6ea88270c818ff62680e56f95cfef8a3c3c1f1f3
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gvt / cmd_parser.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36
37 #include <linux/slab.h>
38 #include "i915_drv.h"
39 #include "gvt.h"
40 #include "i915_pvinfo.h"
41 #include "trace.h"
42
43 #define INVALID_OP    (~0U)
44
45 #define OP_LEN_MI           9
46 #define OP_LEN_2D           10
47 #define OP_LEN_3D_MEDIA     16
48 #define OP_LEN_MFX_VC       16
49 #define OP_LEN_VEBOX        16
50
51 #define CMD_TYPE(cmd)   (((cmd) >> 29) & 7)
52
53 struct sub_op_bits {
54         int hi;
55         int low;
56 };
57 struct decode_info {
58         const char *name;
59         int op_len;
60         int nr_sub_op;
61         const struct sub_op_bits *sub_op;
62 };
63
64 #define   MAX_CMD_BUDGET                        0x7fffffff
65 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
66 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
67 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
68
69 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
70 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
71 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
72
73 /* Render Command Map */
74
75 /* MI_* command Opcode (28:23) */
76 #define OP_MI_NOOP                          0x0
77 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
78 #define OP_MI_USER_INTERRUPT                0x2
79 #define OP_MI_WAIT_FOR_EVENT                0x3
80 #define OP_MI_FLUSH                         0x4
81 #define OP_MI_ARB_CHECK                     0x5
82 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
83 #define OP_MI_REPORT_HEAD                   0x7
84 #define OP_MI_ARB_ON_OFF                    0x8
85 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
86 #define OP_MI_BATCH_BUFFER_END              0xA
87 #define OP_MI_SUSPEND_FLUSH                 0xB
88 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
89 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
90 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
91 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
92 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
93 #define OP_MI_DISPLAY_FLIP                  0x14
94 #define OP_MI_SEMAPHORE_MBOX                0x16
95 #define OP_MI_SET_CONTEXT                   0x18
96 #define OP_MI_MATH                          0x1A
97 #define OP_MI_URB_CLEAR                     0x19
98 #define OP_MI_SEMAPHORE_SIGNAL              0x1B  /* BDW+ */
99 #define OP_MI_SEMAPHORE_WAIT                0x1C  /* BDW+ */
100
101 #define OP_MI_STORE_DATA_IMM                0x20
102 #define OP_MI_STORE_DATA_INDEX              0x21
103 #define OP_MI_LOAD_REGISTER_IMM             0x22
104 #define OP_MI_UPDATE_GTT                    0x23
105 #define OP_MI_STORE_REGISTER_MEM            0x24
106 #define OP_MI_FLUSH_DW                      0x26
107 #define OP_MI_CLFLUSH                       0x27
108 #define OP_MI_REPORT_PERF_COUNT             0x28
109 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
110 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
111 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
112 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
113 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
114 #define OP_MI_2E                            0x2E  /* BDW+ */
115 #define OP_MI_2F                            0x2F  /* BDW+ */
116 #define OP_MI_BATCH_BUFFER_START            0x31
117
118 /* Bit definition for dword 0 */
119 #define _CMDBIT_BB_START_IN_PPGTT       (1UL << 8)
120
121 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
122
123 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
124 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
125 #define BATCH_BUFFER_ADR_SPACE_BIT(x)   (((x) >> 8) & 1U)
126 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
127
128 /* 2D command: Opcode (28:22) */
129 #define OP_2D(x)    ((2<<7) | x)
130
131 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
132 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
133 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
134 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
135 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
136 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
137 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
138 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
139 #define OP_XY_PAT_BLT                               OP_2D(0x51)
140 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
141 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
142 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
143 #define OP_XY_FULL_BLT                              OP_2D(0x55)
144 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
145 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
146 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
147 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
148 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
149 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
150 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
151 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
152 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
153 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
154 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
155
156 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
157 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
158         ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
159
160 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
161
162 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
163 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
164 #define OP_3D_MEDIA_0_1_4                       OP_3D_MEDIA(0x0, 0x1, 0x04)
165
166 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
167
168 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
169
170 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
171 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
172 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
173 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
174 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
175 #define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
176
177 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
178 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
179 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
180 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
181
182 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
183 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
184 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
185 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
186 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
187 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
188 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
189 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
190 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
191 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
192 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
193 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
194 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
195 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
196 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
197 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
198 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
199 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
200 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
201 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
202 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
203 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
204 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
205 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
206 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
207 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
208 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
209 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
210 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
211 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
212 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
213 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
214 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
215 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
218 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
219 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
220 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
223 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
224 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
225 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
226 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
227 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
228 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
229 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
230 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
231 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
232 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
233 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
234 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
235 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
236 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
237 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
238 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
239 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
240 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
241 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
242 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
243 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
244 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
245 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
246 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
247 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
248
249 #define OP_3DSTATE_VF_INSTANCING                OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
250 #define OP_3DSTATE_VF_SGVS                      OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
251 #define OP_3DSTATE_VF_TOPOLOGY                  OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
252 #define OP_3DSTATE_WM_CHROMAKEY                 OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
253 #define OP_3DSTATE_PS_BLEND                     OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
254 #define OP_3DSTATE_WM_DEPTH_STENCIL             OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
255 #define OP_3DSTATE_PS_EXTRA                     OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
256 #define OP_3DSTATE_RASTER                       OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
257 #define OP_3DSTATE_SBE_SWIZ                     OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
258 #define OP_3DSTATE_WM_HZ_OP                     OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
259 #define OP_3DSTATE_COMPONENT_PACKING            OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
260
261 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
262 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
263 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
264 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
265 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
266 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
267 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
268 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
269 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
270 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
271 #define OP_3DSTATE_MULTISAMPLE_BDW              OP_3D_MEDIA(0x3, 0x0, 0x0D)
272 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
273 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
274 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
275 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
276 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
277 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
280 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
281 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
282 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
283 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
284 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
285 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
286 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
287 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
288 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
289
290 /* VCCP Command Parser */
291
292 /*
293  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
294  * git://anongit.freedesktop.org/vaapi/intel-driver
295  * src/i965_defines.h
296  *
297  */
298
299 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
300         (3 << 13 | \
301          (pipeline) << 11 | \
302          (op) << 8 | \
303          (sub_opa) << 5 | \
304          (sub_opb))
305
306 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
307 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
308 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
309 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
310 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
311 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
312 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
313 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
314 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
315 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
316 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
317
318 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
319
320 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
321 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
322 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
323 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
324 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
325 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
326 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
327 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
328 #define OP_MFD_AVC_DPB_STATE                       OP_MFX(2, 1, 1, 6) /* IVB+ */
329 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
330 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
331 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
332
333 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
334 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
335 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
336 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
337 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
338
339 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
340 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
341 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
342 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
343 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
344
345 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
346 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
347 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
348
349 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
350 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
351 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
352
353 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
354         (3 << 13 | \
355          (pipeline) << 11 | \
356          (op) << 8 | \
357          (sub_opa) << 5 | \
358          (sub_opb))
359
360 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
361 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
362 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
363
364 struct parser_exec_state;
365
366 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
367
368 #define GVT_CMD_HASH_BITS   7
369
370 /* which DWords need address fix */
371 #define ADDR_FIX_1(x1)                  (1 << (x1))
372 #define ADDR_FIX_2(x1, x2)              (ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
373 #define ADDR_FIX_3(x1, x2, x3)          (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
374 #define ADDR_FIX_4(x1, x2, x3, x4)      (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
375 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
376
377 struct cmd_info {
378         const char *name;
379         u32 opcode;
380
381 #define F_LEN_MASK      (1U<<0)
382 #define F_LEN_CONST  1U
383 #define F_LEN_VAR    0U
384
385 /*
386  * command has its own ip advance logic
387  * e.g. MI_BATCH_START, MI_BATCH_END
388  */
389 #define F_IP_ADVANCE_CUSTOM (1<<1)
390
391 #define F_POST_HANDLE   (1<<2)
392         u32 flag;
393
394 #define R_RCS   BIT(RCS0)
395 #define R_VCS1  BIT(VCS0)
396 #define R_VCS2  BIT(VCS1)
397 #define R_VCS   (R_VCS1 | R_VCS2)
398 #define R_BCS   BIT(BCS0)
399 #define R_VECS  BIT(VECS0)
400 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
401         /* rings that support this cmd: BLT/RCS/VCS/VECS */
402         u16 rings;
403
404         /* devices that support this cmd: SNB/IVB/HSW/... */
405         u16 devices;
406
407         /* which DWords are address that need fix up.
408          * bit 0 means a 32-bit non address operand in command
409          * bit 1 means address operand, which could be 32-bit
410          * or 64-bit depending on different architectures.(
411          * defined by "gmadr_bytes_in_cmd" in intel_gvt.
412          * No matter the address length, each address only takes
413          * one bit in the bitmap.
