clk: uniphier: Fix fixed-rate initialization
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gem / i915_gem_execbuffer.c
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11
12 #include <drm/drm_syncobj.h>
13
14 #include "display/intel_frontbuffer.h"
15
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gpu_commands.h"
19 #include "gt/intel_gt.h"
20 #include "gt/intel_gt_buffer_pool.h"
21 #include "gt/intel_gt_pm.h"
22 #include "gt/intel_ring.h"
23
24 #include "pxp/intel_pxp.h"
25
26 #include "i915_drv.h"
27 #include "i915_gem_clflush.h"
28 #include "i915_gem_context.h"
29 #include "i915_gem_ioctls.h"
30 #include "i915_trace.h"
31 #include "i915_user_extensions.h"
32 #include "i915_vma_snapshot.h"
33
34 struct eb_vma {
35         struct i915_vma *vma;
36         unsigned int flags;
37
38         /** This vma's place in the execbuf reservation list */
39         struct drm_i915_gem_exec_object2 *exec;
40         struct list_head bind_link;
41         struct list_head reloc_link;
42
43         struct hlist_node node;
44         u32 handle;
45 };
46
47 enum {
48         FORCE_CPU_RELOC = 1,
49         FORCE_GTT_RELOC,
50         FORCE_GPU_RELOC,
51 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
52 };
53
54 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */
55 #define __EXEC_OBJECT_HAS_PIN           BIT(30)
56 #define __EXEC_OBJECT_HAS_FENCE         BIT(29)
57 #define __EXEC_OBJECT_USERPTR_INIT      BIT(28)
58 #define __EXEC_OBJECT_NEEDS_MAP         BIT(27)
59 #define __EXEC_OBJECT_NEEDS_BIAS        BIT(26)
60 #define __EXEC_OBJECT_INTERNAL_FLAGS    (~0u << 26) /* all of the above + */
61 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
62
63 #define __EXEC_HAS_RELOC        BIT(31)
64 #define __EXEC_ENGINE_PINNED    BIT(30)
65 #define __EXEC_USERPTR_USED     BIT(29)
66 #define __EXEC_INTERNAL_FLAGS   (~0u << 29)
67 #define UPDATE                  PIN_OFFSET_FIXED
68
69 #define BATCH_OFFSET_BIAS (256*1024)
70
71 #define __I915_EXEC_ILLEGAL_FLAGS \
72         (__I915_EXEC_UNKNOWN_FLAGS | \
73          I915_EXEC_CONSTANTS_MASK  | \
74          I915_EXEC_RESOURCE_STREAMER)
75
76 /* Catch emission of unexpected errors for CI! */
77 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
78 #undef EINVAL
79 #define EINVAL ({ \
80         DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
81         22; \
82 })
83 #endif
84
85 /**
86  * DOC: User command execution
87  *
88  * Userspace submits commands to be executed on the GPU as an instruction
89  * stream within a GEM object we call a batchbuffer. This instructions may
90  * refer to other GEM objects containing auxiliary state such as kernels,
91  * samplers, render targets and even secondary batchbuffers. Userspace does
92  * not know where in the GPU memory these objects reside and so before the
93  * batchbuffer is passed to the GPU for execution, those addresses in the
94  * batchbuffer and auxiliary objects are updated. This is known as relocation,
95  * or patching. To try and avoid having to relocate each object on the next
96  * execution, userspace is told the location of those objects in this pass,
97  * but this remains just a hint as the kernel may choose a new location for
98  * any object in the future.
99  *
100  * At the level of talking to the hardware, submitting a batchbuffer for the
101  * GPU to execute is to add content to a buffer from which the HW
102  * command streamer is reading.
103  *
104  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
105  *    Execlists, this command is not placed on the same buffer as the
106  *    remaining items.
107  *
108  * 2. Add a command to invalidate caches to the buffer.
109  *
110  * 3. Add a batchbuffer start command to the buffer; the start command is
111  *    essentially a token together with the GPU address of the batchbuffer
112  *    to be executed.
113  *
114  * 4. Add a pipeline flush to the buffer.
115  *
116  * 5. Add a memory write command to the buffer to record when the GPU
117  *    is done executing the batchbuffer. The memory write writes the
118  *    global sequence number of the request, ``i915_request::global_seqno``;
119  *    the i915 driver uses the current value in the register to determine
120  *    if the GPU has completed the batchbuffer.
121  *
122  * 6. Add a user interrupt command to the buffer. This command instructs
123  *    the GPU to issue an interrupt when the command, pipeline flush and
124  *    memory write are completed.
125  *
126  * 7. Inform the hardware of the additional commands added to the buffer
127  *    (by updating the tail pointer).
128  *
129  * Processing an execbuf ioctl is conceptually split up into a few phases.
130  *
131  * 1. Validation - Ensure all the pointers, handles and flags are valid.
132  * 2. Reservation - Assign GPU address space for every object
133  * 3. Relocation - Update any addresses to point to the final locations
134  * 4. Serialisation - Order the request with respect to its dependencies
135  * 5. Construction - Construct a request to execute the batchbuffer
136  * 6. Submission (at some point in the future execution)
137  *
138  * Reserving resources for the execbuf is the most complicated phase. We
139  * neither want to have to migrate the object in the address space, nor do
140  * we want to have to update any relocations pointing to this object. Ideally,
141  * we want to leave the object where it is and for all the existing relocations
142  * to match. If the object is given a new address, or if userspace thinks the
143  * object is elsewhere, we have to parse all the relocation entries and update
144  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
145  * all the target addresses in all of its objects match the value in the
146  * relocation entries and that they all match the presumed offsets given by the
147  * list of execbuffer objects. Using this knowledge, we know that if we haven't
148  * moved any buffers, all the relocation entries are valid and we can skip
149  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
150  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
151  *
152  *      The addresses written in the objects must match the corresponding
153  *      reloc.presumed_offset which in turn must match the corresponding
154  *      execobject.offset.
155  *
156  *      Any render targets written to in the batch must be flagged with
157  *      EXEC_OBJECT_WRITE.
158  *
159  *      To avoid stalling, execobject.offset should match the current
160  *      address of that object within the active context.
161  *
162  * The reservation is done is multiple phases. First we try and keep any
163  * object already bound in its current location - so as long as meets the
164  * constraints imposed by the new execbuffer. Any object left unbound after the
165  * first pass is then fitted into any available idle space. If an object does
166  * not fit, all objects are removed from the reservation and the process rerun
167  * after sorting the objects into a priority order (more difficult to fit
168  * objects are tried first). Failing that, the entire VM is cleared and we try
169  * to fit the execbuf once last time before concluding that it simply will not
170  * fit.
171  *
172  * A small complication to all of this is that we allow userspace not only to
173  * specify an alignment and a size for the object in the address space, but
174  * we also allow userspace to specify the exact offset. This objects are
175  * simpler to place (the location is known a priori) all we have to do is make
176  * sure the space is available.
177  *
178  * Once all the objects are in place, patching up the buried pointers to point
179  * to the final locations is a fairly simple job of walking over the relocation
180  * entry arrays, looking up the right address and rewriting the value into
181  * the object. Simple! ... The relocation entries are stored in user memory
182  * and so to access them we have to copy them into a local buffer. That copy
183  * has to avoid taking any pagefaults as they may lead back to a GEM object
184  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
185  * the relocation into multiple passes. First we try to do everything within an
186  * atomic context (avoid the pagefaults) which requires that we never wait. If
187  * we detect that we may wait, or if we need to fault, then we have to fallback
188  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
189  * bells yet?) Dropping the mutex means that we lose all the state we have
190  * built up so far for the execbuf and we must reset any global data. However,
191  * we do leave the objects pinned in their final locations - which is a
192  * potential issue for concurrent execbufs. Once we have left the mutex, we can
193  * allocate and copy all the relocation entries into a large array at our
194  * leisure, reacquire the mutex, reclaim all the objects and other state and
195  * then proceed to update any incorrect addresses with the objects.
196  *
197  * As we process the relocation entries, we maintain a record of whether the
198  * object is being written to. Using NORELOC, we expect userspace to provide
199  * this information instead. We also check whether we can skip the relocation
200  * by comparing the expected value inside the relocation entry with the target's
201  * final address. If they differ, we have to map the current object and rewrite
202  * the 4 or 8 byte pointer within.
203  *
204  * Serialising an execbuf is quite simple according to the rules of the GEM
205  * ABI. Execution within each context is ordered by the order of submission.
206  * Writes to any GEM object are in order of submission and are exclusive. Reads
207  * from a GEM object are unordered with respect to other reads, but ordered by
208  * writes. A write submitted after a read cannot occur before the read, and
209  * similarly any read submitted after a write cannot occur before the write.
210  * Writes are ordered between engines such that only one write occurs at any
211  * time (completing any reads beforehand) - using semaphores where available
212  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
213  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
214  * reads before starting, and any read (either using set-domain or pread) must
215  * flush all GPU writes before starting. (Note we only employ a barrier before,
216  * we currently rely on userspace not concurrently starting a new execution
217  * whilst reading or writing to an object. This may be an advantage or not
218  * depending on how much you trust userspace not to shoot themselves in the
219  * foot.) Serialisation may just result in the request being inserted into
220  * a DAG awaiting its turn, but most simple is to wait on the CPU until
221  * all dependencies are resolved.
222  *
223  * After all of that, is just a matter of closing the request and handing it to
224  * the hardware (well, leaving it in a queue to be executed). However, we also
225  * offer the ability for batchbuffers to be run with elevated privileges so
226  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
227  * Before any batch is given extra privileges we first must check that it
228  * contains no nefarious instructions, we check that each instruction is from
229  * our whitelist and all registers are also from an allowed list. We first
230  * copy the user's batchbuffer to a shadow (so that the user doesn't have
231  * access to it, either by the CPU or GPU as we scan it) and then parse each
232  * instruction. If everything is ok, we set a flag telling the hardware to run
233  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
234  */
235
236 struct eb_fence {
237         struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
238         struct dma_fence *dma_fence;
239         u64 value;
240         struct dma_fence_chain *chain_fence;
241 };
242
243 struct i915_execbuffer {
244         struct drm_i915_private *i915; /** i915 backpointer */
245         struct drm_file *file; /** per-file lookup tables and limits */
246         struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
247         struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
248         struct eb_vma *vma;
249
250         struct intel_gt *gt; /* gt for the execbuf */
251         struct intel_context *context; /* logical state for the request */
252         struct i915_gem_context *gem_context; /** caller's context */
253
254         /** our requests to build */
255         struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
256         /** identity of the batch obj/vma */
257         struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
258         struct i915_vma *trampoline; /** trampoline used for chaining */
259
260         /** used for excl fence in dma_resv objects when > 1 BB submitted */
261         struct dma_fence *composite_fence;
262
263         /** actual size of execobj[] as we may extend it for the cmdparser */
264         unsigned int buffer_count;
265
266         /* number of batches in execbuf IOCTL */
267         unsigned int num_batches;
268
269         /** list of vma not yet bound during reservation phase */
270         struct list_head unbound;
271
272         /** list of vma that have execobj.relocation_count */
273         struct list_head relocs;
274
275         struct i915_gem_ww_ctx ww;
276
277         /**
278          * Track the most recently used object for relocations, as we
279          * frequently have to perform multiple relocations within the same
280          * obj/page
281          */
282         struct reloc_cache {
283                 struct drm_mm_node node; /** temporary GTT binding */
284                 unsigned long vaddr; /** Current kmap address */
285                 unsigned long page; /** Currently mapped page index */
286                 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
287                 bool use_64bit_reloc : 1;
288                 bool has_llc : 1;
289                 bool has_fence : 1;
290                 bool needs_unfenced : 1;
291         } reloc_cache;
292
293         u64 invalid_flags; /** Set of execobj.flags that are invalid */
294
295         /** Length of batch within object */
296         u64 batch_len[MAX_ENGINE_INSTANCE + 1];
297         u32 batch_start_offset; /** Location within object of batch */
298         u32 batch_flags; /** Flags composed for emit_bb_start() */
299         struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
300
301         /**
302          * Indicate either the size of the hastable used to resolve
303          * relocation handles, or if negative that we are using a direct
304          * index into the execobj[].
305          */
306         int lut_size;
307         struct hlist_head *buckets; /** ht for relocation handles */
308
309         struct eb_fence *fences;
310         unsigned long num_fences;
311 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
312         struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
313 #endif
314 };
315
316 static int eb_parse(struct i915_execbuffer *eb);
317 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
318 static void eb_unpin_engine(struct i915_execbuffer *eb);
319 static void eb_capture_release(struct i915_execbuffer *eb);
320
321 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
322 {
323         return intel_engine_requires_cmd_parser(eb->context->engine) ||
324                 (intel_engine_using_cmd_parser(eb->context->engine) &&
325                  eb->args->batch_len);
326 }
327
328 static int eb_create(struct i915_execbuffer *eb)
329 {
330         if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
331                 unsigned int size = 1 + ilog2(eb->buffer_count);
332
333                 /*
334                  * Without a 1:1 association between relocation handles and
335                  * the execobject[] index, we instead create a hashtable.
336                  * We size it dynamically based on available memory, starting
337                  * first with 1:1 assocative hash and scaling back until
338                  * the allocation succeeds.
339                  *
340                  * Later on we use a positive lut_size to indicate we are
341                  * using this hashtable, and a negative value to indicate a
342                  * direct lookup.
343                  */
344                 do {
345                         gfp_t flags;
346
347                         /* While we can still reduce the allocation size, don't
348                          * raise a warning and allow the allocation to fail.
349                          * On the last pass though, we want to try as hard
350                          * as possible to perform the allocation and warn
351                          * if it fails.
