638         struct intel_vgpu *vgpu = workload->vgpu;
639         struct intel_vgpu_mm *m;
640         int ret = 0;
641
642         ret = intel_vgpu_pin_mm(workload->shadow_mm);
643         if (ret) {
644                 gvt_vgpu_err("fail to vgpu pin mm\n");
645                 return ret;
646         }
647
648         if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
649             !workload->shadow_mm->ppgtt_mm.shadowed) {
650                 gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
651                 return -EINVAL;
652         }
653
654         if (!list_empty(&workload->lri_shadow_mm)) {
655                 list_for_each_entry(m, &workload->lri_shadow_mm,
656                                     ppgtt_mm.link) {
657                         ret = intel_vgpu_pin_mm(m);
658                         if (ret) {
659                                 list_for_each_entry_from_reverse(m,
660                                                                  &workload->lri_shadow_mm,
661                                                                  ppgtt_mm.link)
662                                         intel_vgpu_unpin_mm(m);
663                                 gvt_vgpu_err("LRI shadow ppgtt fail to pin\n");
664                                 break;
665                         }
666                 }
667         }
668
669         if (ret)
670                 intel_vgpu_unpin_mm(workload->shadow_mm);
671
672         return ret;
673 }
674
675 static void
676 intel_vgpu_shadow_mm_unpin(struct intel_vgpu_workload *workload)
677 {
678         struct intel_vgpu_mm *m;
679
680         if (!list_empty(&workload->lri_shadow_mm)) {
681                 list_for_each_entry(m, &workload->lri_shadow_mm,
682                                     ppgtt_mm.link)
683                         intel_vgpu_unpin_mm(m);
684         }
685         intel_vgpu_unpin_mm(workload->shadow_mm);
686 }
687
688 static int prepare_workload(struct intel_vgpu_workload *workload)
689 {
690         struct intel_vgpu *vgpu = workload->vgpu;
691         struct intel_vgpu_submission *s = &vgpu->submission;
692         int ret = 0;
693
694         ret = intel_vgpu_shadow_mm_pin(workload);
695         if (ret) {
696                 gvt_vgpu_err("fail to pin shadow mm\n");
697                 return ret;
698         }
699
700         update_shadow_pdps(workload);
701
702         set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]);
703
704         ret = intel_vgpu_sync_oos_pages(workload->vgpu);
705         if (ret) {
706                 gvt_vgpu_err("fail to vgpu sync oos pages\n");
707                 goto err_unpin_mm;
708         }
709
710         ret = intel_vgpu_flush_post_shadow(workload->vgpu);
711         if (ret) {
712                 gvt_vgpu_err("fail to flush post shadow\n");
713                 goto err_unpin_mm;
714         }
715
716         ret = copy_workload_to_ring_buffer(workload);
717         if (ret) {
718                 gvt_vgpu_err("fail to generate request\n");
719                 goto err_unpin_mm;
720         }
721
722         ret = prepare_shadow_batch_buffer(workload);
723         if (ret) {
724                 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
725                 goto err_unpin_mm;
726         }
727
728         ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
729         if (ret) {
730                 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
731                 goto err_shadow_batch;
732         }
733
734         if (workload->prepare) {
735                 ret = workload->prepare(workload);
736                 if (ret)
737                         goto err_shadow_wa_ctx;
738         }
739
740         return 0;
741 err_shadow_wa_ctx:
742         release_shadow_wa_ctx(&workload->wa_ctx);
743 err_shadow_batch:
744         release_shadow_batch_buffer(workload);
745 err_unpin_mm:
746         intel_vgpu_shadow_mm_unpin(workload);
747         return ret;
748 }
749
750 static int dispatch_workload(struct intel_vgpu_workload *workload)
751 {
752         struct intel_vgpu *vgpu = workload->vgpu;
753         struct i915_request *rq;
754         int ret;
755
756         gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n",
757                       workload->engine->name, workload);
758
759         mutex_lock(&vgpu->vgpu_lock);
760
761         ret = intel_gvt_workload_req_alloc(workload);
762         if (ret)
763                 goto err_req;
764
765         ret = intel_gvt_scan_and_shadow_workload(workload);
766         if (ret)
767                 goto out;
768
769         ret = populate_shadow_context(workload);
770         if (ret) {
771                 release_shadow_wa_ctx(&workload->wa_ctx);
772                 goto out;
773         }
774
775         ret = prepare_workload(workload);
776 out:
777         if (ret) {
778                 /* We might still need to add request with
779                  * clean ctx to retire it properly..
