Merge ath-next from git://git.kernel.org/pub/scm/linux/kernel/git/kvalo/ath.git
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gem / i915_gem_domain.c
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2014-2016 Intel Corporation
5  */
6
7 #include "display/intel_frontbuffer.h"
8 #include "gt/intel_gt.h"
9
10 #include "i915_drv.h"
11 #include "i915_gem_clflush.h"
12 #include "i915_gem_gtt.h"
13 #include "i915_gem_ioctls.h"
14 #include "i915_gem_object.h"
15 #include "i915_vma.h"
16 #include "i915_gem_lmem.h"
17 #include "i915_gem_mman.h"
18
19 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
20 {
21         return !(obj->cache_level == I915_CACHE_NONE ||
22                  obj->cache_level == I915_CACHE_WT);
23 }
24
25 static void
26 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
27 {
28         struct i915_vma *vma;
29
30         assert_object_held(obj);
31
32         if (!(obj->write_domain & flush_domains))
33                 return;
34
35         switch (obj->write_domain) {
36         case I915_GEM_DOMAIN_GTT:
37                 spin_lock(&obj->vma.lock);
38                 for_each_ggtt_vma(vma, obj) {
39                         if (i915_vma_unset_ggtt_write(vma))
40                                 intel_gt_flush_ggtt_writes(vma->vm->gt);
41                 }
42                 spin_unlock(&obj->vma.lock);
43
44                 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
45                 break;
46
47         case I915_GEM_DOMAIN_WC:
48                 wmb();
49                 break;
50
51         case I915_GEM_DOMAIN_CPU:
52                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
53                 break;
54
55         case I915_GEM_DOMAIN_RENDER:
56                 if (gpu_write_needs_clflush(obj))
57                         obj->cache_dirty = true;
58                 break;
59         }
60
61         obj->write_domain = 0;
62 }
63
64 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
65 {
66         /*
67          * We manually flush the CPU domain so that we can override and
68          * force the flush for the display, and perform it asyncrhonously.
69          */
70         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
71         if (obj->cache_dirty)
72                 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
73         obj->write_domain = 0;
74 }
75
76 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
77 {
78         if (!i915_gem_object_is_framebuffer(obj))
79                 return;
80
81         i915_gem_object_lock(obj, NULL);
82         __i915_gem_object_flush_for_display(obj);
83         i915_gem_object_unlock(obj);
84 }
85
86 void i915_gem_object_flush_if_display_locked(struct drm_i915_gem_object *obj)
87 {
88         if (i915_gem_object_is_framebuffer(obj))
89                 __i915_gem_object_flush_for_display(obj);
90 }
91
92 /**
93  * Moves a single object to the WC read, and possibly write domain.
94  * @obj: object to act on
95  * @write: ask for write access or read only
96  *
97  * This function returns when the move is complete, including waiting on
98  * flushes to occur.
99  */
100 int
101 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
102 {
103         int ret;
104
105         assert_object_held(obj);
106
107         ret = i915_gem_object_wait(obj,
108                                    I915_WAIT_INTERRUPTIBLE |
109                                    (write ? I915_WAIT_ALL : 0),
110                                    MAX_SCHEDULE_TIMEOUT);
111         if (ret)
112                 return ret;
113
114         if (obj->write_domain == I915_GEM_DOMAIN_WC)
115                 return 0;
116
117         /* Flush and acquire obj->pages so that we are coherent through
118          * direct access in memory with previous cached writes through
119          * shmemfs and that our cache domain tracking remains valid.
120          * For example, if the obj->filp was moved to swap without us
121          * being notified and releasing the pages, we would mistakenly
122          * continue to assume that the obj remained out of the CPU cached
123          * domain.
124          */
125         ret = i915_gem_object_pin_pages(obj);
126         if (ret)
127                 return ret;
128
129         flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
130
131         /* Serialise direct access to this object with the barriers for
132          * coherent writes from the GPU, by effectively invalidating the
133          * WC domain upon first access.
134          */
135         if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
136                 mb();
137
138         /* It should now be out of any other write domains, and we can update
139          * the domain values for our changes.