352                          */
353                         flags = GFP_KERNEL;
354                         if (size > 1)
355                                 flags |= __GFP_NORETRY | __GFP_NOWARN;
356
357                         eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
358                                               flags);
359                         if (eb->buckets)
360                                 break;
361                 } while (--size);
362
363                 if (unlikely(!size))
364                         return -ENOMEM;
365
366                 eb->lut_size = size;
367         } else {
368                 eb->lut_size = -eb->buffer_count;
369         }
370
371         return 0;
372 }
373
374 static bool
375 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
376                  const struct i915_vma *vma,
377                  unsigned int flags)
378 {
379         if (vma->node.size < entry->pad_to_size)
380                 return true;
381
382         if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
383                 return true;
384
385         if (flags & EXEC_OBJECT_PINNED &&
386             vma->node.start != entry->offset)
387                 return true;
388
389         if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
390             vma->node.start < BATCH_OFFSET_BIAS)
391                 return true;
392
393         if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
394             (vma->node.start + vma->node.size + 4095) >> 32)
395                 return true;
396
397         if (flags & __EXEC_OBJECT_NEEDS_MAP &&
398             !i915_vma_is_map_and_fenceable(vma))
399                 return true;
400
401         return false;
402 }
403
404 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
405                         unsigned int exec_flags)
406 {
407         u64 pin_flags = 0;
408
409         if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
410                 pin_flags |= PIN_GLOBAL;
411
412         /*
413          * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
414          * limit address to the first 4GBs for unflagged objects.
415          */
416         if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
417                 pin_flags |= PIN_ZONE_4G;
418
419         if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
420                 pin_flags |= PIN_MAPPABLE;
421
422         if (exec_flags & EXEC_OBJECT_PINNED)
423                 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
424         else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
425                 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
426
427         return pin_flags;
428 }
429
430 static inline int
431 eb_pin_vma(struct i915_execbuffer *eb,
432            const struct drm_i915_gem_exec_object2 *entry,
433            struct eb_vma *ev)
434 {
435         struct i915_vma *vma = ev->vma;
436         u64 pin_flags;
437         int err;
438
439         if (vma->node.size)
440                 pin_flags = vma->node.start;
441         else
442                 pin_flags = entry->offset & PIN_OFFSET_MASK;
443
444         pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
445         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
446                 pin_flags |= PIN_GLOBAL;
447
448         /* Attempt to reuse the current location if available */
449         err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
450         if (err == -EDEADLK)
451                 return err;
452
453         if (unlikely(err)) {
454                 if (entry->flags & EXEC_OBJECT_PINNED)
455                         return err;
456
457                 /* Failing that pick any _free_ space if suitable */
458                 err = i915_vma_pin_ww(vma, &eb->ww,
459                                              entry->pad_to_size,
460                                              entry->alignment,
461                                              eb_pin_flags(entry, ev->flags) |
462                                              PIN_USER | PIN_NOEVICT);
463                 if (unlikely(err))
464                         return err;
465         }
466
467         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
468                 err = i915_vma_pin_fence(vma);
469                 if (unlikely(err)) {
470                         i915_vma_unpin(vma);
471                         return err;
472                 }
473
474                 if (vma->fence)
475                         ev->flags |= __EXEC_OBJECT_HAS_FENCE;
476         }
477
478         ev->flags |= __EXEC_OBJECT_HAS_PIN;
479         if (eb_vma_misplaced(entry, vma, ev->flags))
480                 return -EBADSLT;
481
482         return 0;
483 }
484
485 static inline void
486 eb_unreserve_vma(struct eb_vma *ev)
487 {
488         if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
489                 return;
490
491         if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
492                 __i915_vma_unpin_fence(ev->vma);
493
494         __i915_vma_unpin(ev->vma);
495         ev->flags &= ~__EXEC_OBJECT_RESERVED;
496 }
497
498 static int
499 eb_validate_vma(struct i915_execbuffer *eb,
500                 struct drm_i915_gem_exec_object2 *entry,
501                 struct i915_vma *vma)
502 {
503         /* Relocations are disallowed for all platforms after TGL-LP.  This
504          * also covers all platforms with local memory.
505          */
506         if (entry->relocation_count &&
507             GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
508                 return -EINVAL;
509
510         if (unlikely(entry->flags & eb->invalid_flags))
511                 return -EINVAL;
512
513         if (unlikely(entry->alignment &&
514                      !is_power_of_2_u64(entry->alignment)))
515                 return -EINVAL;
516
517         /*
518          * Offset can be used as input (EXEC_OBJECT_PINNED), reject
519          * any non-page-aligned or non-canonical addresses.
520          */
521         if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
522                      entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
523                 return -EINVAL;
524
525         /* pad_to_size was once a reserved field, so sanitize it */
526         if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
527                 if (unlikely(offset_in_page(entry->pad_to_size)))
528                         return -EINVAL;
529         } else {
530                 entry->pad_to_size = 0;
531         }
532         /*
533          * From drm_mm perspective address space is continuous,
534          * so from this point we're always using non-canonical
535          * form internally.
536          */
537         entry->offset = gen8_noncanonical_addr(entry->offset);
538
539         if (!eb->reloc_cache.has_fence) {
540                 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
541         } else {
542                 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
543                      eb->reloc_cache.needs_unfenced) &&
544                     i915_gem_object_is_tiled(vma->obj))
545                         entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
546         }
547
548         return 0;
549 }
550
551 static inline bool
552 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
553 {
554         return eb->args->flags & I915_EXEC_BATCH_FIRST ?
555                 buffer_idx < eb->num_batches :
556                 buffer_idx >= eb->args->buffer_count - eb->num_batches;
557 }
558
559 static int
560 eb_add_vma(struct i915_execbuffer *eb,
561            unsigned int *current_batch,
562            unsigned int i,
563            struct i915_vma *vma)
564 {
565         struct drm_i915_private *i915 = eb->i915;
566         struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
567         struct eb_vma *ev = &eb->vma[i];
568
569         ev->vma = vma;
570         ev->exec = entry;
571         ev->flags = entry->flags;
572
573         if (eb->lut_size > 0) {
574                 ev->handle = entry->handle;
575                 hlist_add_head(&ev->node,
576                                &eb->buckets[hash_32(entry->handle,
577                                                     eb->lut_size)]);
578         }
579
580         if (entry->relocation_count)
581                 list_add_tail(&ev->reloc_link, &eb->relocs);
582
583         /*
584          * SNA is doing fancy tricks with compressing batch buffers, which leads
585          * to negative relocation deltas. Usually that works out ok since the
586          * relocate address is still positive, except when the batch is placed
587          * very low in the GTT. Ensure this doesn't happen.
588          *
589          * Note that actual hangs have only been observed on gen7, but for
590          * paranoia do it everywhere.
591          */
592         if (is_batch_buffer(eb, i)) {
593                 if (entry->relocation_count &&
594                     !(ev->flags & EXEC_OBJECT_PINNED))
595                         ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
596                 if (eb->reloc_cache.has_fence)
597                         ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
598
599                 eb->batches[*current_batch] = ev;
600
601                 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
602                         drm_dbg(&i915->drm,
603                                 "Attempting to use self-modifying batch buffer\n");
604                         return -EINVAL;
605                 }
606
607                 if (range_overflows_t(u64,
608                                       eb->batch_start_offset,
609                                       eb->args->batch_len,
610                                       ev->vma->size)) {
611                         drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
612                         return -EINVAL;
613                 }
614
615                 if (eb->args->batch_len == 0)
616                         eb->batch_len[*current_batch] = ev->vma->size -
617                                 eb->batch_start_offset;
618                 else
619                         eb->batch_len[*current_batch] = eb->args->batch_len;
620                 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
621                         drm_dbg(&i915->drm, "Invalid batch length\n");
622                         return -EINVAL;
623                 }
624
625                 ++*current_batch;
626         }
627
628         return 0;
629 }
630
631 static inline int use_cpu_reloc(const struct reloc_cache *cache,
632                                 const struct drm_i915_gem_object *obj)
633 {
634         if (!i915_gem_object_has_struct_page(obj))
635                 return false;
636
637         if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
638                 return true;
639
640         if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
641                 return false;
642
643         return (cache->has_llc ||
644                 obj->cache_dirty ||
645                 obj->cache_level != I915_CACHE_NONE);
646 }
647
648 static int eb_reserve_vma(struct i915_execbuffer *eb,
649                           struct eb_vma *ev,
650                           u64 pin_flags)
651 {
652         struct drm_i915_gem_exec_object2 *entry = ev->exec;
653         struct i915_vma *vma = ev->vma;
654         int err;
655
656         if (drm_mm_node_allocated(&vma->node) &&
657             eb_vma_misplaced(entry, vma, ev->flags)) {
658                 err = i915_vma_unbind(vma);
659                 if (err)
660                         return err;
661         }
662
663         err = i915_vma_pin_ww(vma, &eb->ww,
664                            entry->pad_to_size, entry->alignment,
665                            eb_pin_flags(entry, ev->flags) | pin_flags);
666         if (err)
667                 return err;
668
669         if (entry->offset != vma->node.start) {
670                 entry->offset = vma->node.start | UPDATE;
671                 eb->args->flags |= __EXEC_HAS_RELOC;
672         }
673
674         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
675                 err = i915_vma_pin_fence(vma);
676                 if (unlikely(err)) {
677                         i915_vma_unpin(vma);
678                         return err;
679                 }
680
681                 if (vma->fence)
682                         ev->flags |= __EXEC_OBJECT_HAS_FENCE;
683         }
684
685         ev->flags |= __EXEC_OBJECT_HAS_PIN;
686         GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
687
688         return 0;
689 }
690
691 static int eb_reserve(struct i915_execbuffer *eb)
692 {
693         const unsigned int count = eb->buffer_count;
694         unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
695         struct list_head last;
696         struct eb_vma *ev;
697         unsigned int i, pass;
698         int err = 0;
699
700         /*
701          * Attempt to pin all of the buffers into the GTT.
702          * This is done in 3 phases:
703          *
704          * 1a. Unbind all objects that do not match the GTT constraints for
705          *     the execbuffer (fenceable, mappable, alignment etc).
706          * 1b. Increment pin count for already bound objects.
707          * 2.  Bind new objects.
708          * 3.  Decrement pin count.
709          *
710          * This avoid unnecessary unbinding of later objects in order to make
711          * room for the earlier objects *unless* we need to defragment.
712          */
713         pass = 0;
714         do {
715                 list_for_each_entry(ev, &eb->unbound, bind_link) {
716                         err = eb_reserve_vma(eb, ev, pin_flags);
717                         if (err)
718                                 break;
719                 }
720                 if (err != -ENOSPC)
721                         return err;
722
723                 /* Resort *all* the objects into priority order */
724                 INIT_LIST_HEAD(&eb->unbound);
725                 INIT_LIST_HEAD(&last);
726                 for (i = 0; i < count; i++) {
727                         unsigned int flags;
728
729                         ev = &eb->vma[i];
730                         flags = ev->flags;
731                         if (flags & EXEC_OBJECT_PINNED &&
732                             flags & __EXEC_OBJECT_HAS_PIN)
733                                 continue;
734
735                         eb_unreserve_vma(ev);
736
737                         if (flags & EXEC_OBJECT_PINNED)
738                                 /* Pinned must have their slot */
739                                 list_add(&ev->bind_link, &eb->unbound);
740                         else if (flags & __EXEC_OBJECT_NEEDS_MAP)
741                                 /* Map require the lowest 256MiB (aperture) */
742                                 list_add_tail(&ev->bind_link, &eb->unbound);
743                         else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
744                                 /* Prioritise 4GiB region for restricted bo */
745                                 list_add(&ev->bind_link, &last);
746                         else
747                                 list_add_tail(&ev->bind_link, &last);
748                 }
749                 list_splice_tail(&last, &eb->unbound);
750
751                 switch (pass++) {
752                 case 0:
753                         break;
754
755                 case 1:
756                         /* Too fragmented, unbind everything and retry */
757                         mutex_lock(&eb->context->vm->mutex);
758                         err = i915_gem_evict_vm(eb->context->vm);
759                         mutex_unlock(&eb->context->vm->mutex);
760                         if (err)
761                                 return err;
762                         break;
763
764                 default:
765                         return -ENOSPC;
766                 }
767
768                 pin_flags = PIN_USER;
769         } while (1);
770 }
771
772 static int eb_select_context(struct i915_execbuffer *eb)
773 {
774         struct i915_gem_context *ctx;
775
776         ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
777         if (unlikely(IS_ERR(ctx)))
778                 return PTR_ERR(ctx);
779
780         eb->gem_context = ctx;
781         if (i915_gem_context_has_full_ppgtt(ctx))
782                 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
783
784         return 0;
785 }
786
787 static int __eb_add_lut(struct i915_execbuffer *eb,
788                         u32 handle, struct i915_vma *vma)
789 {
790         struct i915_gem_context *ctx = eb->gem_context;
791         struct i915_lut_handle *lut;
792         int err;
793
794         lut = i915_lut_handle_alloc();
795         if (unlikely(!lut))
796                 return -ENOMEM;
797
798         i915_vma_get(vma);
799         if (!atomic_fetch_inc(&vma->open_count))
800                 i915_vma_reopen(vma);
801         lut->handle = handle;
802         lut->ctx = ctx;
803
804         /* Check that the context hasn't been closed in the meantime */
805         err = -EINTR;
806         if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
807                 if (likely(!i915_gem_context_is_closed(ctx)))
808                         err = radix_tree_insert(&ctx->handles_vma, handle, vma);
809                 else
810                         err = -ENOENT;
811                 if (err == 0) { /* And nor has this handle */
812                         struct drm_i915_gem_object *obj = vma->obj;
813
814                         spin_lock(&obj->lut_lock);
815                         if (idr_find(&eb->file->object_idr, handle) == obj) {
816                                 list_add(&lut->obj_link, &obj->lut_list);
817                         } else {
818                                 radix_tree_delete(&ctx->handles_vma, handle);
819                                 err = -ENOENT;
820                         }
821                         spin_unlock(&obj->lut_lock);
822                 }
823                 mutex_unlock(&ctx->lut_mutex);
824         }
825         if (unlikely(err))
826                 goto err;
827
828         return 0;
829
830 err:
831         i915_vma_close(vma);
832         i915_vma_put(vma);
833         i915_lut_handle_free(lut);
834         return err;
835 }
836
837 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
838 {
839         struct i915_address_space *vm = eb->context->vm;
840
841         do {
842                 struct drm_i915_gem_object *obj;
843                 struct i915_vma *vma;
844                 int err;
845
846                 rcu_read_lock();
847                 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
848                 if (likely(vma && vma->vm == vm))
849                         vma = i915_vma_tryget(vma);
850                 rcu_read_unlock();
851                 if (likely(vma))
852                         return vma;
853
854                 obj = i915_gem_object_lookup(eb->file, handle);
855                 if (unlikely(!obj))
856                         return ERR_PTR(-ENOENT);
857
858                 /*
859                  * If the user has opted-in for protected-object tracking, make
860                  * sure the object encryption can be used.
