Merge branch 'nvme-5.2-rc2' of git://git.infradead.org/nvme into for-linus
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gvt / scheduler.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35
36 #include <linux/kthread.h>
37
38 #include "i915_drv.h"
39 #include "gvt.h"
40
41 #define RING_CTX_OFF(x) \
42         offsetof(struct execlist_ring_context, x)
43
44 static void set_context_pdp_root_pointer(
45                 struct execlist_ring_context *ring_context,
46                 u32 pdp[8])
47 {
48         int i;
49
50         for (i = 0; i < 8; i++)
51                 ring_context->pdps[i].val = pdp[7 - i];
52 }
53
54 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
55 {
56         struct drm_i915_gem_object *ctx_obj =
57                 workload->req->hw_context->state->obj;
58         struct execlist_ring_context *shadow_ring_context;
59         struct page *page;
60
61         if (WARN_ON(!workload->shadow_mm))
62                 return;
63
64         if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
65                 return;
66
67         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
68         shadow_ring_context = kmap(page);
69         set_context_pdp_root_pointer(shadow_ring_context,
70                         (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
71         kunmap(page);
72 }
73
74 /*
75  * when populating shadow ctx from guest, we should not overrride oa related
76  * registers, so that they will not be overlapped by guest oa configs. Thus
77  * made it possible to capture oa data from host for both host and guests.
78  */
79 static void sr_oa_regs(struct intel_vgpu_workload *workload,
80                 u32 *reg_state, bool save)
81 {
82         struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
83         u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
84         u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
85         int i = 0;
86         u32 flex_mmio[] = {
87                 i915_mmio_reg_offset(EU_PERF_CNTL0),
88                 i915_mmio_reg_offset(EU_PERF_CNTL1),
89                 i915_mmio_reg_offset(EU_PERF_CNTL2),
90                 i915_mmio_reg_offset(EU_PERF_CNTL3),
91                 i915_mmio_reg_offset(EU_PERF_CNTL4),
92                 i915_mmio_reg_offset(EU_PERF_CNTL5),
93                 i915_mmio_reg_offset(EU_PERF_CNTL6),
94         };
95
96         if (workload->ring_id != RCS0)
97                 return;
98
99         if (save) {
100                 workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
101
102                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
103                         u32 state_offset = ctx_flexeu0 + i * 2;
104
105                         workload->flex_mmio[i] = reg_state[state_offset + 1];
106                 }
107         } else {
108                 reg_state[ctx_oactxctrl] =
109                         i915_mmio_reg_offset(GEN8_OACTXCONTROL);
110                 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
111
112                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
113                         u32 state_offset = ctx_flexeu0 + i * 2;
114                         u32 mmio = flex_mmio[i];
115
116                         reg_state[state_offset] = mmio;
117                         reg_state[state_offset + 1] = workload->flex_mmio[i];
118                 }
119         }
120 }
121
122 static int populate_shadow_context(struct intel_vgpu_workload *workload)
123 {
124         struct intel_vgpu *vgpu = workload->vgpu;
125         struct intel_gvt *gvt = vgpu->gvt;
126         int ring_id = workload->ring_id;
127         struct drm_i915_gem_object *ctx_obj =
128                 workload->req->hw_context->state->obj;
129         struct execlist_ring_context *shadow_ring_context;
130         struct page *page;
131         void *dst;
132         unsigned long context_gpa, context_page_num;
133         int i;
134
135         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
136         shadow_ring_context = kmap(page);
137
138         sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
139 #define COPY_REG(name) \
140         intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
141                 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
142 #define COPY_REG_MASKED(name) {\
143                 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
144                                               + RING_CTX_OFF(name.val),\
145                                               &shadow_ring_context->name.val, 4);\
146                 shadow_ring_context->name.val |= 0xffff << 16;\
147         }
148
149         COPY_REG_MASKED(ctx_ctrl);
150         COPY_REG(ctx_timestamp);
151
152         if (ring_id == RCS0) {
153                 COPY_REG(bb_per_ctx_ptr);
154                 COPY_REG(rcs_indirect_ctx);
155                 COPY_REG(rcs_indirect_ctx_offset);
156         }
157 #undef COPY_REG
158 #undef COPY_REG_MASKED
159
160         intel_gvt_hypervisor_read_gpa(vgpu,
161                         workload->ring_context_gpa +
162                         sizeof(*shadow_ring_context),
163                         (void *)shadow_ring_context +
164                         sizeof(*shadow_ring_context),
165                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
166
167         sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
168         kunmap(page);
169
170         if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
171                 return 0;
172
173         gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
174                         workload->ctx_desc.lrca);
175
176         context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
177
178         context_page_num = context_page_num >> PAGE_SHIFT;
179
180         if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0)
181                 context_page_num = 19;
182
183         i = 2;
184         while (i < context_page_num) {
185                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
186                                 (u32)((workload->ctx_desc.lrca + i) <<
187                                 I915_GTT_PAGE_SHIFT));
188                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
189                         gvt_vgpu_err("Invalid guest context descriptor\n");
190                         return -EFAULT;
191                 }
192
193                 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
194                 dst = kmap(page);
195                 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
196                                 I915_GTT_PAGE_SIZE);
197                 kunmap(page);
198                 i++;
199         }
200         return 0;
201 }
202
203 static inline bool is_gvt_request(struct i915_request *req)
204 {
205         return i915_gem_context_force_single_submission(req->gem_context);
206 }
207
208 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
209 {
210         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
211         u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
212         i915_reg_t reg;
213
214         reg = RING_INSTDONE(ring_base);
215         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
216         reg = RING_ACTHD(ring_base);
217         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
218         reg = RING_ACTHD_UDW(ring_base);
219         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
220 }
221
222 static int shadow_context_status_change(struct notifier_block *nb,
223                 unsigned long action, void *data)
224 {
225         struct i915_request *req = data;
226         struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
