Merge tag 'drm-intel-next-2021-05-19-1' of git://anongit.freedesktop.org/drm/drm...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / display / intel_hdmi.c
1 /*
2  * Copyright 2006 Dave Airlie <airlied@linux.ie>
3  * Copyright © 2006-2009 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *      Eric Anholt <eric@anholt.net>
26  *      Jesse Barnes <jesse.barnes@intel.com>
27  */
28
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_edid.h>
37 #include <drm/drm_hdcp.h>
38 #include <drm/drm_scdc_helper.h>
39 #include <drm/intel_lpe_audio.h>
40
41 #include "i915_debugfs.h"
42 #include "i915_drv.h"
43 #include "intel_atomic.h"
44 #include "intel_connector.h"
45 #include "intel_ddi.h"
46 #include "intel_de.h"
47 #include "intel_display_types.h"
48 #include "intel_dp.h"
49 #include "intel_gmbus.h"
50 #include "intel_hdcp.h"
51 #include "intel_hdmi.h"
52 #include "intel_lspcon.h"
53 #include "intel_panel.h"
54
55 static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
56 {
57         return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
58 }
59
60 static void
61 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
62 {
63         struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
64         struct drm_i915_private *dev_priv = to_i915(dev);
65         u32 enabled_bits;
66
67         enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
68
69         drm_WARN(dev,
70                  intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits,
71                  "HDMI port enabled, expecting disabled\n");
72 }
73
74 static void
75 assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv,
76                                      enum transcoder cpu_transcoder)
77 {
78         drm_WARN(&dev_priv->drm,
79                  intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) &
80                  TRANS_DDI_FUNC_ENABLE,
81                  "HDMI transcoder function enabled, expecting disabled\n");
82 }
83
84 static u32 g4x_infoframe_index(unsigned int type)
85 {
86         switch (type) {
87         case HDMI_PACKET_TYPE_GAMUT_METADATA:
88                 return VIDEO_DIP_SELECT_GAMUT;
89         case HDMI_INFOFRAME_TYPE_AVI:
90                 return VIDEO_DIP_SELECT_AVI;
91         case HDMI_INFOFRAME_TYPE_SPD:
92                 return VIDEO_DIP_SELECT_SPD;
93         case HDMI_INFOFRAME_TYPE_VENDOR:
94                 return VIDEO_DIP_SELECT_VENDOR;
95         default:
96                 MISSING_CASE(type);
97                 return 0;
98         }
99 }
100
101 static u32 g4x_infoframe_enable(unsigned int type)
102 {
103         switch (type) {
104         case HDMI_PACKET_TYPE_GENERAL_CONTROL:
105                 return VIDEO_DIP_ENABLE_GCP;
106         case HDMI_PACKET_TYPE_GAMUT_METADATA:
107                 return VIDEO_DIP_ENABLE_GAMUT;
108         case DP_SDP_VSC:
109                 return 0;
110         case HDMI_INFOFRAME_TYPE_AVI:
111                 return VIDEO_DIP_ENABLE_AVI;
112         case HDMI_INFOFRAME_TYPE_SPD:
113                 return VIDEO_DIP_ENABLE_SPD;
114         case HDMI_INFOFRAME_TYPE_VENDOR:
115                 return VIDEO_DIP_ENABLE_VENDOR;
116         case HDMI_INFOFRAME_TYPE_DRM:
117                 return 0;
118         default:
119                 MISSING_CASE(type);
120                 return 0;
121         }
122 }
123
124 static u32 hsw_infoframe_enable(unsigned int type)
125 {
126         switch (type) {
127         case HDMI_PACKET_TYPE_GENERAL_CONTROL:
128                 return VIDEO_DIP_ENABLE_GCP_HSW;
129         case HDMI_PACKET_TYPE_GAMUT_METADATA:
130                 return VIDEO_DIP_ENABLE_GMP_HSW;
131         case DP_SDP_VSC:
132                 return VIDEO_DIP_ENABLE_VSC_HSW;
133         case DP_SDP_PPS:
134                 return VDIP_ENABLE_PPS;
135         case HDMI_INFOFRAME_TYPE_AVI:
136                 return VIDEO_DIP_ENABLE_AVI_HSW;
137         case HDMI_INFOFRAME_TYPE_SPD:
138                 return VIDEO_DIP_ENABLE_SPD_HSW;
139         case HDMI_INFOFRAME_TYPE_VENDOR:
140                 return VIDEO_DIP_ENABLE_VS_HSW;
141         case HDMI_INFOFRAME_TYPE_DRM:
142                 return VIDEO_DIP_ENABLE_DRM_GLK;
143         default:
144                 MISSING_CASE(type);
145                 return 0;
146         }
147 }
148
149 static i915_reg_t
150 hsw_dip_data_reg(struct drm_i915_private *dev_priv,
151                  enum transcoder cpu_transcoder,
152                  unsigned int type,
153                  int i)
154 {
155         switch (type) {
156         case HDMI_PACKET_TYPE_GAMUT_METADATA:
157                 return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i);
158         case DP_SDP_VSC:
159                 return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
160         case DP_SDP_PPS:
161                 return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i);
162         case HDMI_INFOFRAME_TYPE_AVI:
163                 return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
164         case HDMI_INFOFRAME_TYPE_SPD:
165                 return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
166         case HDMI_INFOFRAME_TYPE_VENDOR:
167                 return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
168         case HDMI_INFOFRAME_TYPE_DRM:
169                 return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i);
170         default:
171                 MISSING_CASE(type);
172                 return INVALID_MMIO_REG;
173         }
174 }
175
176 static int hsw_dip_data_size(struct drm_i915_private *dev_priv,
177                              unsigned int type)
178 {
179         switch (type) {
180         case DP_SDP_VSC:
181                 return VIDEO_DIP_VSC_DATA_SIZE;
182         case DP_SDP_PPS:
183                 return VIDEO_DIP_PPS_DATA_SIZE;
184         case HDMI_PACKET_TYPE_GAMUT_METADATA:
185                 if (DISPLAY_VER(dev_priv) >= 11)
186                         return VIDEO_DIP_GMP_DATA_SIZE;
187                 else
188                         return VIDEO_DIP_DATA_SIZE;
189         default:
190                 return VIDEO_DIP_DATA_SIZE;
191         }
192 }
193
194 static void g4x_write_infoframe(struct intel_encoder *encoder,
195                                 const struct intel_crtc_state *crtc_state,
196                                 unsigned int type,
197                                 const void *frame, ssize_t len)
198 {
199         const u32 *data = frame;
200         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
201         u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
202         int i;
203
204         drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
205                  "Writing DIP with CTL reg disabled\n");
206
207         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
208         val |= g4x_infoframe_index(type);
209
210         val &= ~g4x_infoframe_enable(type);
211
212         intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
213
214         for (i = 0; i < len; i += 4) {
215                 intel_de_write(dev_priv, VIDEO_DIP_DATA, *data);
216                 data++;
217         }
218         /* Write every possible data byte to force correct ECC calculation. */
219         for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
220                 intel_de_write(dev_priv, VIDEO_DIP_DATA, 0);
221
222         val |= g4x_infoframe_enable(type);
223         val &= ~VIDEO_DIP_FREQ_MASK;
224         val |= VIDEO_DIP_FREQ_VSYNC;
225
226         intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
227         intel_de_posting_read(dev_priv, VIDEO_DIP_CTL);
228 }
229
230 static void g4x_read_infoframe(struct intel_encoder *encoder,
231                                const struct intel_crtc_state *crtc_state,
232                                unsigned int type,
233                                void *frame, ssize_t len)
234 {
235         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
236         u32 val, *data = frame;
237         int i;
238
239         val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
240
241         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
242         val |= g4x_infoframe_index(type);
243
244         intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
245
246         for (i = 0; i < len; i += 4)
247                 *data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA);
248 }
249
250 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
251                                   const struct intel_crtc_state *pipe_config)
252 {
253         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
254         u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
255
256         if ((val & VIDEO_DIP_ENABLE) == 0)
257                 return 0;
258
259         if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
260                 return 0;
261
262         return val & (VIDEO_DIP_ENABLE_AVI |
263                       VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
264 }
265
266 static void ibx_write_infoframe(struct intel_encoder *encoder,
267                                 const struct intel_crtc_state *crtc_state,
268                                 unsigned int type,
269                                 const void *frame, ssize_t len)
270 {
271         const u32 *data = frame;
272         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
273         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
274         i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
275         u32 val = intel_de_read(dev_priv, reg);
276         int i;
277
278         drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
279                  "Writing DIP with CTL reg disabled\n");
280
281         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
282         val |= g4x_infoframe_index(type);
283
284         val &= ~g4x_infoframe_enable(type);
285
286         intel_de_write(dev_priv, reg, val);
287
288         for (i = 0; i < len; i += 4) {
289                 intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe),
290                                *data);
291                 data++;
292         }
293         /* Write every possible data byte to force correct ECC calculation. */
294         for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
295                 intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
296
297         val |= g4x_infoframe_enable(type);
298         val &= ~VIDEO_DIP_FREQ_MASK;
299         val |= VIDEO_DIP_FREQ_VSYNC;
300
301         intel_de_write(dev_priv, reg, val);
302         intel_de_posting_read(dev_priv, reg);
303 }
304
305 static void ibx_read_infoframe(struct intel_encoder *encoder,
306                                const struct intel_crtc_state *crtc_state,
307                                unsigned int type,
308                                void *frame, ssize_t len)
309 {
310         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
311         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
312         u32 val, *data = frame;
313         int i;
314
315         val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
316
317         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
318         val |= g4x_infoframe_index(type);
319
320         intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
321
322         for (i = 0; i < len; i += 4)
323                 *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
324 }
325
326 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
327                                   const struct intel_crtc_state *pipe_config)
328 {
329         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
330         enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
331         i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
332         u32 val = intel_de_read(dev_priv, reg);
333
334         if ((val & VIDEO_DIP_ENABLE) == 0)
335                 return 0;
336
337         if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
338                 return 0;
339
340         return val & (VIDEO_DIP_ENABLE_AVI |
341                       VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
342                       VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
343 }
344
345 static void cpt_write_infoframe(struct intel_encoder *encoder,
346                                 const struct intel_crtc_state *crtc_state,
347                                 unsigned int type,
348                                 const void *frame, ssize_t len)
349 {
350         const u32 *data = frame;
351         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
352         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
353         i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
354         u32 val = intel_de_read(dev_priv, reg);
355         int i;
356
357         drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
358                  "Writing DIP with CTL reg disabled\n");
359
360         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
361         val |= g4x_infoframe_index(type);
362
363         /* The DIP control register spec says that we need to update the AVI
364          * infoframe without clearing its enable bit */
365         if (type != HDMI_INFOFRAME_TYPE_AVI)
366                 val &= ~g4x_infoframe_enable(type);
367
368         intel_de_write(dev_priv, reg, val);
369
370         for (i = 0; i < len; i += 4) {
371                 intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe),
372                                *data);
373                 data++;
374         }
375         /* Write every possible data byte to force correct ECC calculation. */
376         for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
377                 intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
378
379         val |= g4x_infoframe_enable(type);
380         val &= ~VIDEO_DIP_FREQ_MASK;
381         val |= VIDEO_DIP_FREQ_VSYNC;
382
383         intel_de_write(dev_priv, reg, val);
384         intel_de_posting_read(dev_priv, reg);
385 }
386
387 static void cpt_read_infoframe(struct intel_encoder *encoder,
388                                const struct intel_crtc_state *crtc_state,
389                                unsigned int type,