861                  * We only need to do this when the object is first used with
862                  * this context, because the context itself will be banned when
863                  * the protected objects become invalid.
864                  */
865                 if (i915_gem_context_uses_protected_content(eb->gem_context) &&
866                     i915_gem_object_is_protected(obj)) {
867                         err = intel_pxp_key_check(&vm->gt->pxp, obj, true);
868                         if (err) {
869                                 i915_gem_object_put(obj);
870                                 return ERR_PTR(err);
871                         }
872                 }
873
874                 vma = i915_vma_instance(obj, vm, NULL);
875                 if (IS_ERR(vma)) {
876                         i915_gem_object_put(obj);
877                         return vma;
878                 }
879
880                 err = __eb_add_lut(eb, handle, vma);
881                 if (likely(!err))
882                         return vma;
883
884                 i915_gem_object_put(obj);
885                 if (err != -EEXIST)
886                         return ERR_PTR(err);
887         } while (1);
888 }
889
890 static int eb_lookup_vmas(struct i915_execbuffer *eb)
891 {
892         unsigned int i, current_batch = 0;
893         int err = 0;
894
895         INIT_LIST_HEAD(&eb->relocs);
896
897         for (i = 0; i < eb->buffer_count; i++) {
898                 struct i915_vma *vma;
899
900                 vma = eb_lookup_vma(eb, eb->exec[i].handle);
901                 if (IS_ERR(vma)) {
902                         err = PTR_ERR(vma);
903                         goto err;
904                 }
905
906                 err = eb_validate_vma(eb, &eb->exec[i], vma);
907                 if (unlikely(err)) {
908                         i915_vma_put(vma);
909                         goto err;
910                 }
911
912                 err = eb_add_vma(eb, &current_batch, i, vma);
913                 if (err)
914                         return err;
915
916                 if (i915_gem_object_is_userptr(vma->obj)) {
917                         err = i915_gem_object_userptr_submit_init(vma->obj);
918                         if (err) {
919                                 if (i + 1 < eb->buffer_count) {
920                                         /*
921                                          * Execbuffer code expects last vma entry to be NULL,
922                                          * since we already initialized this entry,
923                                          * set the next value to NULL or we mess up
924                                          * cleanup handling.
925                                          */
926                                         eb->vma[i + 1].vma = NULL;
927                                 }
928
929                                 return err;
930                         }
931
932                         eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
933                         eb->args->flags |= __EXEC_USERPTR_USED;
934                 }
935         }
936
937         return 0;
938
939 err:
940         eb->vma[i].vma = NULL;
941         return err;
942 }
943
944 static int eb_lock_vmas(struct i915_execbuffer *eb)
945 {
946         unsigned int i;
947         int err;
948
949         for (i = 0; i < eb->buffer_count; i++) {
950                 struct eb_vma *ev = &eb->vma[i];
951                 struct i915_vma *vma = ev->vma;
952
953                 err = i915_gem_object_lock(vma->obj, &eb->ww);
954                 if (err)
955                         return err;
956         }
957
958         return 0;
959 }
960
961 static int eb_validate_vmas(struct i915_execbuffer *eb)
962 {
963         unsigned int i;
964         int err;
965
966         INIT_LIST_HEAD(&eb->unbound);
967
968         err = eb_lock_vmas(eb);
969         if (err)
970                 return err;
971
972         for (i = 0; i < eb->buffer_count; i++) {
973                 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
974                 struct eb_vma *ev = &eb->vma[i];
975                 struct i915_vma *vma = ev->vma;
976
977                 err = eb_pin_vma(eb, entry, ev);
978                 if (err == -EDEADLK)
979                         return err;
980
981                 if (!err) {
982                         if (entry->offset != vma->node.start) {
983                                 entry->offset = vma->node.start | UPDATE;
984                                 eb->args->flags |= __EXEC_HAS_RELOC;
985                         }
986                 } else {
987                         eb_unreserve_vma(ev);
988
989                         list_add_tail(&ev->bind_link, &eb->unbound);
990                         if (drm_mm_node_allocated(&vma->node)) {
991                                 err = i915_vma_unbind(vma);
992                                 if (err)
993                                         return err;
994                         }
995                 }
996
997                 if (!(ev->flags & EXEC_OBJECT_WRITE)) {
998                         err = dma_resv_reserve_shared(vma->obj->base.resv, 1);
999                         if (err)
1000                                 return err;
1001                 }
1002
1003                 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1004                            eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1005         }
1006
1007         if (!list_empty(&eb->unbound))
1008                 return eb_reserve(eb);
1009
1010         return 0;
1011 }
1012
1013 static struct eb_vma *
1014 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1015 {
1016         if (eb->lut_size < 0) {
1017                 if (handle >= -eb->lut_size)
1018                         return NULL;
1019                 return &eb->vma[handle];
1020         } else {
1021                 struct hlist_head *head;
1022                 struct eb_vma *ev;
1023
1024                 head = &eb->buckets[hash_32(handle, eb->lut_size)];
1025                 hlist_for_each_entry(ev, head, node) {
1026                         if (ev->handle == handle)
1027                                 return ev;
1028                 }
1029                 return NULL;
1030         }
1031 }
1032
1033 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1034 {
1035         const unsigned int count = eb->buffer_count;
1036         unsigned int i;
1037
1038         for (i = 0; i < count; i++) {
1039                 struct eb_vma *ev = &eb->vma[i];
1040                 struct i915_vma *vma = ev->vma;
1041
1042                 if (!vma)
1043                         break;
1044
1045                 eb_unreserve_vma(ev);
1046
1047                 if (final)
1048                         i915_vma_put(vma);
1049         }
1050
1051         eb_capture_release(eb);
1052         eb_unpin_engine(eb);
1053 }
1054
1055 static void eb_destroy(const struct i915_execbuffer *eb)
1056 {
1057         if (eb->lut_size > 0)
1058                 kfree(eb->buckets);
1059 }
1060
1061 static inline u64
1062 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1063                   const struct i915_vma *target)
1064 {
1065         return gen8_canonical_addr((int)reloc->delta + target->node.start);
1066 }
1067
1068 static void reloc_cache_init(struct reloc_cache *cache,
1069                              struct drm_i915_private *i915)
1070 {
1071         cache->page = -1;
1072         cache->vaddr = 0;
1073         /* Must be a variable in the struct to allow GCC to unroll. */
1074         cache->graphics_ver = GRAPHICS_VER(i915);
1075         cache->has_llc = HAS_LLC(i915);
1076         cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1077         cache->has_fence = cache->graphics_ver < 4;
1078         cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1079         cache->node.flags = 0;
1080 }
1081
1082 static inline void *unmask_page(unsigned long p)
1083 {
1084         return (void *)(uintptr_t)(p & PAGE_MASK);
1085 }
1086
1087 static inline unsigned int unmask_flags(unsigned long p)
1088 {
1089         return p & ~PAGE_MASK;
1090 }
1091
1092 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1093
1094 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1095 {
1096         struct drm_i915_private *i915 =
1097                 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1098         return &i915->ggtt;
1099 }
1100
1101 static void reloc_cache_unmap(struct reloc_cache *cache)
1102 {
1103         void *vaddr;
1104
1105         if (!cache->vaddr)
1106                 return;
1107
1108         vaddr = unmask_page(cache->vaddr);
1109         if (cache->vaddr & KMAP)
1110                 kunmap_atomic(vaddr);
1111         else
1112                 io_mapping_unmap_atomic((void __iomem *)vaddr);
1113 }
1114
1115 static void reloc_cache_remap(struct reloc_cache *cache,
1116                               struct drm_i915_gem_object *obj)
1117 {
1118         void *vaddr;
1119
1120         if (!cache->vaddr)
1121                 return;
1122
1123         if (cache->vaddr & KMAP) {
1124                 struct page *page = i915_gem_object_get_page(obj, cache->page);
1125
1126                 vaddr = kmap_atomic(page);
1127                 cache->vaddr = unmask_flags(cache->vaddr) |
1128                         (unsigned long)vaddr;
1129         } else {
1130                 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1131                 unsigned long offset;
1132
1133                 offset = cache->node.start;
1134                 if (!drm_mm_node_allocated(&cache->node))
1135                         offset += cache->page << PAGE_SHIFT;
1136
1137                 cache->vaddr = (unsigned long)
1138                         io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1139         }
1140 }
1141
1142 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1143 {
1144         void *vaddr;
1145
1146         if (!cache->vaddr)
1147                 return;
1148
1149         vaddr = unmask_page(cache->vaddr);
1150         if (cache->vaddr & KMAP) {
1151                 struct drm_i915_gem_object *obj =
1152                         (struct drm_i915_gem_object *)cache->node.mm;
1153                 if (cache->vaddr & CLFLUSH_AFTER)
1154                         mb();
1155
1156                 kunmap_atomic(vaddr);
1157                 i915_gem_object_finish_access(obj);
1158         } else {
1159                 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1160
1161                 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1162                 io_mapping_unmap_atomic((void __iomem *)vaddr);
1163
1164                 if (drm_mm_node_allocated(&cache->node)) {
1165                         ggtt->vm.clear_range(&ggtt->vm,
1166                                              cache->node.start,
1167                                              cache->node.size);
1168                         mutex_lock(&ggtt->vm.mutex);
1169                         drm_mm_remove_node(&cache->node);
1170                         mutex_unlock(&ggtt->vm.mutex);
1171                 } else {
1172                         i915_vma_unpin((struct i915_vma *)cache->node.mm);
1173                 }
1174         }
1175
1176         cache->vaddr = 0;
1177         cache->page = -1;
1178 }
1179
1180 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1181                         struct reloc_cache *cache,
1182                         unsigned long pageno)
1183 {
1184         void *vaddr;
1185         struct page *page;
1186
1187         if (cache->vaddr) {
1188                 kunmap_atomic(unmask_page(cache->vaddr));
1189         } else {
1190                 unsigned int flushes;
1191                 int err;
1192
1193                 err = i915_gem_object_prepare_write(obj, &flushes);
1194                 if (err)
1195                         return ERR_PTR(err);
1196
1197                 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1198                 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1199
1200                 cache->vaddr = flushes | KMAP;
1201                 cache->node.mm = (void *)obj;
1202                 if (flushes)
1203                         mb();
1204         }
1205
1206         page = i915_gem_object_get_page(obj, pageno);
1207         if (!obj->mm.dirty)
1208                 set_page_dirty(page);
1209
1210         vaddr = kmap_atomic(page);
1211         cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1212         cache->page = pageno;
1213
1214         return vaddr;
1215 }
1216
1217 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1218                          struct i915_execbuffer *eb,
1219                          unsigned long page)
1220 {
1221         struct reloc_cache *cache = &eb->reloc_cache;
1222         struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1223         unsigned long offset;
1224         void *vaddr;
1225
1226         if (cache->vaddr) {
1227                 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1228                 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1229         } else {
1230                 struct i915_vma *vma;
1231                 int err;
1232
1233                 if (i915_gem_object_is_tiled(obj))
1234                         return ERR_PTR(-EINVAL);
1235
1236                 if (use_cpu_reloc(cache, obj))
1237                         return NULL;
1238
1239                 err = i915_gem_object_set_to_gtt_domain(obj, true);
1240                 if (err)
1241                         return ERR_PTR(err);
1242
1243                 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1244                                                   PIN_MAPPABLE |
1245                                                   PIN_NONBLOCK /* NOWARN */ |
1246                                                   PIN_NOEVICT);
1247                 if (vma == ERR_PTR(-EDEADLK))
1248                         return vma;
1249
1250                 if (IS_ERR(vma)) {
1251                         memset(&cache->node, 0, sizeof(cache->node));
1252                         mutex_lock(&ggtt->vm.mutex);
1253                         err = drm_mm_insert_node_in_range
1254                                 (&ggtt->vm.mm, &cache->node,
1255                                  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1256                                  0, ggtt->mappable_end,
1257                                  DRM_MM_INSERT_LOW);
1258                         mutex_unlock(&ggtt->vm.mutex);
1259                         if (err) /* no inactive aperture space, use cpu reloc */
1260                                 return NULL;
1261                 } else {
1262                         cache->node.start = vma->node.start;
1263                         cache->node.mm = (void *)vma;
1264                 }
1265         }
1266
1267         offset = cache->node.start;
1268         if (drm_mm_node_allocated(&cache->node)) {
1269                 ggtt->vm.insert_page(&ggtt->vm,
1270                                      i915_gem_object_get_dma_address(obj, page),
1271                                      offset, I915_CACHE_NONE, 0);
1272         } else {
1273                 offset += page << PAGE_SHIFT;
1274         }
1275
1276         vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1277                                                          offset);
1278         cache->page = page;
1279         cache->vaddr = (unsigned long)vaddr;
1280
1281         return vaddr;
1282 }
1283
1284 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1285                          struct i915_execbuffer *eb,
1286                          unsigned long page)
1287 {
1288         struct reloc_cache *cache = &eb->reloc_cache;
1289         void *vaddr;
1290
1291         if (cache->page == page) {
1292                 vaddr = unmask_page(cache->vaddr);
1293         } else {
1294                 vaddr = NULL;
1295                 if ((cache->vaddr & KMAP) == 0)
1296                         vaddr = reloc_iomap(obj, eb, page);
1297                 if (!vaddr)
1298                         vaddr = reloc_kmap(obj, cache, page);
1299         }
1300
1301         return vaddr;
1302 }
1303
1304 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1305 {
1306         if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1307                 if (flushes & CLFLUSH_BEFORE) {
1308                         clflushopt(addr);
1309                         mb();
1310                 }
1311
1312                 *addr = value;
1313
1314                 /*
1315                  * Writes to the same cacheline are serialised by the CPU
1316                  * (including clflush). On the write path, we only require
1317                  * that it hits memory in an orderly fashion and place
1318                  * mb barriers at the start and end of the relocation phase
1319                  * to ensure ordering of clflush wrt to the system.
