Merge tag 'xfs-5.13-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gem / i915_gem_execbuffer.c
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11
12 #include <drm/drm_syncobj.h>
13
14 #include "display/intel_frontbuffer.h"
15
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gpu_commands.h"
19 #include "gt/intel_gt.h"
20 #include "gt/intel_gt_buffer_pool.h"
21 #include "gt/intel_gt_pm.h"
22 #include "gt/intel_ring.h"
23
24 #include "i915_drv.h"
25 #include "i915_gem_clflush.h"
26 #include "i915_gem_context.h"
27 #include "i915_gem_ioctls.h"
28 #include "i915_sw_fence_work.h"
29 #include "i915_trace.h"
30 #include "i915_user_extensions.h"
31 #include "i915_memcpy.h"
32
33 struct eb_vma {
34         struct i915_vma *vma;
35         unsigned int flags;
36
37         /** This vma's place in the execbuf reservation list */
38         struct drm_i915_gem_exec_object2 *exec;
39         struct list_head bind_link;
40         struct list_head reloc_link;
41
42         struct hlist_node node;
43         u32 handle;
44 };
45
46 enum {
47         FORCE_CPU_RELOC = 1,
48         FORCE_GTT_RELOC,
49         FORCE_GPU_RELOC,
50 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
51 };
52
53 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */
54 #define __EXEC_OBJECT_HAS_PIN           BIT(30)
55 #define __EXEC_OBJECT_HAS_FENCE         BIT(29)
56 #define __EXEC_OBJECT_USERPTR_INIT      BIT(28)
57 #define __EXEC_OBJECT_NEEDS_MAP         BIT(27)
58 #define __EXEC_OBJECT_NEEDS_BIAS        BIT(26)
59 #define __EXEC_OBJECT_INTERNAL_FLAGS    (~0u << 26) /* all of the above + */
60 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
61
62 #define __EXEC_HAS_RELOC        BIT(31)
63 #define __EXEC_ENGINE_PINNED    BIT(30)
64 #define __EXEC_USERPTR_USED     BIT(29)
65 #define __EXEC_INTERNAL_FLAGS   (~0u << 29)
66 #define UPDATE                  PIN_OFFSET_FIXED
67
68 #define BATCH_OFFSET_BIAS (256*1024)
69
70 #define __I915_EXEC_ILLEGAL_FLAGS \
71         (__I915_EXEC_UNKNOWN_FLAGS | \
72          I915_EXEC_CONSTANTS_MASK  | \
73          I915_EXEC_RESOURCE_STREAMER)
74
75 /* Catch emission of unexpected errors for CI! */
76 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
77 #undef EINVAL
78 #define EINVAL ({ \
79         DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
80         22; \
81 })
82 #endif
83
84 /**
85  * DOC: User command execution
86  *
87  * Userspace submits commands to be executed on the GPU as an instruction
88  * stream within a GEM object we call a batchbuffer. This instructions may
89  * refer to other GEM objects containing auxiliary state such as kernels,
90  * samplers, render targets and even secondary batchbuffers. Userspace does
91  * not know where in the GPU memory these objects reside and so before the
92  * batchbuffer is passed to the GPU for execution, those addresses in the
93  * batchbuffer and auxiliary objects are updated. This is known as relocation,
94  * or patching. To try and avoid having to relocate each object on the next
95  * execution, userspace is told the location of those objects in this pass,
96  * but this remains just a hint as the kernel may choose a new location for
97  * any object in the future.
98  *
99  * At the level of talking to the hardware, submitting a batchbuffer for the
100  * GPU to execute is to add content to a buffer from which the HW
101  * command streamer is reading.
102  *
103  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
104  *    Execlists, this command is not placed on the same buffer as the
105  *    remaining items.
106  *
107  * 2. Add a command to invalidate caches to the buffer.
108  *
109  * 3. Add a batchbuffer start command to the buffer; the start command is
110  *    essentially a token together with the GPU address of the batchbuffer
111  *    to be executed.
112  *
113  * 4. Add a pipeline flush to the buffer.
114  *
115  * 5. Add a memory write command to the buffer to record when the GPU
116  *    is done executing the batchbuffer. The memory write writes the
117  *    global sequence number of the request, ``i915_request::global_seqno``;
118  *    the i915 driver uses the current value in the register to determine
119  *    if the GPU has completed the batchbuffer.
120  *
121  * 6. Add a user interrupt command to the buffer. This command instructs
122  *    the GPU to issue an interrupt when the command, pipeline flush and
123  *    memory write are completed.
124  *
125  * 7. Inform the hardware of the additional commands added to the buffer
126  *    (by updating the tail pointer).
127  *
128  * Processing an execbuf ioctl is conceptually split up into a few phases.
129  *
130  * 1. Validation - Ensure all the pointers, handles and flags are valid.
131  * 2. Reservation - Assign GPU address space for every object
132  * 3. Relocation - Update any addresses to point to the final locations
133  * 4. Serialisation - Order the request with respect to its dependencies
134  * 5. Construction - Construct a request to execute the batchbuffer
135  * 6. Submission (at some point in the future execution)
136  *
137  * Reserving resources for the execbuf is the most complicated phase. We
138  * neither want to have to migrate the object in the address space, nor do
139  * we want to have to update any relocations pointing to this object. Ideally,
140  * we want to leave the object where it is and for all the existing relocations
141  * to match. If the object is given a new address, or if userspace thinks the
142  * object is elsewhere, we have to parse all the relocation entries and update
143  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
144  * all the target addresses in all of its objects match the value in the
145  * relocation entries and that they all match the presumed offsets given by the
146  * list of execbuffer objects. Using this knowledge, we know that if we haven't
147  * moved any buffers, all the relocation entries are valid and we can skip
148  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
149  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
150  *
151  *      The addresses written in the objects must match the corresponding
152  *      reloc.presumed_offset which in turn must match the corresponding
153  *      execobject.offset.
154  *
155  *      Any render targets written to in the batch must be flagged with
156  *      EXEC_OBJECT_WRITE.
157  *
158  *      To avoid stalling, execobject.offset should match the current
159  *      address of that object within the active context.
160  *
161  * The reservation is done is multiple phases. First we try and keep any
162  * object already bound in its current location - so as long as meets the
163  * constraints imposed by the new execbuffer. Any object left unbound after the
164  * first pass is then fitted into any available idle space. If an object does
165  * not fit, all objects are removed from the reservation and the process rerun
166  * after sorting the objects into a priority order (more difficult to fit
167  * objects are tried first). Failing that, the entire VM is cleared and we try
168  * to fit the execbuf once last time before concluding that it simply will not
169  * fit.
170  *
171  * A small complication to all of this is that we allow userspace not only to
172  * specify an alignment and a size for the object in the address space, but
173  * we also allow userspace to specify the exact offset. This objects are
174  * simpler to place (the location is known a priori) all we have to do is make
175  * sure the space is available.
176  *
177  * Once all the objects are in place, patching up the buried pointers to point
178  * to the final locations is a fairly simple job of walking over the relocation
179  * entry arrays, looking up the right address and rewriting the value into
180  * the object. Simple! ... The relocation entries are stored in user memory
181  * and so to access them we have to copy them into a local buffer. That copy
182  * has to avoid taking any pagefaults as they may lead back to a GEM object
183  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
184  * the relocation into multiple passes. First we try to do everything within an
185  * atomic context (avoid the pagefaults) which requires that we never wait. If
186  * we detect that we may wait, or if we need to fault, then we have to fallback
187  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
188  * bells yet?) Dropping the mutex means that we lose all the state we have
189  * built up so far for the execbuf and we must reset any global data. However,
190  * we do leave the objects pinned in their final locations - which is a
191  * potential issue for concurrent execbufs. Once we have left the mutex, we can
192  * allocate and copy all the relocation entries into a large array at our
193  * leisure, reacquire the mutex, reclaim all the objects and other state and
194  * then proceed to update any incorrect addresses with the objects.
195  *
196  * As we process the relocation entries, we maintain a record of whether the
197  * object is being written to. Using NORELOC, we expect userspace to provide
198  * this information instead. We also check whether we can skip the relocation
199  * by comparing the expected value inside the relocation entry with the target's
200  * final address. If they differ, we have to map the current object and rewrite
201  * the 4 or 8 byte pointer within.
202  *
203  * Serialising an execbuf is quite simple according to the rules of the GEM
204  * ABI. Execution within each context is ordered by the order of submission.
205  * Writes to any GEM object are in order of submission and are exclusive. Reads
206  * from a GEM object are unordered with respect to other reads, but ordered by
207  * writes. A write submitted after a read cannot occur before the read, and
208  * similarly any read submitted after a write cannot occur before the write.
209  * Writes are ordered between engines such that only one write occurs at any
210  * time (completing any reads beforehand) - using semaphores where available
211  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
212  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
213  * reads before starting, and any read (either using set-domain or pread) must
214  * flush all GPU writes before starting. (Note we only employ a barrier before,
215  * we currently rely on userspace not concurrently starting a new execution
216  * whilst reading or writing to an object. This may be an advantage or not
217  * depending on how much you trust userspace not to shoot themselves in the
218  * foot.) Serialisation may just result in the request being inserted into
219  * a DAG awaiting its turn, but most simple is to wait on the CPU until
220  * all dependencies are resolved.
221  *
222  * After all of that, is just a matter of closing the request and handing it to
223  * the hardware (well, leaving it in a queue to be executed). However, we also
224  * offer the ability for batchbuffers to be run with elevated privileges so
225  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
226  * Before any batch is given extra privileges we first must check that it
227  * contains no nefarious instructions, we check that each instruction is from
228  * our whitelist and all registers are also from an allowed list. We first
229  * copy the user's batchbuffer to a shadow (so that the user doesn't have
230  * access to it, either by the CPU or GPU as we scan it) and then parse each
231  * instruction. If everything is ok, we set a flag telling the hardware to run
232  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
233  */
234
235 struct eb_fence {
236         struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
237         struct dma_fence *dma_fence;
238         u64 value;
239         struct dma_fence_chain *chain_fence;
240 };
241
242 struct i915_execbuffer {
243         struct drm_i915_private *i915; /** i915 backpointer */
244         struct drm_file *file; /** per-file lookup tables and limits */
245         struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
246         struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
247         struct eb_vma *vma;
248
249         struct intel_engine_cs *engine; /** engine to queue the request to */
250         struct intel_context *context; /* logical state for the request */
251         struct i915_gem_context *gem_context; /** caller's context */
252
253         struct i915_request *request; /** our request to build */
254         struct eb_vma *batch; /** identity of the batch obj/vma */
255         struct i915_vma *trampoline; /** trampoline used for chaining */
256
257         /** actual size of execobj[] as we may extend it for the cmdparser */
258         unsigned int buffer_count;
259
260         /** list of vma not yet bound during reservation phase */
261         struct list_head unbound;
262
263         /** list of vma that have execobj.relocation_count */
264         struct list_head relocs;
265
266         struct i915_gem_ww_ctx ww;
267
268         /**
269          * Track the most recently used object for relocations, as we
270          * frequently have to perform multiple relocations within the same
271          * obj/page
272          */
273         struct reloc_cache {
274                 struct drm_mm_node node; /** temporary GTT binding */
275                 unsigned long vaddr; /** Current kmap address */
276                 unsigned long page; /** Currently mapped page index */
277                 unsigned int gen; /** Cached value of INTEL_GEN */
278                 bool use_64bit_reloc : 1;
279                 bool has_llc : 1;
280                 bool has_fence : 1;
281                 bool needs_unfenced : 1;
282
283                 struct i915_request *rq;
284                 u32 *rq_cmd;
285                 unsigned int rq_size;
286                 struct intel_gt_buffer_pool_node *pool;
287         } reloc_cache;
288
289         struct intel_gt_buffer_pool_node *reloc_pool; /** relocation pool for -EDEADLK handling */
290         struct intel_context *reloc_context;
291
292         u64 invalid_flags; /** Set of execobj.flags that are invalid */
293         u32 context_flags; /** Set of execobj.flags to insert from the ctx */
294
295         u64 batch_len; /** Length of batch within object */
296         u32 batch_start_offset; /** Location within object of batch */
297         u32 batch_flags; /** Flags composed for emit_bb_start() */
298         struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
299
300         /**
301          * Indicate either the size of the hastable used to resolve
302          * relocation handles, or if negative that we are using a direct
303          * index into the execobj[].
304          */
305         int lut_size;
306         struct hlist_head *buckets; /** ht for relocation handles */
307
308         struct eb_fence *fences;
309         unsigned long num_fences;
310 };
311
312 static int eb_parse(struct i915_execbuffer *eb);
313 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb,
314                                           bool throttle);
315 static void eb_unpin_engine(struct i915_execbuffer *eb);
316
317 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
318 {
319         return intel_engine_requires_cmd_parser(eb->engine) ||
320                 (intel_engine_using_cmd_parser(eb->engine) &&
321                  eb->args->batch_len);
322 }
323
324 static int eb_create(struct i915_execbuffer *eb)
325 {
326         if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
327                 unsigned int size = 1 + ilog2(eb->buffer_count);
328
329                 /*
330                  * Without a 1:1 association between relocation handles and
331                  * the execobject[] index, we instead create a hashtable.
332                  * We size it dynamically based on available memory, starting
333                  * first with 1:1 assocative hash and scaling back until
334                  * the allocation succeeds.
335                  *
336                  * Later on we use a positive lut_size to indicate we are
337                  * using this hashtable, and a negative value to indicate a
338                  * direct lookup.
339                  */
340                 do {
341                         gfp_t flags;
342
343                         /* While we can still reduce the allocation size, don't
344                          * raise a warning and allow the allocation to fail.
345                          * On the last pass though, we want to try as hard
346                          * as possible to perform the allocation and warn
347                          * if it fails.
348                          */
349                         flags = GFP_KERNEL;
350                         if (size > 1)
351                                 flags |= __GFP_NORETRY | __GFP_NOWARN;
352
353                         eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
354                                               flags);
355                         if (eb->buckets)
356                                 break;
357                 } while (--size);
358
359                 if (unlikely(!size))
360                         return -ENOMEM;
361
362                 eb->lut_size = size;
363         } else {
364                 eb->lut_size = -eb->buffer_count;
365         }
366
367         return 0;
368 }
369
370 static bool
371 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
372                  const struct i915_vma *vma,
373                  unsigned int flags)
374 {
375         if (vma->node.size < entry->pad_to_size)
376                 return true;
377
378         if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
379                 return true;
380
381         if (flags & EXEC_OBJECT_PINNED &&
382             vma->node.start != entry->offset)
383                 return true;
384
385         if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
386             vma->node.start < BATCH_OFFSET_BIAS)
387                 return true;
388
389         if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
390             (vma->node.start + vma->node.size + 4095) >> 32)
391                 return true;
392
393         if (flags & __EXEC_OBJECT_NEEDS_MAP &&
394             !i915_vma_is_map_and_fenceable(vma))
395                 return true;
396
397         return false;
398 }
399
400 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
401                         unsigned int exec_flags)
402 {
403         u64 pin_flags = 0;
404
405         if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
406                 pin_flags |= PIN_GLOBAL;
407
408         /*
409          * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
410          * limit address to the first 4GBs for unflagged objects.