390                                void *frame, ssize_t len)
391 {
392         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
393         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
394         u32 val, *data = frame;
395         int i;
396
397         val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
398
399         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
400         val |= g4x_infoframe_index(type);
401
402         intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
403
404         for (i = 0; i < len; i += 4)
405                 *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
406 }
407
408 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
409                                   const struct intel_crtc_state *pipe_config)
410 {
411         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
412         enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
413         u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe));
414
415         if ((val & VIDEO_DIP_ENABLE) == 0)
416                 return 0;
417
418         return val & (VIDEO_DIP_ENABLE_AVI |
419                       VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
420                       VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
421 }
422
423 static void vlv_write_infoframe(struct intel_encoder *encoder,
424                                 const struct intel_crtc_state *crtc_state,
425                                 unsigned int type,
426                                 const void *frame, ssize_t len)
427 {
428         const u32 *data = frame;
429         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
430         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
431         i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
432         u32 val = intel_de_read(dev_priv, reg);
433         int i;
434
435         drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
436                  "Writing DIP with CTL reg disabled\n");
437
438         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
439         val |= g4x_infoframe_index(type);
440
441         val &= ~g4x_infoframe_enable(type);
442
443         intel_de_write(dev_priv, reg, val);
444
445         for (i = 0; i < len; i += 4) {
446                 intel_de_write(dev_priv,
447                                VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
448                 data++;
449         }
450         /* Write every possible data byte to force correct ECC calculation. */
451         for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
452                 intel_de_write(dev_priv,
453                                VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
454
455         val |= g4x_infoframe_enable(type);
456         val &= ~VIDEO_DIP_FREQ_MASK;
457         val |= VIDEO_DIP_FREQ_VSYNC;
458
459         intel_de_write(dev_priv, reg, val);
460         intel_de_posting_read(dev_priv, reg);
461 }
462
463 static void vlv_read_infoframe(struct intel_encoder *encoder,
464                                const struct intel_crtc_state *crtc_state,
465                                unsigned int type,
466                                void *frame, ssize_t len)
467 {
468         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
469         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
470         u32 val, *data = frame;
471         int i;
472
473         val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe));
474
475         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
476         val |= g4x_infoframe_index(type);
477
478         intel_de_write(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe), val);
479
480         for (i = 0; i < len; i += 4)
481                 *data++ = intel_de_read(dev_priv,
482                                         VLV_TVIDEO_DIP_DATA(crtc->pipe));
483 }
484
485 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
486                                   const struct intel_crtc_state *pipe_config)
487 {
488         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
489         enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
490         u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe));
491
492         if ((val & VIDEO_DIP_ENABLE) == 0)
493                 return 0;
494
495         if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
496                 return 0;
497
498         return val & (VIDEO_DIP_ENABLE_AVI |
499                       VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
500                       VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
501 }
502
503 void hsw_write_infoframe(struct intel_encoder *encoder,
504                          const struct intel_crtc_state *crtc_state,
505                          unsigned int type,
506                          const void *frame, ssize_t len)
507 {
508         const u32 *data = frame;
509         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
510         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
511         i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
512         int data_size;
513         int i;
514         u32 val = intel_de_read(dev_priv, ctl_reg);
515
516         data_size = hsw_dip_data_size(dev_priv, type);
517
518         drm_WARN_ON(&dev_priv->drm, len > data_size);
519
520         val &= ~hsw_infoframe_enable(type);
521         intel_de_write(dev_priv, ctl_reg, val);
522
523         for (i = 0; i < len; i += 4) {
524                 intel_de_write(dev_priv,
525                                hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
526                                *data);
527                 data++;
528         }
529         /* Write every possible data byte to force correct ECC calculation. */
530         for (; i < data_size; i += 4)
531                 intel_de_write(dev_priv,
532                                hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
533                                0);
534
535         /* Wa_14013475917 */
536         if (DISPLAY_VER(dev_priv) == 13 && crtc_state->has_psr &&
537             type == DP_SDP_VSC)
538                 return;
539
540         val |= hsw_infoframe_enable(type);
541         intel_de_write(dev_priv, ctl_reg, val);
542         intel_de_posting_read(dev_priv, ctl_reg);
543 }
544
545 void hsw_read_infoframe(struct intel_encoder *encoder,
546                         const struct intel_crtc_state *crtc_state,
547                         unsigned int type, void *frame, ssize_t len)
548 {
549         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
550         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
551         u32 *data = frame;
552         int i;
553
554         for (i = 0; i < len; i += 4)
555                 *data++ = intel_de_read(dev_priv,
556                                         hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2));
557 }
558
559 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
560                                   const struct intel_crtc_state *pipe_config)
561 {
562         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
563         u32 val = intel_de_read(dev_priv,
564                                 HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
565         u32 mask;
566
567         mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
568                 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
569                 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
570
571         if (DISPLAY_VER(dev_priv) >= 10)
572                 mask |= VIDEO_DIP_ENABLE_DRM_GLK;
573
574         return val & mask;
575 }
576
577 static const u8 infoframe_type_to_idx[] = {
578         HDMI_PACKET_TYPE_GENERAL_CONTROL,
579         HDMI_PACKET_TYPE_GAMUT_METADATA,
580         DP_SDP_VSC,
581         HDMI_INFOFRAME_TYPE_AVI,
582         HDMI_INFOFRAME_TYPE_SPD,
583         HDMI_INFOFRAME_TYPE_VENDOR,
584         HDMI_INFOFRAME_TYPE_DRM,
585 };
586
587 u32 intel_hdmi_infoframe_enable(unsigned int type)
588 {
589         int i;
590
591         for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
592                 if (infoframe_type_to_idx[i] == type)
593                         return BIT(i);
594         }
595
596         return 0;
597 }
598
599 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
600                                   const struct intel_crtc_state *crtc_state)
601 {
602         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
603         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
604         u32 val, ret = 0;
605         int i;
606
607         val = dig_port->infoframes_enabled(encoder, crtc_state);
608
609         /* map from hardware bits to dip idx */
610         for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
611                 unsigned int type = infoframe_type_to_idx[i];
612
613                 if (HAS_DDI(dev_priv)) {
614                         if (val & hsw_infoframe_enable(type))
615                                 ret |= BIT(i);
616                 } else {
617                         if (val & g4x_infoframe_enable(type))
618                                 ret |= BIT(i);
619                 }
620         }
621
622         return ret;
623 }
624
625 /*
626  * The data we write to the DIP data buffer registers is 1 byte bigger than the
627  * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
628  * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
629  * used for both technologies.
630  *
631  * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
632  * DW1:       DB3       | DB2 | DB1 | DB0
633  * DW2:       DB7       | DB6 | DB5 | DB4
634  * DW3: ...
635  *
636  * (HB is Header Byte, DB is Data Byte)
637  *
638  * The hdmi pack() functions don't know about that hardware specific hole so we
639  * trick them by giving an offset into the buffer and moving back the header
640  * bytes by one.
641  */
642 static void intel_write_infoframe(struct intel_encoder *encoder,
643                                   const struct intel_crtc_state *crtc_state,
644                                   enum hdmi_infoframe_type type,
645                                   const union hdmi_infoframe *frame)
646 {
647         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
648         u8 buffer[VIDEO_DIP_DATA_SIZE];
649         ssize_t len;
650
651         if ((crtc_state->infoframes.enable &
652              intel_hdmi_infoframe_enable(type)) == 0)
653                 return;
654
655         if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
656                 return;
657
658         /* see comment above for the reason for this offset */
659         len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
660         if (drm_WARN_ON(encoder->base.dev, len < 0))
661                 return;
662
663         /* Insert the 'hole' (see big comment above) at position 3 */
664         memmove(&buffer[0], &buffer[1], 3);
665         buffer[3] = 0;
666         len++;
667
668         dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
669 }
670
671 void intel_read_infoframe(struct intel_encoder *encoder,
672                           const struct intel_crtc_state *crtc_state,
673                           enum hdmi_infoframe_type type,
674                           union hdmi_infoframe *frame)
675 {
676         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
677         u8 buffer[VIDEO_DIP_DATA_SIZE];
678         int ret;
679
680         if ((crtc_state->infoframes.enable &
681              intel_hdmi_infoframe_enable(type)) == 0)
682                 return;
683
684         dig_port->read_infoframe(encoder, crtc_state,
685                                        type, buffer, sizeof(buffer));
686
687         /* Fill the 'hole' (see big comment above) at position 3 */
688         memmove(&buffer[1], &buffer[0], 3);
689
690         /* see comment above for the reason for this offset */
691         ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
692         if (ret) {
693                 drm_dbg_kms(encoder->base.dev,
694                             "Failed to unpack infoframe type 0x%02x\n", type);
695                 return;
696         }
697
698         if (frame->any.type != type)
699                 drm_dbg_kms(encoder->base.dev,
700                             "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
701                             frame->any.type, type);
702 }
703
704 static bool
705 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
706                                  struct intel_crtc_state *crtc_state,
707                                  struct drm_connector_state *conn_state)
708 {
709         struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
710         const struct drm_display_mode *adjusted_mode =
711                 &crtc_state->hw.adjusted_mode;
712         struct drm_connector *connector = conn_state->connector;
713         int ret;
714
715         if (!crtc_state->has_infoframe)
716                 return true;
717
718         crtc_state->infoframes.enable |=
719                 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
720
721         ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
722                                                        adjusted_mode);
723         if (ret)
724                 return false;
725
726         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
727                 frame->colorspace = HDMI_COLORSPACE_YUV420;
728         else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
729                 frame->colorspace = HDMI_COLORSPACE_YUV444;
730         else
731                 frame->colorspace = HDMI_COLORSPACE_RGB;
732
733         drm_hdmi_avi_infoframe_colorspace(frame, conn_state);
734
735         /* nonsense combination */
736         drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
737                     crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
738
739         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
740                 drm_hdmi_avi_infoframe_quant_range(frame, connector,
741                                                    adjusted_mode,
742                                                    crtc_state->limited_color_range ?