780                  */
781                 rq = fetch_and_zero(&workload->req);
782                 i915_request_put(rq);
783         }
784
785         if (!IS_ERR_OR_NULL(workload->req)) {
786                 gvt_dbg_sched("ring id %s submit workload to i915 %p\n",
787                               workload->engine->name, workload->req);
788                 i915_request_add(workload->req);
789                 workload->dispatched = true;
790         }
791 err_req:
792         if (ret)
793                 workload->status = ret;
794         mutex_unlock(&vgpu->vgpu_lock);
795         return ret;
796 }
797
798 static struct intel_vgpu_workload *
799 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine)
800 {
801         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
802         struct intel_vgpu_workload *workload = NULL;
803
804         mutex_lock(&gvt->sched_lock);
805
806         /*
807          * no current vgpu / will be scheduled out / no workload
808          * bail out
809          */
810         if (!scheduler->current_vgpu) {
811                 gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name);
812                 goto out;
813         }
814
815         if (scheduler->need_reschedule) {
816                 gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name);
817                 goto out;
818         }
819
820         if (!scheduler->current_vgpu->active ||
821             list_empty(workload_q_head(scheduler->current_vgpu, engine)))
822                 goto out;
823
824         /*
825          * still have current workload, maybe the workload disptacher
826          * fail to submit it for some reason, resubmit it.
827          */
828         if (scheduler->current_workload[engine->id]) {
829                 workload = scheduler->current_workload[engine->id];
830                 gvt_dbg_sched("ring %s still have current workload %p\n",
831                               engine->name, workload);
832                 goto out;
833         }
834
835         /*
836          * pick a workload as current workload
837          * once current workload is set, schedule policy routines
838          * will wait the current workload is finished when trying to
839          * schedule out a vgpu.
840          */
841         scheduler->current_workload[engine->id] =
842                 list_first_entry(workload_q_head(scheduler->current_vgpu,
843                                                  engine),
844                                  struct intel_vgpu_workload, list);
845
846         workload = scheduler->current_workload[engine->id];
847
848         gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload);
849
850         atomic_inc(&workload->vgpu->submission.running_workload_num);
851 out:
852         mutex_unlock(&gvt->sched_lock);
853         return workload;
854 }
855
856 static void update_guest_pdps(struct intel_vgpu *vgpu,
857                               u64 ring_context_gpa, u32 pdp[8])
858 {
859         u64 gpa;
860         int i;
861
862         gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
863
864         for (i = 0; i < 8; i++)
865                 intel_gvt_hypervisor_write_gpa(vgpu,
866                                 gpa + i * 8, &pdp[7 - i], 4);
867 }
868
869 static __maybe_unused bool
870 check_shadow_context_ppgtt(struct execlist_ring_context *c, struct intel_vgpu_mm *m)
871 {
872         if (m->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
873                 u64 shadow_pdp = c->pdps[7].val | (u64) c->pdps[6].val << 32;
874
875                 if (shadow_pdp != m->ppgtt_mm.shadow_pdps[0]) {
876                         gvt_dbg_mm("4-level context ppgtt not match LRI command\n");
877                         return false;
878                 }
879                 return true;
880         } else {
881                 /* see comment in LRI handler in cmd_parser.c */
882                 gvt_dbg_mm("invalid shadow mm type\n");
883                 return false;
884         }
885 }
886
887 static void update_guest_context(struct intel_vgpu_workload *workload)
888 {
889         struct i915_request *rq = workload->req;
890         struct intel_vgpu *vgpu = workload->vgpu;
891         struct execlist_ring_context *shadow_ring_context;
892         struct intel_context *ctx = workload->req->context;
893         void *context_base;
894         void *src;
895         unsigned long context_gpa, context_page_num;
896         unsigned long gpa_base; /* first gpa of consecutive GPAs */
897         unsigned long gpa_size; /* size of consecutive GPAs*/
898         int i;
899         u32 ring_base;
900         u32 head, tail;
901         u16 wrap_count;
902
903         gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
904                       workload->ctx_desc.lrca);
905
906         GEM_BUG_ON(!intel_context_is_pinned(ctx));
907
908         head = workload->rb_head;
909         tail = workload->rb_tail;
910         wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
911
912         if (tail < head) {
913                 if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
914                         wrap_count = 0;
915                 else
916                         wrap_count += 1;
917         }
918
919         head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
920
921         ring_base = rq->engine->mmio_base;
922         vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
923         vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
924
925         context_page_num = rq->engine->context_size;
926         context_page_num = context_page_num >> PAGE_SHIFT;
927
928         if (IS_BROADWELL(rq->engine->i915) && rq->engine->id == RCS0)
929                 context_page_num = 19;
930
931         context_base = (void *) ctx->lrc_reg_state -
932                         (LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
933
934         /* find consecutive GPAs from gma until the first inconsecutive GPA.