1320                  */
1321                 if (flushes & CLFLUSH_AFTER)
1322                         clflushopt(addr);
1323         } else
1324                 *addr = value;
1325 }
1326
1327 static u64
1328 relocate_entry(struct i915_vma *vma,
1329                const struct drm_i915_gem_relocation_entry *reloc,
1330                struct i915_execbuffer *eb,
1331                const struct i915_vma *target)
1332 {
1333         u64 target_addr = relocation_target(reloc, target);
1334         u64 offset = reloc->offset;
1335         bool wide = eb->reloc_cache.use_64bit_reloc;
1336         void *vaddr;
1337
1338 repeat:
1339         vaddr = reloc_vaddr(vma->obj, eb,
1340                             offset >> PAGE_SHIFT);
1341         if (IS_ERR(vaddr))
1342                 return PTR_ERR(vaddr);
1343
1344         GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1345         clflush_write32(vaddr + offset_in_page(offset),
1346                         lower_32_bits(target_addr),
1347                         eb->reloc_cache.vaddr);
1348
1349         if (wide) {
1350                 offset += sizeof(u32);
1351                 target_addr >>= 32;
1352                 wide = false;
1353                 goto repeat;
1354         }
1355
1356         return target->node.start | UPDATE;
1357 }
1358
1359 static u64
1360 eb_relocate_entry(struct i915_execbuffer *eb,
1361                   struct eb_vma *ev,
1362                   const struct drm_i915_gem_relocation_entry *reloc)
1363 {
1364         struct drm_i915_private *i915 = eb->i915;
1365         struct eb_vma *target;
1366         int err;
1367
1368         /* we've already hold a reference to all valid objects */
1369         target = eb_get_vma(eb, reloc->target_handle);
1370         if (unlikely(!target))
1371                 return -ENOENT;
1372
1373         /* Validate that the target is in a valid r/w GPU domain */
1374         if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1375                 drm_dbg(&i915->drm, "reloc with multiple write domains: "
1376                           "target %d offset %d "
1377                           "read %08x write %08x",
1378                           reloc->target_handle,
1379                           (int) reloc->offset,
1380                           reloc->read_domains,
1381                           reloc->write_domain);
1382                 return -EINVAL;
1383         }
1384         if (unlikely((reloc->write_domain | reloc->read_domains)
1385                      & ~I915_GEM_GPU_DOMAINS)) {
1386                 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1387                           "target %d offset %d "
1388                           "read %08x write %08x",
1389                           reloc->target_handle,
1390                           (int) reloc->offset,
1391                           reloc->read_domains,
1392                           reloc->write_domain);
1393                 return -EINVAL;
1394         }
1395
1396         if (reloc->write_domain) {
1397                 target->flags |= EXEC_OBJECT_WRITE;
1398
1399                 /*
1400                  * Sandybridge PPGTT errata: We need a global gtt mapping
1401                  * for MI and pipe_control writes because the gpu doesn't
1402                  * properly redirect them through the ppgtt for non_secure
1403                  * batchbuffers.
1404                  */
1405                 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1406                     GRAPHICS_VER(eb->i915) == 6 &&
1407                     !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1408                         struct i915_vma *vma = target->vma;
1409
1410                         reloc_cache_unmap(&eb->reloc_cache);
1411                         mutex_lock(&vma->vm->mutex);
1412                         err = i915_vma_bind(target->vma,
1413                                             target->vma->obj->cache_level,
1414                                             PIN_GLOBAL, NULL);
1415                         mutex_unlock(&vma->vm->mutex);
1416                         reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
1417                         if (err)
1418                                 return err;
1419                 }
1420         }
1421
1422         /*
1423          * If the relocation already has the right value in it, no
1424          * more work needs to be done.
1425          */
1426         if (!DBG_FORCE_RELOC &&
1427             gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1428                 return 0;
1429
1430         /* Check that the relocation address is valid... */
1431         if (unlikely(reloc->offset >
1432                      ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1433                 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1434                           "target %d offset %d size %d.\n",
1435                           reloc->target_handle,
1436                           (int)reloc->offset,
1437                           (int)ev->vma->size);
1438                 return -EINVAL;
1439         }
1440         if (unlikely(reloc->offset & 3)) {
1441                 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1442                           "target %d offset %d.\n",
1443                           reloc->target_handle,
1444                           (int)reloc->offset);
1445                 return -EINVAL;
1446         }
1447
1448         /*
1449          * If we write into the object, we need to force the synchronisation
1450          * barrier, either with an asynchronous clflush or if we executed the
1451          * patching using the GPU (though that should be serialised by the
1452          * timeline). To be completely sure, and since we are required to
1453          * do relocations we are already stalling, disable the user's opt
1454          * out of our synchronisation.
1455          */
1456         ev->flags &= ~EXEC_OBJECT_ASYNC;
1457
1458         /* and update the user's relocation entry */
1459         return relocate_entry(ev->vma, reloc, eb, target->vma);
1460 }
1461
1462 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1463 {
1464 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1465         struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1466         const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1467         struct drm_i915_gem_relocation_entry __user *urelocs =
1468                 u64_to_user_ptr(entry->relocs_ptr);
1469         unsigned long remain = entry->relocation_count;
1470
1471         if (unlikely(remain > N_RELOC(ULONG_MAX)))
1472                 return -EINVAL;
1473
1474         /*
1475          * We must check that the entire relocation array is safe
1476          * to read. However, if the array is not writable the user loses
1477          * the updated relocation values.
1478          */
1479         if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1480                 return -EFAULT;
1481
1482         do {
1483                 struct drm_i915_gem_relocation_entry *r = stack;
1484                 unsigned int count =
1485                         min_t(unsigned long, remain, ARRAY_SIZE(stack));
1486                 unsigned int copied;
1487
1488                 /*
1489                  * This is the fast path and we cannot handle a pagefault
1490                  * whilst holding the struct mutex lest the user pass in the
1491                  * relocations contained within a mmaped bo. For in such a case
1492                  * we, the page fault handler would call i915_gem_fault() and
1493                  * we would try to acquire the struct mutex again. Obviously
1494                  * this is bad and so lockdep complains vehemently.
1495                  */
1496                 pagefault_disable();
1497                 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1498                 pagefault_enable();
1499                 if (unlikely(copied)) {
1500                         remain = -EFAULT;
1501                         goto out;
1502                 }
1503
1504                 remain -= count;
1505                 do {
1506                         u64 offset = eb_relocate_entry(eb, ev, r);
1507
1508                         if (likely(offset == 0)) {
1509                         } else if ((s64)offset < 0) {
1510                                 remain = (int)offset;
1511                                 goto out;
1512                         } else {
1513                                 /*
1514                                  * Note that reporting an error now
1515                                  * leaves everything in an inconsistent
1516                                  * state as we have *already* changed
1517                                  * the relocation value inside the
1518                                  * object. As we have not changed the
1519                                  * reloc.presumed_offset or will not
1520                                  * change the execobject.offset, on the
1521                                  * call we may not rewrite the value
1522                                  * inside the object, leaving it
1523                                  * dangling and causing a GPU hang. Unless
1524                                  * userspace dynamically rebuilds the
1525                                  * relocations on each execbuf rather than
1526                                  * presume a static tree.
1527                                  *
1528                                  * We did previously check if the relocations
1529                                  * were writable (access_ok), an error now
1530                                  * would be a strange race with mprotect,
1531                                  * having already demonstrated that we
1532                                  * can read from this userspace address.
1533                                  */
1534                                 offset = gen8_canonical_addr(offset & ~UPDATE);
1535                                 __put_user(offset,
1536                                            &urelocs[r - stack].presumed_offset);
1537                         }
1538                 } while (r++, --count);
1539                 urelocs += ARRAY_SIZE(stack);
1540         } while (remain);
1541 out:
1542         reloc_cache_reset(&eb->reloc_cache, eb);
1543         return remain;
1544 }
1545
1546 static int
1547 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1548 {
1549         const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1550         struct drm_i915_gem_relocation_entry *relocs =
1551                 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1552         unsigned int i;
1553         int err;
1554
1555         for (i = 0; i < entry->relocation_count; i++) {
1556                 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1557
1558                 if ((s64)offset < 0) {
1559                         err = (int)offset;
1560                         goto err;
1561                 }
1562         }
1563         err = 0;
1564 err:
1565         reloc_cache_reset(&eb->reloc_cache, eb);
1566         return err;
1567 }
1568
1569 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1570 {
1571         const char __user *addr, *end;
1572         unsigned long size;
1573         char __maybe_unused c;
1574
1575         size = entry->relocation_count;
1576         if (size == 0)
1577                 return 0;
1578
1579         if (size > N_RELOC(ULONG_MAX))
1580                 return -EINVAL;
1581
1582         addr = u64_to_user_ptr(entry->relocs_ptr);
1583         size *= sizeof(struct drm_i915_gem_relocation_entry);
1584         if (!access_ok(addr, size))
1585                 return -EFAULT;
1586
1587         end = addr + size;
1588         for (; addr < end; addr += PAGE_SIZE) {
1589                 int err = __get_user(c, addr);
1590                 if (err)
1591                         return err;
1592         }
1593         return __get_user(c, end - 1);
1594 }
1595
1596 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1597 {
1598         struct drm_i915_gem_relocation_entry *relocs;
1599         const unsigned int count = eb->buffer_count;
1600         unsigned int i;
1601         int err;
1602
1603         for (i = 0; i < count; i++) {
1604                 const unsigned int nreloc = eb->exec[i].relocation_count;
1605                 struct drm_i915_gem_relocation_entry __user *urelocs;
1606                 unsigned long size;
1607                 unsigned long copied;
1608
1609                 if (nreloc == 0)
1610                         continue;
1611
1612                 err = check_relocations(&eb->exec[i]);
1613                 if (err)
1614                         goto err;
1615
1616                 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1617                 size = nreloc * sizeof(*relocs);
1618
1619                 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1620                 if (!relocs) {
1621                         err = -ENOMEM;
1622                         goto err;
1623                 }
1624
1625                 /* copy_from_user is limited to < 4GiB */
1626                 copied = 0;
1627                 do {
1628                         unsigned int len =
1629                                 min_t(u64, BIT_ULL(31), size - copied);
1630
1631                         if (__copy_from_user((char *)relocs + copied,
1632                                              (char __user *)urelocs + copied,
1633                                              len))
1634                                 goto end;
1635
1636                         copied += len;
1637                 } while (copied < size);
1638
1639                 /*
1640                  * As we do not update the known relocation offsets after
1641                  * relocating (due to the complexities in lock handling),
1642                  * we need to mark them as invalid now so that we force the
1643                  * relocation processing next time. Just in case the target
1644                  * object is evicted and then rebound into its old
1645                  * presumed_offset before the next execbuffer - if that
1646                  * happened we would make the mistake of assuming that the
1647                  * relocations were valid.
1648                  */
1649                 if (!user_access_begin(urelocs, size))
1650                         goto end;
1651
1652                 for (copied = 0; copied < nreloc; copied++)
1653                         unsafe_put_user(-1,
1654                                         &urelocs[copied].presumed_offset,
1655                                         end_user);
1656                 user_access_end();
1657
1658                 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1659         }
1660
1661         return 0;
1662
1663 end_user:
1664         user_access_end();
1665 end:
1666         kvfree(relocs);
1667         err = -EFAULT;
1668 err:
1669         while (i--) {
1670                 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1671                 if (eb->exec[i].relocation_count)
1672                         kvfree(relocs);
1673         }
1674         return err;
1675 }
1676
1677 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1678 {
1679         const unsigned int count = eb->buffer_count;
1680         unsigned int i;
1681
1682         for (i = 0; i < count; i++) {
1683                 int err;
1684
1685                 err = check_relocations(&eb->exec[i]);
1686                 if (err)
1687                         return err;
1688         }
1689
1690         return 0;
1691 }
1692
1693 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1694 {
1695         const unsigned int count = eb->buffer_count;
1696         unsigned int i;
1697         int ret;
1698
1699         if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1700                 return 0;
1701
1702         for (i = 0; i < count; i++) {
1703                 struct eb_vma *ev = &eb->vma[i];
1704
1705                 if (!i915_gem_object_is_userptr(ev->vma->obj))
1706                         continue;
1707
1708                 ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1709                 if (ret)
1710                         return ret;
1711
1712                 ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1713         }
1714
1715         return 0;
1716 }
1717
1718 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1719 {
1720         bool have_copy = false;
1721         struct eb_vma *ev;
1722         int err = 0;
1723
1724 repeat:
1725         if (signal_pending(current)) {
1726                 err = -ERESTARTSYS;
1727                 goto out;
1728         }
1729
1730         /* We may process another execbuffer during the unlock... */
1731         eb_release_vmas(eb, false);
1732         i915_gem_ww_ctx_fini(&eb->ww);
1733
1734         /*
1735          * We take 3 passes through the slowpatch.
1736          *
1737          * 1 - we try to just prefault all the user relocation entries and
1738          * then attempt to reuse the atomic pagefault disabled fast path again.