743                                                    HDMI_QUANTIZATION_RANGE_LIMITED :
744                                                    HDMI_QUANTIZATION_RANGE_FULL);
745         } else {
746                 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
747                 frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
748         }
749
750         drm_hdmi_avi_infoframe_content_type(frame, conn_state);
751
752         /* TODO: handle pixel repetition for YCBCR420 outputs */
753
754         ret = hdmi_avi_infoframe_check(frame);
755         if (drm_WARN_ON(encoder->base.dev, ret))
756                 return false;
757
758         return true;
759 }
760
761 static bool
762 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
763                                  struct intel_crtc_state *crtc_state,
764                                  struct drm_connector_state *conn_state)
765 {
766         struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
767         int ret;
768
769         if (!crtc_state->has_infoframe)
770                 return true;
771
772         crtc_state->infoframes.enable |=
773                 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
774
775         ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
776         if (drm_WARN_ON(encoder->base.dev, ret))
777                 return false;
778
779         frame->sdi = HDMI_SPD_SDI_PC;
780
781         ret = hdmi_spd_infoframe_check(frame);
782         if (drm_WARN_ON(encoder->base.dev, ret))
783                 return false;
784
785         return true;
786 }
787
788 static bool
789 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
790                                   struct intel_crtc_state *crtc_state,
791                                   struct drm_connector_state *conn_state)
792 {
793         struct hdmi_vendor_infoframe *frame =
794                 &crtc_state->infoframes.hdmi.vendor.hdmi;
795         const struct drm_display_info *info =
796                 &conn_state->connector->display_info;
797         int ret;
798
799         if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
800                 return true;
801
802         crtc_state->infoframes.enable |=
803                 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
804
805         ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
806                                                           conn_state->connector,
807                                                           &crtc_state->hw.adjusted_mode);
808         if (drm_WARN_ON(encoder->base.dev, ret))
809                 return false;
810
811         ret = hdmi_vendor_infoframe_check(frame);
812         if (drm_WARN_ON(encoder->base.dev, ret))
813                 return false;
814
815         return true;
816 }
817
818 static bool
819 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
820                                  struct intel_crtc_state *crtc_state,
821                                  struct drm_connector_state *conn_state)
822 {
823         struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
824         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
825         int ret;
826
827         if (DISPLAY_VER(dev_priv) < 10)
828                 return true;
829
830         if (!crtc_state->has_infoframe)
831                 return true;
832
833         if (!conn_state->hdr_output_metadata)
834                 return true;
835
836         crtc_state->infoframes.enable |=
837                 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
838
839         ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
840         if (ret < 0) {
841                 drm_dbg_kms(&dev_priv->drm,
842                             "couldn't set HDR metadata in infoframe\n");
843                 return false;
844         }
845
846         ret = hdmi_drm_infoframe_check(frame);
847         if (drm_WARN_ON(&dev_priv->drm, ret))
848                 return false;
849
850         return true;
851 }
852
853 static void g4x_set_infoframes(struct intel_encoder *encoder,
854                                bool enable,
855                                const struct intel_crtc_state *crtc_state,
856                                const struct drm_connector_state *conn_state)
857 {
858         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
859         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
860         struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
861         i915_reg_t reg = VIDEO_DIP_CTL;
862         u32 val = intel_de_read(dev_priv, reg);
863         u32 port = VIDEO_DIP_PORT(encoder->port);
864
865         assert_hdmi_port_disabled(intel_hdmi);
866
867         /* If the registers were not initialized yet, they might be zeroes,
868          * which means we're selecting the AVI DIP and we're setting its
869          * frequency to once. This seems to really confuse the HW and make
870          * things stop working (the register spec says the AVI always needs to
871          * be sent every VSync). So here we avoid writing to the register more
872          * than we need and also explicitly select the AVI DIP and explicitly
873          * set its frequency to every VSync. Avoiding to write it twice seems to
874          * be enough to solve the problem, but being defensive shouldn't hurt us
875          * either. */
876         val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
877
878         if (!enable) {
879                 if (!(val & VIDEO_DIP_ENABLE))
880                         return;
881                 if (port != (val & VIDEO_DIP_PORT_MASK)) {
882                         drm_dbg_kms(&dev_priv->drm,
883                                     "video DIP still enabled on port %c\n",
884                                     (val & VIDEO_DIP_PORT_MASK) >> 29);
885                         return;
886                 }
887                 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
888                          VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
889                 intel_de_write(dev_priv, reg, val);
890                 intel_de_posting_read(dev_priv, reg);
891                 return;
892         }
893
894         if (port != (val & VIDEO_DIP_PORT_MASK)) {
895                 if (val & VIDEO_DIP_ENABLE) {
896                         drm_dbg_kms(&dev_priv->drm,
897                                     "video DIP already enabled on port %c\n",
898                                     (val & VIDEO_DIP_PORT_MASK) >> 29);
899                         return;
900                 }
901                 val &= ~VIDEO_DIP_PORT_MASK;
902                 val |= port;
903         }
904
905         val |= VIDEO_DIP_ENABLE;
906         val &= ~(VIDEO_DIP_ENABLE_AVI |
907                  VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
908
909         intel_de_write(dev_priv, reg, val);
910         intel_de_posting_read(dev_priv, reg);
911
912         intel_write_infoframe(encoder, crtc_state,
913                               HDMI_INFOFRAME_TYPE_AVI,
914                               &crtc_state->infoframes.avi);
915         intel_write_infoframe(encoder, crtc_state,
916                               HDMI_INFOFRAME_TYPE_SPD,
917                               &crtc_state->infoframes.spd);
918         intel_write_infoframe(encoder, crtc_state,
919                               HDMI_INFOFRAME_TYPE_VENDOR,
920                               &crtc_state->infoframes.hdmi);
921 }
922
923 /*
924  * Determine if default_phase=1 can be indicated in the GCP infoframe.
925  *
926  * From HDMI specification 1.4a:
927  * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
928  * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
929  * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
930  * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
931  *   phase of 0
932  */
933 static bool gcp_default_phase_possible(int pipe_bpp,
934                                        const struct drm_display_mode *mode)
935 {
936         unsigned int pixels_per_group;
937
938         switch (pipe_bpp) {
939         case 30:
940                 /* 4 pixels in 5 clocks */
941                 pixels_per_group = 4;
942                 break;
943         case 36:
944                 /* 2 pixels in 3 clocks */
945                 pixels_per_group = 2;
946                 break;
947         case 48:
948                 /* 1 pixel in 2 clocks */
949                 pixels_per_group = 1;
950                 break;
951         default:
952                 /* phase information not relevant for 8bpc */
953                 return false;
954         }
955
956         return mode->crtc_hdisplay % pixels_per_group == 0 &&
957                 mode->crtc_htotal % pixels_per_group == 0 &&
958                 mode->crtc_hblank_start % pixels_per_group == 0 &&
959                 mode->crtc_hblank_end % pixels_per_group == 0 &&
960                 mode->crtc_hsync_start % pixels_per_group == 0 &&
961                 mode->crtc_hsync_end % pixels_per_group == 0 &&
962                 ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
963                  mode->crtc_htotal/2 % pixels_per_group == 0);
964 }
965
966 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
967                                          const struct intel_crtc_state *crtc_state,
968                                          const struct drm_connector_state *conn_state)
969 {
970         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
971         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
972         i915_reg_t reg;
973
974         if ((crtc_state->infoframes.enable &
975              intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
976                 return false;
977
978         if (HAS_DDI(dev_priv))
979                 reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
980         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
981                 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
982         else if (HAS_PCH_SPLIT(dev_priv))
983                 reg = TVIDEO_DIP_GCP(crtc->pipe);
984         else
985                 return false;
986
987         intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp);
988
989         return true;
990 }
991
992 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
993                                    struct intel_crtc_state *crtc_state)
994 {
995         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
996         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
997         i915_reg_t reg;
998
999         if ((crtc_state->infoframes.enable &
1000              intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1001                 return;
1002
1003         if (HAS_DDI(dev_priv))
1004                 reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
1005         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1006                 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1007         else if (HAS_PCH_SPLIT(dev_priv))
1008                 reg = TVIDEO_DIP_GCP(crtc->pipe);
1009         else
1010                 return;
1011
1012         crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg);
1013 }
1014
1015 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1016                                              struct intel_crtc_state *crtc_state,
1017                                              struct drm_connector_state *conn_state)
1018 {
1019         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1020
1021         if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1022                 return;
1023
1024         crtc_state->infoframes.enable |=
1025                 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1026
1027         /* Indicate color indication for deep color mode */
1028         if (crtc_state->pipe_bpp > 24)
1029                 crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1030
1031         /* Enable default_phase whenever the display mode is suitably aligned */
1032         if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1033                                        &crtc_state->hw.adjusted_mode))
1034                 crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1035 }
1036
1037 static void ibx_set_infoframes(struct intel_encoder *encoder,
1038                                bool enable,
1039                                const struct intel_crtc_state *crtc_state,
1040                                const struct drm_connector_state *conn_state)
1041 {
1042         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1043         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
1044         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1045         struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1046         i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
1047         u32 val = intel_de_read(dev_priv, reg);
1048         u32 port = VIDEO_DIP_PORT(encoder->port);
1049
1050         assert_hdmi_port_disabled(intel_hdmi);
1051
1052         /* See the big comment in g4x_set_infoframes() */
1053         val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1054
1055         if (!enable) {
1056                 if (!(val & VIDEO_DIP_ENABLE))
1057                         return;
1058                 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1059                          VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1060                          VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1061                 intel_de_write(dev_priv, reg, val);
1062                 intel_de_posting_read(dev_priv, reg);
1063                 return;
1064         }
1065
1066         if (port != (val & VIDEO_DIP_PORT_MASK)) {
1067                 drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1068                          "DIP already enabled on port %c\n",
1069                          (val & VIDEO_DIP_PORT_MASK) >> 29);
1070                 val &= ~VIDEO_DIP_PORT_MASK;
1071                 val |= port;
1072         }
1073
1074         val |= VIDEO_DIP_ENABLE;
1075         val &= ~(VIDEO_DIP_ENABLE_AVI |
1076                  VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1077                  VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1078
1079         if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1080                 val |= VIDEO_DIP_ENABLE_GCP;
1081
1082         intel_de_write(dev_priv, reg, val);
1083         intel_de_posting_read(dev_priv, reg);
1084
1085         intel_write_infoframe(encoder, crtc_state,
1086                               HDMI_INFOFRAME_TYPE_AVI,
1087                               &crtc_state->infoframes.avi);
1088         intel_write_infoframe(encoder, crtc_state,
1089                               HDMI_INFOFRAME_TYPE_SPD,
1090                               &crtc_state->infoframes.spd);
1091         intel_write_infoframe(encoder, crtc_state,
1092                               HDMI_INFOFRAME_TYPE_VENDOR,
1093                               &crtc_state->infoframes.hdmi);
1094 }
1095
1096 static void cpt_set_infoframes(struct intel_encoder *encoder,
1097                                bool enable,
1098                                const struct intel_crtc_state *crtc_state,
1099                                const struct drm_connector_state *conn_state)
1100 {
1101         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1102         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
1103         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1104         i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
1105         u32 val = intel_de_read(dev_priv, reg);
1106
1107         assert_hdmi_port_disabled(intel_hdmi);
1108
1109         /* See the big comment in g4x_set_infoframes() */
1110         val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1111
1112         if (!enable) {
1113                 if (!(val & VIDEO_DIP_ENABLE))
1114                         return;
1115                 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1116                          VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1117                          VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1118                 intel_de_write(dev_priv, reg, val);
1119                 intel_de_posting_read(dev_priv, reg);
1120                 return;
1121         }
1122
1123         /* Set both together, unset both together: see the spec. */
1124         val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1125         val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1126                  VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1127
1128         if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1129                 val |= VIDEO_DIP_ENABLE_GCP;
1130
1131         intel_de_write(dev_priv, reg, val);
1132         intel_de_posting_read(dev_priv, reg);
1133
1134         intel_write_infoframe(encoder, crtc_state,
1135                               HDMI_INFOFRAME_TYPE_AVI,
1136                               &crtc_state->infoframes.avi);
1137         intel_write_infoframe(encoder, crtc_state,
1138                               HDMI_INFOFRAME_TYPE_SPD,
1139                               &crtc_state->infoframes.spd);
1140         intel_write_infoframe(encoder, crtc_state,
1141                               HDMI_INFOFRAME_TYPE_VENDOR,
1142                               &crtc_state->infoframes.hdmi);
1143 }
1144
1145 static void vlv_set_infoframes(struct intel_encoder *encoder,
1146                                bool enable,
1147                                const struct intel_crtc_state *crtc_state,
1148                                const struct drm_connector_state *conn_state)
1149 {
1150         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1151         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
1152         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1153         i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
1154         u32 val = intel_de_read(dev_priv, reg);
1155         u32 port = VIDEO_DIP_PORT(encoder->port);
1156
1157         assert_hdmi_port_disabled(intel_hdmi);
1158
1159         /* See the big comment in g4x_set_infoframes() */
1160         val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1161
1162         if (!enable) {
1163                 if (!(val & VIDEO_DIP_ENABLE))
1164                         return;
1165                 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1166                          VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1167                          VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1168                 intel_de_write(dev_priv, reg, val);
1169                 intel_de_posting_read(dev_priv, reg);
1170                 return;
1171         }
1172
1173         if (port != (val & VIDEO_DIP_PORT_MASK)) {
1174                 drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1175                          "DIP already enabled on port %c\n",
1176                          (val & VIDEO_DIP_PORT_MASK) >> 29);
1177                 val &= ~VIDEO_DIP_PORT_MASK;
1178                 val |= port;
1179         }
1180
1181         val |= VIDEO_DIP_ENABLE;
1182         val &= ~(VIDEO_DIP_ENABLE_AVI |
1183                  VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1184                  VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1185
1186         if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1187                 val |= VIDEO_DIP_ENABLE_GCP;
1188
1189         intel_de_write(dev_priv, reg, val);
1190         intel_de_posting_read(dev_priv, reg);
1191
1192         intel_write_infoframe(encoder, crtc_state,
1193                               HDMI_INFOFRAME_TYPE_AVI,