935          * write to the consecutive GPAs from src virtual address
936          */
937         gpa_size = 0;
938         for (i = 2; i < context_page_num; i++) {
939                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
940                                 (u32)((workload->ctx_desc.lrca + i) <<
941                                         I915_GTT_PAGE_SHIFT));
942                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
943                         gvt_vgpu_err("invalid guest context descriptor\n");
944                         return;
945                 }
946
947                 if (gpa_size == 0) {
948                         gpa_base = context_gpa;
949                         src = context_base + (i << I915_GTT_PAGE_SHIFT);
950                 } else if (context_gpa != gpa_base + gpa_size)
951                         goto write;
952
953                 gpa_size += I915_GTT_PAGE_SIZE;
954
955                 if (i == context_page_num - 1)
956                         goto write;
957
958                 continue;
959
960 write:
961                 intel_gvt_hypervisor_write_gpa(vgpu, gpa_base, src, gpa_size);
962                 gpa_base = context_gpa;
963                 gpa_size = I915_GTT_PAGE_SIZE;
964                 src = context_base + (i << I915_GTT_PAGE_SHIFT);
965         }
966
967         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
968                 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
969
970         shadow_ring_context = (void *) ctx->lrc_reg_state;
971
972         if (!list_empty(&workload->lri_shadow_mm)) {
973                 struct intel_vgpu_mm *m = list_last_entry(&workload->lri_shadow_mm,
974                                                           struct intel_vgpu_mm,
975                                                           ppgtt_mm.link);
976                 GEM_BUG_ON(!check_shadow_context_ppgtt(shadow_ring_context, m));
977                 update_guest_pdps(vgpu, workload->ring_context_gpa,
978                                   (void *)m->ppgtt_mm.guest_pdps);
979         }
980
981 #define COPY_REG(name) \
982         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
983                 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
984
985         COPY_REG(ctx_ctrl);
986         COPY_REG(ctx_timestamp);
987
988 #undef COPY_REG
989
990         intel_gvt_hypervisor_write_gpa(vgpu,
991                         workload->ring_context_gpa +
992                         sizeof(*shadow_ring_context),
993                         (void *)shadow_ring_context +
994                         sizeof(*shadow_ring_context),
995                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
996 }
997
998 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
999                                 intel_engine_mask_t engine_mask)
1000 {
1001         struct intel_vgpu_submission *s = &vgpu->submission;
1002         struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1003         struct intel_engine_cs *engine;
1004         struct intel_vgpu_workload *pos, *n;
1005         intel_engine_mask_t tmp;
1006
1007         /* free the unsubmited workloads in the queues. */
1008         for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) {
1009                 list_for_each_entry_safe(pos, n,
1010                         &s->workload_q_head[engine->id], list) {
1011                         list_del_init(&pos->list);
1012                         intel_vgpu_destroy_workload(pos);
1013                 }
1014                 clear_bit(engine->id, s->shadow_ctx_desc_updated);
1015         }
1016 }
1017
1018 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
1019 {
1020         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1021         struct intel_vgpu_workload *workload =
1022                 scheduler->current_workload[ring_id];
1023         struct intel_vgpu *vgpu = workload->vgpu;
1024         struct intel_vgpu_submission *s = &vgpu->submission;
1025         struct i915_request *rq = workload->req;
1026         int event;
1027
1028         mutex_lock(&vgpu->vgpu_lock);
1029         mutex_lock(&gvt->sched_lock);
1030
1031         /* For the workload w/ request, needs to wait for the context
1032          * switch to make sure request is completed.
1033          * For the workload w/o request, directly complete the workload.
1034          */
1035         if (rq) {
1036                 wait_event(workload->shadow_ctx_status_wq,
1037                            !atomic_read(&workload->shadow_ctx_active));
1038
1039                 /* If this request caused GPU hang, req->fence.error will
1040                  * be set to -EIO. Use -EIO to set workload status so
1041                  * that when this request caused GPU hang, didn't trigger
1042                  * context switch interrupt to guest.