227                                 shadow_ctx_notifier_block[req->engine->id]);
228         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
229         enum intel_engine_id ring_id = req->engine->id;
230         struct intel_vgpu_workload *workload;
231         unsigned long flags;
232
233         if (!is_gvt_request(req)) {
234                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
235                 if (action == INTEL_CONTEXT_SCHEDULE_IN &&
236                     scheduler->engine_owner[ring_id]) {
237                         /* Switch ring from vGPU to host. */
238                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
239                                               NULL, ring_id);
240                         scheduler->engine_owner[ring_id] = NULL;
241                 }
242                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
243
244                 return NOTIFY_OK;
245         }
246
247         workload = scheduler->current_workload[ring_id];
248         if (unlikely(!workload))
249                 return NOTIFY_OK;
250
251         switch (action) {
252         case INTEL_CONTEXT_SCHEDULE_IN:
253                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
254                 if (workload->vgpu != scheduler->engine_owner[ring_id]) {
255                         /* Switch ring from host to vGPU or vGPU to vGPU. */
256                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
257                                               workload->vgpu, ring_id);
258                         scheduler->engine_owner[ring_id] = workload->vgpu;
259                 } else
260                         gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
261                                       ring_id, workload->vgpu->id);
262                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
263                 atomic_set(&workload->shadow_ctx_active, 1);
264                 break;
265         case INTEL_CONTEXT_SCHEDULE_OUT:
266                 save_ring_hw_state(workload->vgpu, ring_id);
267                 atomic_set(&workload->shadow_ctx_active, 0);
268                 break;
269         case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
270                 save_ring_hw_state(workload->vgpu, ring_id);
271                 break;
272         default:
273                 WARN_ON(1);
274                 return NOTIFY_OK;
275         }
276         wake_up(&workload->shadow_ctx_status_wq);
277         return NOTIFY_OK;
278 }
279
280 static void shadow_context_descriptor_update(struct intel_context *ce)
281 {
282         u64 desc = 0;
283
284         desc = ce->lrc_desc;
285
286         /* Update bits 0-11 of the context descriptor which includes flags
287          * like GEN8_CTX_* cached in desc_template
288          */
289         desc &= U64_MAX << 12;
290         desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1);
291
292         ce->lrc_desc = desc;
293 }
294
295 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
296 {
297         struct intel_vgpu *vgpu = workload->vgpu;
298         struct i915_request *req = workload->req;
299         void *shadow_ring_buffer_va;
300         u32 *cs;
301
302         if ((IS_KABYLAKE(req->i915) || IS_BROXTON(req->i915)
303                 || IS_COFFEELAKE(req->i915))
304                 && is_inhibit_context(req->hw_context))
305                 intel_vgpu_restore_inhibit_context(vgpu, req);
306
307         /* allocate shadow ring buffer */
308         cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
309         if (IS_ERR(cs)) {
310                 gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
311                         workload->rb_len);
312                 return PTR_ERR(cs);
313         }
314
315         shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
316
317         /* get shadow ring buffer va */
318         workload->shadow_ring_buffer_va = cs;
319
320         memcpy(cs, shadow_ring_buffer_va,
321                         workload->rb_len);
322
323         cs += workload->rb_len / sizeof(u32);
324         intel_ring_advance(workload->req, cs);
325
326         return 0;
327 }
328
329 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
330 {
331         if (!wa_ctx->indirect_ctx.obj)
332                 return;
333
334         i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
335         i915_gem_object_put(wa_ctx->indirect_ctx.obj);
336
337         wa_ctx->indirect_ctx.obj = NULL;
338         wa_ctx->indirect_ctx.shadow_va = NULL;
339 }
340
341 static int set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
342                                          struct i915_gem_context *ctx)
343 {
344         struct intel_vgpu_mm *mm = workload->shadow_mm;
345         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
346         int i = 0;
347
348         if (mm->type != INTEL_GVT_MM_PPGTT || !mm->ppgtt_mm.shadowed)
349                 return -EINVAL;
350
351         if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
352                 px_dma(&ppgtt->pml4) = mm->ppgtt_mm.shadow_pdps[0];
353         } else {
354                 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
355                         px_dma(ppgtt->pdp.page_directory[i]) =
356                                 mm->ppgtt_mm.shadow_pdps[i];
357                 }
358         }
359
360         return 0;
361 }
362
363 static int
364 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
365 {
366         struct intel_vgpu *vgpu = workload->vgpu;
367         struct intel_vgpu_submission *s = &vgpu->submission;
368         struct i915_gem_context *shadow_ctx = s->shadow_ctx;
369         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
370         struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id];
371         struct i915_request *rq;
372         int ret = 0;
373
374         lockdep_assert_held(&dev_priv->drm.struct_mutex);
375
376         if (workload->req)
377                 goto out;
378
379         rq = i915_request_alloc(engine, shadow_ctx);
380         if (IS_ERR(rq)) {
381                 gvt_vgpu_err("fail to allocate gem request\n");
382                 ret = PTR_ERR(rq);
383                 goto out;
384         }
385         workload->req = i915_request_get(rq);
386 out:
387         return ret;
388 }
389
390 /**
391  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
392  * shadow it as well, include ringbuffer,wa_ctx and ctx.
393  * @workload: an abstract entity for each execlist submission.
394  *
395  * This function is called before the workload submitting to i915, to make
396  * sure the content of the workload is valid.
397  */
398 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
399 {
400         struct intel_vgpu *vgpu = workload->vgpu;
401         struct intel_vgpu_submission *s = &vgpu->submission;
402         struct i915_gem_context *shadow_ctx = s->shadow_ctx;
403         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
404         struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id];
405         struct intel_context *ce;
406         int ret;
407
408         lockdep_assert_held(&dev_priv->drm.struct_mutex);
409
410         if (workload->shadow)
411                 return 0;
412
413         /* pin shadow context by gvt even the shadow context will be pinned
414          * when i915 alloc request. That is because gvt will update the guest
415          * context from shadow context when workload is completed, and at that
416          * moment, i915 may already unpined the shadow context to make the
417          * shadow_ctx pages invalid. So gvt need to pin itself. After update
418          * the guest context, gvt can unpin the shadow_ctx safely.