1194                               &crtc_state->infoframes.avi);
1195         intel_write_infoframe(encoder, crtc_state,
1196                               HDMI_INFOFRAME_TYPE_SPD,
1197                               &crtc_state->infoframes.spd);
1198         intel_write_infoframe(encoder, crtc_state,
1199                               HDMI_INFOFRAME_TYPE_VENDOR,
1200                               &crtc_state->infoframes.hdmi);
1201 }
1202
1203 static void hsw_set_infoframes(struct intel_encoder *encoder,
1204                                bool enable,
1205                                const struct intel_crtc_state *crtc_state,
1206                                const struct drm_connector_state *conn_state)
1207 {
1208         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1209         i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
1210         u32 val = intel_de_read(dev_priv, reg);
1211
1212         assert_hdmi_transcoder_func_disabled(dev_priv,
1213                                              crtc_state->cpu_transcoder);
1214
1215         val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1216                  VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1217                  VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1218                  VIDEO_DIP_ENABLE_DRM_GLK);
1219
1220         if (!enable) {
1221                 intel_de_write(dev_priv, reg, val);
1222                 intel_de_posting_read(dev_priv, reg);
1223                 return;
1224         }
1225
1226         if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1227                 val |= VIDEO_DIP_ENABLE_GCP_HSW;
1228
1229         intel_de_write(dev_priv, reg, val);
1230         intel_de_posting_read(dev_priv, reg);
1231
1232         intel_write_infoframe(encoder, crtc_state,
1233                               HDMI_INFOFRAME_TYPE_AVI,
1234                               &crtc_state->infoframes.avi);
1235         intel_write_infoframe(encoder, crtc_state,
1236                               HDMI_INFOFRAME_TYPE_SPD,
1237                               &crtc_state->infoframes.spd);
1238         intel_write_infoframe(encoder, crtc_state,
1239                               HDMI_INFOFRAME_TYPE_VENDOR,
1240                               &crtc_state->infoframes.hdmi);
1241         intel_write_infoframe(encoder, crtc_state,
1242                               HDMI_INFOFRAME_TYPE_DRM,
1243                               &crtc_state->infoframes.drm);
1244 }
1245
1246 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1247 {
1248         struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi));
1249         struct i2c_adapter *adapter =
1250                 intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
1251
1252         if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1253                 return;
1254
1255         drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n",
1256                     enable ? "Enabling" : "Disabling");
1257
1258         drm_dp_dual_mode_set_tmds_output(&dev_priv->drm, hdmi->dp_dual_mode.type, adapter, enable);
1259 }
1260
1261 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1262                                 unsigned int offset, void *buffer, size_t size)
1263 {
1264         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1265         struct intel_hdmi *hdmi = &dig_port->hdmi;
1266         struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1267                                                               hdmi->ddc_bus);
1268         int ret;
1269         u8 start = offset & 0xff;
1270         struct i2c_msg msgs[] = {
1271                 {
1272                         .addr = DRM_HDCP_DDC_ADDR,
1273                         .flags = 0,
1274                         .len = 1,
1275                         .buf = &start,
1276                 },
1277                 {
1278                         .addr = DRM_HDCP_DDC_ADDR,
1279                         .flags = I2C_M_RD,
1280                         .len = size,
1281                         .buf = buffer
1282                 }
1283         };
1284         ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs));
1285         if (ret == ARRAY_SIZE(msgs))
1286                 return 0;
1287         return ret >= 0 ? -EIO : ret;
1288 }
1289
1290 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1291                                  unsigned int offset, void *buffer, size_t size)
1292 {
1293         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1294         struct intel_hdmi *hdmi = &dig_port->hdmi;
1295         struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1296                                                               hdmi->ddc_bus);
1297         int ret;
1298         u8 *write_buf;
1299         struct i2c_msg msg;
1300
1301         write_buf = kzalloc(size + 1, GFP_KERNEL);
1302         if (!write_buf)
1303                 return -ENOMEM;
1304
1305         write_buf[0] = offset & 0xff;
1306         memcpy(&write_buf[1], buffer, size);
1307
1308         msg.addr = DRM_HDCP_DDC_ADDR;
1309         msg.flags = 0,
1310         msg.len = size + 1,
1311         msg.buf = write_buf;
1312
1313         ret = i2c_transfer(adapter, &msg, 1);
1314         if (ret == 1)
1315                 ret = 0;
1316         else if (ret >= 0)
1317                 ret = -EIO;
1318
1319         kfree(write_buf);
1320         return ret;
1321 }
1322
1323 static
1324 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1325                                   u8 *an)
1326 {
1327         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1328         struct intel_hdmi *hdmi = &dig_port->hdmi;
1329         struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1330                                                               hdmi->ddc_bus);
1331         int ret;
1332
1333         ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1334                                     DRM_HDCP_AN_LEN);
1335         if (ret) {
1336                 drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n",
1337                             ret);
1338                 return ret;
1339         }
1340
1341         ret = intel_gmbus_output_aksv(adapter);
1342         if (ret < 0) {
1343                 drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret);
1344                 return ret;
1345         }
1346         return 0;
1347 }
1348
1349 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1350                                      u8 *bksv)
1351 {
1352         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1353
1354         int ret;
1355         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1356                                    DRM_HDCP_KSV_LEN);
1357         if (ret)
1358                 drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n",
1359                             ret);
1360         return ret;
1361 }
1362
1363 static
1364 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1365                                  u8 *bstatus)
1366 {
1367         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1368
1369         int ret;
1370         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1371                                    bstatus, DRM_HDCP_BSTATUS_LEN);
1372         if (ret)
1373                 drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n",
1374                             ret);
1375         return ret;
1376 }
1377
1378 static
1379 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1380                                      bool *repeater_present)
1381 {
1382         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1383         int ret;
1384         u8 val;
1385
1386         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1387         if (ret) {
1388                 drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1389                             ret);
1390                 return ret;
1391         }
1392         *repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1393         return 0;
1394 }
1395
1396 static
1397 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1398                                   u8 *ri_prime)
1399 {
1400         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1401
1402         int ret;
1403         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1404                                    ri_prime, DRM_HDCP_RI_LEN);
1405         if (ret)
1406                 drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n",
1407                             ret);
1408         return ret;
1409 }
1410
1411 static
1412 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1413                                    bool *ksv_ready)
1414 {
1415         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1416         int ret;
1417         u8 val;
1418
1419         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1420         if (ret) {
1421                 drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1422                             ret);
1423                 return ret;
1424         }
1425         *ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1426         return 0;
1427 }
1428
1429 static
1430 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1431                                   int num_downstream, u8 *ksv_fifo)
1432 {
1433         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1434         int ret;
1435         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1436                                    ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1437         if (ret) {
1438                 drm_dbg_kms(&i915->drm,
1439                             "Read ksv fifo over DDC failed (%d)\n", ret);
1440                 return ret;
1441         }
1442         return 0;
1443 }
1444
1445 static
1446 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1447                                       int i, u32 *part)
1448 {
1449         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1450         int ret;
1451
1452         if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1453                 return -EINVAL;
1454
1455         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1456                                    part, DRM_HDCP_V_PRIME_PART_LEN);
1457         if (ret)
1458                 drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n",
1459                             i, ret);
1460         return ret;
1461 }
1462
1463 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1464                                            enum transcoder cpu_transcoder)
1465 {
1466         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1467         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1468         struct drm_crtc *crtc = connector->base.state->crtc;
1469         struct intel_crtc *intel_crtc = container_of(crtc,
1470                                                      struct intel_crtc, base);
1471         u32 scanline;
1472         int ret;
1473
1474         for (;;) {
1475                 scanline = intel_de_read(dev_priv, PIPEDSL(intel_crtc->pipe));
1476                 if (scanline > 100 && scanline < 200)
1477                         break;
1478                 usleep_range(25, 50);
1479         }
1480
1481         ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1482                                          false, TRANS_DDI_HDCP_SIGNALLING);
1483         if (ret) {
1484                 drm_err(&dev_priv->drm,
1485                         "Disable HDCP signalling failed (%d)\n", ret);
1486                 return ret;
1487         }
1488
1489         ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1490                                          true, TRANS_DDI_HDCP_SIGNALLING);
1491         if (ret) {
1492                 drm_err(&dev_priv->drm,
1493                         "Enable HDCP signalling failed (%d)\n", ret);
1494                 return ret;
1495         }
1496
1497         return 0;
1498 }
1499
1500 static
1501 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1502                                       enum transcoder cpu_transcoder,
1503                                       bool enable)
1504 {
1505         struct intel_hdmi *hdmi = &dig_port->hdmi;
1506         struct intel_connector *connector = hdmi->attached_connector;
1507         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1508         int ret;
1509
1510         if (!enable)
1511                 usleep_range(6, 60); /* Bspec says >= 6us */
1512
1513         ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1514                                          cpu_transcoder, enable,
1515                                          TRANS_DDI_HDCP_SIGNALLING);
1516         if (ret) {
1517                 drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n",
1518                         enable ? "Enable" : "Disable", ret);
1519                 return ret;
1520         }
1521
1522         /*
1523          * WA: To fix incorrect positioning of the window of
1524          * opportunity and enc_en signalling in KABYLAKE.
1525          */
1526         if (IS_KABYLAKE(dev_priv) && enable)
1527                 return kbl_repositioning_enc_en_signal(connector,
1528                                                        cpu_transcoder);
1529
1530         return 0;
1531 }
1532
1533 static
1534 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1535                                      struct intel_connector *connector)
1536 {
1537         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1538         enum port port = dig_port->base.port;
1539         enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1540         int ret;
1541         union {
1542                 u32 reg;
1543                 u8 shim[DRM_HDCP_RI_LEN];
1544         } ri;
1545
1546         ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1547         if (ret)
1548                 return false;
1549
1550         intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1551
1552         /* Wait for Ri prime match */
1553         if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1554                       (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1555                      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1556                 drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n",
1557                         intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1558                                                         port)));
1559                 return false;
1560         }
1561         return true;
1562 }
1563
1564 static
1565 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1566                                 struct intel_connector *connector)
1567 {
1568         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1569         int retry;
1570
1571         for (retry = 0; retry < 3; retry++)
1572                 if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1573                         return true;
1574
1575         drm_err(&i915->drm, "Link check failed\n");
1576         return false;
1577 }
1578
1579 struct hdcp2_hdmi_msg_timeout {
1580         u8 msg_id;
1581         u16 timeout;
1582 };
1583
1584 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1585         { HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1586         { HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1587         { HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1588         { HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1589         { HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1590 };
1591
1592 static
1593 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1594                                     u8 *rx_status)
1595 {
1596         return intel_hdmi_hdcp_read(dig_port,
1597                                     HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1598                                     rx_status,
1599                                     HDCP_2_2_HDMI_RXSTATUS_LEN);
1600 }
1601
1602 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1603 {
1604         int i;
1605
1606         if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1607                 if (is_paired)
1608                         return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1609                 else
1610                         return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1611         }
1612
1613         for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1614                 if (hdcp2_msg_timeout[i].msg_id == msg_id)
1615                         return hdcp2_msg_timeout[i].timeout;
1616         }
1617
1618         return -EINVAL;
1619 }
1620
1621 static int
1622 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1623                               u8 msg_id, bool *msg_ready,
1624                               ssize_t *msg_sz)
1625 {
1626         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1627         u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1628         int ret;
1629
1630         ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1631         if (ret < 0) {
1632                 drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n",
1633                             ret);
1634                 return ret;
1635         }
1636
1637         *msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1638                   rx_status[0]);
1639
1640         if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1641                 *msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1642                              *msg_sz);
1643         else
1644                 *msg_ready = *msg_sz;
1645
1646         return 0;
1647 }
1648
1649 static ssize_t
1650 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1651                               u8 msg_id, bool paired)
1652 {
1653         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1654         bool msg_ready = false;
1655         int timeout, ret;
1656         ssize_t msg_sz = 0;
1657
1658         timeout = get_hdcp2_msg_timeout(msg_id, paired);
1659         if (timeout < 0)
1660                 return timeout;
1661
1662         ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1663                                                              msg_id, &msg_ready,
1664                                                              &msg_sz),
1665                          !ret && msg_ready && msg_sz, timeout * 1000,
1666                          1000, 5 * 1000);
1667         if (ret)
1668                 drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n",
1669                             msg_id, ret, timeout);
1670
1671         return ret ? ret : msg_sz;
1672 }
1673
1674 static
1675 int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *dig_port,
1676                                void *buf, size_t size)
1677 {
1678         unsigned int offset;
1679
1680         offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1681         return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1682 }
1683
1684 static
1685 int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *dig_port,
1686                               u8 msg_id, void *buf, size_t size)
1687 {
1688         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1689         struct intel_hdmi *hdmi = &dig_port->hdmi;
1690         struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1691         unsigned int offset;
1692         ssize_t ret;
1693
1694         ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1695                                             hdcp->is_paired);
1696         if (ret < 0)
1697                 return ret;
1698
1699         /*
1700          * Available msg size should be equal to or lesser than the
1701          * available buffer.
