Merge v5.14-rc3 into usb-next
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gem / i915_gem_execbuffer.c
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11
12 #include <drm/drm_syncobj.h>
13
14 #include "display/intel_frontbuffer.h"
15
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gpu_commands.h"
19 #include "gt/intel_gt.h"
20 #include "gt/intel_gt_buffer_pool.h"
21 #include "gt/intel_gt_pm.h"
22 #include "gt/intel_ring.h"
23
24 #include "i915_drv.h"
25 #include "i915_gem_clflush.h"
26 #include "i915_gem_context.h"
27 #include "i915_gem_ioctls.h"
28 #include "i915_trace.h"
29 #include "i915_user_extensions.h"
30
31 struct eb_vma {
32         struct i915_vma *vma;
33         unsigned int flags;
34
35         /** This vma's place in the execbuf reservation list */
36         struct drm_i915_gem_exec_object2 *exec;
37         struct list_head bind_link;
38         struct list_head reloc_link;
39
40         struct hlist_node node;
41         u32 handle;
42 };
43
44 enum {
45         FORCE_CPU_RELOC = 1,
46         FORCE_GTT_RELOC,
47         FORCE_GPU_RELOC,
48 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
49 };
50
51 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */
52 #define __EXEC_OBJECT_HAS_PIN           BIT(30)
53 #define __EXEC_OBJECT_HAS_FENCE         BIT(29)
54 #define __EXEC_OBJECT_USERPTR_INIT      BIT(28)
55 #define __EXEC_OBJECT_NEEDS_MAP         BIT(27)
56 #define __EXEC_OBJECT_NEEDS_BIAS        BIT(26)
57 #define __EXEC_OBJECT_INTERNAL_FLAGS    (~0u << 26) /* all of the above + */
58 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
59
60 #define __EXEC_HAS_RELOC        BIT(31)
61 #define __EXEC_ENGINE_PINNED    BIT(30)
62 #define __EXEC_USERPTR_USED     BIT(29)
63 #define __EXEC_INTERNAL_FLAGS   (~0u << 29)
64 #define UPDATE                  PIN_OFFSET_FIXED
65
66 #define BATCH_OFFSET_BIAS (256*1024)
67
68 #define __I915_EXEC_ILLEGAL_FLAGS \
69         (__I915_EXEC_UNKNOWN_FLAGS | \
70          I915_EXEC_CONSTANTS_MASK  | \
71          I915_EXEC_RESOURCE_STREAMER)
72
73 /* Catch emission of unexpected errors for CI! */
74 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
75 #undef EINVAL
76 #define EINVAL ({ \
77         DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
78         22; \
79 })
80 #endif
81
82 /**
83  * DOC: User command execution
84  *
85  * Userspace submits commands to be executed on the GPU as an instruction
86  * stream within a GEM object we call a batchbuffer. This instructions may
87  * refer to other GEM objects containing auxiliary state such as kernels,
88  * samplers, render targets and even secondary batchbuffers. Userspace does
89  * not know where in the GPU memory these objects reside and so before the
90  * batchbuffer is passed to the GPU for execution, those addresses in the
91  * batchbuffer and auxiliary objects are updated. This is known as relocation,
92  * or patching. To try and avoid having to relocate each object on the next
93  * execution, userspace is told the location of those objects in this pass,
94  * but this remains just a hint as the kernel may choose a new location for
95  * any object in the future.
96  *
97  * At the level of talking to the hardware, submitting a batchbuffer for the
98  * GPU to execute is to add content to a buffer from which the HW
99  * command streamer is reading.
100  *
101  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
102  *    Execlists, this command is not placed on the same buffer as the
103  *    remaining items.
104  *
105  * 2. Add a command to invalidate caches to the buffer.
106  *
107  * 3. Add a batchbuffer start command to the buffer; the start command is
108  *    essentially a token together with the GPU address of the batchbuffer
109  *    to be executed.
110  *
111  * 4. Add a pipeline flush to the buffer.
112  *
113  * 5. Add a memory write command to the buffer to record when the GPU
114  *    is done executing the batchbuffer. The memory write writes the
115  *    global sequence number of the request, ``i915_request::global_seqno``;
116  *    the i915 driver uses the current value in the register to determine
117  *    if the GPU has completed the batchbuffer.
118  *
119  * 6. Add a user interrupt command to the buffer. This command instructs
120  *    the GPU to issue an interrupt when the command, pipeline flush and
121  *    memory write are completed.
122  *
123  * 7. Inform the hardware of the additional commands added to the buffer
124  *    (by updating the tail pointer).
125  *
126  * Processing an execbuf ioctl is conceptually split up into a few phases.
127  *
128  * 1. Validation - Ensure all the pointers, handles and flags are valid.
129  * 2. Reservation - Assign GPU address space for every object
130  * 3. Relocation - Update any addresses to point to the final locations
131  * 4. Serialisation - Order the request with respect to its dependencies
132  * 5. Construction - Construct a request to execute the batchbuffer
133  * 6. Submission (at some point in the future execution)
134  *
135  * Reserving resources for the execbuf is the most complicated phase. We
136  * neither want to have to migrate the object in the address space, nor do
137  * we want to have to update any relocations pointing to this object. Ideally,
138  * we want to leave the object where it is and for all the existing relocations
139  * to match. If the object is given a new address, or if userspace thinks the
140  * object is elsewhere, we have to parse all the relocation entries and update
141  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
142  * all the target addresses in all of its objects match the value in the
143  * relocation entries and that they all match the presumed offsets given by the
144  * list of execbuffer objects. Using this knowledge, we know that if we haven't
145  * moved any buffers, all the relocation entries are valid and we can skip
146  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
147  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
148  *
149  *      The addresses written in the objects must match the corresponding
150  *      reloc.presumed_offset which in turn must match the corresponding
151  *      execobject.offset.
152  *
153  *      Any render targets written to in the batch must be flagged with
154  *      EXEC_OBJECT_WRITE.
155  *
156  *      To avoid stalling, execobject.offset should match the current
157  *      address of that object within the active context.
158  *
159  * The reservation is done is multiple phases. First we try and keep any
160  * object already bound in its current location - so as long as meets the
161  * constraints imposed by the new execbuffer. Any object left unbound after the
162  * first pass is then fitted into any available idle space. If an object does
163  * not fit, all objects are removed from the reservation and the process rerun
164  * after sorting the objects into a priority order (more difficult to fit
165  * objects are tried first). Failing that, the entire VM is cleared and we try
166  * to fit the execbuf once last time before concluding that it simply will not
167  * fit.
168  *
169  * A small complication to all of this is that we allow userspace not only to
170  * specify an alignment and a size for the object in the address space, but
171  * we also allow userspace to specify the exact offset. This objects are
172  * simpler to place (the location is known a priori) all we have to do is make
173  * sure the space is available.
174  *
175  * Once all the objects are in place, patching up the buried pointers to point
176  * to the final locations is a fairly simple job of walking over the relocation
177  * entry arrays, looking up the right address and rewriting the value into
178  * the object. Simple! ... The relocation entries are stored in user memory
179  * and so to access them we have to copy them into a local buffer. That copy
180  * has to avoid taking any pagefaults as they may lead back to a GEM object
181  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
182  * the relocation into multiple passes. First we try to do everything within an
183  * atomic context (avoid the pagefaults) which requires that we never wait. If
184  * we detect that we may wait, or if we need to fault, then we have to fallback
185  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
186  * bells yet?) Dropping the mutex means that we lose all the state we have
187  * built up so far for the execbuf and we must reset any global data. However,
188  * we do leave the objects pinned in their final locations - which is a
189  * potential issue for concurrent execbufs. Once we have left the mutex, we can
190  * allocate and copy all the relocation entries into a large array at our
191  * leisure, reacquire the mutex, reclaim all the objects and other state and
192  * then proceed to update any incorrect addresses with the objects.
193  *
194  * As we process the relocation entries, we maintain a record of whether the
195  * object is being written to. Using NORELOC, we expect userspace to provide
196  * this information instead. We also check whether we can skip the relocation
197  * by comparing the expected value inside the relocation entry with the target's
198  * final address. If they differ, we have to map the current object and rewrite
199  * the 4 or 8 byte pointer within.
200  *
201  * Serialising an execbuf is quite simple according to the rules of the GEM
202  * ABI. Execution within each context is ordered by the order of submission.
203  * Writes to any GEM object are in order of submission and are exclusive. Reads
204  * from a GEM object are unordered with respect to other reads, but ordered by
205  * writes. A write submitted after a read cannot occur before the read, and
206  * similarly any read submitted after a write cannot occur before the write.
207  * Writes are ordered between engines such that only one write occurs at any
208  * time (completing any reads beforehand) - using semaphores where available
209  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
210  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
211  * reads before starting, and any read (either using set-domain or pread) must
212  * flush all GPU writes before starting. (Note we only employ a barrier before,
213  * we currently rely on userspace not concurrently starting a new execution
214  * whilst reading or writing to an object. This may be an advantage or not
215  * depending on how much you trust userspace not to shoot themselves in the
216  * foot.) Serialisation may just result in the request being inserted into
217  * a DAG awaiting its turn, but most simple is to wait on the CPU until
218  * all dependencies are resolved.
219  *
220  * After all of that, is just a matter of closing the request and handing it to
221  * the hardware (well, leaving it in a queue to be executed). However, we also
222  * offer the ability for batchbuffers to be run with elevated privileges so
223  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
224  * Before any batch is given extra privileges we first must check that it
225  * contains no nefarious instructions, we check that each instruction is from
226  * our whitelist and all registers are also from an allowed list. We first
227  * copy the user's batchbuffer to a shadow (so that the user doesn't have
228  * access to it, either by the CPU or GPU as we scan it) and then parse each
229  * instruction. If everything is ok, we set a flag telling the hardware to run
230  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
231  */
232
233 struct eb_fence {
234         struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
235         struct dma_fence *dma_fence;
236         u64 value;
237         struct dma_fence_chain *chain_fence;
238 };
239
240 struct i915_execbuffer {
241         struct drm_i915_private *i915; /** i915 backpointer */
242         struct drm_file *file; /** per-file lookup tables and limits */
243         struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
244         struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
245         struct eb_vma *vma;
246
247         struct intel_engine_cs *engine; /** engine to queue the request to */
248         struct intel_context *context; /* logical state for the request */
249         struct i915_gem_context *gem_context; /** caller's context */
250
251         struct i915_request *request; /** our request to build */
252         struct eb_vma *batch; /** identity of the batch obj/vma */
253         struct i915_vma *trampoline; /** trampoline used for chaining */
254
255         /** actual size of execobj[] as we may extend it for the cmdparser */
256         unsigned int buffer_count;
257
258         /** list of vma not yet bound during reservation phase */
259         struct list_head unbound;
260
261         /** list of vma that have execobj.relocation_count */
262         struct list_head relocs;
263
264         struct i915_gem_ww_ctx ww;
265
266         /**
267          * Track the most recently used object for relocations, as we
268          * frequently have to perform multiple relocations within the same
269          * obj/page
270          */
271         struct reloc_cache {
272                 struct drm_mm_node node; /** temporary GTT binding */
273                 unsigned long vaddr; /** Current kmap address */
274                 unsigned long page; /** Currently mapped page index */
275                 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
276                 bool use_64bit_reloc : 1;
277                 bool has_llc : 1;
278                 bool has_fence : 1;
279                 bool needs_unfenced : 1;
280
281                 struct i915_request *rq;
282                 u32 *rq_cmd;
283                 unsigned int rq_size;
284                 struct intel_gt_buffer_pool_node *pool;
285         } reloc_cache;
286
287         struct intel_gt_buffer_pool_node *reloc_pool; /** relocation pool for -EDEADLK handling */
288         struct intel_context *reloc_context;
289
290         u64 invalid_flags; /** Set of execobj.flags that are invalid */
291         u32 context_flags; /** Set of execobj.flags to insert from the ctx */
292
293         u64 batch_len; /** Length of batch within object */
294         u32 batch_start_offset; /** Location within object of batch */
295         u32 batch_flags; /** Flags composed for emit_bb_start() */
296         struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
297
298         /**
299          * Indicate either the size of the hastable used to resolve
300          * relocation handles, or if negative that we are using a direct
301          * index into the execobj[].
302          */
303         int lut_size;
304         struct hlist_head *buckets; /** ht for relocation handles */
305
306         struct eb_fence *fences;
307         unsigned long num_fences;
308 };
309
310 static int eb_parse(struct i915_execbuffer *eb);
311 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb,
312                                           bool throttle);
313 static void eb_unpin_engine(struct i915_execbuffer *eb);
314
315 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
316 {
317         return intel_engine_requires_cmd_parser(eb->engine) ||
318                 (intel_engine_using_cmd_parser(eb->engine) &&
319                  eb->args->batch_len);
320 }
321
322 static int eb_create(struct i915_execbuffer *eb)
323 {
324         if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
325                 unsigned int size = 1 + ilog2(eb->buffer_count);
326
327                 /*
328                  * Without a 1:1 association between relocation handles and
329                  * the execobject[] index, we instead create a hashtable.
330                  * We size it dynamically based on available memory, starting
331                  * first with 1:1 assocative hash and scaling back until
332                  * the allocation succeeds.
333                  *
334                  * Later on we use a positive lut_size to indicate we are
335                  * using this hashtable, and a negative value to indicate a
336                  * direct lookup.
337                  */
338                 do {
339                         gfp_t flags;
340
341                         /* While we can still reduce the allocation size, don't
342                          * raise a warning and allow the allocation to fail.
343                          * On the last pass though, we want to try as hard
344                          * as possible to perform the allocation and warn
345                          * if it fails.