1043                  */
1044                 if (likely(workload->status == -EINPROGRESS)) {
1045                         if (workload->req->fence.error == -EIO)
1046                                 workload->status = -EIO;
1047                         else
1048                                 workload->status = 0;
1049                 }
1050
1051                 if (!workload->status &&
1052                     !(vgpu->resetting_eng & BIT(ring_id))) {
1053                         update_guest_context(workload);
1054
1055                         for_each_set_bit(event, workload->pending_events,
1056                                          INTEL_GVT_EVENT_MAX)
1057                                 intel_vgpu_trigger_virtual_event(vgpu, event);
1058                 }
1059
1060                 i915_request_put(fetch_and_zero(&workload->req));
1061         }
1062
1063         gvt_dbg_sched("ring id %d complete workload %p status %d\n",
1064                         ring_id, workload, workload->status);
1065
1066         scheduler->current_workload[ring_id] = NULL;
1067
1068         list_del_init(&workload->list);
1069
1070         if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
1071                 /* if workload->status is not successful means HW GPU
1072                  * has occurred GPU hang or something wrong with i915/GVT,
1073                  * and GVT won't inject context switch interrupt to guest.
1074                  * So this error is a vGPU hang actually to the guest.
1075                  * According to this we should emunlate a vGPU hang. If
1076                  * there are pending workloads which are already submitted
1077                  * from guest, we should clean them up like HW GPU does.
1078                  *
1079                  * if it is in middle of engine resetting, the pending
1080                  * workloads won't be submitted to HW GPU and will be
1081                  * cleaned up during the resetting process later, so doing
1082                  * the workload clean up here doesn't have any impact.
1083                  **/
1084                 intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
1085         }
1086
1087         workload->complete(workload);
1088
1089         intel_vgpu_shadow_mm_unpin(workload);
1090         intel_vgpu_destroy_workload(workload);
1091
1092         atomic_dec(&s->running_workload_num);
1093         wake_up(&scheduler->workload_complete_wq);
1094
1095         if (gvt->scheduler.need_reschedule)
1096                 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
1097
1098         mutex_unlock(&gvt->sched_lock);
1099         mutex_unlock(&vgpu->vgpu_lock);
1100 }
1101
1102 static int workload_thread(void *arg)
1103 {
1104         struct intel_engine_cs *engine = arg;
1105         const bool need_force_wake = INTEL_GEN(engine->i915) >= 9;
1106         struct intel_gvt *gvt = engine->i915->gvt;
1107         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1108         struct intel_vgpu_workload *workload = NULL;
1109         struct intel_vgpu *vgpu = NULL;
1110         int ret;
1111         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1112
1113         gvt_dbg_core("workload thread for ring %s started\n", engine->name);
1114
1115         while (!kthread_should_stop()) {
1116                 intel_wakeref_t wakeref;
1117
1118                 add_wait_queue(&scheduler->waitq[engine->id], &wait);
1119                 do {
1120                         workload = pick_next_workload(gvt, engine);
1121                         if (workload)
1122                                 break;
1123                         wait_woken(&wait, TASK_INTERRUPTIBLE,
1124                                    MAX_SCHEDULE_TIMEOUT);
1125                 } while (!kthread_should_stop());
1126                 remove_wait_queue(&scheduler->waitq[engine->id], &wait);
1127
1128                 if (!workload)
1129                         break;
1130
1131                 gvt_dbg_sched("ring %s next workload %p vgpu %d\n",
1132                               engine->name, workload,
1133                               workload->vgpu->id);
1134
1135                 wakeref = intel_runtime_pm_get(engine->uncore->rpm);
1136
1137                 gvt_dbg_sched("ring %s will dispatch workload %p\n",
1138                               engine->name, workload);
1139
1140                 if (need_force_wake)
1141                         intel_uncore_forcewake_get(engine->uncore,
1142                                                    FORCEWAKE_ALL);
1143                 /*
1144                  * Update the vReg of the vGPU which submitted this
1145                  * workload. The vGPU may use these registers for checking
1146                  * the context state. The value comes from GPU commands
1147                  * in this workload.