414          */
415         u16 addr_bitmap;
416
417         /* flag == F_LEN_CONST : command length
418          * flag == F_LEN_VAR : length bias bits
419          * Note: length is in DWord
420          */
421         u8 len;
422
423         parser_cmd_handler handler;
424 };
425
426 struct cmd_entry {
427         struct hlist_node hlist;
428         const struct cmd_info *info;
429 };
430
431 enum {
432         RING_BUFFER_INSTRUCTION,
433         BATCH_BUFFER_INSTRUCTION,
434         BATCH_BUFFER_2ND_LEVEL,
435 };
436
437 enum {
438         GTT_BUFFER,
439         PPGTT_BUFFER
440 };
441
442 struct parser_exec_state {
443         struct intel_vgpu *vgpu;
444         int ring_id;
445
446         int buf_type;
447
448         /* batch buffer address type */
449         int buf_addr_type;
450
451         /* graphics memory address of ring buffer start */
452         unsigned long ring_start;
453         unsigned long ring_size;
454         unsigned long ring_head;
455         unsigned long ring_tail;
456
457         /* instruction graphics memory address */
458         unsigned long ip_gma;
459
460         /* mapped va of the instr_gma */
461         void *ip_va;
462         void *rb_va;
463
464         void *ret_bb_va;
465         /* next instruction when return from  batch buffer to ring buffer */
466         unsigned long ret_ip_gma_ring;
467
468         /* next instruction when return from 2nd batch buffer to batch buffer */
469         unsigned long ret_ip_gma_bb;
470
471         /* batch buffer address type (GTT or PPGTT)
472          * used when ret from 2nd level batch buffer
473          */
474         int saved_buf_addr_type;
475         bool is_ctx_wa;
476
477         const struct cmd_info *info;
478
479         struct intel_vgpu_workload *workload;
480 };
481
482 #define gmadr_dw_number(s)      \
483         (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
484
485 static unsigned long bypass_scan_mask = 0;
486
487 /* ring ALL, type = 0 */
488 static const struct sub_op_bits sub_op_mi[] = {
489         {31, 29},
490         {28, 23},
491 };
492
493 static const struct decode_info decode_info_mi = {
494         "MI",
495         OP_LEN_MI,
496         ARRAY_SIZE(sub_op_mi),
497         sub_op_mi,
498 };
499
500 /* ring RCS, command type 2 */
501 static const struct sub_op_bits sub_op_2d[] = {
502         {31, 29},
503         {28, 22},
504 };
505
506 static const struct decode_info decode_info_2d = {
507         "2D",
508         OP_LEN_2D,
509         ARRAY_SIZE(sub_op_2d),
510         sub_op_2d,
511 };
512
513 /* ring RCS, command type 3 */
514 static const struct sub_op_bits sub_op_3d_media[] = {
515         {31, 29},
516         {28, 27},
517         {26, 24},
518         {23, 16},
519 };
520
521 static const struct decode_info decode_info_3d_media = {
522         "3D_Media",
523         OP_LEN_3D_MEDIA,
524         ARRAY_SIZE(sub_op_3d_media),
525         sub_op_3d_media,
526 };
527
528 /* ring VCS, command type 3 */
529 static const struct sub_op_bits sub_op_mfx_vc[] = {
530         {31, 29},
531         {28, 27},
532         {26, 24},
533         {23, 21},
534         {20, 16},
535 };
536
537 static const struct decode_info decode_info_mfx_vc = {
538         "MFX_VC",
539         OP_LEN_MFX_VC,
540         ARRAY_SIZE(sub_op_mfx_vc),
541         sub_op_mfx_vc,
542 };
543
544 /* ring VECS, command type 3 */
545 static const struct sub_op_bits sub_op_vebox[] = {
546         {31, 29},
547         {28, 27},
548         {26, 24},
549         {23, 21},
550         {20, 16},
551 };
552
553 static const struct decode_info decode_info_vebox = {
554         "VEBOX",
555         OP_LEN_VEBOX,
556         ARRAY_SIZE(sub_op_vebox),
557         sub_op_vebox,
558 };
559
560 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
561         [RCS0] = {
562                 &decode_info_mi,
563                 NULL,
564                 NULL,
565                 &decode_info_3d_media,
566                 NULL,
567                 NULL,
568                 NULL,
569                 NULL,
570         },
571
572         [VCS0] = {
573                 &decode_info_mi,
574                 NULL,
575                 NULL,
576                 &decode_info_mfx_vc,
577                 NULL,
578                 NULL,
579                 NULL,
580                 NULL,
581         },
582
583         [BCS0] = {
584                 &decode_info_mi,
585                 NULL,
586                 &decode_info_2d,
587                 NULL,
588                 NULL,
589                 NULL,
590                 NULL,
591                 NULL,
592         },
593
594         [VECS0] = {
595                 &decode_info_mi,
596                 NULL,
597                 NULL,
598                 &decode_info_vebox,
599                 NULL,
600                 NULL,
601                 NULL,
602                 NULL,
603         },
604
605         [VCS1] = {
606                 &decode_info_mi,
607                 NULL,
608                 NULL,
609                 &decode_info_mfx_vc,
610                 NULL,
611                 NULL,
612                 NULL,
613                 NULL,
614         },
615 };
616
617 static inline u32 get_opcode(u32 cmd, int ring_id)
618 {
619         const struct decode_info *d_info;
620
621         d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
622         if (d_info == NULL)
623                 return INVALID_OP;
624
625         return cmd >> (32 - d_info->op_len);
626 }
627
628 static inline const struct cmd_info *find_cmd_entry(struct intel_gvt *gvt,
629                 unsigned int opcode, int ring_id)
630 {
631         struct cmd_entry *e;
632
633         hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
634                 if (opcode == e->info->opcode && e->info->rings & BIT(ring_id))
635                         return e->info;
636         }
637         return NULL;
638 }
639
640 static inline const struct cmd_info *get_cmd_info(struct intel_gvt *gvt,
641                 u32 cmd, int ring_id)
642 {
643         u32 opcode;
644
645         opcode = get_opcode(cmd, ring_id);
646         if (opcode == INVALID_OP)
647                 return NULL;
648
649         return find_cmd_entry(gvt, opcode, ring_id);
650 }
651
652 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
653 {
654         return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
655 }
656
657 static inline void print_opcode(u32 cmd, int ring_id)
658 {
659         const struct decode_info *d_info;
660         int i;
661
662         d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
663         if (d_info == NULL)
664                 return;
665
666         gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
667                         cmd >> (32 - d_info->op_len), d_info->name);
668
669         for (i = 0; i < d_info->nr_sub_op; i++)
670                 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
671                                         d_info->sub_op[i].low));
672
673         pr_err("\n");
674 }
675
676 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
677 {
678         return s->ip_va + (index << 2);
679 }
680
681 static inline u32 cmd_val(struct parser_exec_state *s, int index)
682 {
683         return *cmd_ptr(s, index);
684 }
685
686 static void parser_exec_state_dump(struct parser_exec_state *s)
687 {
688         int cnt = 0;
689         int i;
690
691         gvt_dbg_cmd("  vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)"
692                         " ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id,
693                         s->ring_id, s->ring_start, s->ring_start + s->ring_size,
694                         s->ring_head, s->ring_tail);
695
696         gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
697                         s->buf_type == RING_BUFFER_INSTRUCTION ?
698                         "RING_BUFFER" : "BATCH_BUFFER",
699                         s->buf_addr_type == GTT_BUFFER ?
700                         "GTT" : "PPGTT", s->ip_gma);
701
702         if (s->ip_va == NULL) {
703                 gvt_dbg_cmd(" ip_va(NULL)");
704                 return;
705         }
706
707         gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
708                         s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
709                         cmd_val(s, 2), cmd_val(s, 3));
710
711         print_opcode(cmd_val(s, 0), s->ring_id);
712
713         s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
714
715         while (cnt < 1024) {
716                 gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
717                 for (i = 0; i < 8; i++)
718                         gvt_dbg_cmd("%08x ", cmd_val(s, i));
719                 gvt_dbg_cmd("\n");
720
721                 s->ip_va += 8 * sizeof(u32);
722                 cnt += 8;
723         }
724 }
725
726 static inline void update_ip_va(struct parser_exec_state *s)
727 {
728         unsigned long len = 0;
729
730         if (WARN_ON(s->ring_head == s->ring_tail))
731                 return;
732
733         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
734                 unsigned long ring_top = s->ring_start + s->ring_size;
735
736                 if (s->ring_head > s->ring_tail) {
737                         if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
738                                 len = (s->ip_gma - s->ring_head);
739                         else if (s->ip_gma >= s->ring_start &&
740                                         s->ip_gma <= s->ring_tail)
741                                 len = (ring_top - s->ring_head) +
742                                         (s->ip_gma - s->ring_start);
743                 } else
744                         len = (s->ip_gma - s->ring_head);
745
746                 s->ip_va = s->rb_va + len;
747         } else {/* shadow batch buffer */
748                 s->ip_va = s->ret_bb_va;
749         }
750 }
751
752 static inline int ip_gma_set(struct parser_exec_state *s,
753                 unsigned long ip_gma)
754 {
755         WARN_ON(!IS_ALIGNED(ip_gma, 4));
756
757         s->ip_gma = ip_gma;
758         update_ip_va(s);
759         return 0;
760 }
761
762 static inline int ip_gma_advance(struct parser_exec_state *s,
763                 unsigned int dw_len)
764 {
765         s->ip_gma += (dw_len << 2);
766
767         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
768                 if (s->ip_gma >= s->ring_start + s->ring_size)
769                         s->ip_gma -= s->ring_size;
770                 update_ip_va(s);
771         } else {
772                 s->ip_va += (dw_len << 2);
773         }
774
775         return 0;
776 }
777
778 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
779 {
780         if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
781                 return info->len;
782         else
783                 return (cmd & ((1U << info->len) - 1)) + 2;
784         return 0;
785 }
786
787 static inline int cmd_length(struct parser_exec_state *s)
788 {
789         return get_cmd_length(s->info, cmd_val(s, 0));
790 }
791
792 /* do not remove this, some platform may need clflush here */
793 #define patch_value(s, addr, val) do { \
794         *addr = val; \
795 } while (0)
796
797 static bool is_shadowed_mmio(unsigned int offset)
798 {
799         bool ret = false;
800
801         if ((offset == 0x2168) || /*BB current head register UDW */
802             (offset == 0x2140) || /*BB current header register */
803             (offset == 0x211c) || /*second BB header register UDW */
804             (offset == 0x2114)) { /*second BB header register UDW */
805                 ret = true;
806         }
807         return ret;
808 }
809
810 static inline bool is_force_nonpriv_mmio(unsigned int offset)
811 {
812         return (offset >= 0x24d0 && offset < 0x2500);
813 }
814
815 static int force_nonpriv_reg_handler(struct parser_exec_state *s,
816                 unsigned int offset, unsigned int index, char *cmd)
817 {
818         struct intel_gvt *gvt = s->vgpu->gvt;
819         unsigned int data;
820         u32 ring_base;
821         u32 nopid;
822         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
823
824         if (!strcmp(cmd, "lri"))
825                 data = cmd_val(s, index + 1);
826         else {
827                 gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n",
828                         offset, cmd);
829                 return -EINVAL;
830         }
831
832         ring_base = dev_priv->engine[s->ring_id]->mmio_base;
833         nopid = i915_mmio_reg_offset(RING_NOPID(ring_base));
834
835         if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) &&
836                         data != nopid) {