140          */
141         GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
142         obj->read_domains |= I915_GEM_DOMAIN_WC;
143         if (write) {
144                 obj->read_domains = I915_GEM_DOMAIN_WC;
145                 obj->write_domain = I915_GEM_DOMAIN_WC;
146                 obj->mm.dirty = true;
147         }
148
149         i915_gem_object_unpin_pages(obj);
150         return 0;
151 }
152
153 /**
154  * Moves a single object to the GTT read, and possibly write domain.
155  * @obj: object to act on
156  * @write: ask for write access or read only
157  *
158  * This function returns when the move is complete, including waiting on
159  * flushes to occur.
160  */
161 int
162 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
163 {
164         int ret;
165
166         assert_object_held(obj);
167
168         ret = i915_gem_object_wait(obj,
169                                    I915_WAIT_INTERRUPTIBLE |
170                                    (write ? I915_WAIT_ALL : 0),
171                                    MAX_SCHEDULE_TIMEOUT);
172         if (ret)
173                 return ret;
174
175         if (obj->write_domain == I915_GEM_DOMAIN_GTT)
176                 return 0;
177
178         /* Flush and acquire obj->pages so that we are coherent through
179          * direct access in memory with previous cached writes through
180          * shmemfs and that our cache domain tracking remains valid.
181          * For example, if the obj->filp was moved to swap without us
182          * being notified and releasing the pages, we would mistakenly
183          * continue to assume that the obj remained out of the CPU cached
184          * domain.
185          */
186         ret = i915_gem_object_pin_pages(obj);
187         if (ret)
188                 return ret;
189
190         flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
191
192         /* Serialise direct access to this object with the barriers for
193          * coherent writes from the GPU, by effectively invalidating the
194          * GTT domain upon first access.
195          */
196         if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
197                 mb();
198
199         /* It should now be out of any other write domains, and we can update
200          * the domain values for our changes.
201          */
202         GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
203         obj->read_domains |= I915_GEM_DOMAIN_GTT;
204         if (write) {
205                 struct i915_vma *vma;
206
207                 obj->read_domains = I915_GEM_DOMAIN_GTT;
208                 obj->write_domain = I915_GEM_DOMAIN_GTT;
209                 obj->mm.dirty = true;
210
211                 spin_lock(&obj->vma.lock);
212                 for_each_ggtt_vma(vma, obj)
213                         if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
214                                 i915_vma_set_ggtt_write(vma);
215                 spin_unlock(&obj->vma.lock);
216         }
217
218         i915_gem_object_unpin_pages(obj);
219         return 0;
220 }
221
222 /**
223  * Changes the cache-level of an object across all VMA.
224  * @obj: object to act on
225  * @cache_level: new cache level to set for the object
226  *
227  * After this function returns, the object will be in the new cache-level
228  * across all GTT and the contents of the backing storage will be coherent,
229  * with respect to the new cache-level. In order to keep the backing storage
230  * coherent for all users, we only allow a single cache level to be set
231  * globally on the object and prevent it from being changed whilst the
232  * hardware is reading from the object. That is if the object is currently
233  * on the scanout it will be set to uncached (or equivalent display
234  * cache coherency) and all non-MOCS GPU access will also be uncached so
235  * that all direct access to the scanout remains coherent.
236  */
237 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
238                                     enum i915_cache_level cache_level)
239 {
240         int ret;
241
242         if (obj->cache_level == cache_level)
243                 return 0;
244
245         ret = i915_gem_object_wait(obj,
246                                    I915_WAIT_INTERRUPTIBLE |
247                                    I915_WAIT_ALL,
248                                    MAX_SCHEDULE_TIMEOUT);
249         if (ret)
250                 return ret;
251
252         /* Always invalidate stale cachelines */
253         if (obj->cache_level != cache_level) {
254                 i915_gem_object_set_cache_coherency(obj, cache_level);
255                 obj->cache_dirty = true;
256         }
257
258         /* The cache-level will be applied when each vma is rebound. */
259         return i915_gem_object_unbind(obj,
260                                       I915_GEM_OBJECT_UNBIND_ACTIVE |
261                                       I915_GEM_OBJECT_UNBIND_BARRIER);
262 }
263
264 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
265                                struct drm_file *file)
266 {
267         struct drm_i915_gem_caching *args = data;
268         struct drm_i915_gem_object *obj;
269         int err = 0;
270
271         rcu_read_lock();
272         obj = i915_gem_object_lookup_rcu(file, args->handle);
273         if (!obj) {
274                 err = -ENOENT;
275                 goto out;
276         }
277
278         switch (obj->cache_level) {
279         case I915_CACHE_LLC:
280         case I915_CACHE_L3_LLC:
281                 args->caching = I915_CACHING_CACHED;
282                 break;
283
284         case I915_CACHE_WT:
285                 args->caching = I915_CACHING_DISPLAY;
286                 break;
287
288         default:
289                 args->caching = I915_CACHING_NONE;
290                 break;
291         }
292 out:
293         rcu_read_unlock();
294         return err;
295 }
296
297 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
298                                struct drm_file *file)
299 {
300         struct drm_i915_private *i915 = to_i915(dev);
301         struct drm_i915_gem_caching *args = data;
302         struct drm_i915_gem_object *obj;
303         enum i915_cache_level level;
304         int ret = 0;
305
306         switch (args->caching) {
307         case I915_CACHING_NONE:
308                 level = I915_CACHE_NONE;
309                 break;
310         case I915_CACHING_CACHED:
311                 /*
312                  * Due to a HW issue on BXT A stepping, GPU stores via a
313                  * snooped mapping may leave stale data in a corresponding CPU
314                  * cacheline, whereas normally such cachelines would get
315                  * invalidated.