346                          */
347                         flags = GFP_KERNEL;
348                         if (size > 1)
349                                 flags |= __GFP_NORETRY | __GFP_NOWARN;
350
351                         eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
352                                               flags);
353                         if (eb->buckets)
354                                 break;
355                 } while (--size);
356
357                 if (unlikely(!size))
358                         return -ENOMEM;
359
360                 eb->lut_size = size;
361         } else {
362                 eb->lut_size = -eb->buffer_count;
363         }
364
365         return 0;
366 }
367
368 static bool
369 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
370                  const struct i915_vma *vma,
371                  unsigned int flags)
372 {
373         if (vma->node.size < entry->pad_to_size)
374                 return true;
375
376         if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
377                 return true;
378
379         if (flags & EXEC_OBJECT_PINNED &&
380             vma->node.start != entry->offset)
381                 return true;
382
383         if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
384             vma->node.start < BATCH_OFFSET_BIAS)
385                 return true;
386
387         if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
388             (vma->node.start + vma->node.size + 4095) >> 32)
389                 return true;
390
391         if (flags & __EXEC_OBJECT_NEEDS_MAP &&
392             !i915_vma_is_map_and_fenceable(vma))
393                 return true;
394
395         return false;
396 }
397
398 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
399                         unsigned int exec_flags)
400 {
401         u64 pin_flags = 0;
402
403         if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
404                 pin_flags |= PIN_GLOBAL;
405
406         /*
407          * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
408          * limit address to the first 4GBs for unflagged objects.
409          */
410         if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
411                 pin_flags |= PIN_ZONE_4G;
412
413         if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
414                 pin_flags |= PIN_MAPPABLE;
415
416         if (exec_flags & EXEC_OBJECT_PINNED)
417                 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
418         else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
419                 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
420
421         return pin_flags;
422 }
423
424 static inline int
425 eb_pin_vma(struct i915_execbuffer *eb,
426            const struct drm_i915_gem_exec_object2 *entry,
427            struct eb_vma *ev)
428 {
429         struct i915_vma *vma = ev->vma;
430         u64 pin_flags;
431         int err;
432
433         if (vma->node.size)
434                 pin_flags = vma->node.start;
435         else
436                 pin_flags = entry->offset & PIN_OFFSET_MASK;
437
438         pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
439         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
440                 pin_flags |= PIN_GLOBAL;
441
442         /* Attempt to reuse the current location if available */
443         err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
444         if (err == -EDEADLK)
445                 return err;
446
447         if (unlikely(err)) {
448                 if (entry->flags & EXEC_OBJECT_PINNED)
449                         return err;
450
451                 /* Failing that pick any _free_ space if suitable */
452                 err = i915_vma_pin_ww(vma, &eb->ww,
453                                              entry->pad_to_size,
454                                              entry->alignment,
455                                              eb_pin_flags(entry, ev->flags) |
456                                              PIN_USER | PIN_NOEVICT);
457                 if (unlikely(err))
458                         return err;
459         }
460
461         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
462                 err = i915_vma_pin_fence(vma);
463                 if (unlikely(err)) {
464                         i915_vma_unpin(vma);
465                         return err;
466                 }
467
468                 if (vma->fence)
469                         ev->flags |= __EXEC_OBJECT_HAS_FENCE;
470         }
471
472         ev->flags |= __EXEC_OBJECT_HAS_PIN;
473         if (eb_vma_misplaced(entry, vma, ev->flags))
474                 return -EBADSLT;
475
476         return 0;
477 }
478
479 static inline void
480 eb_unreserve_vma(struct eb_vma *ev)
481 {
482         if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
483                 return;
484
485         if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
486                 __i915_vma_unpin_fence(ev->vma);
487
488         __i915_vma_unpin(ev->vma);
489         ev->flags &= ~__EXEC_OBJECT_RESERVED;
490 }
491
492 static int
493 eb_validate_vma(struct i915_execbuffer *eb,
494                 struct drm_i915_gem_exec_object2 *entry,
495                 struct i915_vma *vma)
496 {
497         /* Relocations are disallowed for all platforms after TGL-LP.  This
498          * also covers all platforms with local memory.
499          */
500         if (entry->relocation_count &&
501             GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
502                 return -EINVAL;
503
504         if (unlikely(entry->flags & eb->invalid_flags))
505                 return -EINVAL;
506
507         if (unlikely(entry->alignment &&
508                      !is_power_of_2_u64(entry->alignment)))
509                 return -EINVAL;
510
511         /*
512          * Offset can be used as input (EXEC_OBJECT_PINNED), reject
513          * any non-page-aligned or non-canonical addresses.
514          */
515         if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
516                      entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
517                 return -EINVAL;
518
519         /* pad_to_size was once a reserved field, so sanitize it */
520         if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
521                 if (unlikely(offset_in_page(entry->pad_to_size)))
522                         return -EINVAL;
523         } else {
524                 entry->pad_to_size = 0;
525         }
526         /*
527          * From drm_mm perspective address space is continuous,
528          * so from this point we're always using non-canonical
529          * form internally.
530          */
531         entry->offset = gen8_noncanonical_addr(entry->offset);
532
533         if (!eb->reloc_cache.has_fence) {
534                 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
535         } else {
536                 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
537                      eb->reloc_cache.needs_unfenced) &&
538                     i915_gem_object_is_tiled(vma->obj))
539                         entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
540         }
541
542         if (!(entry->flags & EXEC_OBJECT_PINNED))
543                 entry->flags |= eb->context_flags;
544
545         return 0;
546 }
547
548 static void
549 eb_add_vma(struct i915_execbuffer *eb,
550            unsigned int i, unsigned batch_idx,
551            struct i915_vma *vma)
552 {
553         struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
554         struct eb_vma *ev = &eb->vma[i];
555
556         ev->vma = vma;
557         ev->exec = entry;
558         ev->flags = entry->flags;
559
560         if (eb->lut_size > 0) {
561                 ev->handle = entry->handle;
562                 hlist_add_head(&ev->node,
563                                &eb->buckets[hash_32(entry->handle,
564                                                     eb->lut_size)]);
565         }
566
567         if (entry->relocation_count)
568                 list_add_tail(&ev->reloc_link, &eb->relocs);
569
570         /*
571          * SNA is doing fancy tricks with compressing batch buffers, which leads
572          * to negative relocation deltas. Usually that works out ok since the
573          * relocate address is still positive, except when the batch is placed
574          * very low in the GTT. Ensure this doesn't happen.
575          *
576          * Note that actual hangs have only been observed on gen7, but for
577          * paranoia do it everywhere.
578          */
579         if (i == batch_idx) {
580                 if (entry->relocation_count &&
581                     !(ev->flags & EXEC_OBJECT_PINNED))
582                         ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
583                 if (eb->reloc_cache.has_fence)
584                         ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
585
586                 eb->batch = ev;
587         }
588 }
589
590 static inline int use_cpu_reloc(const struct reloc_cache *cache,
591                                 const struct drm_i915_gem_object *obj)
592 {
593         if (!i915_gem_object_has_struct_page(obj))
594                 return false;
595
596         if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
597                 return true;
598
599         if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
600                 return false;
601
602         return (cache->has_llc ||
603                 obj->cache_dirty ||
604                 obj->cache_level != I915_CACHE_NONE);
605 }
606
607 static int eb_reserve_vma(struct i915_execbuffer *eb,
608                           struct eb_vma *ev,
609                           u64 pin_flags)
610 {
611         struct drm_i915_gem_exec_object2 *entry = ev->exec;
612         struct i915_vma *vma = ev->vma;
613         int err;
614
615         if (drm_mm_node_allocated(&vma->node) &&
616             eb_vma_misplaced(entry, vma, ev->flags)) {
617                 err = i915_vma_unbind(vma);
618                 if (err)
619                         return err;
620         }
621
622         err = i915_vma_pin_ww(vma, &eb->ww,
623                            entry->pad_to_size, entry->alignment,
624                            eb_pin_flags(entry, ev->flags) | pin_flags);
625         if (err)
626                 return err;
627
628         if (entry->offset != vma->node.start) {
629                 entry->offset = vma->node.start | UPDATE;
630                 eb->args->flags |= __EXEC_HAS_RELOC;
631         }
632
633         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
634                 err = i915_vma_pin_fence(vma);
635                 if (unlikely(err)) {
636                         i915_vma_unpin(vma);
637                         return err;
638                 }
639
640                 if (vma->fence)
641                         ev->flags |= __EXEC_OBJECT_HAS_FENCE;
642         }
643
644         ev->flags |= __EXEC_OBJECT_HAS_PIN;
645         GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
646
647         return 0;
648 }
649
650 static int eb_reserve(struct i915_execbuffer *eb)
651 {
652         const unsigned int count = eb->buffer_count;
653         unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
654         struct list_head last;
655         struct eb_vma *ev;
656         unsigned int i, pass;
657         int err = 0;
658
659         /*
660          * Attempt to pin all of the buffers into the GTT.
661          * This is done in 3 phases:
662          *
663          * 1a. Unbind all objects that do not match the GTT constraints for
664          *     the execbuffer (fenceable, mappable, alignment etc).
665          * 1b. Increment pin count for already bound objects.
666          * 2.  Bind new objects.
667          * 3.  Decrement pin count.
668          *
669          * This avoid unnecessary unbinding of later objects in order to make
670          * room for the earlier objects *unless* we need to defragment.
671          */
672         pass = 0;
673         do {
674                 list_for_each_entry(ev, &eb->unbound, bind_link) {
675                         err = eb_reserve_vma(eb, ev, pin_flags);
676                         if (err)
677                                 break;
678                 }
679                 if (err != -ENOSPC)
680                         return err;
681
682                 /* Resort *all* the objects into priority order */
683                 INIT_LIST_HEAD(&eb->unbound);
684                 INIT_LIST_HEAD(&last);
685                 for (i = 0; i < count; i++) {
686                         unsigned int flags;
687
688                         ev = &eb->vma[i];
689                         flags = ev->flags;
690                         if (flags & EXEC_OBJECT_PINNED &&
691                             flags & __EXEC_OBJECT_HAS_PIN)
692                                 continue;
693
694                         eb_unreserve_vma(ev);
695
696                         if (flags & EXEC_OBJECT_PINNED)
697                                 /* Pinned must have their slot */
698                                 list_add(&ev->bind_link, &eb->unbound);
699                         else if (flags & __EXEC_OBJECT_NEEDS_MAP)
700                                 /* Map require the lowest 256MiB (aperture) */
701                                 list_add_tail(&ev->bind_link, &eb->unbound);
702                         else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
703                                 /* Prioritise 4GiB region for restricted bo */
704                                 list_add(&ev->bind_link, &last);
705                         else
706                                 list_add_tail(&ev->bind_link, &last);
707                 }
708                 list_splice_tail(&last, &eb->unbound);
709
710                 switch (pass++) {
711                 case 0:
712                         break;
713
714                 case 1:
715                         /* Too fragmented, unbind everything and retry */
716                         mutex_lock(&eb->context->vm->mutex);
717                         err = i915_gem_evict_vm(eb->context->vm);
718                         mutex_unlock(&eb->context->vm->mutex);
719                         if (err)
720                                 return err;
721                         break;
722
723                 default:
724                         return -ENOSPC;
725                 }
726
727                 pin_flags = PIN_USER;
728         } while (1);
729 }
730
731 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
732 {
733         if (eb->args->flags & I915_EXEC_BATCH_FIRST)
734                 return 0;
735         else
736                 return eb->buffer_count - 1;
737 }
738
739 static int eb_select_context(struct i915_execbuffer *eb)
740 {
741         struct i915_gem_context *ctx;
742
743         ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
744         if (unlikely(!ctx))
745                 return -ENOENT;
746
747         eb->gem_context = ctx;
748         if (rcu_access_pointer(ctx->vm))
749                 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
750
751         eb->context_flags = 0;
752         if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
753                 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
754
755         return 0;
756 }
757
758 static int __eb_add_lut(struct i915_execbuffer *eb,
759                         u32 handle, struct i915_vma *vma)
760 {
761         struct i915_gem_context *ctx = eb->gem_context;
762         struct i915_lut_handle *lut;
763         int err;
764
765         lut = i915_lut_handle_alloc();
766         if (unlikely(!lut))
767                 return -ENOMEM;
768
769         i915_vma_get(vma);
770         if (!atomic_fetch_inc(&vma->open_count))
771                 i915_vma_reopen(vma);
772         lut->handle = handle;
773         lut->ctx = ctx;
774
775         /* Check that the context hasn't been closed in the meantime */
776         err = -EINTR;
777         if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
778                 struct i915_address_space *vm = rcu_access_pointer(ctx->vm);
779
780                 if (unlikely(vm && vma->vm != vm))
781                         err = -EAGAIN; /* user racing with ctx set-vm */
782                 else if (likely(!i915_gem_context_is_closed(ctx)))
783                         err = radix_tree_insert(&ctx->handles_vma, handle, vma);
784                 else
785                         err = -ENOENT;
786                 if (err == 0) { /* And nor has this handle */
787                         struct drm_i915_gem_object *obj = vma->obj;
788
789                         spin_lock(&obj->lut_lock);
790                         if (idr_find(&eb->file->object_idr, handle) == obj) {
791                                 list_add(&lut->obj_link, &obj->lut_list);
792                         } else {
793                                 radix_tree_delete(&ctx->handles_vma, handle);
794                                 err = -ENOENT;
795                         }
796                         spin_unlock(&obj->lut_lock);
797                 }
798                 mutex_unlock(&ctx->lut_mutex);
799         }
800         if (unlikely(err))
801                 goto err;
802
803         return 0;
804
805 err:
806         i915_vma_close(vma);
807         i915_vma_put(vma);
808         i915_lut_handle_free(lut);
809         return err;
810 }
811
812 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
813 {
814         struct i915_address_space *vm = eb->context->vm;
815
816         do {
817                 struct drm_i915_gem_object *obj;
818                 struct i915_vma *vma;
819                 int err;
820
821                 rcu_read_lock();
822                 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
823                 if (likely(vma && vma->vm == vm))
824                         vma = i915_vma_tryget(vma);
825                 rcu_read_unlock();
826                 if (likely(vma))
827                         return vma;
828
829                 obj = i915_gem_object_lookup(eb->file, handle);
830                 if (unlikely(!obj))
831                         return ERR_PTR(-ENOENT);
832
833                 vma = i915_vma_instance(obj, vm, NULL);
834                 if (IS_ERR(vma)) {
835                         i915_gem_object_put(obj);
836                         return vma;
837                 }
838
839                 err = __eb_add_lut(eb, handle, vma);
840                 if (likely(!err))
841                         return vma;
842
843                 i915_gem_object_put(obj);
844                 if (err != -EEXIST)
845                         return ERR_PTR(err);
846         } while (1);
847 }
848
849 static int eb_lookup_vmas(struct i915_execbuffer *eb)
850 {
851         struct drm_i915_private *i915 = eb->i915;
852         unsigned int batch = eb_batch_index(eb);
853         unsigned int i;
854         int err = 0;
855
856         INIT_LIST_HEAD(&eb->relocs);
857
858         for (i = 0; i < eb->buffer_count; i++) {
859                 struct i915_vma *vma;
860
861                 vma = eb_lookup_vma(eb, eb->exec[i].handle);
862                 if (IS_ERR(vma)) {
863                         err = PTR_ERR(vma);
864                         goto err;
865                 }
866
867                 err = eb_validate_vma(eb, &eb->exec[i], vma);
868                 if (unlikely(err)) {
869                         i915_vma_put(vma);
870                         goto err;
871                 }
872
873                 eb_add_vma(eb, i, batch, vma);
874
875                 if (i915_gem_object_is_userptr(vma->obj)) {
876                         err = i915_gem_object_userptr_submit_init(vma->obj);
877                         if (err) {
878                                 if (i + 1 < eb->buffer_count) {
879                                         /*
880                                          * Execbuffer code expects last vma entry to be NULL,
881                                          * since we already initialized this entry,
882                                          * set the next value to NULL or we mess up
883                                          * cleanup handling.