419          */
420         ce = intel_context_pin(shadow_ctx, engine);
421         if (IS_ERR(ce)) {
422                 gvt_vgpu_err("fail to pin shadow context\n");
423                 return PTR_ERR(ce);
424         }
425
426         shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
427         shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
428                                     GEN8_CTX_ADDRESSING_MODE_SHIFT;
429
430         if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
431                 shadow_context_descriptor_update(ce);
432
433         ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
434         if (ret)
435                 goto err_unpin;
436
437         if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) {
438                 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
439                 if (ret)
440                         goto err_shadow;
441         }
442
443         workload->shadow = true;
444         return 0;
445 err_shadow:
446         release_shadow_wa_ctx(&workload->wa_ctx);
447 err_unpin:
448         intel_context_unpin(ce);
449         return ret;
450 }
451
452 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
453
454 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
455 {
456         struct intel_gvt *gvt = workload->vgpu->gvt;
457         const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
458         struct intel_vgpu_shadow_bb *bb;
459         int ret;
460
461         list_for_each_entry(bb, &workload->shadow_bb, list) {
462                 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
463                  * is only updated into ring_scan_buffer, not real ring address
464                  * allocated in later copy_workload_to_ring_buffer. pls be noted
465                  * shadow_ring_buffer_va is now pointed to real ring buffer va
466                  * in copy_workload_to_ring_buffer.
467                  */
468
469                 if (bb->bb_offset)
470                         bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
471                                 + bb->bb_offset;
472
473                 if (bb->ppgtt) {
474                         /* for non-priv bb, scan&shadow is only for
475                          * debugging purpose, so the content of shadow bb
476                          * is the same as original bb. Therefore,
477                          * here, rather than switch to shadow bb's gma
478                          * address, we directly use original batch buffer's
479                          * gma address, and send original bb to hardware
480                          * directly
481                          */
482                         if (bb->clflush & CLFLUSH_AFTER) {
483                                 drm_clflush_virt_range(bb->va,
484                                                 bb->obj->base.size);
485                                 bb->clflush &= ~CLFLUSH_AFTER;
486                         }
487                         i915_gem_obj_finish_shmem_access(bb->obj);
488                         bb->accessing = false;
489
490                 } else {
491                         bb->vma = i915_gem_object_ggtt_pin(bb->obj,
492                                         NULL, 0, 0, 0);
493                         if (IS_ERR(bb->vma)) {
494                                 ret = PTR_ERR(bb->vma);
495                                 goto err;
496                         }
497
498                         /* relocate shadow batch buffer */
499                         bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
500                         if (gmadr_bytes == 8)
501                                 bb->bb_start_cmd_va[2] = 0;
502
503                         /* No one is going to touch shadow bb from now on. */
504                         if (bb->clflush & CLFLUSH_AFTER) {
505                                 drm_clflush_virt_range(bb->va,
506                                                 bb->obj->base.size);
507                                 bb->clflush &= ~CLFLUSH_AFTER;
508                         }
509
510                         ret = i915_gem_object_set_to_gtt_domain(bb->obj,
511                                         false);
512                         if (ret)
513                                 goto err;
514
515                         i915_gem_obj_finish_shmem_access(bb->obj);
516                         bb->accessing = false;
517
518                         ret = i915_vma_move_to_active(bb->vma,
519                                                       workload->req,
520                                                       0);
521                         if (ret)
522                                 goto err;
523                 }
524         }
525         return 0;
526 err:
527         release_shadow_batch_buffer(workload);
528         return ret;
529 }
530
531 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
532 {
533         struct intel_vgpu_workload *workload =
534                 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
535         struct i915_request *rq = workload->req;
536         struct execlist_ring_context *shadow_ring_context =
537                 (struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
538
539         shadow_ring_context->bb_per_ctx_ptr.val =
540                 (shadow_ring_context->bb_per_ctx_ptr.val &
541                 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
542         shadow_ring_context->rcs_indirect_ctx.val =
543                 (shadow_ring_context->rcs_indirect_ctx.val &
544                 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
545 }
546
547 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
548 {
549         struct i915_vma *vma;
550         unsigned char *per_ctx_va =
551                 (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
552                 wa_ctx->indirect_ctx.size;
553
554         if (wa_ctx->indirect_ctx.size == 0)
555                 return 0;
556
557         vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
558                                        0, CACHELINE_BYTES, 0);
559         if (IS_ERR(vma))
560                 return PTR_ERR(vma);
561
562         /* FIXME: we are not tracking our pinned VMA leaving it
563          * up to the core to fix up the stray pin_count upon
564          * free.