316                  */
317                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
318                         return -ENODEV;
319
320                 level = I915_CACHE_LLC;
321                 break;
322         case I915_CACHING_DISPLAY:
323                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
324                 break;
325         default:
326                 return -EINVAL;
327         }
328
329         obj = i915_gem_object_lookup(file, args->handle);
330         if (!obj)
331                 return -ENOENT;
332
333         /*
334          * The caching mode of proxy object is handled by its generator, and
335          * not allowed to be changed by userspace.
336          */
337         if (i915_gem_object_is_proxy(obj)) {
338                 ret = -ENXIO;
339                 goto out;
340         }
341
342         ret = i915_gem_object_lock_interruptible(obj, NULL);
343         if (ret)
344                 goto out;
345
346         ret = i915_gem_object_set_cache_level(obj, level);
347         i915_gem_object_unlock(obj);
348
349 out:
350         i915_gem_object_put(obj);
351         return ret;
352 }
353
354 /*
355  * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
356  * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
357  * (for pageflips). We only flush the caches while preparing the buffer for
358  * display, the callers are responsible for frontbuffer flush.
359  */
360 struct i915_vma *
361 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
362                                      u32 alignment,
363                                      const struct i915_ggtt_view *view,
364                                      unsigned int flags)
365 {
366         struct drm_i915_private *i915 = to_i915(obj->base.dev);
367         struct i915_gem_ww_ctx ww;
368         struct i915_vma *vma;
369         int ret;
370
371         /* Frame buffer must be in LMEM (no migration yet) */
372         if (HAS_LMEM(i915) && !i915_gem_object_is_lmem(obj))
373                 return ERR_PTR(-EINVAL);
374
375         i915_gem_ww_ctx_init(&ww, true);
376 retry:
377         ret = i915_gem_object_lock(obj, &ww);
378         if (ret)
379                 goto err;
380         /*
381          * The display engine is not coherent with the LLC cache on gen6.  As
382          * a result, we make sure that the pinning that is about to occur is
383          * done with uncached PTEs. This is lowest common denominator for all
384          * chipsets.
385          *
386          * However for gen6+, we could do better by using the GFDT bit instead
387          * of uncaching, which would allow us to flush all the LLC-cached data
388          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
389          */
390         ret = i915_gem_object_set_cache_level(obj,
391                                               HAS_WT(i915) ?
392                                               I915_CACHE_WT : I915_CACHE_NONE);
393         if (ret)
394                 goto err;
395
396         /*
397          * As the user may map the buffer once pinned in the display plane
398          * (e.g. libkms for the bootup splash), we have to ensure that we
399          * always use map_and_fenceable for all scanout buffers. However,
400          * it may simply be too big to fit into mappable, in which case
401          * put it anyway and hope that userspace can cope (but always first
402          * try to preserve the existing ABI).