884                                          */
885                                         eb->vma[i + 1].vma = NULL;
886                                 }
887
888                                 return err;
889                         }
890
891                         eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
892                         eb->args->flags |= __EXEC_USERPTR_USED;
893                 }
894         }
895
896         if (unlikely(eb->batch->flags & EXEC_OBJECT_WRITE)) {
897                 drm_dbg(&i915->drm,
898                         "Attempting to use self-modifying batch buffer\n");
899                 return -EINVAL;
900         }
901
902         if (range_overflows_t(u64,
903                               eb->batch_start_offset, eb->batch_len,
904                               eb->batch->vma->size)) {
905                 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
906                 return -EINVAL;
907         }
908
909         if (eb->batch_len == 0)
910                 eb->batch_len = eb->batch->vma->size - eb->batch_start_offset;
911         if (unlikely(eb->batch_len == 0)) { /* impossible! */
912                 drm_dbg(&i915->drm, "Invalid batch length\n");
913                 return -EINVAL;
914         }
915
916         return 0;
917
918 err:
919         eb->vma[i].vma = NULL;
920         return err;
921 }
922
923 static int eb_validate_vmas(struct i915_execbuffer *eb)
924 {
925         unsigned int i;
926         int err;
927
928         INIT_LIST_HEAD(&eb->unbound);
929
930         for (i = 0; i < eb->buffer_count; i++) {
931                 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
932                 struct eb_vma *ev = &eb->vma[i];
933                 struct i915_vma *vma = ev->vma;
934
935                 err = i915_gem_object_lock(vma->obj, &eb->ww);
936                 if (err)
937                         return err;
938
939                 err = eb_pin_vma(eb, entry, ev);
940                 if (err == -EDEADLK)
941                         return err;
942
943                 if (!err) {
944                         if (entry->offset != vma->node.start) {
945                                 entry->offset = vma->node.start | UPDATE;
946                                 eb->args->flags |= __EXEC_HAS_RELOC;
947                         }
948                 } else {
949                         eb_unreserve_vma(ev);
950
951                         list_add_tail(&ev->bind_link, &eb->unbound);
952                         if (drm_mm_node_allocated(&vma->node)) {
953                                 err = i915_vma_unbind(vma);
954                                 if (err)
955                                         return err;
956                         }
957                 }
958
959                 if (!(ev->flags & EXEC_OBJECT_WRITE)) {
960                         err = dma_resv_reserve_shared(vma->resv, 1);
961                         if (err)
962                                 return err;
963                 }
964
965                 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
966                            eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
967         }
968
969         if (!list_empty(&eb->unbound))
970                 return eb_reserve(eb);
971
972         return 0;
973 }
974
975 static struct eb_vma *
976 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
977 {
978         if (eb->lut_size < 0) {
979                 if (handle >= -eb->lut_size)
980                         return NULL;
981                 return &eb->vma[handle];
982         } else {
983                 struct hlist_head *head;
984                 struct eb_vma *ev;
985
986                 head = &eb->buckets[hash_32(handle, eb->lut_size)];
987                 hlist_for_each_entry(ev, head, node) {
988                         if (ev->handle == handle)
989                                 return ev;
990                 }
991                 return NULL;
992         }
993 }
994
995 static void eb_release_vmas(struct i915_execbuffer *eb, bool final, bool release_userptr)
996 {
997         const unsigned int count = eb->buffer_count;
998         unsigned int i;
999
1000         for (i = 0; i < count; i++) {
1001                 struct eb_vma *ev = &eb->vma[i];
1002                 struct i915_vma *vma = ev->vma;
1003
1004                 if (!vma)
1005                         break;
1006
1007                 eb_unreserve_vma(ev);
1008
1009                 if (release_userptr && ev->flags & __EXEC_OBJECT_USERPTR_INIT) {
1010                         ev->flags &= ~__EXEC_OBJECT_USERPTR_INIT;
1011                         i915_gem_object_userptr_submit_fini(vma->obj);
1012                 }
1013
1014                 if (final)
1015                         i915_vma_put(vma);
1016         }
1017
1018         eb_unpin_engine(eb);
1019 }
1020
1021 static void eb_destroy(const struct i915_execbuffer *eb)
1022 {
1023         GEM_BUG_ON(eb->reloc_cache.rq);
1024
1025         if (eb->lut_size > 0)
1026                 kfree(eb->buckets);
1027 }
1028
1029 static inline u64
1030 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1031                   const struct i915_vma *target)
1032 {
1033         return gen8_canonical_addr((int)reloc->delta + target->node.start);
1034 }
1035
1036 static void reloc_cache_clear(struct reloc_cache *cache)
1037 {
1038         cache->rq = NULL;
1039         cache->rq_cmd = NULL;
1040         cache->pool = NULL;
1041         cache->rq_size = 0;
1042 }
1043
1044 static void reloc_cache_init(struct reloc_cache *cache,
1045                              struct drm_i915_private *i915)
1046 {
1047         cache->page = -1;
1048         cache->vaddr = 0;
1049         /* Must be a variable in the struct to allow GCC to unroll. */
1050         cache->graphics_ver = GRAPHICS_VER(i915);
1051         cache->has_llc = HAS_LLC(i915);
1052         cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1053         cache->has_fence = cache->graphics_ver < 4;
1054         cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1055         cache->node.flags = 0;
1056         reloc_cache_clear(cache);
1057 }
1058
1059 static inline void *unmask_page(unsigned long p)
1060 {
1061         return (void *)(uintptr_t)(p & PAGE_MASK);
1062 }
1063
1064 static inline unsigned int unmask_flags(unsigned long p)
1065 {
1066         return p & ~PAGE_MASK;
1067 }
1068
1069 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1070
1071 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1072 {
1073         struct drm_i915_private *i915 =
1074                 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1075         return &i915->ggtt;
1076 }
1077
1078 static void reloc_cache_put_pool(struct i915_execbuffer *eb, struct reloc_cache *cache)
1079 {
1080         if (!cache->pool)
1081                 return;
1082
1083         /*
1084          * This is a bit nasty, normally we keep objects locked until the end
1085          * of execbuffer, but we already submit this, and have to unlock before
1086          * dropping the reference. Fortunately we can only hold 1 pool node at
1087          * a time, so this should be harmless.
1088          */
1089         i915_gem_ww_unlock_single(cache->pool->obj);
1090         intel_gt_buffer_pool_put(cache->pool);
1091         cache->pool = NULL;
1092 }
1093
1094 static void reloc_gpu_flush(struct i915_execbuffer *eb, struct reloc_cache *cache)
1095 {
1096         struct drm_i915_gem_object *obj = cache->rq->batch->obj;
1097
1098         GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
1099         cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
1100
1101         i915_gem_object_flush_map(obj);
1102         i915_gem_object_unpin_map(obj);
1103
1104         intel_gt_chipset_flush(cache->rq->engine->gt);
1105
1106         i915_request_add(cache->rq);
1107         reloc_cache_put_pool(eb, cache);
1108         reloc_cache_clear(cache);
1109
1110         eb->reloc_pool = NULL;
1111 }
1112
1113 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1114 {
1115         void *vaddr;
1116
1117         if (cache->rq)
1118                 reloc_gpu_flush(eb, cache);
1119
1120         if (!cache->vaddr)
1121                 return;
1122
1123         vaddr = unmask_page(cache->vaddr);
1124         if (cache->vaddr & KMAP) {
1125                 struct drm_i915_gem_object *obj =
1126                         (struct drm_i915_gem_object *)cache->node.mm;
1127                 if (cache->vaddr & CLFLUSH_AFTER)
1128                         mb();
1129
1130                 kunmap_atomic(vaddr);
1131                 i915_gem_object_finish_access(obj);
1132         } else {
1133                 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1134
1135                 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1136                 io_mapping_unmap_atomic((void __iomem *)vaddr);
1137
1138                 if (drm_mm_node_allocated(&cache->node)) {
1139                         ggtt->vm.clear_range(&ggtt->vm,
1140                                              cache->node.start,
1141                                              cache->node.size);
1142                         mutex_lock(&ggtt->vm.mutex);
1143                         drm_mm_remove_node(&cache->node);
1144                         mutex_unlock(&ggtt->vm.mutex);
1145                 } else {
1146                         i915_vma_unpin((struct i915_vma *)cache->node.mm);
1147                 }
1148         }
1149
1150         cache->vaddr = 0;
1151         cache->page = -1;
1152 }
1153
1154 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1155                         struct reloc_cache *cache,
1156                         unsigned long pageno)
1157 {
1158         void *vaddr;
1159         struct page *page;
1160
1161         if (cache->vaddr) {
1162                 kunmap_atomic(unmask_page(cache->vaddr));
1163         } else {
1164                 unsigned int flushes;
1165                 int err;
1166
1167                 err = i915_gem_object_prepare_write(obj, &flushes);
1168                 if (err)
1169                         return ERR_PTR(err);
1170
1171                 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1172                 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1173
1174                 cache->vaddr = flushes | KMAP;
1175                 cache->node.mm = (void *)obj;
1176                 if (flushes)
1177                         mb();
1178         }
1179
1180         page = i915_gem_object_get_page(obj, pageno);
1181         if (!obj->mm.dirty)
1182                 set_page_dirty(page);
1183
1184         vaddr = kmap_atomic(page);
1185         cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1186         cache->page = pageno;
1187
1188         return vaddr;
1189 }
1190
1191 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1192                          struct i915_execbuffer *eb,
1193                          unsigned long page)
1194 {
1195         struct reloc_cache *cache = &eb->reloc_cache;
1196         struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1197         unsigned long offset;
1198         void *vaddr;
1199
1200         if (cache->vaddr) {
1201                 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1202                 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1203         } else {
1204                 struct i915_vma *vma;
1205                 int err;
1206
1207                 if (i915_gem_object_is_tiled(obj))
1208                         return ERR_PTR(-EINVAL);
1209
1210                 if (use_cpu_reloc(cache, obj))
1211                         return NULL;
1212
1213                 err = i915_gem_object_set_to_gtt_domain(obj, true);
1214                 if (err)
1215                         return ERR_PTR(err);
1216
1217                 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1218                                                   PIN_MAPPABLE |
1219                                                   PIN_NONBLOCK /* NOWARN */ |
1220                                                   PIN_NOEVICT);
1221                 if (vma == ERR_PTR(-EDEADLK))
1222                         return vma;
1223
1224                 if (IS_ERR(vma)) {
1225                         memset(&cache->node, 0, sizeof(cache->node));
1226                         mutex_lock(&ggtt->vm.mutex);
1227                         err = drm_mm_insert_node_in_range
1228                                 (&ggtt->vm.mm, &cache->node,
1229                                  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1230                                  0, ggtt->mappable_end,
1231                                  DRM_MM_INSERT_LOW);
1232                         mutex_unlock(&ggtt->vm.mutex);
1233                         if (err) /* no inactive aperture space, use cpu reloc */
1234                                 return NULL;
1235                 } else {
1236                         cache->node.start = vma->node.start;
1237                         cache->node.mm = (void *)vma;
1238                 }
1239         }
1240
1241         offset = cache->node.start;
1242         if (drm_mm_node_allocated(&cache->node)) {
1243                 ggtt->vm.insert_page(&ggtt->vm,
1244                                      i915_gem_object_get_dma_address(obj, page),
1245                                      offset, I915_CACHE_NONE, 0);
1246         } else {
1247                 offset += page << PAGE_SHIFT;
1248         }
1249
1250         vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1251                                                          offset);
1252         cache->page = page;
1253         cache->vaddr = (unsigned long)vaddr;
1254
1255         return vaddr;
1256 }
1257
1258 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1259                          struct i915_execbuffer *eb,
1260                          unsigned long page)
1261 {
1262         struct reloc_cache *cache = &eb->reloc_cache;
1263         void *vaddr;
1264
1265         if (cache->page == page) {
1266                 vaddr = unmask_page(cache->vaddr);
1267         } else {
1268                 vaddr = NULL;
1269                 if ((cache->vaddr & KMAP) == 0)
1270                         vaddr = reloc_iomap(obj, eb, page);
1271                 if (!vaddr)
1272                         vaddr = reloc_kmap(obj, cache, page);
1273         }
1274
1275         return vaddr;
1276 }
1277
1278 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1279 {
1280         if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1281                 if (flushes & CLFLUSH_BEFORE) {
1282                         clflushopt(addr);
1283                         mb();
1284                 }
1285
1286                 *addr = value;
1287
1288                 /*
1289                  * Writes to the same cacheline are serialised by the CPU
1290                  * (including clflush). On the write path, we only require
1291                  * that it hits memory in an orderly fashion and place
1292                  * mb barriers at the start and end of the relocation phase
1293                  * to ensure ordering of clflush wrt to the system.
