drm/i915/eb: Fix pagefault disabling in the first slowpath
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gem / i915_gem_execbuffer.c
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11
12 #include <drm/drm_syncobj.h>
13
14 #include "display/intel_frontbuffer.h"
15
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gpu_commands.h"
19 #include "gt/intel_gt.h"
20 #include "gt/intel_gt_buffer_pool.h"
21 #include "gt/intel_gt_pm.h"
22 #include "gt/intel_ring.h"
23
24 #include "i915_drv.h"
25 #include "i915_gem_clflush.h"
26 #include "i915_gem_context.h"
27 #include "i915_gem_ioctls.h"
28 #include "i915_sw_fence_work.h"
29 #include "i915_trace.h"
30 #include "i915_user_extensions.h"
31 #include "i915_memcpy.h"
32
33 struct eb_vma {
34         struct i915_vma *vma;
35         unsigned int flags;
36
37         /** This vma's place in the execbuf reservation list */
38         struct drm_i915_gem_exec_object2 *exec;
39         struct list_head bind_link;
40         struct list_head reloc_link;
41
42         struct hlist_node node;
43         u32 handle;
44 };
45
46 enum {
47         FORCE_CPU_RELOC = 1,
48         FORCE_GTT_RELOC,
49         FORCE_GPU_RELOC,
50 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
51 };
52
53 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */
54 #define __EXEC_OBJECT_HAS_PIN           BIT(30)
55 #define __EXEC_OBJECT_HAS_FENCE         BIT(29)
56 #define __EXEC_OBJECT_USERPTR_INIT      BIT(28)
57 #define __EXEC_OBJECT_NEEDS_MAP         BIT(27)
58 #define __EXEC_OBJECT_NEEDS_BIAS        BIT(26)
59 #define __EXEC_OBJECT_INTERNAL_FLAGS    (~0u << 26) /* all of the above + */
60 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
61
62 #define __EXEC_HAS_RELOC        BIT(31)
63 #define __EXEC_ENGINE_PINNED    BIT(30)
64 #define __EXEC_USERPTR_USED     BIT(29)
65 #define __EXEC_INTERNAL_FLAGS   (~0u << 29)
66 #define UPDATE                  PIN_OFFSET_FIXED
67
68 #define BATCH_OFFSET_BIAS (256*1024)
69
70 #define __I915_EXEC_ILLEGAL_FLAGS \
71         (__I915_EXEC_UNKNOWN_FLAGS | \
72          I915_EXEC_CONSTANTS_MASK  | \
73          I915_EXEC_RESOURCE_STREAMER)
74
75 /* Catch emission of unexpected errors for CI! */
76 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
77 #undef EINVAL
78 #define EINVAL ({ \
79         DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
80         22; \
81 })
82 #endif
83
84 /**
85  * DOC: User command execution
86  *
87  * Userspace submits commands to be executed on the GPU as an instruction
88  * stream within a GEM object we call a batchbuffer. This instructions may
89  * refer to other GEM objects containing auxiliary state such as kernels,
90  * samplers, render targets and even secondary batchbuffers. Userspace does
91  * not know where in the GPU memory these objects reside and so before the
92  * batchbuffer is passed to the GPU for execution, those addresses in the
93  * batchbuffer and auxiliary objects are updated. This is known as relocation,
94  * or patching. To try and avoid having to relocate each object on the next
95  * execution, userspace is told the location of those objects in this pass,
96  * but this remains just a hint as the kernel may choose a new location for
97  * any object in the future.
98  *
99  * At the level of talking to the hardware, submitting a batchbuffer for the
100  * GPU to execute is to add content to a buffer from which the HW
101  * command streamer is reading.
102  *
103  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
104  *    Execlists, this command is not placed on the same buffer as the
105  *    remaining items.
106  *
107  * 2. Add a command to invalidate caches to the buffer.
108  *
109  * 3. Add a batchbuffer start command to the buffer; the start command is
110  *    essentially a token together with the GPU address of the batchbuffer
111  *    to be executed.
112  *
113  * 4. Add a pipeline flush to the buffer.
114  *
115  * 5. Add a memory write command to the buffer to record when the GPU
116  *    is done executing the batchbuffer. The memory write writes the
117  *    global sequence number of the request, ``i915_request::global_seqno``;
118  *    the i915 driver uses the current value in the register to determine
119  *    if the GPU has completed the batchbuffer.
120  *
121  * 6. Add a user interrupt command to the buffer. This command instructs
122  *    the GPU to issue an interrupt when the command, pipeline flush and
123  *    memory write are completed.
124  *
125  * 7. Inform the hardware of the additional commands added to the buffer
126  *    (by updating the tail pointer).
127  *
128  * Processing an execbuf ioctl is conceptually split up into a few phases.
129  *
130  * 1. Validation - Ensure all the pointers, handles and flags are valid.
131  * 2. Reservation - Assign GPU address space for every object
132  * 3. Relocation - Update any addresses to point to the final locations
133  * 4. Serialisation - Order the request with respect to its dependencies
134  * 5. Construction - Construct a request to execute the batchbuffer
135  * 6. Submission (at some point in the future execution)
136  *
137  * Reserving resources for the execbuf is the most complicated phase. We
138  * neither want to have to migrate the object in the address space, nor do
139  * we want to have to update any relocations pointing to this object. Ideally,
140  * we want to leave the object where it is and for all the existing relocations
141  * to match. If the object is given a new address, or if userspace thinks the
142  * object is elsewhere, we have to parse all the relocation entries and update
143  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
144  * all the target addresses in all of its objects match the value in the
145  * relocation entries and that they all match the presumed offsets given by the
146  * list of execbuffer objects. Using this knowledge, we know that if we haven't
147  * moved any buffers, all the relocation entries are valid and we can skip
148  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
149  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
150  *
151  *      The addresses written in the objects must match the corresponding
152  *      reloc.presumed_offset which in turn must match the corresponding
153  *      execobject.offset.
154  *
155  *      Any render targets written to in the batch must be flagged with
156  *      EXEC_OBJECT_WRITE.
157  *
158  *      To avoid stalling, execobject.offset should match the current
159  *      address of that object within the active context.
160  *
161  * The reservation is done is multiple phases. First we try and keep any
162  * object already bound in its current location - so as long as meets the
163  * constraints imposed by the new execbuffer. Any object left unbound after the
164  * first pass is then fitted into any available idle space. If an object does
165  * not fit, all objects are removed from the reservation and the process rerun
166  * after sorting the objects into a priority order (more difficult to fit
167  * objects are tried first). Failing that, the entire VM is cleared and we try
168  * to fit the execbuf once last time before concluding that it simply will not
169  * fit.
170  *
171  * A small complication to all of this is that we allow userspace not only to
172  * specify an alignment and a size for the object in the address space, but
173  * we also allow userspace to specify the exact offset. This objects are
174  * simpler to place (the location is known a priori) all we have to do is make
175  * sure the space is available.
176  *
177  * Once all the objects are in place, patching up the buried pointers to point
178  * to the final locations is a fairly simple job of walking over the relocation
179  * entry arrays, looking up the right address and rewriting the value into
180  * the object. Simple! ... The relocation entries are stored in user memory
181  * and so to access them we have to copy them into a local buffer. That copy
182  * has to avoid taking any pagefaults as they may lead back to a GEM object
183  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
184  * the relocation into multiple passes. First we try to do everything within an
185  * atomic context (avoid the pagefaults) which requires that we never wait. If
186  * we detect that we may wait, or if we need to fault, then we have to fallback
187  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
188  * bells yet?) Dropping the mutex means that we lose all the state we have
189  * built up so far for the execbuf and we must reset any global data. However,
190  * we do leave the objects pinned in their final locations - which is a
191  * potential issue for concurrent execbufs. Once we have left the mutex, we can
192  * allocate and copy all the relocation entries into a large array at our
193  * leisure, reacquire the mutex, reclaim all the objects and other state and
194  * then proceed to update any incorrect addresses with the objects.
195  *
196  * As we process the relocation entries, we maintain a record of whether the
197  * object is being written to. Using NORELOC, we expect userspace to provide
198  * this information instead. We also check whether we can skip the relocation
199  * by comparing the expected value inside the relocation entry with the target's
200  * final address. If they differ, we have to map the current object and rewrite
201  * the 4 or 8 byte pointer within.
202  *
203  * Serialising an execbuf is quite simple according to the rules of the GEM
204  * ABI. Execution within each context is ordered by the order of submission.
205  * Writes to any GEM object are in order of submission and are exclusive. Reads
206  * from a GEM object are unordered with respect to other reads, but ordered by
207  * writes. A write submitted after a read cannot occur before the read, and
208  * similarly any read submitted after a write cannot occur before the write.
209  * Writes are ordered between engines such that only one write occurs at any
210  * time (completing any reads beforehand) - using semaphores where available
211  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
212  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
213  * reads before starting, and any read (either using set-domain or pread) must
214  * flush all GPU writes before starting. (Note we only employ a barrier before,
215  * we currently rely on userspace not concurrently starting a new execution
216  * whilst reading or writing to an object. This may be an advantage or not
217  * depending on how much you trust userspace not to shoot themselves in the
218  * foot.) Serialisation may just result in the request being inserted into
219  * a DAG awaiting its turn, but most simple is to wait on the CPU until
220  * all dependencies are resolved.
221  *
222  * After all of that, is just a matter of closing the request and handing it to
223  * the hardware (well, leaving it in a queue to be executed). However, we also
224  * offer the ability for batchbuffers to be run with elevated privileges so
225  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
226  * Before any batch is given extra privileges we first must check that it
227  * contains no nefarious instructions, we check that each instruction is from
228  * our whitelist and all registers are also from an allowed list. We first
229  * copy the user's batchbuffer to a shadow (so that the user doesn't have
230  * access to it, either by the CPU or GPU as we scan it) and then parse each
231  * instruction. If everything is ok, we set a flag telling the hardware to run
232  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
233  */
234
235 struct eb_fence {
236         struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
237         struct dma_fence *dma_fence;
238         u64 value;
239         struct dma_fence_chain *chain_fence;
240 };
241
242 struct i915_execbuffer {
243         struct drm_i915_private *i915; /** i915 backpointer */
244         struct drm_file *file; /** per-file lookup tables and limits */
245         struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
246         struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
247         struct eb_vma *vma;
248
249         struct intel_engine_cs *engine; /** engine to queue the request to */
250         struct intel_context *context; /* logical state for the request */
251         struct i915_gem_context *gem_context; /** caller's context */
252
253         struct i915_request *request; /** our request to build */
254         struct eb_vma *batch; /** identity of the batch obj/vma */
255         struct i915_vma *trampoline; /** trampoline used for chaining */
256
257         /** actual size of execobj[] as we may extend it for the cmdparser */
258         unsigned int buffer_count;
259
260         /** list of vma not yet bound during reservation phase */
261         struct list_head unbound;
262
263         /** list of vma that have execobj.relocation_count */
264         struct list_head relocs;
265
266         struct i915_gem_ww_ctx ww;
267
268         /**
269          * Track the most recently used object for relocations, as we
270          * frequently have to perform multiple relocations within the same
271          * obj/page
272          */
273         struct reloc_cache {
274                 struct drm_mm_node node; /** temporary GTT binding */
275                 unsigned long vaddr; /** Current kmap address */
276                 unsigned long page; /** Currently mapped page index */
277                 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
278                 bool use_64bit_reloc : 1;
279                 bool has_llc : 1;
280                 bool has_fence : 1;
281                 bool needs_unfenced : 1;
282
283                 struct i915_request *rq;
284                 u32 *rq_cmd;
285                 unsigned int rq_size;
286                 struct intel_gt_buffer_pool_node *pool;
287         } reloc_cache;
288
289         struct intel_gt_buffer_pool_node *reloc_pool; /** relocation pool for -EDEADLK handling */
290         struct intel_context *reloc_context;
291
292         u64 invalid_flags; /** Set of execobj.flags that are invalid */
293         u32 context_flags; /** Set of execobj.flags to insert from the ctx */
294
295         u64 batch_len; /** Length of batch within object */
296         u32 batch_start_offset; /** Location within object of batch */
297         u32 batch_flags; /** Flags composed for emit_bb_start() */
298         struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
299
300         /**
301          * Indicate either the size of the hastable used to resolve
302          * relocation handles, or if negative that we are using a direct
303          * index into the execobj[].
304          */
305         int lut_size;
306         struct hlist_head *buckets; /** ht for relocation handles */
307
308         struct eb_fence *fences;
309         unsigned long num_fences;
310 };
311
312 static int eb_parse(struct i915_execbuffer *eb);
313 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb,
314                                           bool throttle);
315 static void eb_unpin_engine(struct i915_execbuffer *eb);
316
317 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
318 {
319         return intel_engine_requires_cmd_parser(eb->engine) ||
320                 (intel_engine_using_cmd_parser(eb->engine) &&
321                  eb->args->batch_len);
322 }
323
324 static int eb_create(struct i915_execbuffer *eb)
325 {
326         if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
327                 unsigned int size = 1 + ilog2(eb->buffer_count);
328
329                 /*
330                  * Without a 1:1 association between relocation handles and
331                  * the execobject[] index, we instead create a hashtable.
332                  * We size it dynamically based on available memory, starting
333                  * first with 1:1 assocative hash and scaling back until
334                  * the allocation succeeds.
335                  *
336                  * Later on we use a positive lut_size to indicate we are
337                  * using this hashtable, and a negative value to indicate a
338                  * direct lookup.
339                  */
340                 do {
341                         gfp_t flags;
342
343                         /* While we can still reduce the allocation size, don't
344                          * raise a warning and allow the allocation to fail.
345                          * On the last pass though, we want to try as hard
346                          * as possible to perform the allocation and warn
347                          * if it fails.
348                          */
349                         flags = GFP_KERNEL;
350                         if (size > 1)
351                                 flags |= __GFP_NORETRY | __GFP_NOWARN;
352
353                         eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
354                                               flags);
355                         if (eb->buckets)
356                                 break;
357                 } while (--size);
358
359                 if (unlikely(!size))
360                         return -ENOMEM;
361
362                 eb->lut_size = size;
363         } else {
364                 eb->lut_size = -eb->buffer_count;
365         }
366
367         return 0;
368 }
369
370 static bool
371 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
372                  const struct i915_vma *vma,
373                  unsigned int flags)
374 {
375         if (vma->node.size < entry->pad_to_size)
376                 return true;
377
378         if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
379                 return true;
380
381         if (flags & EXEC_OBJECT_PINNED &&
382             vma->node.start != entry->offset)
383                 return true;
384
385         if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
386             vma->node.start < BATCH_OFFSET_BIAS)
387                 return true;
388
389         if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
390             (vma->node.start + vma->node.size + 4095) >> 32)
391                 return true;
392
393         if (flags & __EXEC_OBJECT_NEEDS_MAP &&
394             !i915_vma_is_map_and_fenceable(vma))
395                 return true;
396
397         return false;
398 }
399
400 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
401                         unsigned int exec_flags)
402 {
403         u64 pin_flags = 0;
404
405         if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
406                 pin_flags |= PIN_GLOBAL;
407
408         /*
409          * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
410          * limit address to the first 4GBs for unflagged objects.