1148                  */
1149                 update_vreg_in_ctx(workload);
1150
1151                 ret = dispatch_workload(workload);
1152
1153                 if (ret) {
1154                         vgpu = workload->vgpu;
1155                         gvt_vgpu_err("fail to dispatch workload, skip\n");
1156                         goto complete;
1157                 }
1158
1159                 gvt_dbg_sched("ring %s wait workload %p\n",
1160                               engine->name, workload);
1161                 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1162
1163 complete:
1164                 gvt_dbg_sched("will complete workload %p, status: %d\n",
1165                               workload, workload->status);
1166
1167                 complete_current_workload(gvt, engine->id);
1168
1169                 if (need_force_wake)
1170                         intel_uncore_forcewake_put(engine->uncore,
1171                                                    FORCEWAKE_ALL);
1172
1173                 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1174                 if (ret && (vgpu_is_vm_unhealthy(ret)))
1175                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1176         }
1177         return 0;
1178 }
1179
1180 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1181 {
1182         struct intel_vgpu_submission *s = &vgpu->submission;
1183         struct intel_gvt *gvt = vgpu->gvt;
1184         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1185
1186         if (atomic_read(&s->running_workload_num)) {
1187                 gvt_dbg_sched("wait vgpu idle\n");
1188
1189                 wait_event(scheduler->workload_complete_wq,
1190                                 !atomic_read(&s->running_workload_num));
1191         }
1192 }
1193
1194 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1195 {
1196         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1197         struct intel_engine_cs *engine;
1198         enum intel_engine_id i;
1199
1200         gvt_dbg_core("clean workload scheduler\n");
1201
1202         for_each_engine(engine, gvt->gt, i) {
1203                 atomic_notifier_chain_unregister(
1204                                         &engine->context_status_notifier,
1205                                         &gvt->shadow_ctx_notifier_block[i]);
1206                 kthread_stop(scheduler->thread[i]);
1207         }
1208 }
1209
1210 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1211 {
1212         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1213         struct intel_engine_cs *engine;
1214         enum intel_engine_id i;
1215         int ret;
1216
1217         gvt_dbg_core("init workload scheduler\n");
1218
1219         init_waitqueue_head(&scheduler->workload_complete_wq);
1220
1221         for_each_engine(engine, gvt->gt, i) {
1222                 init_waitqueue_head(&scheduler->waitq[i]);
1223
1224                 scheduler->thread[i] = kthread_run(workload_thread, engine,
1225                                                    "gvt:%s", engine->name);
1226                 if (IS_ERR(scheduler->thread[i])) {
1227                         gvt_err("fail to create workload thread\n");
1228                         ret = PTR_ERR(scheduler->thread[i]);
1229                         goto err;
1230                 }
1231
1232                 gvt->shadow_ctx_notifier_block[i].notifier_call =
1233                                         shadow_context_status_change;
1234                 atomic_notifier_chain_register(&engine->context_status_notifier,
1235                                         &gvt->shadow_ctx_notifier_block[i]);
1236         }
1237
1238         return 0;
1239
1240 err:
1241         intel_gvt_clean_workload_scheduler(gvt);
1242         return ret;
1243 }
1244
1245 static void
1246 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1247                                 struct i915_ppgtt *ppgtt)
1248 {
1249         int i;
1250
1251         if (i915_vm_is_4lvl(&ppgtt->vm)) {
1252                 set_dma_address(ppgtt->pd, s->i915_context_pml4);
1253         } else {
1254                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1255                         struct i915_page_directory * const pd =
1256                                 i915_pd_entry(ppgtt->pd, i);
1257
1258                         set_dma_address(pd, s->i915_context_pdps[i]);
1259                 }
1260         }
1261 }
1262
1263 /**
1264  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1265  * @vgpu: a vGPU
1266  *
1267  * This function is called when a vGPU is being destroyed.
1268  *
1269  */
1270 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1271 {
1272         struct intel_vgpu_submission *s = &vgpu->submission;
1273         struct intel_engine_cs *engine;
1274         enum intel_engine_id id;
1275
1276         intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1277
1278         i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1279         for_each_engine(engine, vgpu->gvt->gt, id)
1280                 intel_context_put(s->shadow[id]);
1281
1282         kmem_cache_destroy(s->workloads);
1283 }
1284
1285
1286 /**
1287  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1288  * @vgpu: a vGPU
1289  * @engine_mask: engines expected to be reset
1290  *
1291  * This function is called when a vGPU is being destroyed.
1292  *
1293  */
1294 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1295                                  intel_engine_mask_t engine_mask)
1296 {
1297         struct intel_vgpu_submission *s = &vgpu->submission;
1298
1299         if (!s->active)
1300                 return;
1301
1302         intel_vgpu_clean_workloads(vgpu, engine_mask);
1303         s->ops->reset(vgpu, engine_mask);
1304 }
1305
1306 static void
1307 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1308                              struct i915_ppgtt *ppgtt)
1309 {
1310         int i;
1311
1312         if (i915_vm_is_4lvl(&ppgtt->vm)) {
1313                 s->i915_context_pml4 = px_dma(ppgtt->pd);
1314         } else {
1315                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1316                         struct i915_page_directory * const pd =
1317                                 i915_pd_entry(ppgtt->pd, i);
1318
1319                         s->i915_context_pdps[i] = px_dma(pd);
1320                 }
1321         }
1322 }
1323
1324 /**
1325  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1326  * @vgpu: a vGPU
1327  *
1328  * This function is called when a vGPU is being created.
1329  *
1330  * Returns:
1331  * Zero on success, negative error code if failed.