1294                  */
1295                 if (flushes & CLFLUSH_AFTER)
1296                         clflushopt(addr);
1297         } else
1298                 *addr = value;
1299 }
1300
1301 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1302 {
1303         struct drm_i915_gem_object *obj = vma->obj;
1304         int err;
1305
1306         assert_vma_held(vma);
1307
1308         if (obj->cache_dirty & ~obj->cache_coherent)
1309                 i915_gem_clflush_object(obj, 0);
1310         obj->write_domain = 0;
1311
1312         err = i915_request_await_object(rq, vma->obj, true);
1313         if (err == 0)
1314                 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1315
1316         return err;
1317 }
1318
1319 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1320                              struct intel_engine_cs *engine,
1321                              struct i915_vma *vma,
1322                              unsigned int len)
1323 {
1324         struct reloc_cache *cache = &eb->reloc_cache;
1325         struct intel_gt_buffer_pool_node *pool = eb->reloc_pool;
1326         struct i915_request *rq;
1327         struct i915_vma *batch;
1328         u32 *cmd;
1329         int err;
1330
1331         if (!pool) {
1332                 pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE,
1333                                                 cache->has_llc ?
1334                                                 I915_MAP_WB :
1335                                                 I915_MAP_WC);
1336                 if (IS_ERR(pool))
1337                         return PTR_ERR(pool);
1338         }
1339         eb->reloc_pool = NULL;
1340
1341         err = i915_gem_object_lock(pool->obj, &eb->ww);
1342         if (err)
1343                 goto err_pool;
1344
1345         cmd = i915_gem_object_pin_map(pool->obj, pool->type);
1346         if (IS_ERR(cmd)) {
1347                 err = PTR_ERR(cmd);
1348                 goto err_pool;
1349         }
1350         intel_gt_buffer_pool_mark_used(pool);
1351
1352         memset32(cmd, 0, pool->obj->base.size / sizeof(u32));
1353
1354         batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1355         if (IS_ERR(batch)) {
1356                 err = PTR_ERR(batch);
1357                 goto err_unmap;
1358         }
1359
1360         err = i915_vma_pin_ww(batch, &eb->ww, 0, 0, PIN_USER | PIN_NONBLOCK);
1361         if (err)
1362                 goto err_unmap;
1363
1364         if (engine == eb->context->engine) {
1365                 rq = i915_request_create(eb->context);
1366         } else {
1367                 struct intel_context *ce = eb->reloc_context;
1368
1369                 if (!ce) {
1370                         ce = intel_context_create(engine);
1371                         if (IS_ERR(ce)) {
1372                                 err = PTR_ERR(ce);
1373                                 goto err_unpin;
1374                         }
1375
1376                         i915_vm_put(ce->vm);
1377                         ce->vm = i915_vm_get(eb->context->vm);
1378                         eb->reloc_context = ce;
1379                 }
1380
1381                 err = intel_context_pin_ww(ce, &eb->ww);
1382                 if (err)
1383                         goto err_unpin;
1384
1385                 rq = i915_request_create(ce);
1386                 intel_context_unpin(ce);
1387         }
1388         if (IS_ERR(rq)) {
1389                 err = PTR_ERR(rq);
1390                 goto err_unpin;
1391         }
1392
1393         err = intel_gt_buffer_pool_mark_active(pool, rq);
1394         if (err)
1395                 goto err_request;
1396
1397         err = reloc_move_to_gpu(rq, vma);
1398         if (err)
1399                 goto err_request;
1400
1401         err = eb->engine->emit_bb_start(rq,
1402                                         batch->node.start, PAGE_SIZE,
1403                                         cache->graphics_ver > 5 ? 0 : I915_DISPATCH_SECURE);
1404         if (err)
1405                 goto skip_request;
1406
1407         assert_vma_held(batch);
1408         err = i915_request_await_object(rq, batch->obj, false);
1409         if (err == 0)
1410                 err = i915_vma_move_to_active(batch, rq, 0);
1411         if (err)
1412                 goto skip_request;
1413
1414         rq->batch = batch;
1415         i915_vma_unpin(batch);
1416
1417         cache->rq = rq;
1418         cache->rq_cmd = cmd;
1419         cache->rq_size = 0;
1420         cache->pool = pool;
1421
1422         /* Return with batch mapping (cmd) still pinned */
1423         return 0;
1424
1425 skip_request:
1426         i915_request_set_error_once(rq, err);
1427 err_request:
1428         i915_request_add(rq);
1429 err_unpin:
1430         i915_vma_unpin(batch);
1431 err_unmap:
1432         i915_gem_object_unpin_map(pool->obj);
1433 err_pool:
1434         eb->reloc_pool = pool;
1435         return err;
1436 }
1437
1438 static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
1439 {
1440         return engine->class != VIDEO_DECODE_CLASS || GRAPHICS_VER(engine->i915) != 6;
1441 }
1442
1443 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1444                       struct i915_vma *vma,
1445                       unsigned int len)
1446 {
1447         struct reloc_cache *cache = &eb->reloc_cache;
1448         u32 *cmd;
1449
1450         if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1451                 reloc_gpu_flush(eb, cache);
1452
1453         if (unlikely(!cache->rq)) {
1454                 int err;
1455                 struct intel_engine_cs *engine = eb->engine;
1456
1457                 /* If we need to copy for the cmdparser, we will stall anyway */
1458                 if (eb_use_cmdparser(eb))
1459                         return ERR_PTR(-EWOULDBLOCK);
1460
1461                 if (!reloc_can_use_engine(engine)) {
1462                         engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
1463                         if (!engine)
1464                                 return ERR_PTR(-ENODEV);
1465                 }
1466
1467                 err = __reloc_gpu_alloc(eb, engine, vma, len);
1468                 if (unlikely(err))
1469                         return ERR_PTR(err);
1470         }
1471
1472         cmd = cache->rq_cmd + cache->rq_size;
1473         cache->rq_size += len;
1474
1475         return cmd;
1476 }
1477
1478 static inline bool use_reloc_gpu(struct i915_vma *vma)
1479 {
1480         if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
1481                 return true;
1482
1483         if (DBG_FORCE_RELOC)
1484                 return false;
1485
1486         return !dma_resv_test_signaled(vma->resv, true);
1487 }
1488
1489 static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
1490 {
1491         struct page *page;
1492         unsigned long addr;
1493
1494         GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
1495
1496         page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
1497         addr = PFN_PHYS(page_to_pfn(page));
1498         GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
1499
1500         return addr + offset_in_page(offset);
1501 }
1502
1503 static int __reloc_entry_gpu(struct i915_execbuffer *eb,
1504                               struct i915_vma *vma,
1505                               u64 offset,
1506                               u64 target_addr)
1507 {
1508         const unsigned int ver = eb->reloc_cache.graphics_ver;
1509         unsigned int len;
1510         u32 *batch;
1511         u64 addr;
1512
1513         if (ver >= 8)
1514                 len = offset & 7 ? 8 : 5;
1515         else if (ver >= 4)
1516                 len = 4;
1517         else
1518                 len = 3;
1519
1520         batch = reloc_gpu(eb, vma, len);
1521         if (batch == ERR_PTR(-EDEADLK))
1522                 return -EDEADLK;
1523         else if (IS_ERR(batch))
1524                 return false;
1525
1526         addr = gen8_canonical_addr(vma->node.start + offset);
1527         if (ver >= 8) {
1528                 if (offset & 7) {
1529                         *batch++ = MI_STORE_DWORD_IMM_GEN4;
1530                         *batch++ = lower_32_bits(addr);
1531                         *batch++ = upper_32_bits(addr);
1532                         *batch++ = lower_32_bits(target_addr);
1533
1534                         addr = gen8_canonical_addr(addr + 4);
1535
1536                         *batch++ = MI_STORE_DWORD_IMM_GEN4;
1537                         *batch++ = lower_32_bits(addr);
1538                         *batch++ = upper_32_bits(addr);
1539                         *batch++ = upper_32_bits(target_addr);
1540                 } else {
1541                         *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1542                         *batch++ = lower_32_bits(addr);
1543                         *batch++ = upper_32_bits(addr);
1544                         *batch++ = lower_32_bits(target_addr);
1545                         *batch++ = upper_32_bits(target_addr);
1546                 }
1547         } else if (ver >= 6) {
1548                 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1549                 *batch++ = 0;
1550                 *batch++ = addr;
1551                 *batch++ = target_addr;
1552         } else if (IS_I965G(eb->i915)) {
1553                 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1554                 *batch++ = 0;
1555                 *batch++ = vma_phys_addr(vma, offset);
1556                 *batch++ = target_addr;
1557         } else if (ver >= 4) {
1558                 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1559                 *batch++ = 0;
1560                 *batch++ = addr;
1561                 *batch++ = target_addr;
1562         } else if (ver >= 3 &&
1563                    !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
1564                 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1565                 *batch++ = addr;
1566                 *batch++ = target_addr;
1567         } else {
1568                 *batch++ = MI_STORE_DWORD_IMM;
1569                 *batch++ = vma_phys_addr(vma, offset);
1570                 *batch++ = target_addr;
1571         }
1572
1573         return true;
1574 }
1575
1576 static int reloc_entry_gpu(struct i915_execbuffer *eb,
1577                             struct i915_vma *vma,
1578                             u64 offset,
1579                             u64 target_addr)
1580 {
1581         if (eb->reloc_cache.vaddr)
1582                 return false;
1583
1584         if (!use_reloc_gpu(vma))
1585                 return false;
1586
1587         return __reloc_entry_gpu(eb, vma, offset, target_addr);
1588 }
1589
1590 static u64
1591 relocate_entry(struct i915_vma *vma,
1592                const struct drm_i915_gem_relocation_entry *reloc,
1593                struct i915_execbuffer *eb,
1594                const struct i915_vma *target)
1595 {
1596         u64 target_addr = relocation_target(reloc, target);
1597         u64 offset = reloc->offset;
1598         int reloc_gpu = reloc_entry_gpu(eb, vma, offset, target_addr);
1599
1600         if (reloc_gpu < 0)
1601                 return reloc_gpu;
1602
1603         if (!reloc_gpu) {
1604                 bool wide = eb->reloc_cache.use_64bit_reloc;
1605                 void *vaddr;
1606
1607 repeat:
1608                 vaddr = reloc_vaddr(vma->obj, eb,
1609                                     offset >> PAGE_SHIFT);
1610                 if (IS_ERR(vaddr))
1611                         return PTR_ERR(vaddr);
1612
1613                 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1614                 clflush_write32(vaddr + offset_in_page(offset),
1615                                 lower_32_bits(target_addr),
1616                                 eb->reloc_cache.vaddr);
1617
1618                 if (wide) {
1619                         offset += sizeof(u32);
1620                         target_addr >>= 32;
1621                         wide = false;
1622                         goto repeat;
1623                 }
1624         }
1625
1626         return target->node.start | UPDATE;
1627 }
1628
1629 static u64
1630 eb_relocate_entry(struct i915_execbuffer *eb,
1631                   struct eb_vma *ev,
1632                   const struct drm_i915_gem_relocation_entry *reloc)
1633 {
1634         struct drm_i915_private *i915 = eb->i915;
1635         struct eb_vma *target;
1636         int err;
1637
1638         /* we've already hold a reference to all valid objects */
1639         target = eb_get_vma(eb, reloc->target_handle);
1640         if (unlikely(!target))
1641                 return -ENOENT;
1642
1643         /* Validate that the target is in a valid r/w GPU domain */
1644         if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1645                 drm_dbg(&i915->drm, "reloc with multiple write domains: "
1646                           "target %d offset %d "
1647                           "read %08x write %08x",
1648                           reloc->target_handle,
1649                           (int) reloc->offset,
1650                           reloc->read_domains,
1651                           reloc->write_domain);
1652                 return -EINVAL;
1653         }
1654         if (unlikely((reloc->write_domain | reloc->read_domains)
1655                      & ~I915_GEM_GPU_DOMAINS)) {
1656                 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1657                           "target %d offset %d "
1658                           "read %08x write %08x",
1659                           reloc->target_handle,
1660                           (int) reloc->offset,
1661                           reloc->read_domains,
1662                           reloc->write_domain);
1663                 return -EINVAL;
1664         }
1665
1666         if (reloc->write_domain) {
1667                 target->flags |= EXEC_OBJECT_WRITE;
1668
1669                 /*
1670                  * Sandybridge PPGTT errata: We need a global gtt mapping
1671                  * for MI and pipe_control writes because the gpu doesn't
1672                  * properly redirect them through the ppgtt for non_secure
1673                  * batchbuffers.