411          */
412         if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
413                 pin_flags |= PIN_ZONE_4G;
414
415         if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
416                 pin_flags |= PIN_MAPPABLE;
417
418         if (exec_flags & EXEC_OBJECT_PINNED)
419                 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
420         else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
421                 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
422
423         return pin_flags;
424 }
425
426 static inline int
427 eb_pin_vma(struct i915_execbuffer *eb,
428            const struct drm_i915_gem_exec_object2 *entry,
429            struct eb_vma *ev)
430 {
431         struct i915_vma *vma = ev->vma;
432         u64 pin_flags;
433         int err;
434
435         if (vma->node.size)
436                 pin_flags = vma->node.start;
437         else
438                 pin_flags = entry->offset & PIN_OFFSET_MASK;
439
440         pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
441         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
442                 pin_flags |= PIN_GLOBAL;
443
444         /* Attempt to reuse the current location if available */
445         err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
446         if (err == -EDEADLK)
447                 return err;
448
449         if (unlikely(err)) {
450                 if (entry->flags & EXEC_OBJECT_PINNED)
451                         return err;
452
453                 /* Failing that pick any _free_ space if suitable */
454                 err = i915_vma_pin_ww(vma, &eb->ww,
455                                              entry->pad_to_size,
456                                              entry->alignment,
457                                              eb_pin_flags(entry, ev->flags) |
458                                              PIN_USER | PIN_NOEVICT);
459                 if (unlikely(err))
460                         return err;
461         }
462
463         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
464                 err = i915_vma_pin_fence(vma);
465                 if (unlikely(err)) {
466                         i915_vma_unpin(vma);
467                         return err;
468                 }
469
470                 if (vma->fence)
471                         ev->flags |= __EXEC_OBJECT_HAS_FENCE;
472         }
473
474         ev->flags |= __EXEC_OBJECT_HAS_PIN;
475         if (eb_vma_misplaced(entry, vma, ev->flags))
476                 return -EBADSLT;
477
478         return 0;
479 }
480
481 static inline void
482 eb_unreserve_vma(struct eb_vma *ev)
483 {
484         if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
485                 return;
486
487         if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
488                 __i915_vma_unpin_fence(ev->vma);
489
490         __i915_vma_unpin(ev->vma);
491         ev->flags &= ~__EXEC_OBJECT_RESERVED;
492 }
493
494 static int
495 eb_validate_vma(struct i915_execbuffer *eb,
496                 struct drm_i915_gem_exec_object2 *entry,
497                 struct i915_vma *vma)
498 {
499         /* Relocations are disallowed for all platforms after TGL-LP.  This
500          * also covers all platforms with local memory.
501          */
502         if (entry->relocation_count &&
503             GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
504                 return -EINVAL;
505
506         if (unlikely(entry->flags & eb->invalid_flags))
507                 return -EINVAL;
508
509         if (unlikely(entry->alignment &&
510                      !is_power_of_2_u64(entry->alignment)))
511                 return -EINVAL;
512
513         /*
514          * Offset can be used as input (EXEC_OBJECT_PINNED), reject
515          * any non-page-aligned or non-canonical addresses.
516          */
517         if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
518                      entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
519                 return -EINVAL;
520
521         /* pad_to_size was once a reserved field, so sanitize it */
522         if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
523                 if (unlikely(offset_in_page(entry->pad_to_size)))
524                         return -EINVAL;
525         } else {
526                 entry->pad_to_size = 0;
527         }
528         /*
529          * From drm_mm perspective address space is continuous,
530          * so from this point we're always using non-canonical
531          * form internally.
532          */
533         entry->offset = gen8_noncanonical_addr(entry->offset);
534
535         if (!eb->reloc_cache.has_fence) {
536                 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
537         } else {
538                 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
539                      eb->reloc_cache.needs_unfenced) &&
540                     i915_gem_object_is_tiled(vma->obj))
541                         entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
542         }
543
544         if (!(entry->flags & EXEC_OBJECT_PINNED))
545                 entry->flags |= eb->context_flags;
546
547         return 0;
548 }
549
550 static void
551 eb_add_vma(struct i915_execbuffer *eb,
552            unsigned int i, unsigned batch_idx,
553            struct i915_vma *vma)
554 {
555         struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
556         struct eb_vma *ev = &eb->vma[i];
557
558         ev->vma = vma;
559         ev->exec = entry;
560         ev->flags = entry->flags;
561
562         if (eb->lut_size > 0) {
563                 ev->handle = entry->handle;
564                 hlist_add_head(&ev->node,
565                                &eb->buckets[hash_32(entry->handle,
566                                                     eb->lut_size)]);
567         }
568
569         if (entry->relocation_count)
570                 list_add_tail(&ev->reloc_link, &eb->relocs);
571
572         /*
573          * SNA is doing fancy tricks with compressing batch buffers, which leads
574          * to negative relocation deltas. Usually that works out ok since the
575          * relocate address is still positive, except when the batch is placed
576          * very low in the GTT. Ensure this doesn't happen.
577          *
578          * Note that actual hangs have only been observed on gen7, but for
579          * paranoia do it everywhere.
580          */
581         if (i == batch_idx) {
582                 if (entry->relocation_count &&
583                     !(ev->flags & EXEC_OBJECT_PINNED))
584                         ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
585                 if (eb->reloc_cache.has_fence)
586                         ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
587
588                 eb->batch = ev;
589         }
590 }
591
592 static inline int use_cpu_reloc(const struct reloc_cache *cache,
593                                 const struct drm_i915_gem_object *obj)
594 {
595         if (!i915_gem_object_has_struct_page(obj))
596                 return false;
597
598         if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
599                 return true;
600
601         if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
602                 return false;
603
604         return (cache->has_llc ||
605                 obj->cache_dirty ||
606                 obj->cache_level != I915_CACHE_NONE);
607 }
608
609 static int eb_reserve_vma(struct i915_execbuffer *eb,
610                           struct eb_vma *ev,
611                           u64 pin_flags)
612 {
613         struct drm_i915_gem_exec_object2 *entry = ev->exec;
614         struct i915_vma *vma = ev->vma;
615         int err;
616
617         if (drm_mm_node_allocated(&vma->node) &&
618             eb_vma_misplaced(entry, vma, ev->flags)) {
619                 err = i915_vma_unbind(vma);
620                 if (err)
621                         return err;
622         }
623
624         err = i915_vma_pin_ww(vma, &eb->ww,
625                            entry->pad_to_size, entry->alignment,
626                            eb_pin_flags(entry, ev->flags) | pin_flags);
627         if (err)
628                 return err;
629
630         if (entry->offset != vma->node.start) {
631                 entry->offset = vma->node.start | UPDATE;
632                 eb->args->flags |= __EXEC_HAS_RELOC;
633         }
634
635         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
636                 err = i915_vma_pin_fence(vma);
637                 if (unlikely(err)) {
638                         i915_vma_unpin(vma);
639                         return err;
640                 }
641
642                 if (vma->fence)
643                         ev->flags |= __EXEC_OBJECT_HAS_FENCE;
644         }
645
646         ev->flags |= __EXEC_OBJECT_HAS_PIN;
647         GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
648
649         return 0;
650 }
651
652 static int eb_reserve(struct i915_execbuffer *eb)
653 {
654         const unsigned int count = eb->buffer_count;
655         unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
656         struct list_head last;
657         struct eb_vma *ev;
658         unsigned int i, pass;
659         int err = 0;
660
661         /*
662          * Attempt to pin all of the buffers into the GTT.
663          * This is done in 3 phases:
664          *
665          * 1a. Unbind all objects that do not match the GTT constraints for
666          *     the execbuffer (fenceable, mappable, alignment etc).
667          * 1b. Increment pin count for already bound objects.
668          * 2.  Bind new objects.
669          * 3.  Decrement pin count.
670          *
671          * This avoid unnecessary unbinding of later objects in order to make
672          * room for the earlier objects *unless* we need to defragment.
673          */
674         pass = 0;
675         do {
676                 list_for_each_entry(ev, &eb->unbound, bind_link) {
677                         err = eb_reserve_vma(eb, ev, pin_flags);
678                         if (err)
679                                 break;
680                 }
681                 if (err != -ENOSPC)
682                         return err;
683
684                 /* Resort *all* the objects into priority order */
685                 INIT_LIST_HEAD(&eb->unbound);
686                 INIT_LIST_HEAD(&last);
687                 for (i = 0; i < count; i++) {
688                         unsigned int flags;
689
690                         ev = &eb->vma[i];
691                         flags = ev->flags;
692                         if (flags & EXEC_OBJECT_PINNED &&
693                             flags & __EXEC_OBJECT_HAS_PIN)
694                                 continue;
695
696                         eb_unreserve_vma(ev);
697
698                         if (flags & EXEC_OBJECT_PINNED)
699                                 /* Pinned must have their slot */
700                                 list_add(&ev->bind_link, &eb->unbound);
701                         else if (flags & __EXEC_OBJECT_NEEDS_MAP)
702                                 /* Map require the lowest 256MiB (aperture) */
703                                 list_add_tail(&ev->bind_link, &eb->unbound);
704                         else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
705                                 /* Prioritise 4GiB region for restricted bo */
706                                 list_add(&ev->bind_link, &last);
707                         else
708                                 list_add_tail(&ev->bind_link, &last);
709                 }
710                 list_splice_tail(&last, &eb->unbound);
711
712                 switch (pass++) {
713                 case 0:
714                         break;
715
716                 case 1:
717                         /* Too fragmented, unbind everything and retry */
718                         mutex_lock(&eb->context->vm->mutex);
719                         err = i915_gem_evict_vm(eb->context->vm);
720                         mutex_unlock(&eb->context->vm->mutex);
721                         if (err)
722                                 return err;
723                         break;
724
725                 default:
726                         return -ENOSPC;
727                 }
728
729                 pin_flags = PIN_USER;
730         } while (1);
731 }
732
733 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
734 {
735         if (eb->args->flags & I915_EXEC_BATCH_FIRST)
736                 return 0;
737         else
738                 return eb->buffer_count - 1;
739 }
740
741 static int eb_select_context(struct i915_execbuffer *eb)
742 {
743         struct i915_gem_context *ctx;
744
745         ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
746         if (unlikely(!ctx))
747                 return -ENOENT;
748
749         eb->gem_context = ctx;
750         if (rcu_access_pointer(ctx->vm))
751                 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
752
753         eb->context_flags = 0;
754         if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
755                 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
756
757         return 0;
758 }
759
760 static int __eb_add_lut(struct i915_execbuffer *eb,
761                         u32 handle, struct i915_vma *vma)
762 {
763         struct i915_gem_context *ctx = eb->gem_context;
764         struct i915_lut_handle *lut;
765         int err;
766
767         lut = i915_lut_handle_alloc();
768         if (unlikely(!lut))
769                 return -ENOMEM;
770
771         i915_vma_get(vma);
772         if (!atomic_fetch_inc(&vma->open_count))
773                 i915_vma_reopen(vma);
774         lut->handle = handle;
775         lut->ctx = ctx;
776
777         /* Check that the context hasn't been closed in the meantime */
778         err = -EINTR;
779         if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
780                 struct i915_address_space *vm = rcu_access_pointer(ctx->vm);
781
782                 if (unlikely(vm && vma->vm != vm))
783                         err = -EAGAIN; /* user racing with ctx set-vm */
784                 else if (likely(!i915_gem_context_is_closed(ctx)))
785                         err = radix_tree_insert(&ctx->handles_vma, handle, vma);
786                 else
787                         err = -ENOENT;
788                 if (err == 0) { /* And nor has this handle */
789                         struct drm_i915_gem_object *obj = vma->obj;
790
791                         spin_lock(&obj->lut_lock);
792                         if (idr_find(&eb->file->object_idr, handle) == obj) {
793                                 list_add(&lut->obj_link, &obj->lut_list);
794                         } else {
795                                 radix_tree_delete(&ctx->handles_vma, handle);
796                                 err = -ENOENT;
797                         }
798                         spin_unlock(&obj->lut_lock);
799                 }
800                 mutex_unlock(&ctx->lut_mutex);
801         }
802         if (unlikely(err))
803                 goto err;
804
805         return 0;
806
807 err:
808         i915_vma_close(vma);
809         i915_vma_put(vma);
810         i915_lut_handle_free(lut);
811         return err;
812 }
813
814 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
815 {
816         struct i915_address_space *vm = eb->context->vm;
817
818         do {
819                 struct drm_i915_gem_object *obj;
820                 struct i915_vma *vma;
821                 int err;
822
823                 rcu_read_lock();
824                 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
825                 if (likely(vma && vma->vm == vm))
826                         vma = i915_vma_tryget(vma);
827                 rcu_read_unlock();
828                 if (likely(vma))
829                         return vma;
830
831                 obj = i915_gem_object_lookup(eb->file, handle);
832                 if (unlikely(!obj))
833                         return ERR_PTR(-ENOENT);
834
835                 vma = i915_vma_instance(obj, vm, NULL);
836                 if (IS_ERR(vma)) {
837                         i915_gem_object_put(obj);
838                         return vma;
839                 }
840
841                 err = __eb_add_lut(eb, handle, vma);
842                 if (likely(!err))
843                         return vma;
844
845                 i915_gem_object_put(obj);
846                 if (err != -EEXIST)
847                         return ERR_PTR(err);
848         } while (1);
849 }
850
851 static int eb_lookup_vmas(struct i915_execbuffer *eb)
852 {
853         struct drm_i915_private *i915 = eb->i915;
854         unsigned int batch = eb_batch_index(eb);
855         unsigned int i;
856         int err = 0;
857
858         INIT_LIST_HEAD(&eb->relocs);
859
860         for (i = 0; i < eb->buffer_count; i++) {
861                 struct i915_vma *vma;
862
863                 vma = eb_lookup_vma(eb, eb->exec[i].handle);
864                 if (IS_ERR(vma)) {
865                         err = PTR_ERR(vma);
866                         goto err;
867                 }
868
869                 err = eb_validate_vma(eb, &eb->exec[i], vma);
870                 if (unlikely(err)) {
871                         i915_vma_put(vma);
872                         goto err;
873                 }
874
875                 eb_add_vma(eb, i, batch, vma);
876
877                 if (i915_gem_object_is_userptr(vma->obj)) {
878                         err = i915_gem_object_userptr_submit_init(vma->obj);
879                         if (err) {
880                                 if (i + 1 < eb->buffer_count) {
881                                         /*
882                                          * Execbuffer code expects last vma entry to be NULL,
883                                          * since we already initialized this entry,
884                                          * set the next value to NULL or we mess up
885                                          * cleanup handling.