837                 gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n",
838                         offset, data);
839                 patch_value(s, cmd_ptr(s, index), nopid);
840                 return 0;
841         }
842         return 0;
843 }
844
845 static inline bool is_mocs_mmio(unsigned int offset)
846 {
847         return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
848                 ((offset >= 0xb020) && (offset <= 0xb0a0));
849 }
850
851 static int mocs_cmd_reg_handler(struct parser_exec_state *s,
852                                 unsigned int offset, unsigned int index)
853 {
854         if (!is_mocs_mmio(offset))
855                 return -EINVAL;
856         vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1);
857         return 0;
858 }
859
860 static int cmd_reg_handler(struct parser_exec_state *s,
861         unsigned int offset, unsigned int index, char *cmd)
862 {
863         struct intel_vgpu *vgpu = s->vgpu;
864         struct intel_gvt *gvt = vgpu->gvt;
865         u32 ctx_sr_ctl;
866
867         if (offset + 4 > gvt->device_info.mmio_size) {
868                 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
869                                 cmd, offset);
870                 return -EFAULT;
871         }
872
873         if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) {
874                 gvt_vgpu_err("%s access to non-render register (%x)\n",
875                                 cmd, offset);
876                 return -EBADRQC;
877         }
878
879         if (is_shadowed_mmio(offset)) {
880                 gvt_vgpu_err("found access of shadowed MMIO %x\n", offset);
881                 return 0;
882         }
883
884         if (is_mocs_mmio(offset) &&
885             mocs_cmd_reg_handler(s, offset, index))
886                 return -EINVAL;
887
888         if (is_force_nonpriv_mmio(offset) &&
889                 force_nonpriv_reg_handler(s, offset, index, cmd))
890                 return -EPERM;
891
892         if (offset == i915_mmio_reg_offset(DERRMR) ||
893                 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
894                 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
895                 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
896         }
897
898         /* TODO
899          * In order to let workload with inhibit context to generate
900          * correct image data into memory, vregs values will be loaded to
901          * hw via LRIs in the workload with inhibit context. But as
902          * indirect context is loaded prior to LRIs in workload, we don't
903          * want reg values specified in indirect context overwritten by
904          * LRIs in workloads. So, when scanning an indirect context, we
905          * update reg values in it into vregs, so LRIs in workload with
906          * inhibit context will restore with correct values
907          */
908         if (IS_GEN(gvt->dev_priv, 9) &&
909                         intel_gvt_mmio_is_in_ctx(gvt, offset) &&
910                         !strncmp(cmd, "lri", 3)) {
911                 intel_gvt_hypervisor_read_gpa(s->vgpu,
912                         s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
913                 /* check inhibit context */
914                 if (ctx_sr_ctl & 1) {
915                         u32 data = cmd_val(s, index + 1);
916
917                         if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
918                                 intel_vgpu_mask_mmio_write(vgpu,
919                                                         offset, &data, 4);
920                         else
921                                 vgpu_vreg(vgpu, offset) = data;
922                 }
923         }
924
925         /* TODO: Update the global mask if this MMIO is a masked-MMIO */
926         intel_gvt_mmio_set_cmd_accessed(gvt, offset);
927         return 0;
928 }
929
930 #define cmd_reg(s, i) \
931         (cmd_val(s, i) & GENMASK(22, 2))
932
933 #define cmd_reg_inhibit(s, i) \
934         (cmd_val(s, i) & GENMASK(22, 18))
935
936 #define cmd_gma(s, i) \
937         (cmd_val(s, i) & GENMASK(31, 2))
938
939 #define cmd_gma_hi(s, i) \
940         (cmd_val(s, i) & GENMASK(15, 0))
941
942 static int cmd_handler_lri(struct parser_exec_state *s)
943 {
944         int i, ret = 0;
945         int cmd_len = cmd_length(s);
946         struct intel_gvt *gvt = s->vgpu->gvt;
947
948         for (i = 1; i < cmd_len; i += 2) {
949                 if (IS_BROADWELL(gvt->dev_priv) && s->ring_id != RCS0) {
950                         if (s->ring_id == BCS0 &&
951                             cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
952                                 ret |= 0;
953                         else
954                                 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
955                 }
956                 if (ret)
957                         break;
958                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
959                 if (ret)
960                         break;
961         }
962         return ret;
963 }
964
965 static int cmd_handler_lrr(struct parser_exec_state *s)
966 {
967         int i, ret = 0;
968         int cmd_len = cmd_length(s);
969
970         for (i = 1; i < cmd_len; i += 2) {
971                 if (IS_BROADWELL(s->vgpu->gvt->dev_priv))
972                         ret |= ((cmd_reg_inhibit(s, i) ||
973                                         (cmd_reg_inhibit(s, i + 1)))) ?
974                                 -EBADRQC : 0;
975                 if (ret)
976                         break;
977                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
978                 if (ret)
979                         break;
980                 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
981                 if (ret)
982                         break;
983         }
984         return ret;
985 }
986
987 static inline int cmd_address_audit(struct parser_exec_state *s,
988                 unsigned long guest_gma, int op_size, bool index_mode);
989
990 static int cmd_handler_lrm(struct parser_exec_state *s)
991 {
992         struct intel_gvt *gvt = s->vgpu->gvt;
993         int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
994         unsigned long gma;
995         int i, ret = 0;
996         int cmd_len = cmd_length(s);
997
998         for (i = 1; i < cmd_len;) {
999                 if (IS_BROADWELL(gvt->dev_priv))
1000                         ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1001                 if (ret)
1002                         break;
1003                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1004                 if (ret)
1005                         break;
1006                 if (cmd_val(s, 0) & (1 << 22)) {
1007                         gma = cmd_gma(s, i + 1);
1008                         if (gmadr_bytes == 8)
1009                                 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1010                         ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1011                         if (ret)
1012                                 break;
1013                 }
1014                 i += gmadr_dw_number(s) + 1;
1015         }
1016         return ret;
1017 }
1018
1019 static int cmd_handler_srm(struct parser_exec_state *s)
1020 {
1021         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1022         unsigned long gma;
1023         int i, ret = 0;
1024         int cmd_len = cmd_length(s);
1025
1026         for (i = 1; i < cmd_len;) {
1027                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1028                 if (ret)
1029                         break;
1030                 if (cmd_val(s, 0) & (1 << 22)) {
1031                         gma = cmd_gma(s, i + 1);
1032                         if (gmadr_bytes == 8)
1033                                 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1034                         ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1035                         if (ret)
1036                                 break;
1037                 }
1038                 i += gmadr_dw_number(s) + 1;
1039         }
1040         return ret;
1041 }
1042
1043 struct cmd_interrupt_event {
1044         int pipe_control_notify;
1045         int mi_flush_dw;
1046         int mi_user_interrupt;
1047 };
1048
1049 static struct cmd_interrupt_event cmd_interrupt_events[] = {
1050         [RCS0] = {
1051                 .pipe_control_notify = RCS_PIPE_CONTROL,
1052                 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1053                 .mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1054         },
1055         [BCS0] = {
1056                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1057                 .mi_flush_dw = BCS_MI_FLUSH_DW,
1058                 .mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1059         },
1060         [VCS0] = {
1061                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1062                 .mi_flush_dw = VCS_MI_FLUSH_DW,
1063                 .mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1064         },
1065         [VCS1] = {
1066                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1067                 .mi_flush_dw = VCS2_MI_FLUSH_DW,
1068                 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1069         },
1070         [VECS0] = {
1071                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1072                 .mi_flush_dw = VECS_MI_FLUSH_DW,
1073                 .mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1074         },
1075 };
1076
1077 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1078 {
1079         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1080         unsigned long gma;
1081         bool index_mode = false;
1082         unsigned int post_sync;
1083         int ret = 0;
1084         u32 hws_pga, val;
1085
1086         post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1087
1088         /* LRI post sync */
1089         if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1090                 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1091         /* post sync */
1092         else if (post_sync) {
1093                 if (post_sync == 2)
1094                         ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1095                 else if (post_sync == 3)
1096                         ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1097                 else if (post_sync == 1) {
1098                         /* check ggtt*/
1099                         if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1100                                 gma = cmd_val(s, 2) & GENMASK(31, 3);
1101                                 if (gmadr_bytes == 8)
1102                                         gma |= (cmd_gma_hi(s, 3)) << 32;
1103                                 /* Store Data Index */
1104                                 if (cmd_val(s, 1) & (1 << 21))
1105                                         index_mode = true;
1106                                 ret |= cmd_address_audit(s, gma, sizeof(u64),
1107                                                 index_mode);
1108                                 if (ret)
1109                                         return ret;
1110                                 if (index_mode) {
1111                                         hws_pga = s->vgpu->hws_pga[s->ring_id];
1112                                         gma = hws_pga + gma;
1113                                         patch_value(s, cmd_ptr(s, 2), gma);
1114                                         val = cmd_val(s, 1) & (~(1 << 21));
1115                                         patch_value(s, cmd_ptr(s, 1), val);
1116                                 }
1117                         }
1118                 }
1119         }
1120
1121         if (ret)
1122                 return ret;
1123
1124         if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1125                 set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify,
1126                                 s->workload->pending_events);
1127         return 0;
1128 }
1129
1130 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1131 {
1132         set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt,
1133                         s->workload->pending_events);
1134         patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1135         return 0;
1136 }
1137
1138 static int cmd_advance_default(struct parser_exec_state *s)
1139 {
1140         return ip_gma_advance(s, cmd_length(s));
1141 }
1142
1143 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1144 {
1145         int ret;
1146