1674                  */
1675                 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1676                     GRAPHICS_VER(eb->i915) == 6) {
1677                         err = i915_vma_bind(target->vma,
1678                                             target->vma->obj->cache_level,
1679                                             PIN_GLOBAL, NULL);
1680                         if (err)
1681                                 return err;
1682                 }
1683         }
1684
1685         /*
1686          * If the relocation already has the right value in it, no
1687          * more work needs to be done.
1688          */
1689         if (!DBG_FORCE_RELOC &&
1690             gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1691                 return 0;
1692
1693         /* Check that the relocation address is valid... */
1694         if (unlikely(reloc->offset >
1695                      ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1696                 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1697                           "target %d offset %d size %d.\n",
1698                           reloc->target_handle,
1699                           (int)reloc->offset,
1700                           (int)ev->vma->size);
1701                 return -EINVAL;
1702         }
1703         if (unlikely(reloc->offset & 3)) {
1704                 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1705                           "target %d offset %d.\n",
1706                           reloc->target_handle,
1707                           (int)reloc->offset);
1708                 return -EINVAL;
1709         }
1710
1711         /*
1712          * If we write into the object, we need to force the synchronisation
1713          * barrier, either with an asynchronous clflush or if we executed the
1714          * patching using the GPU (though that should be serialised by the
1715          * timeline). To be completely sure, and since we are required to
1716          * do relocations we are already stalling, disable the user's opt
1717          * out of our synchronisation.
1718          */
1719         ev->flags &= ~EXEC_OBJECT_ASYNC;
1720
1721         /* and update the user's relocation entry */
1722         return relocate_entry(ev->vma, reloc, eb, target->vma);
1723 }
1724
1725 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1726 {
1727 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1728         struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1729         const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1730         struct drm_i915_gem_relocation_entry __user *urelocs =
1731                 u64_to_user_ptr(entry->relocs_ptr);
1732         unsigned long remain = entry->relocation_count;
1733
1734         if (unlikely(remain > N_RELOC(ULONG_MAX)))
1735                 return -EINVAL;
1736
1737         /*
1738          * We must check that the entire relocation array is safe
1739          * to read. However, if the array is not writable the user loses
1740          * the updated relocation values.
1741          */
1742         if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1743                 return -EFAULT;
1744
1745         do {
1746                 struct drm_i915_gem_relocation_entry *r = stack;
1747                 unsigned int count =
1748                         min_t(unsigned long, remain, ARRAY_SIZE(stack));
1749                 unsigned int copied;
1750
1751                 /*
1752                  * This is the fast path and we cannot handle a pagefault
1753                  * whilst holding the struct mutex lest the user pass in the
1754                  * relocations contained within a mmaped bo. For in such a case
1755                  * we, the page fault handler would call i915_gem_fault() and
1756                  * we would try to acquire the struct mutex again. Obviously
1757                  * this is bad and so lockdep complains vehemently.
1758                  */
1759                 pagefault_disable();
1760                 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1761                 pagefault_enable();
1762                 if (unlikely(copied)) {
1763                         remain = -EFAULT;
1764                         goto out;
1765                 }
1766
1767                 remain -= count;
1768                 do {
1769                         u64 offset = eb_relocate_entry(eb, ev, r);
1770
1771                         if (likely(offset == 0)) {
1772                         } else if ((s64)offset < 0) {
1773                                 remain = (int)offset;
1774                                 goto out;
1775                         } else {
1776                                 /*
1777                                  * Note that reporting an error now
1778                                  * leaves everything in an inconsistent
1779                                  * state as we have *already* changed
1780                                  * the relocation value inside the
1781                                  * object. As we have not changed the
1782                                  * reloc.presumed_offset or will not
1783                                  * change the execobject.offset, on the
1784                                  * call we may not rewrite the value
1785                                  * inside the object, leaving it
1786                                  * dangling and causing a GPU hang. Unless
1787                                  * userspace dynamically rebuilds the
1788                                  * relocations on each execbuf rather than
1789                                  * presume a static tree.
1790                                  *
1791                                  * We did previously check if the relocations
1792                                  * were writable (access_ok), an error now
1793                                  * would be a strange race with mprotect,
1794                                  * having already demonstrated that we
1795                                  * can read from this userspace address.
1796                                  */
1797                                 offset = gen8_canonical_addr(offset & ~UPDATE);
1798                                 __put_user(offset,
1799                                            &urelocs[r - stack].presumed_offset);
1800                         }
1801                 } while (r++, --count);
1802                 urelocs += ARRAY_SIZE(stack);
1803         } while (remain);
1804 out:
1805         reloc_cache_reset(&eb->reloc_cache, eb);
1806         return remain;
1807 }
1808
1809 static int
1810 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1811 {
1812         const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1813         struct drm_i915_gem_relocation_entry *relocs =
1814                 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1815         unsigned int i;
1816         int err;
1817
1818         for (i = 0; i < entry->relocation_count; i++) {
1819                 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1820
1821                 if ((s64)offset < 0) {
1822                         err = (int)offset;
1823                         goto err;
1824                 }
1825         }
1826         err = 0;
1827 err:
1828         reloc_cache_reset(&eb->reloc_cache, eb);
1829         return err;
1830 }
1831
1832 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1833 {
1834         const char __user *addr, *end;
1835         unsigned long size;
1836         char __maybe_unused c;
1837
1838         size = entry->relocation_count;
1839         if (size == 0)
1840                 return 0;
1841
1842         if (size > N_RELOC(ULONG_MAX))
1843                 return -EINVAL;
1844
1845         addr = u64_to_user_ptr(entry->relocs_ptr);
1846         size *= sizeof(struct drm_i915_gem_relocation_entry);
1847         if (!access_ok(addr, size))
1848                 return -EFAULT;
1849
1850         end = addr + size;
1851         for (; addr < end; addr += PAGE_SIZE) {
1852                 int err = __get_user(c, addr);
1853                 if (err)
1854                         return err;
1855         }
1856         return __get_user(c, end - 1);
1857 }
1858
1859 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1860 {
1861         struct drm_i915_gem_relocation_entry *relocs;
1862         const unsigned int count = eb->buffer_count;
1863         unsigned int i;
1864         int err;
1865
1866         for (i = 0; i < count; i++) {
1867                 const unsigned int nreloc = eb->exec[i].relocation_count;
1868                 struct drm_i915_gem_relocation_entry __user *urelocs;
1869                 unsigned long size;
1870                 unsigned long copied;
1871
1872                 if (nreloc == 0)
1873                         continue;
1874
1875                 err = check_relocations(&eb->exec[i]);
1876                 if (err)
1877                         goto err;
1878
1879                 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1880                 size = nreloc * sizeof(*relocs);
1881
1882                 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1883                 if (!relocs) {
1884                         err = -ENOMEM;
1885                         goto err;
1886                 }
1887
1888                 /* copy_from_user is limited to < 4GiB */
1889                 copied = 0;
1890                 do {
1891                         unsigned int len =
1892                                 min_t(u64, BIT_ULL(31), size - copied);
1893
1894                         if (__copy_from_user((char *)relocs + copied,
1895                                              (char __user *)urelocs + copied,
1896                                              len))
1897                                 goto end;
1898
1899                         copied += len;
1900                 } while (copied < size);
1901
1902                 /*
1903                  * As we do not update the known relocation offsets after
1904                  * relocating (due to the complexities in lock handling),
1905                  * we need to mark them as invalid now so that we force the
1906                  * relocation processing next time. Just in case the target
1907                  * object is evicted and then rebound into its old
1908                  * presumed_offset before the next execbuffer - if that
1909                  * happened we would make the mistake of assuming that the
1910                  * relocations were valid.
1911                  */
1912                 if (!user_access_begin(urelocs, size))
1913                         goto end;
1914
1915                 for (copied = 0; copied < nreloc; copied++)
1916                         unsafe_put_user(-1,
1917                                         &urelocs[copied].presumed_offset,
1918                                         end_user);
1919                 user_access_end();
1920
1921                 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1922         }
1923
1924         return 0;
1925
1926 end_user:
1927         user_access_end();
1928 end:
1929         kvfree(relocs);
1930         err = -EFAULT;
1931 err:
1932         while (i--) {
1933                 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1934                 if (eb->exec[i].relocation_count)
1935                         kvfree(relocs);
1936         }
1937         return err;
1938 }
1939
1940 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1941 {
1942         const unsigned int count = eb->buffer_count;
1943         unsigned int i;
1944
1945         for (i = 0; i < count; i++) {
1946                 int err;
1947
1948                 err = check_relocations(&eb->exec[i]);
1949                 if (err)
1950                         return err;
1951         }
1952
1953         return 0;
1954 }
1955
1956 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1957 {
1958         const unsigned int count = eb->buffer_count;
1959         unsigned int i;
1960         int ret;
1961
1962         if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1963                 return 0;
1964
1965         for (i = 0; i < count; i++) {
1966                 struct eb_vma *ev = &eb->vma[i];
1967
1968                 if (!i915_gem_object_is_userptr(ev->vma->obj))
1969                         continue;
1970
1971                 ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1972                 if (ret)
1973                         return ret;
1974
1975                 ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1976         }
1977
1978         return 0;
1979 }
1980
1981 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb,
1982                                            struct i915_request *rq)
1983 {
1984         bool have_copy = false;
1985         struct eb_vma *ev;
1986         int err = 0;
1987
1988 repeat:
1989         if (signal_pending(current)) {
1990                 err = -ERESTARTSYS;
1991                 goto out;
1992         }
1993
1994         /* We may process another execbuffer during the unlock... */
1995         eb_release_vmas(eb, false, true);
1996         i915_gem_ww_ctx_fini(&eb->ww);
1997
1998         if (rq) {
1999                 /* nonblocking is always false */
2000                 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2001                                       MAX_SCHEDULE_TIMEOUT) < 0) {
2002                         i915_request_put(rq);
2003                         rq = NULL;
2004
2005                         err = -EINTR;
2006                         goto err_relock;
2007                 }
2008
2009                 i915_request_put(rq);
2010                 rq = NULL;
2011         }
2012
2013         /*
2014          * We take 3 passes through the slowpatch.
2015          *
2016          * 1 - we try to just prefault all the user relocation entries and
2017          * then attempt to reuse the atomic pagefault disabled fast path again.
2018          *
2019          * 2 - we copy the user entries to a local buffer here outside of the
2020          * local and allow ourselves to wait upon any rendering before
2021          * relocations
2022          *
2023          * 3 - we already have a local copy of the relocation entries, but
2024          * were interrupted (EAGAIN) whilst waiting for the objects, try again.
2025          */
2026         if (!err) {
2027                 err = eb_prefault_relocations(eb);
2028         } else if (!have_copy) {
2029                 err = eb_copy_relocations(eb);
2030                 have_copy = err == 0;
2031         } else {
2032                 cond_resched();
2033                 err = 0;
2034         }
2035
2036         if (!err)
2037                 err = eb_reinit_userptr(eb);
2038
2039 err_relock:
2040         i915_gem_ww_ctx_init(&eb->ww, true);
2041         if (err)
2042                 goto out;
2043
2044         /* reacquire the objects */
2045 repeat_validate:
2046         rq = eb_pin_engine(eb, false);
2047         if (IS_ERR(rq)) {
2048                 err = PTR_ERR(rq);
2049                 rq = NULL;
2050                 goto err;
2051         }
2052
2053         /* We didn't throttle, should be NULL */
2054         GEM_WARN_ON(rq);
2055
2056         err = eb_validate_vmas(eb);
2057         if (err)
2058                 goto err;
2059
2060         GEM_BUG_ON(!eb->batch);
2061
2062         list_for_each_entry(ev, &eb->relocs, reloc_link) {
2063                 if (!have_copy) {
2064                         pagefault_disable();
2065                         err = eb_relocate_vma(eb, ev);
2066                         pagefault_enable();
2067                         if (err)
2068                                 break;
2069                 } else {
2070                         err = eb_relocate_vma_slow(eb, ev);
2071                         if (err)
2072                                 break;
2073                 }
2074         }
2075
2076         if (err == -EDEADLK)
2077                 goto err;
2078
2079         if (err && !have_copy)
2080                 goto repeat;
2081
2082         if (err)
2083                 goto err;
2084
2085         /* as last step, parse the command buffer */
2086         err = eb_parse(eb);
2087         if (err)
2088                 goto err;
2089
2090         /*
2091          * Leave the user relocations as are, this is the painfully slow path,
2092          * and we want to avoid the complication of dropping the lock whilst
2093          * having buffers reserved in the aperture and so causing spurious
2094          * ENOSPC for random operations.