886                                          */
887                                         eb->vma[i + 1].vma = NULL;
888                                 }
889
890                                 return err;
891                         }
892
893                         eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
894                         eb->args->flags |= __EXEC_USERPTR_USED;
895                 }
896         }
897
898         if (unlikely(eb->batch->flags & EXEC_OBJECT_WRITE)) {
899                 drm_dbg(&i915->drm,
900                         "Attempting to use self-modifying batch buffer\n");
901                 return -EINVAL;
902         }
903
904         if (range_overflows_t(u64,
905                               eb->batch_start_offset, eb->batch_len,
906                               eb->batch->vma->size)) {
907                 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
908                 return -EINVAL;
909         }
910
911         if (eb->batch_len == 0)
912                 eb->batch_len = eb->batch->vma->size - eb->batch_start_offset;
913         if (unlikely(eb->batch_len == 0)) { /* impossible! */
914                 drm_dbg(&i915->drm, "Invalid batch length\n");
915                 return -EINVAL;
916         }
917
918         return 0;
919
920 err:
921         eb->vma[i].vma = NULL;
922         return err;
923 }
924
925 static int eb_lock_vmas(struct i915_execbuffer *eb)
926 {
927         unsigned int i;
928         int err;
929
930         for (i = 0; i < eb->buffer_count; i++) {
931                 struct eb_vma *ev = &eb->vma[i];
932                 struct i915_vma *vma = ev->vma;
933
934                 err = i915_gem_object_lock(vma->obj, &eb->ww);
935                 if (err)
936                         return err;
937         }
938
939         return 0;
940 }
941
942 static int eb_validate_vmas(struct i915_execbuffer *eb)
943 {
944         unsigned int i;
945         int err;
946
947         INIT_LIST_HEAD(&eb->unbound);
948
949         err = eb_lock_vmas(eb);
950         if (err)
951                 return err;
952
953         for (i = 0; i < eb->buffer_count; i++) {
954                 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
955                 struct eb_vma *ev = &eb->vma[i];
956                 struct i915_vma *vma = ev->vma;
957
958                 err = eb_pin_vma(eb, entry, ev);
959                 if (err == -EDEADLK)
960                         return err;
961
962                 if (!err) {
963                         if (entry->offset != vma->node.start) {
964                                 entry->offset = vma->node.start | UPDATE;
965                                 eb->args->flags |= __EXEC_HAS_RELOC;
966                         }
967                 } else {
968                         eb_unreserve_vma(ev);
969
970                         list_add_tail(&ev->bind_link, &eb->unbound);
971                         if (drm_mm_node_allocated(&vma->node)) {
972                                 err = i915_vma_unbind(vma);
973                                 if (err)
974                                         return err;
975                         }
976                 }
977
978                 if (!(ev->flags & EXEC_OBJECT_WRITE)) {
979                         err = dma_resv_reserve_shared(vma->resv, 1);
980                         if (err)
981                                 return err;
982                 }
983
984                 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
985                            eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
986         }
987
988         if (!list_empty(&eb->unbound))
989                 return eb_reserve(eb);
990
991         return 0;
992 }
993
994 static struct eb_vma *
995 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
996 {
997         if (eb->lut_size < 0) {
998                 if (handle >= -eb->lut_size)
999                         return NULL;
1000                 return &eb->vma[handle];
1001         } else {
1002                 struct hlist_head *head;
1003                 struct eb_vma *ev;
1004
1005                 head = &eb->buckets[hash_32(handle, eb->lut_size)];
1006                 hlist_for_each_entry(ev, head, node) {
1007                         if (ev->handle == handle)
1008                                 return ev;
1009                 }
1010                 return NULL;
1011         }
1012 }
1013
1014 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1015 {
1016         const unsigned int count = eb->buffer_count;
1017         unsigned int i;
1018
1019         for (i = 0; i < count; i++) {
1020                 struct eb_vma *ev = &eb->vma[i];
1021                 struct i915_vma *vma = ev->vma;
1022
1023                 if (!vma)
1024                         break;
1025
1026                 eb_unreserve_vma(ev);
1027
1028                 if (final)
1029                         i915_vma_put(vma);
1030         }
1031
1032         eb_unpin_engine(eb);
1033 }
1034
1035 static void eb_destroy(const struct i915_execbuffer *eb)
1036 {
1037         GEM_BUG_ON(eb->reloc_cache.rq);
1038
1039         if (eb->lut_size > 0)
1040                 kfree(eb->buckets);
1041 }
1042
1043 static inline u64
1044 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1045                   const struct i915_vma *target)
1046 {
1047         return gen8_canonical_addr((int)reloc->delta + target->node.start);
1048 }
1049
1050 static void reloc_cache_clear(struct reloc_cache *cache)
1051 {
1052         cache->rq = NULL;
1053         cache->rq_cmd = NULL;
1054         cache->pool = NULL;
1055         cache->rq_size = 0;
1056 }
1057
1058 static void reloc_cache_init(struct reloc_cache *cache,
1059                              struct drm_i915_private *i915)
1060 {
1061         cache->page = -1;
1062         cache->vaddr = 0;
1063         /* Must be a variable in the struct to allow GCC to unroll. */
1064         cache->graphics_ver = GRAPHICS_VER(i915);
1065         cache->has_llc = HAS_LLC(i915);
1066         cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1067         cache->has_fence = cache->graphics_ver < 4;
1068         cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1069         cache->node.flags = 0;
1070         reloc_cache_clear(cache);
1071 }
1072
1073 static inline void *unmask_page(unsigned long p)
1074 {
1075         return (void *)(uintptr_t)(p & PAGE_MASK);
1076 }
1077
1078 static inline unsigned int unmask_flags(unsigned long p)
1079 {
1080         return p & ~PAGE_MASK;
1081 }
1082
1083 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1084
1085 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1086 {
1087         struct drm_i915_private *i915 =
1088                 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1089         return &i915->ggtt;
1090 }
1091
1092 static void reloc_cache_put_pool(struct i915_execbuffer *eb, struct reloc_cache *cache)
1093 {
1094         if (!cache->pool)
1095                 return;
1096
1097         /*
1098          * This is a bit nasty, normally we keep objects locked until the end
1099          * of execbuffer, but we already submit this, and have to unlock before
1100          * dropping the reference. Fortunately we can only hold 1 pool node at
1101          * a time, so this should be harmless.
1102          */
1103         i915_gem_ww_unlock_single(cache->pool->obj);
1104         intel_gt_buffer_pool_put(cache->pool);
1105         cache->pool = NULL;
1106 }
1107
1108 static void reloc_gpu_flush(struct i915_execbuffer *eb, struct reloc_cache *cache)
1109 {
1110         struct drm_i915_gem_object *obj = cache->rq->batch->obj;
1111
1112         GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
1113         cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
1114
1115         i915_gem_object_flush_map(obj);
1116         i915_gem_object_unpin_map(obj);
1117
1118         intel_gt_chipset_flush(cache->rq->engine->gt);
1119
1120         i915_request_add(cache->rq);
1121         reloc_cache_put_pool(eb, cache);
1122         reloc_cache_clear(cache);
1123
1124         eb->reloc_pool = NULL;
1125 }
1126
1127 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1128 {
1129         void *vaddr;
1130
1131         if (cache->rq)
1132                 reloc_gpu_flush(eb, cache);
1133
1134         if (!cache->vaddr)
1135                 return;
1136
1137         vaddr = unmask_page(cache->vaddr);
1138         if (cache->vaddr & KMAP) {
1139                 struct drm_i915_gem_object *obj =
1140                         (struct drm_i915_gem_object *)cache->node.mm;
1141                 if (cache->vaddr & CLFLUSH_AFTER)
1142                         mb();
1143
1144                 kunmap_atomic(vaddr);
1145                 i915_gem_object_finish_access(obj);
1146         } else {
1147                 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1148
1149                 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1150                 io_mapping_unmap_atomic((void __iomem *)vaddr);
1151
1152                 if (drm_mm_node_allocated(&cache->node)) {
1153                         ggtt->vm.clear_range(&ggtt->vm,
1154                                              cache->node.start,
1155                                              cache->node.size);
1156                         mutex_lock(&ggtt->vm.mutex);
1157                         drm_mm_remove_node(&cache->node);
1158                         mutex_unlock(&ggtt->vm.mutex);
1159                 } else {
1160                         i915_vma_unpin((struct i915_vma *)cache->node.mm);
1161                 }
1162         }
1163
1164         cache->vaddr = 0;
1165         cache->page = -1;
1166 }
1167
1168 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1169                         struct reloc_cache *cache,
1170                         unsigned long pageno)
1171 {
1172         void *vaddr;
1173         struct page *page;
1174
1175         if (cache->vaddr) {
1176                 kunmap_atomic(unmask_page(cache->vaddr));
1177         } else {
1178                 unsigned int flushes;
1179                 int err;
1180
1181                 err = i915_gem_object_prepare_write(obj, &flushes);
1182                 if (err)
1183                         return ERR_PTR(err);
1184
1185                 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1186                 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1187
1188                 cache->vaddr = flushes | KMAP;
1189                 cache->node.mm = (void *)obj;
1190                 if (flushes)
1191                         mb();
1192         }
1193
1194         page = i915_gem_object_get_page(obj, pageno);
1195         if (!obj->mm.dirty)
1196                 set_page_dirty(page);
1197
1198         vaddr = kmap_atomic(page);
1199         cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1200         cache->page = pageno;
1201
1202         return vaddr;
1203 }
1204
1205 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1206                          struct i915_execbuffer *eb,
1207                          unsigned long page)
1208 {
1209         struct reloc_cache *cache = &eb->reloc_cache;
1210         struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1211         unsigned long offset;
1212         void *vaddr;
1213
1214         if (cache->vaddr) {
1215                 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1216                 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1217         } else {
1218                 struct i915_vma *vma;
1219                 int err;
1220
1221                 if (i915_gem_object_is_tiled(obj))
1222                         return ERR_PTR(-EINVAL);
1223
1224                 if (use_cpu_reloc(cache, obj))
1225                         return NULL;
1226
1227                 err = i915_gem_object_set_to_gtt_domain(obj, true);
1228                 if (err)
1229                         return ERR_PTR(err);
1230
1231                 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1232                                                   PIN_MAPPABLE |
1233                                                   PIN_NONBLOCK /* NOWARN */ |
1234                                                   PIN_NOEVICT);
1235                 if (vma == ERR_PTR(-EDEADLK))
1236                         return vma;
1237
1238                 if (IS_ERR(vma)) {
1239                         memset(&cache->node, 0, sizeof(cache->node));
1240                         mutex_lock(&ggtt->vm.mutex);
1241                         err = drm_mm_insert_node_in_range
1242                                 (&ggtt->vm.mm, &cache->node,
1243                                  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1244                                  0, ggtt->mappable_end,
1245                                  DRM_MM_INSERT_LOW);
1246                         mutex_unlock(&ggtt->vm.mutex);
1247                         if (err) /* no inactive aperture space, use cpu reloc */
1248                                 return NULL;
1249                 } else {
1250                         cache->node.start = vma->node.start;
1251                         cache->node.mm = (void *)vma;
1252                 }
1253         }
1254
1255         offset = cache->node.start;
1256         if (drm_mm_node_allocated(&cache->node)) {
1257                 ggtt->vm.insert_page(&ggtt->vm,
1258                                      i915_gem_object_get_dma_address(obj, page),
1259                                      offset, I915_CACHE_NONE, 0);
1260         } else {
1261                 offset += page << PAGE_SHIFT;
1262         }
1263
1264         vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1265                                                          offset);
1266         cache->page = page;
1267         cache->vaddr = (unsigned long)vaddr;
1268
1269         return vaddr;
1270 }
1271
1272 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1273                          struct i915_execbuffer *eb,
1274                          unsigned long page)
1275 {
1276         struct reloc_cache *cache = &eb->reloc_cache;
1277         void *vaddr;
1278
1279         if (cache->page == page) {
1280                 vaddr = unmask_page(cache->vaddr);
1281         } else {
1282                 vaddr = NULL;
1283                 if ((cache->vaddr & KMAP) == 0)
1284                         vaddr = reloc_iomap(obj, eb, page);
1285                 if (!vaddr)
1286                         vaddr = reloc_kmap(obj, cache, page);
1287         }
1288
1289         return vaddr;
1290 }
1291
1292 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1293 {
1294         if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1295                 if (flushes & CLFLUSH_BEFORE) {
1296                         clflushopt(addr);
1297                         mb();
1298                 }
1299
1300                 *addr = value;
1301
1302                 /*
1303                  * Writes to the same cacheline are serialised by the CPU
1304                  * (including clflush). On the write path, we only require
1305                  * that it hits memory in an orderly fashion and place
1306                  * mb barriers at the start and end of the relocation phase
1307                  * to ensure ordering of clflush wrt to the system.
1308                  */
1309                 if (flushes & CLFLUSH_AFTER)
1310                         clflushopt(addr);
1311         } else
1312                 *addr = value;
1313 }
1314
1315 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1316 {
1317         struct drm_i915_gem_object *obj = vma->obj;
1318         int err;
1319
1320         assert_vma_held(vma);
1321
1322         if (obj->cache_dirty & ~obj->cache_coherent)
1323                 i915_gem_clflush_object(obj, 0);
1324         obj->write_domain = 0;
1325
1326         err = i915_request_await_object(rq, vma->obj, true);
1327         if (err == 0)
1328                 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1329
1330         return err;
1331 }
1332
1333 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1334                              struct intel_engine_cs *engine,
1335                              struct i915_vma *vma,
1336                              unsigned int len)
1337 {
1338         struct reloc_cache *cache = &eb->reloc_cache;
1339         struct intel_gt_buffer_pool_node *pool = eb->reloc_pool;
1340         struct i915_request *rq;
1341         struct i915_vma *batch;
1342         u32 *cmd;
1343         int err;
1344
1345         if (!pool) {
1346                 pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE,
1347                                                 cache->has_llc ?