411          */
412         if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
413                 pin_flags |= PIN_ZONE_4G;
414
415         if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
416                 pin_flags |= PIN_MAPPABLE;
417
418         if (exec_flags & EXEC_OBJECT_PINNED)
419                 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
420         else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
421                 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
422
423         return pin_flags;
424 }
425
426 static inline int
427 eb_pin_vma(struct i915_execbuffer *eb,
428            const struct drm_i915_gem_exec_object2 *entry,
429            struct eb_vma *ev)
430 {
431         struct i915_vma *vma = ev->vma;
432         u64 pin_flags;
433         int err;
434
435         if (vma->node.size)
436                 pin_flags = vma->node.start;
437         else
438                 pin_flags = entry->offset & PIN_OFFSET_MASK;
439
440         pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
441         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
442                 pin_flags |= PIN_GLOBAL;
443
444         /* Attempt to reuse the current location if available */
445         err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
446         if (err == -EDEADLK)
447                 return err;
448
449         if (unlikely(err)) {
450                 if (entry->flags & EXEC_OBJECT_PINNED)
451                         return err;
452
453                 /* Failing that pick any _free_ space if suitable */
454                 err = i915_vma_pin_ww(vma, &eb->ww,
455                                              entry->pad_to_size,
456                                              entry->alignment,
457                                              eb_pin_flags(entry, ev->flags) |
458                                              PIN_USER | PIN_NOEVICT);
459                 if (unlikely(err))
460                         return err;
461         }
462
463         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
464                 err = i915_vma_pin_fence(vma);
465                 if (unlikely(err)) {
466                         i915_vma_unpin(vma);
467                         return err;
468                 }
469
470                 if (vma->fence)
471                         ev->flags |= __EXEC_OBJECT_HAS_FENCE;
472         }
473
474         ev->flags |= __EXEC_OBJECT_HAS_PIN;
475         if (eb_vma_misplaced(entry, vma, ev->flags))
476                 return -EBADSLT;
477
478         return 0;
479 }
480
481 static inline void
482 eb_unreserve_vma(struct eb_vma *ev)
483 {
484         if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
485                 return;
486
487         if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
488                 __i915_vma_unpin_fence(ev->vma);
489
490         __i915_vma_unpin(ev->vma);
491         ev->flags &= ~__EXEC_OBJECT_RESERVED;
492 }
493
494 static int
495 eb_validate_vma(struct i915_execbuffer *eb,
496                 struct drm_i915_gem_exec_object2 *entry,
497                 struct i915_vma *vma)
498 {
499         /* Relocations are disallowed for all platforms after TGL-LP.  This
500          * also covers all platforms with local memory.
501          */
502         if (entry->relocation_count &&
503             INTEL_GEN(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
504                 return -EINVAL;
505
506         if (unlikely(entry->flags & eb->invalid_flags))
507                 return -EINVAL;
508
509         if (unlikely(entry->alignment &&
510                      !is_power_of_2_u64(entry->alignment)))
511                 return -EINVAL;
512
513         /*
514          * Offset can be used as input (EXEC_OBJECT_PINNED), reject
515          * any non-page-aligned or non-canonical addresses.
516          */
517         if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
518                      entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
519                 return -EINVAL;
520
521         /* pad_to_size was once a reserved field, so sanitize it */
522         if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
523                 if (unlikely(offset_in_page(entry->pad_to_size)))
524                         return -EINVAL;
525         } else {
526                 entry->pad_to_size = 0;
527         }
528         /*
529          * From drm_mm perspective address space is continuous,
530          * so from this point we're always using non-canonical
531          * form internally.
532          */
533         entry->offset = gen8_noncanonical_addr(entry->offset);
534
535         if (!eb->reloc_cache.has_fence) {
536                 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
537         } else {
538                 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
539                      eb->reloc_cache.needs_unfenced) &&
540                     i915_gem_object_is_tiled(vma->obj))
541                         entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
542         }
543
544         if (!(entry->flags & EXEC_OBJECT_PINNED))
545                 entry->flags |= eb->context_flags;
546
547         return 0;
548 }
549
550 static void
551 eb_add_vma(struct i915_execbuffer *eb,
552            unsigned int i, unsigned batch_idx,
553            struct i915_vma *vma)
554 {
555         struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
556         struct eb_vma *ev = &eb->vma[i];
557
558         ev->vma = vma;
559         ev->exec = entry;
560         ev->flags = entry->flags;
561
562         if (eb->lut_size > 0) {
563                 ev->handle = entry->handle;
564                 hlist_add_head(&ev->node,
565                                &eb->buckets[hash_32(entry->handle,
566                                                     eb->lut_size)]);
567         }
568
569         if (entry->relocation_count)
570                 list_add_tail(&ev->reloc_link, &eb->relocs);
571
572         /*
573          * SNA is doing fancy tricks with compressing batch buffers, which leads
574          * to negative relocation deltas. Usually that works out ok since the
575          * relocate address is still positive, except when the batch is placed
576          * very low in the GTT. Ensure this doesn't happen.
577          *
578          * Note that actual hangs have only been observed on gen7, but for
579          * paranoia do it everywhere.
580          */
581         if (i == batch_idx) {
582                 if (entry->relocation_count &&
583                     !(ev->flags & EXEC_OBJECT_PINNED))
584                         ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
585                 if (eb->reloc_cache.has_fence)
586                         ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
587
588                 eb->batch = ev;
589         }
590 }
591
592 static inline int use_cpu_reloc(const struct reloc_cache *cache,
593                                 const struct drm_i915_gem_object *obj)
594 {
595         if (!i915_gem_object_has_struct_page(obj))
596                 return false;
597
598         if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
599                 return true;
600
601         if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
602                 return false;
603
604         return (cache->has_llc ||
605                 obj->cache_dirty ||
606                 obj->cache_level != I915_CACHE_NONE);
607 }
608
609 static int eb_reserve_vma(struct i915_execbuffer *eb,
610                           struct eb_vma *ev,
611                           u64 pin_flags)
612 {
613         struct drm_i915_gem_exec_object2 *entry = ev->exec;
614         struct i915_vma *vma = ev->vma;
615         int err;
616
617         if (drm_mm_node_allocated(&vma->node) &&
618             eb_vma_misplaced(entry, vma, ev->flags)) {
619                 err = i915_vma_unbind(vma);
620                 if (err)
621                         return err;
622         }
623
624         err = i915_vma_pin_ww(vma, &eb->ww,
625                            entry->pad_to_size, entry->alignment,
626                            eb_pin_flags(entry, ev->flags) | pin_flags);
627         if (err)
628                 return err;
629
630         if (entry->offset != vma->node.start) {
631                 entry->offset = vma->node.start | UPDATE;
632                 eb->args->flags |= __EXEC_HAS_RELOC;
633         }
634
635         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
636                 err = i915_vma_pin_fence(vma);
637                 if (unlikely(err)) {
638                         i915_vma_unpin(vma);
639                         return err;
640                 }
641
642                 if (vma->fence)
643                         ev->flags |= __EXEC_OBJECT_HAS_FENCE;
644         }
645
646         ev->flags |= __EXEC_OBJECT_HAS_PIN;
647         GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
648
649         return 0;
650 }
651
652 static int eb_reserve(struct i915_execbuffer *eb)
653 {
654         const unsigned int count = eb->buffer_count;
655         unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
656         struct list_head last;
657         struct eb_vma *ev;
658         unsigned int i, pass;
659         int err = 0;
660
661         /*
662          * Attempt to pin all of the buffers into the GTT.
663          * This is done in 3 phases:
664          *
665          * 1a. Unbind all objects that do not match the GTT constraints for
666          *     the execbuffer (fenceable, mappable, alignment etc).
667          * 1b. Increment pin count for already bound objects.
668          * 2.  Bind new objects.
669          * 3.  Decrement pin count.
670          *
671          * This avoid unnecessary unbinding of later objects in order to make
672          * room for the earlier objects *unless* we need to defragment.
673          */
674         pass = 0;
675         do {
676                 list_for_each_entry(ev, &eb->unbound, bind_link) {
677                         err = eb_reserve_vma(eb, ev, pin_flags);
678                         if (err)
679                                 break;
680                 }
681                 if (err != -ENOSPC)
682                         return err;
683
684                 /* Resort *all* the objects into priority order */
685                 INIT_LIST_HEAD(&eb->unbound);
686                 INIT_LIST_HEAD(&last);
687                 for (i = 0; i < count; i++) {
688                         unsigned int flags;
689
690                         ev = &eb->vma[i];
691                         flags = ev->flags;
692                         if (flags & EXEC_OBJECT_PINNED &&
693                             flags & __EXEC_OBJECT_HAS_PIN)
694                                 continue;
695
696                         eb_unreserve_vma(ev);
697
698                         if (flags & EXEC_OBJECT_PINNED)
699                                 /* Pinned must have their slot */
700                                 list_add(&ev->bind_link, &eb->unbound);
701                         else if (flags & __EXEC_OBJECT_NEEDS_MAP)
702                                 /* Map require the lowest 256MiB (aperture) */
703                                 list_add_tail(&ev->bind_link, &eb->unbound);
704                         else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
705                                 /* Prioritise 4GiB region for restricted bo */
706                                 list_add(&ev->bind_link, &last);
707                         else
708                                 list_add_tail(&ev->bind_link, &last);
709                 }
710                 list_splice_tail(&last, &eb->unbound);
711
712                 switch (pass++) {
713                 case 0:
714                         break;
715
716                 case 1:
717                         /* Too fragmented, unbind everything and retry */
718                         mutex_lock(&eb->context->vm->mutex);
719                         err = i915_gem_evict_vm(eb->context->vm);
720                         mutex_unlock(&eb->context->vm->mutex);
721                         if (err)
722                                 return err;
723                         break;
724
725                 default:
726                         return -ENOSPC;
727                 }
728
729                 pin_flags = PIN_USER;
730         } while (1);
731 }
732
733 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
734 {
735         if (eb->args->flags & I915_EXEC_BATCH_FIRST)
736                 return 0;
737         else
738                 return eb->buffer_count - 1;
739 }
740
741 static int eb_select_context(struct i915_execbuffer *eb)
742 {
743         struct i915_gem_context *ctx;
744
745         ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
746         if (unlikely(!ctx))
747                 return -ENOENT;
748
749         eb->gem_context = ctx;
750         if (rcu_access_pointer(ctx->vm))
751                 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
752
753         eb->context_flags = 0;
754         if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
755                 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
756
757         return 0;
758 }
759
760 static int __eb_add_lut(struct i915_execbuffer *eb,
761                         u32 handle, struct i915_vma *vma)
762 {
763         struct i915_gem_context *ctx = eb->gem_context;
764         struct i915_lut_handle *lut;
765         int err;
766
767         lut = i915_lut_handle_alloc();
768         if (unlikely(!lut))
769                 return -ENOMEM;
770
771         i915_vma_get(vma);
772         if (!atomic_fetch_inc(&vma->open_count))
773                 i915_vma_reopen(vma);
774         lut->handle = handle;
775         lut->ctx = ctx;
776
777         /* Check that the context hasn't been closed in the meantime */
778         err = -EINTR;
779         if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
780                 struct i915_address_space *vm = rcu_access_pointer(ctx->vm);
781
782                 if (unlikely(vm && vma->vm != vm))
783                         err = -EAGAIN; /* user racing with ctx set-vm */
784                 else if (likely(!i915_gem_context_is_closed(ctx)))
785                         err = radix_tree_insert(&ctx->handles_vma, handle, vma);
786                 else
787                         err = -ENOENT;
788                 if (err == 0) { /* And nor has this handle */
789                         struct drm_i915_gem_object *obj = vma->obj;
790
791                         spin_lock(&obj->lut_lock);
792                         if (idr_find(&eb->file->object_idr, handle) == obj) {
793                                 list_add(&lut->obj_link, &obj->lut_list);
794                         } else {
795                                 radix_tree_delete(&ctx->handles_vma, handle);
796                                 err = -ENOENT;
797                         }
798                         spin_unlock(&obj->lut_lock);
799                 }
800                 mutex_unlock(&ctx->lut_mutex);
801         }
802         if (unlikely(err))
803                 goto err;
804
805         return 0;
806
807 err:
808         i915_vma_close(vma);
809         i915_vma_put(vma);
810         i915_lut_handle_free(lut);
811         return err;
812 }
813
814 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
815 {
816         struct i915_address_space *vm = eb->context->vm;
817
818         do {
819                 struct drm_i915_gem_object *obj;
820                 struct i915_vma *vma;
821                 int err;
822
823                 rcu_read_lock();
824                 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
825                 if (likely(vma && vma->vm == vm))
826                         vma = i915_vma_tryget(vma);
827                 rcu_read_unlock();
828                 if (likely(vma))
829                         return vma;
830
831                 obj = i915_gem_object_lookup(eb->file, handle);
832                 if (unlikely(!obj))
833                         return ERR_PTR(-ENOENT);
834
835                 vma = i915_vma_instance(obj, vm, NULL);
836                 if (IS_ERR(vma)) {
837                         i915_gem_object_put(obj);
838                         return vma;
839                 }
840
841                 err = __eb_add_lut(eb, handle, vma);
842                 if (likely(!err))
843                         return vma;
844
845                 i915_gem_object_put(obj);
846                 if (err != -EEXIST)
847                         return ERR_PTR(err);
848         } while (1);
849 }
850
851 static int eb_lookup_vmas(struct i915_execbuffer *eb)
852 {
853         struct drm_i915_private *i915 = eb->i915;
854         unsigned int batch = eb_batch_index(eb);
855         unsigned int i;
856         int err = 0;
857
858         INIT_LIST_HEAD(&eb->relocs);
859
860         for (i = 0; i < eb->buffer_count; i++) {
861                 struct i915_vma *vma;
862
863                 vma = eb_lookup_vma(eb, eb->exec[i].handle);
864                 if (IS_ERR(vma)) {
865                         err = PTR_ERR(vma);
866                         goto err;
867                 }
868
869                 err = eb_validate_vma(eb, &eb->exec[i], vma);
870                 if (unlikely(err)) {
871                         i915_vma_put(vma);
872                         goto err;
873                 }
874
875                 eb_add_vma(eb, i, batch, vma);
876
877                 if (i915_gem_object_is_userptr(vma->obj)) {
878                         err = i915_gem_object_userptr_submit_init(vma->obj);
879                         if (err) {
880                                 if (i + 1 < eb->buffer_count) {
881                                         /*
882                                          * Execbuffer code expects last vma entry to be NULL,
883                                          * since we already initialized this entry,
884                                          * set the next value to NULL or we mess up
885                                          * cleanup handling.