1702          */
1703         if (ret > size) {
1704                 drm_dbg_kms(&i915->drm,
1705                             "msg_sz(%zd) is more than exp size(%zu)\n",
1706                             ret, size);
1707                 return -1;
1708         }
1709
1710         offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1711         ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1712         if (ret)
1713                 drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n",
1714                             msg_id, ret);
1715
1716         return ret;
1717 }
1718
1719 static
1720 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1721                                 struct intel_connector *connector)
1722 {
1723         u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1724         int ret;
1725
1726         ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1727         if (ret)
1728                 return ret;
1729
1730         /*
1731          * Re-auth request and Link Integrity Failures are represented by
1732          * same bit. i.e reauth_req.
1733          */
1734         if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1735                 ret = HDCP_REAUTH_REQUEST;
1736         else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1737                 ret = HDCP_TOPOLOGY_CHANGE;
1738
1739         return ret;
1740 }
1741
1742 static
1743 int intel_hdmi_hdcp2_capable(struct intel_digital_port *dig_port,
1744                              bool *capable)
1745 {
1746         u8 hdcp2_version;
1747         int ret;
1748
1749         *capable = false;
1750         ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1751                                    &hdcp2_version, sizeof(hdcp2_version));
1752         if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1753                 *capable = true;
1754
1755         return ret;
1756 }
1757
1758 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1759         .write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1760         .read_bksv = intel_hdmi_hdcp_read_bksv,
1761         .read_bstatus = intel_hdmi_hdcp_read_bstatus,
1762         .repeater_present = intel_hdmi_hdcp_repeater_present,
1763         .read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1764         .read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1765         .read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1766         .read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1767         .toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1768         .check_link = intel_hdmi_hdcp_check_link,
1769         .write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1770         .read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1771         .check_2_2_link = intel_hdmi_hdcp2_check_link,
1772         .hdcp_2_2_capable = intel_hdmi_hdcp2_capable,
1773         .protocol = HDCP_PROTOCOL_HDMI,
1774 };
1775
1776 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1777 {
1778         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1779         int max_tmds_clock, vbt_max_tmds_clock;
1780
1781         if (DISPLAY_VER(dev_priv) >= 10)
1782                 max_tmds_clock = 594000;
1783         else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv))
1784                 max_tmds_clock = 300000;
1785         else if (DISPLAY_VER(dev_priv) >= 5)
1786                 max_tmds_clock = 225000;
1787         else
1788                 max_tmds_clock = 165000;
1789
1790         vbt_max_tmds_clock = intel_bios_max_tmds_clock(encoder);
1791         if (vbt_max_tmds_clock)
1792                 max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1793
1794         return max_tmds_clock;
1795 }
1796
1797 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1798                                 const struct drm_connector_state *conn_state)
1799 {
1800         return hdmi->has_hdmi_sink &&
1801                 READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1802 }
1803
1804 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1805                                  bool respect_downstream_limits,
1806                                  bool has_hdmi_sink)
1807 {
1808         struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1809         int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1810
1811         if (respect_downstream_limits) {
1812                 struct intel_connector *connector = hdmi->attached_connector;
1813                 const struct drm_display_info *info = &connector->base.display_info;
1814
1815                 if (hdmi->dp_dual_mode.max_tmds_clock)
1816                         max_tmds_clock = min(max_tmds_clock,
1817                                              hdmi->dp_dual_mode.max_tmds_clock);
1818
1819                 if (info->max_tmds_clock)
1820                         max_tmds_clock = min(max_tmds_clock,
1821                                              info->max_tmds_clock);
1822                 else if (!has_hdmi_sink)
1823                         max_tmds_clock = min(max_tmds_clock, 165000);
1824         }
1825
1826         return max_tmds_clock;
1827 }
1828
1829 static enum drm_mode_status
1830 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1831                       int clock, bool respect_downstream_limits,
1832                       bool has_hdmi_sink)
1833 {
1834         struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi));
1835
1836         if (clock < 25000)
1837                 return MODE_CLOCK_LOW;
1838         if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1839                                           has_hdmi_sink))
1840                 return MODE_CLOCK_HIGH;
1841
1842         /* GLK DPLL can't generate 446-480 MHz */
1843         if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1844                 return MODE_CLOCK_RANGE;
1845
1846         /* BXT/GLK DPLL can't generate 223-240 MHz */
1847         if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1848             clock > 223333 && clock < 240000)
1849                 return MODE_CLOCK_RANGE;
1850
1851         /* CHV DPLL can't generate 216-240 MHz */
1852         if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1853                 return MODE_CLOCK_RANGE;
1854
1855         return MODE_OK;
1856 }
1857
1858 static int intel_hdmi_port_clock(int clock, int bpc)
1859 {
1860         /*
1861          * Need to adjust the port link by:
1862          *  1.5x for 12bpc
1863          *  1.25x for 10bpc
1864          */
1865         return clock * bpc / 8;
1866 }
1867
1868 static enum drm_mode_status
1869 intel_hdmi_mode_clock_valid(struct intel_hdmi *hdmi, int clock, bool has_hdmi_sink)
1870 {
1871         struct drm_device *dev = intel_hdmi_to_dev(hdmi);
1872         struct drm_i915_private *dev_priv = to_i915(dev);
1873         enum drm_mode_status status;
1874
1875         /* check if we can do 8bpc */
1876         status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 8),
1877                                        true, has_hdmi_sink);
1878
1879         if (has_hdmi_sink) {
1880                 /* if we can't do 8bpc we may still be able to do 12bpc */
1881                 if (status != MODE_OK && !HAS_GMCH(dev_priv))
1882                         status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 12),
1883                                                        true, has_hdmi_sink);
1884
1885                 /* if we can't do 8,12bpc we may still be able to do 10bpc */
1886                 if (status != MODE_OK && DISPLAY_VER(dev_priv) >= 11)
1887                         status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 10),
1888                                                        true, has_hdmi_sink);
1889         }
1890
1891         return status;
1892 }
1893
1894 static enum drm_mode_status
1895 intel_hdmi_mode_valid(struct drm_connector *connector,
1896                       struct drm_display_mode *mode)
1897 {
1898         struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1899         struct drm_device *dev = intel_hdmi_to_dev(hdmi);
1900         struct drm_i915_private *dev_priv = to_i915(dev);
1901         enum drm_mode_status status;
1902         int clock = mode->clock;
1903         int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
1904         bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
1905         bool ycbcr_420_only;
1906
1907         if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
1908                 return MODE_NO_DBLESCAN;
1909
1910         if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
1911                 clock *= 2;
1912
1913         if (clock > max_dotclk)
1914                 return MODE_CLOCK_HIGH;
1915
1916         if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
1917                 if (!has_hdmi_sink)
1918                         return MODE_CLOCK_LOW;
1919                 clock *= 2;
1920         }
1921
1922         ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
1923         if (ycbcr_420_only)
1924                 clock /= 2;
1925
1926         status = intel_hdmi_mode_clock_valid(hdmi, clock, has_hdmi_sink);
1927         if (status != MODE_OK) {
1928                 if (ycbcr_420_only ||
1929                     !connector->ycbcr_420_allowed ||
1930                     !drm_mode_is_420_also(&connector->display_info, mode))
1931                         return status;
1932
1933                 clock /= 2;
1934                 status = intel_hdmi_mode_clock_valid(hdmi, clock, has_hdmi_sink);
1935                 if (status != MODE_OK)
1936                         return status;
1937         }
1938
1939         return intel_mode_valid_max_plane_size(dev_priv, mode, false);
1940 }
1941
1942 bool intel_hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
1943                                     int bpc, bool has_hdmi_sink, bool ycbcr420_output)
1944 {
1945         struct drm_atomic_state *state = crtc_state->uapi.state;
1946         struct drm_connector_state *connector_state;
1947         struct drm_connector *connector;
1948         int i;
1949
1950         if (crtc_state->pipe_bpp < bpc * 3)
1951                 return false;
1952
1953         if (!has_hdmi_sink)
1954                 return false;
1955
1956         for_each_new_connector_in_state(state, connector, connector_state, i) {
1957                 const struct drm_display_info *info = &connector->display_info;
1958
1959                 if (connector_state->crtc != crtc_state->uapi.crtc)
1960                         continue;
1961
1962                 if (ycbcr420_output) {
1963                         const struct drm_hdmi_info *hdmi = &info->hdmi;
1964
1965                         if (bpc == 12 && !(hdmi->y420_dc_modes &
1966                                            DRM_EDID_YCBCR420_DC_36))
1967                                 return false;
1968                         else if (bpc == 10 && !(hdmi->y420_dc_modes &
1969                                                 DRM_EDID_YCBCR420_DC_30))
1970                                 return false;
1971                 } else {
1972                         if (bpc == 12 && !(info->edid_hdmi_dc_modes &
1973                                            DRM_EDID_HDMI_DC_36))
1974                                 return false;
1975                         else if (bpc == 10 && !(info->edid_hdmi_dc_modes &
1976                                                 DRM_EDID_HDMI_DC_30))
1977                                 return false;
1978                 }
1979         }
1980
1981         return true;
1982 }
1983
1984 static bool hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
1985                                      int bpc)
1986 {
1987         struct drm_i915_private *dev_priv =
1988                 to_i915(crtc_state->uapi.crtc->dev);
1989         const struct drm_display_mode *adjusted_mode =
1990                 &crtc_state->hw.adjusted_mode;
1991
1992         if (HAS_GMCH(dev_priv))
1993                 return false;
1994
1995         if (bpc == 10 && DISPLAY_VER(dev_priv) < 11)
1996                 return false;
1997
1998         /*
1999          * HDMI deep color affects the clocks, so it's only possible
2000          * when not cloning with other encoder types.
2001          */
2002         if (crtc_state->output_types != BIT(INTEL_OUTPUT_HDMI))
2003                 return false;
2004
2005         /* Display Wa_1405510057:icl,ehl */
2006         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 &&
2007             bpc == 10 && DISPLAY_VER(dev_priv) == 11 &&
2008             (adjusted_mode->crtc_hblank_end -
2009              adjusted_mode->crtc_hblank_start) % 8 == 2)
2010                 return false;
2011
2012         return intel_hdmi_deep_color_possible(crtc_state, bpc,
2013                                               crtc_state->has_hdmi_sink,
2014                                               crtc_state->output_format ==
2015                                               INTEL_OUTPUT_FORMAT_YCBCR420);
2016 }
2017
2018 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2019                                   struct intel_crtc_state *crtc_state,
2020                                   int clock)
2021 {
2022         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2023         int bpc;
2024
2025         for (bpc = 12; bpc >= 10; bpc -= 2) {
2026                 if (hdmi_deep_color_possible(crtc_state, bpc) &&
2027                     hdmi_port_clock_valid(intel_hdmi,
2028                                           intel_hdmi_port_clock(clock, bpc),
2029                                           true, crtc_state->has_hdmi_sink) == MODE_OK)
2030                         return bpc;
2031         }
2032
2033         return 8;
2034 }
2035
2036 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2037                                     struct intel_crtc_state *crtc_state)
2038 {
2039         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2040         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2041         const struct drm_display_mode *adjusted_mode =
2042                 &crtc_state->hw.adjusted_mode;
2043         int bpc, clock = adjusted_mode->crtc_clock;
2044
2045         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2046                 clock *= 2;
2047
2048         /* YCBCR420 TMDS rate requirement is half the pixel clock */
2049         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2050                 clock /= 2;
2051
2052         bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock);
2053
2054         crtc_state->port_clock = intel_hdmi_port_clock(clock, bpc);
2055
2056         /*
2057          * pipe_bpp could already be below 8bpc due to
2058          * FDI bandwidth constraints. We shouldn't bump it
2059          * back up to 8bpc in that case.