1332  *
1333  */
1334 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1335 {
1336         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1337         struct intel_vgpu_submission *s = &vgpu->submission;
1338         struct intel_engine_cs *engine;
1339         struct i915_ppgtt *ppgtt;
1340         enum intel_engine_id i;
1341         int ret;
1342
1343         ppgtt = i915_ppgtt_create(&i915->gt);
1344         if (IS_ERR(ppgtt))
1345                 return PTR_ERR(ppgtt);
1346
1347         i915_context_ppgtt_root_save(s, ppgtt);
1348
1349         for_each_engine(engine, vgpu->gvt->gt, i) {
1350                 struct intel_context *ce;
1351
1352                 INIT_LIST_HEAD(&s->workload_q_head[i]);
1353                 s->shadow[i] = ERR_PTR(-EINVAL);
1354
1355                 ce = intel_context_create(engine);
1356                 if (IS_ERR(ce)) {
1357                         ret = PTR_ERR(ce);
1358                         goto out_shadow_ctx;
1359                 }
1360
1361                 i915_vm_put(ce->vm);
1362                 ce->vm = i915_vm_get(&ppgtt->vm);
1363                 intel_context_set_single_submission(ce);
1364
1365                 /* Max ring buffer size */
1366                 if (!intel_uc_wants_guc_submission(&engine->gt->uc)) {
1367                         const unsigned int ring_size = 512 * SZ_4K;
1368
1369                         ce->ring = __intel_context_ring_size(ring_size);
1370                 }
1371
1372                 s->shadow[i] = ce;
1373         }
1374
1375         bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1376
1377         s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1378                                                   sizeof(struct intel_vgpu_workload), 0,
1379                                                   SLAB_HWCACHE_ALIGN,
1380                                                   offsetof(struct intel_vgpu_workload, rb_tail),
1381                                                   sizeof_field(struct intel_vgpu_workload, rb_tail),
1382                                                   NULL);
1383
1384         if (!s->workloads) {
1385                 ret = -ENOMEM;
1386                 goto out_shadow_ctx;
1387         }
1388
1389         atomic_set(&s->running_workload_num, 0);
1390         bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1391
1392         memset(s->last_ctx, 0, sizeof(s->last_ctx));
1393
1394         i915_vm_put(&ppgtt->vm);
1395         return 0;
1396
1397 out_shadow_ctx:
1398         i915_context_ppgtt_root_restore(s, ppgtt);
1399         for_each_engine(engine, vgpu->gvt->gt, i) {
1400                 if (IS_ERR(s->shadow[i]))
1401                         break;
1402
1403                 intel_context_put(s->shadow[i]);
1404         }
1405         i915_vm_put(&ppgtt->vm);
1406         return ret;
1407 }
1408
1409 /**
1410  * intel_vgpu_select_submission_ops - select virtual submission interface
1411  * @vgpu: a vGPU
1412  * @engine_mask: either ALL_ENGINES or target engine mask
1413  * @interface: expected vGPU virtual submission interface
1414  *
1415  * This function is called when guest configures submission interface.
1416  *
1417  * Returns:
1418  * Zero on success, negative error code if failed.
1419  *
1420  */
1421 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1422                                      intel_engine_mask_t engine_mask,
1423                                      unsigned int interface)
1424 {
1425         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1426         struct intel_vgpu_submission *s = &vgpu->submission;
1427         const struct intel_vgpu_submission_ops *ops[] = {
1428                 [INTEL_VGPU_EXECLIST_SUBMISSION] =
1429                         &intel_vgpu_execlist_submission_ops,
1430         };
1431         int ret;
1432
1433         if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops)))
1434                 return -EINVAL;
1435
1436         if (drm_WARN_ON(&i915->drm,
1437                         interface == 0 && engine_mask != ALL_ENGINES))
1438                 return -EINVAL;
1439
1440         if (s->active)
1441                 s->ops->clean(vgpu, engine_mask);
1442
1443         if (interface == 0) {
1444                 s->ops = NULL;
1445                 s->virtual_submission_interface = 0;
1446                 s->active = false;
1447                 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1448                 return 0;
1449         }
1450
1451         ret = ops[interface]->init(vgpu, engine_mask);
1452         if (ret)
1453                 return ret;
1454
1455         s->ops = ops[interface];
1456         s->virtual_submission_interface = interface;
1457         s->active = true;
1458
1459         gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1460                         vgpu->id, s->ops->name);
1461
1462         return 0;
1463 }
1464
1465 /**
1466  * intel_vgpu_destroy_workload - destroy a vGPU workload
1467  * @workload: workload to destroy
1468  *
1469  * This function is called when destroy a vGPU workload.