2095          */
2096
2097 err:
2098         if (err == -EDEADLK) {
2099                 eb_release_vmas(eb, false, false);
2100                 err = i915_gem_ww_ctx_backoff(&eb->ww);
2101                 if (!err)
2102                         goto repeat_validate;
2103         }
2104
2105         if (err == -EAGAIN)
2106                 goto repeat;
2107
2108 out:
2109         if (have_copy) {
2110                 const unsigned int count = eb->buffer_count;
2111                 unsigned int i;
2112
2113                 for (i = 0; i < count; i++) {
2114                         const struct drm_i915_gem_exec_object2 *entry =
2115                                 &eb->exec[i];
2116                         struct drm_i915_gem_relocation_entry *relocs;
2117
2118                         if (!entry->relocation_count)
2119                                 continue;
2120
2121                         relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
2122                         kvfree(relocs);
2123                 }
2124         }
2125
2126         if (rq)
2127                 i915_request_put(rq);
2128
2129         return err;
2130 }
2131
2132 static int eb_relocate_parse(struct i915_execbuffer *eb)
2133 {
2134         int err;
2135         struct i915_request *rq = NULL;
2136         bool throttle = true;
2137
2138 retry:
2139         rq = eb_pin_engine(eb, throttle);
2140         if (IS_ERR(rq)) {
2141                 err = PTR_ERR(rq);
2142                 rq = NULL;
2143                 if (err != -EDEADLK)
2144                         return err;
2145
2146                 goto err;
2147         }
2148
2149         if (rq) {
2150                 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2151
2152                 /* Need to drop all locks now for throttling, take slowpath */
2153                 err = i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 0);
2154                 if (err == -ETIME) {
2155                         if (nonblock) {
2156                                 err = -EWOULDBLOCK;
2157                                 i915_request_put(rq);
2158                                 goto err;
2159                         }
2160                         goto slow;
2161                 }
2162                 i915_request_put(rq);
2163                 rq = NULL;
2164         }
2165
2166         /* only throttle once, even if we didn't need to throttle */
2167         throttle = false;
2168
2169         err = eb_validate_vmas(eb);
2170         if (err == -EAGAIN)
2171                 goto slow;
2172         else if (err)
2173                 goto err;
2174
2175         /* The objects are in their final locations, apply the relocations. */
2176         if (eb->args->flags & __EXEC_HAS_RELOC) {
2177                 struct eb_vma *ev;
2178
2179                 list_for_each_entry(ev, &eb->relocs, reloc_link) {
2180                         err = eb_relocate_vma(eb, ev);
2181                         if (err)
2182                                 break;
2183                 }
2184
2185                 if (err == -EDEADLK)
2186                         goto err;
2187                 else if (err)
2188                         goto slow;
2189         }
2190
2191         if (!err)
2192                 err = eb_parse(eb);
2193
2194 err:
2195         if (err == -EDEADLK) {
2196                 eb_release_vmas(eb, false, false);
2197                 err = i915_gem_ww_ctx_backoff(&eb->ww);
2198                 if (!err)
2199                         goto retry;
2200         }
2201
2202         return err;
2203
2204 slow:
2205         err = eb_relocate_parse_slow(eb, rq);
2206         if (err)
2207                 /*
2208                  * If the user expects the execobject.offset and
2209                  * reloc.presumed_offset to be an exact match,
2210                  * as for using NO_RELOC, then we cannot update
2211                  * the execobject.offset until we have completed
2212                  * relocation.
2213                  */
2214                 eb->args->flags &= ~__EXEC_HAS_RELOC;
2215
2216         return err;
2217 }
2218
2219 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2220 {
2221         const unsigned int count = eb->buffer_count;
2222         unsigned int i = count;
2223         int err = 0;
2224
2225         while (i--) {
2226                 struct eb_vma *ev = &eb->vma[i];
2227                 struct i915_vma *vma = ev->vma;
2228                 unsigned int flags = ev->flags;
2229                 struct drm_i915_gem_object *obj = vma->obj;
2230
2231                 assert_vma_held(vma);
2232
2233                 if (flags & EXEC_OBJECT_CAPTURE) {
2234                         struct i915_capture_list *capture;
2235
2236                         capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2237                         if (capture) {
2238                                 capture->next = eb->request->capture_list;
2239                                 capture->vma = vma;
2240                                 eb->request->capture_list = capture;
2241                         }
2242                 }
2243
2244                 /*
2245                  * If the GPU is not _reading_ through the CPU cache, we need
2246                  * to make sure that any writes (both previous GPU writes from
2247                  * before a change in snooping levels and normal CPU writes)
2248                  * caught in that cache are flushed to main memory.
2249                  *
2250                  * We want to say
2251                  *   obj->cache_dirty &&
2252                  *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2253                  * but gcc's optimiser doesn't handle that as well and emits
2254                  * two jumps instead of one. Maybe one day...
2255                  */
2256                 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2257                         if (i915_gem_clflush_object(obj, 0))
2258                                 flags &= ~EXEC_OBJECT_ASYNC;
2259                 }
2260
2261                 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2262                         err = i915_request_await_object
2263                                 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
2264                 }
2265
2266                 if (err == 0)
2267                         err = i915_vma_move_to_active(vma, eb->request,
2268                                                       flags | __EXEC_OBJECT_NO_RESERVE);
2269         }
2270
2271 #ifdef CONFIG_MMU_NOTIFIER
2272         if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2273                 spin_lock(&eb->i915->mm.notifier_lock);
2274
2275                 /*
2276                  * count is always at least 1, otherwise __EXEC_USERPTR_USED
2277                  * could not have been set
2278                  */
2279                 for (i = 0; i < count; i++) {
2280                         struct eb_vma *ev = &eb->vma[i];
2281                         struct drm_i915_gem_object *obj = ev->vma->obj;
2282
2283                         if (!i915_gem_object_is_userptr(obj))
2284                                 continue;
2285
2286                         err = i915_gem_object_userptr_submit_done(obj);
2287                         if (err)
2288                                 break;
2289                 }
2290
2291                 spin_unlock(&eb->i915->mm.notifier_lock);
2292         }
2293 #endif
2294
2295         if (unlikely(err))
2296                 goto err_skip;
2297
2298         /* Unconditionally flush any chipset caches (for streaming writes). */
2299         intel_gt_chipset_flush(eb->engine->gt);
2300         return 0;
2301
2302 err_skip:
2303         i915_request_set_error_once(eb->request, err);
2304         return err;
2305 }
2306
2307 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2308 {
2309         if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2310                 return -EINVAL;
2311
2312         /* Kernel clipping was a DRI1 misfeature */
2313         if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2314                              I915_EXEC_USE_EXTENSIONS))) {
2315                 if (exec->num_cliprects || exec->cliprects_ptr)
2316                         return -EINVAL;
2317         }
2318
2319         if (exec->DR4 == 0xffffffff) {
2320                 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2321                 exec->DR4 = 0;
2322         }
2323         if (exec->DR1 || exec->DR4)
2324                 return -EINVAL;
2325
2326         if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2327                 return -EINVAL;
2328
2329         return 0;
2330 }
2331
2332 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2333 {
2334         u32 *cs;
2335         int i;
2336
2337         if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
2338                 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2339                 return -EINVAL;
2340         }
2341
2342         cs = intel_ring_begin(rq, 4 * 2 + 2);
2343         if (IS_ERR(cs))
2344                 return PTR_ERR(cs);
2345
2346         *cs++ = MI_LOAD_REGISTER_IMM(4);
2347         for (i = 0; i < 4; i++) {
2348                 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2349                 *cs++ = 0;
2350         }
2351         *cs++ = MI_NOOP;
2352         intel_ring_advance(rq, cs);
2353
2354         return 0;
2355 }
2356
2357 static struct i915_vma *
2358 shadow_batch_pin(struct i915_execbuffer *eb,
2359                  struct drm_i915_gem_object *obj,
2360                  struct i915_address_space *vm,
2361                  unsigned int flags)
2362 {
2363         struct i915_vma *vma;
2364         int err;
2365
2366         vma = i915_vma_instance(obj, vm, NULL);
2367         if (IS_ERR(vma))
2368                 return vma;
2369
2370         err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags);
2371         if (err)
2372                 return ERR_PTR(err);
2373
2374         return vma;
2375 }
2376
2377 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2378 {
2379         /*
2380          * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2381          * batch" bit. Hence we need to pin secure batches into the global gtt.
2382          * hsw should have this fixed, but bdw mucks it up again. */
2383         if (eb->batch_flags & I915_DISPATCH_SECURE)
2384                 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0);
2385
2386         return NULL;
2387 }
2388
2389 static int eb_parse(struct i915_execbuffer *eb)
2390 {
2391         struct drm_i915_private *i915 = eb->i915;
2392         struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2393         struct i915_vma *shadow, *trampoline, *batch;
2394         unsigned long len;
2395         int err;
2396
2397         if (!eb_use_cmdparser(eb)) {
2398                 batch = eb_dispatch_secure(eb, eb->batch->vma);
2399                 if (IS_ERR(batch))
2400                         return PTR_ERR(batch);
2401
2402                 goto secure_batch;
2403         }
2404
2405         len = eb->batch_len;
2406         if (!CMDPARSER_USES_GGTT(eb->i915)) {
2407                 /*
2408                  * ppGTT backed shadow buffers must be mapped RO, to prevent
2409                  * post-scan tampering
2410                  */
2411                 if (!eb->context->vm->has_read_only) {
2412                         drm_dbg(&i915->drm,
2413                                 "Cannot prevent post-scan tampering without RO capable vm\n");
2414                         return -EINVAL;
2415                 }
2416         } else {
2417                 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2418         }
2419         if (unlikely(len < eb->batch_len)) /* last paranoid check of overflow */
2420                 return -EINVAL;
2421
2422         if (!pool) {
2423                 pool = intel_gt_get_buffer_pool(eb->engine->gt, len,
2424                                                 I915_MAP_WB);
2425                 if (IS_ERR(pool))
2426                         return PTR_ERR(pool);
2427                 eb->batch_pool = pool;
2428         }
2429
2430         err = i915_gem_object_lock(pool->obj, &eb->ww);
2431         if (err)
2432                 goto err;
2433
2434         shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2435         if (IS_ERR(shadow)) {
2436                 err = PTR_ERR(shadow);
2437                 goto err;
2438         }
2439         intel_gt_buffer_pool_mark_used(pool);
2440         i915_gem_object_set_readonly(shadow->obj);
2441         shadow->private = pool;
2442
2443         trampoline = NULL;
2444         if (CMDPARSER_USES_GGTT(eb->i915)) {
2445                 trampoline = shadow;
2446
2447                 shadow = shadow_batch_pin(eb, pool->obj,
2448                                           &eb->engine->gt->ggtt->vm,
2449                                           PIN_GLOBAL);
2450                 if (IS_ERR(shadow)) {
2451                         err = PTR_ERR(shadow);
2452                         shadow = trampoline;
2453                         goto err_shadow;
2454                 }
2455                 shadow->private = pool;
2456
2457                 eb->batch_flags |= I915_DISPATCH_SECURE;
2458         }
2459
2460         batch = eb_dispatch_secure(eb, shadow);
2461         if (IS_ERR(batch)) {
2462                 err = PTR_ERR(batch);
2463                 goto err_trampoline;
2464         }
2465
2466         err = dma_resv_reserve_shared(shadow->resv, 1);
2467         if (err)
2468                 goto err_trampoline;
2469
2470         err = intel_engine_cmd_parser(eb->engine,
2471                                       eb->batch->vma,
2472                                       eb->batch_start_offset,
2473                                       eb->batch_len,
2474                                       shadow, trampoline);
2475         if (err)
2476                 goto err_unpin_batch;
2477
2478         eb->batch = &eb->vma[eb->buffer_count++];
2479         eb->batch->vma = i915_vma_get(shadow);
2480         eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2481
2482         eb->trampoline = trampoline;
2483         eb->batch_start_offset = 0;
2484
2485 secure_batch:
2486         if (batch) {
2487                 eb->batch = &eb->vma[eb->buffer_count++];
2488                 eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2489                 eb->batch->vma = i915_vma_get(batch);
2490         }
2491         return 0;
2492
2493 err_unpin_batch:
2494         if (batch)
2495                 i915_vma_unpin(batch);
2496 err_trampoline:
2497         if (trampoline)
2498                 i915_vma_unpin(trampoline);
2499 err_shadow:
2500         i915_vma_unpin(shadow);
2501 err:
2502         return err;
2503 }
2504
2505 static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
2506 {
2507         int err;
2508
2509         if (intel_context_nopreempt(eb->context))
2510                 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2511
2512         err = eb_move_to_gpu(eb);
2513         if (err)
2514                 return err;
2515
2516         if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2517                 err = i915_reset_gen7_sol_offsets(eb->request);
2518                 if (err)
2519                         return err;
2520         }
2521
2522         /*
2523          * After we completed waiting for other engines (using HW semaphores)
2524          * then we can signal that this request/batch is ready to run. This
2525          * allows us to determine if the batch is still waiting on the GPU
2526          * or actually running by checking the breadcrumb.
2527          */
2528         if (eb->engine->emit_init_breadcrumb) {
2529                 err = eb->engine->emit_init_breadcrumb(eb->request);
2530                 if (err)
2531                         return err;
2532         }
2533
2534         err = eb->engine->emit_bb_start(eb->request,
2535                                         batch->node.start +
2536                                         eb->batch_start_offset,
2537                                         eb->batch_len,
2538                                         eb->batch_flags);
2539         if (err)
2540                 return err;
2541
2542         if (eb->trampoline) {
2543                 GEM_BUG_ON(eb->batch_start_offset);
2544                 err = eb->engine->emit_bb_start(eb->request,
2545                                                 eb->trampoline->node.start +
2546                                                 eb->batch_len,
2547                                                 0, 0);
2548                 if (err)
2549                         return err;
2550         }
2551
2552         return 0;
2553 }
2554
2555 static int num_vcs_engines(const struct drm_i915_private *i915)
2556 {
2557         return hweight_long(VDBOX_MASK(&i915->gt));
2558 }
2559
2560 /*
2561  * Find one BSD ring to dispatch the corresponding BSD command.
2562  * The engine index is returned.