1348                                                 I915_MAP_WB :
1349                                                 I915_MAP_WC);
1350                 if (IS_ERR(pool))
1351                         return PTR_ERR(pool);
1352         }
1353         eb->reloc_pool = NULL;
1354
1355         err = i915_gem_object_lock(pool->obj, &eb->ww);
1356         if (err)
1357                 goto err_pool;
1358
1359         cmd = i915_gem_object_pin_map(pool->obj, pool->type);
1360         if (IS_ERR(cmd)) {
1361                 err = PTR_ERR(cmd);
1362                 goto err_pool;
1363         }
1364         intel_gt_buffer_pool_mark_used(pool);
1365
1366         memset32(cmd, 0, pool->obj->base.size / sizeof(u32));
1367
1368         batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1369         if (IS_ERR(batch)) {
1370                 err = PTR_ERR(batch);
1371                 goto err_unmap;
1372         }
1373
1374         err = i915_vma_pin_ww(batch, &eb->ww, 0, 0, PIN_USER | PIN_NONBLOCK);
1375         if (err)
1376                 goto err_unmap;
1377
1378         if (engine == eb->context->engine) {
1379                 rq = i915_request_create(eb->context);
1380         } else {
1381                 struct intel_context *ce = eb->reloc_context;
1382
1383                 if (!ce) {
1384                         ce = intel_context_create(engine);
1385                         if (IS_ERR(ce)) {
1386                                 err = PTR_ERR(ce);
1387                                 goto err_unpin;
1388                         }
1389
1390                         i915_vm_put(ce->vm);
1391                         ce->vm = i915_vm_get(eb->context->vm);
1392                         eb->reloc_context = ce;
1393                 }
1394
1395                 err = intel_context_pin_ww(ce, &eb->ww);
1396                 if (err)
1397                         goto err_unpin;
1398
1399                 rq = i915_request_create(ce);
1400                 intel_context_unpin(ce);
1401         }
1402         if (IS_ERR(rq)) {
1403                 err = PTR_ERR(rq);
1404                 goto err_unpin;
1405         }
1406
1407         err = intel_gt_buffer_pool_mark_active(pool, rq);
1408         if (err)
1409                 goto err_request;
1410
1411         err = reloc_move_to_gpu(rq, vma);
1412         if (err)
1413                 goto err_request;
1414
1415         err = eb->engine->emit_bb_start(rq,
1416                                         batch->node.start, PAGE_SIZE,
1417                                         cache->graphics_ver > 5 ? 0 : I915_DISPATCH_SECURE);
1418         if (err)
1419                 goto skip_request;
1420
1421         assert_vma_held(batch);
1422         err = i915_request_await_object(rq, batch->obj, false);
1423         if (err == 0)
1424                 err = i915_vma_move_to_active(batch, rq, 0);
1425         if (err)
1426                 goto skip_request;
1427
1428         rq->batch = batch;
1429         i915_vma_unpin(batch);
1430
1431         cache->rq = rq;
1432         cache->rq_cmd = cmd;
1433         cache->rq_size = 0;
1434         cache->pool = pool;
1435
1436         /* Return with batch mapping (cmd) still pinned */
1437         return 0;
1438
1439 skip_request:
1440         i915_request_set_error_once(rq, err);
1441 err_request:
1442         i915_request_add(rq);
1443 err_unpin:
1444         i915_vma_unpin(batch);
1445 err_unmap:
1446         i915_gem_object_unpin_map(pool->obj);
1447 err_pool:
1448         eb->reloc_pool = pool;
1449         return err;
1450 }
1451
1452 static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
1453 {
1454         return engine->class != VIDEO_DECODE_CLASS || GRAPHICS_VER(engine->i915) != 6;
1455 }
1456
1457 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1458                       struct i915_vma *vma,
1459                       unsigned int len)
1460 {
1461         struct reloc_cache *cache = &eb->reloc_cache;
1462         u32 *cmd;
1463
1464         if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1465                 reloc_gpu_flush(eb, cache);
1466
1467         if (unlikely(!cache->rq)) {
1468                 int err;
1469                 struct intel_engine_cs *engine = eb->engine;
1470
1471                 if (!reloc_can_use_engine(engine)) {
1472                         engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
1473                         if (!engine)
1474                                 return ERR_PTR(-ENODEV);
1475                 }
1476
1477                 err = __reloc_gpu_alloc(eb, engine, vma, len);
1478                 if (unlikely(err))
1479                         return ERR_PTR(err);
1480         }
1481
1482         cmd = cache->rq_cmd + cache->rq_size;
1483         cache->rq_size += len;
1484
1485         return cmd;
1486 }
1487
1488 static inline bool use_reloc_gpu(struct i915_vma *vma)
1489 {
1490         if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
1491                 return true;
1492
1493         if (DBG_FORCE_RELOC)
1494                 return false;
1495
1496         return !dma_resv_test_signaled(vma->resv, true);
1497 }
1498
1499 static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
1500 {
1501         struct page *page;
1502         unsigned long addr;
1503
1504         GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
1505
1506         page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
1507         addr = PFN_PHYS(page_to_pfn(page));
1508         GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
1509
1510         return addr + offset_in_page(offset);
1511 }
1512
1513 static int __reloc_entry_gpu(struct i915_execbuffer *eb,
1514                               struct i915_vma *vma,
1515                               u64 offset,
1516                               u64 target_addr)
1517 {
1518         const unsigned int ver = eb->reloc_cache.graphics_ver;
1519         unsigned int len;
1520         u32 *batch;
1521         u64 addr;
1522
1523         if (ver >= 8)
1524                 len = offset & 7 ? 8 : 5;
1525         else if (ver >= 4)
1526                 len = 4;
1527         else
1528                 len = 3;
1529
1530         batch = reloc_gpu(eb, vma, len);
1531         if (batch == ERR_PTR(-EDEADLK))
1532                 return -EDEADLK;
1533         else if (IS_ERR(batch))
1534                 return false;
1535
1536         addr = gen8_canonical_addr(vma->node.start + offset);
1537         if (ver >= 8) {
1538                 if (offset & 7) {
1539                         *batch++ = MI_STORE_DWORD_IMM_GEN4;
1540                         *batch++ = lower_32_bits(addr);
1541                         *batch++ = upper_32_bits(addr);
1542                         *batch++ = lower_32_bits(target_addr);
1543
1544                         addr = gen8_canonical_addr(addr + 4);
1545
1546                         *batch++ = MI_STORE_DWORD_IMM_GEN4;
1547                         *batch++ = lower_32_bits(addr);
1548                         *batch++ = upper_32_bits(addr);
1549                         *batch++ = upper_32_bits(target_addr);
1550                 } else {
1551                         *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1552                         *batch++ = lower_32_bits(addr);
1553                         *batch++ = upper_32_bits(addr);
1554                         *batch++ = lower_32_bits(target_addr);
1555                         *batch++ = upper_32_bits(target_addr);
1556                 }
1557         } else if (ver >= 6) {
1558                 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1559                 *batch++ = 0;
1560                 *batch++ = addr;
1561                 *batch++ = target_addr;
1562         } else if (IS_I965G(eb->i915)) {
1563                 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1564                 *batch++ = 0;
1565                 *batch++ = vma_phys_addr(vma, offset);
1566                 *batch++ = target_addr;
1567         } else if (ver >= 4) {
1568                 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1569                 *batch++ = 0;
1570                 *batch++ = addr;
1571                 *batch++ = target_addr;
1572         } else if (ver >= 3 &&
1573                    !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
1574                 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1575                 *batch++ = addr;
1576                 *batch++ = target_addr;
1577         } else {
1578                 *batch++ = MI_STORE_DWORD_IMM;
1579                 *batch++ = vma_phys_addr(vma, offset);
1580                 *batch++ = target_addr;
1581         }
1582
1583         return true;
1584 }
1585
1586 static int reloc_entry_gpu(struct i915_execbuffer *eb,
1587                             struct i915_vma *vma,
1588                             u64 offset,
1589                             u64 target_addr)
1590 {
1591         if (eb->reloc_cache.vaddr)
1592                 return false;
1593
1594         if (!use_reloc_gpu(vma))
1595                 return false;
1596
1597         return __reloc_entry_gpu(eb, vma, offset, target_addr);
1598 }
1599
1600 static u64
1601 relocate_entry(struct i915_vma *vma,
1602                const struct drm_i915_gem_relocation_entry *reloc,
1603                struct i915_execbuffer *eb,
1604                const struct i915_vma *target)
1605 {
1606         u64 target_addr = relocation_target(reloc, target);
1607         u64 offset = reloc->offset;
1608         int reloc_gpu = reloc_entry_gpu(eb, vma, offset, target_addr);
1609
1610         if (reloc_gpu < 0)
1611                 return reloc_gpu;
1612
1613         if (!reloc_gpu) {
1614                 bool wide = eb->reloc_cache.use_64bit_reloc;
1615                 void *vaddr;
1616
1617 repeat:
1618                 vaddr = reloc_vaddr(vma->obj, eb,
1619                                     offset >> PAGE_SHIFT);
1620                 if (IS_ERR(vaddr))
1621                         return PTR_ERR(vaddr);
1622
1623                 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1624                 clflush_write32(vaddr + offset_in_page(offset),
1625                                 lower_32_bits(target_addr),
1626                                 eb->reloc_cache.vaddr);
1627
1628                 if (wide) {
1629                         offset += sizeof(u32);
1630                         target_addr >>= 32;
1631                         wide = false;
1632                         goto repeat;
1633                 }
1634         }
1635
1636         return target->node.start | UPDATE;
1637 }
1638
1639 static u64
1640 eb_relocate_entry(struct i915_execbuffer *eb,
1641                   struct eb_vma *ev,
1642                   const struct drm_i915_gem_relocation_entry *reloc)
1643 {
1644         struct drm_i915_private *i915 = eb->i915;
1645         struct eb_vma *target;
1646         int err;
1647
1648         /* we've already hold a reference to all valid objects */
1649         target = eb_get_vma(eb, reloc->target_handle);
1650         if (unlikely(!target))
1651                 return -ENOENT;
1652
1653         /* Validate that the target is in a valid r/w GPU domain */
1654         if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1655                 drm_dbg(&i915->drm, "reloc with multiple write domains: "
1656                           "target %d offset %d "
1657                           "read %08x write %08x",
1658                           reloc->target_handle,
1659                           (int) reloc->offset,
1660                           reloc->read_domains,
1661                           reloc->write_domain);
1662                 return -EINVAL;
1663         }
1664         if (unlikely((reloc->write_domain | reloc->read_domains)
1665                      & ~I915_GEM_GPU_DOMAINS)) {
1666                 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1667                           "target %d offset %d "
1668                           "read %08x write %08x",
1669                           reloc->target_handle,
1670                           (int) reloc->offset,
1671                           reloc->read_domains,
1672                           reloc->write_domain);
1673                 return -EINVAL;
1674         }
1675
1676         if (reloc->write_domain) {
1677                 target->flags |= EXEC_OBJECT_WRITE;
1678
1679                 /*
1680                  * Sandybridge PPGTT errata: We need a global gtt mapping
1681                  * for MI and pipe_control writes because the gpu doesn't
1682                  * properly redirect them through the ppgtt for non_secure
1683                  * batchbuffers.
1684                  */
1685                 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1686                     GRAPHICS_VER(eb->i915) == 6) {
1687                         err = i915_vma_bind(target->vma,
1688                                             target->vma->obj->cache_level,
1689                                             PIN_GLOBAL, NULL);
1690                         if (err)
1691                                 return err;
1692                 }
1693         }
1694
1695         /*
1696          * If the relocation already has the right value in it, no
1697          * more work needs to be done.
1698          */
1699         if (!DBG_FORCE_RELOC &&
1700             gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1701                 return 0;
1702
1703         /* Check that the relocation address is valid... */
1704         if (unlikely(reloc->offset >
1705                      ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1706                 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1707                           "target %d offset %d size %d.\n",
1708                           reloc->target_handle,
1709                           (int)reloc->offset,
1710                           (int)ev->vma->size);
1711                 return -EINVAL;
1712         }
1713         if (unlikely(reloc->offset & 3)) {
1714                 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1715                           "target %d offset %d.\n",
1716                           reloc->target_handle,
1717                           (int)reloc->offset);
1718                 return -EINVAL;
1719         }
1720
1721         /*
1722          * If we write into the object, we need to force the synchronisation
1723          * barrier, either with an asynchronous clflush or if we executed the
1724          * patching using the GPU (though that should be serialised by the
1725          * timeline). To be completely sure, and since we are required to
1726          * do relocations we are already stalling, disable the user's opt
1727          * out of our synchronisation.
1728          */
1729         ev->flags &= ~EXEC_OBJECT_ASYNC;
1730
1731         /* and update the user's relocation entry */
1732         return relocate_entry(ev->vma, reloc, eb, target->vma);
1733 }
1734
1735 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1736 {
1737 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1738         struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1739         const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1740         struct drm_i915_gem_relocation_entry __user *urelocs =
1741                 u64_to_user_ptr(entry->relocs_ptr);
1742         unsigned long remain = entry->relocation_count;
1743
1744         if (unlikely(remain > N_RELOC(ULONG_MAX)))
1745                 return -EINVAL;
1746
1747         /*
1748          * We must check that the entire relocation array is safe
1749          * to read. However, if the array is not writable the user loses
1750          * the updated relocation values.
1751          */
1752         if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1753                 return -EFAULT;
1754
1755         do {
1756                 struct drm_i915_gem_relocation_entry *r = stack;
1757                 unsigned int count =
1758                         min_t(unsigned long, remain, ARRAY_SIZE(stack));
1759                 unsigned int copied;
1760
1761                 /*
1762                  * This is the fast path and we cannot handle a pagefault
1763                  * whilst holding the struct mutex lest the user pass in the
1764                  * relocations contained within a mmaped bo. For in such a case
1765                  * we, the page fault handler would call i915_gem_fault() and
1766                  * we would try to acquire the struct mutex again. Obviously
1767                  * this is bad and so lockdep complains vehemently.
1768                  */
1769                 pagefault_disable();
1770                 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1771                 pagefault_enable();
1772                 if (unlikely(copied)) {
1773                         remain = -EFAULT;
1774                         goto out;
1775                 }
1776
1777                 remain -= count;
1778                 do {
1779                         u64 offset = eb_relocate_entry(eb, ev, r);
1780
1781                         if (likely(offset == 0)) {
1782                         } else if ((s64)offset < 0) {
1783                                 remain = (int)offset;
1784                                 goto out;
1785                         } else {
1786                                 /*
1787                                  * Note that reporting an error now
1788                                  * leaves everything in an inconsistent
1789                                  * state as we have *already* changed
1790                                  * the relocation value inside the
1791                                  * object. As we have not changed the
1792                                  * reloc.presumed_offset or will not
1793                                  * change the execobject.offset, on the
1794                                  * call we may not rewrite the value
1795                                  * inside the object, leaving it
1796                                  * dangling and causing a GPU hang. Unless
1797                                  * userspace dynamically rebuilds the
1798                                  * relocations on each execbuf rather than
1799                                  * presume a static tree.