565          */
566
567         wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
568
569         wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
570         memset(per_ctx_va, 0, CACHELINE_BYTES);
571
572         update_wa_ctx_2_shadow_ctx(wa_ctx);
573         return 0;
574 }
575
576 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
577 {
578         struct intel_vgpu *vgpu = workload->vgpu;
579         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
580         struct intel_vgpu_shadow_bb *bb, *pos;
581
582         if (list_empty(&workload->shadow_bb))
583                 return;
584
585         bb = list_first_entry(&workload->shadow_bb,
586                         struct intel_vgpu_shadow_bb, list);
587
588         mutex_lock(&dev_priv->drm.struct_mutex);
589
590         list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
591                 if (bb->obj) {
592                         if (bb->accessing)
593                                 i915_gem_obj_finish_shmem_access(bb->obj);
594
595                         if (bb->va && !IS_ERR(bb->va))
596                                 i915_gem_object_unpin_map(bb->obj);
597
598                         if (bb->vma && !IS_ERR(bb->vma)) {
599                                 i915_vma_unpin(bb->vma);
600                                 i915_vma_close(bb->vma);
601                         }
602                         __i915_gem_object_release_unless_active(bb->obj);
603                 }
604                 list_del(&bb->list);
605                 kfree(bb);
606         }
607
608         mutex_unlock(&dev_priv->drm.struct_mutex);
609 }
610
611 static int prepare_workload(struct intel_vgpu_workload *workload)
612 {
613         struct intel_vgpu *vgpu = workload->vgpu;
614         int ret = 0;
615
616         ret = intel_vgpu_pin_mm(workload->shadow_mm);
617         if (ret) {
618                 gvt_vgpu_err("fail to vgpu pin mm\n");
619                 return ret;
620         }
621
622         update_shadow_pdps(workload);
623
624         ret = intel_vgpu_sync_oos_pages(workload->vgpu);
625         if (ret) {
626                 gvt_vgpu_err("fail to vgpu sync oos pages\n");
627                 goto err_unpin_mm;
628         }
629
630         ret = intel_vgpu_flush_post_shadow(workload->vgpu);
631         if (ret) {
632                 gvt_vgpu_err("fail to flush post shadow\n");
633                 goto err_unpin_mm;
634         }
635
636         ret = copy_workload_to_ring_buffer(workload);
637         if (ret) {
638                 gvt_vgpu_err("fail to generate request\n");
639                 goto err_unpin_mm;
640         }
641
642         ret = prepare_shadow_batch_buffer(workload);
643         if (ret) {
644                 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
645                 goto err_unpin_mm;
646         }
647
648         ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
649         if (ret) {
650                 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
651                 goto err_shadow_batch;
652         }
653
654         if (workload->prepare) {
655                 ret = workload->prepare(workload);
656                 if (ret)
657                         goto err_shadow_wa_ctx;
658         }
659
660         return 0;
661 err_shadow_wa_ctx:
662         release_shadow_wa_ctx(&workload->wa_ctx);
663 err_shadow_batch:
664         release_shadow_batch_buffer(workload);
665 err_unpin_mm:
666         intel_vgpu_unpin_mm(workload->shadow_mm);
667         return ret;
668 }
669
670 static int dispatch_workload(struct intel_vgpu_workload *workload)
671 {
672         struct intel_vgpu *vgpu = workload->vgpu;
673         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
674         struct intel_vgpu_submission *s = &vgpu->submission;
675         struct i915_gem_context *shadow_ctx = s->shadow_ctx;
676         struct i915_request *rq;
677         int ring_id = workload->ring_id;
678         int ret;
679
680         gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
681                 ring_id, workload);
682
683         mutex_lock(&vgpu->vgpu_lock);
684         mutex_lock(&dev_priv->drm.struct_mutex);
685
686         ret = set_context_ppgtt_from_shadow(workload, shadow_ctx);
687         if (ret < 0) {
688                 gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
689                 goto err_req;
690         }
691
692         ret = intel_gvt_workload_req_alloc(workload);
693         if (ret)
694                 goto err_req;
695
696         ret = intel_gvt_scan_and_shadow_workload(workload);
697         if (ret)
698                 goto out;
699
700         ret = populate_shadow_context(workload);
701         if (ret) {
702                 release_shadow_wa_ctx(&workload->wa_ctx);
703                 goto out;
704         }
705
706         ret = prepare_workload(workload);
707 out:
708         if (ret) {
709                 /* We might still need to add request with
710                  * clean ctx to retire it properly..
711                  */
712                 rq = fetch_and_zero(&workload->req);
713                 i915_request_put(rq);
714         }
715
716         if (!IS_ERR_OR_NULL(workload->req)) {
717                 gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
718                                 ring_id, workload->req);
719                 i915_request_add(workload->req);
720                 workload->dispatched = true;
721         }
722 err_req:
723         if (ret)
724                 workload->status = ret;
725         mutex_unlock(&dev_priv->drm.struct_mutex);
726         mutex_unlock(&vgpu->vgpu_lock);
727         return ret;
728 }
729
730 static struct intel_vgpu_workload *pick_next_workload(
731                 struct intel_gvt *gvt, int ring_id)
732 {
733         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
734         struct intel_vgpu_workload *workload = NULL;
735
736         mutex_lock(&gvt->sched_lock);
737
738         /*
739          * no current vgpu / will be scheduled out / no workload
740          * bail out
741          */
742         if (!scheduler->current_vgpu) {
743                 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
744                 goto out;
745         }
746
747         if (scheduler->need_reschedule) {
748                 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
749                 goto out;
750         }
751
752         if (!scheduler->current_vgpu->active ||
753             list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
754                 goto out;
755
756         /*
757          * still have current workload, maybe the workload disptacher
758          * fail to submit it for some reason, resubmit it.
759          */
760         if (scheduler->current_workload[ring_id]) {
761                 workload = scheduler->current_workload[ring_id];
762                 gvt_dbg_sched("ring id %d still have current workload %p\n",
763                                 ring_id, workload);
764                 goto out;
765         }
766
767         /*
768          * pick a workload as current workload
769          * once current workload is set, schedule policy routines
770          * will wait the current workload is finished when trying to
771          * schedule out a vgpu.