1739          *
1740          * 2 - we copy the user entries to a local buffer here outside of the
1741          * local and allow ourselves to wait upon any rendering before
1742          * relocations
1743          *
1744          * 3 - we already have a local copy of the relocation entries, but
1745          * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1746          */
1747         if (!err) {
1748                 err = eb_prefault_relocations(eb);
1749         } else if (!have_copy) {
1750                 err = eb_copy_relocations(eb);
1751                 have_copy = err == 0;
1752         } else {
1753                 cond_resched();
1754                 err = 0;
1755         }
1756
1757         if (!err)
1758                 err = eb_reinit_userptr(eb);
1759
1760         i915_gem_ww_ctx_init(&eb->ww, true);
1761         if (err)
1762                 goto out;
1763
1764         /* reacquire the objects */
1765 repeat_validate:
1766         err = eb_pin_engine(eb, false);
1767         if (err)
1768                 goto err;
1769
1770         err = eb_validate_vmas(eb);
1771         if (err)
1772                 goto err;
1773
1774         GEM_BUG_ON(!eb->batches[0]);
1775
1776         list_for_each_entry(ev, &eb->relocs, reloc_link) {
1777                 if (!have_copy) {
1778                         err = eb_relocate_vma(eb, ev);
1779                         if (err)
1780                                 break;
1781                 } else {
1782                         err = eb_relocate_vma_slow(eb, ev);
1783                         if (err)
1784                                 break;
1785                 }
1786         }
1787
1788         if (err == -EDEADLK)
1789                 goto err;
1790
1791         if (err && !have_copy)
1792                 goto repeat;
1793
1794         if (err)
1795                 goto err;
1796
1797         /* as last step, parse the command buffer */
1798         err = eb_parse(eb);
1799         if (err)
1800                 goto err;
1801
1802         /*
1803          * Leave the user relocations as are, this is the painfully slow path,
1804          * and we want to avoid the complication of dropping the lock whilst
1805          * having buffers reserved in the aperture and so causing spurious
1806          * ENOSPC for random operations.
1807          */
1808
1809 err:
1810         if (err == -EDEADLK) {
1811                 eb_release_vmas(eb, false);
1812                 err = i915_gem_ww_ctx_backoff(&eb->ww);
1813                 if (!err)
1814                         goto repeat_validate;
1815         }
1816
1817         if (err == -EAGAIN)
1818                 goto repeat;
1819
1820 out:
1821         if (have_copy) {
1822                 const unsigned int count = eb->buffer_count;
1823                 unsigned int i;
1824
1825                 for (i = 0; i < count; i++) {
1826                         const struct drm_i915_gem_exec_object2 *entry =
1827                                 &eb->exec[i];
1828                         struct drm_i915_gem_relocation_entry *relocs;
1829
1830                         if (!entry->relocation_count)
1831                                 continue;
1832
1833                         relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1834                         kvfree(relocs);
1835                 }
1836         }
1837
1838         return err;
1839 }
1840
1841 static int eb_relocate_parse(struct i915_execbuffer *eb)
1842 {
1843         int err;
1844         bool throttle = true;
1845
1846 retry:
1847         err = eb_pin_engine(eb, throttle);
1848         if (err) {
1849                 if (err != -EDEADLK)
1850                         return err;
1851
1852                 goto err;
1853         }
1854
1855         /* only throttle once, even if we didn't need to throttle */
1856         throttle = false;
1857
1858         err = eb_validate_vmas(eb);
1859         if (err == -EAGAIN)
1860                 goto slow;
1861         else if (err)
1862                 goto err;
1863
1864         /* The objects are in their final locations, apply the relocations. */
1865         if (eb->args->flags & __EXEC_HAS_RELOC) {
1866                 struct eb_vma *ev;
1867
1868                 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1869                         err = eb_relocate_vma(eb, ev);
1870                         if (err)
1871                                 break;
1872                 }
1873
1874                 if (err == -EDEADLK)
1875                         goto err;
1876                 else if (err)
1877                         goto slow;
1878         }
1879
1880         if (!err)
1881                 err = eb_parse(eb);
1882
1883 err:
1884         if (err == -EDEADLK) {
1885                 eb_release_vmas(eb, false);
1886                 err = i915_gem_ww_ctx_backoff(&eb->ww);
1887                 if (!err)
1888                         goto retry;
1889         }
1890
1891         return err;
1892
1893 slow:
1894         err = eb_relocate_parse_slow(eb);
1895         if (err)
1896                 /*
1897                  * If the user expects the execobject.offset and
1898                  * reloc.presumed_offset to be an exact match,
1899                  * as for using NO_RELOC, then we cannot update
1900                  * the execobject.offset until we have completed
1901                  * relocation.
1902                  */
1903                 eb->args->flags &= ~__EXEC_HAS_RELOC;
1904
1905         return err;
1906 }
1907
1908 /*
1909  * Using two helper loops for the order of which requests / batches are created
1910  * and added the to backend. Requests are created in order from the parent to
1911  * the last child. Requests are added in the reverse order, from the last child
1912  * to parent. This is done for locking reasons as the timeline lock is acquired
1913  * during request creation and released when the request is added to the
1914  * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1915  * the ordering.
1916  */
1917 #define for_each_batch_create_order(_eb, _i) \
1918         for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1919 #define for_each_batch_add_order(_eb, _i) \
1920         BUILD_BUG_ON(!typecheck(int, _i)); \
1921         for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1922
1923 static struct i915_request *
1924 eb_find_first_request_added(struct i915_execbuffer *eb)
1925 {
1926         int i;
1927
1928         for_each_batch_add_order(eb, i)
1929                 if (eb->requests[i])
1930                         return eb->requests[i];
1931
1932         GEM_BUG_ON("Request not found");
1933
1934         return NULL;
1935 }
1936
1937 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
1938
1939 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
1940 static void eb_capture_stage(struct i915_execbuffer *eb)
1941 {
1942         const unsigned int count = eb->buffer_count;
1943         unsigned int i = count, j;
1944         struct i915_vma_snapshot *vsnap;
1945
1946         while (i--) {
1947                 struct eb_vma *ev = &eb->vma[i];
1948                 struct i915_vma *vma = ev->vma;
1949                 unsigned int flags = ev->flags;
1950
1951                 if (!(flags & EXEC_OBJECT_CAPTURE))
1952                         continue;
1953
1954                 vsnap = i915_vma_snapshot_alloc(GFP_KERNEL);
1955                 if (!vsnap)
1956                         continue;
1957
1958                 i915_vma_snapshot_init(vsnap, vma, "user");
1959                 for_each_batch_create_order(eb, j) {
1960                         struct i915_capture_list *capture;
1961
1962                         capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1963                         if (!capture)
1964                                 continue;
1965
1966                         capture->next = eb->capture_lists[j];
1967                         capture->vma_snapshot = i915_vma_snapshot_get(vsnap);
1968                         eb->capture_lists[j] = capture;
1969                 }
1970                 i915_vma_snapshot_put(vsnap);
1971         }
1972 }
1973
1974 /* Commit once we're in the critical path */
1975 static void eb_capture_commit(struct i915_execbuffer *eb)
1976 {
1977         unsigned int j;
1978
1979         for_each_batch_create_order(eb, j) {
1980                 struct i915_request *rq = eb->requests[j];
1981
1982                 if (!rq)
1983                         break;
1984
1985                 rq->capture_list = eb->capture_lists[j];
1986                 eb->capture_lists[j] = NULL;
1987         }
1988 }
1989
1990 /*
1991  * Release anything that didn't get committed due to errors.
1992  * The capture_list will otherwise be freed at request retire.
1993  */
1994 static void eb_capture_release(struct i915_execbuffer *eb)
1995 {
1996         unsigned int j;
1997
1998         for_each_batch_create_order(eb, j) {
1999                 if (eb->capture_lists[j]) {
2000                         i915_request_free_capture_list(eb->capture_lists[j]);
2001                         eb->capture_lists[j] = NULL;
2002                 }
2003         }
2004 }
2005
2006 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2007 {
2008         memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2009 }
2010
2011 #else
2012
2013 static void eb_capture_stage(struct i915_execbuffer *eb)
2014 {
2015 }
2016
2017 static void eb_capture_commit(struct i915_execbuffer *eb)
2018 {
2019 }
2020
2021 static void eb_capture_release(struct i915_execbuffer *eb)
2022 {
2023 }
2024
2025 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2026 {
2027 }
2028
2029 #endif
2030
2031 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2032 {
2033         const unsigned int count = eb->buffer_count;
2034         unsigned int i = count;
2035         int err = 0, j;
2036
2037         while (i--) {
2038                 struct eb_vma *ev = &eb->vma[i];
2039                 struct i915_vma *vma = ev->vma;
2040                 unsigned int flags = ev->flags;
2041                 struct drm_i915_gem_object *obj = vma->obj;
2042
2043                 assert_vma_held(vma);
2044
2045                 /*
2046                  * If the GPU is not _reading_ through the CPU cache, we need
2047                  * to make sure that any writes (both previous GPU writes from
2048                  * before a change in snooping levels and normal CPU writes)
2049                  * caught in that cache are flushed to main memory.
2050                  *
2051                  * We want to say
2052                  *   obj->cache_dirty &&
2053                  *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2054                  * but gcc's optimiser doesn't handle that as well and emits
2055                  * two jumps instead of one. Maybe one day...
2056                  *
2057                  * FIXME: There is also sync flushing in set_pages(), which
2058                  * serves a different purpose(some of the time at least).
2059                  *
2060                  * We should consider:
2061                  *
2062                  *   1. Rip out the async flush code.
2063                  *
2064                  *   2. Or make the sync flushing use the async clflush path
2065                  *   using mandatory fences underneath. Currently the below
2066                  *   async flush happens after we bind the object.
2067                  */
2068                 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2069                         if (i915_gem_clflush_object(obj, 0))
2070                                 flags &= ~EXEC_OBJECT_ASYNC;
2071                 }
2072
2073                 /* We only need to await on the first request */
2074                 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2075                         err = i915_request_await_object
2076                                 (eb_find_first_request_added(eb), obj,
2077                                  flags & EXEC_OBJECT_WRITE);
2078                 }
2079
2080                 for_each_batch_add_order(eb, j) {
2081                         if (err)
2082                                 break;
2083                         if (!eb->requests[j])
2084                                 continue;
2085
2086                         err = _i915_vma_move_to_active(vma, eb->requests[j],
2087                                                        j ? NULL :
2088                                                        eb->composite_fence ?
2089                                                        eb->composite_fence :
2090                                                        &eb->requests[j]->fence,
2091                                                        flags | __EXEC_OBJECT_NO_RESERVE);
2092                 }
2093         }
2094
2095 #ifdef CONFIG_MMU_NOTIFIER
2096         if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2097                 read_lock(&eb->i915->mm.notifier_lock);
2098
2099                 /*
2100                  * count is always at least 1, otherwise __EXEC_USERPTR_USED
2101                  * could not have been set
2102                  */
2103                 for (i = 0; i < count; i++) {
2104                         struct eb_vma *ev = &eb->vma[i];
2105                         struct drm_i915_gem_object *obj = ev->vma->obj;
2106
2107                         if (!i915_gem_object_is_userptr(obj))
2108                                 continue;
2109
2110                         err = i915_gem_object_userptr_submit_done(obj);
2111                         if (err)
2112                                 break;
2113                 }
2114
2115                 read_unlock(&eb->i915->mm.notifier_lock);
2116         }
2117 #endif
2118
2119         if (unlikely(err))
2120                 goto err_skip;
2121
2122         /* Unconditionally flush any chipset caches (for streaming writes). */
2123         intel_gt_chipset_flush(eb->gt);
2124         eb_capture_commit(eb);
2125
2126         return 0;
2127
2128 err_skip:
2129         for_each_batch_create_order(eb, j) {
2130                 if (!eb->requests[j])
2131                         break;
2132
2133                 i915_request_set_error_once(eb->requests[j], err);
2134         }
2135         return err;
2136 }
2137
2138 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2139 {
2140         if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2141                 return -EINVAL;
2142
2143         /* Kernel clipping was a DRI1 misfeature */
2144         if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2145                              I915_EXEC_USE_EXTENSIONS))) {
2146                 if (exec->num_cliprects || exec->cliprects_ptr)
2147                         return -EINVAL;
2148         }
2149
2150         if (exec->DR4 == 0xffffffff) {
2151                 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2152                 exec->DR4 = 0;
2153         }
2154         if (exec->DR1 || exec->DR4)
2155                 return -EINVAL;
2156
2157         if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2158                 return -EINVAL;
2159
2160         return 0;
2161 }
2162
2163 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2164 {
2165         u32 *cs;
2166         int i;
2167
2168         if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
2169                 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2170                 return -EINVAL;
2171         }
2172
2173         cs = intel_ring_begin(rq, 4 * 2 + 2);
2174         if (IS_ERR(cs))
2175                 return PTR_ERR(cs);
2176
2177         *cs++ = MI_LOAD_REGISTER_IMM(4);
2178         for (i = 0; i < 4; i++) {
2179                 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2180                 *cs++ = 0;
2181         }
2182         *cs++ = MI_NOOP;
2183         intel_ring_advance(rq, cs);
2184
2185         return 0;
2186 }
2187
2188 static struct i915_vma *
2189 shadow_batch_pin(struct i915_execbuffer *eb,
2190                  struct drm_i915_gem_object *obj,
2191                  struct i915_address_space *vm,
2192                  unsigned int flags)
2193 {
2194         struct i915_vma *vma;
2195         int err;
2196
2197         vma = i915_vma_instance(obj, vm, NULL);
2198         if (IS_ERR(vma))
2199                 return vma;
2200
2201         err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags);
2202         if (err)
2203                 return ERR_PTR(err);
2204
2205         return vma;
2206 }
2207
2208 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2209 {
2210         /*
2211          * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2212          * batch" bit. Hence we need to pin secure batches into the global gtt.