2060          */
2061         if (crtc_state->pipe_bpp > bpc * 3)
2062                 crtc_state->pipe_bpp = bpc * 3;
2063
2064         drm_dbg_kms(&i915->drm,
2065                     "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2066                     bpc, crtc_state->pipe_bpp);
2067
2068         if (hdmi_port_clock_valid(intel_hdmi, crtc_state->port_clock,
2069                                   false, crtc_state->has_hdmi_sink) != MODE_OK) {
2070                 drm_dbg_kms(&i915->drm,
2071                             "unsupported HDMI clock (%d kHz), rejecting mode\n",
2072                             crtc_state->port_clock);
2073                 return -EINVAL;
2074         }
2075
2076         return 0;
2077 }
2078
2079 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2080                                     const struct drm_connector_state *conn_state)
2081 {
2082         const struct intel_digital_connector_state *intel_conn_state =
2083                 to_intel_digital_connector_state(conn_state);
2084         const struct drm_display_mode *adjusted_mode =
2085                 &crtc_state->hw.adjusted_mode;
2086
2087         /*
2088          * Our YCbCr output is always limited range.
2089          * crtc_state->limited_color_range only applies to RGB,
2090          * and it must never be set for YCbCr or we risk setting
2091          * some conflicting bits in PIPECONF which will mess up
2092          * the colors on the monitor.
2093          */
2094         if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2095                 return false;
2096
2097         if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2098                 /* See CEA-861-E - 5.1 Default Encoding Parameters */
2099                 return crtc_state->has_hdmi_sink &&
2100                         drm_default_rgb_quant_range(adjusted_mode) ==
2101                         HDMI_QUANTIZATION_RANGE_LIMITED;
2102         } else {
2103                 return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2104         }
2105 }
2106
2107 static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2108                                  const struct intel_crtc_state *crtc_state,
2109                                  const struct drm_connector_state *conn_state)
2110 {
2111         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2112         const struct intel_digital_connector_state *intel_conn_state =
2113                 to_intel_digital_connector_state(conn_state);
2114
2115         if (!crtc_state->has_hdmi_sink)
2116                 return false;
2117
2118         if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2119                 return intel_hdmi->has_audio;
2120         else
2121                 return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2122 }
2123
2124 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2125                                             struct intel_crtc_state *crtc_state,
2126                                             const struct drm_connector_state *conn_state)
2127 {
2128         struct drm_connector *connector = conn_state->connector;
2129         struct drm_i915_private *i915 = to_i915(connector->dev);
2130         const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2131         int ret;
2132         bool ycbcr_420_only;
2133
2134         ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, adjusted_mode);
2135         if (connector->ycbcr_420_allowed && ycbcr_420_only) {
2136                 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2137         } else {
2138                 if (!connector->ycbcr_420_allowed && ycbcr_420_only)
2139                         drm_dbg_kms(&i915->drm,
2140                                     "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2141                 crtc_state->output_format = INTEL_OUTPUT_FORMAT_RGB;
2142         }
2143
2144         ret = intel_hdmi_compute_clock(encoder, crtc_state);
2145         if (ret) {
2146                 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_YCBCR420 &&
2147                     connector->ycbcr_420_allowed &&
2148                     drm_mode_is_420_also(&connector->display_info, adjusted_mode)) {
2149                         crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2150                         ret = intel_hdmi_compute_clock(encoder, crtc_state);
2151                 }
2152         }
2153
2154         return ret;
2155 }
2156
2157 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2158                               struct intel_crtc_state *pipe_config,
2159                               struct drm_connector_state *conn_state)
2160 {
2161         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2162         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2163         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2164         struct drm_connector *connector = conn_state->connector;
2165         struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2166         int ret;
2167
2168         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2169                 return -EINVAL;
2170
2171         pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2172         pipe_config->has_hdmi_sink = intel_has_hdmi_sink(intel_hdmi,
2173                                                          conn_state);
2174
2175         if (pipe_config->has_hdmi_sink)
2176                 pipe_config->has_infoframe = true;
2177
2178         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2179                 pipe_config->pixel_multiplier = 2;
2180
2181         if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv))
2182                 pipe_config->has_pch_encoder = true;
2183
2184         pipe_config->has_audio =
2185                 intel_hdmi_has_audio(encoder, pipe_config, conn_state);
2186
2187         ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state);
2188         if (ret)
2189                 return ret;
2190
2191         if (pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
2192                 ret = intel_pch_panel_fitting(pipe_config, conn_state);
2193                 if (ret)
2194                         return ret;
2195         }
2196
2197         pipe_config->limited_color_range =
2198                 intel_hdmi_limited_color_range(pipe_config, conn_state);
2199
2200         if (conn_state->picture_aspect_ratio)
2201                 adjusted_mode->picture_aspect_ratio =
2202                         conn_state->picture_aspect_ratio;
2203
2204         pipe_config->lane_count = 4;
2205
2206         if (scdc->scrambling.supported && DISPLAY_VER(dev_priv) >= 10) {
2207                 if (scdc->scrambling.low_rates)
2208                         pipe_config->hdmi_scrambling = true;
2209
2210                 if (pipe_config->port_clock > 340000) {
2211                         pipe_config->hdmi_scrambling = true;
2212                         pipe_config->hdmi_high_tmds_clock_ratio = true;
2213                 }
2214         }
2215
2216         intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2217                                          conn_state);
2218
2219         if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2220                 drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n");
2221                 return -EINVAL;
2222         }
2223
2224         if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2225                 drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n");
2226                 return -EINVAL;
2227         }
2228
2229         if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2230                 drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n");
2231                 return -EINVAL;
2232         }
2233
2234         if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2235                 drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n");
2236                 return -EINVAL;
2237         }
2238
2239         return 0;
2240 }
2241
2242 static void
2243 intel_hdmi_unset_edid(struct drm_connector *connector)
2244 {
2245         struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2246
2247         intel_hdmi->has_hdmi_sink = false;
2248         intel_hdmi->has_audio = false;
2249
2250         intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2251         intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2252
2253         kfree(to_intel_connector(connector)->detect_edid);
2254         to_intel_connector(connector)->detect_edid = NULL;
2255 }
2256
2257 static void
2258 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector, bool has_edid)
2259 {
2260         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2261         struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2262         enum port port = hdmi_to_dig_port(hdmi)->base.port;
2263         struct i2c_adapter *adapter =
2264                 intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
2265         enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(&dev_priv->drm, adapter);
2266
2267         /*
2268          * Type 1 DVI adaptors are not required to implement any
2269          * registers, so we can't always detect their presence.
2270          * Ideally we should be able to check the state of the
2271          * CONFIG1 pin, but no such luck on our hardware.
2272          *
2273          * The only method left to us is to check the VBT to see
2274          * if the port is a dual mode capable DP port. But let's
2275          * only do that when we sucesfully read the EDID, to avoid
2276          * confusing log messages about DP dual mode adaptors when
2277          * there's nothing connected to the port.
2278          */
2279         if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2280                 /* An overridden EDID imply that we want this port for testing.
2281                  * Make sure not to set limits for that port.
2282                  */
2283                 if (has_edid && !connector->override_edid &&
2284                     intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
2285                         drm_dbg_kms(&dev_priv->drm,
2286                                     "Assuming DP dual mode adaptor presence based on VBT\n");
2287                         type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2288                 } else {
2289                         type = DRM_DP_DUAL_MODE_NONE;
2290                 }
2291         }
2292
2293         if (type == DRM_DP_DUAL_MODE_NONE)
2294                 return;
2295
2296         hdmi->dp_dual_mode.type = type;
2297         hdmi->dp_dual_mode.max_tmds_clock =
2298                 drm_dp_dual_mode_max_tmds_clock(&dev_priv->drm, type, adapter);
2299
2300         drm_dbg_kms(&dev_priv->drm,
2301                     "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2302                     drm_dp_get_dual_mode_type_name(type),
2303                     hdmi->dp_dual_mode.max_tmds_clock);
2304 }
2305
2306 static bool
2307 intel_hdmi_set_edid(struct drm_connector *connector)
2308 {
2309         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2310         struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2311         intel_wakeref_t wakeref;
2312         struct edid *edid;
2313         bool connected = false;
2314         struct i2c_adapter *i2c;
2315
2316         wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2317
2318         i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2319
2320         edid = drm_get_edid(connector, i2c);
2321
2322         if (!edid && !intel_gmbus_is_forced_bit(i2c)) {
2323                 drm_dbg_kms(&dev_priv->drm,
2324                             "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2325                 intel_gmbus_force_bit(i2c, true);
2326                 edid = drm_get_edid(connector, i2c);
2327                 intel_gmbus_force_bit(i2c, false);
2328         }
2329
2330         intel_hdmi_dp_dual_mode_detect(connector, edid != NULL);
2331
2332         intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2333
2334         to_intel_connector(connector)->detect_edid = edid;
2335         if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
2336                 intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
2337                 intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
2338
2339                 connected = true;
2340         }
2341
2342         cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid);
2343
2344         return connected;
2345 }
2346
2347 static enum drm_connector_status
2348 intel_hdmi_detect(struct drm_connector *connector, bool force)
2349 {
2350         enum drm_connector_status status = connector_status_disconnected;
2351         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2352         struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2353         struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2354         intel_wakeref_t wakeref;
2355
2356         drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
2357                     connector->base.id, connector->name);
2358
2359         if (!INTEL_DISPLAY_ENABLED(dev_priv))
2360                 return connector_status_disconnected;
2361
2362         wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2363
2364         if (DISPLAY_VER(dev_priv) >= 11 &&
2365             !intel_digital_port_connected(encoder))
2366                 goto out;
2367
2368         intel_hdmi_unset_edid(connector);
2369
2370         if (intel_hdmi_set_edid(connector))
2371                 status = connector_status_connected;
2372
2373 out:
2374         intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2375
2376         if (status != connector_status_connected)
2377                 cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2378
2379         /*
2380          * Make sure the refs for power wells enabled during detect are
2381          * dropped to avoid a new detect cycle triggered by HPD polling.