1800                                  *
1801                                  * We did previously check if the relocations
1802                                  * were writable (access_ok), an error now
1803                                  * would be a strange race with mprotect,
1804                                  * having already demonstrated that we
1805                                  * can read from this userspace address.
1806                                  */
1807                                 offset = gen8_canonical_addr(offset & ~UPDATE);
1808                                 __put_user(offset,
1809                                            &urelocs[r - stack].presumed_offset);
1810                         }
1811                 } while (r++, --count);
1812                 urelocs += ARRAY_SIZE(stack);
1813         } while (remain);
1814 out:
1815         reloc_cache_reset(&eb->reloc_cache, eb);
1816         return remain;
1817 }
1818
1819 static int
1820 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1821 {
1822         const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1823         struct drm_i915_gem_relocation_entry *relocs =
1824                 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1825         unsigned int i;
1826         int err;
1827
1828         for (i = 0; i < entry->relocation_count; i++) {
1829                 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1830
1831                 if ((s64)offset < 0) {
1832                         err = (int)offset;
1833                         goto err;
1834                 }
1835         }
1836         err = 0;
1837 err:
1838         reloc_cache_reset(&eb->reloc_cache, eb);
1839         return err;
1840 }
1841
1842 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1843 {
1844         const char __user *addr, *end;
1845         unsigned long size;
1846         char __maybe_unused c;
1847
1848         size = entry->relocation_count;
1849         if (size == 0)
1850                 return 0;
1851
1852         if (size > N_RELOC(ULONG_MAX))
1853                 return -EINVAL;
1854
1855         addr = u64_to_user_ptr(entry->relocs_ptr);
1856         size *= sizeof(struct drm_i915_gem_relocation_entry);
1857         if (!access_ok(addr, size))
1858                 return -EFAULT;
1859
1860         end = addr + size;
1861         for (; addr < end; addr += PAGE_SIZE) {
1862                 int err = __get_user(c, addr);
1863                 if (err)
1864                         return err;
1865         }
1866         return __get_user(c, end - 1);
1867 }
1868
1869 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1870 {
1871         struct drm_i915_gem_relocation_entry *relocs;
1872         const unsigned int count = eb->buffer_count;
1873         unsigned int i;
1874         int err;
1875
1876         for (i = 0; i < count; i++) {
1877                 const unsigned int nreloc = eb->exec[i].relocation_count;
1878                 struct drm_i915_gem_relocation_entry __user *urelocs;
1879                 unsigned long size;
1880                 unsigned long copied;
1881
1882                 if (nreloc == 0)
1883                         continue;
1884
1885                 err = check_relocations(&eb->exec[i]);
1886                 if (err)
1887                         goto err;
1888
1889                 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1890                 size = nreloc * sizeof(*relocs);
1891
1892                 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1893                 if (!relocs) {
1894                         err = -ENOMEM;
1895                         goto err;
1896                 }
1897
1898                 /* copy_from_user is limited to < 4GiB */
1899                 copied = 0;
1900                 do {
1901                         unsigned int len =
1902                                 min_t(u64, BIT_ULL(31), size - copied);
1903
1904                         if (__copy_from_user((char *)relocs + copied,
1905                                              (char __user *)urelocs + copied,
1906                                              len))
1907                                 goto end;
1908
1909                         copied += len;
1910                 } while (copied < size);
1911
1912                 /*
1913                  * As we do not update the known relocation offsets after
1914                  * relocating (due to the complexities in lock handling),
1915                  * we need to mark them as invalid now so that we force the
1916                  * relocation processing next time. Just in case the target
1917                  * object is evicted and then rebound into its old
1918                  * presumed_offset before the next execbuffer - if that
1919                  * happened we would make the mistake of assuming that the
1920                  * relocations were valid.
1921                  */
1922                 if (!user_access_begin(urelocs, size))
1923                         goto end;
1924
1925                 for (copied = 0; copied < nreloc; copied++)
1926                         unsafe_put_user(-1,
1927                                         &urelocs[copied].presumed_offset,
1928                                         end_user);
1929                 user_access_end();
1930
1931                 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1932         }
1933
1934         return 0;
1935
1936 end_user:
1937         user_access_end();
1938 end:
1939         kvfree(relocs);
1940         err = -EFAULT;
1941 err:
1942         while (i--) {
1943                 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1944                 if (eb->exec[i].relocation_count)
1945                         kvfree(relocs);
1946         }
1947         return err;
1948 }
1949
1950 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1951 {
1952         const unsigned int count = eb->buffer_count;
1953         unsigned int i;
1954
1955         for (i = 0; i < count; i++) {
1956                 int err;
1957
1958                 err = check_relocations(&eb->exec[i]);
1959                 if (err)
1960                         return err;
1961         }
1962
1963         return 0;
1964 }
1965
1966 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1967 {
1968         const unsigned int count = eb->buffer_count;
1969         unsigned int i;
1970         int ret;
1971
1972         if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1973                 return 0;
1974
1975         for (i = 0; i < count; i++) {
1976                 struct eb_vma *ev = &eb->vma[i];
1977
1978                 if (!i915_gem_object_is_userptr(ev->vma->obj))
1979                         continue;
1980
1981                 ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1982                 if (ret)
1983                         return ret;
1984
1985                 ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1986         }
1987
1988         return 0;
1989 }
1990
1991 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb,
1992                                            struct i915_request *rq)
1993 {
1994         bool have_copy = false;
1995         struct eb_vma *ev;
1996         int err = 0;
1997
1998 repeat:
1999         if (signal_pending(current)) {
2000                 err = -ERESTARTSYS;
2001                 goto out;
2002         }
2003
2004         /* We may process another execbuffer during the unlock... */
2005         eb_release_vmas(eb, false);
2006         i915_gem_ww_ctx_fini(&eb->ww);
2007
2008         if (rq) {
2009                 /* nonblocking is always false */
2010                 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2011                                       MAX_SCHEDULE_TIMEOUT) < 0) {
2012                         i915_request_put(rq);
2013                         rq = NULL;
2014
2015                         err = -EINTR;
2016                         goto err_relock;
2017                 }
2018
2019                 i915_request_put(rq);
2020                 rq = NULL;
2021         }
2022
2023         /*
2024          * We take 3 passes through the slowpatch.
2025          *
2026          * 1 - we try to just prefault all the user relocation entries and
2027          * then attempt to reuse the atomic pagefault disabled fast path again.
2028          *
2029          * 2 - we copy the user entries to a local buffer here outside of the
2030          * local and allow ourselves to wait upon any rendering before
2031          * relocations
2032          *
2033          * 3 - we already have a local copy of the relocation entries, but
2034          * were interrupted (EAGAIN) whilst waiting for the objects, try again.
2035          */
2036         if (!err) {
2037                 err = eb_prefault_relocations(eb);
2038         } else if (!have_copy) {
2039                 err = eb_copy_relocations(eb);
2040                 have_copy = err == 0;
2041         } else {
2042                 cond_resched();
2043                 err = 0;
2044         }
2045
2046         if (!err)
2047                 err = eb_reinit_userptr(eb);
2048
2049 err_relock:
2050         i915_gem_ww_ctx_init(&eb->ww, true);
2051         if (err)
2052                 goto out;
2053
2054         /* reacquire the objects */
2055 repeat_validate:
2056         rq = eb_pin_engine(eb, false);
2057         if (IS_ERR(rq)) {
2058                 err = PTR_ERR(rq);
2059                 rq = NULL;
2060                 goto err;
2061         }
2062
2063         /* We didn't throttle, should be NULL */
2064         GEM_WARN_ON(rq);
2065
2066         err = eb_validate_vmas(eb);
2067         if (err)
2068                 goto err;
2069
2070         GEM_BUG_ON(!eb->batch);
2071
2072         list_for_each_entry(ev, &eb->relocs, reloc_link) {
2073                 if (!have_copy) {
2074                         err = eb_relocate_vma(eb, ev);
2075                         if (err)
2076                                 break;
2077                 } else {
2078                         err = eb_relocate_vma_slow(eb, ev);
2079                         if (err)
2080                                 break;
2081                 }
2082         }
2083
2084         if (err == -EDEADLK)
2085                 goto err;
2086
2087         if (err && !have_copy)
2088                 goto repeat;
2089
2090         if (err)
2091                 goto err;
2092
2093         /* as last step, parse the command buffer */
2094         err = eb_parse(eb);
2095         if (err)
2096                 goto err;
2097
2098         /*
2099          * Leave the user relocations as are, this is the painfully slow path,
2100          * and we want to avoid the complication of dropping the lock whilst
2101          * having buffers reserved in the aperture and so causing spurious
2102          * ENOSPC for random operations.
2103          */
2104
2105 err:
2106         if (err == -EDEADLK) {
2107                 eb_release_vmas(eb, false);
2108                 err = i915_gem_ww_ctx_backoff(&eb->ww);
2109                 if (!err)
2110                         goto repeat_validate;
2111         }
2112
2113         if (err == -EAGAIN)
2114                 goto repeat;
2115
2116 out:
2117         if (have_copy) {
2118                 const unsigned int count = eb->buffer_count;
2119                 unsigned int i;
2120
2121                 for (i = 0; i < count; i++) {
2122                         const struct drm_i915_gem_exec_object2 *entry =
2123                                 &eb->exec[i];
2124                         struct drm_i915_gem_relocation_entry *relocs;
2125
2126                         if (!entry->relocation_count)
2127                                 continue;
2128
2129                         relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
2130                         kvfree(relocs);
2131                 }
2132         }
2133
2134         if (rq)
2135                 i915_request_put(rq);
2136
2137         return err;
2138 }
2139
2140 static int eb_relocate_parse(struct i915_execbuffer *eb)
2141 {
2142         int err;
2143         struct i915_request *rq = NULL;
2144         bool throttle = true;
2145
2146 retry:
2147         rq = eb_pin_engine(eb, throttle);
2148         if (IS_ERR(rq)) {
2149                 err = PTR_ERR(rq);
2150                 rq = NULL;
2151                 if (err != -EDEADLK)
2152                         return err;
2153
2154                 goto err;
2155         }
2156
2157         if (rq) {
2158                 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2159
2160                 /* Need to drop all locks now for throttling, take slowpath */
2161                 err = i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 0);
2162                 if (err == -ETIME) {
2163                         if (nonblock) {
2164                                 err = -EWOULDBLOCK;
2165                                 i915_request_put(rq);
2166                                 goto err;
2167                         }
2168                         goto slow;
2169                 }
2170                 i915_request_put(rq);
2171                 rq = NULL;
2172         }
2173
2174         /* only throttle once, even if we didn't need to throttle */
2175         throttle = false;
2176
2177         err = eb_validate_vmas(eb);
2178         if (err == -EAGAIN)
2179                 goto slow;
2180         else if (err)
2181                 goto err;
2182
2183         /* The objects are in their final locations, apply the relocations. */
2184         if (eb->args->flags & __EXEC_HAS_RELOC) {
2185                 struct eb_vma *ev;
2186
2187                 list_for_each_entry(ev, &eb->relocs, reloc_link) {
2188                         err = eb_relocate_vma(eb, ev);
2189                         if (err)
2190                                 break;
2191                 }
2192
2193                 if (err == -EDEADLK)
2194                         goto err;
2195                 else if (err)
2196                         goto slow;
2197         }
2198
2199         if (!err)
2200                 err = eb_parse(eb);
2201
2202 err:
2203         if (err == -EDEADLK) {
2204                 eb_release_vmas(eb, false);
2205                 err = i915_gem_ww_ctx_backoff(&eb->ww);
2206                 if (!err)
2207                         goto retry;
2208         }
2209
2210         return err;
2211
2212 slow:
2213         err = eb_relocate_parse_slow(eb, rq);
2214         if (err)
2215                 /*
2216                  * If the user expects the execobject.offset and
2217                  * reloc.presumed_offset to be an exact match,
2218                  * as for using NO_RELOC, then we cannot update
2219                  * the execobject.offset until we have completed
2220                  * relocation.
2221                  */
2222                 eb->args->flags &= ~__EXEC_HAS_RELOC;
2223
2224         return err;
2225 }
2226
2227 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2228 {
2229         const unsigned int count = eb->buffer_count;
2230         unsigned int i = count;
2231         int err = 0;
2232
2233         while (i--) {
2234                 struct eb_vma *ev = &eb->vma[i];
2235                 struct i915_vma *vma = ev->vma;
2236                 unsigned int flags = ev->flags;
2237                 struct drm_i915_gem_object *obj = vma->obj;
2238
2239                 assert_vma_held(vma);
2240
2241                 if (flags & EXEC_OBJECT_CAPTURE) {
2242                         struct i915_capture_list *capture;
2243
2244                         capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2245                         if (capture) {
2246                                 capture->next = eb->request->capture_list;
2247                                 capture->vma = vma;
2248                                 eb->request->capture_list = capture;
2249                         }
2250                 }
2251
2252                 /*
2253                  * If the GPU is not _reading_ through the CPU cache, we need
2254                  * to make sure that any writes (both previous GPU writes from
2255                  * before a change in snooping levels and normal CPU writes)
2256                  * caught in that cache are flushed to main memory.
2257                  *
2258                  * We want to say
2259                  *   obj->cache_dirty &&
2260                  *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2261                  * but gcc's optimiser doesn't handle that as well and emits
2262                  * two jumps instead of one. Maybe one day...