886                                          */
887                                         eb->vma[i + 1].vma = NULL;
888                                 }
889
890                                 return err;
891                         }
892
893                         eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
894                         eb->args->flags |= __EXEC_USERPTR_USED;
895                 }
896         }
897
898         if (unlikely(eb->batch->flags & EXEC_OBJECT_WRITE)) {
899                 drm_dbg(&i915->drm,
900                         "Attempting to use self-modifying batch buffer\n");
901                 return -EINVAL;
902         }
903
904         if (range_overflows_t(u64,
905                               eb->batch_start_offset, eb->batch_len,
906                               eb->batch->vma->size)) {
907                 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
908                 return -EINVAL;
909         }
910
911         if (eb->batch_len == 0)
912                 eb->batch_len = eb->batch->vma->size - eb->batch_start_offset;
913         if (unlikely(eb->batch_len == 0)) { /* impossible! */
914                 drm_dbg(&i915->drm, "Invalid batch length\n");
915                 return -EINVAL;
916         }
917
918         return 0;
919
920 err:
921         eb->vma[i].vma = NULL;
922         return err;
923 }
924
925 static int eb_validate_vmas(struct i915_execbuffer *eb)
926 {
927         unsigned int i;
928         int err;
929
930         INIT_LIST_HEAD(&eb->unbound);
931
932         for (i = 0; i < eb->buffer_count; i++) {
933                 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
934                 struct eb_vma *ev = &eb->vma[i];
935                 struct i915_vma *vma = ev->vma;
936
937                 err = i915_gem_object_lock(vma->obj, &eb->ww);
938                 if (err)
939                         return err;
940
941                 err = eb_pin_vma(eb, entry, ev);
942                 if (err == -EDEADLK)
943                         return err;
944
945                 if (!err) {
946                         if (entry->offset != vma->node.start) {
947                                 entry->offset = vma->node.start | UPDATE;
948                                 eb->args->flags |= __EXEC_HAS_RELOC;
949                         }
950                 } else {
951                         eb_unreserve_vma(ev);
952
953                         list_add_tail(&ev->bind_link, &eb->unbound);
954                         if (drm_mm_node_allocated(&vma->node)) {
955                                 err = i915_vma_unbind(vma);
956                                 if (err)
957                                         return err;
958                         }
959                 }
960
961                 if (!(ev->flags & EXEC_OBJECT_WRITE)) {
962                         err = dma_resv_reserve_shared(vma->resv, 1);
963                         if (err)
964                                 return err;
965                 }
966
967                 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
968                            eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
969         }
970
971         if (!list_empty(&eb->unbound))
972                 return eb_reserve(eb);
973
974         return 0;
975 }
976
977 static struct eb_vma *
978 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
979 {
980         if (eb->lut_size < 0) {
981                 if (handle >= -eb->lut_size)
982                         return NULL;
983                 return &eb->vma[handle];
984         } else {
985                 struct hlist_head *head;
986                 struct eb_vma *ev;
987
988                 head = &eb->buckets[hash_32(handle, eb->lut_size)];
989                 hlist_for_each_entry(ev, head, node) {
990                         if (ev->handle == handle)
991                                 return ev;
992                 }
993                 return NULL;
994         }
995 }
996
997 static void eb_release_vmas(struct i915_execbuffer *eb, bool final, bool release_userptr)
998 {
999         const unsigned int count = eb->buffer_count;
1000         unsigned int i;
1001
1002         for (i = 0; i < count; i++) {
1003                 struct eb_vma *ev = &eb->vma[i];
1004                 struct i915_vma *vma = ev->vma;
1005
1006                 if (!vma)
1007                         break;
1008
1009                 eb_unreserve_vma(ev);
1010
1011                 if (release_userptr && ev->flags & __EXEC_OBJECT_USERPTR_INIT) {
1012                         ev->flags &= ~__EXEC_OBJECT_USERPTR_INIT;
1013                         i915_gem_object_userptr_submit_fini(vma->obj);
1014                 }
1015
1016                 if (final)
1017                         i915_vma_put(vma);
1018         }
1019
1020         eb_unpin_engine(eb);
1021 }
1022
1023 static void eb_destroy(const struct i915_execbuffer *eb)
1024 {
1025         GEM_BUG_ON(eb->reloc_cache.rq);
1026
1027         if (eb->lut_size > 0)
1028                 kfree(eb->buckets);
1029 }
1030
1031 static inline u64
1032 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1033                   const struct i915_vma *target)
1034 {
1035         return gen8_canonical_addr((int)reloc->delta + target->node.start);
1036 }
1037
1038 static void reloc_cache_clear(struct reloc_cache *cache)
1039 {
1040         cache->rq = NULL;
1041         cache->rq_cmd = NULL;
1042         cache->pool = NULL;
1043         cache->rq_size = 0;
1044 }
1045
1046 static void reloc_cache_init(struct reloc_cache *cache,
1047                              struct drm_i915_private *i915)
1048 {
1049         cache->page = -1;
1050         cache->vaddr = 0;
1051         /* Must be a variable in the struct to allow GCC to unroll. */
1052         cache->gen = INTEL_GEN(i915);
1053         cache->has_llc = HAS_LLC(i915);
1054         cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1055         cache->has_fence = cache->gen < 4;
1056         cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1057         cache->node.flags = 0;
1058         reloc_cache_clear(cache);
1059 }
1060
1061 static inline void *unmask_page(unsigned long p)
1062 {
1063         return (void *)(uintptr_t)(p & PAGE_MASK);
1064 }
1065
1066 static inline unsigned int unmask_flags(unsigned long p)
1067 {
1068         return p & ~PAGE_MASK;
1069 }
1070
1071 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1072
1073 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1074 {
1075         struct drm_i915_private *i915 =
1076                 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1077         return &i915->ggtt;
1078 }
1079
1080 static void reloc_cache_put_pool(struct i915_execbuffer *eb, struct reloc_cache *cache)
1081 {
1082         if (!cache->pool)
1083                 return;
1084
1085         /*
1086          * This is a bit nasty, normally we keep objects locked until the end
1087          * of execbuffer, but we already submit this, and have to unlock before
1088          * dropping the reference. Fortunately we can only hold 1 pool node at
1089          * a time, so this should be harmless.
1090          */
1091         i915_gem_ww_unlock_single(cache->pool->obj);
1092         intel_gt_buffer_pool_put(cache->pool);
1093         cache->pool = NULL;
1094 }
1095
1096 static void reloc_gpu_flush(struct i915_execbuffer *eb, struct reloc_cache *cache)
1097 {
1098         struct drm_i915_gem_object *obj = cache->rq->batch->obj;
1099
1100         GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
1101         cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
1102
1103         i915_gem_object_flush_map(obj);
1104         i915_gem_object_unpin_map(obj);
1105
1106         intel_gt_chipset_flush(cache->rq->engine->gt);
1107
1108         i915_request_add(cache->rq);
1109         reloc_cache_put_pool(eb, cache);
1110         reloc_cache_clear(cache);
1111
1112         eb->reloc_pool = NULL;
1113 }
1114
1115 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1116 {
1117         void *vaddr;
1118
1119         if (cache->rq)
1120                 reloc_gpu_flush(eb, cache);
1121
1122         if (!cache->vaddr)
1123                 return;
1124
1125         vaddr = unmask_page(cache->vaddr);
1126         if (cache->vaddr & KMAP) {
1127                 struct drm_i915_gem_object *obj =
1128                         (struct drm_i915_gem_object *)cache->node.mm;
1129                 if (cache->vaddr & CLFLUSH_AFTER)
1130                         mb();
1131
1132                 kunmap_atomic(vaddr);
1133                 i915_gem_object_finish_access(obj);
1134         } else {
1135                 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1136
1137                 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1138                 io_mapping_unmap_atomic((void __iomem *)vaddr);
1139
1140                 if (drm_mm_node_allocated(&cache->node)) {
1141                         ggtt->vm.clear_range(&ggtt->vm,
1142                                              cache->node.start,
1143                                              cache->node.size);
1144                         mutex_lock(&ggtt->vm.mutex);
1145                         drm_mm_remove_node(&cache->node);
1146                         mutex_unlock(&ggtt->vm.mutex);
1147                 } else {
1148                         i915_vma_unpin((struct i915_vma *)cache->node.mm);
1149                 }
1150         }
1151
1152         cache->vaddr = 0;
1153         cache->page = -1;
1154 }
1155
1156 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1157                         struct reloc_cache *cache,
1158                         unsigned long pageno)
1159 {
1160         void *vaddr;
1161         struct page *page;
1162
1163         if (cache->vaddr) {
1164                 kunmap_atomic(unmask_page(cache->vaddr));
1165         } else {
1166                 unsigned int flushes;
1167                 int err;
1168
1169                 err = i915_gem_object_prepare_write(obj, &flushes);
1170                 if (err)
1171                         return ERR_PTR(err);
1172
1173                 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1174                 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1175
1176                 cache->vaddr = flushes | KMAP;
1177                 cache->node.mm = (void *)obj;
1178                 if (flushes)
1179                         mb();
1180         }
1181
1182         page = i915_gem_object_get_page(obj, pageno);
1183         if (!obj->mm.dirty)
1184                 set_page_dirty(page);
1185
1186         vaddr = kmap_atomic(page);
1187         cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1188         cache->page = pageno;
1189
1190         return vaddr;
1191 }
1192
1193 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1194                          struct i915_execbuffer *eb,
1195                          unsigned long page)
1196 {
1197         struct reloc_cache *cache = &eb->reloc_cache;
1198         struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1199         unsigned long offset;
1200         void *vaddr;
1201
1202         if (cache->vaddr) {
1203                 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1204                 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1205         } else {
1206                 struct i915_vma *vma;
1207                 int err;
1208
1209                 if (i915_gem_object_is_tiled(obj))
1210                         return ERR_PTR(-EINVAL);
1211
1212                 if (use_cpu_reloc(cache, obj))
1213                         return NULL;
1214
1215                 err = i915_gem_object_set_to_gtt_domain(obj, true);
1216                 if (err)
1217                         return ERR_PTR(err);
1218
1219                 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1220                                                   PIN_MAPPABLE |
1221                                                   PIN_NONBLOCK /* NOWARN */ |
1222                                                   PIN_NOEVICT);
1223                 if (vma == ERR_PTR(-EDEADLK))
1224                         return vma;
1225
1226                 if (IS_ERR(vma)) {
1227                         memset(&cache->node, 0, sizeof(cache->node));
1228                         mutex_lock(&ggtt->vm.mutex);
1229                         err = drm_mm_insert_node_in_range
1230                                 (&ggtt->vm.mm, &cache->node,
1231                                  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1232                                  0, ggtt->mappable_end,
1233                                  DRM_MM_INSERT_LOW);
1234                         mutex_unlock(&ggtt->vm.mutex);
1235                         if (err) /* no inactive aperture space, use cpu reloc */
1236                                 return NULL;
1237                 } else {
1238                         cache->node.start = vma->node.start;
1239                         cache->node.mm = (void *)vma;
1240                 }
1241         }
1242
1243         offset = cache->node.start;
1244         if (drm_mm_node_allocated(&cache->node)) {
1245                 ggtt->vm.insert_page(&ggtt->vm,
1246                                      i915_gem_object_get_dma_address(obj, page),
1247                                      offset, I915_CACHE_NONE, 0);
1248         } else {
1249                 offset += page << PAGE_SHIFT;
1250         }
1251
1252         vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1253                                                          offset);
1254         cache->page = page;
1255         cache->vaddr = (unsigned long)vaddr;
1256
1257         return vaddr;
1258 }
1259
1260 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1261                          struct i915_execbuffer *eb,
1262                          unsigned long page)
1263 {
1264         struct reloc_cache *cache = &eb->reloc_cache;
1265         void *vaddr;
1266
1267         if (cache->page == page) {
1268                 vaddr = unmask_page(cache->vaddr);
1269         } else {
1270                 vaddr = NULL;
1271                 if ((cache->vaddr & KMAP) == 0)
1272                         vaddr = reloc_iomap(obj, eb, page);
1273                 if (!vaddr)
1274                         vaddr = reloc_kmap(obj, cache, page);
1275         }
1276
1277         return vaddr;
1278 }
1279
1280 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1281 {
1282         if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1283                 if (flushes & CLFLUSH_BEFORE) {
1284                         clflushopt(addr);
1285                         mb();
1286                 }
1287
1288                 *addr = value;
1289
1290                 /*
1291                  * Writes to the same cacheline are serialised by the CPU
1292                  * (including clflush). On the write path, we only require
1293                  * that it hits memory in an orderly fashion and place
1294                  * mb barriers at the start and end of the relocation phase
1295                  * to ensure ordering of clflush wrt to the system.
1296                  */
1297                 if (flushes & CLFLUSH_AFTER)
1298                         clflushopt(addr);
1299         } else
1300                 *addr = value;
1301 }
1302
1303 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1304 {
1305         struct drm_i915_gem_object *obj = vma->obj;
1306         int err;
1307
1308         assert_vma_held(vma);
1309
1310         if (obj->cache_dirty & ~obj->cache_coherent)
1311                 i915_gem_clflush_object(obj, 0);
1312         obj->write_domain = 0;
1313
1314         err = i915_request_await_object(rq, vma->obj, true);
1315         if (err == 0)
1316                 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1317
1318         return err;
1319 }
1320
1321 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1322                              struct intel_engine_cs *engine,
1323                              struct i915_vma *vma,
1324                              unsigned int len)
1325 {
1326         struct reloc_cache *cache = &eb->reloc_cache;
1327         struct intel_gt_buffer_pool_node *pool = eb->reloc_pool;
1328         struct i915_request *rq;
1329         struct i915_vma *batch;
1330         u32 *cmd;
1331         int err;
1332
1333         if (!pool) {
1334                 pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE,
1335                                                 cache->has_llc ?