2382          */
2383         intel_display_power_flush_work(dev_priv);
2384
2385         return status;
2386 }
2387
2388 static void
2389 intel_hdmi_force(struct drm_connector *connector)
2390 {
2391         struct drm_i915_private *i915 = to_i915(connector->dev);
2392
2393         drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
2394                     connector->base.id, connector->name);
2395
2396         intel_hdmi_unset_edid(connector);
2397
2398         if (connector->status != connector_status_connected)
2399                 return;
2400
2401         intel_hdmi_set_edid(connector);
2402 }
2403
2404 static int intel_hdmi_get_modes(struct drm_connector *connector)
2405 {
2406         struct edid *edid;
2407
2408         edid = to_intel_connector(connector)->detect_edid;
2409         if (edid == NULL)
2410                 return 0;
2411
2412         return intel_connector_update_modes(connector, edid);
2413 }
2414
2415 static struct i2c_adapter *
2416 intel_hdmi_get_i2c_adapter(struct drm_connector *connector)
2417 {
2418         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2419         struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2420
2421         return intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2422 }
2423
2424 static void intel_hdmi_create_i2c_symlink(struct drm_connector *connector)
2425 {
2426         struct drm_i915_private *i915 = to_i915(connector->dev);
2427         struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2428         struct kobject *i2c_kobj = &adapter->dev.kobj;
2429         struct kobject *connector_kobj = &connector->kdev->kobj;
2430         int ret;
2431
2432         ret = sysfs_create_link(connector_kobj, i2c_kobj, i2c_kobj->name);
2433         if (ret)
2434                 drm_err(&i915->drm, "Failed to create i2c symlink (%d)\n", ret);
2435 }
2436
2437 static void intel_hdmi_remove_i2c_symlink(struct drm_connector *connector)
2438 {
2439         struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2440         struct kobject *i2c_kobj = &adapter->dev.kobj;
2441         struct kobject *connector_kobj = &connector->kdev->kobj;
2442
2443         sysfs_remove_link(connector_kobj, i2c_kobj->name);
2444 }
2445
2446 static int
2447 intel_hdmi_connector_register(struct drm_connector *connector)
2448 {
2449         int ret;
2450
2451         ret = intel_connector_register(connector);
2452         if (ret)
2453                 return ret;
2454
2455         intel_hdmi_create_i2c_symlink(connector);
2456
2457         return ret;
2458 }
2459
2460 static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2461 {
2462         struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2463
2464         cec_notifier_conn_unregister(n);
2465
2466         intel_hdmi_remove_i2c_symlink(connector);
2467         intel_connector_unregister(connector);
2468 }
2469
2470 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2471         .detect = intel_hdmi_detect,
2472         .force = intel_hdmi_force,
2473         .fill_modes = drm_helper_probe_single_connector_modes,
2474         .atomic_get_property = intel_digital_connector_atomic_get_property,
2475         .atomic_set_property = intel_digital_connector_atomic_set_property,
2476         .late_register = intel_hdmi_connector_register,
2477         .early_unregister = intel_hdmi_connector_unregister,
2478         .destroy = intel_connector_destroy,
2479         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2480         .atomic_duplicate_state = intel_digital_connector_duplicate_state,
2481 };
2482
2483 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2484         .get_modes = intel_hdmi_get_modes,
2485         .mode_valid = intel_hdmi_mode_valid,
2486         .atomic_check = intel_digital_connector_atomic_check,
2487 };
2488
2489 static void
2490 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2491 {
2492         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2493
2494         intel_attach_force_audio_property(connector);
2495         intel_attach_broadcast_rgb_property(connector);
2496         intel_attach_aspect_ratio_property(connector);
2497
2498         intel_attach_hdmi_colorspace_property(connector);
2499         drm_connector_attach_content_type_property(connector);
2500
2501         if (DISPLAY_VER(dev_priv) >= 10)
2502                 drm_connector_attach_hdr_output_metadata_property(connector);
2503
2504         if (!HAS_GMCH(dev_priv))
2505                 drm_connector_attach_max_bpc_property(connector, 8, 12);
2506 }
2507
2508 /*
2509  * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2510  * @encoder: intel_encoder
2511  * @connector: drm_connector
2512  * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2513  *  or reset the high tmds clock ratio for scrambling
2514  * @scrambling: bool to Indicate if the function needs to set or reset
2515  *  sink scrambling
2516  *
2517  * This function handles scrambling on HDMI 2.0 capable sinks.
2518  * If required clock rate is > 340 Mhz && scrambling is supported by sink
2519  * it enables scrambling. This should be called before enabling the HDMI
2520  * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2521  * detect a scrambled clock within 100 ms.
2522  *
2523  * Returns:
2524  * True on success, false on failure.
2525  */
2526 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2527                                        struct drm_connector *connector,
2528                                        bool high_tmds_clock_ratio,
2529                                        bool scrambling)
2530 {
2531         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2532         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2533         struct drm_scrambling *sink_scrambling =
2534                 &connector->display_info.hdmi.scdc.scrambling;
2535         struct i2c_adapter *adapter =
2536                 intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2537
2538         if (!sink_scrambling->supported)
2539                 return true;
2540
2541         drm_dbg_kms(&dev_priv->drm,
2542                     "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2543                     connector->base.id, connector->name,
2544                     yesno(scrambling), high_tmds_clock_ratio ? 40 : 10);
2545
2546         /* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2547         return drm_scdc_set_high_tmds_clock_ratio(adapter,
2548                                                   high_tmds_clock_ratio) &&
2549                 drm_scdc_set_scrambling(adapter, scrambling);
2550 }
2551
2552 static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2553 {
2554         u8 ddc_pin;
2555
2556         switch (port) {
2557         case PORT_B:
2558                 ddc_pin = GMBUS_PIN_DPB;
2559                 break;
2560         case PORT_C:
2561                 ddc_pin = GMBUS_PIN_DPC;
2562                 break;
2563         case PORT_D:
2564                 ddc_pin = GMBUS_PIN_DPD_CHV;
2565                 break;
2566         default:
2567                 MISSING_CASE(port);
2568                 ddc_pin = GMBUS_PIN_DPB;
2569                 break;
2570         }
2571         return ddc_pin;
2572 }
2573
2574 static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2575 {
2576         u8 ddc_pin;
2577
2578         switch (port) {
2579         case PORT_B:
2580                 ddc_pin = GMBUS_PIN_1_BXT;
2581                 break;
2582         case PORT_C:
2583                 ddc_pin = GMBUS_PIN_2_BXT;
2584                 break;
2585         default:
2586                 MISSING_CASE(port);
2587                 ddc_pin = GMBUS_PIN_1_BXT;
2588                 break;
2589         }
2590         return ddc_pin;
2591 }
2592
2593 static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2594                               enum port port)
2595 {
2596         u8 ddc_pin;
2597
2598         switch (port) {
2599         case PORT_B:
2600                 ddc_pin = GMBUS_PIN_1_BXT;
2601                 break;
2602         case PORT_C:
2603                 ddc_pin = GMBUS_PIN_2_BXT;
2604                 break;
2605         case PORT_D:
2606                 ddc_pin = GMBUS_PIN_4_CNP;
2607                 break;
2608         case PORT_F:
2609                 ddc_pin = GMBUS_PIN_3_BXT;
2610                 break;
2611         default:
2612                 MISSING_CASE(port);
2613                 ddc_pin = GMBUS_PIN_1_BXT;
2614                 break;
2615         }
2616         return ddc_pin;
2617 }
2618
2619 static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2620 {
2621         enum phy phy = intel_port_to_phy(dev_priv, port);
2622
2623         if (intel_phy_is_combo(dev_priv, phy))
2624                 return GMBUS_PIN_1_BXT + port;
2625         else if (intel_phy_is_tc(dev_priv, phy))
2626                 return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port);
2627
2628         drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port));
2629         return GMBUS_PIN_2_BXT;
2630 }
2631
2632 static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2633 {
2634         enum phy phy = intel_port_to_phy(dev_priv, port);
2635         u8 ddc_pin;
2636
2637         switch (phy) {
2638         case PHY_A:
2639                 ddc_pin = GMBUS_PIN_1_BXT;
2640                 break;
2641         case PHY_B:
2642                 ddc_pin = GMBUS_PIN_2_BXT;
2643                 break;
2644         case PHY_C:
2645                 ddc_pin = GMBUS_PIN_9_TC1_ICP;
2646                 break;
2647         default:
2648                 MISSING_CASE(phy);
2649                 ddc_pin = GMBUS_PIN_1_BXT;
2650                 break;
2651         }
2652         return ddc_pin;
2653 }
2654
2655 static u8 rkl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2656 {
2657         enum phy phy = intel_port_to_phy(dev_priv, port);
2658
2659         WARN_ON(port == PORT_C);
2660
2661         /*
2662          * Pin mapping for RKL depends on which PCH is present.  With TGP, the
2663          * final two outputs use type-c pins, even though they're actually
2664          * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2665          * all outputs.
2666          */
2667         if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2668                 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2669
2670         return GMBUS_PIN_1_BXT + phy;
2671 }
2672
2673 static u8 gen9bc_tgp_port_to_ddc_pin(struct drm_i915_private *i915, enum port port)
2674 {
2675         enum phy phy = intel_port_to_phy(i915, port);
2676
2677         drm_WARN_ON(&i915->drm, port == PORT_A);
2678
2679         /*
2680          * Pin mapping for GEN9 BC depends on which PCH is present.  With TGP,
2681          * final two outputs use type-c pins, even though they're actually
2682          * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2683          * all outputs.
2684          */
2685         if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2686                 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2687
2688         return GMBUS_PIN_1_BXT + phy;
2689 }
2690
2691 static u8 dg1_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2692 {
2693         return intel_port_to_phy(dev_priv, port) + 1;
2694 }
2695
2696 static u8 adls_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2697 {
2698         enum phy phy = intel_port_to_phy(dev_priv, port);
2699
2700         WARN_ON(port == PORT_B || port == PORT_C);
2701
2702         /*
2703          * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2704          * except first combo output.