2563  */
2564 static unsigned int
2565 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2566                          struct drm_file *file)
2567 {
2568         struct drm_i915_file_private *file_priv = file->driver_priv;
2569
2570         /* Check whether the file_priv has already selected one ring. */
2571         if ((int)file_priv->bsd_engine < 0)
2572                 file_priv->bsd_engine =
2573                         get_random_int() % num_vcs_engines(dev_priv);
2574
2575         return file_priv->bsd_engine;
2576 }
2577
2578 static const enum intel_engine_id user_ring_map[] = {
2579         [I915_EXEC_DEFAULT]     = RCS0,
2580         [I915_EXEC_RENDER]      = RCS0,
2581         [I915_EXEC_BLT]         = BCS0,
2582         [I915_EXEC_BSD]         = VCS0,
2583         [I915_EXEC_VEBOX]       = VECS0
2584 };
2585
2586 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2587 {
2588         struct intel_ring *ring = ce->ring;
2589         struct intel_timeline *tl = ce->timeline;
2590         struct i915_request *rq;
2591
2592         /*
2593          * Completely unscientific finger-in-the-air estimates for suitable
2594          * maximum user request size (to avoid blocking) and then backoff.
2595          */
2596         if (intel_ring_update_space(ring) >= PAGE_SIZE)
2597                 return NULL;
2598
2599         /*
2600          * Find a request that after waiting upon, there will be at least half
2601          * the ring available. The hysteresis allows us to compete for the
2602          * shared ring and should mean that we sleep less often prior to
2603          * claiming our resources, but not so long that the ring completely
2604          * drains before we can submit our next request.
2605          */
2606         list_for_each_entry(rq, &tl->requests, link) {
2607                 if (rq->ring != ring)
2608                         continue;
2609
2610                 if (__intel_ring_space(rq->postfix,
2611                                        ring->emit, ring->size) > ring->size / 2)
2612                         break;
2613         }
2614         if (&rq->link == &tl->requests)
2615                 return NULL; /* weird, we will check again later for real */
2616
2617         return i915_request_get(rq);
2618 }
2619
2620 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2621 {
2622         struct intel_context *ce = eb->context;
2623         struct intel_timeline *tl;
2624         struct i915_request *rq = NULL;
2625         int err;
2626
2627         GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2628
2629         if (unlikely(intel_context_is_banned(ce)))
2630                 return ERR_PTR(-EIO);
2631
2632         /*
2633          * Pinning the contexts may generate requests in order to acquire
2634          * GGTT space, so do this first before we reserve a seqno for
2635          * ourselves.
2636          */
2637         err = intel_context_pin_ww(ce, &eb->ww);
2638         if (err)
2639                 return ERR_PTR(err);
2640
2641         /*
2642          * Take a local wakeref for preparing to dispatch the execbuf as
2643          * we expect to access the hardware fairly frequently in the
2644          * process, and require the engine to be kept awake between accesses.
2645          * Upon dispatch, we acquire another prolonged wakeref that we hold
2646          * until the timeline is idle, which in turn releases the wakeref
2647          * taken on the engine, and the parent device.
2648          */
2649         tl = intel_context_timeline_lock(ce);
2650         if (IS_ERR(tl)) {
2651                 intel_context_unpin(ce);
2652                 return ERR_CAST(tl);
2653         }
2654
2655         intel_context_enter(ce);
2656         if (throttle)
2657                 rq = eb_throttle(eb, ce);
2658         intel_context_timeline_unlock(tl);
2659
2660         eb->args->flags |= __EXEC_ENGINE_PINNED;
2661         return rq;
2662 }
2663
2664 static void eb_unpin_engine(struct i915_execbuffer *eb)
2665 {
2666         struct intel_context *ce = eb->context;
2667         struct intel_timeline *tl = ce->timeline;
2668
2669         if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2670                 return;
2671
2672         eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2673
2674         mutex_lock(&tl->mutex);
2675         intel_context_exit(ce);
2676         mutex_unlock(&tl->mutex);
2677
2678         intel_context_unpin(ce);
2679 }
2680
2681 static unsigned int
2682 eb_select_legacy_ring(struct i915_execbuffer *eb)
2683 {
2684         struct drm_i915_private *i915 = eb->i915;
2685         struct drm_i915_gem_execbuffer2 *args = eb->args;
2686         unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2687
2688         if (user_ring_id != I915_EXEC_BSD &&
2689             (args->flags & I915_EXEC_BSD_MASK)) {
2690                 drm_dbg(&i915->drm,
2691                         "execbuf with non bsd ring but with invalid "
2692                         "bsd dispatch flags: %d\n", (int)(args->flags));
2693                 return -1;
2694         }
2695
2696         if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2697                 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2698
2699                 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2700                         bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2701                 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2702                            bsd_idx <= I915_EXEC_BSD_RING2) {
2703                         bsd_idx >>= I915_EXEC_BSD_SHIFT;
2704                         bsd_idx--;
2705                 } else {
2706                         drm_dbg(&i915->drm,
2707                                 "execbuf with unknown bsd ring: %u\n",
2708                                 bsd_idx);
2709                         return -1;
2710                 }
2711
2712                 return _VCS(bsd_idx);
2713         }
2714
2715         if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2716                 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2717                         user_ring_id);
2718                 return -1;
2719         }
2720
2721         return user_ring_map[user_ring_id];
2722 }
2723
2724 static int
2725 eb_select_engine(struct i915_execbuffer *eb)
2726 {
2727         struct intel_context *ce;
2728         unsigned int idx;
2729         int err;
2730
2731         if (i915_gem_context_user_engines(eb->gem_context))
2732                 idx = eb->args->flags & I915_EXEC_RING_MASK;
2733         else
2734                 idx = eb_select_legacy_ring(eb);
2735
2736         ce = i915_gem_context_get_engine(eb->gem_context, idx);
2737         if (IS_ERR(ce))
2738                 return PTR_ERR(ce);
2739
2740         intel_gt_pm_get(ce->engine->gt);
2741
2742         if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2743                 err = intel_context_alloc_state(ce);
2744                 if (err)
2745                         goto err;
2746         }
2747
2748         /*
2749          * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2750          * EIO if the GPU is already wedged.
2751          */
2752         err = intel_gt_terminally_wedged(ce->engine->gt);
2753         if (err)
2754                 goto err;
2755
2756         eb->context = ce;
2757         eb->engine = ce->engine;
2758
2759         /*
2760          * Make sure engine pool stays alive even if we call intel_context_put
2761          * during ww handling. The pool is destroyed when last pm reference
2762          * is dropped, which breaks our -EDEADLK handling.
2763          */
2764         return err;
2765
2766 err:
2767         intel_gt_pm_put(ce->engine->gt);
2768         intel_context_put(ce);
2769         return err;
2770 }
2771
2772 static void
2773 eb_put_engine(struct i915_execbuffer *eb)
2774 {
2775         intel_gt_pm_put(eb->engine->gt);
2776         intel_context_put(eb->context);
2777 }
2778
2779 static void
2780 __free_fence_array(struct eb_fence *fences, unsigned int n)
2781 {
2782         while (n--) {
2783                 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2784                 dma_fence_put(fences[n].dma_fence);
2785                 kfree(fences[n].chain_fence);
2786         }
2787         kvfree(fences);
2788 }
2789
2790 static int
2791 add_timeline_fence_array(struct i915_execbuffer *eb,
2792                          const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2793 {
2794         struct drm_i915_gem_exec_fence __user *user_fences;
2795         u64 __user *user_values;
2796         struct eb_fence *f;
2797         u64 nfences;
2798         int err = 0;
2799
2800         nfences = timeline_fences->fence_count;
2801         if (!nfences)
2802                 return 0;
2803
2804         /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2805         BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2806         if (nfences > min_t(unsigned long,
2807                             ULONG_MAX / sizeof(*user_fences),
2808                             SIZE_MAX / sizeof(*f)) - eb->num_fences)
2809                 return -EINVAL;
2810
2811         user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2812         if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2813                 return -EFAULT;
2814
2815         user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2816         if (!access_ok(user_values, nfences * sizeof(*user_values)))
2817                 return -EFAULT;
2818
2819         f = krealloc(eb->fences,
2820                      (eb->num_fences + nfences) * sizeof(*f),
2821                      __GFP_NOWARN | GFP_KERNEL);
2822         if (!f)
2823                 return -ENOMEM;
2824
2825         eb->fences = f;
2826         f += eb->num_fences;
2827
2828         BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2829                      ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2830
2831         while (nfences--) {
2832                 struct drm_i915_gem_exec_fence user_fence;
2833                 struct drm_syncobj *syncobj;
2834                 struct dma_fence *fence = NULL;
2835                 u64 point;
2836
2837                 if (__copy_from_user(&user_fence,
2838                                      user_fences++,
2839                                      sizeof(user_fence)))
2840                         return -EFAULT;
2841
2842                 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2843                         return -EINVAL;
2844
2845                 if (__get_user(point, user_values++))
2846                         return -EFAULT;
2847
2848                 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2849                 if (!syncobj) {
2850                         DRM_DEBUG("Invalid syncobj handle provided\n");
2851                         return -ENOENT;
2852                 }
2853
2854                 fence = drm_syncobj_fence_get(syncobj);
2855
2856                 if (!fence && user_fence.flags &&
2857                     !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2858                         DRM_DEBUG("Syncobj handle has no fence\n");
2859                         drm_syncobj_put(syncobj);
2860                         return -EINVAL;
2861                 }
2862
2863                 if (fence)
2864                         err = dma_fence_chain_find_seqno(&fence, point);
2865
2866                 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2867                         DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2868                         dma_fence_put(fence);
2869                         drm_syncobj_put(syncobj);
2870                         return err;
2871                 }
2872
2873                 /*
2874                  * A point might have been signaled already and
2875                  * garbage collected from the timeline. In this case
2876                  * just ignore the point and carry on.
2877                  */
2878                 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2879                         drm_syncobj_put(syncobj);
2880                         continue;
2881                 }
2882
2883                 /*
2884                  * For timeline syncobjs we need to preallocate chains for
2885                  * later signaling.
2886                  */
2887                 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2888                         /*
2889                          * Waiting and signaling the same point (when point !=
2890                          * 0) would break the timeline.
2891                          */
2892                         if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2893                                 DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
2894                                 dma_fence_put(fence);
2895                                 drm_syncobj_put(syncobj);
2896                                 return -EINVAL;
2897                         }
2898
2899                         f->chain_fence =
2900                                 kmalloc(sizeof(*f->chain_fence),
2901                                         GFP_KERNEL);
2902                         if (!f->chain_fence) {
2903                                 drm_syncobj_put(syncobj);
2904                                 dma_fence_put(fence);
2905                                 return -ENOMEM;
2906                         }
2907                 } else {
2908                         f->chain_fence = NULL;
2909                 }
2910
2911                 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2912                 f->dma_fence = fence;
2913                 f->value = point;
2914                 f++;
2915                 eb->num_fences++;
2916         }
2917
2918         return 0;
2919 }
2920
2921 static int add_fence_array(struct i915_execbuffer *eb)
2922 {
2923         struct drm_i915_gem_execbuffer2 *args = eb->args;
2924         struct drm_i915_gem_exec_fence __user *user;
2925         unsigned long num_fences = args->num_cliprects;
2926         struct eb_fence *f;
2927
2928         if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2929                 return 0;
2930
2931         if (!num_fences)
2932                 return 0;
2933
2934         /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2935         BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2936         if (num_fences > min_t(unsigned long,
2937                                ULONG_MAX / sizeof(*user),
2938                                SIZE_MAX / sizeof(*f) - eb->num_fences))
2939                 return -EINVAL;
2940
2941         user = u64_to_user_ptr(args->cliprects_ptr);
2942         if (!access_ok(user, num_fences * sizeof(*user)))
2943                 return -EFAULT;
2944
2945         f = krealloc(eb->fences,
2946                      (eb->num_fences + num_fences) * sizeof(*f),
2947                      __GFP_NOWARN | GFP_KERNEL);
2948         if (!f)
2949                 return -ENOMEM;
2950
2951         eb->fences = f;
2952         f += eb->num_fences;
2953         while (num_fences--) {
2954                 struct drm_i915_gem_exec_fence user_fence;
2955                 struct drm_syncobj *syncobj;
2956                 struct dma_fence *fence = NULL;
2957
2958                 if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2959                         return -EFAULT;
2960
2961                 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2962                         return -EINVAL;
2963
2964                 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2965                 if (!syncobj) {
2966                         DRM_DEBUG("Invalid syncobj handle provided\n");
2967                         return -ENOENT;
2968                 }
2969
2970                 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2971                         fence = drm_syncobj_fence_get(syncobj);
2972                         if (!fence) {
2973                                 DRM_DEBUG("Syncobj handle has no fence\n");
2974                                 drm_syncobj_put(syncobj);
2975                                 return -EINVAL;
2976                         }
2977                 }
2978
2979                 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2980                              ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2981
2982                 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2983                 f->dma_fence = fence;
2984                 f->value = 0;
2985                 f->chain_fence = NULL;
2986                 f++;
2987                 eb->num_fences++;
2988         }
2989
2990         return 0;
2991 }
2992
2993 static void put_fence_array(struct eb_fence *fences, int num_fences)
2994 {
2995         if (fences)
2996                 __free_fence_array(fences, num_fences);
2997 }
2998
2999 static int
3000 await_fence_array(struct i915_execbuffer *eb)
3001 {
3002         unsigned int n;
3003         int err;
3004
3005         for (n = 0; n < eb->num_fences; n++) {
3006                 struct drm_syncobj *syncobj;
3007                 unsigned int flags;
3008
3009                 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3010
3011                 if (!eb->fences[n].dma_fence)
3012                         continue;
3013
3014                 err = i915_request_await_dma_fence(eb->request,
3015                                                    eb->fences[n].dma_fence);
3016                 if (err < 0)
3017                         return err;
3018         }
3019
3020         return 0;
3021 }
3022
3023 static void signal_fence_array(const struct i915_execbuffer *eb)
3024 {
3025         struct dma_fence * const fence = &eb->request->fence;
3026         unsigned int n;
3027
3028         for (n = 0; n < eb->num_fences; n++) {
3029                 struct drm_syncobj *syncobj;
3030                 unsigned int flags;
3031
3032                 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3033                 if (!(flags & I915_EXEC_FENCE_SIGNAL))
3034                         continue;
3035
3036                 if (eb->fences[n].chain_fence) {
3037                         drm_syncobj_add_point(syncobj,
3038                                               eb->fences[n].chain_fence,
3039                                               fence,
3040                                               eb->fences[n].value);
3041                         /*
3042                          * The chain's ownership is transferred to the
3043                          * timeline.