1336                                                 I915_MAP_WB :
1337                                                 I915_MAP_WC);
1338                 if (IS_ERR(pool))
1339                         return PTR_ERR(pool);
1340         }
1341         eb->reloc_pool = NULL;
1342
1343         err = i915_gem_object_lock(pool->obj, &eb->ww);
1344         if (err)
1345                 goto err_pool;
1346
1347         cmd = i915_gem_object_pin_map(pool->obj, pool->type);
1348         if (IS_ERR(cmd)) {
1349                 err = PTR_ERR(cmd);
1350                 goto err_pool;
1351         }
1352         intel_gt_buffer_pool_mark_used(pool);
1353
1354         memset32(cmd, 0, pool->obj->base.size / sizeof(u32));
1355
1356         batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1357         if (IS_ERR(batch)) {
1358                 err = PTR_ERR(batch);
1359                 goto err_unmap;
1360         }
1361
1362         err = i915_vma_pin_ww(batch, &eb->ww, 0, 0, PIN_USER | PIN_NONBLOCK);
1363         if (err)
1364                 goto err_unmap;
1365
1366         if (engine == eb->context->engine) {
1367                 rq = i915_request_create(eb->context);
1368         } else {
1369                 struct intel_context *ce = eb->reloc_context;
1370
1371                 if (!ce) {
1372                         ce = intel_context_create(engine);
1373                         if (IS_ERR(ce)) {
1374                                 err = PTR_ERR(ce);
1375                                 goto err_unpin;
1376                         }
1377
1378                         i915_vm_put(ce->vm);
1379                         ce->vm = i915_vm_get(eb->context->vm);
1380                         eb->reloc_context = ce;
1381                 }
1382
1383                 err = intel_context_pin_ww(ce, &eb->ww);
1384                 if (err)
1385                         goto err_unpin;
1386
1387                 rq = i915_request_create(ce);
1388                 intel_context_unpin(ce);
1389         }
1390         if (IS_ERR(rq)) {
1391                 err = PTR_ERR(rq);
1392                 goto err_unpin;
1393         }
1394
1395         err = intel_gt_buffer_pool_mark_active(pool, rq);
1396         if (err)
1397                 goto err_request;
1398
1399         err = reloc_move_to_gpu(rq, vma);
1400         if (err)
1401                 goto err_request;
1402
1403         err = eb->engine->emit_bb_start(rq,
1404                                         batch->node.start, PAGE_SIZE,
1405                                         cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1406         if (err)
1407                 goto skip_request;
1408
1409         assert_vma_held(batch);
1410         err = i915_request_await_object(rq, batch->obj, false);
1411         if (err == 0)
1412                 err = i915_vma_move_to_active(batch, rq, 0);
1413         if (err)
1414                 goto skip_request;
1415
1416         rq->batch = batch;
1417         i915_vma_unpin(batch);
1418
1419         cache->rq = rq;
1420         cache->rq_cmd = cmd;
1421         cache->rq_size = 0;
1422         cache->pool = pool;
1423
1424         /* Return with batch mapping (cmd) still pinned */
1425         return 0;
1426
1427 skip_request:
1428         i915_request_set_error_once(rq, err);
1429 err_request:
1430         i915_request_add(rq);
1431 err_unpin:
1432         i915_vma_unpin(batch);
1433 err_unmap:
1434         i915_gem_object_unpin_map(pool->obj);
1435 err_pool:
1436         eb->reloc_pool = pool;
1437         return err;
1438 }
1439
1440 static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
1441 {
1442         return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6);
1443 }
1444
1445 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1446                       struct i915_vma *vma,
1447                       unsigned int len)
1448 {
1449         struct reloc_cache *cache = &eb->reloc_cache;
1450         u32 *cmd;
1451
1452         if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1453                 reloc_gpu_flush(eb, cache);
1454
1455         if (unlikely(!cache->rq)) {
1456                 int err;
1457                 struct intel_engine_cs *engine = eb->engine;
1458
1459                 if (!reloc_can_use_engine(engine)) {
1460                         engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
1461                         if (!engine)
1462                                 return ERR_PTR(-ENODEV);
1463                 }
1464
1465                 err = __reloc_gpu_alloc(eb, engine, vma, len);
1466                 if (unlikely(err))
1467                         return ERR_PTR(err);
1468         }
1469
1470         cmd = cache->rq_cmd + cache->rq_size;
1471         cache->rq_size += len;
1472
1473         return cmd;
1474 }
1475
1476 static inline bool use_reloc_gpu(struct i915_vma *vma)
1477 {
1478         if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
1479                 return true;
1480
1481         if (DBG_FORCE_RELOC)
1482                 return false;
1483
1484         return !dma_resv_test_signaled_rcu(vma->resv, true);
1485 }
1486
1487 static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
1488 {
1489         struct page *page;
1490         unsigned long addr;
1491
1492         GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
1493
1494         page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
1495         addr = PFN_PHYS(page_to_pfn(page));
1496         GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
1497
1498         return addr + offset_in_page(offset);
1499 }
1500
1501 static int __reloc_entry_gpu(struct i915_execbuffer *eb,
1502                               struct i915_vma *vma,
1503                               u64 offset,
1504                               u64 target_addr)
1505 {
1506         const unsigned int gen = eb->reloc_cache.gen;
1507         unsigned int len;
1508         u32 *batch;
1509         u64 addr;
1510
1511         if (gen >= 8)
1512                 len = offset & 7 ? 8 : 5;
1513         else if (gen >= 4)
1514                 len = 4;
1515         else
1516                 len = 3;
1517
1518         batch = reloc_gpu(eb, vma, len);
1519         if (batch == ERR_PTR(-EDEADLK))
1520                 return -EDEADLK;
1521         else if (IS_ERR(batch))
1522                 return false;
1523
1524         addr = gen8_canonical_addr(vma->node.start + offset);
1525         if (gen >= 8) {
1526                 if (offset & 7) {
1527                         *batch++ = MI_STORE_DWORD_IMM_GEN4;
1528                         *batch++ = lower_32_bits(addr);
1529                         *batch++ = upper_32_bits(addr);
1530                         *batch++ = lower_32_bits(target_addr);
1531
1532                         addr = gen8_canonical_addr(addr + 4);
1533
1534                         *batch++ = MI_STORE_DWORD_IMM_GEN4;
1535                         *batch++ = lower_32_bits(addr);
1536                         *batch++ = upper_32_bits(addr);
1537                         *batch++ = upper_32_bits(target_addr);
1538                 } else {
1539                         *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1540                         *batch++ = lower_32_bits(addr);
1541                         *batch++ = upper_32_bits(addr);
1542                         *batch++ = lower_32_bits(target_addr);
1543                         *batch++ = upper_32_bits(target_addr);
1544                 }
1545         } else if (gen >= 6) {
1546                 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1547                 *batch++ = 0;
1548                 *batch++ = addr;
1549                 *batch++ = target_addr;
1550         } else if (IS_I965G(eb->i915)) {
1551                 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1552                 *batch++ = 0;
1553                 *batch++ = vma_phys_addr(vma, offset);
1554                 *batch++ = target_addr;
1555         } else if (gen >= 4) {
1556                 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1557                 *batch++ = 0;
1558                 *batch++ = addr;
1559                 *batch++ = target_addr;
1560         } else if (gen >= 3 &&
1561                    !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
1562                 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1563                 *batch++ = addr;
1564                 *batch++ = target_addr;
1565         } else {
1566                 *batch++ = MI_STORE_DWORD_IMM;
1567                 *batch++ = vma_phys_addr(vma, offset);
1568                 *batch++ = target_addr;
1569         }
1570
1571         return true;
1572 }
1573
1574 static int reloc_entry_gpu(struct i915_execbuffer *eb,
1575                             struct i915_vma *vma,
1576                             u64 offset,
1577                             u64 target_addr)
1578 {
1579         if (eb->reloc_cache.vaddr)
1580                 return false;
1581
1582         if (!use_reloc_gpu(vma))
1583                 return false;
1584
1585         return __reloc_entry_gpu(eb, vma, offset, target_addr);
1586 }
1587
1588 static u64
1589 relocate_entry(struct i915_vma *vma,
1590                const struct drm_i915_gem_relocation_entry *reloc,
1591                struct i915_execbuffer *eb,
1592                const struct i915_vma *target)
1593 {
1594         u64 target_addr = relocation_target(reloc, target);
1595         u64 offset = reloc->offset;
1596         int reloc_gpu = reloc_entry_gpu(eb, vma, offset, target_addr);
1597
1598         if (reloc_gpu < 0)
1599                 return reloc_gpu;
1600
1601         if (!reloc_gpu) {
1602                 bool wide = eb->reloc_cache.use_64bit_reloc;
1603                 void *vaddr;
1604
1605 repeat:
1606                 vaddr = reloc_vaddr(vma->obj, eb,
1607                                     offset >> PAGE_SHIFT);
1608                 if (IS_ERR(vaddr))
1609                         return PTR_ERR(vaddr);
1610
1611                 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1612                 clflush_write32(vaddr + offset_in_page(offset),
1613                                 lower_32_bits(target_addr),
1614                                 eb->reloc_cache.vaddr);
1615
1616                 if (wide) {
1617                         offset += sizeof(u32);
1618                         target_addr >>= 32;
1619                         wide = false;
1620                         goto repeat;
1621                 }
1622         }
1623
1624         return target->node.start | UPDATE;
1625 }
1626
1627 static u64
1628 eb_relocate_entry(struct i915_execbuffer *eb,
1629                   struct eb_vma *ev,
1630                   const struct drm_i915_gem_relocation_entry *reloc)
1631 {
1632         struct drm_i915_private *i915 = eb->i915;
1633         struct eb_vma *target;
1634         int err;
1635
1636         /* we've already hold a reference to all valid objects */
1637         target = eb_get_vma(eb, reloc->target_handle);
1638         if (unlikely(!target))
1639                 return -ENOENT;
1640
1641         /* Validate that the target is in a valid r/w GPU domain */
1642         if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1643                 drm_dbg(&i915->drm, "reloc with multiple write domains: "
1644                           "target %d offset %d "
1645                           "read %08x write %08x",
1646                           reloc->target_handle,
1647                           (int) reloc->offset,
1648                           reloc->read_domains,
1649                           reloc->write_domain);
1650                 return -EINVAL;
1651         }
1652         if (unlikely((reloc->write_domain | reloc->read_domains)
1653                      & ~I915_GEM_GPU_DOMAINS)) {
1654                 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1655                           "target %d offset %d "
1656                           "read %08x write %08x",
1657                           reloc->target_handle,
1658                           (int) reloc->offset,
1659                           reloc->read_domains,
1660                           reloc->write_domain);
1661                 return -EINVAL;
1662         }
1663
1664         if (reloc->write_domain) {
1665                 target->flags |= EXEC_OBJECT_WRITE;
1666
1667                 /*
1668                  * Sandybridge PPGTT errata: We need a global gtt mapping
1669                  * for MI and pipe_control writes because the gpu doesn't
1670                  * properly redirect them through the ppgtt for non_secure
1671                  * batchbuffers.
1672                  */
1673                 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1674                     IS_GEN(eb->i915, 6)) {
1675                         err = i915_vma_bind(target->vma,
1676                                             target->vma->obj->cache_level,
1677                                             PIN_GLOBAL, NULL);
1678                         if (err)
1679                                 return err;
1680                 }
1681         }
1682
1683         /*
1684          * If the relocation already has the right value in it, no
1685          * more work needs to be done.
1686          */
1687         if (!DBG_FORCE_RELOC &&
1688             gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1689                 return 0;
1690
1691         /* Check that the relocation address is valid... */
1692         if (unlikely(reloc->offset >
1693                      ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1694                 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1695                           "target %d offset %d size %d.\n",
1696                           reloc->target_handle,
1697                           (int)reloc->offset,
1698                           (int)ev->vma->size);
1699                 return -EINVAL;
1700         }
1701         if (unlikely(reloc->offset & 3)) {
1702                 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1703                           "target %d offset %d.\n",
1704                           reloc->target_handle,
1705                           (int)reloc->offset);
1706                 return -EINVAL;
1707         }
1708
1709         /*
1710          * If we write into the object, we need to force the synchronisation
1711          * barrier, either with an asynchronous clflush or if we executed the
1712          * patching using the GPU (though that should be serialised by the
1713          * timeline). To be completely sure, and since we are required to
1714          * do relocations we are already stalling, disable the user's opt
1715          * out of our synchronisation.
1716          */
1717         ev->flags &= ~EXEC_OBJECT_ASYNC;
1718
1719         /* and update the user's relocation entry */
1720         return relocate_entry(ev->vma, reloc, eb, target->vma);
1721 }
1722
1723 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1724 {
1725 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1726         struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1727         const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1728         struct drm_i915_gem_relocation_entry __user *urelocs =
1729                 u64_to_user_ptr(entry->relocs_ptr);
1730         unsigned long remain = entry->relocation_count;
1731
1732         if (unlikely(remain > N_RELOC(ULONG_MAX)))
1733                 return -EINVAL;
1734
1735         /*
1736          * We must check that the entire relocation array is safe
1737          * to read. However, if the array is not writable the user loses
1738          * the updated relocation values.
1739          */
1740         if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1741                 return -EFAULT;
1742
1743         do {
1744                 struct drm_i915_gem_relocation_entry *r = stack;
1745                 unsigned int count =
1746                         min_t(unsigned long, remain, ARRAY_SIZE(stack));
1747                 unsigned int copied;
1748
1749                 /*
1750                  * This is the fast path and we cannot handle a pagefault
1751                  * whilst holding the struct mutex lest the user pass in the
1752                  * relocations contained within a mmaped bo. For in such a case
1753                  * we, the page fault handler would call i915_gem_fault() and
1754                  * we would try to acquire the struct mutex again. Obviously
1755                  * this is bad and so lockdep complains vehemently.
1756                  */
1757                 pagefault_disable();
1758                 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1759                 pagefault_enable();
1760                 if (unlikely(copied)) {
1761                         remain = -EFAULT;
1762                         goto out;
1763                 }
1764
1765                 remain -= count;
1766                 do {
1767                         u64 offset = eb_relocate_entry(eb, ev, r);
1768
1769                         if (likely(offset == 0)) {
1770                         } else if ((s64)offset < 0) {
1771                                 remain = (int)offset;
1772                                 goto out;
1773                         } else {
1774                                 /*
1775                                  * Note that reporting an error now
1776                                  * leaves everything in an inconsistent
1777                                  * state as we have *already* changed
1778                                  * the relocation value inside the
1779                                  * object. As we have not changed the
1780                                  * reloc.presumed_offset or will not
1781                                  * change the execobject.offset, on the
1782                                  * call we may not rewrite the value
1783                                  * inside the object, leaving it
1784                                  * dangling and causing a GPU hang. Unless
1785                                  * userspace dynamically rebuilds the
1786                                  * relocations on each execbuf rather than
1787                                  * presume a static tree.