2213          * hsw should have this fixed, but bdw mucks it up again. */
2214         if (eb->batch_flags & I915_DISPATCH_SECURE)
2215                 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0);
2216
2217         return NULL;
2218 }
2219
2220 static int eb_parse(struct i915_execbuffer *eb)
2221 {
2222         struct drm_i915_private *i915 = eb->i915;
2223         struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2224         struct i915_vma *shadow, *trampoline, *batch;
2225         unsigned long len;
2226         int err;
2227
2228         if (!eb_use_cmdparser(eb)) {
2229                 batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2230                 if (IS_ERR(batch))
2231                         return PTR_ERR(batch);
2232
2233                 goto secure_batch;
2234         }
2235
2236         if (intel_context_is_parallel(eb->context))
2237                 return -EINVAL;
2238
2239         len = eb->batch_len[0];
2240         if (!CMDPARSER_USES_GGTT(eb->i915)) {
2241                 /*
2242                  * ppGTT backed shadow buffers must be mapped RO, to prevent
2243                  * post-scan tampering
2244                  */
2245                 if (!eb->context->vm->has_read_only) {
2246                         drm_dbg(&i915->drm,
2247                                 "Cannot prevent post-scan tampering without RO capable vm\n");
2248                         return -EINVAL;
2249                 }
2250         } else {
2251                 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2252         }
2253         if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2254                 return -EINVAL;
2255
2256         if (!pool) {
2257                 pool = intel_gt_get_buffer_pool(eb->gt, len,
2258                                                 I915_MAP_WB);
2259                 if (IS_ERR(pool))
2260                         return PTR_ERR(pool);
2261                 eb->batch_pool = pool;
2262         }
2263
2264         err = i915_gem_object_lock(pool->obj, &eb->ww);
2265         if (err)
2266                 goto err;
2267
2268         shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2269         if (IS_ERR(shadow)) {
2270                 err = PTR_ERR(shadow);
2271                 goto err;
2272         }
2273         intel_gt_buffer_pool_mark_used(pool);
2274         i915_gem_object_set_readonly(shadow->obj);
2275         shadow->private = pool;
2276
2277         trampoline = NULL;
2278         if (CMDPARSER_USES_GGTT(eb->i915)) {
2279                 trampoline = shadow;
2280
2281                 shadow = shadow_batch_pin(eb, pool->obj,
2282                                           &eb->gt->ggtt->vm,
2283                                           PIN_GLOBAL);
2284                 if (IS_ERR(shadow)) {
2285                         err = PTR_ERR(shadow);
2286                         shadow = trampoline;
2287                         goto err_shadow;
2288                 }
2289                 shadow->private = pool;
2290
2291                 eb->batch_flags |= I915_DISPATCH_SECURE;
2292         }
2293
2294         batch = eb_dispatch_secure(eb, shadow);
2295         if (IS_ERR(batch)) {
2296                 err = PTR_ERR(batch);
2297                 goto err_trampoline;
2298         }
2299
2300         err = dma_resv_reserve_shared(shadow->obj->base.resv, 1);
2301         if (err)
2302                 goto err_trampoline;
2303
2304         err = intel_engine_cmd_parser(eb->context->engine,
2305                                       eb->batches[0]->vma,
2306                                       eb->batch_start_offset,
2307                                       eb->batch_len[0],
2308                                       shadow, trampoline);
2309         if (err)
2310                 goto err_unpin_batch;
2311
2312         eb->batches[0] = &eb->vma[eb->buffer_count++];
2313         eb->batches[0]->vma = i915_vma_get(shadow);
2314         eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2315
2316         eb->trampoline = trampoline;
2317         eb->batch_start_offset = 0;
2318
2319 secure_batch:
2320         if (batch) {
2321                 if (intel_context_is_parallel(eb->context))
2322                         return -EINVAL;
2323
2324                 eb->batches[0] = &eb->vma[eb->buffer_count++];
2325                 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2326                 eb->batches[0]->vma = i915_vma_get(batch);
2327         }
2328         return 0;
2329
2330 err_unpin_batch:
2331         if (batch)
2332                 i915_vma_unpin(batch);
2333 err_trampoline:
2334         if (trampoline)
2335                 i915_vma_unpin(trampoline);
2336 err_shadow:
2337         i915_vma_unpin(shadow);
2338 err:
2339         return err;
2340 }
2341
2342 static int eb_request_submit(struct i915_execbuffer *eb,
2343                              struct i915_request *rq,
2344                              struct i915_vma *batch,
2345                              u64 batch_len)
2346 {
2347         int err;
2348
2349         if (intel_context_nopreempt(rq->context))
2350                 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2351
2352         if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2353                 err = i915_reset_gen7_sol_offsets(rq);
2354                 if (err)
2355                         return err;
2356         }
2357
2358         /*
2359          * After we completed waiting for other engines (using HW semaphores)
2360          * then we can signal that this request/batch is ready to run. This
2361          * allows us to determine if the batch is still waiting on the GPU
2362          * or actually running by checking the breadcrumb.
2363          */
2364         if (rq->context->engine->emit_init_breadcrumb) {
2365                 err = rq->context->engine->emit_init_breadcrumb(rq);
2366                 if (err)
2367                         return err;
2368         }
2369
2370         err = rq->context->engine->emit_bb_start(rq,
2371                                                  batch->node.start +
2372                                                  eb->batch_start_offset,
2373                                                  batch_len,
2374                                                  eb->batch_flags);
2375         if (err)
2376                 return err;
2377
2378         if (eb->trampoline) {
2379                 GEM_BUG_ON(intel_context_is_parallel(rq->context));
2380                 GEM_BUG_ON(eb->batch_start_offset);
2381                 err = rq->context->engine->emit_bb_start(rq,
2382                                                          eb->trampoline->node.start +
2383                                                          batch_len, 0, 0);
2384                 if (err)
2385                         return err;
2386         }
2387
2388         return 0;
2389 }
2390
2391 static int eb_submit(struct i915_execbuffer *eb)
2392 {
2393         unsigned int i;
2394         int err;
2395
2396         err = eb_move_to_gpu(eb);
2397
2398         for_each_batch_create_order(eb, i) {
2399                 if (!eb->requests[i])
2400                         break;
2401
2402                 trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2403                 if (!err)
2404                         err = eb_request_submit(eb, eb->requests[i],
2405                                                 eb->batches[i]->vma,
2406                                                 eb->batch_len[i]);
2407         }
2408
2409         return err;
2410 }
2411
2412 static int num_vcs_engines(struct drm_i915_private *i915)
2413 {
2414         return hweight_long(VDBOX_MASK(to_gt(i915)));
2415 }
2416
2417 /*
2418  * Find one BSD ring to dispatch the corresponding BSD command.
2419  * The engine index is returned.
2420  */
2421 static unsigned int
2422 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2423                          struct drm_file *file)
2424 {
2425         struct drm_i915_file_private *file_priv = file->driver_priv;
2426
2427         /* Check whether the file_priv has already selected one ring. */
2428         if ((int)file_priv->bsd_engine < 0)
2429                 file_priv->bsd_engine =
2430                         get_random_int() % num_vcs_engines(dev_priv);
2431
2432         return file_priv->bsd_engine;
2433 }
2434
2435 static const enum intel_engine_id user_ring_map[] = {
2436         [I915_EXEC_DEFAULT]     = RCS0,
2437         [I915_EXEC_RENDER]      = RCS0,
2438         [I915_EXEC_BLT]         = BCS0,
2439         [I915_EXEC_BSD]         = VCS0,
2440         [I915_EXEC_VEBOX]       = VECS0
2441 };
2442
2443 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2444 {
2445         struct intel_ring *ring = ce->ring;
2446         struct intel_timeline *tl = ce->timeline;
2447         struct i915_request *rq;
2448
2449         /*
2450          * Completely unscientific finger-in-the-air estimates for suitable
2451          * maximum user request size (to avoid blocking) and then backoff.
2452          */
2453         if (intel_ring_update_space(ring) >= PAGE_SIZE)
2454                 return NULL;
2455
2456         /*
2457          * Find a request that after waiting upon, there will be at least half
2458          * the ring available. The hysteresis allows us to compete for the
2459          * shared ring and should mean that we sleep less often prior to
2460          * claiming our resources, but not so long that the ring completely
2461          * drains before we can submit our next request.
2462          */
2463         list_for_each_entry(rq, &tl->requests, link) {
2464                 if (rq->ring != ring)
2465                         continue;
2466
2467                 if (__intel_ring_space(rq->postfix,
2468                                        ring->emit, ring->size) > ring->size / 2)
2469                         break;
2470         }
2471         if (&rq->link == &tl->requests)
2472                 return NULL; /* weird, we will check again later for real */
2473
2474         return i915_request_get(rq);
2475 }
2476
2477 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2478                            bool throttle)
2479 {
2480         struct intel_timeline *tl;
2481         struct i915_request *rq = NULL;
2482
2483         /*
2484          * Take a local wakeref for preparing to dispatch the execbuf as
2485          * we expect to access the hardware fairly frequently in the
2486          * process, and require the engine to be kept awake between accesses.
2487          * Upon dispatch, we acquire another prolonged wakeref that we hold
2488          * until the timeline is idle, which in turn releases the wakeref
2489          * taken on the engine, and the parent device.
2490          */
2491         tl = intel_context_timeline_lock(ce);
2492         if (IS_ERR(tl))
2493                 return PTR_ERR(tl);
2494
2495         intel_context_enter(ce);
2496         if (throttle)
2497                 rq = eb_throttle(eb, ce);
2498         intel_context_timeline_unlock(tl);
2499
2500         if (rq) {
2501                 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2502                 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2503
2504                 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2505                                       timeout) < 0) {
2506                         i915_request_put(rq);
2507
2508                         tl = intel_context_timeline_lock(ce);
2509                         intel_context_exit(ce);
2510                         intel_context_timeline_unlock(tl);
2511
2512                         if (nonblock)
2513                                 return -EWOULDBLOCK;
2514                         else
2515                                 return -EINTR;
2516                 }
2517                 i915_request_put(rq);
2518         }
2519
2520         return 0;
2521 }
2522
2523 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2524 {
2525         struct intel_context *ce = eb->context, *child;
2526         int err;
2527         int i = 0, j = 0;
2528
2529         GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2530
2531         if (unlikely(intel_context_is_banned(ce)))
2532                 return -EIO;
2533
2534         /*
2535          * Pinning the contexts may generate requests in order to acquire
2536          * GGTT space, so do this first before we reserve a seqno for
2537          * ourselves.
2538          */
2539         err = intel_context_pin_ww(ce, &eb->ww);
2540         if (err)
2541                 return err;
2542         for_each_child(ce, child) {
2543                 err = intel_context_pin_ww(child, &eb->ww);
2544                 GEM_BUG_ON(err);        /* perma-pinned should incr a counter */
2545         }
2546
2547         for_each_child(ce, child) {
2548                 err = eb_pin_timeline(eb, child, throttle);
2549                 if (err)
2550                         goto unwind;
2551                 ++i;
2552         }
2553         err = eb_pin_timeline(eb, ce, throttle);
2554         if (err)
2555                 goto unwind;
2556
2557         eb->args->flags |= __EXEC_ENGINE_PINNED;
2558         return 0;
2559
2560 unwind:
2561         for_each_child(ce, child) {
2562                 if (j++ < i) {
2563                         mutex_lock(&child->timeline->mutex);
2564                         intel_context_exit(child);
2565                         mutex_unlock(&child->timeline->mutex);
2566                 }
2567         }
2568         for_each_child(ce, child)
2569                 intel_context_unpin(child);
2570         intel_context_unpin(ce);
2571         return err;
2572 }
2573
2574 static void eb_unpin_engine(struct i915_execbuffer *eb)
2575 {
2576         struct intel_context *ce = eb->context, *child;
2577
2578         if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2579                 return;
2580
2581         eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2582
2583         for_each_child(ce, child) {
2584                 mutex_lock(&child->timeline->mutex);
2585                 intel_context_exit(child);
2586                 mutex_unlock(&child->timeline->mutex);
2587
2588                 intel_context_unpin(child);
2589         }
2590
2591         mutex_lock(&ce->timeline->mutex);
2592         intel_context_exit(ce);
2593         mutex_unlock(&ce->timeline->mutex);
2594
2595         intel_context_unpin(ce);
2596 }
2597
2598 static unsigned int
2599 eb_select_legacy_ring(struct i915_execbuffer *eb)
2600 {
2601         struct drm_i915_private *i915 = eb->i915;
2602         struct drm_i915_gem_execbuffer2 *args = eb->args;
2603         unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2604
2605         if (user_ring_id != I915_EXEC_BSD &&
2606             (args->flags & I915_EXEC_BSD_MASK)) {
2607                 drm_dbg(&i915->drm,
2608                         "execbuf with non bsd ring but with invalid "
2609                         "bsd dispatch flags: %d\n", (int)(args->flags));
2610                 return -1;
2611         }
2612
2613         if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2614                 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2615
2616                 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2617                         bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2618                 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2619                            bsd_idx <= I915_EXEC_BSD_RING2) {
2620                         bsd_idx >>= I915_EXEC_BSD_SHIFT;
2621                         bsd_idx--;
2622                 } else {
2623                         drm_dbg(&i915->drm,
2624                                 "execbuf with unknown bsd ring: %u\n",
2625                                 bsd_idx);
2626                         return -1;
2627                 }
2628
2629                 return _VCS(bsd_idx);
2630         }
2631
2632         if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2633                 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2634                         user_ring_id);
2635                 return -1;
2636         }
2637
2638         return user_ring_map[user_ring_id];
2639 }
2640
2641 static int
2642 eb_select_engine(struct i915_execbuffer *eb)
2643 {
2644         struct intel_context *ce, *child;
2645         unsigned int idx;
2646         int err;
2647
2648         if (i915_gem_context_user_engines(eb->gem_context))
2649                 idx = eb->args->flags & I915_EXEC_RING_MASK;
2650         else
2651                 idx = eb_select_legacy_ring(eb);
2652
2653         ce = i915_gem_context_get_engine(eb->gem_context, idx);
2654         if (IS_ERR(ce))
2655                 return PTR_ERR(ce);
2656
2657         if (intel_context_is_parallel(ce)) {
2658                 if (eb->buffer_count < ce->parallel.number_children + 1) {
2659                         intel_context_put(ce);
2660                         return -EINVAL;
2661                 }
2662                 if (eb->batch_start_offset || eb->args->batch_len) {
2663                         intel_context_put(ce);
2664                         return -EINVAL;
2665                 }
2666         }
2667         eb->num_batches = ce->parallel.number_children + 1;
2668
2669         for_each_child(ce, child)
2670                 intel_context_get(child);
2671         intel_gt_pm_get(ce->engine->gt);
2672
2673         if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2674                 err = intel_context_alloc_state(ce);
2675                 if (err)
2676                         goto err;
2677         }
2678         for_each_child(ce, child) {
2679                 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2680                         err = intel_context_alloc_state(child);
2681                         if (err)
2682                                 goto err;
2683                 }
2684         }
2685
2686         /*
2687          * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2688          * EIO if the GPU is already wedged.