3044                          */
3045                         eb->fences[n].chain_fence = NULL;
3046                 } else {
3047                         drm_syncobj_replace_fence(syncobj, fence);
3048                 }
3049         }
3050 }
3051
3052 static int
3053 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3054 {
3055         struct i915_execbuffer *eb = data;
3056         struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3057
3058         if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3059                 return -EFAULT;
3060
3061         return add_timeline_fence_array(eb, &timeline_fences);
3062 }
3063
3064 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3065 {
3066         struct i915_request *rq, *rn;
3067
3068         list_for_each_entry_safe(rq, rn, &tl->requests, link)
3069                 if (rq == end || !i915_request_retire(rq))
3070                         break;
3071 }
3072
3073 static int eb_request_add(struct i915_execbuffer *eb, int err)
3074 {
3075         struct i915_request *rq = eb->request;
3076         struct intel_timeline * const tl = i915_request_timeline(rq);
3077         struct i915_sched_attr attr = {};
3078         struct i915_request *prev;
3079
3080         lockdep_assert_held(&tl->mutex);
3081         lockdep_unpin_lock(&tl->mutex, rq->cookie);
3082
3083         trace_i915_request_add(rq);
3084
3085         prev = __i915_request_commit(rq);
3086
3087         /* Check that the context wasn't destroyed before submission */
3088         if (likely(!intel_context_is_closed(eb->context))) {
3089                 attr = eb->gem_context->sched;
3090         } else {
3091                 /* Serialise with context_close via the add_to_timeline */
3092                 i915_request_set_error_once(rq, -ENOENT);
3093                 __i915_request_skip(rq);
3094                 err = -ENOENT; /* override any transient errors */
3095         }
3096
3097         __i915_request_queue(rq, &attr);
3098
3099         /* Try to clean up the client's timeline after submitting the request */
3100         if (prev)
3101                 retire_requests(tl, prev);
3102
3103         mutex_unlock(&tl->mutex);
3104
3105         return err;
3106 }
3107
3108 static const i915_user_extension_fn execbuf_extensions[] = {
3109         [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3110 };
3111
3112 static int
3113 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3114                           struct i915_execbuffer *eb)
3115 {
3116         if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3117                 return 0;
3118
3119         /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3120          * have another flag also using it at the same time.
3121          */
3122         if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3123                 return -EINVAL;
3124
3125         if (args->num_cliprects != 0)
3126                 return -EINVAL;
3127
3128         return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3129                                     execbuf_extensions,
3130                                     ARRAY_SIZE(execbuf_extensions),
3131                                     eb);
3132 }
3133
3134 static int
3135 i915_gem_do_execbuffer(struct drm_device *dev,
3136                        struct drm_file *file,
3137                        struct drm_i915_gem_execbuffer2 *args,
3138                        struct drm_i915_gem_exec_object2 *exec)
3139 {
3140         struct drm_i915_private *i915 = to_i915(dev);
3141         struct i915_execbuffer eb;
3142         struct dma_fence *in_fence = NULL;
3143         struct sync_file *out_fence = NULL;
3144         struct i915_vma *batch;
3145         int out_fence_fd = -1;
3146         int err;
3147
3148         BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3149         BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3150                      ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3151
3152         eb.i915 = i915;
3153         eb.file = file;
3154         eb.args = args;
3155         if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3156                 args->flags |= __EXEC_HAS_RELOC;
3157
3158         eb.exec = exec;
3159         eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3160         eb.vma[0].vma = NULL;
3161         eb.reloc_pool = eb.batch_pool = NULL;
3162         eb.reloc_context = NULL;
3163
3164         eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3165         reloc_cache_init(&eb.reloc_cache, eb.i915);
3166
3167         eb.buffer_count = args->buffer_count;
3168         eb.batch_start_offset = args->batch_start_offset;
3169         eb.batch_len = args->batch_len;
3170         eb.trampoline = NULL;
3171
3172         eb.fences = NULL;
3173         eb.num_fences = 0;
3174
3175         eb.batch_flags = 0;
3176         if (args->flags & I915_EXEC_SECURE) {
3177                 if (GRAPHICS_VER(i915) >= 11)
3178                         return -ENODEV;
3179
3180                 /* Return -EPERM to trigger fallback code on old binaries. */
3181                 if (!HAS_SECURE_BATCHES(i915))
3182                         return -EPERM;
3183
3184                 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3185                         return -EPERM;
3186
3187                 eb.batch_flags |= I915_DISPATCH_SECURE;
3188         }
3189         if (args->flags & I915_EXEC_IS_PINNED)
3190                 eb.batch_flags |= I915_DISPATCH_PINNED;
3191
3192         err = parse_execbuf2_extensions(args, &eb);
3193         if (err)
3194                 goto err_ext;
3195
3196         err = add_fence_array(&eb);
3197         if (err)
3198                 goto err_ext;
3199
3200 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3201         if (args->flags & IN_FENCES) {
3202                 if ((args->flags & IN_FENCES) == IN_FENCES)
3203                         return -EINVAL;
3204
3205                 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3206                 if (!in_fence) {
3207                         err = -EINVAL;
3208                         goto err_ext;
3209                 }
3210         }
3211 #undef IN_FENCES
3212
3213         if (args->flags & I915_EXEC_FENCE_OUT) {
3214                 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3215                 if (out_fence_fd < 0) {
3216                         err = out_fence_fd;
3217                         goto err_in_fence;
3218                 }
3219         }
3220
3221         err = eb_create(&eb);
3222         if (err)
3223                 goto err_out_fence;
3224
3225         GEM_BUG_ON(!eb.lut_size);
3226
3227         err = eb_select_context(&eb);
3228         if (unlikely(err))
3229                 goto err_destroy;
3230
3231         err = eb_select_engine(&eb);
3232         if (unlikely(err))
3233                 goto err_context;
3234
3235         err = eb_lookup_vmas(&eb);
3236         if (err) {
3237                 eb_release_vmas(&eb, true, true);
3238                 goto err_engine;
3239         }
3240
3241         i915_gem_ww_ctx_init(&eb.ww, true);
3242
3243         err = eb_relocate_parse(&eb);
3244         if (err) {
3245                 /*
3246                  * If the user expects the execobject.offset and
3247                  * reloc.presumed_offset to be an exact match,
3248                  * as for using NO_RELOC, then we cannot update
3249                  * the execobject.offset until we have completed
3250                  * relocation.
3251                  */
3252                 args->flags &= ~__EXEC_HAS_RELOC;
3253                 goto err_vma;
3254         }
3255
3256         ww_acquire_done(&eb.ww.ctx);
3257
3258         batch = eb.batch->vma;
3259
3260         /* All GPU relocation batches must be submitted prior to the user rq */
3261         GEM_BUG_ON(eb.reloc_cache.rq);
3262
3263         /* Allocate a request for this batch buffer nice and early. */
3264         eb.request = i915_request_create(eb.context);
3265         if (IS_ERR(eb.request)) {
3266                 err = PTR_ERR(eb.request);
3267                 goto err_vma;
3268         }
3269
3270         if (in_fence) {
3271                 if (args->flags & I915_EXEC_FENCE_SUBMIT)
3272                         err = i915_request_await_execution(eb.request,
3273                                                            in_fence,
3274                                                            eb.engine->bond_execute);
3275                 else
3276                         err = i915_request_await_dma_fence(eb.request,
3277                                                            in_fence);
3278                 if (err < 0)
3279                         goto err_request;
3280         }
3281
3282         if (eb.fences) {
3283                 err = await_fence_array(&eb);
3284                 if (err)
3285                         goto err_request;
3286         }
3287
3288         if (out_fence_fd != -1) {
3289                 out_fence = sync_file_create(&eb.request->fence);
3290                 if (!out_fence) {
3291                         err = -ENOMEM;
3292                         goto err_request;
3293                 }
3294         }
3295
3296         /*
3297          * Whilst this request exists, batch_obj will be on the
3298          * active_list, and so will hold the active reference. Only when this
3299          * request is retired will the the batch_obj be moved onto the
3300          * inactive_list and lose its active reference. Hence we do not need
3301          * to explicitly hold another reference here.
3302          */
3303         eb.request->batch = batch;
3304         if (eb.batch_pool)
3305                 intel_gt_buffer_pool_mark_active(eb.batch_pool, eb.request);
3306
3307         trace_i915_request_queue(eb.request, eb.batch_flags);
3308         err = eb_submit(&eb, batch);
3309
3310 err_request:
3311         i915_request_get(eb.request);
3312         err = eb_request_add(&eb, err);
3313
3314         if (eb.fences)
3315                 signal_fence_array(&eb);
3316
3317         if (out_fence) {
3318                 if (err == 0) {
3319                         fd_install(out_fence_fd, out_fence->file);
3320                         args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3321                         args->rsvd2 |= (u64)out_fence_fd << 32;
3322                         out_fence_fd = -1;
3323                 } else {
3324                         fput(out_fence->file);
3325                 }
3326         }
3327         i915_request_put(eb.request);
3328
3329 err_vma:
3330         eb_release_vmas(&eb, true, true);
3331         if (eb.trampoline)
3332                 i915_vma_unpin(eb.trampoline);
3333         WARN_ON(err == -EDEADLK);
3334         i915_gem_ww_ctx_fini(&eb.ww);
3335
3336         if (eb.batch_pool)
3337                 intel_gt_buffer_pool_put(eb.batch_pool);
3338         if (eb.reloc_pool)
3339                 intel_gt_buffer_pool_put(eb.reloc_pool);
3340         if (eb.reloc_context)
3341                 intel_context_put(eb.reloc_context);
3342 err_engine:
3343         eb_put_engine(&eb);
3344 err_context:
3345         i915_gem_context_put(eb.gem_context);
3346 err_destroy:
3347         eb_destroy(&eb);
3348 err_out_fence:
3349         if (out_fence_fd != -1)
3350                 put_unused_fd(out_fence_fd);
3351 err_in_fence:
3352         dma_fence_put(in_fence);
3353 err_ext:
3354         put_fence_array(eb.fences, eb.num_fences);
3355         return err;
3356 }
3357
3358 static size_t eb_element_size(void)
3359 {
3360         return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3361 }
3362
3363 static bool check_buffer_count(size_t count)
3364 {
3365         const size_t sz = eb_element_size();
3366
3367         /*
3368          * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3369          * array size (see eb_create()). Otherwise, we can accept an array as
3370          * large as can be addressed (though use large arrays at your peril)!
3371          */
3372
3373         return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3374 }
3375
3376 int
3377 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3378                            struct drm_file *file)
3379 {
3380         struct drm_i915_private *i915 = to_i915(dev);
3381         struct drm_i915_gem_execbuffer2 *args = data;
3382         struct drm_i915_gem_exec_object2 *exec2_list;
3383         const size_t count = args->buffer_count;
3384         int err;
3385
3386         if (!check_buffer_count(count)) {
3387                 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3388                 return -EINVAL;
3389         }
3390
3391         err = i915_gem_check_execbuffer(args);
3392         if (err)
3393                 return err;
3394
3395         /* Allocate extra slots for use by the command parser */
3396         exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3397                                     __GFP_NOWARN | GFP_KERNEL);
3398         if (exec2_list == NULL) {
3399                 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3400                         count);
3401                 return -ENOMEM;
3402         }
3403         if (copy_from_user(exec2_list,
3404                            u64_to_user_ptr(args->buffers_ptr),
3405                            sizeof(*exec2_list) * count)) {
3406                 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3407                 kvfree(exec2_list);
3408                 return -EFAULT;
3409         }
3410
3411         err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3412
3413         /*
3414          * Now that we have begun execution of the batchbuffer, we ignore
3415          * any new error after this point. Also given that we have already
3416          * updated the associated relocations, we try to write out the current
3417          * object locations irrespective of any error.
3418          */
3419         if (args->flags & __EXEC_HAS_RELOC) {
3420                 struct drm_i915_gem_exec_object2 __user *user_exec_list =
3421                         u64_to_user_ptr(args->buffers_ptr);
3422                 unsigned int i;
3423
3424                 /* Copy the new buffer offsets back to the user's exec list. */
3425                 /*
3426                  * Note: count * sizeof(*user_exec_list) does not overflow,
3427                  * because we checked 'count' in check_buffer_count().
3428                  *
3429                  * And this range already got effectively checked earlier
3430                  * when we did the "copy_from_user()" above.
3431                  */
3432                 if (!user_write_access_begin(user_exec_list,
3433                                              count * sizeof(*user_exec_list)))
3434                         goto end;
3435
3436                 for (i = 0; i < args->buffer_count; i++) {
3437                         if (!(exec2_list[i].offset & UPDATE))
3438                                 continue;
3439
3440                         exec2_list[i].offset =
3441                                 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3442                         unsafe_put_user(exec2_list[i].offset,
3443                                         &user_exec_list[i].offset,
3444                                         end_user);
3445                 }
3446 end_user:
3447                 user_write_access_end();
3448 end:;
3449         }
3450
3451         args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3452         kvfree(exec2_list);
3453         return err;
3454 }
3455
3456 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3457 #include "selftests/i915_gem_execbuffer.c"
3458 #endif