1788                                  *
1789                                  * We did previously check if the relocations
1790                                  * were writable (access_ok), an error now
1791                                  * would be a strange race with mprotect,
1792                                  * having already demonstrated that we
1793                                  * can read from this userspace address.
1794                                  */
1795                                 offset = gen8_canonical_addr(offset & ~UPDATE);
1796                                 __put_user(offset,
1797                                            &urelocs[r - stack].presumed_offset);
1798                         }
1799                 } while (r++, --count);
1800                 urelocs += ARRAY_SIZE(stack);
1801         } while (remain);
1802 out:
1803         reloc_cache_reset(&eb->reloc_cache, eb);
1804         return remain;
1805 }
1806
1807 static int
1808 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1809 {
1810         const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1811         struct drm_i915_gem_relocation_entry *relocs =
1812                 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1813         unsigned int i;
1814         int err;
1815
1816         for (i = 0; i < entry->relocation_count; i++) {
1817                 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1818
1819                 if ((s64)offset < 0) {
1820                         err = (int)offset;
1821                         goto err;
1822                 }
1823         }
1824         err = 0;
1825 err:
1826         reloc_cache_reset(&eb->reloc_cache, eb);
1827         return err;
1828 }
1829
1830 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1831 {
1832         const char __user *addr, *end;
1833         unsigned long size;
1834         char __maybe_unused c;
1835
1836         size = entry->relocation_count;
1837         if (size == 0)
1838                 return 0;
1839
1840         if (size > N_RELOC(ULONG_MAX))
1841                 return -EINVAL;
1842
1843         addr = u64_to_user_ptr(entry->relocs_ptr);
1844         size *= sizeof(struct drm_i915_gem_relocation_entry);
1845         if (!access_ok(addr, size))
1846                 return -EFAULT;
1847
1848         end = addr + size;
1849         for (; addr < end; addr += PAGE_SIZE) {
1850                 int err = __get_user(c, addr);
1851                 if (err)
1852                         return err;
1853         }
1854         return __get_user(c, end - 1);
1855 }
1856
1857 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1858 {
1859         struct drm_i915_gem_relocation_entry *relocs;
1860         const unsigned int count = eb->buffer_count;
1861         unsigned int i;
1862         int err;
1863
1864         for (i = 0; i < count; i++) {
1865                 const unsigned int nreloc = eb->exec[i].relocation_count;
1866                 struct drm_i915_gem_relocation_entry __user *urelocs;
1867                 unsigned long size;
1868                 unsigned long copied;
1869
1870                 if (nreloc == 0)
1871                         continue;
1872
1873                 err = check_relocations(&eb->exec[i]);
1874                 if (err)
1875                         goto err;
1876
1877                 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1878                 size = nreloc * sizeof(*relocs);
1879
1880                 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1881                 if (!relocs) {
1882                         err = -ENOMEM;
1883                         goto err;
1884                 }
1885
1886                 /* copy_from_user is limited to < 4GiB */
1887                 copied = 0;
1888                 do {
1889                         unsigned int len =
1890                                 min_t(u64, BIT_ULL(31), size - copied);
1891
1892                         if (__copy_from_user((char *)relocs + copied,
1893                                              (char __user *)urelocs + copied,
1894                                              len))
1895                                 goto end;
1896
1897                         copied += len;
1898                 } while (copied < size);
1899
1900                 /*
1901                  * As we do not update the known relocation offsets after
1902                  * relocating (due to the complexities in lock handling),
1903                  * we need to mark them as invalid now so that we force the
1904                  * relocation processing next time. Just in case the target
1905                  * object is evicted and then rebound into its old
1906                  * presumed_offset before the next execbuffer - if that
1907                  * happened we would make the mistake of assuming that the
1908                  * relocations were valid.
1909                  */
1910                 if (!user_access_begin(urelocs, size))
1911                         goto end;
1912
1913                 for (copied = 0; copied < nreloc; copied++)
1914                         unsafe_put_user(-1,
1915                                         &urelocs[copied].presumed_offset,
1916                                         end_user);
1917                 user_access_end();
1918
1919                 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1920         }
1921
1922         return 0;
1923
1924 end_user:
1925         user_access_end();
1926 end:
1927         kvfree(relocs);
1928         err = -EFAULT;
1929 err:
1930         while (i--) {
1931                 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1932                 if (eb->exec[i].relocation_count)
1933                         kvfree(relocs);
1934         }
1935         return err;
1936 }
1937
1938 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1939 {
1940         const unsigned int count = eb->buffer_count;
1941         unsigned int i;
1942
1943         for (i = 0; i < count; i++) {
1944                 int err;
1945
1946                 err = check_relocations(&eb->exec[i]);
1947                 if (err)
1948                         return err;
1949         }
1950
1951         return 0;
1952 }
1953
1954 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1955 {
1956         const unsigned int count = eb->buffer_count;
1957         unsigned int i;
1958         int ret;
1959
1960         if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1961                 return 0;
1962
1963         for (i = 0; i < count; i++) {
1964                 struct eb_vma *ev = &eb->vma[i];
1965
1966                 if (!i915_gem_object_is_userptr(ev->vma->obj))
1967                         continue;
1968
1969                 ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1970                 if (ret)
1971                         return ret;
1972
1973                 ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1974         }
1975
1976         return 0;
1977 }
1978
1979 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb,
1980                                            struct i915_request *rq)
1981 {
1982         bool have_copy = false;
1983         struct eb_vma *ev;
1984         int err = 0;
1985
1986 repeat:
1987         if (signal_pending(current)) {
1988                 err = -ERESTARTSYS;
1989                 goto out;
1990         }
1991
1992         /* We may process another execbuffer during the unlock... */
1993         eb_release_vmas(eb, false, true);
1994         i915_gem_ww_ctx_fini(&eb->ww);
1995
1996         if (rq) {
1997                 /* nonblocking is always false */
1998                 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
1999                                       MAX_SCHEDULE_TIMEOUT) < 0) {
2000                         i915_request_put(rq);
2001                         rq = NULL;
2002
2003                         err = -EINTR;
2004                         goto err_relock;
2005                 }
2006
2007                 i915_request_put(rq);
2008                 rq = NULL;
2009         }
2010
2011         /*
2012          * We take 3 passes through the slowpatch.
2013          *
2014          * 1 - we try to just prefault all the user relocation entries and
2015          * then attempt to reuse the atomic pagefault disabled fast path again.
2016          *
2017          * 2 - we copy the user entries to a local buffer here outside of the
2018          * local and allow ourselves to wait upon any rendering before
2019          * relocations
2020          *
2021          * 3 - we already have a local copy of the relocation entries, but
2022          * were interrupted (EAGAIN) whilst waiting for the objects, try again.
2023          */
2024         if (!err) {
2025                 err = eb_prefault_relocations(eb);
2026         } else if (!have_copy) {
2027                 err = eb_copy_relocations(eb);
2028                 have_copy = err == 0;
2029         } else {
2030                 cond_resched();
2031                 err = 0;
2032         }
2033
2034         if (!err)
2035                 err = eb_reinit_userptr(eb);
2036
2037 err_relock:
2038         i915_gem_ww_ctx_init(&eb->ww, true);
2039         if (err)
2040                 goto out;
2041
2042         /* reacquire the objects */
2043 repeat_validate:
2044         rq = eb_pin_engine(eb, false);
2045         if (IS_ERR(rq)) {
2046                 err = PTR_ERR(rq);
2047                 rq = NULL;
2048                 goto err;
2049         }
2050
2051         /* We didn't throttle, should be NULL */
2052         GEM_WARN_ON(rq);
2053
2054         err = eb_validate_vmas(eb);
2055         if (err)
2056                 goto err;
2057
2058         GEM_BUG_ON(!eb->batch);
2059
2060         list_for_each_entry(ev, &eb->relocs, reloc_link) {
2061                 if (!have_copy) {
2062                         pagefault_disable();
2063                         err = eb_relocate_vma(eb, ev);
2064                         pagefault_enable();
2065                         if (err)
2066                                 break;
2067                 } else {
2068                         err = eb_relocate_vma_slow(eb, ev);
2069                         if (err)
2070                                 break;
2071                 }
2072         }
2073
2074         if (err == -EDEADLK)
2075                 goto err;
2076
2077         if (err && !have_copy)
2078                 goto repeat;
2079
2080         if (err)
2081                 goto err;
2082
2083         /* as last step, parse the command buffer */
2084         err = eb_parse(eb);
2085         if (err)
2086                 goto err;
2087
2088         /*
2089          * Leave the user relocations as are, this is the painfully slow path,
2090          * and we want to avoid the complication of dropping the lock whilst
2091          * having buffers reserved in the aperture and so causing spurious
2092          * ENOSPC for random operations.
2093          */
2094
2095 err:
2096         if (err == -EDEADLK) {
2097                 eb_release_vmas(eb, false, false);
2098                 err = i915_gem_ww_ctx_backoff(&eb->ww);
2099                 if (!err)
2100                         goto repeat_validate;
2101         }
2102
2103         if (err == -EAGAIN)
2104                 goto repeat;
2105
2106 out:
2107         if (have_copy) {
2108                 const unsigned int count = eb->buffer_count;
2109                 unsigned int i;
2110
2111                 for (i = 0; i < count; i++) {
2112                         const struct drm_i915_gem_exec_object2 *entry =
2113                                 &eb->exec[i];
2114                         struct drm_i915_gem_relocation_entry *relocs;
2115
2116                         if (!entry->relocation_count)
2117                                 continue;
2118
2119                         relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
2120                         kvfree(relocs);
2121                 }
2122         }
2123
2124         if (rq)
2125                 i915_request_put(rq);
2126
2127         return err;
2128 }
2129
2130 static int eb_relocate_parse(struct i915_execbuffer *eb)
2131 {
2132         int err;
2133         struct i915_request *rq = NULL;
2134         bool throttle = true;
2135
2136 retry:
2137         rq = eb_pin_engine(eb, throttle);
2138         if (IS_ERR(rq)) {
2139                 err = PTR_ERR(rq);
2140                 rq = NULL;
2141                 if (err != -EDEADLK)
2142                         return err;
2143
2144                 goto err;
2145         }
2146
2147         if (rq) {
2148                 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2149
2150                 /* Need to drop all locks now for throttling, take slowpath */
2151                 err = i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 0);
2152                 if (err == -ETIME) {
2153                         if (nonblock) {
2154                                 err = -EWOULDBLOCK;
2155                                 i915_request_put(rq);
2156                                 goto err;
2157                         }
2158                         goto slow;
2159                 }
2160                 i915_request_put(rq);
2161                 rq = NULL;
2162         }
2163
2164         /* only throttle once, even if we didn't need to throttle */
2165         throttle = false;
2166
2167         err = eb_validate_vmas(eb);
2168         if (err == -EAGAIN)
2169                 goto slow;
2170         else if (err)
2171                 goto err;
2172
2173         /* The objects are in their final locations, apply the relocations. */
2174         if (eb->args->flags & __EXEC_HAS_RELOC) {
2175                 struct eb_vma *ev;
2176
2177                 list_for_each_entry(ev, &eb->relocs, reloc_link) {
2178                         err = eb_relocate_vma(eb, ev);
2179                         if (err)
2180                                 break;
2181                 }
2182
2183                 if (err == -EDEADLK)
2184                         goto err;
2185                 else if (err)
2186                         goto slow;
2187         }
2188
2189         if (!err)
2190                 err = eb_parse(eb);
2191
2192 err:
2193         if (err == -EDEADLK) {
2194                 eb_release_vmas(eb, false, false);
2195                 err = i915_gem_ww_ctx_backoff(&eb->ww);
2196                 if (!err)
2197                         goto retry;
2198         }
2199
2200         return err;
2201
2202 slow:
2203         err = eb_relocate_parse_slow(eb, rq);
2204         if (err)
2205                 /*
2206                  * If the user expects the execobject.offset and
2207                  * reloc.presumed_offset to be an exact match,
2208                  * as for using NO_RELOC, then we cannot update
2209                  * the execobject.offset until we have completed
2210                  * relocation.
2211                  */
2212                 eb->args->flags &= ~__EXEC_HAS_RELOC;
2213
2214         return err;
2215 }
2216
2217 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2218 {
2219         const unsigned int count = eb->buffer_count;
2220         unsigned int i = count;
2221         int err = 0;
2222
2223         while (i--) {
2224                 struct eb_vma *ev = &eb->vma[i];
2225                 struct i915_vma *vma = ev->vma;
2226                 unsigned int flags = ev->flags;
2227                 struct drm_i915_gem_object *obj = vma->obj;
2228
2229                 assert_vma_held(vma);
2230
2231                 if (flags & EXEC_OBJECT_CAPTURE) {
2232                         struct i915_capture_list *capture;
2233
2234                         capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2235                         if (capture) {
2236                                 capture->next = eb->request->capture_list;
2237                                 capture->vma = vma;
2238                                 eb->request->capture_list = capture;
2239                         }
2240                 }
2241
2242                 /*
2243                  * If the GPU is not _reading_ through the CPU cache, we need
2244                  * to make sure that any writes (both previous GPU writes from
2245                  * before a change in snooping levels and normal CPU writes)
2246                  * caught in that cache are flushed to main memory.
2247                  *
2248                  * We want to say
2249                  *   obj->cache_dirty &&
2250                  *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2251                  * but gcc's optimiser doesn't handle that as well and emits
2252                  * two jumps instead of one. Maybe one day...