772          */
773         scheduler->current_workload[ring_id] = container_of(
774                         workload_q_head(scheduler->current_vgpu, ring_id)->next,
775                         struct intel_vgpu_workload, list);
776
777         workload = scheduler->current_workload[ring_id];
778
779         gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
780
781         atomic_inc(&workload->vgpu->submission.running_workload_num);
782 out:
783         mutex_unlock(&gvt->sched_lock);
784         return workload;
785 }
786
787 static void update_guest_context(struct intel_vgpu_workload *workload)
788 {
789         struct i915_request *rq = workload->req;
790         struct intel_vgpu *vgpu = workload->vgpu;
791         struct intel_gvt *gvt = vgpu->gvt;
792         struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
793         struct execlist_ring_context *shadow_ring_context;
794         struct page *page;
795         void *src;
796         unsigned long context_gpa, context_page_num;
797         int i;
798
799         gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
800                       workload->ctx_desc.lrca);
801
802         context_page_num = rq->engine->context_size;
803         context_page_num = context_page_num >> PAGE_SHIFT;
804
805         if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0)
806                 context_page_num = 19;
807
808         i = 2;
809
810         while (i < context_page_num) {
811                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
812                                 (u32)((workload->ctx_desc.lrca + i) <<
813                                         I915_GTT_PAGE_SHIFT));
814                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
815                         gvt_vgpu_err("invalid guest context descriptor\n");
816                         return;
817                 }
818
819                 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
820                 src = kmap(page);
821                 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
822                                 I915_GTT_PAGE_SIZE);
823                 kunmap(page);
824                 i++;
825         }
826
827         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
828                 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
829
830         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
831         shadow_ring_context = kmap(page);
832
833 #define COPY_REG(name) \
834         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
835                 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
836
837         COPY_REG(ctx_ctrl);
838         COPY_REG(ctx_timestamp);
839
840 #undef COPY_REG
841
842         intel_gvt_hypervisor_write_gpa(vgpu,
843                         workload->ring_context_gpa +
844                         sizeof(*shadow_ring_context),
845                         (void *)shadow_ring_context +
846                         sizeof(*shadow_ring_context),
847                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
848
849         kunmap(page);
850 }
851
852 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
853                                 intel_engine_mask_t engine_mask)
854 {
855         struct intel_vgpu_submission *s = &vgpu->submission;
856         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
857         struct intel_engine_cs *engine;
858         struct intel_vgpu_workload *pos, *n;
859         intel_engine_mask_t tmp;
860
861         /* free the unsubmited workloads in the queues. */
862         for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
863                 list_for_each_entry_safe(pos, n,
864                         &s->workload_q_head[engine->id], list) {
865                         list_del_init(&pos->list);
866                         intel_vgpu_destroy_workload(pos);
867                 }
868                 clear_bit(engine->id, s->shadow_ctx_desc_updated);
869         }
870 }
871
872 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
873 {
874         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
875         struct intel_vgpu_workload *workload =
876                 scheduler->current_workload[ring_id];
877         struct intel_vgpu *vgpu = workload->vgpu;
878         struct intel_vgpu_submission *s = &vgpu->submission;
879         struct i915_request *rq = workload->req;
880         int event;
881
882         mutex_lock(&vgpu->vgpu_lock);
883         mutex_lock(&gvt->sched_lock);
884
885         /* For the workload w/ request, needs to wait for the context
886          * switch to make sure request is completed.
887          * For the workload w/o request, directly complete the workload.
888          */
889         if (rq) {
890                 wait_event(workload->shadow_ctx_status_wq,
891                            !atomic_read(&workload->shadow_ctx_active));
892
893                 /* If this request caused GPU hang, req->fence.error will
894                  * be set to -EIO. Use -EIO to set workload status so
895                  * that when this request caused GPU hang, didn't trigger
896                  * context switch interrupt to guest.
897                  */
898                 if (likely(workload->status == -EINPROGRESS)) {
899                         if (workload->req->fence.error == -EIO)
900                                 workload->status = -EIO;
901                         else
902                                 workload->status = 0;
903                 }
904
905                 if (!workload->status &&
906                     !(vgpu->resetting_eng & BIT(ring_id))) {
907                         update_guest_context(workload);
908
909                         for_each_set_bit(event, workload->pending_events,
910                                          INTEL_GVT_EVENT_MAX)
911                                 intel_vgpu_trigger_virtual_event(vgpu, event);
912                 }
913
914                 /* unpin shadow ctx as the shadow_ctx update is done */
915                 mutex_lock(&rq->i915->drm.struct_mutex);
916                 intel_context_unpin(rq->hw_context);
917                 mutex_unlock(&rq->i915->drm.struct_mutex);
918
919                 i915_request_put(fetch_and_zero(&workload->req));
920         }
921
922         gvt_dbg_sched("ring id %d complete workload %p status %d\n",
923                         ring_id, workload, workload->status);
924
925         scheduler->current_workload[ring_id] = NULL;
926
927         list_del_init(&workload->list);
928
929         if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
930                 /* if workload->status is not successful means HW GPU
931                  * has occurred GPU hang or something wrong with i915/GVT,
932                  * and GVT won't inject context switch interrupt to guest.
933                  * So this error is a vGPU hang actually to the guest.
934                  * According to this we should emunlate a vGPU hang. If
935                  * there are pending workloads which are already submitted
936                  * from guest, we should clean them up like HW GPU does.
937                  *
938                  * if it is in middle of engine resetting, the pending
939                  * workloads won't be submitted to HW GPU and will be
940                  * cleaned up during the resetting process later, so doing
941                  * the workload clean up here doesn't have any impact.