2263                  */
2264                 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2265                         if (i915_gem_clflush_object(obj, 0))
2266                                 flags &= ~EXEC_OBJECT_ASYNC;
2267                 }
2268
2269                 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2270                         err = i915_request_await_object
2271                                 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
2272                 }
2273
2274                 if (err == 0)
2275                         err = i915_vma_move_to_active(vma, eb->request,
2276                                                       flags | __EXEC_OBJECT_NO_RESERVE);
2277         }
2278
2279 #ifdef CONFIG_MMU_NOTIFIER
2280         if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2281                 read_lock(&eb->i915->mm.notifier_lock);
2282
2283                 /*
2284                  * count is always at least 1, otherwise __EXEC_USERPTR_USED
2285                  * could not have been set
2286                  */
2287                 for (i = 0; i < count; i++) {
2288                         struct eb_vma *ev = &eb->vma[i];
2289                         struct drm_i915_gem_object *obj = ev->vma->obj;
2290
2291                         if (!i915_gem_object_is_userptr(obj))
2292                                 continue;
2293
2294                         err = i915_gem_object_userptr_submit_done(obj);
2295                         if (err)
2296                                 break;
2297                 }
2298
2299                 read_unlock(&eb->i915->mm.notifier_lock);
2300         }
2301 #endif
2302
2303         if (unlikely(err))
2304                 goto err_skip;
2305
2306         /* Unconditionally flush any chipset caches (for streaming writes). */
2307         intel_gt_chipset_flush(eb->engine->gt);
2308         return 0;
2309
2310 err_skip:
2311         i915_request_set_error_once(eb->request, err);
2312         return err;
2313 }
2314
2315 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2316 {
2317         if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2318                 return -EINVAL;
2319
2320         /* Kernel clipping was a DRI1 misfeature */
2321         if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2322                              I915_EXEC_USE_EXTENSIONS))) {
2323                 if (exec->num_cliprects || exec->cliprects_ptr)
2324                         return -EINVAL;
2325         }
2326
2327         if (exec->DR4 == 0xffffffff) {
2328                 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2329                 exec->DR4 = 0;
2330         }
2331         if (exec->DR1 || exec->DR4)
2332                 return -EINVAL;
2333
2334         if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2335                 return -EINVAL;
2336
2337         return 0;
2338 }
2339
2340 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2341 {
2342         u32 *cs;
2343         int i;
2344
2345         if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
2346                 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2347                 return -EINVAL;
2348         }
2349
2350         cs = intel_ring_begin(rq, 4 * 2 + 2);
2351         if (IS_ERR(cs))
2352                 return PTR_ERR(cs);
2353
2354         *cs++ = MI_LOAD_REGISTER_IMM(4);
2355         for (i = 0; i < 4; i++) {
2356                 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2357                 *cs++ = 0;
2358         }
2359         *cs++ = MI_NOOP;
2360         intel_ring_advance(rq, cs);
2361
2362         return 0;
2363 }
2364
2365 static struct i915_vma *
2366 shadow_batch_pin(struct i915_execbuffer *eb,
2367                  struct drm_i915_gem_object *obj,
2368                  struct i915_address_space *vm,
2369                  unsigned int flags)
2370 {
2371         struct i915_vma *vma;
2372         int err;
2373
2374         vma = i915_vma_instance(obj, vm, NULL);
2375         if (IS_ERR(vma))
2376                 return vma;
2377
2378         err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags);
2379         if (err)
2380                 return ERR_PTR(err);
2381
2382         return vma;
2383 }
2384
2385 struct eb_parse_work {
2386         struct dma_fence_work base;
2387         struct intel_engine_cs *engine;
2388         struct i915_vma *batch;
2389         struct i915_vma *shadow;
2390         struct i915_vma *trampoline;
2391         unsigned long batch_offset;
2392         unsigned long batch_length;
2393         unsigned long *jump_whitelist;
2394         const void *batch_map;
2395         void *shadow_map;
2396 };
2397
2398 static int __eb_parse(struct dma_fence_work *work)
2399 {
2400         struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
2401         int ret;
2402         bool cookie;
2403
2404         cookie = dma_fence_begin_signalling();
2405         ret = intel_engine_cmd_parser(pw->engine,
2406                                       pw->batch,
2407                                       pw->batch_offset,
2408                                       pw->batch_length,
2409                                       pw->shadow,
2410                                       pw->jump_whitelist,
2411                                       pw->shadow_map,
2412                                       pw->batch_map);
2413         dma_fence_end_signalling(cookie);
2414
2415         return ret;
2416 }
2417
2418 static void __eb_parse_release(struct dma_fence_work *work)
2419 {
2420         struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
2421
2422         if (!IS_ERR_OR_NULL(pw->jump_whitelist))
2423                 kfree(pw->jump_whitelist);
2424
2425         if (pw->batch_map)
2426                 i915_gem_object_unpin_map(pw->batch->obj);
2427         else
2428                 i915_gem_object_unpin_pages(pw->batch->obj);
2429
2430         i915_gem_object_unpin_map(pw->shadow->obj);
2431
2432         if (pw->trampoline)
2433                 i915_active_release(&pw->trampoline->active);
2434         i915_active_release(&pw->shadow->active);
2435         i915_active_release(&pw->batch->active);
2436 }
2437
2438 static const struct dma_fence_work_ops eb_parse_ops = {
2439         .name = "eb_parse",
2440         .work = __eb_parse,
2441         .release = __eb_parse_release,
2442 };
2443
2444 static inline int
2445 __parser_mark_active(struct i915_vma *vma,
2446                      struct intel_timeline *tl,
2447                      struct dma_fence *fence)
2448 {
2449         struct intel_gt_buffer_pool_node *node = vma->private;
2450
2451         return i915_active_ref(&node->active, tl->fence_context, fence);
2452 }
2453
2454 static int
2455 parser_mark_active(struct eb_parse_work *pw, struct intel_timeline *tl)
2456 {
2457         int err;
2458
2459         mutex_lock(&tl->mutex);
2460
2461         err = __parser_mark_active(pw->shadow, tl, &pw->base.dma);
2462         if (err)
2463                 goto unlock;
2464
2465         if (pw->trampoline) {
2466                 err = __parser_mark_active(pw->trampoline, tl, &pw->base.dma);
2467                 if (err)
2468                         goto unlock;
2469         }
2470
2471 unlock:
2472         mutex_unlock(&tl->mutex);
2473         return err;
2474 }
2475
2476 static int eb_parse_pipeline(struct i915_execbuffer *eb,
2477                              struct i915_vma *shadow,
2478                              struct i915_vma *trampoline)
2479 {
2480         struct eb_parse_work *pw;
2481         struct drm_i915_gem_object *batch = eb->batch->vma->obj;
2482         bool needs_clflush;
2483         int err;
2484
2485         GEM_BUG_ON(overflows_type(eb->batch_start_offset, pw->batch_offset));
2486         GEM_BUG_ON(overflows_type(eb->batch_len, pw->batch_length));
2487
2488         pw = kzalloc(sizeof(*pw), GFP_KERNEL);
2489         if (!pw)
2490                 return -ENOMEM;
2491
2492         err = i915_active_acquire(&eb->batch->vma->active);
2493         if (err)
2494                 goto err_free;
2495
2496         err = i915_active_acquire(&shadow->active);
2497         if (err)
2498                 goto err_batch;
2499
2500         if (trampoline) {
2501                 err = i915_active_acquire(&trampoline->active);
2502                 if (err)
2503                         goto err_shadow;
2504         }
2505
2506         pw->shadow_map = i915_gem_object_pin_map(shadow->obj, I915_MAP_WB);
2507         if (IS_ERR(pw->shadow_map)) {
2508                 err = PTR_ERR(pw->shadow_map);
2509                 goto err_trampoline;
2510         }
2511
2512         needs_clflush =
2513                 !(batch->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ);
2514
2515         pw->batch_map = ERR_PTR(-ENODEV);
2516         if (needs_clflush && i915_has_memcpy_from_wc())
2517                 pw->batch_map = i915_gem_object_pin_map(batch, I915_MAP_WC);
2518
2519         if (IS_ERR(pw->batch_map)) {
2520                 err = i915_gem_object_pin_pages(batch);
2521                 if (err)
2522                         goto err_unmap_shadow;
2523                 pw->batch_map = NULL;
2524         }
2525
2526         pw->jump_whitelist =
2527                 intel_engine_cmd_parser_alloc_jump_whitelist(eb->batch_len,
2528                                                              trampoline);
2529         if (IS_ERR(pw->jump_whitelist)) {
2530                 err = PTR_ERR(pw->jump_whitelist);
2531                 goto err_unmap_batch;
2532         }
2533
2534         dma_fence_work_init(&pw->base, &eb_parse_ops);
2535
2536         pw->engine = eb->engine;
2537         pw->batch = eb->batch->vma;
2538         pw->batch_offset = eb->batch_start_offset;
2539         pw->batch_length = eb->batch_len;
2540         pw->shadow = shadow;
2541         pw->trampoline = trampoline;
2542
2543         /* Mark active refs early for this worker, in case we get interrupted */
2544         err = parser_mark_active(pw, eb->context->timeline);
2545         if (err)
2546                 goto err_commit;
2547
2548         err = dma_resv_reserve_shared(pw->batch->resv, 1);
2549         if (err)
2550                 goto err_commit;
2551
2552         err = dma_resv_reserve_shared(shadow->resv, 1);
2553         if (err)
2554                 goto err_commit;
2555
2556         /* Wait for all writes (and relocs) into the batch to complete */
2557         err = i915_sw_fence_await_reservation(&pw->base.chain,
2558                                               pw->batch->resv, NULL, false,
2559                                               0, I915_FENCE_GFP);
2560         if (err < 0)
2561                 goto err_commit;
2562
2563         /* Keep the batch alive and unwritten as we parse */
2564         dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);
2565
2566         /* Force execution to wait for completion of the parser */
2567         dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
2568
2569         dma_fence_work_commit_imm(&pw->base);
2570         return 0;
2571
2572 err_commit:
2573         i915_sw_fence_set_error_once(&pw->base.chain, err);
2574         dma_fence_work_commit_imm(&pw->base);
2575         return err;
2576
2577 err_unmap_batch:
2578         if (pw->batch_map)
2579                 i915_gem_object_unpin_map(batch);
2580         else
2581                 i915_gem_object_unpin_pages(batch);
2582 err_unmap_shadow:
2583         i915_gem_object_unpin_map(shadow->obj);
2584 err_trampoline:
2585         if (trampoline)
2586                 i915_active_release(&trampoline->active);
2587 err_shadow:
2588         i915_active_release(&shadow->active);
2589 err_batch:
2590         i915_active_release(&eb->batch->vma->active);
2591 err_free:
2592         kfree(pw);
2593         return err;
2594 }
2595
2596 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2597 {
2598         /*
2599          * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2600          * batch" bit. Hence we need to pin secure batches into the global gtt.
2601          * hsw should have this fixed, but bdw mucks it up again. */
2602         if (eb->batch_flags & I915_DISPATCH_SECURE)
2603                 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0);
2604
2605         return NULL;
2606 }
2607
2608 static int eb_parse(struct i915_execbuffer *eb)
2609 {
2610         struct drm_i915_private *i915 = eb->i915;
2611         struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2612         struct i915_vma *shadow, *trampoline, *batch;
2613         unsigned long len;
2614         int err;
2615
2616         if (!eb_use_cmdparser(eb)) {
2617                 batch = eb_dispatch_secure(eb, eb->batch->vma);
2618                 if (IS_ERR(batch))
2619                         return PTR_ERR(batch);
2620
2621                 goto secure_batch;
2622         }
2623
2624         len = eb->batch_len;
2625         if (!CMDPARSER_USES_GGTT(eb->i915)) {
2626                 /*
2627                  * ppGTT backed shadow buffers must be mapped RO, to prevent
2628                  * post-scan tampering
2629                  */
2630                 if (!eb->context->vm->has_read_only) {
2631                         drm_dbg(&i915->drm,
2632                                 "Cannot prevent post-scan tampering without RO capable vm\n");
2633                         return -EINVAL;
2634                 }
2635         } else {
2636                 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2637         }
2638         if (unlikely(len < eb->batch_len)) /* last paranoid check of overflow */
2639                 return -EINVAL;
2640
2641         if (!pool) {
2642                 pool = intel_gt_get_buffer_pool(eb->engine->gt, len,
2643                                                 I915_MAP_WB);
2644                 if (IS_ERR(pool))
2645                         return PTR_ERR(pool);
2646                 eb->batch_pool = pool;
2647         }
2648
2649         err = i915_gem_object_lock(pool->obj, &eb->ww);
2650         if (err)
2651                 goto err;
2652
2653         shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2654         if (IS_ERR(shadow)) {
2655                 err = PTR_ERR(shadow);
2656                 goto err;
2657         }
2658         intel_gt_buffer_pool_mark_used(pool);
2659         i915_gem_object_set_readonly(shadow->obj);
2660         shadow->private = pool;
2661
2662         trampoline = NULL;
2663         if (CMDPARSER_USES_GGTT(eb->i915)) {
2664                 trampoline = shadow;
2665
2666                 shadow = shadow_batch_pin(eb, pool->obj,
2667                                           &eb->engine->gt->ggtt->vm,
2668                                           PIN_GLOBAL);
2669                 if (IS_ERR(shadow)) {
2670                         err = PTR_ERR(shadow);
2671                         shadow = trampoline;
2672                         goto err_shadow;
2673                 }
2674                 shadow->private = pool;
2675
2676                 eb->batch_flags |= I915_DISPATCH_SECURE;
2677         }
2678
2679         batch = eb_dispatch_secure(eb, shadow);
2680         if (IS_ERR(batch)) {
2681                 err = PTR_ERR(batch);
2682                 goto err_trampoline;
2683         }
2684
2685         err = eb_parse_pipeline(eb, shadow, trampoline);
2686         if (err)
2687                 goto err_unpin_batch;
2688
2689         eb->batch = &eb->vma[eb->buffer_count++];
2690         eb->batch->vma = i915_vma_get(shadow);
2691         eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2692
2693         eb->trampoline = trampoline;
2694         eb->batch_start_offset = 0;
2695
2696 secure_batch:
2697         if (batch) {
2698                 eb->batch = &eb->vma[eb->buffer_count++];
2699                 eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2700                 eb->batch->vma = i915_vma_get(batch);
2701         }
2702         return 0;
2703
2704 err_unpin_batch:
2705         if (batch)
2706                 i915_vma_unpin(batch);
2707 err_trampoline:
2708         if (trampoline)
2709                 i915_vma_unpin(trampoline);
2710 err_shadow:
2711         i915_vma_unpin(shadow);
2712 err:
2713         return err;
2714 }
2715
2716 static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
2717 {
2718         int err;
2719
2720         if (intel_context_nopreempt(eb->context))
2721                 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2722
2723         err = eb_move_to_gpu(eb);
2724         if (err)
2725                 return err;
2726
2727         if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2728                 err = i915_reset_gen7_sol_offsets(eb->request);
2729                 if (err)
2730                         return err;
2731         }
2732
2733         /*
2734          * After we completed waiting for other engines (using HW semaphores)
2735          * then we can signal that this request/batch is ready to run. This
2736          * allows us to determine if the batch is still waiting on the GPU
2737          * or actually running by checking the breadcrumb.