403          */
404         vma = ERR_PTR(-ENOSPC);
405         if ((flags & PIN_MAPPABLE) == 0 &&
406             (!view || view->type == I915_GGTT_VIEW_NORMAL))
407                 vma = i915_gem_object_ggtt_pin_ww(obj, &ww, view, 0, alignment,
408                                                   flags | PIN_MAPPABLE |
409                                                   PIN_NONBLOCK);
410         if (IS_ERR(vma) && vma != ERR_PTR(-EDEADLK))
411                 vma = i915_gem_object_ggtt_pin_ww(obj, &ww, view, 0,
412                                                   alignment, flags);
413         if (IS_ERR(vma)) {
414                 ret = PTR_ERR(vma);
415                 goto err;
416         }
417
418         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
419         i915_vma_mark_scanout(vma);
420
421         i915_gem_object_flush_if_display_locked(obj);
422
423 err:
424         if (ret == -EDEADLK) {
425                 ret = i915_gem_ww_ctx_backoff(&ww);
426                 if (!ret)
427                         goto retry;
428         }
429         i915_gem_ww_ctx_fini(&ww);
430
431         if (ret)
432                 return ERR_PTR(ret);
433
434         return vma;
435 }
436
437 /**
438  * Moves a single object to the CPU read, and possibly write domain.
439  * @obj: object to act on
440  * @write: requesting write or read-only access
441  *
442  * This function returns when the move is complete, including waiting on
443  * flushes to occur.
444  */
445 int
446 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
447 {
448         int ret;
449
450         assert_object_held(obj);
451
452         ret = i915_gem_object_wait(obj,
453                                    I915_WAIT_INTERRUPTIBLE |
454                                    (write ? I915_WAIT_ALL : 0),
455                                    MAX_SCHEDULE_TIMEOUT);
456         if (ret)
457                 return ret;
458
459         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
460
461         /* Flush the CPU cache if it's still invalid. */
462         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
463                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
464                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
465         }
466
467         /* It should now be out of any other write domains, and we can update
468          * the domain values for our changes.
469          */
470         GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
471
472         /* If we're writing through the CPU, then the GPU read domains will
473          * need to be invalidated at next use.
474          */
475         if (write)
476                 __start_cpu_write(obj);
477
478         return 0;
479 }
480
481 /**
482  * Called when user space prepares to use an object with the CPU, either
483  * through the mmap ioctl's mapping or a GTT mapping.
484  * @dev: drm device
485  * @data: ioctl data blob
486  * @file: drm file
487  */
488 int
489 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
490                           struct drm_file *file)
491 {
492         struct drm_i915_gem_set_domain *args = data;
493         struct drm_i915_gem_object *obj;
494         u32 read_domains = args->read_domains;
495         u32 write_domain = args->write_domain;
496         int err;
497
498         /* Only handle setting domains to types used by the CPU. */
499         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
500                 return -EINVAL;
501
502         /*
503          * Having something in the write domain implies it's in the read
504          * domain, and only that read domain.  Enforce that in the request.
505          */
506         if (write_domain && read_domains != write_domain)
507                 return -EINVAL;
508
509         if (!read_domains)
510                 return 0;
511
512         obj = i915_gem_object_lookup(file, args->handle);
513         if (!obj)
514                 return -ENOENT;
515
516         /*
517          * Try to flush the object off the GPU without holding the lock.
518          * We will repeat the flush holding the lock in the normal manner
519          * to catch cases where we are gazumped.
520          */
521         err = i915_gem_object_wait(obj,
522                                    I915_WAIT_INTERRUPTIBLE |
523                                    I915_WAIT_PRIORITY |
524                                    (write_domain ? I915_WAIT_ALL : 0),
525                                    MAX_SCHEDULE_TIMEOUT);
526         if (err)
527                 goto out;
528
529         /*
530          * Proxy objects do not control access to the backing storage, ergo
531          * they cannot be used as a means to manipulate the cache domain
532          * tracking for that backing storage. The proxy object is always
533          * considered to be outside of any cache domain.
534          */
535         if (i915_gem_object_is_proxy(obj)) {
536                 err = -ENXIO;
537                 goto out;
538         }
539
540         /*
541          * Flush and acquire obj->pages so that we are coherent through
542          * direct access in memory with previous cached writes through
543          * shmemfs and that our cache domain tracking remains valid.
544          * For example, if the obj->filp was moved to swap without us
545          * being notified and releasing the pages, we would mistakenly
546          * continue to assume that the obj remained out of the CPU cached
547          * domain.
548          */
549         err = i915_gem_object_pin_pages(obj);
550         if (err)
551                 goto out;
552
553         /*
554          * Already in the desired write domain? Nothing for us to do!