942                  **/
943                 intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
944         }
945
946         workload->complete(workload);
947
948         atomic_dec(&s->running_workload_num);
949         wake_up(&scheduler->workload_complete_wq);
950
951         if (gvt->scheduler.need_reschedule)
952                 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
953
954         mutex_unlock(&gvt->sched_lock);
955         mutex_unlock(&vgpu->vgpu_lock);
956 }
957
958 struct workload_thread_param {
959         struct intel_gvt *gvt;
960         int ring_id;
961 };
962
963 static int workload_thread(void *priv)
964 {
965         struct workload_thread_param *p = (struct workload_thread_param *)priv;
966         struct intel_gvt *gvt = p->gvt;
967         int ring_id = p->ring_id;
968         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
969         struct intel_vgpu_workload *workload = NULL;
970         struct intel_vgpu *vgpu = NULL;
971         int ret;
972         bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9);
973         DEFINE_WAIT_FUNC(wait, woken_wake_function);
974
975         kfree(p);
976
977         gvt_dbg_core("workload thread for ring %d started\n", ring_id);
978
979         while (!kthread_should_stop()) {
980                 add_wait_queue(&scheduler->waitq[ring_id], &wait);
981                 do {
982                         workload = pick_next_workload(gvt, ring_id);
983                         if (workload)
984                                 break;
985                         wait_woken(&wait, TASK_INTERRUPTIBLE,
986                                    MAX_SCHEDULE_TIMEOUT);
987                 } while (!kthread_should_stop());
988                 remove_wait_queue(&scheduler->waitq[ring_id], &wait);
989
990                 if (!workload)
991                         break;
992
993                 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
994                                 workload->ring_id, workload,
995                                 workload->vgpu->id);
996
997                 intel_runtime_pm_get(gvt->dev_priv);
998
999                 gvt_dbg_sched("ring id %d will dispatch workload %p\n",
1000                                 workload->ring_id, workload);
1001
1002                 if (need_force_wake)
1003                         intel_uncore_forcewake_get(&gvt->dev_priv->uncore,
1004                                         FORCEWAKE_ALL);
1005
1006                 ret = dispatch_workload(workload);
1007
1008                 if (ret) {
1009                         vgpu = workload->vgpu;
1010                         gvt_vgpu_err("fail to dispatch workload, skip\n");
1011                         goto complete;
1012                 }
1013
1014                 gvt_dbg_sched("ring id %d wait workload %p\n",
1015                                 workload->ring_id, workload);
1016                 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1017
1018 complete:
1019                 gvt_dbg_sched("will complete workload %p, status: %d\n",
1020                                 workload, workload->status);
1021
1022                 complete_current_workload(gvt, ring_id);
1023
1024                 if (need_force_wake)
1025                         intel_uncore_forcewake_put(&gvt->dev_priv->uncore,
1026                                         FORCEWAKE_ALL);
1027
1028                 intel_runtime_pm_put_unchecked(gvt->dev_priv);
1029                 if (ret && (vgpu_is_vm_unhealthy(ret)))
1030                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1031         }
1032         return 0;
1033 }
1034
1035 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1036 {
1037         struct intel_vgpu_submission *s = &vgpu->submission;
1038         struct intel_gvt *gvt = vgpu->gvt;
1039         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1040
1041         if (atomic_read(&s->running_workload_num)) {
1042                 gvt_dbg_sched("wait vgpu idle\n");
1043
1044                 wait_event(scheduler->workload_complete_wq,
1045                                 !atomic_read(&s->running_workload_num));
1046         }
1047 }
1048
1049 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1050 {
1051         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1052         struct intel_engine_cs *engine;
1053         enum intel_engine_id i;
1054
1055         gvt_dbg_core("clean workload scheduler\n");
1056
1057         for_each_engine(engine, gvt->dev_priv, i) {
1058                 atomic_notifier_chain_unregister(
1059                                         &engine->context_status_notifier,
1060                                         &gvt->shadow_ctx_notifier_block[i]);
1061                 kthread_stop(scheduler->thread[i]);
1062         }
1063 }
1064
1065 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1066 {
1067         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1068         struct workload_thread_param *param = NULL;
1069         struct intel_engine_cs *engine;
1070         enum intel_engine_id i;
1071         int ret;
1072
1073         gvt_dbg_core("init workload scheduler\n");
1074
1075         init_waitqueue_head(&scheduler->workload_complete_wq);
1076
1077         for_each_engine(engine, gvt->dev_priv, i) {
1078                 init_waitqueue_head(&scheduler->waitq[i]);
1079
1080                 param = kzalloc(sizeof(*param), GFP_KERNEL);
1081                 if (!param) {
1082                         ret = -ENOMEM;
1083                         goto err;
1084                 }
1085
1086                 param->gvt = gvt;
1087                 param->ring_id = i;
1088
1089                 scheduler->thread[i] = kthread_run(workload_thread, param,
1090                         "gvt workload %d", i);
1091                 if (IS_ERR(scheduler->thread[i])) {
1092                         gvt_err("fail to create workload thread\n");
1093                         ret = PTR_ERR(scheduler->thread[i]);
1094                         goto err;
1095                 }
1096
1097                 gvt->shadow_ctx_notifier_block[i].notifier_call =
1098                                         shadow_context_status_change;
1099                 atomic_notifier_chain_register(&engine->context_status_notifier,
1100                                         &gvt->shadow_ctx_notifier_block[i]);
1101         }
1102         return 0;
1103 err:
1104         intel_gvt_clean_workload_scheduler(gvt);
1105         kfree(param);
1106         param = NULL;
1107         return ret;
1108 }
1109
1110 static void
1111 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s)
1112 {
1113         struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt;
1114         int i;
1115
1116         if (i915_vm_is_4lvl(&i915_ppgtt->vm)) {
1117                 px_dma(&i915_ppgtt->pml4) = s->i915_context_pml4;
1118         } else {
1119                 for (i = 0; i < GEN8_3LVL_PDPES; i++)
1120                         px_dma(i915_ppgtt->pdp.page_directory[i]) =
1121                                                 s->i915_context_pdps[i];
1122         }
1123 }
1124
1125 /**
1126  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1127  * @vgpu: a vGPU
1128  *
1129  * This function is called when a vGPU is being destroyed.
1130  *
1131  */
1132 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1133 {
1134         struct intel_vgpu_submission *s = &vgpu->submission;
1135
1136         intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1137         i915_context_ppgtt_root_restore(s);
1138         i915_gem_context_put(s->shadow_ctx);
1139         kmem_cache_destroy(s->workloads);
1140 }
1141
1142
1143 /**
1144  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1145  * @vgpu: a vGPU
1146  * @engine_mask: engines expected to be reset
1147  *
1148  * This function is called when a vGPU is being destroyed.