1147         if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1148                 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1149                 ret = ip_gma_set(s, s->ret_ip_gma_bb);
1150                 s->buf_addr_type = s->saved_buf_addr_type;
1151         } else {
1152                 s->buf_type = RING_BUFFER_INSTRUCTION;
1153                 s->buf_addr_type = GTT_BUFFER;
1154                 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1155                         s->ret_ip_gma_ring -= s->ring_size;
1156                 ret = ip_gma_set(s, s->ret_ip_gma_ring);
1157         }
1158         return ret;
1159 }
1160
1161 struct mi_display_flip_command_info {
1162         int pipe;
1163         int plane;
1164         int event;
1165         i915_reg_t stride_reg;
1166         i915_reg_t ctrl_reg;
1167         i915_reg_t surf_reg;
1168         u64 stride_val;
1169         u64 tile_val;
1170         u64 surf_val;
1171         bool async_flip;
1172 };
1173
1174 struct plane_code_mapping {
1175         int pipe;
1176         int plane;
1177         int event;
1178 };
1179
1180 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1181                 struct mi_display_flip_command_info *info)
1182 {
1183         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1184         struct plane_code_mapping gen8_plane_code[] = {
1185                 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1186                 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1187                 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1188                 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1189                 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1190                 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1191         };
1192         u32 dword0, dword1, dword2;
1193         u32 v;
1194
1195         dword0 = cmd_val(s, 0);
1196         dword1 = cmd_val(s, 1);
1197         dword2 = cmd_val(s, 2);
1198
1199         v = (dword0 & GENMASK(21, 19)) >> 19;
1200         if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code)))
1201                 return -EBADRQC;
1202
1203         info->pipe = gen8_plane_code[v].pipe;
1204         info->plane = gen8_plane_code[v].plane;
1205         info->event = gen8_plane_code[v].event;
1206         info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1207         info->tile_val = (dword1 & 0x1);
1208         info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1209         info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1210
1211         if (info->plane == PLANE_A) {
1212                 info->ctrl_reg = DSPCNTR(info->pipe);
1213                 info->stride_reg = DSPSTRIDE(info->pipe);
1214                 info->surf_reg = DSPSURF(info->pipe);
1215         } else if (info->plane == PLANE_B) {
1216                 info->ctrl_reg = SPRCTL(info->pipe);
1217                 info->stride_reg = SPRSTRIDE(info->pipe);
1218                 info->surf_reg = SPRSURF(info->pipe);
1219         } else {
1220                 WARN_ON(1);
1221                 return -EBADRQC;
1222         }
1223         return 0;
1224 }
1225
1226 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1227                 struct mi_display_flip_command_info *info)
1228 {
1229         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1230         struct intel_vgpu *vgpu = s->vgpu;
1231         u32 dword0 = cmd_val(s, 0);
1232         u32 dword1 = cmd_val(s, 1);
1233         u32 dword2 = cmd_val(s, 2);
1234         u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1235
1236         info->plane = PRIMARY_PLANE;
1237
1238         switch (plane) {
1239         case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1240                 info->pipe = PIPE_A;
1241                 info->event = PRIMARY_A_FLIP_DONE;
1242                 break;
1243         case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1244                 info->pipe = PIPE_B;
1245                 info->event = PRIMARY_B_FLIP_DONE;
1246                 break;
1247         case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1248                 info->pipe = PIPE_C;
1249                 info->event = PRIMARY_C_FLIP_DONE;
1250                 break;
1251
1252         case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1253                 info->pipe = PIPE_A;
1254                 info->event = SPRITE_A_FLIP_DONE;
1255                 info->plane = SPRITE_PLANE;
1256                 break;
1257         case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1258                 info->pipe = PIPE_B;
1259                 info->event = SPRITE_B_FLIP_DONE;
1260                 info->plane = SPRITE_PLANE;
1261                 break;
1262         case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1263                 info->pipe = PIPE_C;
1264                 info->event = SPRITE_C_FLIP_DONE;
1265                 info->plane = SPRITE_PLANE;
1266                 break;
1267
1268         default:
1269                 gvt_vgpu_err("unknown plane code %d\n", plane);
1270                 return -EBADRQC;
1271         }
1272
1273         info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1274         info->tile_val = (dword1 & GENMASK(2, 0));
1275         info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1276         info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1277
1278         info->ctrl_reg = DSPCNTR(info->pipe);
1279         info->stride_reg = DSPSTRIDE(info->pipe);
1280         info->surf_reg = DSPSURF(info->pipe);
1281
1282         return 0;
1283 }
1284
1285 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1286                 struct mi_display_flip_command_info *info)
1287 {
1288         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1289         u32 stride, tile;
1290
1291         if (!info->async_flip)
1292                 return 0;
1293
1294         if (INTEL_GEN(dev_priv) >= 9) {
1295                 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1296                 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1297                                 GENMASK(12, 10)) >> 10;
1298         } else {
1299                 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1300                                 GENMASK(15, 6)) >> 6;
1301                 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1302         }
1303
1304         if (stride != info->stride_val)
1305                 gvt_dbg_cmd("cannot change stride during async flip\n");
1306
1307         if (tile != info->tile_val)
1308                 gvt_dbg_cmd("cannot change tile during async flip\n");
1309
1310         return 0;
1311 }
1312
1313 static int gen8_update_plane_mmio_from_mi_display_flip(
1314                 struct parser_exec_state *s,
1315                 struct mi_display_flip_command_info *info)
1316 {
1317         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1318         struct intel_vgpu *vgpu = s->vgpu;
1319
1320         set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1321                       info->surf_val << 12);
1322         if (INTEL_GEN(dev_priv) >= 9) {
1323                 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1324                               info->stride_val);
1325                 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1326                               info->tile_val << 10);
1327         } else {
1328                 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1329                               info->stride_val << 6);
1330                 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1331                               info->tile_val << 10);
1332         }
1333
1334         if (info->plane == PLANE_PRIMARY)
1335                 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
1336
1337         if (info->async_flip)
1338                 intel_vgpu_trigger_virtual_event(vgpu, info->event);
1339         else
1340                 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1341
1342         return 0;
1343 }
1344
1345 static int decode_mi_display_flip(struct parser_exec_state *s,
1346                 struct mi_display_flip_command_info *info)
1347 {
1348         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1349
1350         if (IS_BROADWELL(dev_priv))
1351                 return gen8_decode_mi_display_flip(s, info);
1352         if (INTEL_GEN(dev_priv) >= 9)
1353                 return skl_decode_mi_display_flip(s, info);
1354
1355         return -ENODEV;
1356 }
1357
1358 static int check_mi_display_flip(struct parser_exec_state *s,
1359                 struct mi_display_flip_command_info *info)
1360 {
1361         return gen8_check_mi_display_flip(s, info);
1362 }
1363
1364 static int update_plane_mmio_from_mi_display_flip(
1365                 struct parser_exec_state *s,
1366                 struct mi_display_flip_command_info *info)
1367 {
1368         return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1369 }
1370
1371 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1372 {
1373         struct mi_display_flip_command_info info;
1374         struct intel_vgpu *vgpu = s->vgpu;
1375         int ret;
1376         int i;
1377         int len = cmd_length(s);
1378
1379         ret = decode_mi_display_flip(s, &info);
1380         if (ret) {
1381                 gvt_vgpu_err("fail to decode MI display flip command\n");
1382                 return ret;
1383         }
1384
1385         ret = check_mi_display_flip(s, &info);
1386         if (ret) {
1387                 gvt_vgpu_err("invalid MI display flip command\n");
1388                 return ret;
1389         }
1390
1391         ret = update_plane_mmio_from_mi_display_flip(s, &info);
1392         if (ret) {
1393                 gvt_vgpu_err("fail to update plane mmio\n");
1394                 return ret;
1395         }
1396
1397         for (i = 0; i < len; i++)
1398                 patch_value(s, cmd_ptr(s, i), MI_NOOP);
1399         return 0;
1400 }
1401
1402 static bool is_wait_for_flip_pending(u32 cmd)
1403 {
1404         return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1405                         MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1406                         MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1407                         MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1408                         MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1409                         MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1410 }
1411
1412 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1413 {
1414         u32 cmd = cmd_val(s, 0);
1415
1416         if (!is_wait_for_flip_pending(cmd))
1417                 return 0;
1418
1419         patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1420         return 0;
1421 }
1422
1423 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1424 {
1425         unsigned long addr;
1426         unsigned long gma_high, gma_low;
1427         struct intel_vgpu *vgpu = s->vgpu;
1428         int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1429
1430         if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1431                 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1432                 return INTEL_GVT_INVALID_ADDR;
1433         }
1434
1435         gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1436         if (gmadr_bytes == 4) {
1437                 addr = gma_low;
1438         } else {
1439                 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1440                 addr = (((unsigned long)gma_high) << 32) | gma_low;
1441         }
1442         return addr;
1443 }
1444
1445 static inline int cmd_address_audit(struct parser_exec_state *s,
1446                 unsigned long guest_gma, int op_size, bool index_mode)
1447 {
1448         struct intel_vgpu *vgpu = s->vgpu;
1449         u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1450         int i;
1451         int ret;
1452
1453         if (op_size > max_surface_size) {
1454                 gvt_vgpu_err("command address audit fail name %s\n",
1455                         s->info->name);
1456                 return -EFAULT;
1457         }
1458
1459         if (index_mode) {
1460                 if (guest_gma >= I915_GTT_PAGE_SIZE) {
1461                         ret = -EFAULT;
1462                         goto err;
1463                 }
1464         } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1465                 ret = -EFAULT;
1466                 goto err;
1467         }
1468
1469         return 0;
1470
1471 err:
1472         gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1473                         s->info->name, guest_gma, op_size);