2738          */
2739         if (eb->engine->emit_init_breadcrumb) {
2740                 err = eb->engine->emit_init_breadcrumb(eb->request);
2741                 if (err)
2742                         return err;
2743         }
2744
2745         err = eb->engine->emit_bb_start(eb->request,
2746                                         batch->node.start +
2747                                         eb->batch_start_offset,
2748                                         eb->batch_len,
2749                                         eb->batch_flags);
2750         if (err)
2751                 return err;
2752
2753         if (eb->trampoline) {
2754                 GEM_BUG_ON(eb->batch_start_offset);
2755                 err = eb->engine->emit_bb_start(eb->request,
2756                                                 eb->trampoline->node.start +
2757                                                 eb->batch_len,
2758                                                 0, 0);
2759                 if (err)
2760                         return err;
2761         }
2762
2763         return 0;
2764 }
2765
2766 static int num_vcs_engines(const struct drm_i915_private *i915)
2767 {
2768         return hweight_long(VDBOX_MASK(&i915->gt));
2769 }
2770
2771 /*
2772  * Find one BSD ring to dispatch the corresponding BSD command.
2773  * The engine index is returned.
2774  */
2775 static unsigned int
2776 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2777                          struct drm_file *file)
2778 {
2779         struct drm_i915_file_private *file_priv = file->driver_priv;
2780
2781         /* Check whether the file_priv has already selected one ring. */
2782         if ((int)file_priv->bsd_engine < 0)
2783                 file_priv->bsd_engine =
2784                         get_random_int() % num_vcs_engines(dev_priv);
2785
2786         return file_priv->bsd_engine;
2787 }
2788
2789 static const enum intel_engine_id user_ring_map[] = {
2790         [I915_EXEC_DEFAULT]     = RCS0,
2791         [I915_EXEC_RENDER]      = RCS0,
2792         [I915_EXEC_BLT]         = BCS0,
2793         [I915_EXEC_BSD]         = VCS0,
2794         [I915_EXEC_VEBOX]       = VECS0
2795 };
2796
2797 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2798 {
2799         struct intel_ring *ring = ce->ring;
2800         struct intel_timeline *tl = ce->timeline;
2801         struct i915_request *rq;
2802
2803         /*
2804          * Completely unscientific finger-in-the-air estimates for suitable
2805          * maximum user request size (to avoid blocking) and then backoff.
2806          */
2807         if (intel_ring_update_space(ring) >= PAGE_SIZE)
2808                 return NULL;
2809
2810         /*
2811          * Find a request that after waiting upon, there will be at least half
2812          * the ring available. The hysteresis allows us to compete for the
2813          * shared ring and should mean that we sleep less often prior to
2814          * claiming our resources, but not so long that the ring completely
2815          * drains before we can submit our next request.
2816          */
2817         list_for_each_entry(rq, &tl->requests, link) {
2818                 if (rq->ring != ring)
2819                         continue;
2820
2821                 if (__intel_ring_space(rq->postfix,
2822                                        ring->emit, ring->size) > ring->size / 2)
2823                         break;
2824         }
2825         if (&rq->link == &tl->requests)
2826                 return NULL; /* weird, we will check again later for real */
2827
2828         return i915_request_get(rq);
2829 }
2830
2831 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2832 {
2833         struct intel_context *ce = eb->context;
2834         struct intel_timeline *tl;
2835         struct i915_request *rq = NULL;
2836         int err;
2837
2838         GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2839
2840         if (unlikely(intel_context_is_banned(ce)))
2841                 return ERR_PTR(-EIO);
2842
2843         /*
2844          * Pinning the contexts may generate requests in order to acquire
2845          * GGTT space, so do this first before we reserve a seqno for
2846          * ourselves.
2847          */
2848         err = intel_context_pin_ww(ce, &eb->ww);
2849         if (err)
2850                 return ERR_PTR(err);
2851
2852         /*
2853          * Take a local wakeref for preparing to dispatch the execbuf as
2854          * we expect to access the hardware fairly frequently in the
2855          * process, and require the engine to be kept awake between accesses.
2856          * Upon dispatch, we acquire another prolonged wakeref that we hold
2857          * until the timeline is idle, which in turn releases the wakeref
2858          * taken on the engine, and the parent device.
2859          */
2860         tl = intel_context_timeline_lock(ce);
2861         if (IS_ERR(tl)) {
2862                 intel_context_unpin(ce);
2863                 return ERR_CAST(tl);
2864         }
2865
2866         intel_context_enter(ce);
2867         if (throttle)
2868                 rq = eb_throttle(eb, ce);
2869         intel_context_timeline_unlock(tl);
2870
2871         eb->args->flags |= __EXEC_ENGINE_PINNED;
2872         return rq;
2873 }
2874
2875 static void eb_unpin_engine(struct i915_execbuffer *eb)
2876 {
2877         struct intel_context *ce = eb->context;
2878         struct intel_timeline *tl = ce->timeline;
2879
2880         if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2881                 return;
2882
2883         eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2884
2885         mutex_lock(&tl->mutex);
2886         intel_context_exit(ce);
2887         mutex_unlock(&tl->mutex);
2888
2889         intel_context_unpin(ce);
2890 }
2891
2892 static unsigned int
2893 eb_select_legacy_ring(struct i915_execbuffer *eb)
2894 {
2895         struct drm_i915_private *i915 = eb->i915;
2896         struct drm_i915_gem_execbuffer2 *args = eb->args;
2897         unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2898
2899         if (user_ring_id != I915_EXEC_BSD &&
2900             (args->flags & I915_EXEC_BSD_MASK)) {
2901                 drm_dbg(&i915->drm,
2902                         "execbuf with non bsd ring but with invalid "
2903                         "bsd dispatch flags: %d\n", (int)(args->flags));
2904                 return -1;
2905         }
2906
2907         if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2908                 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2909
2910                 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2911                         bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2912                 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2913                            bsd_idx <= I915_EXEC_BSD_RING2) {
2914                         bsd_idx >>= I915_EXEC_BSD_SHIFT;
2915                         bsd_idx--;
2916                 } else {
2917                         drm_dbg(&i915->drm,
2918                                 "execbuf with unknown bsd ring: %u\n",
2919                                 bsd_idx);
2920                         return -1;
2921                 }
2922
2923                 return _VCS(bsd_idx);
2924         }
2925
2926         if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2927                 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2928                         user_ring_id);
2929                 return -1;
2930         }
2931
2932         return user_ring_map[user_ring_id];
2933 }
2934
2935 static int
2936 eb_select_engine(struct i915_execbuffer *eb)
2937 {
2938         struct intel_context *ce;
2939         unsigned int idx;
2940         int err;
2941
2942         if (i915_gem_context_user_engines(eb->gem_context))
2943                 idx = eb->args->flags & I915_EXEC_RING_MASK;
2944         else
2945                 idx = eb_select_legacy_ring(eb);
2946
2947         ce = i915_gem_context_get_engine(eb->gem_context, idx);
2948         if (IS_ERR(ce))
2949                 return PTR_ERR(ce);
2950
2951         intel_gt_pm_get(ce->engine->gt);
2952
2953         if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2954                 err = intel_context_alloc_state(ce);
2955                 if (err)
2956                         goto err;
2957         }
2958
2959         /*
2960          * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2961          * EIO if the GPU is already wedged.
2962          */
2963         err = intel_gt_terminally_wedged(ce->engine->gt);
2964         if (err)
2965                 goto err;
2966
2967         eb->context = ce;
2968         eb->engine = ce->engine;
2969
2970         /*
2971          * Make sure engine pool stays alive even if we call intel_context_put
2972          * during ww handling. The pool is destroyed when last pm reference
2973          * is dropped, which breaks our -EDEADLK handling.
2974          */
2975         return err;
2976
2977 err:
2978         intel_gt_pm_put(ce->engine->gt);
2979         intel_context_put(ce);
2980         return err;
2981 }
2982
2983 static void
2984 eb_put_engine(struct i915_execbuffer *eb)
2985 {
2986         intel_gt_pm_put(eb->engine->gt);
2987         intel_context_put(eb->context);
2988 }
2989
2990 static void
2991 __free_fence_array(struct eb_fence *fences, unsigned int n)
2992 {
2993         while (n--) {
2994                 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2995                 dma_fence_put(fences[n].dma_fence);
2996                 kfree(fences[n].chain_fence);
2997         }
2998         kvfree(fences);
2999 }
3000
3001 static int
3002 add_timeline_fence_array(struct i915_execbuffer *eb,
3003                          const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
3004 {
3005         struct drm_i915_gem_exec_fence __user *user_fences;
3006         u64 __user *user_values;
3007         struct eb_fence *f;
3008         u64 nfences;
3009         int err = 0;
3010
3011         nfences = timeline_fences->fence_count;
3012         if (!nfences)
3013                 return 0;
3014
3015         /* Check multiplication overflow for access_ok() and kvmalloc_array() */
3016         BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
3017         if (nfences > min_t(unsigned long,
3018                             ULONG_MAX / sizeof(*user_fences),
3019                             SIZE_MAX / sizeof(*f)) - eb->num_fences)
3020                 return -EINVAL;
3021
3022         user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
3023         if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
3024                 return -EFAULT;
3025
3026         user_values = u64_to_user_ptr(timeline_fences->values_ptr);
3027         if (!access_ok(user_values, nfences * sizeof(*user_values)))
3028                 return -EFAULT;
3029
3030         f = krealloc(eb->fences,
3031                      (eb->num_fences + nfences) * sizeof(*f),
3032                      __GFP_NOWARN | GFP_KERNEL);
3033         if (!f)
3034                 return -ENOMEM;
3035
3036         eb->fences = f;
3037         f += eb->num_fences;
3038
3039         BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
3040                      ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
3041
3042         while (nfences--) {
3043                 struct drm_i915_gem_exec_fence user_fence;
3044                 struct drm_syncobj *syncobj;
3045                 struct dma_fence *fence = NULL;
3046                 u64 point;
3047
3048                 if (__copy_from_user(&user_fence,
3049                                      user_fences++,
3050                                      sizeof(user_fence)))
3051                         return -EFAULT;
3052
3053                 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
3054                         return -EINVAL;
3055
3056                 if (__get_user(point, user_values++))
3057                         return -EFAULT;
3058
3059                 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
3060                 if (!syncobj) {
3061                         DRM_DEBUG("Invalid syncobj handle provided\n");
3062                         return -ENOENT;
3063                 }
3064
3065                 fence = drm_syncobj_fence_get(syncobj);
3066
3067                 if (!fence && user_fence.flags &&
3068                     !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
3069                         DRM_DEBUG("Syncobj handle has no fence\n");
3070                         drm_syncobj_put(syncobj);
3071                         return -EINVAL;
3072                 }
3073
3074                 if (fence)
3075                         err = dma_fence_chain_find_seqno(&fence, point);
3076
3077                 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
3078                         DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
3079                         dma_fence_put(fence);
3080                         drm_syncobj_put(syncobj);
3081                         return err;
3082                 }
3083
3084                 /*
3085                  * A point might have been signaled already and
3086                  * garbage collected from the timeline. In this case
3087                  * just ignore the point and carry on.
3088                  */
3089                 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
3090                         drm_syncobj_put(syncobj);
3091                         continue;
3092                 }
3093
3094                 /*
3095                  * For timeline syncobjs we need to preallocate chains for
3096                  * later signaling.
3097                  */
3098                 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
3099                         /*
3100                          * Waiting and signaling the same point (when point !=
3101                          * 0) would break the timeline.
3102                          */
3103                         if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
3104                                 DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
3105                                 dma_fence_put(fence);
3106                                 drm_syncobj_put(syncobj);
3107                                 return -EINVAL;
3108                         }
3109
3110                         f->chain_fence =
3111                                 kmalloc(sizeof(*f->chain_fence),
3112                                         GFP_KERNEL);
3113                         if (!f->chain_fence) {
3114                                 drm_syncobj_put(syncobj);
3115                                 dma_fence_put(fence);
3116                                 return -ENOMEM;
3117                         }
3118                 } else {
3119                         f->chain_fence = NULL;
3120                 }
3121
3122                 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
3123                 f->dma_fence = fence;
3124                 f->value = point;
3125                 f++;
3126                 eb->num_fences++;
3127         }
3128
3129         return 0;
3130 }
3131
3132 static int add_fence_array(struct i915_execbuffer *eb)
3133 {
3134         struct drm_i915_gem_execbuffer2 *args = eb->args;
3135         struct drm_i915_gem_exec_fence __user *user;
3136         unsigned long num_fences = args->num_cliprects;
3137         struct eb_fence *f;
3138
3139         if (!(args->flags & I915_EXEC_FENCE_ARRAY))
3140                 return 0;
3141
3142         if (!num_fences)
3143                 return 0;
3144
3145         /* Check multiplication overflow for access_ok() and kvmalloc_array() */
3146         BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
3147         if (num_fences > min_t(unsigned long,
3148                                ULONG_MAX / sizeof(*user),
3149                                SIZE_MAX / sizeof(*f) - eb->num_fences))
3150                 return -EINVAL;
3151
3152         user = u64_to_user_ptr(args->cliprects_ptr);
3153         if (!access_ok(user, num_fences * sizeof(*user)))
3154                 return -EFAULT;
3155
3156         f = krealloc(eb->fences,
3157                      (eb->num_fences + num_fences) * sizeof(*f),
3158                      __GFP_NOWARN | GFP_KERNEL);
3159         if (!f)
3160                 return -ENOMEM;
3161
3162         eb->fences = f;
3163         f += eb->num_fences;
3164         while (num_fences--) {
3165                 struct drm_i915_gem_exec_fence user_fence;
3166                 struct drm_syncobj *syncobj;
3167                 struct dma_fence *fence = NULL;
3168
3169                 if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
3170                         return -EFAULT;
3171
3172                 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
3173                         return -EINVAL;
3174
3175                 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
3176                 if (!syncobj) {
3177                         DRM_DEBUG("Invalid syncobj handle provided\n");
3178                         return -ENOENT;
3179                 }
3180
3181                 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
3182                         fence = drm_syncobj_fence_get(syncobj);
3183                         if (!fence) {
3184                                 DRM_DEBUG("Syncobj handle has no fence\n");
3185                                 drm_syncobj_put(syncobj);
3186                                 return -EINVAL;
3187                         }
3188                 }
3189
3190                 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
3191                              ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
3192
3193                 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
3194                 f->dma_fence = fence;
3195                 f->value = 0;
3196                 f->chain_fence = NULL;
3197                 f++;
3198                 eb->num_fences++;
3199         }
3200
3201         return 0;
3202 }
3203
3204 static void put_fence_array(struct eb_fence *fences, int num_fences)
3205 {
3206         if (fences)
3207                 __free_fence_array(fences, num_fences);
3208 }
3209
3210 static int
3211 await_fence_array(struct i915_execbuffer *eb)
3212 {
3213         unsigned int n;
3214         int err;
3215
3216         for (n = 0; n < eb->num_fences; n++) {
3217                 struct drm_syncobj *syncobj;
3218                 unsigned int flags;
3219
3220                 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3221
3222                 if (!eb->fences[n].dma_fence)
3223                         continue;
3224
3225                 err = i915_request_await_dma_fence(eb->request,
3226                                                    eb->fences[n].dma_fence);
3227                 if (err < 0)
3228                         return err;
3229         }
3230
3231         return 0;
3232 }
3233
3234 static void signal_fence_array(const struct i915_execbuffer *eb)
3235 {
3236         struct dma_fence * const fence = &eb->request->fence;
3237         unsigned int n;
3238
3239         for (n = 0; n < eb->num_fences; n++) {
3240                 struct drm_syncobj *syncobj;
3241                 unsigned int flags;
3242
3243                 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3244                 if (!(flags & I915_EXEC_FENCE_SIGNAL))
3245                         continue;
3246
3247                 if (eb->fences[n].chain_fence) {
3248                         drm_syncobj_add_point(syncobj,
3249                                               eb->fences[n].chain_fence,
3250                                               fence,
3251                                               eb->fences[n].value);
3252                         /*
3253                          * The chain's ownership is transferred to the
3254                          * timeline.