2689          */
2690         err = intel_gt_terminally_wedged(ce->engine->gt);
2691         if (err)
2692                 goto err;
2693
2694         eb->context = ce;
2695         eb->gt = ce->engine->gt;
2696
2697         /*
2698          * Make sure engine pool stays alive even if we call intel_context_put
2699          * during ww handling. The pool is destroyed when last pm reference
2700          * is dropped, which breaks our -EDEADLK handling.
2701          */
2702         return err;
2703
2704 err:
2705         intel_gt_pm_put(ce->engine->gt);
2706         for_each_child(ce, child)
2707                 intel_context_put(child);
2708         intel_context_put(ce);
2709         return err;
2710 }
2711
2712 static void
2713 eb_put_engine(struct i915_execbuffer *eb)
2714 {
2715         struct intel_context *child;
2716
2717         intel_gt_pm_put(eb->gt);
2718         for_each_child(eb->context, child)
2719                 intel_context_put(child);
2720         intel_context_put(eb->context);
2721 }
2722
2723 static void
2724 __free_fence_array(struct eb_fence *fences, unsigned int n)
2725 {
2726         while (n--) {
2727                 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2728                 dma_fence_put(fences[n].dma_fence);
2729                 dma_fence_chain_free(fences[n].chain_fence);
2730         }
2731         kvfree(fences);
2732 }
2733
2734 static int
2735 add_timeline_fence_array(struct i915_execbuffer *eb,
2736                          const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2737 {
2738         struct drm_i915_gem_exec_fence __user *user_fences;
2739         u64 __user *user_values;
2740         struct eb_fence *f;
2741         u64 nfences;
2742         int err = 0;
2743
2744         nfences = timeline_fences->fence_count;
2745         if (!nfences)
2746                 return 0;
2747
2748         /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2749         BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2750         if (nfences > min_t(unsigned long,
2751                             ULONG_MAX / sizeof(*user_fences),
2752                             SIZE_MAX / sizeof(*f)) - eb->num_fences)
2753                 return -EINVAL;
2754
2755         user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2756         if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2757                 return -EFAULT;
2758
2759         user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2760         if (!access_ok(user_values, nfences * sizeof(*user_values)))
2761                 return -EFAULT;
2762
2763         f = krealloc(eb->fences,
2764                      (eb->num_fences + nfences) * sizeof(*f),
2765                      __GFP_NOWARN | GFP_KERNEL);
2766         if (!f)
2767                 return -ENOMEM;
2768
2769         eb->fences = f;
2770         f += eb->num_fences;
2771
2772         BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2773                      ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2774
2775         while (nfences--) {
2776                 struct drm_i915_gem_exec_fence user_fence;
2777                 struct drm_syncobj *syncobj;
2778                 struct dma_fence *fence = NULL;
2779                 u64 point;
2780
2781                 if (__copy_from_user(&user_fence,
2782                                      user_fences++,
2783                                      sizeof(user_fence)))
2784                         return -EFAULT;
2785
2786                 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2787                         return -EINVAL;
2788
2789                 if (__get_user(point, user_values++))
2790                         return -EFAULT;
2791
2792                 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2793                 if (!syncobj) {
2794                         DRM_DEBUG("Invalid syncobj handle provided\n");
2795                         return -ENOENT;
2796                 }
2797
2798                 fence = drm_syncobj_fence_get(syncobj);
2799
2800                 if (!fence && user_fence.flags &&
2801                     !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2802                         DRM_DEBUG("Syncobj handle has no fence\n");
2803                         drm_syncobj_put(syncobj);
2804                         return -EINVAL;
2805                 }
2806
2807                 if (fence)
2808                         err = dma_fence_chain_find_seqno(&fence, point);
2809
2810                 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2811                         DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2812                         dma_fence_put(fence);
2813                         drm_syncobj_put(syncobj);
2814                         return err;
2815                 }
2816
2817                 /*
2818                  * A point might have been signaled already and
2819                  * garbage collected from the timeline. In this case
2820                  * just ignore the point and carry on.
2821                  */
2822                 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2823                         drm_syncobj_put(syncobj);
2824                         continue;
2825                 }
2826
2827                 /*
2828                  * For timeline syncobjs we need to preallocate chains for
2829                  * later signaling.
2830                  */
2831                 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2832                         /*
2833                          * Waiting and signaling the same point (when point !=
2834                          * 0) would break the timeline.
2835                          */
2836                         if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2837                                 DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
2838                                 dma_fence_put(fence);
2839                                 drm_syncobj_put(syncobj);
2840                                 return -EINVAL;
2841                         }
2842
2843                         f->chain_fence = dma_fence_chain_alloc();
2844                         if (!f->chain_fence) {
2845                                 drm_syncobj_put(syncobj);
2846                                 dma_fence_put(fence);
2847                                 return -ENOMEM;
2848                         }
2849                 } else {
2850                         f->chain_fence = NULL;
2851                 }
2852
2853                 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2854                 f->dma_fence = fence;
2855                 f->value = point;
2856                 f++;
2857                 eb->num_fences++;
2858         }
2859
2860         return 0;
2861 }
2862
2863 static int add_fence_array(struct i915_execbuffer *eb)
2864 {
2865         struct drm_i915_gem_execbuffer2 *args = eb->args;
2866         struct drm_i915_gem_exec_fence __user *user;
2867         unsigned long num_fences = args->num_cliprects;
2868         struct eb_fence *f;
2869
2870         if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2871                 return 0;
2872
2873         if (!num_fences)
2874                 return 0;
2875
2876         /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2877         BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2878         if (num_fences > min_t(unsigned long,
2879                                ULONG_MAX / sizeof(*user),
2880                                SIZE_MAX / sizeof(*f) - eb->num_fences))
2881                 return -EINVAL;
2882
2883         user = u64_to_user_ptr(args->cliprects_ptr);
2884         if (!access_ok(user, num_fences * sizeof(*user)))
2885                 return -EFAULT;
2886
2887         f = krealloc(eb->fences,
2888                      (eb->num_fences + num_fences) * sizeof(*f),
2889                      __GFP_NOWARN | GFP_KERNEL);
2890         if (!f)
2891                 return -ENOMEM;
2892
2893         eb->fences = f;
2894         f += eb->num_fences;
2895         while (num_fences--) {
2896                 struct drm_i915_gem_exec_fence user_fence;
2897                 struct drm_syncobj *syncobj;
2898                 struct dma_fence *fence = NULL;
2899
2900                 if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2901                         return -EFAULT;
2902
2903                 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2904                         return -EINVAL;
2905
2906                 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2907                 if (!syncobj) {
2908                         DRM_DEBUG("Invalid syncobj handle provided\n");
2909                         return -ENOENT;
2910                 }
2911
2912                 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2913                         fence = drm_syncobj_fence_get(syncobj);
2914                         if (!fence) {
2915                                 DRM_DEBUG("Syncobj handle has no fence\n");
2916                                 drm_syncobj_put(syncobj);
2917                                 return -EINVAL;
2918                         }
2919                 }
2920
2921                 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2922                              ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2923
2924                 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2925                 f->dma_fence = fence;
2926                 f->value = 0;
2927                 f->chain_fence = NULL;
2928                 f++;
2929                 eb->num_fences++;
2930         }
2931
2932         return 0;
2933 }
2934
2935 static void put_fence_array(struct eb_fence *fences, int num_fences)
2936 {
2937         if (fences)
2938                 __free_fence_array(fences, num_fences);
2939 }
2940
2941 static int
2942 await_fence_array(struct i915_execbuffer *eb,
2943                   struct i915_request *rq)
2944 {
2945         unsigned int n;
2946         int err;
2947
2948         for (n = 0; n < eb->num_fences; n++) {
2949                 struct drm_syncobj *syncobj;
2950                 unsigned int flags;
2951
2952                 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2953
2954                 if (!eb->fences[n].dma_fence)
2955                         continue;
2956
2957                 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
2958                 if (err < 0)
2959                         return err;
2960         }
2961
2962         return 0;
2963 }
2964
2965 static void signal_fence_array(const struct i915_execbuffer *eb,
2966                                struct dma_fence * const fence)
2967 {
2968         unsigned int n;
2969
2970         for (n = 0; n < eb->num_fences; n++) {
2971                 struct drm_syncobj *syncobj;
2972                 unsigned int flags;
2973
2974                 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2975                 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2976                         continue;
2977
2978                 if (eb->fences[n].chain_fence) {
2979                         drm_syncobj_add_point(syncobj,
2980                                               eb->fences[n].chain_fence,
2981                                               fence,
2982                                               eb->fences[n].value);
2983                         /*
2984                          * The chain's ownership is transferred to the
2985                          * timeline.
2986                          */
2987                         eb->fences[n].chain_fence = NULL;
2988                 } else {
2989                         drm_syncobj_replace_fence(syncobj, fence);
2990                 }
2991         }
2992 }
2993
2994 static int
2995 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
2996 {
2997         struct i915_execbuffer *eb = data;
2998         struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
2999
3000         if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3001                 return -EFAULT;
3002
3003         return add_timeline_fence_array(eb, &timeline_fences);
3004 }
3005
3006 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3007 {
3008         struct i915_request *rq, *rn;
3009
3010         list_for_each_entry_safe(rq, rn, &tl->requests, link)
3011                 if (rq == end || !i915_request_retire(rq))
3012                         break;
3013 }
3014
3015 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3016                           int err, bool last_parallel)
3017 {
3018         struct intel_timeline * const tl = i915_request_timeline(rq);
3019         struct i915_sched_attr attr = {};
3020         struct i915_request *prev;
3021
3022         lockdep_assert_held(&tl->mutex);
3023         lockdep_unpin_lock(&tl->mutex, rq->cookie);
3024
3025         trace_i915_request_add(rq);
3026
3027         prev = __i915_request_commit(rq);
3028
3029         /* Check that the context wasn't destroyed before submission */
3030         if (likely(!intel_context_is_closed(eb->context))) {
3031                 attr = eb->gem_context->sched;
3032         } else {
3033                 /* Serialise with context_close via the add_to_timeline */
3034                 i915_request_set_error_once(rq, -ENOENT);
3035                 __i915_request_skip(rq);
3036                 err = -ENOENT; /* override any transient errors */
3037         }
3038
3039         if (intel_context_is_parallel(eb->context)) {
3040                 if (err) {
3041                         __i915_request_skip(rq);
3042                         set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3043                                 &rq->fence.flags);
3044                 }
3045                 if (last_parallel)
3046                         set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3047                                 &rq->fence.flags);
3048         }
3049
3050         __i915_request_queue(rq, &attr);
3051
3052         /* Try to clean up the client's timeline after submitting the request */
3053         if (prev)
3054                 retire_requests(tl, prev);
3055
3056         mutex_unlock(&tl->mutex);
3057
3058         return err;
3059 }
3060
3061 static int eb_requests_add(struct i915_execbuffer *eb, int err)
3062 {
3063         int i;
3064
3065         /*
3066          * We iterate in reverse order of creation to release timeline mutexes in
3067          * same order.
3068          */
3069         for_each_batch_add_order(eb, i) {
3070                 struct i915_request *rq = eb->requests[i];
3071
3072                 if (!rq)
3073                         continue;
3074                 err |= eb_request_add(eb, rq, err, i == 0);
3075         }
3076
3077         return err;
3078 }
3079
3080 static const i915_user_extension_fn execbuf_extensions[] = {
3081         [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3082 };
3083
3084 static int
3085 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3086                           struct i915_execbuffer *eb)
3087 {
3088         if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3089                 return 0;
3090
3091         /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3092          * have another flag also using it at the same time.