1474
1475         pr_err("cmd dump: ");
1476         for (i = 0; i < cmd_length(s); i++) {
1477                 if (!(i % 4))
1478                         pr_err("\n%08x ", cmd_val(s, i));
1479                 else
1480                         pr_err("%08x ", cmd_val(s, i));
1481         }
1482         pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1483                         vgpu->id,
1484                         vgpu_aperture_gmadr_base(vgpu),
1485                         vgpu_aperture_gmadr_end(vgpu),
1486                         vgpu_hidden_gmadr_base(vgpu),
1487                         vgpu_hidden_gmadr_end(vgpu));
1488         return ret;
1489 }
1490
1491 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1492 {
1493         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1494         int op_size = (cmd_length(s) - 3) * sizeof(u32);
1495         int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1496         unsigned long gma, gma_low, gma_high;
1497         int ret = 0;
1498
1499         /* check ppggt */
1500         if (!(cmd_val(s, 0) & (1 << 22)))
1501                 return 0;
1502
1503         gma = cmd_val(s, 2) & GENMASK(31, 2);
1504
1505         if (gmadr_bytes == 8) {
1506                 gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1507                 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1508                 gma = (gma_high << 32) | gma_low;
1509                 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1510         }
1511         ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1512         return ret;
1513 }
1514
1515 static inline int unexpected_cmd(struct parser_exec_state *s)
1516 {
1517         struct intel_vgpu *vgpu = s->vgpu;
1518
1519         gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1520
1521         return -EBADRQC;
1522 }
1523
1524 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1525 {
1526         return unexpected_cmd(s);
1527 }
1528
1529 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1530 {
1531         return unexpected_cmd(s);
1532 }
1533
1534 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1535 {
1536         return unexpected_cmd(s);
1537 }
1538
1539 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1540 {
1541         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1542         int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1543                         sizeof(u32);
1544         unsigned long gma, gma_high;
1545         int ret = 0;
1546
1547         if (!(cmd_val(s, 0) & (1 << 22)))
1548                 return ret;
1549
1550         gma = cmd_val(s, 1) & GENMASK(31, 2);
1551         if (gmadr_bytes == 8) {
1552                 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1553                 gma = (gma_high << 32) | gma;
1554         }
1555         ret = cmd_address_audit(s, gma, op_size, false);
1556         return ret;
1557 }
1558
1559 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1560 {
1561         return unexpected_cmd(s);
1562 }
1563
1564 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1565 {
1566         return unexpected_cmd(s);
1567 }
1568
1569 static int cmd_handler_mi_conditional_batch_buffer_end(
1570                 struct parser_exec_state *s)
1571 {
1572         return unexpected_cmd(s);
1573 }
1574
1575 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1576 {
1577         return unexpected_cmd(s);
1578 }
1579
1580 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1581 {
1582         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1583         unsigned long gma;
1584         bool index_mode = false;
1585         int ret = 0;
1586         u32 hws_pga, val;
1587
1588         /* Check post-sync and ppgtt bit */
1589         if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1590                 gma = cmd_val(s, 1) & GENMASK(31, 3);
1591                 if (gmadr_bytes == 8)
1592                         gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1593                 /* Store Data Index */
1594                 if (cmd_val(s, 0) & (1 << 21))
1595                         index_mode = true;
1596                 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1597                 if (ret)
1598                         return ret;
1599                 if (index_mode) {
1600                         hws_pga = s->vgpu->hws_pga[s->ring_id];
1601                         gma = hws_pga + gma;
1602                         patch_value(s, cmd_ptr(s, 1), gma);
1603                         val = cmd_val(s, 0) & (~(1 << 21));
1604                         patch_value(s, cmd_ptr(s, 0), val);
1605                 }
1606         }
1607         /* Check notify bit */
1608         if ((cmd_val(s, 0) & (1 << 8)))
1609                 set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw,
1610                                 s->workload->pending_events);
1611         return ret;
1612 }
1613
1614 static void addr_type_update_snb(struct parser_exec_state *s)
1615 {
1616         if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1617                         (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1618                 s->buf_addr_type = PPGTT_BUFFER;
1619         }
1620 }
1621
1622
1623 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1624                 unsigned long gma, unsigned long end_gma, void *va)
1625 {
1626         unsigned long copy_len, offset;
1627         unsigned long len = 0;
1628         unsigned long gpa;
1629
1630         while (gma != end_gma) {
1631                 gpa = intel_vgpu_gma_to_gpa(mm, gma);
1632                 if (gpa == INTEL_GVT_INVALID_ADDR) {
1633                         gvt_vgpu_err("invalid gma address: %lx\n", gma);
1634                         return -EFAULT;
1635                 }
1636
1637                 offset = gma & (I915_GTT_PAGE_SIZE - 1);
1638
1639                 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1640                         I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1641
1642                 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1643
1644                 len += copy_len;
1645                 gma += copy_len;
1646         }
1647         return len;
1648 }
1649
1650
1651 /*
1652  * Check whether a batch buffer needs to be scanned. Currently
1653  * the only criteria is based on privilege.
1654  */
1655 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1656 {
1657         /* Decide privilege based on address space */
1658         if (cmd_val(s, 0) & (1 << 8) &&
1659                         !(s->vgpu->scan_nonprivbb & (1 << s->ring_id)))
1660                 return 0;
1661         return 1;
1662 }
1663
1664 static int find_bb_size(struct parser_exec_state *s, unsigned long *bb_size)
1665 {
1666         unsigned long gma = 0;
1667         const struct cmd_info *info;
1668         u32 cmd_len = 0;
1669         bool bb_end = false;
1670         struct intel_vgpu *vgpu = s->vgpu;
1671         u32 cmd;
1672         struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1673                 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1674
1675         *bb_size = 0;
1676
1677         /* get the start gm address of the batch buffer */
1678         gma = get_gma_bb_from_cmd(s, 1);
1679         if (gma == INTEL_GVT_INVALID_ADDR)
1680                 return -EFAULT;
1681
1682         cmd = cmd_val(s, 0);
1683         info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1684         if (info == NULL) {
1685                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1686                                 cmd, get_opcode(cmd, s->ring_id),
1687                                 (s->buf_addr_type == PPGTT_BUFFER) ?
1688                                 "ppgtt" : "ggtt", s->ring_id, s->workload);
1689                 return -EBADRQC;
1690         }
1691         do {
1692                 if (copy_gma_to_hva(s->vgpu, mm,
1693                                 gma, gma + 4, &cmd) < 0)
1694                         return -EFAULT;
1695                 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1696                 if (info == NULL) {
1697                         gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1698                                 cmd, get_opcode(cmd, s->ring_id),
1699                                 (s->buf_addr_type == PPGTT_BUFFER) ?
1700                                 "ppgtt" : "ggtt", s->ring_id, s->workload);
1701                         return -EBADRQC;
1702                 }
1703
1704                 if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1705                         bb_end = true;
1706                 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1707                         if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1708                                 /* chained batch buffer */
1709                                 bb_end = true;
1710                 }
1711                 cmd_len = get_cmd_length(info, cmd) << 2;
1712                 *bb_size += cmd_len;
1713                 gma += cmd_len;
1714         } while (!bb_end);
1715
1716         return 0;
1717 }
1718
1719 static int perform_bb_shadow(struct parser_exec_state *s)
1720 {
1721         struct intel_vgpu *vgpu = s->vgpu;
1722         struct intel_vgpu_shadow_bb *bb;
1723         unsigned long gma = 0;
1724         unsigned long bb_size;
1725         int ret = 0;
1726         struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1727                 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1728         unsigned long start_offset = 0;
1729
1730         /* get the start gm address of the batch buffer */
1731         gma = get_gma_bb_from_cmd(s, 1);
1732         if (gma == INTEL_GVT_INVALID_ADDR)
1733                 return -EFAULT;
1734
1735         ret = find_bb_size(s, &bb_size);
1736         if (ret)
1737                 return ret;
1738
1739         bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1740         if (!bb)
1741                 return -ENOMEM;
1742
1743         bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1744
1745         /* the start_offset stores the batch buffer's start gma's
1746          * offset relative to page boundary. so for non-privileged batch
1747          * buffer, the shadowed gem object holds exactly the same page
1748          * layout as original gem object. This is for the convience of
1749          * replacing the whole non-privilged batch buffer page to this
1750          * shadowed one in PPGTT at the same gma address. (this replacing
1751          * action is not implemented yet now, but may be necessary in
1752          * future).
1753          * for prileged batch buffer, we just change start gma address to
1754          * that of shadowed page.
1755          */
1756         if (bb->ppgtt)
1757                 start_offset = gma & ~I915_GTT_PAGE_MASK;
1758
1759         bb->obj = i915_gem_object_create_shmem(s->vgpu->gvt->dev_priv,
1760                                                round_up(bb_size + start_offset,
1761                                                         PAGE_SIZE));
1762         if (IS_ERR(bb->obj)) {
1763                 ret = PTR_ERR(bb->obj);
1764                 goto err_free_bb;
1765         }
1766
1767         ret = i915_gem_object_prepare_write(bb->obj, &bb->clflush);
1768         if (ret)
1769                 goto err_free_obj;
1770
1771         bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1772         if (IS_ERR(bb->va)) {
1773                 ret = PTR_ERR(bb->va);
1774                 goto err_finish_shmem_access;
1775         }
1776
1777         if (bb->clflush & CLFLUSH_BEFORE) {
1778                 drm_clflush_virt_range(bb->va, bb->obj->base.size);
1779                 bb->clflush &= ~CLFLUSH_BEFORE;
1780         }
1781
1782         ret = copy_gma_to_hva(s->vgpu, mm,
1783                               gma, gma + bb_size,
1784                               bb->va + start_offset);
1785         if (ret < 0) {
1786                 gvt_vgpu_err("fail to copy guest ring buffer\n");
1787                 ret = -EFAULT;
1788                 goto err_unmap;
1789         }
1790
1791         INIT_LIST_HEAD(&bb->list);
1792         list_add(&bb->list, &s->workload->shadow_bb);
1793
1794         bb->accessing = true;
1795         bb->bb_start_cmd_va = s->ip_va;
1796
1797         if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1798                 bb->bb_offset = s->ip_va - s->rb_va;
1799         else
1800                 bb->bb_offset = 0;
1801
1802         /*
1803          * ip_va saves the virtual address of the shadow batch buffer, while
1804          * ip_gma saves the graphics address of the original batch buffer.