3255                          */
3256                         eb->fences[n].chain_fence = NULL;
3257                 } else {
3258                         drm_syncobj_replace_fence(syncobj, fence);
3259                 }
3260         }
3261 }
3262
3263 static int
3264 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3265 {
3266         struct i915_execbuffer *eb = data;
3267         struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3268
3269         if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3270                 return -EFAULT;
3271
3272         return add_timeline_fence_array(eb, &timeline_fences);
3273 }
3274
3275 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3276 {
3277         struct i915_request *rq, *rn;
3278
3279         list_for_each_entry_safe(rq, rn, &tl->requests, link)
3280                 if (rq == end || !i915_request_retire(rq))
3281                         break;
3282 }
3283
3284 static int eb_request_add(struct i915_execbuffer *eb, int err)
3285 {
3286         struct i915_request *rq = eb->request;
3287         struct intel_timeline * const tl = i915_request_timeline(rq);
3288         struct i915_sched_attr attr = {};
3289         struct i915_request *prev;
3290
3291         lockdep_assert_held(&tl->mutex);
3292         lockdep_unpin_lock(&tl->mutex, rq->cookie);
3293
3294         trace_i915_request_add(rq);
3295
3296         prev = __i915_request_commit(rq);
3297
3298         /* Check that the context wasn't destroyed before submission */
3299         if (likely(!intel_context_is_closed(eb->context))) {
3300                 attr = eb->gem_context->sched;
3301         } else {
3302                 /* Serialise with context_close via the add_to_timeline */
3303                 i915_request_set_error_once(rq, -ENOENT);
3304                 __i915_request_skip(rq);
3305                 err = -ENOENT; /* override any transient errors */
3306         }
3307
3308         __i915_request_queue(rq, &attr);
3309
3310         /* Try to clean up the client's timeline after submitting the request */
3311         if (prev)
3312                 retire_requests(tl, prev);
3313
3314         mutex_unlock(&tl->mutex);
3315
3316         return err;
3317 }
3318
3319 static const i915_user_extension_fn execbuf_extensions[] = {
3320         [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3321 };
3322
3323 static int
3324 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3325                           struct i915_execbuffer *eb)
3326 {
3327         if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3328                 return 0;
3329
3330         /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3331          * have another flag also using it at the same time.
3332          */
3333         if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3334                 return -EINVAL;
3335
3336         if (args->num_cliprects != 0)
3337                 return -EINVAL;
3338
3339         return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3340                                     execbuf_extensions,
3341                                     ARRAY_SIZE(execbuf_extensions),
3342                                     eb);
3343 }
3344
3345 static int
3346 i915_gem_do_execbuffer(struct drm_device *dev,
3347                        struct drm_file *file,
3348                        struct drm_i915_gem_execbuffer2 *args,
3349                        struct drm_i915_gem_exec_object2 *exec)
3350 {
3351         struct drm_i915_private *i915 = to_i915(dev);
3352         struct i915_execbuffer eb;
3353         struct dma_fence *in_fence = NULL;
3354         struct sync_file *out_fence = NULL;
3355         struct i915_vma *batch;
3356         int out_fence_fd = -1;
3357         int err;
3358
3359         BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3360         BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3361                      ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3362
3363         eb.i915 = i915;
3364         eb.file = file;
3365         eb.args = args;
3366         if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3367                 args->flags |= __EXEC_HAS_RELOC;
3368
3369         eb.exec = exec;
3370         eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3371         eb.vma[0].vma = NULL;
3372         eb.reloc_pool = eb.batch_pool = NULL;
3373         eb.reloc_context = NULL;
3374
3375         eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3376         reloc_cache_init(&eb.reloc_cache, eb.i915);
3377
3378         eb.buffer_count = args->buffer_count;
3379         eb.batch_start_offset = args->batch_start_offset;
3380         eb.batch_len = args->batch_len;
3381         eb.trampoline = NULL;
3382
3383         eb.fences = NULL;
3384         eb.num_fences = 0;
3385
3386         eb.batch_flags = 0;
3387         if (args->flags & I915_EXEC_SECURE) {
3388                 if (GRAPHICS_VER(i915) >= 11)
3389                         return -ENODEV;
3390
3391                 /* Return -EPERM to trigger fallback code on old binaries. */
3392                 if (!HAS_SECURE_BATCHES(i915))
3393                         return -EPERM;
3394
3395                 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3396                         return -EPERM;
3397
3398                 eb.batch_flags |= I915_DISPATCH_SECURE;
3399         }
3400         if (args->flags & I915_EXEC_IS_PINNED)
3401                 eb.batch_flags |= I915_DISPATCH_PINNED;
3402
3403         err = parse_execbuf2_extensions(args, &eb);
3404         if (err)
3405                 goto err_ext;
3406
3407         err = add_fence_array(&eb);
3408         if (err)
3409                 goto err_ext;
3410
3411 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3412         if (args->flags & IN_FENCES) {
3413                 if ((args->flags & IN_FENCES) == IN_FENCES)
3414                         return -EINVAL;
3415
3416                 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3417                 if (!in_fence) {
3418                         err = -EINVAL;
3419                         goto err_ext;
3420                 }
3421         }
3422 #undef IN_FENCES
3423
3424         if (args->flags & I915_EXEC_FENCE_OUT) {
3425                 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3426                 if (out_fence_fd < 0) {
3427                         err = out_fence_fd;
3428                         goto err_in_fence;
3429                 }
3430         }
3431
3432         err = eb_create(&eb);
3433         if (err)
3434                 goto err_out_fence;
3435
3436         GEM_BUG_ON(!eb.lut_size);
3437
3438         err = eb_select_context(&eb);
3439         if (unlikely(err))
3440                 goto err_destroy;
3441
3442         err = eb_select_engine(&eb);
3443         if (unlikely(err))
3444                 goto err_context;
3445
3446         err = eb_lookup_vmas(&eb);
3447         if (err) {
3448                 eb_release_vmas(&eb, true);
3449                 goto err_engine;
3450         }
3451
3452         i915_gem_ww_ctx_init(&eb.ww, true);
3453
3454         err = eb_relocate_parse(&eb);
3455         if (err) {
3456                 /*
3457                  * If the user expects the execobject.offset and
3458                  * reloc.presumed_offset to be an exact match,
3459                  * as for using NO_RELOC, then we cannot update
3460                  * the execobject.offset until we have completed
3461                  * relocation.
3462                  */
3463                 args->flags &= ~__EXEC_HAS_RELOC;
3464                 goto err_vma;
3465         }
3466
3467         ww_acquire_done(&eb.ww.ctx);
3468
3469         batch = eb.batch->vma;
3470
3471         /* All GPU relocation batches must be submitted prior to the user rq */
3472         GEM_BUG_ON(eb.reloc_cache.rq);
3473
3474         /* Allocate a request for this batch buffer nice and early. */
3475         eb.request = i915_request_create(eb.context);
3476         if (IS_ERR(eb.request)) {
3477                 err = PTR_ERR(eb.request);
3478                 goto err_vma;
3479         }
3480
3481         if (in_fence) {
3482                 if (args->flags & I915_EXEC_FENCE_SUBMIT)
3483                         err = i915_request_await_execution(eb.request,
3484                                                            in_fence,
3485                                                            eb.engine->bond_execute);
3486                 else
3487                         err = i915_request_await_dma_fence(eb.request,
3488                                                            in_fence);
3489                 if (err < 0)
3490                         goto err_request;
3491         }
3492
3493         if (eb.fences) {
3494                 err = await_fence_array(&eb);
3495                 if (err)
3496                         goto err_request;
3497         }
3498
3499         if (out_fence_fd != -1) {
3500                 out_fence = sync_file_create(&eb.request->fence);
3501                 if (!out_fence) {
3502                         err = -ENOMEM;
3503                         goto err_request;
3504                 }
3505         }
3506
3507         /*
3508          * Whilst this request exists, batch_obj will be on the
3509          * active_list, and so will hold the active reference. Only when this
3510          * request is retired will the the batch_obj be moved onto the
3511          * inactive_list and lose its active reference. Hence we do not need
3512          * to explicitly hold another reference here.
3513          */
3514         eb.request->batch = batch;
3515         if (eb.batch_pool)
3516                 intel_gt_buffer_pool_mark_active(eb.batch_pool, eb.request);
3517
3518         trace_i915_request_queue(eb.request, eb.batch_flags);
3519         err = eb_submit(&eb, batch);
3520
3521 err_request:
3522         i915_request_get(eb.request);
3523         err = eb_request_add(&eb, err);
3524
3525         if (eb.fences)
3526                 signal_fence_array(&eb);
3527
3528         if (out_fence) {
3529                 if (err == 0) {
3530                         fd_install(out_fence_fd, out_fence->file);
3531                         args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3532                         args->rsvd2 |= (u64)out_fence_fd << 32;
3533                         out_fence_fd = -1;
3534                 } else {
3535                         fput(out_fence->file);
3536                 }
3537         }
3538         i915_request_put(eb.request);
3539
3540 err_vma:
3541         eb_release_vmas(&eb, true);
3542         if (eb.trampoline)
3543                 i915_vma_unpin(eb.trampoline);
3544         WARN_ON(err == -EDEADLK);
3545         i915_gem_ww_ctx_fini(&eb.ww);
3546
3547         if (eb.batch_pool)
3548                 intel_gt_buffer_pool_put(eb.batch_pool);
3549         if (eb.reloc_pool)
3550                 intel_gt_buffer_pool_put(eb.reloc_pool);
3551         if (eb.reloc_context)
3552                 intel_context_put(eb.reloc_context);
3553 err_engine:
3554         eb_put_engine(&eb);
3555 err_context:
3556         i915_gem_context_put(eb.gem_context);
3557 err_destroy:
3558         eb_destroy(&eb);
3559 err_out_fence:
3560         if (out_fence_fd != -1)
3561                 put_unused_fd(out_fence_fd);
3562 err_in_fence:
3563         dma_fence_put(in_fence);
3564 err_ext:
3565         put_fence_array(eb.fences, eb.num_fences);
3566         return err;
3567 }
3568
3569 static size_t eb_element_size(void)
3570 {
3571         return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3572 }
3573
3574 static bool check_buffer_count(size_t count)
3575 {
3576         const size_t sz = eb_element_size();
3577
3578         /*
3579          * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3580          * array size (see eb_create()). Otherwise, we can accept an array as
3581          * large as can be addressed (though use large arrays at your peril)!
3582          */
3583
3584         return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3585 }
3586
3587 int
3588 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3589                            struct drm_file *file)
3590 {
3591         struct drm_i915_private *i915 = to_i915(dev);
3592         struct drm_i915_gem_execbuffer2 *args = data;
3593         struct drm_i915_gem_exec_object2 *exec2_list;
3594         const size_t count = args->buffer_count;
3595         int err;
3596
3597         if (!check_buffer_count(count)) {
3598                 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3599                 return -EINVAL;
3600         }
3601
3602         err = i915_gem_check_execbuffer(args);
3603         if (err)
3604                 return err;
3605
3606         /* Allocate extra slots for use by the command parser */
3607         exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3608                                     __GFP_NOWARN | GFP_KERNEL);
3609         if (exec2_list == NULL) {
3610                 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3611                         count);
3612                 return -ENOMEM;
3613         }
3614         if (copy_from_user(exec2_list,
3615                            u64_to_user_ptr(args->buffers_ptr),
3616                            sizeof(*exec2_list) * count)) {
3617                 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3618                 kvfree(exec2_list);
3619                 return -EFAULT;
3620         }
3621
3622         err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3623
3624         /*
3625          * Now that we have begun execution of the batchbuffer, we ignore
3626          * any new error after this point. Also given that we have already
3627          * updated the associated relocations, we try to write out the current
3628          * object locations irrespective of any error.
3629          */
3630         if (args->flags & __EXEC_HAS_RELOC) {
3631                 struct drm_i915_gem_exec_object2 __user *user_exec_list =
3632                         u64_to_user_ptr(args->buffers_ptr);
3633                 unsigned int i;
3634
3635                 /* Copy the new buffer offsets back to the user's exec list. */
3636                 /*
3637                  * Note: count * sizeof(*user_exec_list) does not overflow,
3638                  * because we checked 'count' in check_buffer_count().
3639                  *
3640                  * And this range already got effectively checked earlier
3641                  * when we did the "copy_from_user()" above.
3642                  */
3643                 if (!user_write_access_begin(user_exec_list,
3644                                              count * sizeof(*user_exec_list)))
3645                         goto end;
3646
3647                 for (i = 0; i < args->buffer_count; i++) {
3648                         if (!(exec2_list[i].offset & UPDATE))
3649                                 continue;
3650
3651                         exec2_list[i].offset =
3652                                 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3653                         unsafe_put_user(exec2_list[i].offset,
3654                                         &user_exec_list[i].offset,
3655                                         end_user);
3656                 }
3657 end_user:
3658                 user_write_access_end();
3659 end:;
3660         }
3661
3662         args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3663         kvfree(exec2_list);
3664         return err;
3665 }
3666
3667 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3668 #include "selftests/i915_gem_execbuffer.c"
3669 #endif