2253                  */
2254                 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2255                         if (i915_gem_clflush_object(obj, 0))
2256                                 flags &= ~EXEC_OBJECT_ASYNC;
2257                 }
2258
2259                 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2260                         err = i915_request_await_object
2261                                 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
2262                 }
2263
2264                 if (err == 0)
2265                         err = i915_vma_move_to_active(vma, eb->request,
2266                                                       flags | __EXEC_OBJECT_NO_RESERVE);
2267         }
2268
2269 #ifdef CONFIG_MMU_NOTIFIER
2270         if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2271                 spin_lock(&eb->i915->mm.notifier_lock);
2272
2273                 /*
2274                  * count is always at least 1, otherwise __EXEC_USERPTR_USED
2275                  * could not have been set
2276                  */
2277                 for (i = 0; i < count; i++) {
2278                         struct eb_vma *ev = &eb->vma[i];
2279                         struct drm_i915_gem_object *obj = ev->vma->obj;
2280
2281                         if (!i915_gem_object_is_userptr(obj))
2282                                 continue;
2283
2284                         err = i915_gem_object_userptr_submit_done(obj);
2285                         if (err)
2286                                 break;
2287                 }
2288
2289                 spin_unlock(&eb->i915->mm.notifier_lock);
2290         }
2291 #endif
2292
2293         if (unlikely(err))
2294                 goto err_skip;
2295
2296         /* Unconditionally flush any chipset caches (for streaming writes). */
2297         intel_gt_chipset_flush(eb->engine->gt);
2298         return 0;
2299
2300 err_skip:
2301         i915_request_set_error_once(eb->request, err);
2302         return err;
2303 }
2304
2305 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2306 {
2307         if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2308                 return -EINVAL;
2309
2310         /* Kernel clipping was a DRI1 misfeature */
2311         if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2312                              I915_EXEC_USE_EXTENSIONS))) {
2313                 if (exec->num_cliprects || exec->cliprects_ptr)
2314                         return -EINVAL;
2315         }
2316
2317         if (exec->DR4 == 0xffffffff) {
2318                 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2319                 exec->DR4 = 0;
2320         }
2321         if (exec->DR1 || exec->DR4)
2322                 return -EINVAL;
2323
2324         if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2325                 return -EINVAL;
2326
2327         return 0;
2328 }
2329
2330 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2331 {
2332         u32 *cs;
2333         int i;
2334
2335         if (!IS_GEN(rq->engine->i915, 7) || rq->engine->id != RCS0) {
2336                 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2337                 return -EINVAL;
2338         }
2339
2340         cs = intel_ring_begin(rq, 4 * 2 + 2);
2341         if (IS_ERR(cs))
2342                 return PTR_ERR(cs);
2343
2344         *cs++ = MI_LOAD_REGISTER_IMM(4);
2345         for (i = 0; i < 4; i++) {
2346                 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2347                 *cs++ = 0;
2348         }
2349         *cs++ = MI_NOOP;
2350         intel_ring_advance(rq, cs);
2351
2352         return 0;
2353 }
2354
2355 static struct i915_vma *
2356 shadow_batch_pin(struct i915_execbuffer *eb,
2357                  struct drm_i915_gem_object *obj,
2358                  struct i915_address_space *vm,
2359                  unsigned int flags)
2360 {
2361         struct i915_vma *vma;
2362         int err;
2363
2364         vma = i915_vma_instance(obj, vm, NULL);
2365         if (IS_ERR(vma))
2366                 return vma;
2367
2368         err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags);
2369         if (err)
2370                 return ERR_PTR(err);
2371
2372         return vma;
2373 }
2374
2375 struct eb_parse_work {
2376         struct dma_fence_work base;
2377         struct intel_engine_cs *engine;
2378         struct i915_vma *batch;
2379         struct i915_vma *shadow;
2380         struct i915_vma *trampoline;
2381         unsigned long batch_offset;
2382         unsigned long batch_length;
2383         unsigned long *jump_whitelist;
2384         const void *batch_map;
2385         void *shadow_map;
2386 };
2387
2388 static int __eb_parse(struct dma_fence_work *work)
2389 {
2390         struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
2391         int ret;
2392         bool cookie;
2393
2394         cookie = dma_fence_begin_signalling();
2395         ret = intel_engine_cmd_parser(pw->engine,
2396                                       pw->batch,
2397                                       pw->batch_offset,
2398                                       pw->batch_length,
2399                                       pw->shadow,
2400                                       pw->jump_whitelist,
2401                                       pw->shadow_map,
2402                                       pw->batch_map);
2403         dma_fence_end_signalling(cookie);
2404
2405         return ret;
2406 }
2407
2408 static void __eb_parse_release(struct dma_fence_work *work)
2409 {
2410         struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
2411
2412         if (!IS_ERR_OR_NULL(pw->jump_whitelist))
2413                 kfree(pw->jump_whitelist);
2414
2415         if (pw->batch_map)
2416                 i915_gem_object_unpin_map(pw->batch->obj);
2417         else
2418                 i915_gem_object_unpin_pages(pw->batch->obj);
2419
2420         i915_gem_object_unpin_map(pw->shadow->obj);
2421
2422         if (pw->trampoline)
2423                 i915_active_release(&pw->trampoline->active);
2424         i915_active_release(&pw->shadow->active);
2425         i915_active_release(&pw->batch->active);
2426 }
2427
2428 static const struct dma_fence_work_ops eb_parse_ops = {
2429         .name = "eb_parse",
2430         .work = __eb_parse,
2431         .release = __eb_parse_release,
2432 };
2433
2434 static inline int
2435 __parser_mark_active(struct i915_vma *vma,
2436                      struct intel_timeline *tl,
2437                      struct dma_fence *fence)
2438 {
2439         struct intel_gt_buffer_pool_node *node = vma->private;
2440
2441         return i915_active_ref(&node->active, tl->fence_context, fence);
2442 }
2443
2444 static int
2445 parser_mark_active(struct eb_parse_work *pw, struct intel_timeline *tl)
2446 {
2447         int err;
2448
2449         mutex_lock(&tl->mutex);
2450
2451         err = __parser_mark_active(pw->shadow, tl, &pw->base.dma);
2452         if (err)
2453                 goto unlock;
2454
2455         if (pw->trampoline) {
2456                 err = __parser_mark_active(pw->trampoline, tl, &pw->base.dma);
2457                 if (err)
2458                         goto unlock;
2459         }
2460
2461 unlock:
2462         mutex_unlock(&tl->mutex);
2463         return err;
2464 }
2465
2466 static int eb_parse_pipeline(struct i915_execbuffer *eb,
2467                              struct i915_vma *shadow,
2468                              struct i915_vma *trampoline)
2469 {
2470         struct eb_parse_work *pw;
2471         struct drm_i915_gem_object *batch = eb->batch->vma->obj;
2472         bool needs_clflush;
2473         int err;
2474
2475         GEM_BUG_ON(overflows_type(eb->batch_start_offset, pw->batch_offset));
2476         GEM_BUG_ON(overflows_type(eb->batch_len, pw->batch_length));
2477
2478         pw = kzalloc(sizeof(*pw), GFP_KERNEL);
2479         if (!pw)
2480                 return -ENOMEM;
2481
2482         err = i915_active_acquire(&eb->batch->vma->active);
2483         if (err)
2484                 goto err_free;
2485
2486         err = i915_active_acquire(&shadow->active);
2487         if (err)
2488                 goto err_batch;
2489
2490         if (trampoline) {
2491                 err = i915_active_acquire(&trampoline->active);
2492                 if (err)
2493                         goto err_shadow;
2494         }
2495
2496         pw->shadow_map = i915_gem_object_pin_map(shadow->obj, I915_MAP_WB);
2497         if (IS_ERR(pw->shadow_map)) {
2498                 err = PTR_ERR(pw->shadow_map);
2499                 goto err_trampoline;
2500         }
2501
2502         needs_clflush =
2503                 !(batch->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ);
2504
2505         pw->batch_map = ERR_PTR(-ENODEV);
2506         if (needs_clflush && i915_has_memcpy_from_wc())
2507                 pw->batch_map = i915_gem_object_pin_map(batch, I915_MAP_WC);
2508
2509         if (IS_ERR(pw->batch_map)) {
2510                 err = i915_gem_object_pin_pages(batch);
2511                 if (err)
2512                         goto err_unmap_shadow;
2513                 pw->batch_map = NULL;
2514         }
2515
2516         pw->jump_whitelist =
2517                 intel_engine_cmd_parser_alloc_jump_whitelist(eb->batch_len,
2518                                                              trampoline);
2519         if (IS_ERR(pw->jump_whitelist)) {
2520                 err = PTR_ERR(pw->jump_whitelist);
2521                 goto err_unmap_batch;
2522         }
2523
2524         dma_fence_work_init(&pw->base, &eb_parse_ops);
2525
2526         pw->engine = eb->engine;
2527         pw->batch = eb->batch->vma;
2528         pw->batch_offset = eb->batch_start_offset;
2529         pw->batch_length = eb->batch_len;
2530         pw->shadow = shadow;
2531         pw->trampoline = trampoline;
2532
2533         /* Mark active refs early for this worker, in case we get interrupted */
2534         err = parser_mark_active(pw, eb->context->timeline);
2535         if (err)
2536                 goto err_commit;
2537
2538         err = dma_resv_reserve_shared(pw->batch->resv, 1);
2539         if (err)
2540                 goto err_commit;
2541
2542         err = dma_resv_reserve_shared(shadow->resv, 1);
2543         if (err)
2544                 goto err_commit;
2545
2546         /* Wait for all writes (and relocs) into the batch to complete */
2547         err = i915_sw_fence_await_reservation(&pw->base.chain,
2548                                               pw->batch->resv, NULL, false,
2549                                               0, I915_FENCE_GFP);
2550         if (err < 0)
2551                 goto err_commit;
2552
2553         /* Keep the batch alive and unwritten as we parse */
2554         dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);
2555
2556         /* Force execution to wait for completion of the parser */
2557         dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
2558
2559         dma_fence_work_commit_imm(&pw->base);
2560         return 0;
2561
2562 err_commit:
2563         i915_sw_fence_set_error_once(&pw->base.chain, err);
2564         dma_fence_work_commit_imm(&pw->base);
2565         return err;
2566
2567 err_unmap_batch:
2568         if (pw->batch_map)
2569                 i915_gem_object_unpin_map(batch);
2570         else
2571                 i915_gem_object_unpin_pages(batch);
2572 err_unmap_shadow:
2573         i915_gem_object_unpin_map(shadow->obj);
2574 err_trampoline:
2575         if (trampoline)
2576                 i915_active_release(&trampoline->active);
2577 err_shadow:
2578         i915_active_release(&shadow->active);
2579 err_batch:
2580         i915_active_release(&eb->batch->vma->active);
2581 err_free:
2582         kfree(pw);
2583         return err;
2584 }
2585
2586 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2587 {
2588         /*
2589          * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2590          * batch" bit. Hence we need to pin secure batches into the global gtt.
2591          * hsw should have this fixed, but bdw mucks it up again. */
2592         if (eb->batch_flags & I915_DISPATCH_SECURE)
2593                 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0);
2594
2595         return NULL;
2596 }
2597
2598 static int eb_parse(struct i915_execbuffer *eb)
2599 {
2600         struct drm_i915_private *i915 = eb->i915;
2601         struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2602         struct i915_vma *shadow, *trampoline, *batch;
2603         unsigned long len;
2604         int err;
2605
2606         if (!eb_use_cmdparser(eb)) {
2607                 batch = eb_dispatch_secure(eb, eb->batch->vma);
2608                 if (IS_ERR(batch))
2609                         return PTR_ERR(batch);
2610
2611                 goto secure_batch;
2612         }
2613
2614         len = eb->batch_len;
2615         if (!CMDPARSER_USES_GGTT(eb->i915)) {
2616                 /*
2617                  * ppGTT backed shadow buffers must be mapped RO, to prevent
2618                  * post-scan tampering
2619                  */
2620                 if (!eb->context->vm->has_read_only) {
2621                         drm_dbg(&i915->drm,
2622                                 "Cannot prevent post-scan tampering without RO capable vm\n");
2623                         return -EINVAL;
2624                 }
2625         } else {
2626                 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2627         }
2628         if (unlikely(len < eb->batch_len)) /* last paranoid check of overflow */
2629                 return -EINVAL;
2630
2631         if (!pool) {
2632                 pool = intel_gt_get_buffer_pool(eb->engine->gt, len,
2633                                                 I915_MAP_WB);
2634                 if (IS_ERR(pool))
2635                         return PTR_ERR(pool);
2636                 eb->batch_pool = pool;
2637         }
2638
2639         err = i915_gem_object_lock(pool->obj, &eb->ww);
2640         if (err)
2641                 goto err;
2642
2643         shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2644         if (IS_ERR(shadow)) {
2645                 err = PTR_ERR(shadow);
2646                 goto err;
2647         }
2648         intel_gt_buffer_pool_mark_used(pool);
2649         i915_gem_object_set_readonly(shadow->obj);
2650         shadow->private = pool;
2651
2652         trampoline = NULL;
2653         if (CMDPARSER_USES_GGTT(eb->i915)) {
2654                 trampoline = shadow;
2655
2656                 shadow = shadow_batch_pin(eb, pool->obj,
2657                                           &eb->engine->gt->ggtt->vm,
2658                                           PIN_GLOBAL);
2659                 if (IS_ERR(shadow)) {
2660                         err = PTR_ERR(shadow);
2661                         shadow = trampoline;
2662                         goto err_shadow;
2663                 }
2664                 shadow->private = pool;
2665
2666                 eb->batch_flags |= I915_DISPATCH_SECURE;
2667         }
2668
2669         batch = eb_dispatch_secure(eb, shadow);
2670         if (IS_ERR(batch)) {
2671                 err = PTR_ERR(batch);
2672                 goto err_trampoline;
2673         }
2674
2675         err = eb_parse_pipeline(eb, shadow, trampoline);
2676         if (err)
2677                 goto err_unpin_batch;
2678
2679         eb->batch = &eb->vma[eb->buffer_count++];
2680         eb->batch->vma = i915_vma_get(shadow);
2681         eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2682
2683         eb->trampoline = trampoline;
2684         eb->batch_start_offset = 0;
2685
2686 secure_batch:
2687         if (batch) {
2688                 eb->batch = &eb->vma[eb->buffer_count++];
2689                 eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2690                 eb->batch->vma = i915_vma_get(batch);
2691         }
2692         return 0;
2693
2694 err_unpin_batch:
2695         if (batch)
2696                 i915_vma_unpin(batch);
2697 err_trampoline:
2698         if (trampoline)
2699                 i915_vma_unpin(trampoline);
2700 err_shadow:
2701         i915_vma_unpin(shadow);
2702 err:
2703         return err;
2704 }
2705
2706 static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
2707 {
2708         int err;
2709
2710         if (intel_context_nopreempt(eb->context))
2711                 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2712
2713         err = eb_move_to_gpu(eb);
2714         if (err)
2715                 return err;
2716
2717         if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2718                 err = i915_reset_gen7_sol_offsets(eb->request);
2719                 if (err)
2720                         return err;
2721         }
2722
2723         /*
2724          * After we completed waiting for other engines (using HW semaphores)
2725          * then we can signal that this request/batch is ready to run. This
2726          * allows us to determine if the batch is still waiting on the GPU
2727          * or actually running by checking the breadcrumb.