1149  *
1150  */
1151 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1152                                  intel_engine_mask_t engine_mask)
1153 {
1154         struct intel_vgpu_submission *s = &vgpu->submission;
1155
1156         if (!s->active)
1157                 return;
1158
1159         intel_vgpu_clean_workloads(vgpu, engine_mask);
1160         s->ops->reset(vgpu, engine_mask);
1161 }
1162
1163 static void
1164 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s)
1165 {
1166         struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt;
1167         int i;
1168
1169         if (i915_vm_is_4lvl(&i915_ppgtt->vm))
1170                 s->i915_context_pml4 = px_dma(&i915_ppgtt->pml4);
1171         else {
1172                 for (i = 0; i < GEN8_3LVL_PDPES; i++)
1173                         s->i915_context_pdps[i] =
1174                                 px_dma(i915_ppgtt->pdp.page_directory[i]);
1175         }
1176 }
1177
1178 /**
1179  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1180  * @vgpu: a vGPU
1181  *
1182  * This function is called when a vGPU is being created.
1183  *
1184  * Returns:
1185  * Zero on success, negative error code if failed.
1186  *
1187  */
1188 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1189 {
1190         struct intel_vgpu_submission *s = &vgpu->submission;
1191         enum intel_engine_id i;
1192         struct intel_engine_cs *engine;
1193         int ret;
1194
1195         s->shadow_ctx = i915_gem_context_create_gvt(
1196                         &vgpu->gvt->dev_priv->drm);
1197         if (IS_ERR(s->shadow_ctx))
1198                 return PTR_ERR(s->shadow_ctx);
1199
1200         i915_context_ppgtt_root_save(s);
1201
1202         bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1203
1204         s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1205                                                   sizeof(struct intel_vgpu_workload), 0,
1206                                                   SLAB_HWCACHE_ALIGN,
1207                                                   offsetof(struct intel_vgpu_workload, rb_tail),
1208                                                   sizeof_field(struct intel_vgpu_workload, rb_tail),
1209                                                   NULL);
1210
1211         if (!s->workloads) {
1212                 ret = -ENOMEM;
1213                 goto out_shadow_ctx;
1214         }
1215
1216         for_each_engine(engine, vgpu->gvt->dev_priv, i)
1217                 INIT_LIST_HEAD(&s->workload_q_head[i]);
1218
1219         atomic_set(&s->running_workload_num, 0);
1220         bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1221
1222         return 0;
1223
1224 out_shadow_ctx:
1225         i915_gem_context_put(s->shadow_ctx);
1226         return ret;
1227 }
1228
1229 /**
1230  * intel_vgpu_select_submission_ops - select virtual submission interface
1231  * @vgpu: a vGPU
1232  * @engine_mask: either ALL_ENGINES or target engine mask
1233  * @interface: expected vGPU virtual submission interface
1234  *
1235  * This function is called when guest configures submission interface.
1236  *
1237  * Returns:
1238  * Zero on success, negative error code if failed.
1239  *
1240  */
1241 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1242                                      intel_engine_mask_t engine_mask,
1243                                      unsigned int interface)
1244 {
1245         struct intel_vgpu_submission *s = &vgpu->submission;
1246         const struct intel_vgpu_submission_ops *ops[] = {
1247                 [INTEL_VGPU_EXECLIST_SUBMISSION] =
1248                         &intel_vgpu_execlist_submission_ops,
1249         };
1250         int ret;
1251
1252         if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1253                 return -EINVAL;
1254
1255         if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1256                 return -EINVAL;
1257
1258         if (s->active)
1259                 s->ops->clean(vgpu, engine_mask);
1260
1261         if (interface == 0) {
1262                 s->ops = NULL;
1263                 s->virtual_submission_interface = 0;
1264                 s->active = false;
1265                 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1266                 return 0;
1267         }
1268
1269         ret = ops[interface]->init(vgpu, engine_mask);
1270         if (ret)
1271                 return ret;
1272
1273         s->ops = ops[interface];
1274         s->virtual_submission_interface = interface;
1275         s->active = true;
1276
1277         gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1278                         vgpu->id, s->ops->name);
1279
1280         return 0;
1281 }
1282
1283 /**
1284  * intel_vgpu_destroy_workload - destroy a vGPU workload
1285  * @workload: workload to destroy
1286  *
1287  * This function is called when destroy a vGPU workload.