3093          */
3094         if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3095                 return -EINVAL;
3096
3097         if (args->num_cliprects != 0)
3098                 return -EINVAL;
3099
3100         return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3101                                     execbuf_extensions,
3102                                     ARRAY_SIZE(execbuf_extensions),
3103                                     eb);
3104 }
3105
3106 static void eb_requests_get(struct i915_execbuffer *eb)
3107 {
3108         unsigned int i;
3109
3110         for_each_batch_create_order(eb, i) {
3111                 if (!eb->requests[i])
3112                         break;
3113
3114                 i915_request_get(eb->requests[i]);
3115         }
3116 }
3117
3118 static void eb_requests_put(struct i915_execbuffer *eb)
3119 {
3120         unsigned int i;
3121
3122         for_each_batch_create_order(eb, i) {
3123                 if (!eb->requests[i])
3124                         break;
3125
3126                 i915_request_put(eb->requests[i]);
3127         }
3128 }
3129
3130 static struct sync_file *
3131 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3132 {
3133         struct sync_file *out_fence = NULL;
3134         struct dma_fence_array *fence_array;
3135         struct dma_fence **fences;
3136         unsigned int i;
3137
3138         GEM_BUG_ON(!intel_context_is_parent(eb->context));
3139
3140         fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3141         if (!fences)
3142                 return ERR_PTR(-ENOMEM);
3143
3144         for_each_batch_create_order(eb, i) {
3145                 fences[i] = &eb->requests[i]->fence;
3146                 __set_bit(I915_FENCE_FLAG_COMPOSITE,
3147                           &eb->requests[i]->fence.flags);
3148         }
3149
3150         fence_array = dma_fence_array_create(eb->num_batches,
3151                                              fences,
3152                                              eb->context->parallel.fence_context,
3153                                              eb->context->parallel.seqno++,
3154                                              false);
3155         if (!fence_array) {
3156                 kfree(fences);
3157                 return ERR_PTR(-ENOMEM);
3158         }
3159
3160         /* Move ownership to the dma_fence_array created above */
3161         for_each_batch_create_order(eb, i)
3162                 dma_fence_get(fences[i]);
3163
3164         if (out_fence_fd != -1) {
3165                 out_fence = sync_file_create(&fence_array->base);
3166                 /* sync_file now owns fence_arry, drop creation ref */
3167                 dma_fence_put(&fence_array->base);
3168                 if (!out_fence)
3169                         return ERR_PTR(-ENOMEM);
3170         }
3171
3172         eb->composite_fence = &fence_array->base;
3173
3174         return out_fence;
3175 }
3176
3177 static struct sync_file *
3178 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3179               struct dma_fence *in_fence, int out_fence_fd)
3180 {
3181         struct sync_file *out_fence = NULL;
3182         int err;
3183
3184         if (unlikely(eb->gem_context->syncobj)) {
3185                 struct dma_fence *fence;
3186
3187                 fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3188                 err = i915_request_await_dma_fence(rq, fence);
3189                 dma_fence_put(fence);
3190                 if (err)
3191                         return ERR_PTR(err);
3192         }
3193
3194         if (in_fence) {
3195                 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3196                         err = i915_request_await_execution(rq, in_fence);
3197                 else
3198                         err = i915_request_await_dma_fence(rq, in_fence);
3199                 if (err < 0)
3200                         return ERR_PTR(err);
3201         }
3202
3203         if (eb->fences) {
3204                 err = await_fence_array(eb, rq);
3205                 if (err)
3206                         return ERR_PTR(err);
3207         }
3208
3209         if (intel_context_is_parallel(eb->context)) {
3210                 out_fence = eb_composite_fence_create(eb, out_fence_fd);
3211                 if (IS_ERR(out_fence))
3212                         return ERR_PTR(-ENOMEM);
3213         } else if (out_fence_fd != -1) {
3214                 out_fence = sync_file_create(&rq->fence);
3215                 if (!out_fence)
3216                         return ERR_PTR(-ENOMEM);
3217         }
3218
3219         return out_fence;
3220 }
3221
3222 static struct intel_context *
3223 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3224 {
3225         struct intel_context *child;
3226
3227         if (likely(context_number == 0))
3228                 return eb->context;
3229
3230         for_each_child(eb->context, child)
3231                 if (!--context_number)
3232                         return child;
3233
3234         GEM_BUG_ON("Context not found");
3235
3236         return NULL;
3237 }
3238
3239 static struct sync_file *
3240 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3241                    int out_fence_fd)
3242 {
3243         struct sync_file *out_fence = NULL;
3244         unsigned int i;
3245
3246         for_each_batch_create_order(eb, i) {
3247                 /* Allocate a request for this batch buffer nice and early. */
3248                 eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3249                 if (IS_ERR(eb->requests[i])) {
3250                         out_fence = ERR_CAST(eb->requests[i]);
3251                         eb->requests[i] = NULL;
3252                         return out_fence;
3253                 }
3254
3255                 /*
3256                  * Only the first request added (committed to backend) has to
3257                  * take the in fences into account as all subsequent requests
3258                  * will have fences inserted inbetween them.
3259                  */
3260                 if (i + 1 == eb->num_batches) {
3261                         out_fence = eb_fences_add(eb, eb->requests[i],
3262                                                   in_fence, out_fence_fd);
3263                         if (IS_ERR(out_fence))
3264                                 return out_fence;
3265                 }
3266
3267                 /*
3268                  * Not really on stack, but we don't want to call
3269                  * kfree on the batch_snapshot when we put it, so use the
3270                  * _onstack interface.
3271                  */
3272                 if (eb->batches[i]->vma)
3273                         i915_vma_snapshot_init_onstack(&eb->requests[i]->batch_snapshot,
3274                                                        eb->batches[i]->vma,
3275                                                        "batch");
3276                 if (eb->batch_pool) {
3277                         GEM_BUG_ON(intel_context_is_parallel(eb->context));
3278                         intel_gt_buffer_pool_mark_active(eb->batch_pool,
3279                                                          eb->requests[i]);
3280                 }
3281         }
3282
3283         return out_fence;
3284 }
3285
3286 static int
3287 i915_gem_do_execbuffer(struct drm_device *dev,
3288                        struct drm_file *file,
3289                        struct drm_i915_gem_execbuffer2 *args,
3290                        struct drm_i915_gem_exec_object2 *exec)
3291 {
3292         struct drm_i915_private *i915 = to_i915(dev);
3293         struct i915_execbuffer eb;
3294         struct dma_fence *in_fence = NULL;
3295         struct sync_file *out_fence = NULL;
3296         int out_fence_fd = -1;
3297         int err;
3298
3299         BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3300         BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3301                      ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3302
3303         eb.i915 = i915;
3304         eb.file = file;
3305         eb.args = args;
3306         if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3307                 args->flags |= __EXEC_HAS_RELOC;
3308
3309         eb.exec = exec;
3310         eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3311         eb.vma[0].vma = NULL;
3312         eb.batch_pool = NULL;
3313
3314         eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3315         reloc_cache_init(&eb.reloc_cache, eb.i915);
3316
3317         eb.buffer_count = args->buffer_count;
3318         eb.batch_start_offset = args->batch_start_offset;
3319         eb.trampoline = NULL;
3320
3321         eb.fences = NULL;
3322         eb.num_fences = 0;
3323
3324         eb_capture_list_clear(&eb);
3325
3326         memset(eb.requests, 0, sizeof(struct i915_request *) *
3327                ARRAY_SIZE(eb.requests));
3328         eb.composite_fence = NULL;
3329
3330         eb.batch_flags = 0;
3331         if (args->flags & I915_EXEC_SECURE) {
3332                 if (GRAPHICS_VER(i915) >= 11)
3333                         return -ENODEV;
3334
3335                 /* Return -EPERM to trigger fallback code on old binaries. */
3336                 if (!HAS_SECURE_BATCHES(i915))
3337                         return -EPERM;
3338
3339                 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3340                         return -EPERM;
3341
3342                 eb.batch_flags |= I915_DISPATCH_SECURE;
3343         }
3344         if (args->flags & I915_EXEC_IS_PINNED)
3345                 eb.batch_flags |= I915_DISPATCH_PINNED;
3346
3347         err = parse_execbuf2_extensions(args, &eb);
3348         if (err)
3349                 goto err_ext;
3350
3351         err = add_fence_array(&eb);
3352         if (err)
3353                 goto err_ext;
3354
3355 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3356         if (args->flags & IN_FENCES) {
3357                 if ((args->flags & IN_FENCES) == IN_FENCES)
3358                         return -EINVAL;
3359
3360                 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3361                 if (!in_fence) {
3362                         err = -EINVAL;
3363                         goto err_ext;
3364                 }
3365         }
3366 #undef IN_FENCES
3367
3368         if (args->flags & I915_EXEC_FENCE_OUT) {
3369                 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3370                 if (out_fence_fd < 0) {
3371                         err = out_fence_fd;
3372                         goto err_in_fence;
3373                 }
3374         }
3375
3376         err = eb_create(&eb);
3377         if (err)
3378                 goto err_out_fence;
3379
3380         GEM_BUG_ON(!eb.lut_size);
3381
3382         err = eb_select_context(&eb);
3383         if (unlikely(err))
3384                 goto err_destroy;
3385
3386         err = eb_select_engine(&eb);
3387         if (unlikely(err))
3388                 goto err_context;
3389
3390         err = eb_lookup_vmas(&eb);
3391         if (err) {
3392                 eb_release_vmas(&eb, true);
3393                 goto err_engine;
3394         }
3395
3396         i915_gem_ww_ctx_init(&eb.ww, true);
3397
3398         err = eb_relocate_parse(&eb);
3399         if (err) {
3400                 /*
3401                  * If the user expects the execobject.offset and
3402                  * reloc.presumed_offset to be an exact match,
3403                  * as for using NO_RELOC, then we cannot update
3404                  * the execobject.offset until we have completed
3405                  * relocation.
3406                  */
3407                 args->flags &= ~__EXEC_HAS_RELOC;
3408                 goto err_vma;
3409         }
3410
3411         ww_acquire_done(&eb.ww.ctx);
3412         eb_capture_stage(&eb);
3413
3414         out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3415         if (IS_ERR(out_fence)) {
3416                 err = PTR_ERR(out_fence);
3417                 out_fence = NULL;
3418                 if (eb.requests[0])
3419                         goto err_request;
3420                 else
3421                         goto err_vma;
3422         }
3423
3424         err = eb_submit(&eb);
3425
3426 err_request:
3427         eb_requests_get(&eb);
3428         err = eb_requests_add(&eb, err);
3429
3430         if (eb.fences)
3431                 signal_fence_array(&eb, eb.composite_fence ?
3432                                    eb.composite_fence :
3433                                    &eb.requests[0]->fence);
3434
3435         if (out_fence) {
3436                 if (err == 0) {
3437                         fd_install(out_fence_fd, out_fence->file);
3438                         args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3439                         args->rsvd2 |= (u64)out_fence_fd << 32;
3440                         out_fence_fd = -1;
3441                 } else {
3442                         fput(out_fence->file);
3443                 }
3444         }
3445
3446         if (unlikely(eb.gem_context->syncobj)) {
3447                 drm_syncobj_replace_fence(eb.gem_context->syncobj,
3448                                           eb.composite_fence ?
3449                                           eb.composite_fence :
3450                                           &eb.requests[0]->fence);
3451         }
3452
3453         if (!out_fence && eb.composite_fence)
3454                 dma_fence_put(eb.composite_fence);
3455
3456         eb_requests_put(&eb);
3457
3458 err_vma:
3459         eb_release_vmas(&eb, true);
3460         if (eb.trampoline)
3461                 i915_vma_unpin(eb.trampoline);
3462         WARN_ON(err == -EDEADLK);
3463         i915_gem_ww_ctx_fini(&eb.ww);
3464
3465         if (eb.batch_pool)
3466                 intel_gt_buffer_pool_put(eb.batch_pool);
3467 err_engine:
3468         eb_put_engine(&eb);
3469 err_context:
3470         i915_gem_context_put(eb.gem_context);
3471 err_destroy:
3472         eb_destroy(&eb);
3473 err_out_fence:
3474         if (out_fence_fd != -1)
3475                 put_unused_fd(out_fence_fd);
3476 err_in_fence:
3477         dma_fence_put(in_fence);
3478 err_ext:
3479         put_fence_array(eb.fences, eb.num_fences);
3480         return err;
3481 }
3482
3483 static size_t eb_element_size(void)
3484 {
3485         return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3486 }
3487
3488 static bool check_buffer_count(size_t count)
3489 {
3490         const size_t sz = eb_element_size();
3491
3492         /*
3493          * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3494          * array size (see eb_create()). Otherwise, we can accept an array as
3495          * large as can be addressed (though use large arrays at your peril)!
3496          */
3497
3498         return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3499 }
3500
3501 int
3502 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3503                            struct drm_file *file)
3504 {
3505         struct drm_i915_private *i915 = to_i915(dev);
3506         struct drm_i915_gem_execbuffer2 *args = data;
3507         struct drm_i915_gem_exec_object2 *exec2_list;
3508         const size_t count = args->buffer_count;
3509         int err;
3510
3511         if (!check_buffer_count(count)) {
3512                 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3513                 return -EINVAL;
3514         }
3515
3516         err = i915_gem_check_execbuffer(args);
3517         if (err)
3518                 return err;
3519
3520         /* Allocate extra slots for use by the command parser */
3521         exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3522                                     __GFP_NOWARN | GFP_KERNEL);
3523         if (exec2_list == NULL) {
3524                 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3525                         count);
3526                 return -ENOMEM;
3527         }
3528         if (copy_from_user(exec2_list,
3529                            u64_to_user_ptr(args->buffers_ptr),
3530                            sizeof(*exec2_list) * count)) {
3531                 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3532                 kvfree(exec2_list);
3533                 return -EFAULT;
3534         }
3535
3536         err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3537
3538         /*
3539          * Now that we have begun execution of the batchbuffer, we ignore
3540          * any new error after this point. Also given that we have already
3541          * updated the associated relocations, we try to write out the current
3542          * object locations irrespective of any error.
3543          */
3544         if (args->flags & __EXEC_HAS_RELOC) {
3545                 struct drm_i915_gem_exec_object2 __user *user_exec_list =
3546                         u64_to_user_ptr(args->buffers_ptr);
3547                 unsigned int i;
3548
3549                 /* Copy the new buffer offsets back to the user's exec list. */
3550                 /*
3551                  * Note: count * sizeof(*user_exec_list) does not overflow,
3552                  * because we checked 'count' in check_buffer_count().
3553                  *
3554                  * And this range already got effectively checked earlier
3555                  * when we did the "copy_from_user()" above.
3556                  */
3557                 if (!user_write_access_begin(user_exec_list,
3558                                              count * sizeof(*user_exec_list)))
3559                         goto end;
3560
3561                 for (i = 0; i < args->buffer_count; i++) {
3562                         if (!(exec2_list[i].offset & UPDATE))
3563                                 continue;
3564
3565                         exec2_list[i].offset =
3566                                 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3567                         unsafe_put_user(exec2_list[i].offset,
3568                                         &user_exec_list[i].offset,
3569                                         end_user);
3570                 }
3571 end_user:
3572                 user_write_access_end();
3573 end:;
3574         }
3575
3576         args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3577         kvfree(exec2_list);
3578         return err;
3579 }