1805          * As the shadow batch buffer is just a copy from the originial one,
1806          * it should be right to use shadow batch buffer'va and original batch
1807          * buffer's gma in pair. After all, we don't want to pin the shadow
1808          * buffer here (too early).
1809          */
1810         s->ip_va = bb->va + start_offset;
1811         s->ip_gma = gma;
1812         return 0;
1813 err_unmap:
1814         i915_gem_object_unpin_map(bb->obj);
1815 err_finish_shmem_access:
1816         i915_gem_object_finish_access(bb->obj);
1817 err_free_obj:
1818         i915_gem_object_put(bb->obj);
1819 err_free_bb:
1820         kfree(bb);
1821         return ret;
1822 }
1823
1824 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1825 {
1826         bool second_level;
1827         int ret = 0;
1828         struct intel_vgpu *vgpu = s->vgpu;
1829
1830         if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1831                 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1832                 return -EFAULT;
1833         }
1834
1835         second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1836         if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1837                 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
1838                 return -EFAULT;
1839         }
1840
1841         s->saved_buf_addr_type = s->buf_addr_type;
1842         addr_type_update_snb(s);
1843         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
1844                 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
1845                 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1846         } else if (second_level) {
1847                 s->buf_type = BATCH_BUFFER_2ND_LEVEL;
1848                 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
1849                 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
1850         }
1851
1852         if (batch_buffer_needs_scan(s)) {
1853                 ret = perform_bb_shadow(s);
1854                 if (ret < 0)
1855                         gvt_vgpu_err("invalid shadow batch buffer\n");
1856         } else {
1857                 /* emulate a batch buffer end to do return right */
1858                 ret = cmd_handler_mi_batch_buffer_end(s);
1859                 if (ret < 0)
1860                         return ret;
1861         }
1862         return ret;
1863 }
1864
1865 static int mi_noop_index;
1866
1867 static const struct cmd_info cmd_info[] = {
1868         {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1869
1870         {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
1871                 0, 1, NULL},
1872
1873         {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
1874                 0, 1, cmd_handler_mi_user_interrupt},
1875
1876         {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
1877                 D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
1878
1879         {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1880
1881         {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1882                 NULL},
1883
1884         {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1885                 NULL},
1886
1887         {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1888                 NULL},
1889
1890         {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1891                 NULL},
1892
1893         {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
1894                 D_ALL, 0, 1, NULL},
1895
1896         {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
1897                 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1898                 cmd_handler_mi_batch_buffer_end},
1899
1900         {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
1901                 0, 1, NULL},
1902
1903         {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1904                 NULL},
1905
1906         {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
1907                 D_ALL, 0, 1, NULL},
1908
1909         {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1910                 NULL},
1911
1912         {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1913                 NULL},
1914
1915         {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE,
1916                 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
1917
1918         {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL,
1919                 0, 8, NULL},
1920
1921         {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
1922
1923         {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1924
1925         {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL,
1926                 D_BDW_PLUS, 0, 8, NULL},
1927
1928         {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL,
1929                 D_BDW_PLUS, ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait},
1930
1931         {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
1932                 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
1933
1934         {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
1935                 0, 8, cmd_handler_mi_store_data_index},
1936
1937         {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
1938                 D_ALL, 0, 8, cmd_handler_lri},
1939
1940         {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
1941                 cmd_handler_mi_update_gtt},
1942
1943         {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL,
1944                 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm},
1945
1946         {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
1947                 cmd_handler_mi_flush_dw},
1948
1949         {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
1950                 10, cmd_handler_mi_clflush},
1951
1952         {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL,
1953                 D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count},
1954
1955         {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL,
1956                 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm},
1957
1958         {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL,
1959                 D_ALL, 0, 8, cmd_handler_lrr},
1960
1961         {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS,
1962                 D_ALL, 0, 8, NULL},
1963
1964         {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL,
1965                 ADDR_FIX_1(2), 8, NULL},
1966
1967         {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
1968                 ADDR_FIX_1(2), 8, NULL},
1969
1970         {"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2),
1971                 8, cmd_handler_mi_op_2e},
1972
1973         {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
1974                 8, cmd_handler_mi_op_2f},
1975
1976         {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
1977                 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
1978                 cmd_handler_mi_batch_buffer_start},
1979
1980         {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
1981                 F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
1982                 cmd_handler_mi_conditional_batch_buffer_end},
1983
1984         {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
1985                 R_RCS | R_BCS, D_ALL, 0, 2, NULL},
1986
1987         {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1988                 ADDR_FIX_2(4, 7), 8, NULL},
1989
1990         {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1991                 0, 8, NULL},
1992
1993         {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
1994                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
1995
1996         {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
1997
1998         {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
1999                 0, 8, NULL},
2000
2001         {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2002                 ADDR_FIX_1(3), 8, NULL},
2003
2004         {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2005                 D_ALL, 0, 8, NULL},
2006
2007         {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2008                 ADDR_FIX_1(4), 8, NULL},
2009
2010         {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2011                 ADDR_FIX_2(4, 5), 8, NULL},
2012
2013         {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2014                 ADDR_FIX_1(4), 8, NULL},
2015
2016         {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2017                 ADDR_FIX_2(4, 7), 8, NULL},
2018
2019         {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2020                 D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2021
2022         {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2023
2024         {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2025                 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2026
2027         {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2028                 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2029
2030         {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2031                 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2032                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2033
2034         {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2035                 D_ALL, ADDR_FIX_1(4), 8, NULL},
2036
2037         {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2038                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2039
2040         {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2041                 D_ALL, ADDR_FIX_1(4), 8, NULL},
2042
2043         {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2044                 D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2045
2046         {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2047                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2048
2049         {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2050                 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2051                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2052
2053         {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2054                 ADDR_FIX_2(4, 5), 8, NULL},
2055
2056         {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2057                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2058
2059         {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2060                 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2061                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2062
2063         {"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2064                 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2065                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2066
2067         {"3DSTATE_BLEND_STATE_POINTERS",
2068                 OP_3DSTATE_BLEND_STATE_POINTERS,
2069                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2070
2071         {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2072                 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2073                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2074
2075         {"3DSTATE_BINDING_TABLE_POINTERS_VS",
2076                 OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2077                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2078
2079         {"3DSTATE_BINDING_TABLE_POINTERS_HS",
2080                 OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2081                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2082
2083         {"3DSTATE_BINDING_TABLE_POINTERS_DS",
2084                 OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2085                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2086
2087         {"3DSTATE_BINDING_TABLE_POINTERS_GS",
2088                 OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2089                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2090
2091         {"3DSTATE_BINDING_TABLE_POINTERS_PS",
2092                 OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2093                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2094
2095         {"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2096                 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2097                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2098
2099         {"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2100                 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2101                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2102
2103         {"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2104                 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2105                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2106
2107         {"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2108                 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2109                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2110
2111         {"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2112                 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2113                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2114
2115         {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2116                 0, 8, NULL},
2117
2118         {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2119                 0, 8, NULL},
2120
2121         {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2122                 0, 8, NULL},
2123
2124         {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2125                 0, 8, NULL},
2126
2127         {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2128                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2129
2130         {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2131                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2132
2133         {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2134                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2135
2136         {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2137                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2138
2139         {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2140                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2141
2142         {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2143                 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2144
2145         {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2146                 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2147
2148         {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2149                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2150
2151         {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2152                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2153
2154         {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2155                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2156
2157         {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2158                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2159
2160         {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2161                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2162
2163         {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2164                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2165
2166         {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2167                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2168
2169         {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2170                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2171
2172         {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2173                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2174
2175         {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2176                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2177
2178         {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2179                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2180
2181         {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2182                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2183
2184         {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2185                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2186
2187         {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2188                 D_BDW_PLUS, 0, 8, NULL},
2189
2190         {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2191                 NULL},
2192
2193         {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2194                 D_BDW_PLUS, 0, 8, NULL},
2195
2196         {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2197                 D_BDW_PLUS, 0, 8, NULL},
2198
2199         {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2200                 8, NULL},