2728          */
2729         if (eb->engine->emit_init_breadcrumb) {
2730                 err = eb->engine->emit_init_breadcrumb(eb->request);
2731                 if (err)
2732                         return err;
2733         }
2734
2735         err = eb->engine->emit_bb_start(eb->request,
2736                                         batch->node.start +
2737                                         eb->batch_start_offset,
2738                                         eb->batch_len,
2739                                         eb->batch_flags);
2740         if (err)
2741                 return err;
2742
2743         if (eb->trampoline) {
2744                 GEM_BUG_ON(eb->batch_start_offset);
2745                 err = eb->engine->emit_bb_start(eb->request,
2746                                                 eb->trampoline->node.start +
2747                                                 eb->batch_len,
2748                                                 0, 0);
2749                 if (err)
2750                         return err;
2751         }
2752
2753         return 0;
2754 }
2755
2756 static int num_vcs_engines(const struct drm_i915_private *i915)
2757 {
2758         return hweight_long(VDBOX_MASK(&i915->gt));
2759 }
2760
2761 /*
2762  * Find one BSD ring to dispatch the corresponding BSD command.
2763  * The engine index is returned.
2764  */
2765 static unsigned int
2766 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2767                          struct drm_file *file)
2768 {
2769         struct drm_i915_file_private *file_priv = file->driver_priv;
2770
2771         /* Check whether the file_priv has already selected one ring. */
2772         if ((int)file_priv->bsd_engine < 0)
2773                 file_priv->bsd_engine =
2774                         get_random_int() % num_vcs_engines(dev_priv);
2775
2776         return file_priv->bsd_engine;
2777 }
2778
2779 static const enum intel_engine_id user_ring_map[] = {
2780         [I915_EXEC_DEFAULT]     = RCS0,
2781         [I915_EXEC_RENDER]      = RCS0,
2782         [I915_EXEC_BLT]         = BCS0,
2783         [I915_EXEC_BSD]         = VCS0,
2784         [I915_EXEC_VEBOX]       = VECS0
2785 };
2786
2787 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2788 {
2789         struct intel_ring *ring = ce->ring;
2790         struct intel_timeline *tl = ce->timeline;
2791         struct i915_request *rq;
2792
2793         /*
2794          * Completely unscientific finger-in-the-air estimates for suitable
2795          * maximum user request size (to avoid blocking) and then backoff.
2796          */
2797         if (intel_ring_update_space(ring) >= PAGE_SIZE)
2798                 return NULL;
2799
2800         /*
2801          * Find a request that after waiting upon, there will be at least half
2802          * the ring available. The hysteresis allows us to compete for the
2803          * shared ring and should mean that we sleep less often prior to
2804          * claiming our resources, but not so long that the ring completely
2805          * drains before we can submit our next request.
2806          */
2807         list_for_each_entry(rq, &tl->requests, link) {
2808                 if (rq->ring != ring)
2809                         continue;
2810
2811                 if (__intel_ring_space(rq->postfix,
2812                                        ring->emit, ring->size) > ring->size / 2)
2813                         break;
2814         }
2815         if (&rq->link == &tl->requests)
2816                 return NULL; /* weird, we will check again later for real */
2817
2818         return i915_request_get(rq);
2819 }
2820
2821 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2822 {
2823         struct intel_context *ce = eb->context;
2824         struct intel_timeline *tl;
2825         struct i915_request *rq = NULL;
2826         int err;
2827
2828         GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2829
2830         if (unlikely(intel_context_is_banned(ce)))
2831                 return ERR_PTR(-EIO);
2832
2833         /*
2834          * Pinning the contexts may generate requests in order to acquire
2835          * GGTT space, so do this first before we reserve a seqno for
2836          * ourselves.
2837          */
2838         err = intel_context_pin_ww(ce, &eb->ww);
2839         if (err)
2840                 return ERR_PTR(err);
2841
2842         /*
2843          * Take a local wakeref for preparing to dispatch the execbuf as
2844          * we expect to access the hardware fairly frequently in the
2845          * process, and require the engine to be kept awake between accesses.
2846          * Upon dispatch, we acquire another prolonged wakeref that we hold
2847          * until the timeline is idle, which in turn releases the wakeref
2848          * taken on the engine, and the parent device.
2849          */
2850         tl = intel_context_timeline_lock(ce);
2851         if (IS_ERR(tl)) {
2852                 intel_context_unpin(ce);
2853                 return ERR_CAST(tl);
2854         }
2855
2856         intel_context_enter(ce);
2857         if (throttle)
2858                 rq = eb_throttle(eb, ce);
2859         intel_context_timeline_unlock(tl);
2860
2861         eb->args->flags |= __EXEC_ENGINE_PINNED;
2862         return rq;
2863 }
2864
2865 static void eb_unpin_engine(struct i915_execbuffer *eb)
2866 {
2867         struct intel_context *ce = eb->context;
2868         struct intel_timeline *tl = ce->timeline;
2869
2870         if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2871                 return;
2872
2873         eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2874
2875         mutex_lock(&tl->mutex);
2876         intel_context_exit(ce);
2877         mutex_unlock(&tl->mutex);
2878
2879         intel_context_unpin(ce);
2880 }
2881
2882 static unsigned int
2883 eb_select_legacy_ring(struct i915_execbuffer *eb)
2884 {
2885         struct drm_i915_private *i915 = eb->i915;
2886         struct drm_i915_gem_execbuffer2 *args = eb->args;
2887         unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2888
2889         if (user_ring_id != I915_EXEC_BSD &&
2890             (args->flags & I915_EXEC_BSD_MASK)) {
2891                 drm_dbg(&i915->drm,
2892                         "execbuf with non bsd ring but with invalid "
2893                         "bsd dispatch flags: %d\n", (int)(args->flags));
2894                 return -1;
2895         }
2896
2897         if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2898                 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2899
2900                 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2901                         bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2902                 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2903                            bsd_idx <= I915_EXEC_BSD_RING2) {
2904                         bsd_idx >>= I915_EXEC_BSD_SHIFT;
2905                         bsd_idx--;
2906                 } else {
2907                         drm_dbg(&i915->drm,
2908                                 "execbuf with unknown bsd ring: %u\n",
2909                                 bsd_idx);
2910                         return -1;
2911                 }
2912
2913                 return _VCS(bsd_idx);
2914         }
2915
2916         if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2917                 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2918                         user_ring_id);
2919                 return -1;
2920         }
2921
2922         return user_ring_map[user_ring_id];
2923 }
2924
2925 static int
2926 eb_select_engine(struct i915_execbuffer *eb)
2927 {
2928         struct intel_context *ce;
2929         unsigned int idx;
2930         int err;
2931
2932         if (i915_gem_context_user_engines(eb->gem_context))
2933                 idx = eb->args->flags & I915_EXEC_RING_MASK;
2934         else
2935                 idx = eb_select_legacy_ring(eb);
2936
2937         ce = i915_gem_context_get_engine(eb->gem_context, idx);
2938         if (IS_ERR(ce))
2939                 return PTR_ERR(ce);
2940
2941         intel_gt_pm_get(ce->engine->gt);
2942
2943         if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2944                 err = intel_context_alloc_state(ce);
2945                 if (err)
2946                         goto err;
2947         }
2948
2949         /*
2950          * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2951          * EIO if the GPU is already wedged.
2952          */
2953         err = intel_gt_terminally_wedged(ce->engine->gt);
2954         if (err)
2955                 goto err;
2956
2957         eb->context = ce;
2958         eb->engine = ce->engine;
2959
2960         /*
2961          * Make sure engine pool stays alive even if we call intel_context_put
2962          * during ww handling. The pool is destroyed when last pm reference
2963          * is dropped, which breaks our -EDEADLK handling.
2964          */
2965         return err;
2966
2967 err:
2968         intel_gt_pm_put(ce->engine->gt);
2969         intel_context_put(ce);
2970         return err;
2971 }
2972
2973 static void
2974 eb_put_engine(struct i915_execbuffer *eb)
2975 {
2976         intel_gt_pm_put(eb->engine->gt);
2977         intel_context_put(eb->context);
2978 }
2979
2980 static void
2981 __free_fence_array(struct eb_fence *fences, unsigned int n)
2982 {
2983         while (n--) {
2984                 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2985                 dma_fence_put(fences[n].dma_fence);
2986                 kfree(fences[n].chain_fence);
2987         }
2988         kvfree(fences);
2989 }
2990
2991 static int
2992 add_timeline_fence_array(struct i915_execbuffer *eb,
2993                          const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2994 {
2995         struct drm_i915_gem_exec_fence __user *user_fences;
2996         u64 __user *user_values;
2997         struct eb_fence *f;
2998         u64 nfences;
2999         int err = 0;
3000
3001         nfences = timeline_fences->fence_count;
3002         if (!nfences)
3003                 return 0;
3004
3005         /* Check multiplication overflow for access_ok() and kvmalloc_array() */
3006         BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
3007         if (nfences > min_t(unsigned long,
3008                             ULONG_MAX / sizeof(*user_fences),
3009                             SIZE_MAX / sizeof(*f)) - eb->num_fences)
3010                 return -EINVAL;
3011
3012         user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
3013         if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
3014                 return -EFAULT;
3015
3016         user_values = u64_to_user_ptr(timeline_fences->values_ptr);
3017         if (!access_ok(user_values, nfences * sizeof(*user_values)))
3018                 return -EFAULT;
3019
3020         f = krealloc(eb->fences,
3021                      (eb->num_fences + nfences) * sizeof(*f),
3022                      __GFP_NOWARN | GFP_KERNEL);
3023         if (!f)
3024                 return -ENOMEM;
3025
3026         eb->fences = f;
3027         f += eb->num_fences;
3028
3029         BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
3030                      ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
3031
3032         while (nfences--) {
3033                 struct drm_i915_gem_exec_fence user_fence;
3034                 struct drm_syncobj *syncobj;
3035                 struct dma_fence *fence = NULL;
3036                 u64 point;
3037
3038                 if (__copy_from_user(&user_fence,
3039                                      user_fences++,
3040                                      sizeof(user_fence)))
3041                         return -EFAULT;
3042
3043                 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
3044                         return -EINVAL;
3045
3046                 if (__get_user(point, user_values++))
3047                         return -EFAULT;
3048
3049                 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
3050                 if (!syncobj) {
3051                         DRM_DEBUG("Invalid syncobj handle provided\n");
3052                         return -ENOENT;
3053                 }
3054
3055                 fence = drm_syncobj_fence_get(syncobj);
3056
3057                 if (!fence && user_fence.flags &&
3058                     !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
3059                         DRM_DEBUG("Syncobj handle has no fence\n");
3060                         drm_syncobj_put(syncobj);
3061                         return -EINVAL;
3062                 }
3063
3064                 if (fence)
3065                         err = dma_fence_chain_find_seqno(&fence, point);
3066
3067                 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
3068                         DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
3069                         dma_fence_put(fence);
3070                         drm_syncobj_put(syncobj);
3071                         return err;
3072                 }
3073
3074                 /*
3075                  * A point might have been signaled already and
3076                  * garbage collected from the timeline. In this case
3077                  * just ignore the point and carry on.
3078                  */
3079                 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
3080                         drm_syncobj_put(syncobj);
3081                         continue;
3082                 }
3083
3084                 /*
3085                  * For timeline syncobjs we need to preallocate chains for
3086                  * later signaling.
3087                  */
3088                 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
3089                         /*
3090                          * Waiting and signaling the same point (when point !=
3091                          * 0) would break the timeline.
3092                          */
3093                         if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
3094                                 DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
3095                                 dma_fence_put(fence);
3096                                 drm_syncobj_put(syncobj);
3097                                 return -EINVAL;
3098                         }
3099
3100                         f->chain_fence =
3101                                 kmalloc(sizeof(*f->chain_fence),
3102                                         GFP_KERNEL);
3103                         if (!f->chain_fence) {
3104                                 drm_syncobj_put(syncobj);
3105                                 dma_fence_put(fence);
3106                                 return -ENOMEM;
3107                         }
3108                 } else {
3109                         f->chain_fence = NULL;
3110                 }
3111
3112                 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
3113                 f->dma_fence = fence;
3114                 f->value = point;
3115                 f++;
3116                 eb->num_fences++;
3117         }
3118
3119         return 0;
3120 }
3121
3122 static int add_fence_array(struct i915_execbuffer *eb)
3123 {
3124         struct drm_i915_gem_execbuffer2 *args = eb->args;
3125         struct drm_i915_gem_exec_fence __user *user;
3126         unsigned long num_fences = args->num_cliprects;
3127         struct eb_fence *f;
3128
3129         if (!(args->flags & I915_EXEC_FENCE_ARRAY))
3130                 return 0;
3131
3132         if (!num_fences)
3133                 return 0;
3134
3135         /* Check multiplication overflow for access_ok() and kvmalloc_array() */
3136         BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
3137         if (num_fences > min_t(unsigned long,
3138                                ULONG_MAX / sizeof(*user),
3139                                SIZE_MAX / sizeof(*f) - eb->num_fences))
3140                 return -EINVAL;
3141
3142         user = u64_to_user_ptr(args->cliprects_ptr);
3143         if (!access_ok(user, num_fences * sizeof(*user)))
3144                 return -EFAULT;
3145
3146         f = krealloc(eb->fences,
3147                      (eb->num_fences + num_fences) * sizeof(*f),
3148                      __GFP_NOWARN | GFP_KERNEL);
3149         if (!f)
3150                 return -ENOMEM;
3151
3152         eb->fences = f;
3153         f += eb->num_fences;
3154         while (num_fences--) {
3155                 struct drm_i915_gem_exec_fence user_fence;
3156                 struct drm_syncobj *syncobj;
3157                 struct dma_fence *fence = NULL;
3158
3159                 if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
3160                         return -EFAULT;
3161
3162                 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
3163                         return -EINVAL;
3164
3165                 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
3166                 if (!syncobj) {
3167                         DRM_DEBUG("Invalid syncobj handle provided\n");
3168                         return -ENOENT;
3169                 }
3170
3171                 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
3172                         fence = drm_syncobj_fence_get(syncobj);
3173                         if (!fence) {
3174                                 DRM_DEBUG("Syncobj handle has no fence\n");
3175                                 drm_syncobj_put(syncobj);
3176                                 return -EINVAL;
3177                         }
3178                 }
3179
3180                 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
3181                              ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
3182
3183                 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
3184                 f->dma_fence = fence;
3185                 f->value = 0;
3186                 f->chain_fence = NULL;
3187                 f++;
3188                 eb->num_fences++;
3189         }
3190
3191         return 0;
3192 }
3193
3194 static void put_fence_array(struct eb_fence *fences, int num_fences)
3195 {
3196         if (fences)
3197                 __free_fence_array(fences, num_fences);
3198 }
3199
3200 static int
3201 await_fence_array(struct i915_execbuffer *eb)
3202 {
3203         unsigned int n;
3204         int err;
3205
3206         for (n = 0; n < eb->num_fences; n++) {
3207                 struct drm_syncobj *syncobj;
3208                 unsigned int flags;
3209
3210                 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3211
3212                 if (!eb->fences[n].dma_fence)
3213                         continue;
3214
3215                 err = i915_request_await_dma_fence(eb->request,
3216                                                    eb->fences[n].dma_fence);
3217                 if (err < 0)
3218                         return err;
3219         }
3220
3221         return 0;
3222 }
3223
3224 static void signal_fence_array(const struct i915_execbuffer *eb)
3225 {
3226         struct dma_fence * const fence = &eb->request->fence;
3227         unsigned int n;
3228
3229         for (n = 0; n < eb->num_fences; n++) {
3230                 struct drm_syncobj *syncobj;
3231                 unsigned int flags;
3232
3233                 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3234                 if (!(flags & I915_EXEC_FENCE_SIGNAL))
3235                         continue;
3236
3237                 if (eb->fences[n].chain_fence) {
3238                         drm_syncobj_add_point(syncobj,
3239                                               eb->fences[n].chain_fence,
3240                                               fence,
3241                                               eb->fences[n].value);
3242                         /*
3243                          * The chain's ownership is transferred to the
3244                          * timeline.