2705          */
2706         if (phy == PHY_A)
2707                 return GMBUS_PIN_1_BXT;
2708
2709         return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2710 }
2711
2712 static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2713                               enum port port)
2714 {
2715         u8 ddc_pin;
2716
2717         switch (port) {
2718         case PORT_B:
2719                 ddc_pin = GMBUS_PIN_DPB;
2720                 break;
2721         case PORT_C:
2722                 ddc_pin = GMBUS_PIN_DPC;
2723                 break;
2724         case PORT_D:
2725                 ddc_pin = GMBUS_PIN_DPD;
2726                 break;
2727         default:
2728                 MISSING_CASE(port);
2729                 ddc_pin = GMBUS_PIN_DPB;
2730                 break;
2731         }
2732         return ddc_pin;
2733 }
2734
2735 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2736 {
2737         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2738         enum port port = encoder->port;
2739         u8 ddc_pin;
2740
2741         ddc_pin = intel_bios_alternate_ddc_pin(encoder);
2742         if (ddc_pin) {
2743                 drm_dbg_kms(&dev_priv->drm,
2744                             "Using DDC pin 0x%x for port %c (VBT)\n",
2745                             ddc_pin, port_name(port));
2746                 return ddc_pin;
2747         }
2748
2749         if (IS_ALDERLAKE_S(dev_priv))
2750                 ddc_pin = adls_port_to_ddc_pin(dev_priv, port);
2751         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2752                 ddc_pin = dg1_port_to_ddc_pin(dev_priv, port);
2753         else if (IS_ROCKETLAKE(dev_priv))
2754                 ddc_pin = rkl_port_to_ddc_pin(dev_priv, port);
2755         else if (DISPLAY_VER(dev_priv) == 9 && HAS_PCH_TGP(dev_priv))
2756                 ddc_pin = gen9bc_tgp_port_to_ddc_pin(dev_priv, port);
2757         else if (HAS_PCH_MCC(dev_priv))
2758                 ddc_pin = mcc_port_to_ddc_pin(dev_priv, port);
2759         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2760                 ddc_pin = icl_port_to_ddc_pin(dev_priv, port);
2761         else if (HAS_PCH_CNP(dev_priv))
2762                 ddc_pin = cnp_port_to_ddc_pin(dev_priv, port);
2763         else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2764                 ddc_pin = bxt_port_to_ddc_pin(dev_priv, port);
2765         else if (IS_CHERRYVIEW(dev_priv))
2766                 ddc_pin = chv_port_to_ddc_pin(dev_priv, port);
2767         else
2768                 ddc_pin = g4x_port_to_ddc_pin(dev_priv, port);
2769
2770         drm_dbg_kms(&dev_priv->drm,
2771                     "Using DDC pin 0x%x for port %c (platform default)\n",
2772                     ddc_pin, port_name(port));
2773
2774         return ddc_pin;
2775 }
2776
2777 void intel_infoframe_init(struct intel_digital_port *dig_port)
2778 {
2779         struct drm_i915_private *dev_priv =
2780                 to_i915(dig_port->base.base.dev);
2781
2782         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2783                 dig_port->write_infoframe = vlv_write_infoframe;
2784                 dig_port->read_infoframe = vlv_read_infoframe;
2785                 dig_port->set_infoframes = vlv_set_infoframes;
2786                 dig_port->infoframes_enabled = vlv_infoframes_enabled;
2787         } else if (IS_G4X(dev_priv)) {
2788                 dig_port->write_infoframe = g4x_write_infoframe;
2789                 dig_port->read_infoframe = g4x_read_infoframe;
2790                 dig_port->set_infoframes = g4x_set_infoframes;
2791                 dig_port->infoframes_enabled = g4x_infoframes_enabled;
2792         } else if (HAS_DDI(dev_priv)) {
2793                 if (intel_bios_is_lspcon_present(dev_priv, dig_port->base.port)) {
2794                         dig_port->write_infoframe = lspcon_write_infoframe;
2795                         dig_port->read_infoframe = lspcon_read_infoframe;
2796                         dig_port->set_infoframes = lspcon_set_infoframes;
2797                         dig_port->infoframes_enabled = lspcon_infoframes_enabled;
2798                 } else {
2799                         dig_port->write_infoframe = hsw_write_infoframe;
2800                         dig_port->read_infoframe = hsw_read_infoframe;
2801                         dig_port->set_infoframes = hsw_set_infoframes;
2802                         dig_port->infoframes_enabled = hsw_infoframes_enabled;
2803                 }
2804         } else if (HAS_PCH_IBX(dev_priv)) {
2805                 dig_port->write_infoframe = ibx_write_infoframe;
2806                 dig_port->read_infoframe = ibx_read_infoframe;
2807                 dig_port->set_infoframes = ibx_set_infoframes;
2808                 dig_port->infoframes_enabled = ibx_infoframes_enabled;
2809         } else {
2810                 dig_port->write_infoframe = cpt_write_infoframe;
2811                 dig_port->read_infoframe = cpt_read_infoframe;
2812                 dig_port->set_infoframes = cpt_set_infoframes;
2813                 dig_port->infoframes_enabled = cpt_infoframes_enabled;
2814         }
2815 }
2816
2817 void intel_hdmi_init_connector(struct intel_digital_port *dig_port,
2818                                struct intel_connector *intel_connector)
2819 {
2820         struct drm_connector *connector = &intel_connector->base;
2821         struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
2822         struct intel_encoder *intel_encoder = &dig_port->base;
2823         struct drm_device *dev = intel_encoder->base.dev;
2824         struct drm_i915_private *dev_priv = to_i915(dev);
2825         struct i2c_adapter *ddc;
2826         enum port port = intel_encoder->port;
2827         struct cec_connector_info conn_info;
2828
2829         drm_dbg_kms(&dev_priv->drm,
2830                     "Adding HDMI connector on [ENCODER:%d:%s]\n",
2831                     intel_encoder->base.base.id, intel_encoder->base.name);
2832
2833         if (DISPLAY_VER(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A))
2834                 return;
2835
2836         if (drm_WARN(dev, dig_port->max_lanes < 4,
2837                      "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
2838                      dig_port->max_lanes, intel_encoder->base.base.id,
2839                      intel_encoder->base.name))
2840                 return;
2841
2842         intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(intel_encoder);
2843         ddc = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2844
2845         drm_connector_init_with_ddc(dev, connector,
2846                                     &intel_hdmi_connector_funcs,
2847                                     DRM_MODE_CONNECTOR_HDMIA,
2848                                     ddc);
2849         drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
2850
2851         connector->interlace_allowed = 1;
2852         connector->doublescan_allowed = 0;
2853         connector->stereo_allowed = 1;
2854
2855         if (DISPLAY_VER(dev_priv) >= 10)
2856                 connector->ycbcr_420_allowed = true;
2857
2858         intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
2859
2860         if (HAS_DDI(dev_priv))
2861                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2862         else
2863                 intel_connector->get_hw_state = intel_connector_get_hw_state;
2864
2865         intel_hdmi_add_properties(intel_hdmi, connector);
2866
2867         intel_connector_attach_encoder(intel_connector, intel_encoder);
2868         intel_hdmi->attached_connector = intel_connector;
2869
2870         if (is_hdcp_supported(dev_priv, port)) {
2871                 int ret = intel_hdcp_init(intel_connector, dig_port,
2872                                           &intel_hdmi_hdcp_shim);
2873                 if (ret)
2874                         drm_dbg_kms(&dev_priv->drm,
2875                                     "HDCP init failed, skipping.\n");
2876         }
2877
2878         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2879          * 0xd.  Failure to do so will result in spurious interrupts being
2880          * generated on the port when a cable is not attached.
2881          */
2882         if (IS_G45(dev_priv)) {
2883                 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
2884                 intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
2885                                (temp & ~0xf) | 0xd);
2886         }
2887
2888         cec_fill_conn_info_from_drm(&conn_info, connector);
2889
2890         intel_hdmi->cec_notifier =
2891                 cec_notifier_conn_register(dev->dev, port_identifier(port),
2892                                            &conn_info);
2893         if (!intel_hdmi->cec_notifier)
2894                 drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n");
2895 }
2896
2897 /*
2898  * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
2899  * @vactive: Vactive of a display mode
2900  *
2901  * @return: appropriate dsc slice height for a given mode.
2902  */
2903 int intel_hdmi_dsc_get_slice_height(int vactive)
2904 {
2905         int slice_height;
2906
2907         /*
2908          * Slice Height determination : HDMI2.1 Section 7.7.5.2
2909          * Select smallest slice height >=96, that results in a valid PPS and
2910          * requires minimum padding lines required for final slice.
2911          *
2912          * Assumption : Vactive is even.
2913          */
2914         for (slice_height = 96; slice_height <= vactive; slice_height += 2)
2915                 if (vactive % slice_height == 0)
2916                         return slice_height;
2917
2918         return 0;
2919 }
2920
2921 /*
2922  * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
2923  * and dsc decoder capabilities
2924  *
2925  * @crtc_state: intel crtc_state
2926  * @src_max_slices: maximum slices supported by the DSC encoder
2927  * @src_max_slice_width: maximum slice width supported by DSC encoder
2928  * @hdmi_max_slices: maximum slices supported by sink DSC decoder
2929  * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
2930  *
2931  * @return: num of dsc slices that can be supported by the dsc encoder
2932  * and decoder.
2933  */
2934 int
2935 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
2936                               int src_max_slices, int src_max_slice_width,
2937                               int hdmi_max_slices, int hdmi_throughput)
2938 {
2939 /* Pixel rates in KPixels/sec */
2940 #define HDMI_DSC_PEAK_PIXEL_RATE                2720000
2941 /*
2942  * Rates at which the source and sink are required to process pixels in each
2943  * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
2944  */
2945 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0           340000
2946 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1           400000
2947
2948 /* Spec limits the slice width to 2720 pixels */
2949 #define MAX_HDMI_SLICE_WIDTH                    2720
2950         int kslice_adjust;
2951         int adjusted_clk_khz;
2952         int min_slices;
2953         int target_slices;
2954         int max_throughput; /* max clock freq. in khz per slice */
2955         int max_slice_width;
2956         int slice_width;
2957         int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
2958
2959         if (!hdmi_throughput)
2960                 return 0;
2961
2962         /*
2963          * Slice Width determination : HDMI2.1 Section 7.7.5.1
2964          * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
2965          * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
2966          * dividing adjusted clock value by 10.
2967          */
2968         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
2969             crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2970                 kslice_adjust = 10;
2971         else
2972                 kslice_adjust = 5;
2973
2974         /*
2975          * As per spec, the rate at which the source and the sink process
2976          * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
2977          * This depends upon the pixel clock rate and output formats
2978          * (kslice adjust).
2979          * If pixel clock * kslice adjust >= 2720MHz slices can be processed
2980          * at max 340MHz, otherwise they can be processed at max 400MHz.
2981          */
2982
2983         adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
2984
2985         if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
2986                 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
2987         else
2988                 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
2989
2990         /*
2991          * Taking into account the sink's capability for maximum
2992          * clock per slice (in MHz) as read from HF-VSDB.
2993          */
2994         max_throughput = min(max_throughput, hdmi_throughput * 1000);
2995
2996         min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
2997         max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
2998
2999         /*
3000          * Keep on increasing the num of slices/line, starting from min_slices
3001          * per line till we get such a number, for which the slice_width is
3002          * just less than max_slice_width. The slices/line selected should be
3003          * less than or equal to the max horizontal slices that the combination
3004          * of PCON encoder and HDMI decoder can support.
3005          */
3006         slice_width = max_slice_width;
3007
3008         do {
3009                 if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3010                         target_slices = 1;
3011                 else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3012                         target_slices = 2;
3013                 else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3014                         target_slices = 4;
3015                 else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3016                         target_slices = 8;
3017                 else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3018                         target_slices = 12;
3019                 else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3020                         target_slices = 16;
3021                 else
3022                         return 0;
3023
3024                 slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3025                 if (slice_width >= max_slice_width)
3026                         min_slices = target_slices + 1;
3027         } while (slice_width >= max_slice_width);
3028
3029         return target_slices;
3030 }
3031
3032 /*
3033  * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3034  * source and sink capabilities.
3035  *
3036  * @src_fraction_bpp: fractional bpp supported by the source
3037  * @slice_width: dsc slice width supported by the source and sink
3038  * @num_slices: num of slices supported by the source and sink
3039  * @output_format: video output format
3040  * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3041  * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3042  *
3043  * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3044  */
3045 int
3046 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3047                        int output_format, bool hdmi_all_bpp,
3048                        int hdmi_max_chunk_bytes)
3049 {
3050         int max_dsc_bpp, min_dsc_bpp;
3051         int target_bytes;
3052         bool bpp_found = false;
3053         int bpp_decrement_x16;
3054         int bpp_target;
3055         int bpp_target_x16;
3056
3057         /*
3058          * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3059          * Start with the max bpp and keep on decrementing with
3060          * fractional bpp, if supported by PCON DSC encoder
3061          *
3062          * for each bpp we check if no of bytes can be supported by HDMI sink
3063          */
3064
3065         /* Assuming: bpc as 8*/
3066         if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3067                 min_dsc_bpp = 6;
3068                 max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3069         } else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3070                    output_format == INTEL_OUTPUT_FORMAT_RGB) {
3071                 min_dsc_bpp = 8;
3072                 max_dsc_bpp = 3 * 8; /* 3*bpc */
3073         } else {
3074                 /* Assuming 4:2:2 encoding */
3075                 min_dsc_bpp = 7;
3076                 max_dsc_bpp = 2 * 8; /* 2*bpc */
3077         }
3078
3079         /*
3080          * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3081          * Section 7.7.34 : Source shall not enable compressed Video
3082          * Transport with bpp_target settings above 12 bpp unless
3083          * DSC_all_bpp is set to 1.
3084          */
3085         if (!hdmi_all_bpp)
3086                 max_dsc_bpp = min(max_dsc_bpp, 12);
3087
3088         /*
3089          * The Sink has a limit of compressed data in bytes for a scanline,
3090          * as described in max_chunk_bytes field in HFVSDB block of edid.
3091          * The no. of bytes depend on the target bits per pixel that the
3092          * source configures. So we start with the max_bpp and calculate
3093          * the target_chunk_bytes. We keep on decrementing the target_bpp,
3094          * till we get the target_chunk_bytes just less than what the sink's
3095          * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3096          *
3097          * The decrement is according to the fractional support from PCON DSC
3098          * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3099          *
3100          * bpp_target_x16 = bpp_target * 16
3101          * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3102          * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3103          */
3104
3105         bpp_target = max_dsc_bpp;
3106
3107         /* src does not support fractional bpp implies decrement by 16 for bppx16 */
3108         if (!src_fractional_bpp)
3109                 src_fractional_bpp = 1;
3110         bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3111         bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3112
3113         while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3114                 int bpp;
3115
3116                 bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3117                 target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3118                 if (target_bytes <= hdmi_max_chunk_bytes) {
3119                         bpp_found = true;
3120                         break;
3121                 }
3122                 bpp_target_x16 -= bpp_decrement_x16;
3123         }
3124         if (bpp_found)
3125                 return bpp_target_x16;
3126
3127         return 0;
3128 }