2201
2202         {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2203                 R_RCS, D_BDW_PLUS, 0, 8, NULL},
2204
2205         {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2206                 8, NULL},
2207
2208         {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2209                 NULL},
2210
2211         {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2212                 NULL},
2213
2214         {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2215                 NULL},
2216
2217         {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2218                 D_BDW_PLUS, 0, 8, NULL},
2219
2220         {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2221                 R_RCS, D_ALL, 0, 8, NULL},
2222
2223         {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2224                 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2225
2226         {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2227                 R_RCS, D_ALL, 0, 1, NULL},
2228
2229         {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2230
2231         {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2232                 R_RCS, D_ALL, 0, 8, NULL},
2233
2234         {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2235                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2236
2237         {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2238
2239         {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2240
2241         {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2242
2243         {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2244                 D_BDW_PLUS, 0, 8, NULL},
2245
2246         {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2247                 D_BDW_PLUS, 0, 8, NULL},
2248
2249         {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2250                 D_ALL, 0, 8, NULL},
2251
2252         {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2253                 D_BDW_PLUS, 0, 8, NULL},
2254
2255         {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2256                 D_BDW_PLUS, 0, 8, NULL},
2257
2258         {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2259
2260         {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2261
2262         {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2263
2264         {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2265                 D_ALL, 0, 8, NULL},
2266
2267         {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2268
2269         {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2270
2271         {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2272                 R_RCS, D_ALL, 0, 8, NULL},
2273
2274         {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2275                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2276
2277         {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2278                 0, 8, NULL},
2279
2280         {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2281                 D_ALL, ADDR_FIX_1(2), 8, NULL},
2282
2283         {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2284                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2285
2286         {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2287                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2288
2289         {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2290                 D_ALL, 0, 8, NULL},
2291
2292         {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2293                 D_ALL, 0, 8, NULL},
2294
2295         {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2296                 D_ALL, 0, 8, NULL},
2297
2298         {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2299                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2300
2301         {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2302                 D_BDW_PLUS, 0, 8, NULL},
2303
2304         {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2305                 D_ALL, ADDR_FIX_1(2), 8, NULL},
2306
2307         {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2308                 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2309
2310         {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2311                 R_RCS, D_ALL, 0, 8, NULL},
2312
2313         {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2314                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2315
2316         {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2317                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2318
2319         {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2320                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2321
2322         {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2323                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2324
2325         {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2326                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2327
2328         {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2329                 R_RCS, D_ALL, 0, 8, NULL},
2330
2331         {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2332                 D_ALL, 0, 9, NULL},
2333
2334         {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2335                 ADDR_FIX_2(2, 4), 8, NULL},
2336
2337         {"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2338                 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2339                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2340
2341         {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2342                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2343
2344         {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2345                 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2346                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2347
2348         {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2349                 D_BDW_PLUS, 0, 8, NULL},
2350
2351         {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2352                 ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2353
2354         {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2355
2356         {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2357                 1, NULL},
2358
2359         {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2360                 ADDR_FIX_1(1), 8, NULL},
2361
2362         {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2363
2364         {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2365                 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2366
2367         {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2368                 ADDR_FIX_1(1), 8, NULL},
2369
2370         {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2371
2372         {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2373
2374         {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2375                 0, 8, NULL},
2376
2377         {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2378                 D_SKL_PLUS, 0, 8, NULL},
2379
2380         {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2381                 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2382
2383         {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2384                 0, 16, NULL},
2385
2386         {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2387                 0, 16, NULL},
2388
2389         {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2390                 0, 16, NULL},
2391
2392         {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2393
2394         {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2395                 0, 16, NULL},
2396
2397         {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2398                 0, 16, NULL},
2399
2400         {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2401                 0, 16, NULL},
2402
2403         {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2404                 0, 8, NULL},
2405
2406         {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2407                 NULL},
2408
2409         {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2410                 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2411
2412         {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2413                 R_VCS, D_ALL, 0, 12, NULL},
2414
2415         {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2416                 R_VCS, D_ALL, 0, 12, NULL},
2417
2418         {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2419                 R_VCS, D_BDW_PLUS, 0, 12, NULL},
2420
2421         {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2422                 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2423
2424         {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2425                 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2426
2427         {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2428
2429         {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2430                 R_VCS, D_ALL, 0, 12, NULL},
2431
2432         {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2433                 R_VCS, D_ALL, 0, 12, NULL},
2434
2435         {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2436                 R_VCS, D_ALL, 0, 12, NULL},
2437
2438         {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2439                 R_VCS, D_ALL, 0, 12, NULL},
2440
2441         {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2442                 R_VCS, D_ALL, 0, 12, NULL},
2443
2444         {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2445                 R_VCS, D_ALL, 0, 12, NULL},
2446
2447         {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2448                 R_VCS, D_ALL, 0, 6, NULL},
2449
2450         {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2451                 R_VCS, D_ALL, 0, 12, NULL},
2452
2453         {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2454                 R_VCS, D_ALL, 0, 12, NULL},
2455
2456         {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2457                 R_VCS, D_ALL, 0, 12, NULL},
2458
2459         {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2460                 R_VCS, D_ALL, 0, 12, NULL},
2461
2462         {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2463                 R_VCS, D_ALL, 0, 12, NULL},
2464
2465         {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2466                 R_VCS, D_ALL, 0, 12, NULL},
2467
2468         {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2469                 R_VCS, D_ALL, 0, 12, NULL},
2470         {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2471                 R_VCS, D_ALL, 0, 12, NULL},
2472
2473         {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2474                 R_VCS, D_ALL, 0, 12, NULL},
2475
2476         {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2477                 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2478
2479         {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2480                 R_VCS, D_ALL, 0, 12, NULL},
2481
2482         {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2483                 R_VCS, D_ALL, 0, 12, NULL},
2484
2485         {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2486                 R_VCS, D_ALL, 0, 12, NULL},
2487
2488         {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2489                 R_VCS, D_ALL, 0, 12, NULL},
2490
2491         {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2492                 R_VCS, D_ALL, 0, 12, NULL},
2493
2494         {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2495                 R_VCS, D_ALL, 0, 12, NULL},
2496
2497         {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2498                 R_VCS, D_ALL, 0, 12, NULL},
2499
2500         {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2501                 R_VCS, D_ALL, 0, 12, NULL},
2502
2503         {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2504                 R_VCS, D_ALL, 0, 12, NULL},
2505
2506         {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2507                 R_VCS, D_ALL, 0, 12, NULL},
2508
2509         {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2510                 R_VCS, D_ALL, 0, 12, NULL},
2511
2512         {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2513                 0, 16, NULL},
2514
2515         {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2516
2517         {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2518
2519         {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2520                 R_VCS, D_ALL, 0, 12, NULL},
2521
2522         {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2523                 R_VCS, D_ALL, 0, 12, NULL},
2524
2525         {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2526                 R_VCS, D_ALL, 0, 12, NULL},
2527
2528         {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2529
2530         {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2531                 0, 12, NULL},
2532
2533         {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2534                 0, 12, NULL},
2535 };
2536
2537 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2538 {
2539         hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2540 }
2541
2542 /* call the cmd handler, and advance ip */
2543 static int cmd_parser_exec(struct parser_exec_state *s)
2544 {
2545         struct intel_vgpu *vgpu = s->vgpu;
2546         const struct cmd_info *info;
2547         u32 cmd;
2548         int ret = 0;
2549
2550         cmd = cmd_val(s, 0);
2551
2552         /* fastpath for MI_NOOP */
2553         if (cmd == MI_NOOP)
2554                 info = &cmd_info[mi_noop_index];
2555         else
2556                 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
2557
2558         if (info == NULL) {
2559                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
2560                                 cmd, get_opcode(cmd, s->ring_id),
2561                                 (s->buf_addr_type == PPGTT_BUFFER) ?
2562                                 "ppgtt" : "ggtt", s->ring_id, s->workload);
2563                 return -EBADRQC;
2564         }
2565
2566         s->info = info;
2567
2568         trace_gvt_command(vgpu->id, s->ring_id, s->ip_gma, s->ip_va,
2569                           cmd_length(s), s->buf_type, s->buf_addr_type,
2570                           s->workload, info->name);
2571
2572         if (info->handler) {
2573                 ret = info->handler(s);
2574                 if (ret < 0) {
2575                         gvt_vgpu_err("%s handler error\n", info->name);
2576                         return ret;
2577                 }
2578         }
2579
2580         if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2581                 ret = cmd_advance_default(s);
2582                 if (ret) {
2583                         gvt_vgpu_err("%s IP advance error\n", info->name);
2584                         return ret;
2585                 }
2586         }
2587         return 0;
2588 }
2589
2590 static inline bool gma_out_of_range(unsigned long gma,
2591                 unsigned long gma_head, unsigned int gma_tail)
2592 {
2593         if (gma_tail >= gma_head)
2594                 return (gma < gma_head) || (gma > gma_tail);
2595         else
2596                 return (gma > gma_tail) && (gma < gma_head);
2597 }
2598
2599 /* Keep the consistent return type, e.g EBADRQC for unknown
2600  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2601  * works as the input of VM healthy status.
2602  */
2603 static int command_scan(struct parser_exec_state *s,
2604                 unsigned long rb_head, unsigned long rb_tail,
2605                 unsigned long rb_start, unsigned long rb_len)
2606 {
2607
2608         unsigned long gma_head, gma_tail, gma_bottom;
2609         int ret = 0;
2610         struct intel_vgpu *vgpu = s->vgpu;
2611
2612         gma_head = rb_start + rb_head;
2613         gma_tail = rb_start + rb_tail;
2614         gma_bottom = rb_start +  rb_len;
2615
2616         while (s->ip_gma != gma_tail) {
2617                 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2618                         if (!(s->ip_gma >= rb_start) ||
2619                                 !(s->ip_gma < gma_bottom)) {
2620                                 gvt_vgpu_err("ip_gma %lx out of ring scope."
2621                                         "(base:0x%lx, bottom: 0x%lx)\n",
2622                                         s->ip_gma, rb_start,
2623                                         gma_bottom);
2624                                 parser_exec_state_dump(s);
2625                                 return -EFAULT;
2626                         }
2627                         if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2628                                 gvt_vgpu_err("ip_gma %lx out of range."