3245                          */
3246                         eb->fences[n].chain_fence = NULL;
3247                 } else {
3248                         drm_syncobj_replace_fence(syncobj, fence);
3249                 }
3250         }
3251 }
3252
3253 static int
3254 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3255 {
3256         struct i915_execbuffer *eb = data;
3257         struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3258
3259         if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3260                 return -EFAULT;
3261
3262         return add_timeline_fence_array(eb, &timeline_fences);
3263 }
3264
3265 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3266 {
3267         struct i915_request *rq, *rn;
3268
3269         list_for_each_entry_safe(rq, rn, &tl->requests, link)
3270                 if (rq == end || !i915_request_retire(rq))
3271                         break;
3272 }
3273
3274 static int eb_request_add(struct i915_execbuffer *eb, int err)
3275 {
3276         struct i915_request *rq = eb->request;
3277         struct intel_timeline * const tl = i915_request_timeline(rq);
3278         struct i915_sched_attr attr = {};
3279         struct i915_request *prev;
3280
3281         lockdep_assert_held(&tl->mutex);
3282         lockdep_unpin_lock(&tl->mutex, rq->cookie);
3283
3284         trace_i915_request_add(rq);
3285
3286         prev = __i915_request_commit(rq);
3287
3288         /* Check that the context wasn't destroyed before submission */
3289         if (likely(!intel_context_is_closed(eb->context))) {
3290                 attr = eb->gem_context->sched;
3291         } else {
3292                 /* Serialise with context_close via the add_to_timeline */
3293                 i915_request_set_error_once(rq, -ENOENT);
3294                 __i915_request_skip(rq);
3295                 err = -ENOENT; /* override any transient errors */
3296         }
3297
3298         __i915_request_queue(rq, &attr);
3299
3300         /* Try to clean up the client's timeline after submitting the request */
3301         if (prev)
3302                 retire_requests(tl, prev);
3303
3304         mutex_unlock(&tl->mutex);
3305
3306         return err;
3307 }
3308
3309 static const i915_user_extension_fn execbuf_extensions[] = {
3310         [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3311 };
3312
3313 static int
3314 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3315                           struct i915_execbuffer *eb)
3316 {
3317         if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3318                 return 0;
3319
3320         /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3321          * have another flag also using it at the same time.
3322          */
3323         if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3324                 return -EINVAL;
3325
3326         if (args->num_cliprects != 0)
3327                 return -EINVAL;
3328
3329         return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3330                                     execbuf_extensions,
3331                                     ARRAY_SIZE(execbuf_extensions),
3332                                     eb);
3333 }
3334
3335 static int
3336 i915_gem_do_execbuffer(struct drm_device *dev,
3337                        struct drm_file *file,
3338                        struct drm_i915_gem_execbuffer2 *args,
3339                        struct drm_i915_gem_exec_object2 *exec)
3340 {
3341         struct drm_i915_private *i915 = to_i915(dev);
3342         struct i915_execbuffer eb;
3343         struct dma_fence *in_fence = NULL;
3344         struct sync_file *out_fence = NULL;
3345         struct i915_vma *batch;
3346         int out_fence_fd = -1;
3347         int err;
3348
3349         BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3350         BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3351                      ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3352
3353         eb.i915 = i915;
3354         eb.file = file;
3355         eb.args = args;
3356         if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3357                 args->flags |= __EXEC_HAS_RELOC;
3358
3359         eb.exec = exec;
3360         eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3361         eb.vma[0].vma = NULL;
3362         eb.reloc_pool = eb.batch_pool = NULL;
3363         eb.reloc_context = NULL;
3364
3365         eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3366         reloc_cache_init(&eb.reloc_cache, eb.i915);
3367
3368         eb.buffer_count = args->buffer_count;
3369         eb.batch_start_offset = args->batch_start_offset;
3370         eb.batch_len = args->batch_len;
3371         eb.trampoline = NULL;
3372
3373         eb.fences = NULL;
3374         eb.num_fences = 0;
3375
3376         eb.batch_flags = 0;
3377         if (args->flags & I915_EXEC_SECURE) {
3378                 if (INTEL_GEN(i915) >= 11)
3379                         return -ENODEV;
3380
3381                 /* Return -EPERM to trigger fallback code on old binaries. */
3382                 if (!HAS_SECURE_BATCHES(i915))
3383                         return -EPERM;
3384
3385                 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3386                         return -EPERM;
3387
3388                 eb.batch_flags |= I915_DISPATCH_SECURE;
3389         }
3390         if (args->flags & I915_EXEC_IS_PINNED)
3391                 eb.batch_flags |= I915_DISPATCH_PINNED;
3392
3393         err = parse_execbuf2_extensions(args, &eb);
3394         if (err)
3395                 goto err_ext;
3396
3397         err = add_fence_array(&eb);
3398         if (err)
3399                 goto err_ext;
3400
3401 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3402         if (args->flags & IN_FENCES) {
3403                 if ((args->flags & IN_FENCES) == IN_FENCES)
3404                         return -EINVAL;
3405
3406                 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3407                 if (!in_fence) {
3408                         err = -EINVAL;
3409                         goto err_ext;
3410                 }
3411         }
3412 #undef IN_FENCES
3413
3414         if (args->flags & I915_EXEC_FENCE_OUT) {
3415                 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3416                 if (out_fence_fd < 0) {
3417                         err = out_fence_fd;
3418                         goto err_in_fence;
3419                 }
3420         }
3421
3422         err = eb_create(&eb);
3423         if (err)
3424                 goto err_out_fence;
3425
3426         GEM_BUG_ON(!eb.lut_size);
3427
3428         err = eb_select_context(&eb);
3429         if (unlikely(err))
3430                 goto err_destroy;
3431
3432         err = eb_select_engine(&eb);
3433         if (unlikely(err))
3434                 goto err_context;
3435
3436         err = eb_lookup_vmas(&eb);
3437         if (err) {
3438                 eb_release_vmas(&eb, true, true);
3439                 goto err_engine;
3440         }
3441
3442         i915_gem_ww_ctx_init(&eb.ww, true);
3443
3444         err = eb_relocate_parse(&eb);
3445         if (err) {
3446                 /*
3447                  * If the user expects the execobject.offset and
3448                  * reloc.presumed_offset to be an exact match,
3449                  * as for using NO_RELOC, then we cannot update
3450                  * the execobject.offset until we have completed
3451                  * relocation.
3452                  */
3453                 args->flags &= ~__EXEC_HAS_RELOC;
3454                 goto err_vma;
3455         }
3456
3457         ww_acquire_done(&eb.ww.ctx);
3458
3459         batch = eb.batch->vma;
3460
3461         /* All GPU relocation batches must be submitted prior to the user rq */
3462         GEM_BUG_ON(eb.reloc_cache.rq);
3463
3464         /* Allocate a request for this batch buffer nice and early. */
3465         eb.request = i915_request_create(eb.context);
3466         if (IS_ERR(eb.request)) {
3467                 err = PTR_ERR(eb.request);
3468                 goto err_vma;
3469         }
3470
3471         if (in_fence) {
3472                 if (args->flags & I915_EXEC_FENCE_SUBMIT)
3473                         err = i915_request_await_execution(eb.request,
3474                                                            in_fence,
3475                                                            eb.engine->bond_execute);
3476                 else
3477                         err = i915_request_await_dma_fence(eb.request,
3478                                                            in_fence);
3479                 if (err < 0)
3480                         goto err_request;
3481         }
3482
3483         if (eb.fences) {
3484                 err = await_fence_array(&eb);
3485                 if (err)
3486                         goto err_request;
3487         }
3488
3489         if (out_fence_fd != -1) {
3490                 out_fence = sync_file_create(&eb.request->fence);
3491                 if (!out_fence) {
3492                         err = -ENOMEM;
3493                         goto err_request;
3494                 }
3495         }
3496
3497         /*
3498          * Whilst this request exists, batch_obj will be on the
3499          * active_list, and so will hold the active reference. Only when this
3500          * request is retired will the the batch_obj be moved onto the
3501          * inactive_list and lose its active reference. Hence we do not need
3502          * to explicitly hold another reference here.
3503          */
3504         eb.request->batch = batch;
3505         if (eb.batch_pool)
3506                 intel_gt_buffer_pool_mark_active(eb.batch_pool, eb.request);
3507
3508         trace_i915_request_queue(eb.request, eb.batch_flags);
3509         err = eb_submit(&eb, batch);
3510
3511 err_request:
3512         i915_request_get(eb.request);
3513         err = eb_request_add(&eb, err);
3514
3515         if (eb.fences)
3516                 signal_fence_array(&eb);
3517
3518         if (out_fence) {
3519                 if (err == 0) {
3520                         fd_install(out_fence_fd, out_fence->file);
3521                         args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3522                         args->rsvd2 |= (u64)out_fence_fd << 32;
3523                         out_fence_fd = -1;
3524                 } else {
3525                         fput(out_fence->file);
3526                 }
3527         }
3528         i915_request_put(eb.request);
3529
3530 err_vma:
3531         eb_release_vmas(&eb, true, true);
3532         if (eb.trampoline)
3533                 i915_vma_unpin(eb.trampoline);
3534         WARN_ON(err == -EDEADLK);
3535         i915_gem_ww_ctx_fini(&eb.ww);
3536
3537         if (eb.batch_pool)
3538                 intel_gt_buffer_pool_put(eb.batch_pool);
3539         if (eb.reloc_pool)
3540                 intel_gt_buffer_pool_put(eb.reloc_pool);
3541         if (eb.reloc_context)
3542                 intel_context_put(eb.reloc_context);
3543 err_engine:
3544         eb_put_engine(&eb);
3545 err_context:
3546         i915_gem_context_put(eb.gem_context);
3547 err_destroy:
3548         eb_destroy(&eb);
3549 err_out_fence:
3550         if (out_fence_fd != -1)
3551                 put_unused_fd(out_fence_fd);
3552 err_in_fence:
3553         dma_fence_put(in_fence);
3554 err_ext:
3555         put_fence_array(eb.fences, eb.num_fences);
3556         return err;
3557 }
3558
3559 static size_t eb_element_size(void)
3560 {
3561         return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3562 }
3563
3564 static bool check_buffer_count(size_t count)
3565 {
3566         const size_t sz = eb_element_size();
3567
3568         /*
3569          * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3570          * array size (see eb_create()). Otherwise, we can accept an array as
3571          * large as can be addressed (though use large arrays at your peril)!
3572          */
3573
3574         return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3575 }
3576
3577 int
3578 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3579                            struct drm_file *file)
3580 {
3581         struct drm_i915_private *i915 = to_i915(dev);
3582         struct drm_i915_gem_execbuffer2 *args = data;
3583         struct drm_i915_gem_exec_object2 *exec2_list;
3584         const size_t count = args->buffer_count;
3585         int err;
3586
3587         if (!check_buffer_count(count)) {
3588                 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3589                 return -EINVAL;
3590         }
3591
3592         err = i915_gem_check_execbuffer(args);
3593         if (err)
3594                 return err;
3595
3596         /* Allocate extra slots for use by the command parser */
3597         exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3598                                     __GFP_NOWARN | GFP_KERNEL);
3599         if (exec2_list == NULL) {
3600                 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3601                         count);
3602                 return -ENOMEM;
3603         }
3604         if (copy_from_user(exec2_list,
3605                            u64_to_user_ptr(args->buffers_ptr),
3606                            sizeof(*exec2_list) * count)) {
3607                 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3608                 kvfree(exec2_list);
3609                 return -EFAULT;
3610         }
3611
3612         err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3613
3614         /*
3615          * Now that we have begun execution of the batchbuffer, we ignore
3616          * any new error after this point. Also given that we have already
3617          * updated the associated relocations, we try to write out the current
3618          * object locations irrespective of any error.
3619          */
3620         if (args->flags & __EXEC_HAS_RELOC) {
3621                 struct drm_i915_gem_exec_object2 __user *user_exec_list =
3622                         u64_to_user_ptr(args->buffers_ptr);
3623                 unsigned int i;
3624
3625                 /* Copy the new buffer offsets back to the user's exec list. */
3626                 /*
3627                  * Note: count * sizeof(*user_exec_list) does not overflow,
3628                  * because we checked 'count' in check_buffer_count().
3629                  *
3630                  * And this range already got effectively checked earlier
3631                  * when we did the "copy_from_user()" above.
3632                  */
3633                 if (!user_write_access_begin(user_exec_list,
3634                                              count * sizeof(*user_exec_list)))
3635                         goto end;
3636
3637                 for (i = 0; i < args->buffer_count; i++) {
3638                         if (!(exec2_list[i].offset & UPDATE))
3639                                 continue;
3640
3641                         exec2_list[i].offset =
3642                                 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3643                         unsafe_put_user(exec2_list[i].offset,
3644                                         &user_exec_list[i].offset,
3645                                         end_user);
3646                 }
3647 end_user:
3648                 user_write_access_end();
3649 end:;
3650         }
3651
3652         args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3653         kvfree(exec2_list);
3654         return err;
3655 }
3656
3657 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3658 #include "selftests/i915_gem_execbuffer.c"
3659 #endif