1470  *
1471  */
1472 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1473 {
1474         struct intel_vgpu_submission *s = &workload->vgpu->submission;
1475
1476         intel_context_unpin(s->shadow[workload->engine->id]);
1477         release_shadow_batch_buffer(workload);
1478         release_shadow_wa_ctx(&workload->wa_ctx);
1479
1480         if (!list_empty(&workload->lri_shadow_mm)) {
1481                 struct intel_vgpu_mm *m, *mm;
1482                 list_for_each_entry_safe(m, mm, &workload->lri_shadow_mm,
1483                                          ppgtt_mm.link) {
1484                         list_del(&m->ppgtt_mm.link);
1485                         intel_vgpu_mm_put(m);
1486                 }
1487         }
1488
1489         GEM_BUG_ON(!list_empty(&workload->lri_shadow_mm));
1490         if (workload->shadow_mm)
1491                 intel_vgpu_mm_put(workload->shadow_mm);
1492
1493         kmem_cache_free(s->workloads, workload);
1494 }
1495
1496 static struct intel_vgpu_workload *
1497 alloc_workload(struct intel_vgpu *vgpu)
1498 {
1499         struct intel_vgpu_submission *s = &vgpu->submission;
1500         struct intel_vgpu_workload *workload;
1501
1502         workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1503         if (!workload)
1504                 return ERR_PTR(-ENOMEM);
1505
1506         INIT_LIST_HEAD(&workload->list);
1507         INIT_LIST_HEAD(&workload->shadow_bb);
1508         INIT_LIST_HEAD(&workload->lri_shadow_mm);
1509
1510         init_waitqueue_head(&workload->shadow_ctx_status_wq);
1511         atomic_set(&workload->shadow_ctx_active, 0);
1512
1513         workload->status = -EINPROGRESS;
1514         workload->vgpu = vgpu;
1515
1516         return workload;
1517 }
1518
1519 #define RING_CTX_OFF(x) \
1520         offsetof(struct execlist_ring_context, x)
1521
1522 static void read_guest_pdps(struct intel_vgpu *vgpu,
1523                 u64 ring_context_gpa, u32 pdp[8])
1524 {
1525         u64 gpa;
1526         int i;
1527
1528         gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1529
1530         for (i = 0; i < 8; i++)
1531                 intel_gvt_hypervisor_read_gpa(vgpu,
1532                                 gpa + i * 8, &pdp[7 - i], 4);
1533 }
1534
1535 static int prepare_mm(struct intel_vgpu_workload *workload)
1536 {
1537         struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1538         struct intel_vgpu_mm *mm;
1539         struct intel_vgpu *vgpu = workload->vgpu;
1540         enum intel_gvt_gtt_type root_entry_type;
1541         u64 pdps[GVT_RING_CTX_NR_PDPS];
1542
1543         switch (desc->addressing_mode) {
1544         case 1: /* legacy 32-bit */
1545                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1546                 break;
1547         case 3: /* legacy 64-bit */
1548                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1549                 break;
1550         default:
1551                 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1552                 return -EINVAL;
1553         }
1554
1555         read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1556
1557         mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1558         if (IS_ERR(mm))
1559                 return PTR_ERR(mm);
1560
1561         workload->shadow_mm = mm;
1562         return 0;
1563 }
1564
1565 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1566                 ((a)->lrca == (b)->lrca))
1567
1568 /**
1569  * intel_vgpu_create_workload - create a vGPU workload
1570  * @vgpu: a vGPU
1571  * @engine: the engine
1572  * @desc: a guest context descriptor
1573  *
1574  * This function is called when creating a vGPU workload.
1575  *
1576  * Returns:
1577  * struct intel_vgpu_workload * on success, negative error code in
1578  * pointer if failed.