2629                                         "base 0x%lx head 0x%lx tail 0x%lx\n",
2630                                         s->ip_gma, rb_start,
2631                                         rb_head, rb_tail);
2632                                 parser_exec_state_dump(s);
2633                                 break;
2634                         }
2635                 }
2636                 ret = cmd_parser_exec(s);
2637                 if (ret) {
2638                         gvt_vgpu_err("cmd parser error\n");
2639                         parser_exec_state_dump(s);
2640                         break;
2641                 }
2642         }
2643
2644         return ret;
2645 }
2646
2647 static int scan_workload(struct intel_vgpu_workload *workload)
2648 {
2649         unsigned long gma_head, gma_tail, gma_bottom;
2650         struct parser_exec_state s;
2651         int ret = 0;
2652
2653         /* ring base is page aligned */
2654         if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2655                 return -EINVAL;
2656
2657         gma_head = workload->rb_start + workload->rb_head;
2658         gma_tail = workload->rb_start + workload->rb_tail;
2659         gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2660
2661         s.buf_type = RING_BUFFER_INSTRUCTION;
2662         s.buf_addr_type = GTT_BUFFER;
2663         s.vgpu = workload->vgpu;
2664         s.ring_id = workload->ring_id;
2665         s.ring_start = workload->rb_start;
2666         s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2667         s.ring_head = gma_head;
2668         s.ring_tail = gma_tail;
2669         s.rb_va = workload->shadow_ring_buffer_va;
2670         s.workload = workload;
2671         s.is_ctx_wa = false;
2672
2673         if ((bypass_scan_mask & (1 << workload->ring_id)) ||
2674                 gma_head == gma_tail)
2675                 return 0;
2676
2677         if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) {
2678                 ret = -EINVAL;
2679                 goto out;
2680         }
2681
2682         ret = ip_gma_set(&s, gma_head);
2683         if (ret)
2684                 goto out;
2685
2686         ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2687                 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2688
2689 out:
2690         return ret;
2691 }
2692
2693 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2694 {
2695
2696         unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2697         struct parser_exec_state s;
2698         int ret = 0;
2699         struct intel_vgpu_workload *workload = container_of(wa_ctx,
2700                                 struct intel_vgpu_workload,
2701                                 wa_ctx);
2702
2703         /* ring base is page aligned */
2704         if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2705                                         I915_GTT_PAGE_SIZE)))
2706                 return -EINVAL;
2707
2708         ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2709         ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2710                         PAGE_SIZE);
2711         gma_head = wa_ctx->indirect_ctx.guest_gma;
2712         gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2713         gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2714
2715         s.buf_type = RING_BUFFER_INSTRUCTION;
2716         s.buf_addr_type = GTT_BUFFER;
2717         s.vgpu = workload->vgpu;
2718         s.ring_id = workload->ring_id;
2719         s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2720         s.ring_size = ring_size;
2721         s.ring_head = gma_head;
2722         s.ring_tail = gma_tail;
2723         s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2724         s.workload = workload;
2725         s.is_ctx_wa = true;
2726
2727         if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) {
2728                 ret = -EINVAL;
2729                 goto out;
2730         }
2731
2732         ret = ip_gma_set(&s, gma_head);
2733         if (ret)
2734                 goto out;
2735
2736         ret = command_scan(&s, 0, ring_tail,
2737                 wa_ctx->indirect_ctx.guest_gma, ring_size);
2738 out:
2739         return ret;
2740 }
2741
2742 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2743 {
2744         struct intel_vgpu *vgpu = workload->vgpu;
2745         struct intel_vgpu_submission *s = &vgpu->submission;
2746         unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2747         void *shadow_ring_buffer_va;
2748         int ring_id = workload->ring_id;
2749         int ret;
2750
2751         guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2752
2753         /* calculate workload ring buffer size */
2754         workload->rb_len = (workload->rb_tail + guest_rb_size -
2755                         workload->rb_head) % guest_rb_size;
2756
2757         gma_head = workload->rb_start + workload->rb_head;
2758         gma_tail = workload->rb_start + workload->rb_tail;
2759         gma_top = workload->rb_start + guest_rb_size;
2760
2761         if (workload->rb_len > s->ring_scan_buffer_size[ring_id]) {
2762                 void *p;
2763
2764                 /* realloc the new ring buffer if needed */
2765                 p = krealloc(s->ring_scan_buffer[ring_id], workload->rb_len,
2766                                 GFP_KERNEL);
2767                 if (!p) {
2768                         gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2769                         return -ENOMEM;
2770                 }
2771                 s->ring_scan_buffer[ring_id] = p;
2772                 s->ring_scan_buffer_size[ring_id] = workload->rb_len;
2773         }
2774
2775         shadow_ring_buffer_va = s->ring_scan_buffer[ring_id];
2776
2777         /* get shadow ring buffer va */
2778         workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2779
2780         /* head > tail --> copy head <-> top */
2781         if (gma_head > gma_tail) {
2782                 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2783                                       gma_head, gma_top, shadow_ring_buffer_va);
2784                 if (ret < 0) {
2785                         gvt_vgpu_err("fail to copy guest ring buffer\n");
2786                         return ret;
2787                 }
2788                 shadow_ring_buffer_va += ret;
2789                 gma_head = workload->rb_start;
2790         }
2791
2792         /* copy head or start <-> tail */
2793         ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2794                                 shadow_ring_buffer_va);
2795         if (ret < 0) {
2796                 gvt_vgpu_err("fail to copy guest ring buffer\n");
2797                 return ret;
2798         }
2799         return 0;
2800 }
2801
2802 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2803 {
2804         int ret;
2805         struct intel_vgpu *vgpu = workload->vgpu;
2806
2807         ret = shadow_workload_ring_buffer(workload);
2808         if (ret) {
2809                 gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2810                 return ret;
2811         }
2812
2813         ret = scan_workload(workload);
2814         if (ret) {
2815                 gvt_vgpu_err("scan workload error\n");
2816                 return ret;
2817         }
2818         return 0;
2819 }
2820
2821 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2822 {
2823         int ctx_size = wa_ctx->indirect_ctx.size;
2824         unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2825         struct intel_vgpu_workload *workload = container_of(wa_ctx,
2826                                         struct intel_vgpu_workload,
2827                                         wa_ctx);
2828         struct intel_vgpu *vgpu = workload->vgpu;
2829         struct drm_i915_gem_object *obj;
2830         int ret = 0;
2831         void *map;
2832
2833         obj = i915_gem_object_create_shmem(workload->vgpu->gvt->dev_priv,
2834                                            roundup(ctx_size + CACHELINE_BYTES,
2835                                                    PAGE_SIZE));
2836         if (IS_ERR(obj))
2837                 return PTR_ERR(obj);
2838
2839         /* get the va of the shadow batch buffer */
2840         map = i915_gem_object_pin_map(obj, I915_MAP_WB);
2841         if (IS_ERR(map)) {
2842                 gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
2843                 ret = PTR_ERR(map);
2844                 goto put_obj;
2845         }
2846
2847         i915_gem_object_lock(obj);
2848         ret = i915_gem_object_set_to_cpu_domain(obj, false);
2849         i915_gem_object_unlock(obj);
2850         if (ret) {
2851                 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
2852                 goto unmap_src;
2853         }
2854
2855         ret = copy_gma_to_hva(workload->vgpu,
2856                                 workload->vgpu->gtt.ggtt_mm,
2857                                 guest_gma, guest_gma + ctx_size,
2858                                 map);
2859         if (ret < 0) {
2860                 gvt_vgpu_err("fail to copy guest indirect ctx\n");
2861                 goto unmap_src;
2862         }
2863
2864         wa_ctx->indirect_ctx.obj = obj;
2865         wa_ctx->indirect_ctx.shadow_va = map;
2866         return 0;
2867
2868 unmap_src:
2869         i915_gem_object_unpin_map(obj);
2870 put_obj:
2871         i915_gem_object_put(obj);
2872         return ret;
2873 }
2874
2875 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2876 {
2877         u32 per_ctx_start[CACHELINE_DWORDS] = {0};
2878         unsigned char *bb_start_sva;
2879
2880         if (!wa_ctx->per_ctx.valid)
2881                 return 0;
2882
2883         per_ctx_start[0] = 0x18800001;
2884         per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
2885
2886         bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
2887                                 wa_ctx->indirect_ctx.size;
2888
2889         memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
2890
2891         return 0;
2892 }
2893
2894 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2895 {
2896         int ret;
2897         struct intel_vgpu_workload *workload = container_of(wa_ctx,
2898                                         struct intel_vgpu_workload,
2899                                         wa_ctx);
2900         struct intel_vgpu *vgpu = workload->vgpu;
2901
2902         if (wa_ctx->indirect_ctx.size == 0)
2903                 return 0;
2904
2905         ret = shadow_indirect_ctx(wa_ctx);
2906         if (ret) {
2907                 gvt_vgpu_err("fail to shadow indirect ctx\n");
2908                 return ret;
2909         }
2910
2911         combine_wa_ctx(wa_ctx);
2912
2913         ret = scan_wa_ctx(wa_ctx);
2914         if (ret) {
2915                 gvt_vgpu_err("scan wa ctx error\n");
2916                 return ret;
2917         }
2918
2919         return 0;
2920 }
2921
2922 static const struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt,
2923                 unsigned int opcode, unsigned long rings)
2924 {
2925         const struct cmd_info *info = NULL;
2926         unsigned int ring;
2927
2928         for_each_set_bit(ring, &rings, I915_NUM_ENGINES) {
2929                 info = find_cmd_entry(gvt, opcode, ring);
2930                 if (info)
2931                         break;
2932         }
2933         return info;
2934 }
2935
2936 static int init_cmd_table(struct intel_gvt *gvt)
2937 {
2938         int i;
2939         struct cmd_entry *e;
2940         const struct cmd_info *info;
2941         unsigned int gen_type;
2942
2943         gen_type = intel_gvt_get_device_type(gvt);
2944
2945         for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
2946                 if (!(cmd_info[i].devices & gen_type))
2947                         continue;
2948
2949                 e = kzalloc(sizeof(*e), GFP_KERNEL);
2950                 if (!e)
2951                         return -ENOMEM;
2952
2953                 e->info = &cmd_info[i];
2954                 info = find_cmd_entry_any_ring(gvt,
2955                                 e->info->opcode, e->info->rings);
2956                 if (info) {
2957                         gvt_err("%s %s duplicated\n", e->info->name,
2958                                         info->name);
2959                         kfree(e);
2960                         return -EEXIST;
2961                 }
2962                 if (cmd_info[i].opcode == OP_MI_NOOP)
2963                         mi_noop_index = i;
2964
2965                 INIT_HLIST_NODE(&e->hlist);
2966                 add_cmd_entry(gvt, e);
2967                 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
2968                                 e->info->name, e->info->opcode, e->info->flag,
2969                                 e->info->devices, e->info->rings);
2970         }
2971         return 0;
2972 }
2973
2974 static void clean_cmd_table(struct intel_gvt *gvt)
2975 {
2976         struct hlist_node *tmp;
2977         struct cmd_entry *e;
2978         int i;
2979
2980         hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
2981                 kfree(e);
2982
2983         hash_init(gvt->cmd_table);
2984 }
2985
2986 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
2987 {
2988         clean_cmd_table(gvt);
2989 }
2990
2991 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
2992 {
2993         int ret;
2994
2995         ret = init_cmd_table(gvt);
2996         if (ret) {
2997                 intel_gvt_clean_cmd_parser(gvt);
2998                 return ret;
2999         }
3000         return 0;
3001 }