555          *
556          * We apply a little bit of cunning here to catch a broader set of
557          * no-ops. If obj->write_domain is set, we must be in the same
558          * obj->read_domains, and only that domain. Therefore, if that
559          * obj->write_domain matches the request read_domains, we are
560          * already in the same read/write domain and can skip the operation,
561          * without having to further check the requested write_domain.
562          */
563         if (READ_ONCE(obj->write_domain) == read_domains)
564                 goto out_unpin;
565
566         err = i915_gem_object_lock_interruptible(obj, NULL);
567         if (err)
568                 goto out_unpin;
569
570         if (read_domains & I915_GEM_DOMAIN_WC)
571                 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
572         else if (read_domains & I915_GEM_DOMAIN_GTT)
573                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
574         else
575                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
576
577         i915_gem_object_unlock(obj);
578
579         if (write_domain)
580                 i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
581
582 out_unpin:
583         i915_gem_object_unpin_pages(obj);
584 out:
585         i915_gem_object_put(obj);
586         return err;
587 }
588
589 /*
590  * Pins the specified object's pages and synchronizes the object with
591  * GPU accesses. Sets needs_clflush to non-zero if the caller should
592  * flush the object from the CPU cache.
593  */
594 int i915_gem_object_prepare_read(struct drm_i915_gem_object *obj,
595                                  unsigned int *needs_clflush)
596 {
597         int ret;
598
599         *needs_clflush = 0;
600         if (!i915_gem_object_has_struct_page(obj))
601                 return -ENODEV;
602
603         assert_object_held(obj);
604
605         ret = i915_gem_object_wait(obj,
606                                    I915_WAIT_INTERRUPTIBLE,
607                                    MAX_SCHEDULE_TIMEOUT);
608         if (ret)
609                 return ret;
610
611         ret = i915_gem_object_pin_pages(obj);
612         if (ret)
613                 return ret;
614
615         if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
616             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
617                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
618                 if (ret)
619                         goto err_unpin;
620                 else
621                         goto out;
622         }
623
624         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
625
626         /* If we're not in the cpu read domain, set ourself into the gtt
627          * read domain and manually flush cachelines (if required). This
628          * optimizes for the case when the gpu will dirty the data
629          * anyway again before the next pread happens.
630          */
631         if (!obj->cache_dirty &&
632             !(obj->read_domains & I915_GEM_DOMAIN_CPU))
633                 *needs_clflush = CLFLUSH_BEFORE;
634
635 out:
636         /* return with the pages pinned */
637         return 0;
638
639 err_unpin:
640         i915_gem_object_unpin_pages(obj);
641         return ret;
642 }
643
644 int i915_gem_object_prepare_write(struct drm_i915_gem_object *obj,
645                                   unsigned int *needs_clflush)
646 {
647         int ret;
648
649         *needs_clflush = 0;
650         if (!i915_gem_object_has_struct_page(obj))
651                 return -ENODEV;
652
653         assert_object_held(obj);
654
655         ret = i915_gem_object_wait(obj,
656                                    I915_WAIT_INTERRUPTIBLE |
657                                    I915_WAIT_ALL,
658                                    MAX_SCHEDULE_TIMEOUT);
659         if (ret)
660                 return ret;
661
662         ret = i915_gem_object_pin_pages(obj);
663         if (ret)
664                 return ret;
665
666         if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
667             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
668                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
669                 if (ret)
670                         goto err_unpin;
671                 else
672                         goto out;
673         }
674
675         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
676
677         /* If we're not in the cpu write domain, set ourself into the
678          * gtt write domain and manually flush cachelines (as required).
679          * This optimizes for the case when the gpu will use the data
680          * right away and we therefore have to clflush anyway.
681          */
682         if (!obj->cache_dirty) {
683                 *needs_clflush |= CLFLUSH_AFTER;
684
685                 /*
686                  * Same trick applies to invalidate partially written
687                  * cachelines read before writing.
688                  */
689                 if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
690                         *needs_clflush |= CLFLUSH_BEFORE;
691         }
692
693 out:
694         i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
695         obj->mm.dirty = true;
696         /* return with the pages pinned */
697         return 0;
698
699 err_unpin:
700         i915_gem_object_unpin_pages(obj);
701         return ret;
702 }