1579  *
1580  */
1581 struct intel_vgpu_workload *
1582 intel_vgpu_create_workload(struct intel_vgpu *vgpu,
1583                            const struct intel_engine_cs *engine,
1584                            struct execlist_ctx_descriptor_format *desc)
1585 {
1586         struct intel_vgpu_submission *s = &vgpu->submission;
1587         struct list_head *q = workload_q_head(vgpu, engine);
1588         struct intel_vgpu_workload *last_workload = NULL;
1589         struct intel_vgpu_workload *workload = NULL;
1590         u64 ring_context_gpa;
1591         u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1592         u32 guest_head;
1593         int ret;
1594
1595         ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1596                         (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1597         if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1598                 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1599                 return ERR_PTR(-EINVAL);
1600         }
1601
1602         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1603                         RING_CTX_OFF(ring_header.val), &head, 4);
1604
1605         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1606                         RING_CTX_OFF(ring_tail.val), &tail, 4);
1607
1608         guest_head = head;
1609
1610         head &= RB_HEAD_OFF_MASK;
1611         tail &= RB_TAIL_OFF_MASK;
1612
1613         list_for_each_entry_reverse(last_workload, q, list) {
1614
1615                 if (same_context(&last_workload->ctx_desc, desc)) {
1616                         gvt_dbg_el("ring %s cur workload == last\n",
1617                                    engine->name);
1618                         gvt_dbg_el("ctx head %x real head %lx\n", head,
1619                                    last_workload->rb_tail);
1620                         /*
1621                          * cannot use guest context head pointer here,
1622                          * as it might not be updated at this time
1623                          */
1624                         head = last_workload->rb_tail;
1625                         break;
1626                 }
1627         }
1628
1629         gvt_dbg_el("ring %s begin a new workload\n", engine->name);
1630
1631         /* record some ring buffer register values for scan and shadow */
1632         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1633                         RING_CTX_OFF(rb_start.val), &start, 4);
1634         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1635                         RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1636         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1637                         RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1638
1639         if (!intel_gvt_ggtt_validate_range(vgpu, start,
1640                                 _RING_CTL_BUF_SIZE(ctl))) {
1641                 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1642                 return ERR_PTR(-EINVAL);
1643         }
1644
1645         workload = alloc_workload(vgpu);
1646         if (IS_ERR(workload))
1647                 return workload;
1648
1649         workload->engine = engine;
1650         workload->ctx_desc = *desc;
1651         workload->ring_context_gpa = ring_context_gpa;
1652         workload->rb_head = head;
1653         workload->guest_rb_head = guest_head;
1654         workload->rb_tail = tail;
1655         workload->rb_start = start;
1656         workload->rb_ctl = ctl;
1657
1658         if (engine->id == RCS0) {
1659                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1660                         RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1661                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1662                         RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1663
1664                 workload->wa_ctx.indirect_ctx.guest_gma =
1665                         indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1666                 workload->wa_ctx.indirect_ctx.size =
1667                         (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1668                         CACHELINE_BYTES;
1669
1670                 if (workload->wa_ctx.indirect_ctx.size != 0) {
1671                         if (!intel_gvt_ggtt_validate_range(vgpu,
1672                                 workload->wa_ctx.indirect_ctx.guest_gma,
1673                                 workload->wa_ctx.indirect_ctx.size)) {
1674                                 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1675                                     workload->wa_ctx.indirect_ctx.guest_gma);
1676                                 kmem_cache_free(s->workloads, workload);
1677                                 return ERR_PTR(-EINVAL);
1678                         }
1679                 }
1680
1681                 workload->wa_ctx.per_ctx.guest_gma =
1682                         per_ctx & PER_CTX_ADDR_MASK;
1683                 workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1684                 if (workload->wa_ctx.per_ctx.valid) {
1685                         if (!intel_gvt_ggtt_validate_range(vgpu,
1686                                 workload->wa_ctx.per_ctx.guest_gma,
1687                                 CACHELINE_BYTES)) {
1688                                 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1689                                         workload->wa_ctx.per_ctx.guest_gma);
1690                                 kmem_cache_free(s->workloads, workload);
1691                                 return ERR_PTR(-EINVAL);
1692                         }
1693                 }
1694         }
1695
1696         gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n",
1697                    workload, engine->name, head, tail, start, ctl);
1698
1699         ret = prepare_mm(workload);
1700         if (ret) {
1701                 kmem_cache_free(s->workloads, workload);
1702                 return ERR_PTR(ret);
1703         }
1704
1705         /* Only scan and shadow the first workload in the queue
1706          * as there is only one pre-allocated buf-obj for shadow.
1707          */
1708         if (list_empty(q)) {
1709                 intel_wakeref_t wakeref;
1710
1711                 with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref)
1712                         ret = intel_gvt_scan_and_shadow_workload(workload);
1713         }
1714
1715         if (ret) {
1716                 if (vgpu_is_vm_unhealthy(ret))
1717                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1718                 intel_vgpu_destroy_workload(workload);
1719                 return ERR_PTR(ret);
1720         }
1721
1722         ret = intel_context_pin(s->shadow[engine->id]);
1723         if (ret) {
1724                 intel_vgpu_destroy_workload(workload);
1725                 return ERR_PTR(ret);
1726         }
1727
1728         return workload;
1729 }
1730
1731 /**
1732  * intel_vgpu_queue_workload - Qeue a vGPU workload
1733  * @workload: the workload to queue in
1734  */
1735 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1736 {
1737         list_add_tail(&workload->list,
1738                       workload_q_head(workload->vgpu, workload->engine));
1739         intel_gvt_kick_schedule(workload->vgpu->gvt);
1740         wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]);
1741 }