1288  *
1289  */
1290 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1291 {
1292         struct intel_vgpu_submission *s = &workload->vgpu->submission;
1293
1294         release_shadow_batch_buffer(workload);
1295         release_shadow_wa_ctx(&workload->wa_ctx);
1296
1297         if (workload->shadow_mm)
1298                 intel_vgpu_mm_put(workload->shadow_mm);
1299
1300         kmem_cache_free(s->workloads, workload);
1301 }
1302
1303 static struct intel_vgpu_workload *
1304 alloc_workload(struct intel_vgpu *vgpu)
1305 {
1306         struct intel_vgpu_submission *s = &vgpu->submission;
1307         struct intel_vgpu_workload *workload;
1308
1309         workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1310         if (!workload)
1311                 return ERR_PTR(-ENOMEM);
1312
1313         INIT_LIST_HEAD(&workload->list);
1314         INIT_LIST_HEAD(&workload->shadow_bb);
1315
1316         init_waitqueue_head(&workload->shadow_ctx_status_wq);
1317         atomic_set(&workload->shadow_ctx_active, 0);
1318
1319         workload->status = -EINPROGRESS;
1320         workload->vgpu = vgpu;
1321
1322         return workload;
1323 }
1324
1325 #define RING_CTX_OFF(x) \
1326         offsetof(struct execlist_ring_context, x)
1327
1328 static void read_guest_pdps(struct intel_vgpu *vgpu,
1329                 u64 ring_context_gpa, u32 pdp[8])
1330 {
1331         u64 gpa;
1332         int i;
1333
1334         gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1335
1336         for (i = 0; i < 8; i++)
1337                 intel_gvt_hypervisor_read_gpa(vgpu,
1338                                 gpa + i * 8, &pdp[7 - i], 4);
1339 }
1340
1341 static int prepare_mm(struct intel_vgpu_workload *workload)
1342 {
1343         struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1344         struct intel_vgpu_mm *mm;
1345         struct intel_vgpu *vgpu = workload->vgpu;
1346         enum intel_gvt_gtt_type root_entry_type;
1347         u64 pdps[GVT_RING_CTX_NR_PDPS];
1348
1349         switch (desc->addressing_mode) {
1350         case 1: /* legacy 32-bit */
1351                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1352                 break;
1353         case 3: /* legacy 64-bit */
1354                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1355                 break;
1356         default:
1357                 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1358                 return -EINVAL;
1359         }
1360
1361         read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1362
1363         mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1364         if (IS_ERR(mm))
1365                 return PTR_ERR(mm);
1366
1367         workload->shadow_mm = mm;
1368         return 0;
1369 }
1370
1371 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1372                 ((a)->lrca == (b)->lrca))
1373
1374 #define get_last_workload(q) \
1375         (list_empty(q) ? NULL : container_of(q->prev, \
1376         struct intel_vgpu_workload, list))
1377 /**
1378  * intel_vgpu_create_workload - create a vGPU workload
1379  * @vgpu: a vGPU
1380  * @ring_id: ring index
1381  * @desc: a guest context descriptor
1382  *
1383  * This function is called when creating a vGPU workload.
1384  *
1385  * Returns:
1386  * struct intel_vgpu_workload * on success, negative error code in
1387  * pointer if failed.
1388  *
1389  */
1390 struct intel_vgpu_workload *
1391 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1392                            struct execlist_ctx_descriptor_format *desc)
1393 {
1394         struct intel_vgpu_submission *s = &vgpu->submission;
1395         struct list_head *q = workload_q_head(vgpu, ring_id);
1396         struct intel_vgpu_workload *last_workload = get_last_workload(q);
1397         struct intel_vgpu_workload *workload = NULL;
1398         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1399         u64 ring_context_gpa;
1400         u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1401         int ret;
1402
1403         ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1404                         (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1405         if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1406                 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1407                 return ERR_PTR(-EINVAL);
1408         }
1409
1410         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1411                         RING_CTX_OFF(ring_header.val), &head, 4);
1412
1413         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1414                         RING_CTX_OFF(ring_tail.val), &tail, 4);
1415
1416         head &= RB_HEAD_OFF_MASK;
1417         tail &= RB_TAIL_OFF_MASK;
1418
1419         if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1420                 gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1421                 gvt_dbg_el("ctx head %x real head %lx\n", head,
1422                                 last_workload->rb_tail);
1423                 /*
1424                  * cannot use guest context head pointer here,
1425                  * as it might not be updated at this time
1426                  */
1427                 head = last_workload->rb_tail;
1428         }
1429
1430         gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1431
1432         /* record some ring buffer register values for scan and shadow */
1433         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1434                         RING_CTX_OFF(rb_start.val), &start, 4);
1435         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1436                         RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1437         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1438                         RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1439
1440         workload = alloc_workload(vgpu);
1441         if (IS_ERR(workload))
1442                 return workload;
1443
1444         workload->ring_id = ring_id;
1445         workload->ctx_desc = *desc;
1446         workload->ring_context_gpa = ring_context_gpa;
1447         workload->rb_head = head;
1448         workload->rb_tail = tail;
1449         workload->rb_start = start;
1450         workload->rb_ctl = ctl;
1451
1452         if (ring_id == RCS0) {
1453                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1454                         RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1455                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1456                         RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1457
1458                 workload->wa_ctx.indirect_ctx.guest_gma =
1459                         indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1460                 workload->wa_ctx.indirect_ctx.size =
1461                         (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1462                         CACHELINE_BYTES;
1463                 workload->wa_ctx.per_ctx.guest_gma =
1464                         per_ctx & PER_CTX_ADDR_MASK;
1465                 workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1466         }
1467
1468         gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1469                         workload, ring_id, head, tail, start, ctl);
1470
1471         ret = prepare_mm(workload);
1472         if (ret) {
1473                 kmem_cache_free(s->workloads, workload);
1474                 return ERR_PTR(ret);
1475         }
1476
1477         /* Only scan and shadow the first workload in the queue
1478          * as there is only one pre-allocated buf-obj for shadow.
1479          */
1480         if (list_empty(workload_q_head(vgpu, ring_id))) {
1481                 intel_runtime_pm_get(dev_priv);
1482                 mutex_lock(&dev_priv->drm.struct_mutex);
1483                 ret = intel_gvt_scan_and_shadow_workload(workload);
1484                 mutex_unlock(&dev_priv->drm.struct_mutex);
1485                 intel_runtime_pm_put_unchecked(dev_priv);
1486         }
1487
1488         if (ret) {
1489                 if (vgpu_is_vm_unhealthy(ret))
1490                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1491                 intel_vgpu_destroy_workload(workload);
1492                 return ERR_PTR(ret);
1493         }
1494
1495         return workload;
1496 }
1497
1498 /**
1499  * intel_vgpu_queue_workload - Qeue a vGPU workload
1500  * @workload: the workload to queue in
1501  */
1502 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1503 {
1504         list_add_tail(&workload->list,
1505                 workload_q_head(workload->vgpu, workload->ring_id));
1506         intel_gvt_kick_schedule(workload->vgpu->gvt);
1507         wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1508 }